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Abstract of the Dissertation
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Abstract. The degree of irrationality of an n-dimensional algebraic variety
X is the minimal degree of a rational map from X to Pn. The degree of
irrationality is a birational invariant with the purpose of measuring how far
X is from being rational. For example the degree of irrationality of X is 1 if
and only if X is rational. While the invariant has a very classical appearance,
it has not attracted very much attention until very recently in [BDPE+15]
where it was shown that the degree of irrationality of a very general degree d
hypersurface in Pn+1 is d − 1, if d is sufficiently large. The method of proof
involves relating the geometry of a low degree map to projective space to the
geometry of lines in projective space. In this dissertation we show that these
methods can be extended to compute the degree of irrationality of hypersur-
faces in other rational homogeneous spaces: quadrics, Grassmannians, and
products of projective spaces. In particular, we relate the geometry of low
degree maps from hypersurfaces in these rational homogeneous spaces to the
geometry of lines inside these rational homegeneous spaces. These computa-
tions represent some of the first computations of the degree of irrationality for
higher dimensional varieties.
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Chapter 1

Introduction

In this dissertation we compute the degree of irrationality of very general
hypersurfaces in quadrics, Grassmannians, and products of projective spaces.
This extends work of [BCDP14, BDPE+15] who computed the degree of irra-
tionality for very general hypersurfaces in projective space. This dissertation
represents one piece of the candidate’s research during graduate school. The
candidate has also written two additional papers [Sta16], [BS16].

Let X be a smooth n-dimensional complex projective variety. Recall that X
is rational if it is birational to Pn. Historically there has been a great deal of
interest in studying the behavior of rationality and in finding invariants that
can distinguish between nonrational Fano varieties and Pn (e.g. [AM72, CG72,
IM71, Kol95, Tot16, HPT16]). Here we are studying a slightly orthogonal
question.

Question. Given an arbitrary projective variety X, how can one measure how
far X is from being rational?

In the case X is 1-dimensional, i.e. X is a compact Riemann surface, then
the gonality of X, denoted gon(X), provides the most natural answer to this
question. Recall that the gonality of a Riemann surface X is the minimal
degree of a branched covering π : X→P1. We have

X is rational ⇐⇒ gon(X) = 1.

When dim(X) ≥ 2 then one possible answer to this question is the degree of
irrationality of X, denoted irr(X), which is the minimum degree of a dominant
rational map

ϕ : X99KPn.

In [BDPE+15] those authors prove that if X = Xd ⊂ Pn+1 is a very general
hypersurface of degree d ≥ 2n+ 1 then irr(X) = d− 1.

The main theorems from this dissertation are the computation of the de-
gree of irrationality for very general high degree hypersurfaces in quadrics,
Grassmannians, and products of projective spaces. These are some of the first
computations of the degree of irrationality in higher dimensions.

Let Q ⊂ Pn+2 (with n ≥ 1) be a smooth quadric in projective space.

Theorem 4.1. Let

X = Xd ⊂ Q

be a very general hypersurface in Q with X ∈ |OQ(d)|. If d ≥ 2n, then
irr(X) = d.
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Let G = Gr(k,m) ⊂ PN be the Plücker embedding of the Grassmannian of
k-planes in an m-dimensional vector space (with k 6= 1,m− 1).

Theorem 4.2. Let
X = Xd ⊂ G

be a very general hypersurface in G with X ∈ |OG(d)|. If d ≥ 3m − 5 then
irr(X) = d.

Let P = Pm1 × · · · ×Pmk be a product of k ≥ 2 projective spaces.

Theorem 4.3. Let
X = X(a1,...,ak) ⊂ P

be a very general divisor with X ∈ |OP(a1, . . . , ak)|, and let p be the minimum
of {ai −mi − 1}. If p ≥ max{mi} then irr(X) = min{ai}.

One of the main themes in this dissertation is the role that the positivity of
KX plays in bounding the degree of irrationality of X. As a guiding example,
consider the case when X is a curve. Then we have

X is rational ⇐⇒ KX is negative,

and a similar relationship holds for curves of higher gonality. To make such
a statement precise we need to introduce a measurement of the positivity of
KX . Recall that a line bundle L on X is p-very ample if for every length p+ 1
subscheme, the map

H0(X,L)→H0(X,L|ξ)
is surjective. In particular, a 0-very ample line bundle is base point free,
and a 1-very ample line bundle is very ample. Then we have the following
relationship between the gonality of X and the positivity of KX

gon(X) ≥ p+ 2 ⇐⇒ KX is p-very ample.

Another important part of the dissertation is an extension of Ein and Voisin’s
work [Ein88, Voi96] on the nonexistence of rational curves in very general hy-
persurfaces of high degree to the nonexistence of curves with bounded gonality.
For example, if G = Gr(k,m) ⊂ PN is the Plücker embedding of the Grass-
mannian as before, we prove

Proposition 3.11. Let X ∈ |OG(d)| be a very general divisor and set n =
dim(X). Then there are no curves C ⊂ X with

gon(C) ≤ d−m− n+ 2.

We have similar results for hypersurfaces in quadrics and hypersurfaces in
products of projective space. This type of extension of the results of Ein
and Voisin was first carried out in [BDPE+15] in the case of hypersurfaces in
projective space.
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Finally we prove some auxiliary results on the degree of irrationality of K3
surfaces, abelian surfaces, and complete intersections in projective space. In
the case of polarized K3 surfaces (X,L) with L2 = 2d we are interested in the
question

Question. For (X,L) a very general polarized K3 surface with L2 = 2d, does
irr(X) go to infinity with d?

We have the following partial answer to this question, which says irr(X) cannot
grow too quickly.

Theorem 5.1. There is a uniform constant C such that if (X,L) is a very
general K3 surface, then

irr(X) ≤ C
√
L2.

We have a similar result for polarized abelian surfaces.
In the case of complete intersections we show

Theorem 5.4. Let Z = Zd,e ⊂ Pn+2 be a very general complete intersection
of type (d, e). Then

irr(Z) ≥ eb n+1
√
dc

n+ 1
.

This should be compared to the case of a complete intersection

C = C(a1,...,ak) ⊂ Pk+1

of hypersurfaces of degrees a1 ≤ · · · ≤ ak. In this case it is known that
gon(C) ≥ (a1 − 1)a2 · · · ak.

Throughout we work over the field C. By a variety we mean a reduced and
irreducible scheme of finite type. We say that a property holds very generally if
it holds outside of the complement of a countable union of proper subvarieties.

In Chapter 2 we give the background to the dissertation, including the main
definitions and some important results from the literature that we will need.
In Chapter 3 we give our extensions of the theorems of Ein and Voisin to show
the nonexistence of curves with bounded gonality in hypersurfaces of some
homogeneous space of high degree. In Chapter 4 we prove the main results
of the dissertation, which is the computation of the degree of irrationality of
very general hypersurfaces in certain homegeneous spaces. In Chapter 5 we
give our partial results about the degree of irrationality of K3 surfaces, abelian
surfaces, and complete intersections.
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Chapter 2

Background

In this chapter we recall the background and main definitions for this dis-
sertation. This chapter is meant to be expository and we do not claim any
originality. In §2.1 we introduce two measures of irrationality, the covering
gonality and the degree of irrationality. In §2.2 we introduce a property called
birational p-very ampleness, or (BVA)p, which is meant to measure the bira-
tional positivity of a line bundle. In §2.3 we define a trace map which associates
to any dominant, generically finite rational map between projective varieties

f : X99KY

a linear map on global sections of canonical bundles

trf : H0(X,ωX)→H0(Y, ωY ).

In §2.4 we recall the Cayley-Bacharach condition on points in projective space.
In §2.5 we give a simple intersection theoretic condition for a line in projective
space to be contained in some subvariety of projective space. Finally, in §2.6 we
recall some basic facts about homogeneous spaces including global generation
of their tangent bundles, the Borel-Weil theorem, and we give some examples
of Fano varieties of lines in homogeneous spaces.

2.1. Measures of Irrationality

Let X be a smooth projective variety over C. In this section we consider two
birational invariants of X, the covering gonality and the degree of irrationality
which measure the distance X is from being rational. These definitions were
systematically studied in [BDPE+15], although they have appeared earlier in
the literature.

Definition 2.1. We say X is swept out by curves of gonality c if there is a
smooth and connected family of proper curves

π : C→T

such that each fiber Ct = π−1(t) has gonality c, and there is a dominating map

ψ : C→X

such that for each t ∈ T , the restriction

ψ|Ct : Ct→X

is birational onto its image.
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Definition 2.2 (see [BDPE+15, Def. 1.6]). The covering gonality of X, de-
noted cov.gon(X), is the minimum c such that X is swept out by curves with
gonality c.

Remark 2.3. We could also define cov.gon(X) as

cov.gon(X) = min

c > 0

∣∣∣∣∣∣
For general x ∈ X, there
is C ⊂ X an irred. curve

with gon(C) = c and x ∈ C

 .

Here the gonality of a curve C is by definition the gonality of its normalization.
A standard argument using Hilbert schemes and the Baire category theorem
implies these definitions are equivalent, but to make this argument one must
use the fact that C is uncountable.

Example 2.4. If X is a curve then cov.gon(X) = gon(X). Moreover, we have

gon(X) = 1 ⇐⇒ X ∼= P1.

If dim(X) ≥ 2 then we have

cov.gon(X) = 1 ⇐⇒ X is uniruled.

Remark 2.5. If g : C→D is a finite map of curves then gon(C) ≥ gon(D).
Thus if

f : X99KY

is a dominant and generically finite rational map then

cov.gon(X) ≥ cov.gon(Y ).

Example 2.6. If X is a K3 surface then by Bogomolov and Mumford’s theo-
rem [MM83, p. 351], X is swept out by genus 1 curves. Thus we have

cov.gon(X) = 2.

Example 2.7. If A is a abelian surface then A is not uniruled so cov.gon(A) ≥
2. Moreover, if A is general then A is isogenous to the Jacobian of a genus 2
curve C, Jac(C). Thus

C ⊂ Jac(C)

is a hyperelliptic curve, and by translating C we have

cov.gon(Jac(C)) ≤ 2.

Thus by Remark 2.5 we have cov.gon(A) = 2.
Pirola showed in [Pir89] that a generic abelian variety A with dim(A) ≥ 3

contains no hyperelliptic curves. Thus,

cov.gon(A) ≥ 3.
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Definition 2.8. Set n = dim(X). The degree of irrationality of X, denoted
irr(X) is the minimal degree of a dominant rational map

ϕ : X99KPn.

Remark 2.9. If C(X) is the function field of X then C(X) has transcendence
degree n thus it can be written as a finite extension of a purely transcendental
extension of C. The degree of irrationality is the minimal degree of such a
finite extension,

C(x1, ..., xn) ⊂ C(X).

Example 2.10. We have

irr(X) = 1 ⇐⇒ X'birP
n ⇐⇒ X is rational.

Remark 2.11. There is a straightforward inequality

irr(X) ≥ cov.gon(X).

Remark 2.12. Historically there has been a great deal of interest in under-
standing the nature of rationality including finding invariants that can prove
a Fano variety is not rational (see e.g. [AM72, CG72, Kol95, Tot16, HPT16]).
In this dissertation our interests are somewhat orthogonal. We will focus on
showing that certain general type varieties have a high degree of irrationality.

2.2. Birational positivity of line bundles and KX

Let X be a projective variety over C with a line bundle L. Following
[BDPE+15], we introduce a property (BVA)p which measures the birational
positivity of L.

Definition 2.13. A line bundle L on X is p-very ample if for all subschemes
ξ ⊂ X of length p+ 1, the restriction map

H0(X,L)→H0(X,L|ξ)
is surjective.

Remark 2.14. The notion of p-very ampleness is supposed to measure the
positivity of L. For example, we have

L is 0-very ample ⇐⇒ L is globally generated

and

L is 1-very ample ⇐⇒ L is very ample.

Example 2.15. The line bundle OPN (p) on PN is p-very ample. Moreover, if
Z ⊂ X is any subvariety and L is a p-very ample line bundle, then L|Z is also
a p-very ample line bundle.
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Remark 2.16. If X is a curve and L = KX then we have

KX is p-very ample ⇐⇒ gon(X) ≥ p+ 2.

