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Abstract of the Dissertation

Regularized Geometry of the Loop Space

by

Cheng Hao

Doctor of Philosophy

in

Mathematics

Stony Brook University

2015

Interest in nonlinear sigma models with target space a symmetric space of positive
curvature comes from both mathematics and physics. In this dissertation we focus
on the two-dimensional nonlinear sigma model with target space the k-dimensional
projective space P

k. We study the properties of a finite-dimensional approximation,
which we denote by LN(P

k), to the loop space L(Pk), and construct resolutions of
singularities for these truncated loop spaces. We also look into the geometries of such
spaces and propose a conjecture about the mass gap of the Schrödinger operator H
on LN(P

k) with analytic formula.
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Chapter 1

Introduction

In this paper we study the regularized geometry of the loop space in the complex
projective space P

k, with the goal of providing a framework to study the mass gap
problem for the sigma model with target space P

k.

1.1 Mass Gap

The motivation and interest in mass gaps come from the needs in quantization of field
theories. Soon after an understanding of quantum mechanics at the subatomic level
of nature developed at the beginning of the twentieth century, it became clear by the
late 1920s that an internally coherent account of nature must incorporate quantum
concepts for fields as well as for particles to describe the interactions between them.
The distinction between fields and particles breaks down as in the case of fields we have
to deal with infinite degrees of freedom. One of the most challenging Quantum Field
Theories in modern physics to describe the behavior of elementary particles is Yang-
Mills theory. Formally it is an extension of the quantum electrodynamics (QED),
a gauge theory of U(1) group. The nonabelian gauge group in YM theory encodes
the particle interactions. Gauge theories originated from the work of Hermann Weyl,
who first proposed the idea of using connections as fields.

In the QFT Lagrangian

L =
∂φ

∂xi
∂φ

∂xi
+m2φ2 +

∞∑
i=3

giφ
i

i!

the coefficient m is interpreted as the mass of the field. In the YM theory Lagrangian
this term is zero. In QED (a close relative of YM) this term also vanishes. On the
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other hand QCD describes protons, that do have mass. Hence we have the mass gap
problem. The mass gap problem was solved heuristically by physicists.

1.2 Sigma model

While the problem of providing a mathematically rigorous formalism for the quantum
Yang-Mills theory on R

4 for any compact simple gauge group G and proving that the
theory has a mass gap remains to be one of the most profound unsolved problems,
there has been interesting progress on various related problems.

There are two classes of quantum field theories which are believed to bear a close
similarity to the Yang-Mills theory. One class of models are the supersymmetric Yang-
Mills theories, which has great similarity to Yang-Mills but is significantly simpler.
These are modifications of Yang-Mills theory that includes various fermionic and
other fields to incorporate supersymmetry. There has been significant progress in the
past decades in this direction, notably the celebrated Seiberg-Witten theory, which
is then applied to and has profound influence in four-dimensional topology.

In this dissertation we focus on the second class, namely the sigma model with
target space a symmetric space of positive Riemannian curvature.

The Schrödinger operator H for a sigma model is defined on the loop space in the
target space of the model. The Schrödinger operator is the operator corresponding
to the total energy of the system. It is in the form

H = −Δ+ U,

where Δ is the Laplacian operator giving the kinetic energy, and U is the potential
energy. When the target space of the theory is the complex projective space

P
k = S2k+1/S1,

the Schrödinger operator H has to act on L2(L(Pk)), where L(Pk) is the loop space
in P

k,
L(Pk) = Maps(S1,Pk) =

{
σ : S1 → P

k
}
.

The potential energy U is given by the norm square of the vector field ρ corresponding
to the infinitesimal rotation of a loop σ(θ) �→ σ(θ + ε),

U = (ρ, ρ).

The main difficulty is to define L2(L(Pk)) and the action of H.
A standard reference for loop groups is given by the book of Pressley and Segal

[13].
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1.3 Regularized geometry of the loop space

Mathematically, a mass gap σ(H) of a theory, if it exists, is the difference between the
first and the second positive eigenvalues of the Schrödinger operator H. We must keep
in mind that the standard scheme of defining self-adjoint extension of an operator
doesn’t work in infinite dimensions. Though L(Pk) is equipped with the Wiener
measure, suitable for defining L2(L(Pk)), there is no obvious candidate for C∞(L(Pk))
on which H is defined. Because of this difficulty we exploit the idea of using some
finite-dimensional truncations, which we denote by LN(P

k), to approximate L(Pk).
Let HN denote the Schrödinger operator on LN(P

k) defined by the induced metric
from L(Pk) and the restriction of the potential. In this language, the problem of
finding the mass gap for the sigma model becomes finding the gap estimates σN =
σ(HN) for N = 1, 2, 3, . . . and the limit as N goes to infinity.

We now give an analytic formulation of the mass gap conjecture for the truncated
loop space which we owe to A. Kapustin.

Let Pk = S2k+1/S1 be the k-dimensional projective space, where S2k+1 is a sphere
of radius R. Let LN(P

k) ⊂ L(Pk) = Maps(S1,Pk) be the N -th-truncated loop space
of the projective space (Definition 5). To define a metric (equation (4.1)) on the space
Maps(S1,Pk) we need to fix a metric not only on P

k but also on S1, which is given
by (up to diffeomorphism) its length L.

Conjecture 1. There is a constant b0 such that

σN = λ2(N)− λ1(N) ≥ N2

L
e−b0R2

, N >> 0.

where λ1(N) and λ2(N) are the first and the second eigenvalues of the Schrödinger
operator HN on LN(P

k).

The problem of finding lower bounds for the gap σ(H) = λ2 − λ1 in terms of
geometrical quantities of the underlying manifold has been studied by many authors
using partial differential equations. To name a few, see Chen [3, 4], Li [9], Li-Yau
[10, 11], Singer-Wong-Yau-Yau [14] and Wang [15].