This illustrates the basic connection between the positivity of KX and the de-
gree of irrationality of X. In higher dimensions however, it becomes important
to work with a measure of the birational positivity of KX instead.

Definition 2.17 ([BDPE+15, Def. 1.1]). A line bundle L on X satisfies the
property (BVA)p if there exists a Zariski closed proper subset Z = Z(L) $ X
depending on L such that

H0(X,L)→H0(X,L|ξ)
is surjective for every finite subscheme ξ ⊂ X of length p + 1 whose support
is disjoint from Z.

Remark 2.18. In Definition 2.17, (BVA)p stands for birationally p-very ample.

In particular, if L is p-very ample then L satisfies (BVA)p (in Definition 2.17,

it suffices to take Z(L) = ∅). Moreover we have

L satisfies (BVA)0 ⇐⇒ L is effective,

L satisfies (BVA)1 ⇐⇒ |L| : X99KPN is birational
onto its image,

and
L satisfies (BVA)1 =⇒ L⊗p satisfies (BVA)p.

The property (BVA)p is birational in the following sense, if

π : X ′→X
is a birational map and L is a line bundle on X that satisfies (BVA)p, then

L′ = π∗(L) also satisfies (BVA)p. In fact, if E is the exceptional locus of π

then in the definition of (BVA)p it suffices to take

Z(L′) = E ∪ π−1(Z(L)).

Remark 2.19. The following implications are clear,

KX satisfies (BVA)0 =⇒ X is not uniruled, and
KX satisfies (BVA)1 =⇒ X is of general type.

Example 2.20. If X is a regular surface and KX satisfies BVA0 (i.e. KX is
effective) then Mumford proved in [Mum68] that CH0(X) is infinite dimen-
sional. Moreover, if KX does not satisfy (BVA)0 then Bloch’s conjecture pre-
dicts CH0(X) ∼= Z. Some other Chow-theoretic consequences of KX satisfying
(BVA)p are explored in [BDPE+15, §2].

Leveraging Remark 2.16, one can prove the following theorem.
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Theorem 2.21 ([BDPE+15, Thm. 1.9]). Let X be a smooth projective variety,
and suppose there is an integer p ≥ 0 such that its canonical bundle KX

satisfies (BVA)p. Then

cov.gon(X) ≥ p+ 2.

Thus by Remark 2.11, if KX satisfies (BVA)p then irr(X) ≥ p+ 2.

2.3. Mumford’s trace map

Let X and Y be smooth n-dimensional projective varieties, and let

f : X99KY

be a dominant rational map. In [Mum68], Mumford defines a linear trace map

trf : H0(X,ωX)→H0(Y, ωY )

which at a generic point of Y is defined by summing over the fibers of f . Mum-
ford defines the trace in a more general setting than we need. Moreover, from
a modern perspective the trace can be defined using duality theory. However,
in this section we opt to give an elementary proof that this trace exist.

Definition 2.22 (Case 0: f regular, proper, and étale). Assume

f : X→Y

is a degree d proper, étale map between smooth (possibly nonproper) varieties.
we can define the trace of f ,

trf : H0(X,ωX)→H0(Y, ωY )

as follows. If B ⊂ Y is a simply connected open set, then the preimage is a
disjoint union

f−1(B) = B1 t · · · tBd.

of opens sets Bi with Bi
∼= B. For any η ∈ H0(X,ωX) define

trf (η)|B = η|B1 + · · ·+ η|Bd
.

Remark 2.23. For any dominant rational map

f : X99KY

of projective n-dimensional varieties we can always find a nonempty open set
U ⊂ Y such that if V = f−1(U) then

f |V : V→U

is a regular, proper, and étale morphism. This gives rise to a diagram
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H0(X,ωX) H0(Y, ωY ).

H0(V, ωV ) H0(U, ωU)

?

restr. restr.

trf |V

So our aim is to show that we can fill in the dashed arrow. Equivalently we
want to show that for any η ∈ H0(X,ωX), the a priori meromorphic n-form
trf |V (η|V ) has no poles in Y .

Proposition/Definition 2.24. In the above setting, let η ∈ H0(X,ωX) be a
holomorphic n-form. Then the holomorphic n-form

trf |V (η|V ) ∈ H0(U, ωU)

can be extended to a holomorphic n-form

trf (η) ∈ H0(Y, ωY ).

Proof. By applying Hartog’s theorem it suffices to show that we can extend
trf |V (η|V ) to an open set W ⊃ U such that codim(Y \W ) ≥ 2. Furthermore,
by resolving f we can reduce to the case

f : X→Y

is a regular, generically finite map. Here we need to use that any proper
birational map of smooth projective varieties

π : X ′→X

induces an isomorphism

π∗ : H0(X,ωX)→H0(X ′, ωX′).

Having reduced to the case f is regular and proper, there exists an open
subset W ⊂ Y with codim(Y \W ) ≥ 2 such that for every point p ∈ W and
any point q ∈ f−1(p), there are local analytic coordinates y1, . . . , yn around p
and x1, . . . , xn around q satisfying

f ∗(y1) = xe1
and f ∗(yi) = xi if i 6= 1.

That is, away from codimension 2 in Y , the map f is analytically locally a
cyclic cover.

So it suffices to show that trf |V (η|V ) has no poles in the case f is a cyclic
cover branched over a smooth divisor. For points p ∈ W and q ∈ X as above
and using the above coordinates, we can write

η = g(x1, . . . , xn)dx1 ∧ · · · ∧ dxn
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locally around q. If we expand g as a power series in x1 we have

η =
∞∑
j=0

gj(x2, . . . , xn)xj1dx1 ∧ · · · ∧ dxn.

Then we can write the meromorphic n-form trf |V (η|V ) near p as:

trf |V (η|V ) = trf |V

(
∞∑
j=0

gj(x2, . . . , xn)xj1 · dx1 ∧ · · · ∧ dxn

)
=

e∑
i=1

∞∑
j=0

gj(y2, . . . , yn)(ωi e
√
y1)j · d(ωi e

√
y1) ∧ · · · ∧ dyn

(where ω is a primitive e-th root of unity)

=
∞∑
j=0

(
1
e

e∑
i=1

ωi(j+1)

)
gj(y2, . . . , yn)y

(j+1−e)/e
1 dy1 ∧ ... ∧ dyn.

Now, as ω is a primitive e-th root of unity we have:

1

e

e∑
i=1

ωi(j+1) =

{
1 if e|j + 1

0 otherwise.

So letting k = (j + 1)/e we get

trf |V (η|V ) =
∞∑
k=1

yk−1
1 gke−1(y2, . . . , yn)dy1 ∧ · · · ∧ dyn.

In particular we see that the meromorphic n-form trf |V (η|V ) does not have a
pole at p, which completes the proof. �

For any correspondence Γ between X and Y , we can define a trace through
Γ as follows. Assume Γ is a cycle on X × Y of the form

Γ =
∑

niΓi,

with each Γi irreducible of dimension n. Let Γ′i→Γi be a resolution of singu-
larities of Γi and define

pi : Γ′i→X and qi : Γ′i→Y

to be the natural maps.

Definition 2.25. In the above setting, define the trace through Γ to be the
linear map

trΓ =
∑
i

nitrqi ◦ p∗i : H0(X,ωX)→H0(Y, ωY ).
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2.4. The Cayley-Bacharach condition

In this section we introduce the Cayley-Bacharach condition and state some
consequences for low degree maps to Pn.

Definition 2.26. Let S = {q1, ..., qd} ⊂ PN be a set of d points in projective
space. We say that S satisfies the Cayley-Bacharach condition with respect to
|mH| if every divisor D ⊂ |mH| which contains at least d − 1 points in S,
contains all of S.

Lemma 2.27 ([BCDP14, Lemma 2.4]). Let N ≥ 2 and let

S = {q1, . . . , qd} ⊂ PN

be a subset satisfying the Cayley-Bacharach condition with respect to |mH| for
some m ≥ 1. Then d ≥ m + 2. Moreover, if d ≤ 2m + 1 then S is contained
in a line.

Let X ⊂ PN be a smooth n-dimensional projective variety, and assume that

KX = mH|X + E

for E some effective divisor.

Lemma 2.28 ([BCDP14]). Let

Γ ⊂ X ×Pn

be an irreducible n-dimensional subvariety such that both projections

p1 : Γ→X and p2 : Γ→Pn,

are dominant maps. (For example, the closure of a graph of a rational map
ϕ : X99KPn.) If p ∈ Pn is a general point then the subset

p1(p−1
2 (p)) ⊂ PN

satisfies the Cayley-Bacharach condition with respect to |mH|.

The idea is the following, if we take the trace through Γ we get a map

trΓ : H0(X,ωX)→H0(Pn, ωPn).

For a general point p ∈ Pn, the projection p2 is étale over p, and the map
p1 is étale around each point q ∈ p−1

2 (p). Moreover we can choose p so that
p1(p−1

2 (p)) ∩ E is empty. Then coordinates x1, . . . , xn around p give rise to
coordinates around each point x ∈ p1(p−1

2 (p)) and there is a commuting dia-
gram:
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H0(X,ωX) H0(Pn, ωPn) = 0

⊕
x∈p1(p−1

2 (p))

Cdx1 ∧ · · · ∧ dxn Cdx1 ∧ · · · ∧ dxn.

restr.

trΓ

restr.∑

The commutativity implies that every global n-form must restrict to ker(
∑

).
Suppose D ∈ |mH| is a divisor that meets p1(p−1

2 (p)) at all except possibly
1 point x′ ∈ p1(p−1

2 (p)). Then D + E corresponds to a holomorphic n-form
ηD+E ∈ H0(X,ωX) that vanishes at all points except possibly x′ ∈ p1(p−1

2 (p)).
Finally we have

0 =
∑

x∈p1(p−1
2 (p))

ηD+E|x = ηD+E|x′ .

So ηD+E vanishes at x′ as well, and thus x′ is contained in D.

2.5. A Bezout-type lemma

In this section we prove an elementary lemma which we will need at var-
ious stages of the dissertation. Let X ⊂ PN be a subvariety of projective
space. Assume that X is cut out by homogeneous polynomials {Fi} satisfying
deg(Fi) ≤ e for all i.

Lemma 2.29. If C ⊂ PN is a degree d integral curve such that

#(X ∩ C) > de.

then C ⊂ X.

Proof. Set Yi = (Fi = 0) ⊂ PN . For all i we have:

[Yi] · [C] ≤ de < #(X ∩ C) ≤ #(Yi ∩ C).

So the intersection Yi ∩C is not proper. Thus C ⊂ Yi for all i, i.e. C ⊂ X �

Corollary 2.30. If X ⊂ PN is cut out by quadrics and ` ⊂ PN is a line
meeting X at 3 or more points, then ` ⊂ X.

2.6. Background on rational homogeneous spaces

In this section we recall some basic results about rational homogeneous
spaces. In §2.6.1 we prove that the tangent bundle of a rational homogeneous
space is globally generated. In §2.6.2 we recall the Borel-Weil theorem and
some of its consequences. In §2.6.3 we give some examples of the Fano variety
of lines of some homogeneous spaces.
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Definition 2.31. Recall that a projective variety Y is a rational homogeneous
space if there is a semisimple linear algebraic group G and a transitive algebraic
group action

G×Y→Y.

Remark 2.32. A rational homogeneous space Y is necessarily smooth and
rational. Moreover, we have

Y ∼= G/P

for P ⊂ G some parabolic subgroup which is the stabilizer of a point y ∈ Y.

We recall some of the terminology from Lie theory. If G is any semisimple
linear algebraic group and we choose a maximal torus

H = (C∗)m ⊂ G

then the Lie algebra g of G can be decomposed into the eigenvectors for the
Adjoint representation of H on g. That is we can write

g = h⊕

(⊕
α∈R

gα

)
.

Here, h is the Lie algebra of H and the gα are one dimensional weight spaces
where H acts with the weight α ∈ R. Thus the weights in R are some finite
subset R ⊂ h∗ called the roots of g. Fixing a Borel subgroup B ⊂ G that
contains H allows us to decompose the roots into positive and negative roots

R = R+ tR−.

The positive roots, correspond to the eigenspaces of g which are contained in
the Lie algebra b of B. Moreover, the simple roots in R+ are the positive
roots which are not the sum of 2 other positive roots. The simple roots form
a natural basis for h∗.

2.6.1. Global generation of TY. Let Y = G/P be a rational homogeneous
space.

Proposition 2.33. The tangent bundle TY is globally generated.

Proof. As Y = G/P we have the map

π : G→Y by sending g 7→ [g · P ].

The tangent space at a point [g · P ] canonically fits in the exact sequence

0→Ad(g) · p→g
dπg−−→ TY|[g·P ]→0
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where Ad is the adjoint representation of G and p is the Lie algebra of P .
Note that it can happen that [g · P ] = [h · P ] even when the transformations
Ad(g) and Ad(h) are not the same. But the subspaces

Ad(g) · p,Ad(h) · p ⊂ g

will still be the same.
For any vector X ∈ g, we can define the global vector field sX ∈ H0(Y, TY)

fiber by fiber by setting

sX |[g·P ] = dπg(Ad(g) ·X).

By the surjectivity of dπg these vector fields generate TY. �

2.6.2. The Borel-Weil theorem. Now we recall the theorem of Borel and
Weil on the cohomology of line bundles on homogeneous spaces (for a reference
see [FH91, p. 393] or [Ser95]).

Let h be the Lie algebra of our maximal torus H ⊂ G and choose

λ ∈ h∗

an integral weight. Then the exponential of λ gives rise to a 1-dimensional
representation of H, denote Cλ, by

χλ : H→C∗.

To construct a line bundle Lλ on G/B it suffices to construct a B-equivariant
line bundle on G. That is we need an action of B on G × Cλ which is linear
on the fibers over G and such that the diagram

G× Cλ ×B G× Cλ

G×B G

commutes. To give the action we note that there is a quotient map

ψ : B→H
(quotienting by the unipotent radical) such that H↪→B is a splitting of ψ.
Thus we can extend the 1-dimensional representation Cλ to a representation
of B by considering

χλ ◦ ψ : B→C∗.
The right action

G× Cλ ×B −→ G× Cλ

is given by

(b, g, v) 7→ (g · b, χλ(ψ(b)) · v).

Define Lλ to be the associated line bundle on G/B.
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Remark 2.34. The global sections of Lλ naturally form a finite dimensional
representation of G. Moreover, from the construction it is clear that for any
two weights λ, µ ∈ h∗ we have

Lλ+µ = Lλ ⊗ Lµ.

Theorem 2.35 (Borel-Weil Theorem). Every line bundle on G/B is Lλ for
some weight λ. If λ is a dominant weight then

H0(Y, L−λ) ∼= V ∗λ

where Vλ is the irreducible representation with highest weight λ. If λ is not
dominant then

H0(G/B,L−λ) = 0.

Remark 2.36. Let h∗Z denote the set of integral weights of H and let h∗R =
h∗Z ⊗ R. Together Remark 2.34 and Theorem 2.35 imply that there is an
isomorphism

Pic(Y) ∼= h∗Z.

This isomorphism sends the effective cone in Pic(G/B)⊗R to the cone spanned
by weights −λ ∈ h∗R such that λ is dominant, i.e. if

W ⊂ h∗R

is the Weyl chamber spanned by dominant weights, then the effective cone
corresponds to −W . Moreover the effective cone is the same as the nef cone.

Remark 2.37 (Line bundles on arbitrary homogeneous spaces). In practice
we will be working with homogeneous spaces that are given by G/P where P
is just a parabolic subgroup with B ⊂ P ⊂ G. Fortunately, it is still possible
to apply the Borel-Weil Theorem in this setting.

To start there is a proper map of homogeneous spaces

π : G/B→G/P

which is a P/B fiber bundle. Moreover the higher direct images vanish, i.e.

Riπ∗O(G/B) = 0 for i > 0.

Thus for any line bundle L on G/P , we have π∗L = Lλ for some weight λ and

H0(G/P,L) = H0(Y, Lλ).

The latter is computable using the Borel-Weil theorem.

Remark 2.38. We can be slightly more precise. There is a correspondence

{P parabolic|B ⊂ P} 1:1←→
{
F

∣∣∣∣ F is a face of the
Weyl chamber W

}
.
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The map going from left to right can be defined by taking

π∗(Pic(G/P )⊗ R) ⊂ Pic(G/B)⊗ R ∼= h∗R

and taking the face

FP = π∗(Pic(G/P )⊗ R) ∩W .

This implies that the Picard rank of G/P equals the dimension of the face
FP . Moreover, if L is ample on G/P then π∗(L) = L−λ is nef on (G/P ) and
λ corresponds to a dominant weight in the interior of FP . In particular, every
nef line bundle on G/B is the pullback of an ample line bundle from some
G/P .

Proposition 2.39. Let L be an ample line bundle on a homogeneous space
G/P . Then L is very ample and the embedding given by the linear series of L

ϕL : G/P→PN

is projectively normal.

Proof. If L is ample, then π∗L = L−λ for λ ∈ W a dominant weight. More-
over, by the Borel-Weil theorem, the following diagram of G-representations
commutes:

(2.40)

Symn(H0(G/P,L)) H0(G/P,L⊗n).

Symn(V ∗λ ) V ∗nλ

The horizontal arrows are nonzero, and therefore they must be surjective (else
the image of Symn(V ∗λ ) would give a nontrivial subrepresentation of V ∗nλ, which
contradicts the irreducibility of V ∗nλ).

Assuming for contradiciton that every section of L vanishes at some point
x ∈ G/P , then by diagram (2.40) so does every section of L⊗n (for n > 0).
This is absurd as for n large L⊗n is very ample. Thus L is globally generated.
A similar argument implies that L is very ample. Finally, the surjectivity of
the arrows in diagram (2.40) implies that the image of the embedding ϕL(G/P )
is projectively normal. �

Finally, Lichtenstein proved

Theorem 2.41 ([Lic82]). The image ϕL(G/P ) is cut out by quadrics.
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2.6.3. Fano varieties of lines in homogeneous spaces. Here we look at
the Fano variety of lines of various homogeneous spaces under their natural
embeddings.

Example 2.42. Let Q ⊂ P2k−1 be a smooth even dimensional quadric. Then
Q is a homogeneous space for the group SO2k(C). If k ≥ 3 then Q has Picard
rank 1 and corresponds to the ray in the Weyl chamber of SO2k(C) which is
perpendicular to the unmarked simple roots in the following Dynkin diagram,
Dk:

Moreover, SO2k(C) acts transitively on the set of set of lines in Q. So we
see that the Fano variety Fano(Q) is also a homogeneous space for SO2k(C).
When k = 3, then Q ∼= Gr(2, 4) and the Fano variety of lines is computed in
the next example. If k ≥ 4 then the Fano variety of lines in Q also has Picard
rank 1. It corresponds to the ray in the Weyl chamber which is perpendicular
to the unmarked simple roots in the following Dynkin diagram.

There is a similar picture for odd dimensional quadrics.

Example 2.43. Let G = Gr(k,m) ⊂ P(∧kCm) be the Plücker embedding
of the Grassmannian of k-planes in an m-dimensional vector space (with k 6=
1,m − 1). Then G is a Picard rank 1 homogeneous space for SLm(C). It
corresponds to the ray of the Weyl chamber of SLm(C) which is perpendicular
to the unmarked simple nodes in the following Dynkin diagram, Am−1:

k

Given a partial flag

[U ⊂ V ⊂ Cm] ∈ Fl(k − 1, k + 1,m)

such that dim(U) = k − 1 and dim(V ) = k + 1 we can construct a line
` = `U,V ⊂ G in the Plücker embedding by

` = {[Λ] ∈ G|U ⊂ Λ ⊂ V }.

In fact all the lines in G correspond to such partial flags and we have

Fano(G) = Fl(k − 1, k + 1,m).

Thus, Fano(G) is an SLm(C) homogeneous space of Picard rank 2. It corre-
sponds to the face of the Weyl chamber which is perpendicular to the unmarked
simple roots in the following Dynkin diagram.
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k

Example 2.44. Let P = Pm1 × · · · ×Pmk be a product of projective spaces.
Then P is a homogeneous space for

G = SLm1(C)× · · · × SLmk
(C).

Let P↪→PN be the Segre embedding. Any embedding f : P1↪→P comes from
a set of k maps fi : P1→Pmi . Moreover, the degree of f is computed by

deg(f) =
∑

deg(fi).

Therefore, the image of f is a line in the Segre embedding if and only if one
of the factors fi embeds P1 as a line in Pmi and the rest of the factors have
degree 0 (i.e. are constant maps). In particular, we can write the Fano variety
of lines in P as a disjoint union

Fano(P) =
(Gr(2,m1 + 1)×Pm2 × · · · ×Pmk) t · · ·
· · · t (Pm1 × · · · ×Pmk−1 ×Gr(2,mk + 1)) .
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Chapter 3

The gonality of curves in hypersurfaces in
some homogeneous spaces

The goal of this chapter is extend the arguments of Ein and Voisin [Ein88,
Voi96] on the nonexistence of rational curves in very general hypersurfaces of
projective space to the situations which we are considering in this dissertation.
In [BDPE+15] these arguments were extended to give bounds on the gonality
of curves appearing in very general hypersurfaces in projective spaces. For
example, those authors proved:

Proposition (see [BDPE+15, Prop. 3.7]). Let X ⊂ Pn+1 be a very general
hypersurface of degree d ≥ 2n. Then any irreducible curve C ⊂ X satisfies

gon(C) ≥ d− 2n+ 1.

More generally, if X contains an irreducible subvariety of dimension e > 0
which is swept out by curves of gonality c, then

c ≥ d− 2n+ e.

In this chapter we prove similar propositions for very general hypersurfaces
in quadrics, Grassmannians, and products of projective spaces. These propo-
sitions will be important in the computation of the degree of irrationality of
these varieties, which we carry out in Chapter 4.

In §3.1 we outline the general argument for proving the nonexistence of
families of curves with gonality c in a hypersurface in a homogeneous space.
In §3.2 we prove a proposition similar to the above proposition in the case of
hypersurfaces in quadrics. In §3.3 and §3.4 we prove similar propositions for
hypersurfaces in Grassmannians and products of projective spaces respectively.

3.1. Outline of the general argument

Let Y be a rational homogeneous space. In this section we outline the
general argument which gives bounds for the gonality of curves that can appear
in very general hypersurfaces in Y.

We start by defining a certain kernel bundle on Y.

Definition 3.1. Let L ∈ Pic(Y) be a globally generated vector bundle, then
the map

eval : H0(Y, L)⊗C OY→L
is surjective. Thus the kernel

ML := ker(eval)

is a vector bundle which we call the kernel bundle associated to L.
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From now on, assume that L andO(1) ∈ Pic(Y) are very ample line bundles.
Let

U ⊂ H0(Y, L)

be the open subset which parameterizes smooth divisors. Thus there is a
universal divisor X over U

X ⊂ U ×Y Y.

U

p1

p2

Here the fibers of p1|X are all smooth divisors X ∈ |L|. In particular, X is
smooth. We have the following proposition, the argument here is due to Ein
and Voisin.

Proposition 3.2. Let X ∈ |L| be a smooth divisor. Assume that

H1(X,ML(1)|X) = 0

and that ML(1)|X is globally generated. Then TX (1)|X is globally generated.

Proof. To start we note that there is a map between the normal sequence of
X in X and the normal sequence of X in Y.

0 TX(1) TX (1)|X H0(Y, L)⊗C OX(1) 0

0 TX(1) TY(1)|X L(1)|X 0

dp2 eval

Then by the snake lemma, we have

ML(1)|X = ker(dp2) = ker(eval).

To show TX (1)|X is globally generated consider the diagram:

0 H0(ML(1)|X)⊗C OX H0(TX (1)|X)⊗C OX H0(TY(1)|X)⊗C OX 0

0 ML(1)|X TX (1)|X TY(1)|X 0.

0 0

eval eval eval

dp2

The left and right evaluation maps are surjective - the left by the assumption
that ML(1)|X is globally generated and the right because Y is a rational
homogeneous space so TY is globally generated. Then by the snake lemma, the
center evaluation map is surjective and thus TX (1) is globally generated. �
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Now we assume that every general fiber X of p1 : X→U contains an e-
dimensional subvariety which is swept out by curves with gonality c. In this
setting we have the following proposition:

Proposition 3.3. Let X be a very general fiber with n = dim(X) and assume
that ωX(−n) is p-very ample. If TX (1)|X is globally generated then

c ≥ p+ e+ 2.