These works formulate estimates for σ(H) in terms of geometry quantities (Ricci
curvatures, volume, diameter and so on) of the underlying manifold. Here are some
relevant definitions: Let (Mm, gij) be an m-dimensional compact Riemannian mani-
fold with metric gij and ∂M �= ∅. Let Δ be the Laplacian operator associated to gij
on M . We define on M a Schrödinger operator by Δ − q(x), where q(x) ∈ C2(M).
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We consider the following Neumann eigenvalue problem:

Δu− qu = −ηu in M,
∂u

∂ν
= 0 on ∂M.

Theorem (R. Chen, see [3] Theorem 1). Let Mm, m ≥ 3, be an m-dimensional
compact manifold with boundary ∂M and ω(q) = supq − infq denote the oscillation
of q over M . Suppose that the Ricci curvature of M satisfies Rij +Kgij is positive-
definite, K ≥ 0, and the second fundamental form αij of ∂M with respect to the
outward pointing unit normal ν satisfies αij +Hgij positive-definite, H ≥ 0. Suppose
that ∂M also satisfies the “interior rolling r-ball condition” with r chosen small (see
[4], [15] for the definition of the “rolling ball condition” and the choice of r). Then
the gap Γk = ηk − η1 of k-th Neumann eigenvalues ηk and η1 of M satisfies

Γk ≥ α1k
2
m

for all k = 2, 3, . . . and some explicitly computable constant α1 depending onm, K, H, r,
ω(q) and the diameter of M .

This motivates the study of the differential geometry of the truncated loop spaces.

1.4 Dissertation work

We briefly summarize the contents of each chapter.
In Chapter 2 we define our main objects LN(P

k), the truncated loop spaces. We
present two definitions. The first definition is given by equations, which will be useful
in computing geometrical quantities of LN(P

k). We first define P
k as the subspace

of (k + 1)-dimensional Hermitian matrices that satisfies some equations. In this
way loops in P

k can be expanded using Fourier series with coefficients in Hermitian
matrices, satisfying the defining equation of Pk. We define LN(P

k) to be the space of
such Fourier polynomials with degree less than or equals to N (Definition 5).

The spaces LN(P
k) are generally not smooth. To find its smooth locus, we give an

alternative definition of LN(P
k), call it L̃N(P

k). To define it, we complexify both the
source space and the target space and consider the space of degree N holomorphic
maps between the complexified spaces satisfying certain tangency conditions to the
divisor at infinity in the target space (Definition 6). Then in the spirit of P. Georgieva
and A. Zinger [6], [7], we take L̃N(P

k) to be the subspace of maps that satisfy some
reality conditions. We show that L̃N(P

k) and LN(P
k) is related by

L̃N(P
k) = LN(P

k) \ LN−1(P
k),
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and L̃N(P
k) is the smooth locus of LN(P

k). The definition of L̃N(P
k) also enable us

to compute the dimension of the truncated loop space using homological methods.
The loop group L(U(k + 1)) is acting on L(Pk):

L(U(k + 1))× L(Pk) −→ L(Pk). (1.1)

We take a closer look at the relation between LN(P
k) and LN−1(P

k) in Chapter 3, in
which we prove the following theorem:

Theorem. There is a connected component G(k + 1) in the space of smooth homo-
morphisms Hom(S1,U(k + 1)) such that the conjugation map

μ : G(k + 1)× LN−1(P
k) −→ LN(P

k),

which is the restriction of (1.1), is onto, and is one to one at generic points.

The manifold G(k + 1) is smooth and is isomorphic to the projective space P
k.

As a corollary, we obtain the main result of this paper, a resolution of singularity for
LN(P

k):
μN : Pk ×G× · · · ×G︸ ︷︷ ︸

N

−→ LN(P
k).

In Chapter 4 we focus on the geometry of LN(P
k). We first give a precise formula

for the potential in the Schrödinger operator using the ordinary L2 metric on the
loop space. Then we compute the Riemann curvature tensor for the loop space L(Pk)
using the loop group action by L(U(k + 1)). To be able to use results from partial
differential equations to estimate the gap we also compute estimates for the volume
and the diameter of LN(P

k) via the fibration structure established in the previous
chapter.

In Chapter 5 we examine the first nontrivial truncated loop space L1(P
k). We give

an explicit construction of L1(P
k) using Pauli matrices. We show that the smooth

piece of L1(P
k) is isomorphic to the product (−1, 1) × SU(k + 1)/U(k − 1). Using

this construction we can transform the mass gap problem for the one-dimensional
Schrödinger operator on the nonhomogeneous piece to a Sturm-Liouville equation,
and prove the existence of the spectral gap using techniques from ODE.
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Chapter 2

The loop space L(Pk)

In this chapter we define our main objects LN(P
k), the finite dimensional approxima-

tions to the loop space L(Pk). In Section 2.1 we give a real algebraic structure on the
k-dimensional projective space P

k. In Section 2.2 we use the result of Section 2.1 to
define the finite dimensional truncations LN(P

k) of the loop space L(Pk), which are
ordered by inclusions:

L0(P
k) ⊂ L1(P

k) ⊂ · · · ⊂ LN(P
k) ⊂ · · · L(Pk).

In Section 2.3 we find a complexification LN(P
k)C of LN(P

k), and use it to calculate
the dimension and smooth locus of LN(P

k) by homological methods in Section 2.4.

2.1 The real algebraic structure on P
k

As explained in the introduction, we would like to define the truncated loop spaces
LN(P

k) using equations in order to study its geometry. To this end, we first give a
description of the target space P

k by equations in R
(k+1)2 .

Proposition 2. Let P
k = C

k+1 − {0}/C∗ be the k-dimensional complex projective
space. Then we have diffeomorphism

P
k 	 {M ∈ V k+1

herm |M2 = R2I, trM = (k − 1)R},
where R > 0, V k+1

herm is the space of (k + 1)-dimensional hermitian matrices defined
with respect to the standard hermitian product on C

k+1, and I the identity matrix.

Proof. The unitary group U(k + 1) acts by conjugation on

V k+1
herm =

{
A ∈ Mat(k + 1,C)|A = A∗},

6



the space of (k + 1)-dimensional hermitian matrices. Since Hermitian matrices have
real eigenvalues, two Hermitian matrices are in the same orbit if and only if they have
the same set of eigenvalues. Therefore each orbit is characterized by a collection of
k + 1 real eigenvalues.