Proof. We have assumed that a very general X contains an e-dimensional sub-
variety S ′ ⊂ X which is swept out by curves with gonality c. By a standard
argument using Hilbert schemes and the Baire category theorem we can con-
struct a family of such S ′. I.e. there is a diagram

S S ′ X

V U

f

p1

where V→U is étale, S ′ ⊂ X ×U V is a family of e-dimensional subvarieties
of X ×U V which are swept out by curves with gonality c, and S→S ′ is a
resolution of the total space of S ′. In particular, after shrinking V we can
assume that S→V is a smooth map of relative dimension e and that fiber by
fiber S→S ′ is a resolution (in particular, the fibers of S and S ′ over V are
birational).

Let N = dim(U). As the fibers of S and S ′ are birational, if S0 ⊂ S is any
fiber, then the exterior power of the differential:

(3.4) ∧e+N df : f ∗
(
∧e+NΩX

)
|S0→ωS |S0

is not identically 0. The normal bundle of S0 ⊂ S is trivial and hence

ωS |S0
∼= ωS0 .

Moreover, the exterior product gives rise to the isomorphism:

(3.5) f ∗
(
∧e+NΩX

)
|S0
∼= f ∗

(
∧n−eTX (1)

)
⊗ f ∗(ωX (e− n))|S0 .

The triviality of the normal bundle of X ⊂ X implies ωX |X = ωX . So if we
twist (3.4) by (ωX(e − n))−1, use the isomorphism (3.5), and the assumption
that TX (1)|X is globally generated, we see that the line bundle

OS0(E) := ωS0 ⊗ f ∗(ωX(e− n))−1|S0

is effective. Therefore we have

ωS0 = f ∗(ωX(e− n))|S0 ⊗OS0(E)
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is the tensor product of a line bundle which satisfies (BVA)p+e and an effective
line bundle. Thus ωS0 satisfies (BVA)p+e and we are done by Theorem 2.21. �

Recall that by Proposition 2.39, the embedding of Y by the complete linear
series O(1) is projectively normal. Thus we have the following proposition due
to Ein that we will use in the setting L is a multiple of O(1).

Proposition 3.6 ([Ein88, Prop. 1.2(c)]). If L = O(d) then ML(1)|X is
globally generated.

3.2. The gonality of curves on hypersurfaces in a quadric

Let Q ⊂ Pn+2 be a smooth (n+ 1)-dimensional quadric in projective space
with n ≥ 2.

Proposition 3.7. Let X ∈ |OQ(d)| be very general. If S ⊂ X is an e-
dimensional subvariety swept out by curves with gonality c, then

c ≥ e+ d− 2n+ 1.

Proof. We have ωX ∼= OX(d − n − 1). Therefore ωX(−n) is p-very ample for
p = d − 2n − 1. By the following lemma, we have that TX (1)|X is globally
generated. Thus by Proposition 3.3 we are done. �

Lemma 3.8. The bundle TX (1)|X is globally generated.

Proof. By Proposition 3.2 and Proposition 3.6 it suffices to show

H1(X,ML(1)|X) = 0

where L = OQ(d). Twisting the exact sequence that defines ML by OQ(1)
and restricting to X gives the following long exact sequence on cohomology.

· · ·→H0(Q,OQ(d))⊗H0(X,OX(1))
eval−−→ H0(X,OX(d+ 1))

→H1(X,ML(1)|X)→H0(Q,OQ(d))⊗H1(X,OX(1))→· · ·
Now the evaluation map is surjective because X ⊂ Pn+2 is projectively normal,
and H1(X,OX(1)) = 0 is an easy computation. Therefore, H1(X,ML(1)|X)
vanishes. �

It is interesting to ask to what extent the bounds in Proposition 3.7 are
optimal.

Example 3.9. When (d, n) = (3, 2) then X is a K3 surface then by [MM83]
X is covered by genus 1 curves and always contains rational curves. Therefore
the inequality in Proposition 3.7 (which becomes c ≥ e) is sharp.
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Example 3.10. Consider the case n = e = 3, i.e. we are looking at the
covering gonality of a hypersurface in a quadric fourfold. The inequality in
Proposition 3.7 reads

cov.gon(X) ≥ d− 2.

Now for each point x ∈ Q, the family of 2-planes through x

Fx :=
{

[P ] ∈ Gr(3, 6)
∣∣P ⊂ Q ⊂ P5 with x ∈ P

}
⊂ Gr(3, 6)

is a disjoint union of 2 P1s. Fixing x ∈ X then for every plane in Px the
intersection C = P ∩X is a degree d plane curve containing x. If d > 1 then
by varying the plane [P ] ∈ Fx in its 1-dimensional family it is always possible
to find a singular intersection C = P∩X, which necessarily has gon(C) ≤ d−2.
Therefore

cov.gon(X) = d− 2.

3.3. The gonality of curves on hypersurfaces in a Grassmannian

Let G = Gr(k,m) ⊂ PN be the Plücker embedding of the Grassmannian of
k-planes in an m-dimensional vector space.

Proposition 3.11. Let X ∈ |OG(d)| be very general and set

n = dim(X).

If S ⊂ X is an e-dimensional subvariety swept out by curves with gonality c,
then

c ≥ e+ d−m− n+ 2.

Proof. We have ωX ∼= OX(d − m). Thus ωX(−n) is p-very ample for p =
d −m − n. As in Proposition 3.7, we need to show that TX (1)|X is globally
generated, which we prove in the following lemma. Then we are done by
Proposition 3.3. �

Lemma 3.12. The bundle TX (1)|X is globally generated.

Proof. The proof is identical to the proof of Lemma 3.8 �

3.4. The gonality of curves on hypersurfaces in a product of
two or more projective spaces

For simplicity we start out by looking at a product of two projective spaces:
P = Pa ×Pb.

Proposition 3.13. Assume at least one of a, b > 1. Let X ∈ |OP(k, `)| be
a very general divisor with k, ` > 1 and set n = dim(X). If S ⊂ X is an
e-dimensional subvariety swept out by curves with gonality c, then

c ≥ e+ min{k − a, l − b} − n+ 1.
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Proof. By adjunction we have ωX ∼= OX(k − a − 1, ` − b − 1). Thus ωX(−n)
is p-very ample for p = min{k− a, `− b}− 1. Thus, as in Proposition 3.7 and
3.11 we need to show that TX (1, 1) is globally generated, which we do in the
following two lemmas. Once we do this we are done by Proposition 3.3. �

In this setting we are not able to immediately apply Proposition 3.6 to de-
duce thatMOP(k,`)(1, 1)|X is globally generated, as OP(k, `) is not necessarily
a tensor power of OP(1, 1). So it requires a bit more work to prove that
TX (1, 1)|X is globally generated, although the proof is not hard.

Lemma 3.14. The vector bundle MOP(k,`)(1, 1)|X is globally generated.

Proof. The idea is to understand the kernel bundle of OP(k, `) in terms of the
kernel bundles of OP(k, 0) and OP(0, `). The defining exact sequence of the
kernel bundle of OP(k, 0) is

(3.15) 0→MOP(k,0)→H0(OPa(k))⊗C OP
eval−−→ OP(k, 0)→0.

Here we are using the natural isomorphism

H0(Pa,OPa(k)) ∼= H0(P,OP(k, 0)).

Likewise we have the exact sequence for the kernel bundle of OP(0, `)

(3.16) 0→MOP(0,`)→H0(OPb(`))⊗C OP
eval−−→ OP(0, `)→0.

These two sequences are the pullback of the defining sequences of the ker-
nel bundles of OPa(k) and OPb(`) respectively. Then Proposition 3.6 implies
that the bundlesMOP(k,0)(1, 0) andMOP(0,`)(0, 1) both are globally generated.
Now we take the tensor product of the sequence (3.15) with the sequence (3.16)
to get the following 9-term commuting diagram

MOP(k,0) ⊗MOP(0,`) H0(OPa(k))⊗CMOP(0,`) MOP(0,`)(k, 0)

MOP(k,0) ⊗C H
0(OPb(`)) H0(OP(k, `))⊗C OP OP(k, 0)⊗C H

0(OPb(`))

MOP(k,0)(0, `) H0(OPa(k))⊗C OP(0, `) OP(k, `).

All the rows and columns are short exact sequences. A diagram chase yields
a surjection

(H0(OPa(k))⊗CMOP(0,`))⊕ (MOP(k,0) ⊗C H
0(OPb(`)))→MOP(k,`).

After twisting by OX(1, 1), the term on the left is globally generated, and
hence MOP(k,`)(1, 1)|X is globally generated. �

Lemma 3.17. The bundle TX (1, 1)|X is globally generated.
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Proof. By Proposition 3.2 and Lemma 3.14, it suffices to show that

H1(X,MOP(k,`)(1, 1)) = 0.

As in Lemma 3.8 it suffices to show that

eval : H0(P,OP(k, `))⊗H0(X,OX(1, 1))→H0(X,OX(k + 1, `+ 1))

is surjective and that
H1(X,OX(1, 1)) = 0.

The surjectivity of the evaluation map follows from the surjectivity of

H0(P,OP(k + 1, `+ 1))→H0(X,OX(k + 1, `+ 1)).

By the ideal sequence of X the vanishing of H1(X,OX(1, 1)) is equivalent to
the vanishing of H2(P,OP(1− k, 1− `)). We can decompose the latter group
using using Künneth to write

H2(OP(1− k, 1− `)) ∼=
⊕
p+q=2

Hp(OPa(1− k))⊗Hq(OPb(1− `)).

The terms with H0 vanish by the assumption that k, ` > 1. The term

H1(OPa(1− k))⊗H1(OPb(1− `))
vanishes by the assumption that at least one of a, b > 1. �

Example 3.18. Let a = b = 2, so X ⊂ P2×P2 is a smooth threefold. Assume
k = `. In this case Proposition 3.13 says that if X is very general in |OP(k, k)|
then X does not contain any curves C with gon(C) ≤ k − 4. For example,
when k = 5 this implies X has no rational curves. Similarly we see that when
k = 4 there are no ruled surfaces (with arbitrary singularities) inside X.

Now we consider products of more than two projective spaces

P = Pm1 × · · · ×Pmk

with k ≥ 3.

Proposition 3.19. Let X ∈ |OP(a1, . . . , ak)| be a very general divisor with
all the ai > 1 and set n = dim(X). If S ⊂ X is an e-dimensional subvariety
swept out by curves with gonality c then

c ≥ e+ min{a1 −m1, . . . , ak −mk} − n+ 1.

Proof. We have

ωX(−n, . . . ,−n) ∼= OX(a1 −m1 − n− 1, . . . ak −mk − n− 1)

is p-very ample for

p = min{a1 −m1, . . . , ak −mk} − n− 1.

In the following Lemma we prove that TX (1, . . . , 1)|X is globally generated.
Then by applying Proposition 3.3 we are done. �
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Lemma 3.20. The bundle TX (1, . . . , 1)|X is globally generated.

Proof. The proof of Lemma 3.20 follows the method of proof of Lemma 3.14
and Lemma 3.17. To start we prove global generation of

MOP(a1,...,ak)(1, . . . , 1).

As in Lemma 3.14 we see there is a surjection

k⊕
i=1

((⊗
j 6=i

H0(OPmj (aj))

)
⊗CMOP(0,...,ai,...,0)

)
→MOP(a1,...,ak).

If we twist this map by OP(1, . . . , 1) then the left hand side is globally gener-
ated by Proposition 3.6. ThereforeMOP(a1,...,ak)(1, . . . , 1) is globally generated.