If an orbit consists of matrices having 2 distinct real eigenvalues λ1, λ2 with mul-
tiplicities 1 and k respectively, the stabilizer of the element M = diag{λ1, λ2, . . . , λ2}
in the orbit is U(1)×U(k), diagonally embedded in U(k+ 1). Therefore, the orbit is
diffeomorphic to U(k + 1)/U(1)× U(k), which is then diffeomorphic to P

k.
For each positive real number R, we look at the orbit OR,−R consists of matrices

with k eigenvalues equal to R and one equal to −R. Matrices in this orbit can be
characterized by algebraic equations:

M2 = R2I, trM = (k − 1)R, (2.1)

where I is the identity matrix. Therefore, we have a diffeomorphism

P
k 	 OR,−R = {M ∈ V k+1

herm |M2 = R2I, trM = (k − 1)R}. (2.2)

for any R > 0.

Note that V k+1
herm is isomorphic to the linear space R

(k+1)2 . Therefore Proposition
2 defines LN(P

k) as a real algebraic subvariety in R
(k+1)2 .

As a corollary of the diffeomorphism between P
k and orbits of the U(k+1) action

on Hermitian matrices in the proof above, we have the following embedding:

Corollary 3. Let [z] = [z0 : · · · : zk] be the homogeneous coordinate of Pk. The map

φ : [z] �−→ (ziz̄j), |z| = 1, (2.3)

gives an embedding of Pk into V k+1
herm.

Proof. The image of φ corresponds to the orbit of matrices with one eigenvalue 1 and
k eigenvalues of 0.

Remark 4. Pk is a symplectic manifold with respect to the Fubini-Study metric. The
group U(k+1) acts on P

k by symplectic diffeomorphisms. The map (2.3) (composed
with multiplication by i) is the moment map for this action.

7



2.2 Loop space LN(P
k)

In this section we give a characterization of the loop space L(Pk) and define finite
dimensional approximations of it, which will be the main objects in this paper.

Let L(Pk) = Maps(S1,Pk) be the loop space, that is the space of smooth maps
equipped with compact-open topology, in the complex projective space Pk. Using the
definition of Pk by equations in Proposition 2, L(Pk) can be identified with a subspace
of Maps(S1, V k+1

herm) consisting of maps n(z) such that equations

n2(z) = R2I, tr(n(z)) = (k − 1)R, (2.4)

are satisfied for any z ∈ S1.
Note that loops in L(Pk) can be regarded as V k+1

herm-valued Fourier series satisfying
equations (2.4) and certain convergence conditions. We define LN(P

k) to be the
intersection of L(Pk) with the space of trigonometric polynomials TrigN ,

TrigN =

{
n(z) = V +

N∑
n=1

An cos(nθ) +
N∑

n=1

Bn sin(nθ)
∣∣∣ An, Bn ∈ V k+1

herm

}
, (2.5)

where z = eiθ.

Definition 5. LN(P
k) is defined to be the subspace of elements in TrigN satisfying

equations (2.4). That is,

LN(P
k) =

{
n(z) ∈ TrigN

∣∣∣ n2(z) = R2I, tr(n(z)) = (k − 1)R, for all z ∈ S1
}
.

The space LN(P
k) is a (generally nonsmooth) real algebraic subvariety in TrigN .

The latter is isomorphic to a linear space R(k+1)2×(R(k+1)2⊗C)×N . Relations between
V , An’s and Bn’s can be derived from the Fourier coefficients U , Cn’s and Dn’s of
n(z)2

n(z)2 = U +
2N∑
n=1

Cn cos(nθ) +
2N∑
n=1

Dn sin(nθ),

which are quadratic polynomials in matrices V , An, Bn:

8



U = V 2 +
1

2

N∑
n=1

(A2
n +B2

n),

Cl = V Al + AlV +
1

2

∑
t−s=l

(
(AtAs + AsAt) + (BtBs +BsBt)

)

+
1

2

∑
t+s=l

(AtAs − BtBs), 1 ≤ l ≤ N,

Dl = V Bl +BlV +
1

2

∑
t−s=l

(
(BtAs + AsBt)− (AtBs +BsAt)

)

+
1

2

∑
t+s=l

(AtBs +BtAs), 1 ≤ l ≤ N,

Cl =
1

2

∑
t+s=l

(AtAs − BtBs), N < l ≤ 2N,

Dl =
1

2

∑
t+s=l

(AtBs +BtAs), N < l ≤ 2N.

(2.6)

LN(P
k) is then defined by equations

U = R2I, Cl = 0, Dl = 0, 1 ≤ l ≤ 2N,

trV = (k − 1)R, trAn = 0, trBn = 0, 1 ≤ n ≤ N.
(2.7)

Another way to represent elements in TrigN is by using matrix valued Laurent
polynomials

n(z) =
N∑

n=−N

Knz
n, (2.8)

where Kn’s satisfy
K−n = K∗

n (2.9)

to ensure the hermitian conditions on trigonometric coefficients of n(z). Coefficients
in the Laurent polynomial and trigonometric expansions of n(z) are related by

Kn =
1

2
(An + iBn), K−n =

1

2
(An − iBn). (2.10)

Defining equations for LN(P
k) in terms of Kn’s become∑

s+t=l

KsKt = δl,0R
2I, −2N ≤ l ≤ 2N,

trK0 = (k − 1)R, trKs = 0, s �= 0.

(2.11)

9



We will be using the two expansions of elements in LN(P
k) interchangeably through-

out the paper.
Note that the equations for C2N and D2N in (2.6) are equal to zero on LN−1(P

k).
Therefore we have

LN−1(P
k) ⊂ LN(P

k)sing

and
LN(P

k)smooth ⊂ LN(P
k) \ LN−1(P

k),

where LN(P
k)sing and LN(P

k)smooth stands for the singular and the smooth locus of
L(Pk) respectively. We will prove in Section 2.4 that the smooth locus is actually
equal to LN(P

k) \ LN−1(P
k).