The rest of the proof that TX (1, . . . , 1) is globally generated is the same as
Lemma 3.17. We just remark that every term in the Künneth decomposition
of H2(OP(1− a1, . . . , 1− ak)) contains a tensor factor of H0(OPmi (1− ai)) for
some i, and all these terms vanish because 1− ai is negative. �

Example 3.21. Consider X ⊂ (P1)4 such that X ∈ |kH| is very general - i.e.
X is a smooth threefold. In this case Proposition 3.14 says that X contains
no curves C with gon(C) ≤ k − 3. In particular, when k = 4 we see that X
contains no rational curves, and when k = 3 we see that X contains no ruled
surfaces. In this setting, this is the best possible bound on k such that X
contains no ruled surfaces. When k = 2 (X is a Calabi-Yau threefold) we get
that the projection:

p1 : X→P1

is generically fibered in smooth K3 surfaces. By the following lemma, (based
on the theorem of Bogomolov and Mumford [MM83]) any threefold which is
fibered in K3 surfaces necessarily contains a ruled surface.

Lemma 3.22. Let X be a projective threefold and C a smooth curve. If there
exists a map

π : X→C
which is generically fibered in K3 surfaces, then X contains a ruled surface.

Sketch of Proof. As a general fiber Xp = π−1(p) is a K3 surface [MM83, p.
351] implies that Xp contains a rational curve. This implies that the following
locus in the Hilbert scheme of X

H =

{
[R ⊂ X]

∣∣∣∣ R is integral, R'birP
1,

and π(R) is a point

}
⊂ Hilb(X)

dominates C. Thus, by the Baire category theorem there must be an integral
curve D ⊂ H. Then the universal subscheme over D

R = {[R]× x|x ∈ R} ⊂ D ×X
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projects onto a ruled surface in X. �

Remark 3.23. Conjecturally, every K3 surface contains infinitely many ra-
tional curves. This is known for very general K3 surfaces. If this were true
then one could show that X contains countably many ruled surfaces.
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Chapter 4

The degree of irrationality of hypersurfaces in some
rational homogeneous spaces

In this chapter we compute the degree of irrationality of hypersurfaces in
quadrics, Grassmannians, and products of projective spaces. These are the
main results from this dissertation and they represent some of the first com-
putations of the degree of irrationality of higher dimensional varieties. The
arguments here are extensions of the arguments in [BDPE+15] where those
authors proved

Theorem ([BDPE+15, Thm. C]). Let X ⊂ Pn+1 be a very general smooth
hypersurface of degree d ≥ 2n+ 1. Then

irr(X) = d− 1.

Furthermore, if d ≥ 2n+ 2 then any rational mapping:

ϕ : X99KPn with deg(f) = d− 1

is given by projection from a point of X.

This theorem resolved a conjecture [BCDP14, Conj. 1.5] where the conjecture
was established in the cases X is a surface or a threefold.

The idea of the proof is that assuming for contradiction there is a rational
map

ϕ : X99KPn

with δ = deg(ϕ) ≤ d−2, then the Cayley-Bacharach condition on the fibers of
ϕ (Lemma 2.27) implies the fibers of ϕ lie on lines ` ⊂ Pn+1. Thus if y ∈ Pn

is a general point then

` ∩X = ϕ−1(y) ∪ {x1(y), ..., xd−δ(y)}.
However, Theorem 2.21 implies that d−δ ≤ n. So if we let y vary in a rational
curve P1 ⊂ Pn then the residual points:

{x1(y), ..., xd−δ(y)|y ∈ P1}
trace out a curve with gonality ≤ n. This is a contradiction, as the existence
of such a curve is ruled out by Propositions similar to those proved in Chapter
3 (following ideas of Ein and Voisin [Ein88, Voi96]).

Here we extend these arguments to other rational homogeneous spaces. For
example, let Q ⊂ Pn+2 be a smooth quadric in Pn+2.

Theorem 4.1. Let
X = Xd ⊂ Q ⊂ Pn+2

be a very general hypersurface in Q with X ∈ |OQ(d)|. If d ≥ 2n, then
irr(X) = d.
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Similarly, let G = Gr(k,m) ⊂ PN be the Plücker embedding of the Grass-
mannian of k-planes in Cm.

Theorem 4.2. Let

X = Xd ⊂ G

be a very general hypersurface with X≡lindH. If d ≥ 3m− 5 then irr(X) = d.

Finally, let P = Pm1 × · · · × Pmk be a product of k projective spaces with
k ≥ 2.

Theorem 4.3. Let

X = X(a1,...,ak) ⊂ P

be a very general divisor with X ∈ |OP(a1, . . . , ak)| and let p be the minimum
of {ai−mi− 1}. If p ≥ max{mi} (for example, if min{ai} ≥ 2 ·max{mi}+ 1)
then irr(X) = min{ai}.

We prove Theorem 4.1 in §4.1, Theorem 4.2 in §4.2 and Theorem 4.3 in §4.3.

4.1. The degree of irrationality of a hypersurface in a quadric

Let Q ⊂ Pn+2 be a smooth quadric hypersurface in projective space with
dim(Q) ≥ 2. The goal of this section is to prove Theorem 4.1, that is if d ≥ 2n
and

X = Xd ⊂ Q

is a very general hypersurface with X ∈ |OQ(d)| then irr(X) = d. In §4.1.1
we construct a degree d rational map:

ϕ0 : X99KPn,

which implies irr(X) ≤ d. In §4.1.2 we assume for contradiction that there is
a rational map

ϕ : X99KPn

with deg(ϕ) < d. Using the Cayley-Bacharach condition (Lemma 2.27) we
show that the fibers of ϕ lie on lines ` ⊂ Pn+2 which are contained in Q.
Finally in §4.1.3 we give an argument along the lines of [BDPE+15, Pf. of
Thm. C], which is outlined at the beginning of this chapter. Finally we use
§3.2 to arrive at a contradiction.

4.1.1. Construction of a degree d rational map. We start by proving.

Proposition 4.4. If X = Xd ⊂ Q is any element in |OQ(d)| then there exists

ϕ0 : X99KPn

of degree d.
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Proof. As dim(Q) ≥ 2, Q is covered by lines ` ⊂ Q ⊂ Pn+2. Linear projection
from one such ` defines a rational map:

p` : Pn+299KPn.

The map p` is defined away from `, and the fibers of p` (or rather the closure
of the fibers) consist of the planes P ⊂ Pn+2 which contain `.

For a general choice of ` ⊂ Q set ϕ0 = p`|X . Now let y ∈ Pn be a general
point and Py the plane which is the closure of the fiber p−1

` (y). Then we have

ϕ−1
0 (y) ⊂ Py ∩X ⊂ Py ∩Q.

The last intersection consists of ` and a residual line `y, i.e.

Py ∩Q = ` ∪ `y.
As ` ⊂ Q is general and y is general, it is easy to see that in fact

`y ∩X = ϕ−1
0 (y),

thus #ϕ−1
0 (y) = d. �

Example 4.5. Theorem 4.1 says that if X = Xd is very general with d ≥ 2n
then irr(X) = d. However, if n ≥ 2 then there are special smooth hypersurfaces
X ⊂ Q which contain a line ` ⊂ X. In this case, the projection:

p`|X : X99KPn

is dominant of degree d−1. Thus there are special smooth hypersurfaces which
satisfy irr(X) < d.

Example 4.6 (Another example of a degree d map when n is odd). Suppose
n is odd, equal to 2k − 1. In this case there exist nonintersecting linear
subvarieties of dimension k

P(V ),P(W ) ⊂ Q

(for example when n = 1 take 2 lines in the same ruling of Q). We can write
P(V ⊕W ) = Pn+2. Now we consider the linear projections away from P(V )
and P(W ) respectively

pV : Q99KP(W ) and pW : Q99KP(V ),

and set
pV,W = pV × pW : Q99KP(V )×P(W ).

For a general point x ∈ Q we can write x = [v⊕w] with v ∈ V and w ∈ W
both nonzero. Thus there is a line `x ⊂ Pn+2 which connects the three points
{x, [v ⊕ 0], [0 ⊕ w]} ⊂ Q. So by Lemma 2.27 we know `x ⊂ Q. Further, it is
easy to see that `x is actually the closure of the fiber of pV,W containing x.

Let
B = Image(pV,W : Q99KP(V )×P(W )).
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be the closure of the image of Q. It is straightforward to show that B ⊂
P(V ) × P(W ) is a type (1,1) divisor. In particular, B is rational. Thus if
X = Xd ⊂ Q is a general hypersurface with X ∈ |OQ(d)| then

pV,W |X : X99KB'birP
n

has degree equal to `x · X = d. Therefore we see in a different way that
irr(X) ≤ d.

4.1.2. Low degree maps give rise to congruences on Q. From now on,
in order to reach a contradiction, we make the following assumption

Assumption 4.7. There exists ϕ : X99KPn with δ = deg(ϕ) < d.

We start by proving that all the fibers of ϕ must lie on lines ` ⊂ Pn+2 which
are contained inside Q.

Lemma 4.8. If d ≥ 2n and (d, n) 6= (2, 1) then a general fiber of ϕ lies on a
line ` ⊂ Pn+2 which is contained in Q.

Proof. The canonical bundle KX is OX(d−n− 1). A general fiber φ−1(y) sat-
isfies Cayley-Bacharach with respect to |KX |. The degree assumption implies
that

δ ≤ 2(d− n− 1) + 1.

Thus, Lemma 2.27 implies that φ−1(y) lies on a line ` ⊂ Pn+2.
By Theorem 2.21 (using the assumption that (d, n) 6= (2, 1)):

#ϕ−1(y) ≥ d− n+ 1 ≥ 3.

Thus the line ` meets Q at a minimum of

#ϕ−1(y) = δ ≥ 3

points, Corollary 2.30 implies that ` ⊂ Q. �

Having proved Lemma 4.8 we can think of a general point y ∈ Pn as param-
eterizing a line `y ⊂ Q. That is, the rational map ϕ induces a rational map
Pn99KFano(Q), where Fano(Q) is the Fano variety of lines in Q (the so-called
orthogonal Grassmannian). Resolving this rational map, gives rise to a regular
map

f : B→Fano(Q)

where B is a smooth rational projective variety. The map f gives rise to the
following fundamental diagram
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(4.9)

X X ′

Q F

B Fano(Q).

π

ψ

f

Here ψ : F→B is the P1-bundle defined as the pullback of the natural P1-
bundle over Fano(Q). Thus F comes with a natural projection π : F→Q. Note
that X is not uniruled implies π is generically finite. To define X ′ consider
the rational map:

idX × ϕ : X99KX ×B ⊂ Q×B
which is the graph of ϕ. The image of idX × ϕ is contained in F . Set

X ′ := Image(idX × ϕ),

i.e. let X ′ be the closure of the image of the graph of ϕ.

Lemma 4.10. If d ≥ 2n and (d, n) 6= (2, 1) then in (4.9) the map π is
birational. In particular

f : B→Fano(Q)

determines a “congruence of order one” on Q.

Proof. This proof follows the proof of [BCDP14, Thm. 4.3]. Note that

π∗(π
∗([X])) = deg(π) · [X].

Thus to prove Lemma 4.10 it suffices to show that π∗(π
∗([X])) = [X]. Write

π∗(X) = cX ′ +
∑

aiEi

where the Ei are irreducible and c, ai ∈ Z>0. Thus it suffices to show that
c = 1 and π∗Ei = 0.

Consider a general fiber ` = ψ−1(b). Since X ∈ |OQ(d)| we have

π∗(X) · [`] = d.

Moreover, as ` is a general fiber of ψ we have that ` meets Ei and X ′ trans-
versely. Thus Ei · [`] ≥ 0 and X ′ · [`] = δ(= deg(ϕ)).

To prove c = 1 it suffices to show that δ > d/2 since

d = π−1(X) · [`] ≥ X ′ · [`] = c · δ.
Theorem 2.21 implies that δ ≥ d − n + 1, and the assumption that d ≥ 2n
implies that d− n+ 1 > d/2. Thus c = 1.
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Proving that π∗(Ei) = 0 uses a similar analysis. Assume for contradiction
that E = Ei satisfies π∗(E) 6= 0. Thus the image π(E) is all of X. This also
implies that ψ(E) = B as otherwise E would be covered by the fibers of ψ
which would then imply that X is uniruled, a contradiction. So E gives a
correspondence between X and B. By Lemma 2.28 we see that for a general
point y ∈ B, the image π(ψ|−1

E (y)) satisfies the Cayley-Bacharach condition
with respect to KX . Therefore, as in the previous paragraph, #π(ψ|−1

E (y)) >
d/2. So we have

d = π−1X · [`] ≥ (X ′ + E) · [`] > d/2 + d/2,

which is a contradiction. �

4.1.3. Proof of Theorem 4.1. Having proved the map π in (4.9) is birational,
we are now ready to prove Theorem 4.1. The following argument is almost
identical to [BDPE+15, Pf. of Thm. C].