2.3 An alternative definition for LN(P
k)

We defined LN(P
k) in Section 2.2 by equations. This approach will be useful in

calculations of various geometric quantities of LN(P
k). In this section, we would

like to give a definition of L̃N(X) that applies to a more general manifold X in a
coordinate-free fashion. We will then use it to compute the virtual dimension of
LN(P

k) and determine its smooth locus in the next section.
Inspired by constructions in real Gromov-Witten theory [6], we would like to

define L̃N(X) ⊂ Maps(S1, X) to be the set of real maps in Mapshol,2N(P
1, Y ) satisfying

certain tangency conditions where Y is a complexification of X and Mapshol,2N(P
1, Y )

is the set of holomorphic maps from P
1 to Y of degree 2N .

2.3.1 Terminology

We first set up the terminologies. An involution τ on a smooth manifold Y is a
diffeomorphism τ : Y → Y such that τ ◦ τ = idY . An involution τ on a complex
manifold (Y, J) is said to be antiholomorphic if τ∗ ◦ J = −J ◦ τ∗, where J is the
complex structure on Y , and τ∗ is the derivative of τ .

Let Y be a complex manifold equipped with an antiholomorphic involution τ , the
set of real points is defined to be the fixed point set

Y τ =
{
z ∈ Y

∣∣ τ(z) = z
}
.

A projective complex manifold Y is said to be a complexification of a smooth
manifold X, if there exists an antiholomorphic involution τ on Y such that X is
diffeomorphic to the set of real points of Y

X 	 Y τ .

10



Let (Y1, τ1) and (Y2, τ2) be complex manifolds with antiholomorphic involutions,
a holomorphic map

φ : (Y1, τ1) −→ (Y2, τ2)

is said to be real if
φ ◦ τ1 = τ2 ◦ φ. (2.12)

The involutions τ1 and τ2 on Y1 and Y2 respectively together define an involution
ρ on Mapshol(Y1, Y2) by

ρ(φ) = τ2 ◦ φ ◦ τ1.
The reality condition in (2.12) becomes

ρ(φ) = φ

in terms of ρ. We use

(
Mapshol(Y1, Y2)

)ρ
=
{
φ ∈ Mapshol(Y1, Y2)

∣∣∣ ρ(φ) = φ
}
.

to denote the set of real holomorphic maps from Y1 to Y2.

2.3.2 Construction of L̃N(X)

We now can construct the space L̃N(X) as follows. Let X be a smooth manifold and
Y a complexification of X, i.e. X is the set of real points of the projective complex
manifold (Y, τ), where τ is an antiholomorphic involution on Y . An additional piece
of data necessary in our construction is a τ -invariant divisor D ⊂ Y , such that
D ∩X = ∅. Let

Maps0,∞,D,N(P
1, Y ) ⊂ Mapshol,2N(P

1, Y )

denote the space of holomorphic maps φ from P
1 to Y of degree 2N such that φ([P1])∩

[D] = 2N and the degrees of tangency of φ(P1) to D at points φ(0) and φ(∞) are N .
Let σ be the antiholomorphic involution on P

1 defined by σ(z) = 1
z̄
, which

swaps 0 and ∞ in P
1, and fixes the unit circle. From the degree consideration,

φ−1(D) = {0,∞} for φ in Maps0,∞,D,N(P
1, Y ), and Maps0,∞,D,N(P

1, Y ) is stable un-
der the involution

ρ(φ) = τ ◦ φ ◦ σ
on Mapshol,2N(P

1, Y ).

Definition 6. L̃N(X) is defined to be real maps in Maps0,∞,D,N(P
1, Y ), that is,

L̃N(X) :=
(
Maps0,∞,D,N(P

1, Y )
)ρ
.
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2.3.3 Relation between L̃N(P
k) and LN(P

k)

We now see how this definition is related to our definition of LN(P
k) from Section 2.2.

To apply the definition of L̃N(X) toX = P
k, we first need to choose a complexification

Y of Pk.

Proposition 7. Let Y = P
k×P

k, then Y is a complexification of Pk. More precisely,
there exists an antiholomorphic involution τ on Y such that Y τ is isomorphic to P

k.

Proof. A map f : V1 → V2 from a complex vector space to another is said to be
antilinear if

f(λx+ y) = λ̄f(x) + f(y),

for all λ ∈ C and x, y ∈ V1.
Let V be a complex space with hermitian inner product v1 · v2. In our case

V = C
k+1 together with the standard hermitian inner product. The inner product

then defines an antilinear isomorphism between V and its dual space

α : V −→ V ∗. (2.13)

On the space of pairs of lines (l1, l2) ∈ P(V ) × P(V ∗), α in (2.13) defines an
antiholomorphic involution by the formula

τ : (l1, l2) �−→ (α−1(l2), α(l1)). (2.14)

The embedding ι : P(V ) → P(V )×P(V ∗), l �→ (l, α(l)) then induces an isomorphism

ι : P(V ) 	 (P(V )× P(V ∗))τ .

between P(V ) and the fix point set of τ .

Note that since Proposition 2 gives a definition of Pk by equations in R
(k+1)2 ,

we can also complexify P
k using homogenous equations in P

(k+1)2−1. Appendix A
contains an exposition of such construction.

Another piece of data we need in our construction is a divisor at infinity defined
by

D =
{
(l1, l2) ∈ P(V )× P(V ∗)

∣∣∣ 〈l1, l2〉 = 0
}
,

where 〈., .〉 is the canonical pairing between V and V ∗. Divisor D is a partial flag
space

{
F1 ⊂ Fn−1

}
, where F1 = l1 and Fn−1 is the hyperplane in V defined by

equation 〈l1, l2〉 = 0. The divisor satisfies

(P(V )× P(V ∗))τ ∩D = ∅,
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since for any vector v ∈ l, we have 〈l, α(l)〉 ∼ v ·v > 0, where ∼ stands for equivalence
up to a nonzero scalar. Therefore, the image of P(V ) in P(V ) × P(V ∗) does not
intersect D.

The Laurent polynomial n(z) in (2.8) defines the map C
∗ → Y \ D, where Y is

a projective variety. We can extend n to a map n : P1 → Y , the tangency condition
at z = 0 reflects the degree of the Laurent polynomial, and the tangency at z = ∞
comes from the ρ-symmetry. Therefore, L̃N(P

k) contains Laurent polynomials with
degree exactly N , that is,

L̃N(P
k) = LN(P

k) \ LN−1(P
k). (2.15)

2.3.4 Generalization to Grassmannians

The construction in the previous section admits generalizations to Grassmannians.
Let V be the same as in Section 2.3.3 and Gr(s, V ) the Grassmannian of s-dimensional
planes in V . The manifold Gr(s, V )×Gr(s, V ∗) has a similar antiholomorphic invo-
lution

τ : (l1, l2) → (α−1(l2), α(l1)).

as in (2.14), where (l1, l2) are now s-planes and α being extended to the exterior
powers of V . The divisor at infinity is defined by equation det(〈vi, wj〉) = 0, where
{vi} is a basis of l1, {wj} is a basis of l2. Note that det(〈vi, αvj〉) > 0 because α is
positive-definite. An s-plane l2 in V ∗ is the same thing as a (dimV − s)-plane m in
V . Condition det(〈vi, wj〉) = 0 is the same as non-transversality of l1 and m, which
is equivalent to l1 and m contain a non-trivial common subspace.

2.4 Smooth locus and virtual dimension of L̃N(P
k)

We defined L̃N(X) to be the real locus of Maps0,∞,D,N(P
1, Y ) in Definition 6 in the

previous section. Equivalently, we have

L̃N(X)C = Maps0,∞,D,N(P
1, Y ),

where L̃N(X)C stands for the complexification of L̃N(X). The tangent space Tφ
(L̃N(X)C

)
at φ(z) ∈ L̃N(X)C can be computed using homological methods, which we present in
this section, then use it to find the smooth locus of LN(P

k).

13



2.4.1 Tangent space

It follows from the first order deformation theory [5] that the tangent space to
Mapshol,2N(P

1, Y ) at a map φ(z) is given by

Tφ
(
Mapshol,2N(P

1, Y )) = H0(P1, φ∗TY ).

Let F be a subsheaf of the tangent bundle TY whose local sections are tangential
to D. More precisely, let g be a local function that defines the divisor D, that is, D
is locally defined by g = 0. A local section ξ is in F , if ξg(x) = sξ(x)g(x) for some
function sξ(x), where x is a local coordinate on Y and ξg is the Lie derivative of g
with respect to ξ.

Lemma 8. The tangent space to L̃N(X)C = Maps0,∞,D,N(P
1, Y ) at φ(z) equals to

the set of global sections of φ∗F on P
1. That is,

Tφ
(L̃N(X)C

)
= H0(P1, φ∗F ).

Proof. Recall that a holomorphic map φ is in Maps0,∞,D,N(P
1, Y ) if degφ = 2N ,

φ−1(D) = {0,∞}, and the degrees of tangency of φ(P1) to D at points φ(0) and φ(∞)
are N . In terms of the defining equation g of the divisor, the tangency condition for
the map φ : P1 → Y can be formulated as

g(φ(z)) = zNf(z),

where f(z) is a holomorphic function and z is a local coordinate near 0 ∈ P
1. A local

variation φ(z) �→ φ(z) + εξ(φ(z)) preserves tangency condition because

d

dε
g(φ(z) + εξ(φ(z)))

∣∣∣
ε=0

= ξg(φ(z)) = sξ(φ(z))g(φ(z)) = zNsξ(φ(z))f(φ(z)).

On the other hand, any infinitesimal deformation of a map φ : P1 → Y that satisfies
the tangency condition is a global section of the pullback φ∗F , which completes the
proof.

2.4.2 Virtual dimension

Using a perfect obstruction theory [5], we know that the actual (complex) dimension
at a point φ(z) is always greater than or equal to

h0(P1, φ∗F )− h1(P1, φ∗F ). (2.16)

Note that (2.16) equals to the Euler characteristic χ(P1, φ∗F ) which is a topological
invariant that does not depend on φ.
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Definition 9. The quantity in (2.16) is defined to be the (complex) virtual dimension
of the moduli space Maps0,∞,D,N(P

1, Y ), which we denote by vdim.

Since the virtual dimension of the moduli space Maps0,∞,D,N(P
1, Y ) equals to the

Euler characteristic, it can be computed using Riemann-Roch under the assumption
that the divisor D is smooth.

Theorem 10. We have the following formula for the virtual dimension of L̃N(X)C

vdim(L̃N(X)C) = dimCY + 〈c1(φ∗TY ), n([P1])〉 − 2N.

Proof. The sheaf F defined as before fits into a short exact sequence

0 −→ F −→ TY −→ ND/Y −→ 0.

of sheaves on Y. Here ND/Y is the normal bundle of D in TY . The pullback of this
sequence to P

1 is

0 −→ φ∗F −→ φ∗TY −→ SN(0)⊕ SN(∞) −→ 0,

where SN(0) and SN(∞) are skyscraper sheaves supported at 0 and ∞. At these
points local modules are isomorphic to C[z]/(zN−1).

By Riemann-Roch, we have

χ(P1, φ∗TY ) = dimCY + 〈c1(φ∗TY ), n([P1])〉.

Therefore,

vdim(L̃N(X)C) = χ(P1, φ∗F )

= χ(P1, φ∗TY )− χ(P1, SN(0)⊕ SN(∞))

= dimCY + 〈c1(φ∗TY ), n([P1])〉 − 2N.

We can use Theorem 10 to calculate the virtual dimension of L̃N(P
k)C.

Corollary 11. The virtual dimension of L̃N(P
k)C is given by

vdim(L̃N(P
k)C) = 2k + 2Nk. (2.17)
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Proof. In the case X = P
k, Y = P

k × P
k,

c1(TY ) = c1(det TY ) = OPk(k + 1)⊗OPk(k + 1)

following the Euler sequence.
By τ -reality of φ, the class φ∗[P1] has bidegree (N,N) ∈ H2(P

k × P
k,Z). Thus

φ∗(OPk(1)⊗OPk(1)) = OP1(2N),

and

c1(φ
∗TY ) = φ∗(OPk(k + 1)⊗OPk(k + 1))

= OP1(2N(k + 1)).