Proof of Theorem 4.1. First, consider the case (d, n) = (2, 1). I.e. X is a (2, 2)
complete intersection genus 1 curve in P3. In this case X is hyperelliptic, so
irr(X) = gon(X) = 2. Thus Theorem 4.1 holds in this case.

Now assume that (d, n) 6= (2, 1) and assume for contradiction that there is
a map:

ϕ : X99KPn

with deg(ϕ) = δ < d. We want to study:

π∗X = X ′ +
∑

aiEi,

where ai > 0. As above let ` be a general fiber of ψ. By the proof of Lemma
4.10 we know that π∗Ei = 0 and Ei · [`] ≥ 0. We also know that

X ′ · [`] = δ and π∗X · [`] = d.

Now Theorem 2.21 implies δ ≥ d− n+ 1. Thus there exists E = Ei with

0 < c = deg(ψ|E) = E · [`] ≤ d− δ ≤ n− 1.

If n = 1 then we are done. So assume n ≥ 2. Now the image π(E) satisfies
e := dim(π(E)) ≥ 1 as every point x ∈ Q is connected to π(E) via a line
inside Q, and the dimension of lines through a single point in Q is n−1. Thus
the image π(E) has cov.gon(π(E)) ≤ n− 1, and Proposition 3.7 implies

(4.11) c ≥ e+ d− 2n+ 1.

On the other hand, there is another inequality relating e and c by looking at
the contribution of E to KF/Q. In particular, in the appendix to [BDPE+15]
it is shown that

ordE(KF/Q) ≥ n− e.
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For a fiber ` of ψ we have

−2 = KF · [`] = (KF/Q + π∗KQ) · ` = KF/Q · [`]− n− 1.

Thus

n− 1 = KF/Q · [`] ≥ ordE(KF/Q)E · [`] ≥ (n− e)c.
Now if we divide the above inequality by (n−e) and combine it with equation

(4.11) we get
n− 1

n− e
≥ e+ d− 2n+ 1.

Rearranging, and using that n−1
e(n−e) ≤ 1 for 1 ≤ e ≤ n− 2, we get

2n− 1 ≥ 2n+ e

(
n− 1

e(n− e)
− 1

)
− 1 ≥ d,

which contradicts the assumption that d ≥ 2n. �

4.2. The degree of irrationality of a hypersurface in a
Grassmannian

Now we turn to hypersurfaces in a Grassmannian. Let G = Gr(k,m) ⊂
P(∧kCm) be the Plücker embedding of the Grassmannian of k-planes in Cm

(with k 6= 1,m− 1). The purpose of this section is to prove Theorem 4.2, that
is if d ≥ 3m− 5 and

X = Xd ⊂ G

is a very general hypersurface with X ∈ |OG(d)| then irr(X) = d. The struc-
ture in this section is very similar to §4.1. In §4.2.1 we construct a degree d
rational map

ϕ0 : X99KPn (where n := dim(X)).

In §4.2.2 we assume for contradiction that there is a rational map

ϕ : X99KPn

with deg(ϕ) < d and conclude as in §4.1.2 that the fibers of ϕ lie on lines
` ⊂ P(∧kCm) contained in G. Finally, in §4.2.3 we prove Theorem 4.2.

4.2.1. Construction of a degree d map to a flag variety. To start we
show

Proposition 4.12. If X = Xd ⊂ G is any element in |OG(d)| then there
exists

ϕ0 : X99KPn

of degree d.
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Proof. In the following construction we actually construct a degree d rational
map to the partial flag variety

F = Fl(k − 1, k,m− 1) =

{
[U ⊂ V ⊂ (Cm/L)]

∣∣∣∣ dim(U) = k − 1
and dim(V ) = k

}
,

but as flag varieties are rational this suffices for our purposes.
To start, fix subspaces L,W ⊂ Cm such that L ∩W = 0, dim(L) = 1, and

dim(W ) = m− 1. Define T : Cm→(Cm/L) to be the natural quotient map. In
this setting we define a rational map:

pL,W : G99KF

by sending

[Λ ⊂ Cm] 7→ [T (Λ ∩W ) ⊂ T (Λ) ⊂ (Cm/L)].

The base locus of the map is the set of k-planes [Λ ⊂ Cm] where ` ⊂ Λ or
Λ ⊂ W . Choosing any point y = [U ⊂ V ⊂ (Cm/L)], the fiber p−1

L,W (y)
consists of k-planes Λ ⊂ Cm which satisfy

T−1(U) ∩W ⊂ Λ ⊂ T−1(V ).

The subspace T−1(U) ∩W is k − 1-dimensional and the subspace T−1(V ) is
(k + 1)-dimensional. So there are always k-dimensional subspaces Λ between
these two spaces, i.e. the map is surjective. Moreover, by Example 2.43 we
see that the closure of the fiber p−1

L,W (y) is a line.
Fixing a general choice of L,W ⊂ Cm, we define

ϕ0 := (pL,W )|X : X99KF.

So we want to show that ϕ0 is dominant of degree d. To prove ϕ0 is dominant
it suffices to find a fiber of ϕ0 which is finite but nonempty. We can reverse-
engineer this by choosing a line in G which we want to arise as the closure
of a fiber of pL,W . Following Example 2.43 choose a line ` ⊂ G that arises
from a two step flag A ⊂ B ⊂ Cm such that ` ∩X is a proper intersection (in
particular length(` ∩X) = d).

Now we want to choose L and W so that P1 is the closure of the fiber of
pL,W over some point. This is possible if we choose any L such that L ⊂ B
and L 6⊂ A and any W such that W ⊃ A and W 6⊃ B. In this setup the locus
in ` where pL,W is not defined consists of only the two k-planes: [B+L ⊂ Cm],
[W ∩ A ⊂ Cm] ∈ G. If we further require that these two points do not meet
` ∩X we see that deg(ϕ0) = length(` ∩X) = d. �

Remark 4.13. When G = Gr(2, 4) then G is well known to be a quadric
in P(∧2C4) = P5. So it is natural to compare the map pL,W to the maps
constructed in §4.1.1. Indeed, the map ϕ0 is the same as the map constructed
in Example 4.6.
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4.2.2. Low degree maps give rise to congruences on G. From now on,
in order to arrive at a contradiction we make the assumption

Assumption 4.14. There exists ϕ : X = Xd99KPn with δ = deg(ϕ) < d.

Lemma 4.15. If d ≥ 3m − 5 then a general fiber of ϕ lies on a line ` ⊂
P(∧kCm) which is contained in G.

Proof. The argument is the same as the proof of Lemma 4.9. We just note
that by Theorem 2.41, G is cut out by quadrics in P(∧kCm). �

So given a map ϕ with δ < d we can think of a general point in Pn as
parametrizing a line ` ⊂ G. According to Example 2.43 the Fano variety of
lines in G ⊂ P(∧kCm) is given by

Fano(G) = Fl(k − 1, k + 1,m).

Thus as in §4.1.2, ϕ induces a rational map

Pn99KFano(G)

and resolving this map gives rise to a regular map

f : B→Fano(G)

where B is a smooth rational variety. Then as in §4.1.2 we have the funda-
mental diagram

(4.16)

X X ′

G F

B Fano(G).

π

ψ

f

The map ψ : F→B is the P1 bundle given by pulling back the tautological P1-
bundle over Fano(G). The tautological P1-bundle over Fano(G) lies inside the
product Fano(G)×G so there is a natural projection ψ : F→G. Finally, the
rational map ϕ : X99KPn'birB gives rise to a rational section X99KF given
by the graph of φ. The closure of the image of X is by definition X ′.

Similar to Lemma 4.10 we have the following

Lemma 4.17. If d ≥ 3m− 5 then the map π is birational, i.e.

B→Fano(G)

is a “congruence of order 1” on G.

Proof. The proof is identical to the proof of Lemma 4.10, so we omit it here. �
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4.2.3. Proof of Theorem 4.2. Before completing the proof of Theorem 4.2
we compute the dimension of lines through a point x ∈ G.

Lemma 4.18. Let Sx ⊂ Fano(G) be the set of lines in G through a point
x ∈ G. Then

dim(Sx) = m− 2

Proof. Assume that x ∈ G represents the subspace W ⊂ Cm. It easily follows
from Example 2.43 that Sx is equivalent to:{

[`] ∈ Fano(G)
such that x ∈ `

}
1:1←→

{
[V ⊂ U ⊂ Cm] ∈ Fl(k − 1, k + 1,m)

such that V ⊂ W ⊂ U

}
.

Thus we need the dimension of (k− 1)-planes inside W and the (k+ 1)-planes
containing W . The former is the dual projective space P(W ∗) and the latter
is the projective space P(Cm/W ). Thus

dim(Sx) = (k − 1) + (m− k − 1) = m− 2,

which completes the dimension count. �

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let X ∈ |OG(d)| be very general with d ≥ 3m − 5.
Suppose for contradiction that there exists ϕ : X99KPn a rational map with
deg(ϕ) = δ < d. Now following the fundamental diagram (4.16) we look at

π∗X = X ′ +
∑

aiEi

where the Ei are divisors which are contracted by π and ai ≥ 0. As X is an
element of |OG(d)| we have that if ` ⊂ F is a fiber of ψ then

d = π∗X · [`] = X ′ · [`] +
∑

aiEi · [`] = δ +
∑

aiEi · [`].

Thus as we assumed that δ < d we see that at least one component E = Ei
must dominate B. Set

c = deg(ψ|E).

Thus π(E) satisfies cov.gon(π(E)) ≤ c. As δ ≥ d−m+ 2 we have

m− 2 ≥ c.

Let e = dim(π(E)). Then applying Proposition 3.11 we have that

m− 2 ≥ c ≥ e+ d− n−m+ 2.

As E dominates B and the map F is birational, we must have that every
point in G lies on a line that goes through π(E). From this we can deduce a
lower bound on the dimension of π(E). In particular, applying Lemma 4.22
we must have

e+m− 1 ≥ dim(G) = n+ 1.
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Combining these inequalities we get:

m− 2 ≥ d− 2m+ 4,

or

3m− 6 ≥ d.

This contradicts our degree assumption. �

4.3. The degree of irrationality of hypersurfaces in products
of projective space

Let P = Pm1 × · · · ×Pmk be a product of projective spaces with at least 2
factors. The goal of this section is to prove Theorem 4.3, i.e. to show that if

X = X(a1,...,ak) ⊂ P

is a very general divisor with X ∈ |OP(a1, . . . , ak)|, and if

min{ai −mi − 1} ≥ max{mi}+ 1

then

irr(X) = min{ai}.
Throughout the section we define

a := min{ai},
m := max{mi},
p := min{ai −mi − 1}, and
n := dim(X).

In particular, the degree assumption on X can be restated as p ≥ m.
The method of proof of Theorem 4.3 is similar to the proof of Theorem 4.1

and Theorem 4.2. In §4.3.1 we give an example of a rational map

ϕ0 : X99KPn

such that deg(ϕ0) = a. In §4.3.2 we show that any rational map

ϕ : X99KPn

with deg(ϕ) < a gives rise to a congruence of lines of order 1 on P. Finally in
§4.3.3 we prove Theorem 4.3 by a reduction to [BDPE+15, Thm. C].

4.3.1. Construction of a degree a map. In this subsection we give a degree
a map

ϕ0 : X99KPn.
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Example 4.19. Assume for simplicity that a1 = a. Choosing a general point
z ∈ Pm1 gives rise to a constant section of the projection

P Pm2 × · · · ×Pmk
p2×···×pk

σz

by
σz(x) = z × x.

Fiber by fiber linear projection from the image σz(P
m2 × · · · ×Pmk) gives rise

to a rational map

pz : P99KPm1−1 ×Pm2 × · · · ×Pmk .

Now for a general choice of z ∈ Pm1 set

ϕ0 := pz|X : X99KPm1−1 ×Pm2 × · · · ×Pmk .

Then it is easy to see that the degree of ϕ0 is a. In particular, irr(X) ≤ a.