Therefore

vdim(L̃N(P
k)C) = dimCY + 〈c1(φ∗TY ), n([P1])〉 − 2N

= 2k + 2N(k + 1)− 2N

= 2k + 2Nk

2.4.3 The smooth locus

Recall that in Section 2.2 we showed that LN(P
k)smooth, the smooth locus of LN(P

k),
is a subset of LN(P

k)\LN−1(P
k) = L̃N(P

k). We now show that they actually coincide.

Theorem 12. The smooth locus of LN(P
k) is L̃N(P

k).

The theorem is based on the following proposition.

Proposition 13. The first cohomology H1(P1, φ∗F ) vanishes.

Proof. The paring-preserving action of SL(k + 1) on V × V ∗ has two orbits in Y =
P(V )× P(V ∗): D and Y \D. The generators of slk+1 are global sections of F and F
is generated by these sections. By abuse of notations we denote the sheaf OY ⊗ slk+1

also by slk+1. We have a short exact sequence

0 −→ Ker −→ slk+1
p−→ F −→ 0

where Ker is the kernel of the projection p. It defines a short exact sequence of the
pullbacks

0 −→ φ∗Ker −→ φ∗slk+1 −→ φ∗F −→ 0

Since φ∗slk+1 is a trivial sheaf, H1(P1, φ∗slk+1) = H1(P1,O) ⊗ slk+1 = 0. From the
long exact sequence in cohomology we immediately deduce that H1(P1, φ∗F ) = 0.
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Proof of Theorem 12. For any point φ(z) in L̃N(P
k)C, the following inequalities hold:

dimTφ(L̃N(P
k)C) ≥ actual dimension at φ(z) ≥ vdim(L̃N(P

k)C). (2.18)

By Lemma 8, we have the dimension of the tangent space

dimTφ(L̃N(P
k)C) = h0(P1, φ∗F ),

while the virtual dimension, by Definition 9, is given by

vdim(L̃N(P
k)C) = h0(P1, φ∗F )− h1(P1, φ∗F ).

Proposition 13 then ensures that at any point φ(z) in L̃N(P
k)C, the dimension of

the tangent space equals to the virtual dimension of the moduli space L̃N(P
k)C =

Maps0,∞,D,N(P
1, Y ). As a result of inequalities (2.18), The actual dimension and the

dimension of the tangent space must coincide. Therefore, we conclude that all points
in L̃N(P

k)C are smooth points.
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Chapter 3

Resolution of singularities of
LN (Pk)

In Section 2.4 we proved that the singular locus of LN(P
k) is LN−1(P

k) ⊂ LN(P
k).

In this section, we take a closer a look at LN(P
k) and construct a resolution of

singularities of LN(P
k).

3.1 Loop group action

Let L(U(k + 1)) be the group of smooth loops in the unitary group U(k + 1). Recall
that from Section 2.2, elements in L(Pk) are V k+1

herm-valued Fourier series satisfying
the defining equation of Pk in V k+1

herm, where V
k+1
herm is the space of (k + 1)-dimensional

hermitian matrices. The loop group L(U(k + 1)) acts on L(Pk) by conjugation. By
an analogy with LN(P

k), we define the finite dimensional truncations LN(U(k+1)) ⊂
L(U(k + 1)) and maps

LM(U(k + 1))× LN(P
k) −→ LN+M(Pk), (3.1)

which are restrictions of the conjugation action of L(U(k + 1)) on L(Pk).
We embed U(k + 1) into Mat(k + 1,C). A loop is polynomial if it is given by

Laurent polynomial

M(z) =
N∑

i=−N

Miz
i,

where Mi ∈ Mat(k + 1,C), and det(M(z)) = zk, k ∈ Z. Define

LN(U(k + 1)) = TrigN(Mat(k + 1,C)) ∩ L(U(k + 1)).
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The space L1(U(k+1)) contains a subspace of smooth homomorphisms Hom(S1,U(k+
1)), on which U(k + 1) acts by conjugation. Denote by Gi(k + 1) the orbit with rep-
resenting element diag(z, . . . , z︸ ︷︷ ︸

i

, 1, . . . , 1︸ ︷︷ ︸
k+1−i

), that is,

Gi(k + 1) =
{
P diag(z, . . . , z︸ ︷︷ ︸

i

, 1, . . . , 1︸ ︷︷ ︸
k+1−i

) P−1 | P ∈ U(k + 1)
}
⊂ Hom(S1,U(k + 1)).

Let

Lpoly(U(k + 1)) =
∞⋃

N=0

LN(U(k + 1)),

Segal and Pressley [13] proved that ∪k+1
i=1Gi(k + 1) generates Lpoly(U(k + 1)), and

Lpoly(U(k + 1)) is dense in L(U(k + 1)).

Denote G1(k + 1) by G(k + 1), that is,

G(k + 1) =
{
P

(
z

I

)
P−1

∣∣∣ P ∈ U(k + 1)
}
⊂ Hom(S1,U(k + 1)).

Since G(k + 1) ⊂ L1(SU(k + 1)), the action in (3.1) when M = 1 induces a map

μ : G(k + 1)× LN−1(P
k) −→ LN(P

k). (3.2)

The space G(k + 1) plays a fundamental role in our construction of a resolution
of singularities of LN(P

k). By abuse of terminology, we call the map μ in (3.2) the
action of G(k + 1) on LN−1(P

k).

3.2 Resolution of singularities

We have the following theorem on the action of G(k + 1) on LN−1(P
k).

Theorem 14.

(1) The map μ in (3.2) is onto.

(2) μ is one to one away from the singular locus of LN−1(P
k).

As a corollary, we have the following resolution of singularities of LN(P
k).

19



Corollary 15. The iterated product map

μN : Pk ×G× · · · ×G︸ ︷︷ ︸
N

−→ LN(P
k)

induced from μ gives a resolution of singularities of LN(P
k).