Remark 4.20. There are examples of low degree k-tuples (a1, . . . , ak) such
that irr(X) < a for every X = X(a1,...,ak) ∈ |OP(a1, . . . , ak)|. Indeed there are
values (a1, . . . , ak) such that every hypersurface X ∈ |OP(a1, . . . , ak)| contains
the image of a section

σ : Pm2 × · · · ×Pmk→P.

When this happens, the relative linear projection from the image of σ gives
rise to a degree a1 − 1 map

X99KPn.

In Examples 4.21 and 4.22 we give some concrete examples of (a1, . . . , ak)
where this occurs.

Example 4.21. Let X ⊂ P = Pn × P1 be a smooth ample divisor of type
(d, e) such that d ≤ e and e + 1 ≤ n. Then a general fiber of X over a point
y ∈ P1 is a hypersurface Xy ⊂ Pn of degree d. This gives rise to a map

fX : P1→P(H0(Pn,O(d))).

As this map is defined by equations of degree e, the image has linear span
satisfying

dim(Span(fX(P1)) ⊂ Pn) ≤ e.

This implies that the intersection of all the hypersurfaces parametrized by P1

is nonempty, i.e. ⋂
y∈P1

Xy 6= ∅.

If z ∈ ∩Xy is any point then σz is a section of p2|X : X→P1 and thus

pz : X99KPn
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has degree d− 1.

Note that in Example 4.21, d is smaller than n− 1 so the total space X is
not of general type. This example admits obvious generalizations.

Example 4.22. Let X ⊂ Pm1 ×Pm2 be a smooth ample divisor of type (d, e)
with d ≤ e and

(
e+m2

e

)
≤ m1, then a similar argument to Example 4.21 shows

that the projection p2|X : X→Pm2 admits a constant section and therefore
irr(X) ≤ d− 1.

4.3.2. Low degree maps give rise to congruences on P. In order to reach
a contradiction we make the following assumption

Assumption 4.23. There exists ϕ : X99KPn with δ = deg(ϕ) < a.

We start by proving:

Lemma 4.24. If p ≥ m then a general fiber of ϕ lies on a line ` ⊂ PN which
is contained in P.

Proof. We have

ωX ∼= OP(a1 −m1 − 1, . . . , ak −mk − 1) ∼= OP(p, . . . , p)⊗OP(E),

where E is linearly equivalent to an effective divisor which misses any finite
set of points in X. Thus if ϕ−1(y) is a general fiber then we can choose a
representative of E which does not meet ϕ−1(y). Then ϕ−1(y) satisfies Cayley-
Bacharach with respect to |OP(p, . . . , p)|. Our degree assumption implies 3 ≤
δ ≤ 2p + 1. Thus by Lemma 2.27, ϕ−1(y) lies on a line ` ⊂ PN which meets
P at a minimum of δ ≥ 3 points. Using the fact that P is cut out by quadrics
and applying Corollary 2.30, we have ` ⊂ P. �

As in §4.1.2 and §4.2.2, we have that a general point y ∈ Pn determines a
line in P. If Fano(P) is the Fano variety of lines in PN which are contained
in P then Lemma 4.24 implies there is a rational map

Pn99KFano(P),

and resolving this map we get a regular map

f : B→Fano(P)

from a smooth variety B'birP
n.

Remark 4.25. Recall that in Example 2.44 we showed that Fano(P) is a
disjoint union

Fano(P) =
(Gr(2,m1 + 1)×Pm2 × · · · ×Pmk) t · · ·
· · · t (Pm1 × · · · ×Pmk−1 ×Gr(2,mk + 1)) .
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I.e. every line in P is necessarily constant in all factors of P except one.
Thus the map f : B→Fano(P) lands in a single component. For simplicity we
assume

f(B) ⊂ Pm1 × · · · ×Pmk−1 ×Gr(2,mk + 1).

To streamline notation we define

P0 := Pm1 × · · · ×Pmk−1 , and
Fano(P)0 := P0 ×Gr(2,mk + 1).

Then following §4.1 and §4.2 we arrive at the fundamental diagram

(4.26)

X X ′

P F

B Fano(P)0.

π

ψ

f

As usual, the map ψ : F→B is the pullback of the tautological P1-bundle
along the map f : B→Fano(P). The map π : F→P is the natural projection.
Finally X ′ ⊂ F is given by taking the closure of the graph of ϕ : X99KB.

Note that all the varieties in the (4.26) admit a map to P0 and all the maps
in (4.26) are compatible with these maps to P0.

Lemma 4.27. If p ≥ m then the map π is birational, i.e.

f : B→Fano(P)0

is a “congruence of order 1” on P.

Proof. The proof is similar to the proof of Lemma 4.10 but is more delicate.
Again the goal is to show that π∗(π

∗([X])) = [X] and again we start by writing:

π∗(X) = cX ′ +
∑

aiEi

where c, ai > 0. Thus it suffices to show that c = 1 and π∗Ei = 0.
To prove that c = 1 we again note that for a line ` ⊂ F which is a fiber of

ψ, we have π∗(X) · [`] = ak, and X ′ · [`] = δ < a. In particular, as in Lemma
4.10 it suffices to show that δ > ak/2 and deg(ψ|Ei

) > ak/2.
If x ∈ B is a general point then we know that #ϕ−1(x) = δ and ϕ−1(x) ⊂ PN

satisfies Cayley-Bacharach with respect to |ωX |. As ϕ−1(x) actually lies in a
linear subspace y×Pmk for some y ∈ P0 we can conclude that ϕ−1(x) satisfies
Cayley-Bacharach with respect to the restriction of the linear series:

|(ωX |y×Pmk )| = |OPmk (ak −mk − 1)|
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Thus applying Lemma 2.27 and our degree assumption we have that δ > ak/2
(and as in Lemma 4.10 we also have deg(ψ|Ei

) > ak/2). �

4.3.3. Proof of Theorem 4.3.

Proof of Theorem 4.3. Assume for contradiction that there is a rational map
ϕ : X99KPn with δ < a. As in §4.3.2, assume for simplicity that the lines
spanned by the fiber of ϕ are constant in all factors except Pmk .

First we deal with the case mk = 1. In this case Gr(2,mk + 1) is a single
point, so

Fano(P)0 = P0.

As π : F→P is birational, the only possibility is that ϕ is projection onto P0

and thus δ = ak ≥ a, a contradiction.
Now assume mk ≥ 2. All varieties in (4.26) admit a map to P0, so the base

change of diagram (4.26) to a fiber over a general point y ∈ P0 (denoted by
subscript y) gives rise to the following diagram

(4.28)

Xy X ′y

Pmk Fy

Bp Gr(2,mk + 1).

πy

ψy

fy

Because y is general, every variety in (4.28) is integral. Moreover, πy and πy|X′y
are birational maps, and the degree of ψ|X′y is δ.

The variety X is very general so if y ∈ P0 is a very general point then Xy

is a very general degree ak hypersurface in Pmk with a degree δ < a ≤ ak
rational map

ϕp : Xp99KBp.

As Fp is rational and is a P1-bundle over Bp this implies Bp is rationally
connected. The proof of [BDPE+15, Thm. C] works for dominant rational
maps to any rationally connected base. Thus as δ < ak and Xp is a very
general hypersurface in Pmk (with mk ≥ 2) then [BDPE+15, Thm. C] implies
that δ = ak − 1, ϕp is given by projection from a point, and Bp is in fact
rational.

Now looking at the whole diagram (4.26) the previous paragraph implies
there is a component E in π∗X distinct from X ′ such that ψ|E : E→B has
degree 1 and π(E) dominates P0. Then π(E) is a uniruled subvariety of X of
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dimension n+ 1−mk. So by Propositions 3.13 and 3.19 we see that

mk ≥ p+ 3 > p,

which contradicts the degree assumption. �



44

Chapter 5

Nonlinear inequalities for the degree of irrationality

In this chapter we prove two auxiliary results. The first is about the degree
of irrationality of K3 and abelian surfaces and the second about the degree of
irrationality of complete intersections.

A pair (X,L) is a polarized K3 surface if X is a K3 surface and L is a
primitive ample line bundle on X. There are countably many irreducible
families of polarized K3 surfaces, which are distinguished by the degree of the
polarization, L2. A priori there is no reason that there should be a universal
upper bound for the degree of irrationality of all K3 surfaces. Indeed it is
natural to ask

Question. Can the degree of irrationality a K3 surface be arbitrarily large?

Similarly, polarized abelian surfaces (A,L) come in countably many families
where the components of these families depend on L2 and other topological
data. E.g. principally polarized abelian varieties form one such family. One
can similarly ask in this setting

Question. Can the degree of irrationality of an abelian surface be arbitrarily
large?

More greedily one might ask

Question. Does the degree of irrationality of a very general polarized K3 sur-
face (X,L) or a very general polarized abelian surface (A,L) grow linearly with
L2?

In this chapter we show the answer to this last question is no.

Theorem 5.1. There exists a uniform constant C such that if (X,L) is a very
general polarized K3 surface then

irr(X) ≤ C ·
√
L2.

Theorem 5.2. There exists a uniform constant D such that if (A,L) is a very
general polarized abelian surface then

irr(A) ≤ D ·
√
L2.

Remark 5.3. In Theorem 5.1, it suffices to take C = 3
√

2. In Theorem 5.2
it suffices to take D = 6

√
2. Presumably these values of C and D are not

optimal.

The last result from this chapter is about the degree of irrationality of a
complete intersection. Recall that for a curve C we have

gon(C) = c ⇐⇒ c = max{p+ 2|KC is p-very ample}.
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Let C be a complete intersection curve

C = C(a1,...,ak) ⊂ Pk+1

of type (a1, . . . , ak) (with a1 ≤ · · · ≤ ak). Adjunction for KC implies that

KC = (a1 + · · ·+ ak − k − 2)H.

Therefore, we have the naive lower bound

gon(C) ≥ a1 + · · ·+ ak.

So naively we have that the gonality grows at least additively in the ais. How-
ever, it is known that the gonality is multiplicative in the ai. More precisely,
[Laz97, p. 185] gives the lower bound

gon(C) ≥ (a1 − 1) · a2 · · · ak.
There is a similar picture in the case

Z = Z(a1,...,ak) ⊂ Pn+k

is a smooth n-dimensional complete intersection of type (a1, . . . , ak). That is
there is a naive bound

irr(Z) ≥ a1 + · · ·+ ak − n− k + 1

coming from adjunction which is additive in the ais. But extrapolating from
the one-dimensional case one might expect that the degree of irrationality
should actually grow multiplicatively in the ais. In this chapter we prove that
the degree of irrationality of a complete intersection of two hypersurfaces in
Pn+2 grows superlinearly, but the results we give are not optimal.

Theorem 5.4. Let Z = Zd,e ⊂ Pn+2 be a very general complete intersection
of type (d, e). Then

irr(Z) ≥ eb n+1
√
dc

n+ 1
.

Moreover precisely we show that if

eb n+1
√
dc

n+ 1
≥ p+ 1

then KZ separates p general points on Z.

We prove Theorem 5.1 and Theorem 5.2 in §5.1 and Theorem 5.4 in §5.2.

5.1. A sublinear upper bound on the degree of irrationality of
a K3 or abelian surface

In this section we give upper bounds on the degree of irrationality of a very
general, polarized K3 or abelian surface. These bounds are sublinear in the
degree of the polarization.
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5.1.1. Bounding the degree of irrationality of a K3 surface. Let (X,L)
be a polarized K3 surface with L2 = 2d with and assume that d ≥ 2 and that
L generates Pic(X). Suppose we choose sections

s0, s1, s2 ∈ H0(X,L)

which give a dominant map to P2 by

ϕ : X99KP2

x 7→ [s0(x) : s1(x) : s2(x)]

then the degree of ϕ can be computed in terms of L2 and the Hilbert-Samuel
multiplicity e(Iϕ) of the base ideal. Recall,

Definition 5.5. The base ideal of ϕ, denoted Iϕ, is defined to be the image

Iϕ := Image((L−1)⊕3 (s0,s1,s2)−−−−−→ OX).

The base locus of ϕ, denote Bs(ϕ), is the closed subscheme of X associated to
Iϕ.