Proof. Notice that L0(P
k) = P

k. Theorem 14 proves the case for N = 1. The rest
can be proved by induction on N .

Notice that G(k + 1) is diffeomorphic to P
k, dimG(k + 1) = 2k. Theorem 14 and

Corollary 15 is consistent with our dimension calculation in Section 2.4.

We break the proof of Theorem 14 into two parts.

Proposition 16 (Part I). The map (3.2) is onto.

Proposition 17 (Part II). The map (3.2) is one to one at generic points. To be
more precise, let n(z) ∈ LN(P

k)\LN−1(P
k) such that n(z) = λ(z).n1(z) = θ(z).n2(z),

where λ(z), θ(z) ∈ G(k + 1), n1(z), n2(z) ∈ LN−1(P
k) \ LN−2(P

k). Then λ(z) = θ(z),
n1(z) = n2(z).

Proof of Part I (Proposition 16). Let n ∈ LN(P
k)\LN−1P

k, N ≥ 1. In order to show
that there exist λ ∈ G(k + 1) and n′ ∈ LN−1(P

k) such that

n = λ.n′,

it’s sufficient to show that
λ−1.n ∈ LN−1(P

k),

where λ−1 is in form

λ−1 = Ω

(
z̄

I

)
Ω−1, Ω ∈ SU(k + 1).

Then the general statement will follow because LN(P
k) is filtered by Ll(P

k)\Ll−1(P
k), l =

1, . . . , N .
Let n(z) = K−Nz

−N +K−N+1z
−N+1 + · · ·+KN−1z

N−1 +KNz
N be an element in

LN(P
k) \ LN−1P

k. Since n(z) has eigenvalues R and −R with multiplicities k and 1
respectively, matrix n(z)−RI has rank 1. All the 2×2 minors of n(z)−RI are poly-
nomials in z, with coefficients of the highest degree terms coming from corresponding
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minors of KN . Therefore all the 2× 2 minors of KN vanish and rank(KN) = 1. Since
we further have K2

N = 0 by relation (2.9), KN has Jordan canonical form

⎛
⎜⎜⎜⎜⎜⎝

0 1
0

0
. . .

0

⎞
⎟⎟⎟⎟⎟⎠ .

As a result, there exists a matrix Ω ∈ SU(k + 1) such that

ΩKNΩ
−1 =

(
0 b
0 0

)
, (3.3)

where b is a non-zero (k − 1)-dimensional row vector. Let ΩKN−1Ω
−1 be in block

form

ΩKN−1Ω
−1 =

(
e f
g h

)
, (3.4)

with block sizes the same as the matrix in (3.3). Then

KN−1KN +KNKN−1

= Ω−1

[(
e f
g h

)(
0 b
0 0

)
+

(
0 b
0 0

)(
e f
g h

)]
Ω

= Ω−1

(
bg bh+ eb
0 gb

)
Ω.

(3.5)

KN and KN−1 satisfy KN−1KN +KNKN−1 = 0 by relation (2.9), we must therefore
have

gb = 0.

Since g is a column vector and b a nonzero row vector, gb = 0 implies g = 0. Hence
ΩKN−1Ω

−1 is in form

ΩKN−1Ω
−1 =

(
e f
0 h

)
. (3.6)

Let

λ = Ω−1

(
z

I

)
Ω ∈ G(k + 1).
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We compute the coefficients of zN+1, zN , z−N , z−(N+1) in

λ−1.n(z)

=
(
Ω−1

(
z̄

I

)
Ω
)( N∑

j=−N

Kjz
j
)(

Ω−1

(
z

I

)
Ω
)
.

(3.7)

The coefficient of zN+1 is

Ω−1

(
0

I

)
ΩKNΩ

−1

(
1

0

)
Ω

= Ω−1

(
0

I

)(
0 b
0 0

)(
1

0

)
Ω

= 0

(3.8)

by (3.3). The coefficient of zN is

Ω−1
(
P1 + P2 + P3

)
Ω, (3.9)

where

P1 =

(
1

0

)
ΩKNΩ

−1

(
1

0

)
,

P2 =

(
0

I

)
ΩKNΩ

−1

(
0

I

)
,

P3 =

(
0

I

)
ΩKN−1Ω

−1

(
1

0

)
.

(3.10)

P1 = P2 = 0 by (3.3) and P3 = 0 by (3.6). Therefore the coefficient of zN also
vanishes.

Since the coefficients of z−(N+1) and z−N are transpose conjugate to those of zN+1

and zN respectively, all coefficients in front of zN+1, zN , z−N , z−(N+1) vanishes. Hence
λ−1.n(z) ∈ LN−1(P

k).

Now we prove the second part of the theorem.

Proof of Part II (Proposition 17). Let λ(z), θ(z) ∈ G(k+1), n1(z), n2(z) ∈ LN−1(P
k)\

LN−2(P
k), such that

λ(z).n1(z) = θ(z).n2(z). (3.11)
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By proposition 16, there exists λi(z), θi(z) ∈ G(K + 1), i = 2, . . . , N and n1, n2 ∈
L0(P

k) 	 L(Pk) such that

n1(z) =
(
λ2(z) · · ·λN(z)

)
n1

(
λ2(z) · · ·λN(z)

)−1

,

n2(z) =
(
θ2(z) · · · θN(z)

)
n2

(
θ2(z) · · · θN(z)

)−1

.

Let λ1(z) = λ(z), θ1(z) = θ(z), then

λ(z).n1(z) =
( N∏

i=1

λi(z)
)
n1

( N∏
i=1

λi(z)
)−1

,

θ(z).n2(z) =
( N∏

i=1

θi(z)
)
n2

( N∏
i=1

θi(z)
)−1

.

Denote by Λ(z) =
N∏
i=1

λi(z), Θ(z) =
N∏
i=1

θi(z), the above equations can be written as

λ(z).n1(z) = Λ(z)n1Λ(z)
−1,

θ(z).n2(z) = Θ(z)n1Θ(z)−1.
(3.12)

Recall from the beginning of the section that G(k+1) consists of elements conju-
gate to diag(z, 1, . . . , 1), we have

λi(z) = Pi

(
z

I

)
P−1
i ,

θi(z) = Qi

(
z

I

)
Q−1

i ,

(3.13)

for some unitary matrices Pi, Qi, i = 1, . . . , N . Let z = 1 we have

λi(1) = θi(1) = I, i = 1, . . . , N.