Remark 5.6. The assumption that L generated Pic(X) implies that there are
no curves in Bs(ϕ).

Remark 5.7. If x ∈ Bs(ϕ) ⊂ X is a point in the base locus, then the Hilbert-
Samuel multiplicity of Iϕ at x, denoted by e(Iϕ, x) can be computed by

e(Iϕ, x) = length(OX,x/(f, g)),

where f, g ∈ Iϕ are generic linear combinations of the generators {s0,x, s1,x, s2,x}
of Iϕ at x.

Moreover, it is easily verified that

(5.8) deg(ϕ) = L2 − e(Iϕ) = 2d−
∑

x∈Bs(ϕ)

e(Iϕ, x).

Thus if we want to give a small upper bound on irr(X) then we want to find
a base ideal Iϕ with high Hilbert-Samuel multiplicity. Our strategy is to fix a
point x ∈ X and to take sections of L which vanish to multiplicity at least k
at x. That is we want to choose 3 independent sections in H0(X,L⊗mk

x) for
some k.

Lemma 5.9. If d+ 2−
(
k+1

2

)
≥ 3 then dim(H0(X,L⊗mk

x)) ≥ 3.

Proof. The L-twisted ideal sequence

o→L⊗mk
x→L→L⊗OX/mk

x→0

give rise to the exact sequence

0→H0(X,L⊗mk
x)→H0(X,L)→H0(X,L⊗OX/mk

x).
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The right most term L ⊗ OX/mk
x is a skyscraper sheaf of length

(
k+1

2

)
and

dim(H0(X,L)) = d+ 2 by Riemann-Roch. �

Lemma 5.10. Any 3 independent sections

s0, s1, s2 ∈ H0(L)

give rise to a dominant rational map

ϕ : X99KP2.

Proof. Assume for contradiction that ϕ is not dominant. Then (as we assumed
the si are independent) the image of ϕ is a curve C ⊂ P2 with deg(C) ≥ 2.
Thus a general member of the linear series spanned by the si is in correspon-
dence with ϕ−1(`∩C) where ` ⊂ P2 is a general line. But the curve ϕ−1(`∩C)
is necessarily reducible if ` is general, and this contradicts the assumption that
Pic(X) ∼= Z · L. �

Proof of Theorem 5.1. Set

k = max

{
k0

∣∣∣∣d+ 2−
(
k0 + 1

2

)
≥ 3

}
.

Then one easily checks that

k =

⌊
−1 +

√
8d− 7

2

⌋
.

By Lemma 5.9 we can choose 3 general independent

s0, s1, s2 ∈ H0(X,L⊗mk
x).

By Lemma 5.10 we know these sections give rise to a dominant rational map

ϕ : X99KP2.

Now, as each element of the linear series H0(X,L⊗mk
x) has multiplicity at

least k at x, we can give a lower bound

e(Iϕ, x) ≥ k2.

So by equation (5.8) we have

irr(X) ≤ deg(ϕ) ≤ 2d− k2

= 2d−
(⌊
−1+

√
8d−7

2

⌋)2

≤ 2d−
(
−1+

√
8d−7

2
− 1
)2

= 2d− 2d− 3
2

+ 3
2

√
8d− 7 ≤ (3

√
2)
√
d,

which completes the proof. �
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5.1.2. Bounding the degree of irrationality of an abelian surface. The
results in this section are similar to the results in §5.1.1. Let (A,L) be a very
general polarized abelian surface with d ≥ 4 and L2 = 2d. Suppose that the
Néron-Severi group of A is generated by L, i.e.

NS(A) = Pic(A)/Pic0(A) ∼= Z · L.

Let x ∈ A be any point and mx the corresponding maximal ideal. As in
§5.1.1 we have the following lemma.

Lemma 5.11. If d−
(
k+1

2

)
≥ 3 then dim(H0(A,L⊗mk

x)) ≥ 3.

Proof. See the proof of Lemma 5.9. In the present setting, Riemann-Roch
implies dim(H0(A,L)) = L2/2 = d. �

Lemma 5.12. Any 3 independent sections

s0, s1, s2 ∈ H0(A,L)

give rise to a dominant rational map

ϕ : X99KP2.

Proof. See the proof of Lemma 5.7. �

Proof of Theorem 5.2. As in the proof of Theorem 5.1 set

k = max

{
k0

∣∣∣∣d+ 2−
(
k0 + 1

2

)
≥ 3

}
.

Thus

k =

⌊
−1 +

√
8d− 23

2

⌋
.

By Lemma 5.11 we can choose 3 independent sections in H0(A,L⊗mk
x), and

by Lemma 5.12 these sections define a dominant map

ϕ : A99KP2.

As before we know that e(Iϕ, x) ≥ k2, so we have the inequalities

irr(A) ≤ deg(ϕ) ≤ 2d− k2

= 2d−
(⌊
−1+

√
8d−23

2

⌋)2

≤ 2d−
(
−1+

√
8d−23

2
− 1
)2

= 2d− 2d+ 7
2

+ 3
2

√
8d− 7 ≤ (6

√
2)
√
d,

which proves Theorem 5.2. �
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5.2. A multiplicative lower bound on the degree of
irrationality of a complete intersection

Let Z ⊂ Pn+2 be a very general complete intersection of type (d, e). The
purpose of this section is to prove Theorem 5.4, i.e. to give a lower bound on
irr(Z) which is multiplicative in d and e. To do this we want to show that the
positivity of KZ grows multiplicatively with d and e. However, to make this
precise we will need a slightly weaker notion of positivity than (BVA)p which
is only concerned with separating points rather than all possible subschemes.
To prove that the positivity of KZ grows multiplicatively in d and e we use
a theorem of Ito on the Seshadri constants of very general hypersurfaces in
projective space.

Definition 5.13. A line bundle L on a variety X satisfies property (BSP)p if

there exists a Zariski closed subset Z = Z(L) ⊂ X depending on L such that

H0(X,L)→H0(X,L|ξ)

is surjective for every finite set of p+ 1 points ξ = {x0, . . . , xp} such that ξ∩Z
is empty.

Remark 5.14. If X is smooth and projective and KX satisfies (BSP)p then

irr(X) ≥ p + 2. The proof of Theorem 2.21 works equally well for (BSP)p
instead of (BVA)p.

We recall the definition of the Seshadri constant of a hnef divisor L at a
point x ∈ X.

Definition 5.15. Let X be an irreducible projective variety with dim(X) ≥ 2.
Let L be a nef Cartier divisor on X. Fix a point x ∈ X and let

µ : X ′ = Blx(X)→X

be the blowing up of X, with exceptional divisor E ⊂ X ′. The Seshadri
constant

ε(X,L;x) = ε(L, x)

of L at x is the non-negative real number

ε(L, x) = max{ε ≥ 0|µ∗L− εE is nef}.

Remark 5.16. The idea for the following proposition comes from Lemma 4.1
in [EKL95] where the authors prove the same result but only in the case p = 1.
The proof of Proposition 5.17 is essentially the same but we include it here for
completeness.
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Proposition 5.17 (compare to [EKL95, Lemma 4.1]). Let X be a smooth
projective variety with a nef divisor L and n = dim(X) ≥ 2. Suppose there
exists

V =
⋃
i

Vi $ X

a countable union of proper subvarieties such that

ε(L, x) ≥ (p+ 1)n

for all x ∈ X \ V. Then the adjoint divisor KX + L satisfies (BSP)p.

Proof. Choose p+ 1 points x0, . . . , xp ∈ X \ V and blow up these points to get

µ : X ′ = Blx0,...,xpX→X.

Then by the assumption on the Seshadri constants we get that

1

p+ 1
µ∗(L)− nEi

is nef for each i. Thus

µ∗(L)−
p∑
i=0

nEi

is also nef.
We want to show that the higher cohomology of

KX′ + µ∗(L)−
p∑
i=0

nEi

vanishes. So it is enough to show that µ∗(L)−
∑
nEi is big. Equivalently, we

need to show

(µ∗(L)−
p∑
i=0

nEi)
n = Ln − (p+ 1)nn > 0.

By Remark 1.8 of [EKL95] we know that

(µ∗L)n ≥ ε(L, xi)
n ≥ (p+ 1)nnn > (p+ 1)nn.

Therefore, µ∗(L) −
∑
nEi is big and nef and we can apply vanishing for big

and nef divisors to get

0 = H0(X ′, KX′ + µ∗(L)−
∑
nEi)

= H1(X ′, µ∗(KX + L) +KX′/X −
∑
nEi)

= H1(X ′, µ∗(KX + L)−
∑
Ei)

= H1(X, (KX + L)⊗ Ix0,...,xp).
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This implies that for any subset ξ = {x0, . . . , xp} ⊂ X \ V , the sections of
KX + L separate ξ.

As vanishing of cohomology is an open condition, we see there is actually
an open subset

U ⊂ Xp+1 \∆

such that the sections of KX+L separates any (p+1)-tuple of points in U . Let
Z ′ be the complement of this open set. Then for any irreducible component
Z ′0 ⊂ Z ′ and any point z = (z0, . . . , zp) ∈ Z ′0 there is a factor zk ∈ V . This
implies we can write Z ′0 as a countable union of the preimages of the Vi under
the different projections. Thus by the Baire category theorem, there must be
some projection

πk : Xp+1 \∆→X
and some Vi such that πk(Z

′
0) ⊂ Vi. If we set Z equal to the union of these

finitely many Vis then we see that KX + L separates any (p+ 1)-tuple ξ ⊂ X
such that ξ ∩ Z = ∅. �

If X ⊂ Pn+2 is a very general degree d hypersurface then Ito [Ito14] gives
bounds on the Seshadri constants of OX(1).

Theorem 5.18 ([Ito14, Theorem 4.9]). Let X ⊂ Pn+2 be a very general degree
d hypersurface. If x ∈ X is a very general point then

b n+1
√
dc ≤ ε(X,OX(1), x) ≤ n+1

√
d.

Remark 5.19. In fact all we need is the lower bound

b n+1
√
dc ≤ ε(X,OX(1), x).

In [Ito14, Remark 4.7], Ito shows that the lower bound can be given by degen-
erating to a rational hypersurface X0 ⊂ Pn+2. E.g. if d = cn+1 then Ito takes
n+ 3 general sections

s0, . . . , sn+2 ∈ H0(Pn+1,OPn+1(c))

to give a map

π : Pn+1→Pn+2

and Ito sets X0 = π(Pn+1). Then degeneration to X0 and the computation of
the Seshadri constant on Pn+1 gives the desired lower bound.

Using Proposition 5.17 and Theorem 5.18, the proof of Theorem 5.4 follows
easily.

Proof of Theorem 5.4. Let X = Xd, Y = Ye ⊂ Pn+2 be very general hyper-
surfaces of degrees d and e respectively and let

Z = X ∩ Y ⊂ Pn+2
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be their intersection. Thus by Theorem 5.18 we have that the divisor Z ⊂ X
has Seshadri constant at least

eb n+1
√
dc ≤ ε(X,OX(Z), x)

for a very general point x ∈ X.
Now applying Proposition 5.17 we get that if

eb n+1
√
dc ≥ (p+ 1)(n+ 1), i.e. if

eb n+1
√
dc

n+ 1
− 1 ≥ p,

then the adjoint series KX + Z satisfies (BSP)p. So if Z ∈ OX(e) is very

general then we also get that KZ satisfies (BSP)p. Therefore, by Remark 5.14
we have

irr(Z) ≥ eb n+1
√
dc

n+ 1
,

which finishes the proof. �
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[EKL95] Lawrence Ein, Oliver Küchle, and Robert Lazarsfeld, Local positivity of ample
line bundles, J. Differential Geom. 42 (1995), no. 2, 193–219. MR 1366545

[FH91] William Fulton and Joe Harris, Representation theory, Graduate Texts in Math-
ematics, vol. 129, Springer-Verlag, New York, 1991, A first course, Readings in
Mathematics. MR 1153249

[HPT16] Brendan Hassett, Alena Pirutka, and Yuri Tschinkel, Stable rationality of
quadric surface bundles over surfaces, 2016.

[IM71] V. A. Iskovskih and Ju. I. Manin, Three-dimensional quartics and counterex-
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des groupes de Lie compacts (d’après Armand Borel et André Weil), Séminaire
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