Therefore
Λ(1) = Θ(1) = I.

Since (3.11) holds for any z ∈ S1, setting z = 1 we have

n1 = n2
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by equations (3.12).
Plug n1 = n2 into (3.12), equation (3.11) becomes

Λ(z)n1Λ(z)
−1 = Θ(z)n1Θ(z)−1.

Rearrange the two sides, the equation becomes

Θ(z)−1Λ(z)n1 = n1Θ(z)−1Λ(z), (3.14)

that is, Θ(z)−1Λ(z) commutes with n1.
Since n1 ∈ L0(P

k) 	 P
k, n1 has the form

1

R
· n1 = Ω

(−2
0

)
Ω−1 + I, (3.15)

for some unitary matrix Ω. Plug (3.15) into (3.14), we have

Ω−1Θ(z)−1Λ(z)Ω

(−2
0

)
=

(−2
0

)
Ω−1Θ(z)−1Λ(z)Ω,

that is, Ω−1Θ(z)−1Λ(z)Ω commutes with

(−2
0

)
.

Therefore Ω−1Θ(z)−1Λ(z)Ω must be block-wise diagonal

Ω−1Θ(z)−1Λ(z)Ω =

(
α(z)

∗
)
, (3.16)

where α(z) is a Laurant polynomial in z with degree less than or equal to N .
Let e1 = (1, 0 . . . , 0)T. Then (3.16) is equivalent to

Ω−1Θ(z)−1Λ(z)Ωe1 = α(z)e1.

Hence
Λ(z)Ωe1 = α(z)Θ(z)Ωe1.

Let ω1 = Ωe1 be the first column of Ω, we have

Λ(z)ω1 = α(z)Θ(z)ω1.

Notice that all matrices involved are unitary. From equations (3.12) and (3.15)
we have

λ(z).n1(z) = −2R
(
Λ(z)ω1

)(
Λ(z)ω1

)∗
+RI. (3.17)
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By the assumption that λ(z).n1(z) is a generic point in LN(P
k), λ(z).n1(z) is a

degree N Laurent polynomial. While Λ(z)ω1 is an array of polynomials in z with
degree no larger than N , equation (3.17) ensures polynomials in Λ(z)ω1 are of degree
N . The same reasoning applies to Θ(z)ω1. Therefore α(z) must be of degree 0, and
we have

Λ(z)ω1 = αΘ(z)ω1, (3.18)

where α is a constant number.
We compare the highest order terms from the two sides of the equation above.
By (3.13), each λi(z) equals to

λi(z) = zProjpi +Orthpi , i = 1, . . . , N, (3.19)

as an operator, where pi is the first column of Pi, Pi as in (3.13), Projpi the projection
to pi, Orthpi = Id− Projpi .

Since Λ(z) =
n∏

i=1

λi(z), and Λ(z)ω1 is of degree N , the highest power term in

Λ(z)ω1 is
zNProjp1 ◦ Projp2 ◦ · · · ◦ ProjpNω1.

Similarly, the highest power term in Θ(z)ω1 is

zNProjq1 ◦ Projq2 ◦ · · · ◦ ProjqNω1,

where qi is the first column of Qi, Qi as in (3.13), i = 1, . . . , N .
By equation (3.18), we must have

Projp1 ◦ Projp2 ◦ · · · ◦ ProjpNω1 = αProjq1 ◦ Projq2 ◦ · · · ◦ ProjqNω1

Since the left hand side is a nonzero projection to p1, right hand side a nonzero
projection to q1, p1 and q1 must be collinear. Therefore,

Projp1 = Projq1 .

Furthermore, by (3.19), Projpi and Projqi completely determines λi(z) and θi(z)
respectively. Hence

λ1(z) = θ1(z),

that is
λ(z) = θ(z).
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Finally, since
n1(z) = λ(z)−1.n(z),
n2(z) = θ(z)−1.n(z),

it follows immediately that
n1(z) = n2(z).
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Chapter 4

Geometry of L(Pk)

In this chapter we study the geometry of the truncated loop space LN(P
k). We specify

the metric on LN(P
k) in Section 4.1, and use it to give a concrete formula for the

potential energy V in the Schrödinger operator H. In Section 4.2 we compute the
Riemann curvature tensor of L(Pk) using the loop group action by L(U(k + 1)). In
Section 4.3 and 4.4, we find estimates for the diameter and the volume of LN(P

k)
respectively using the fibration structure of LN(P

k) over LN−1(P
k) established in

Chapter 3.

4.1 Metric

The space LN(P
k) is equipped with the ordinary L2 metric

〈δn(θ), δn(θ)〉 = L

2π

∫ 2π

0

tr
(
δn(θ)δn(θ)∗

)
dθ, (4.1)

where δn(θ) ∈ TnLN(P
k) ⊂ TnLN(V

k+1
herm), L is the length of the circle that appeared

in Conjecture 1. In the following we set L equal to one. The metric is a pullback of
the metric from L(Pk).

In the coordinate of Fourier coefficients, the metric is given by

〈δn(θ), δn(θ)〉 = tr(dV dV ∗) +
1

2

N∑
n=1

(
tr(dAndA

∗
n) + tr(dBndB

∗
n)
)
,

where δn(θ) = dV +
∑N

n=1(dAn cos(nθ) + dBn sin(nθ)).
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To define the Schrödinger operator H, we use a densely defined quadratic form

Q(f, g) =

∫
L̃N (Pk)

(∇f · ∇ḡ + Ufḡ)dvol (4.2)

on L2(L̃N(P
k)) ∩C∞

c (L̃N(P
k)). U is a potential function defined on LN(P

k) given by
the magnitude square of the vector field corresponding to of infinitesimal rotation of
a loop n(θ) → n(θ + ε) = n(θ) + εn′(θ),

U(n(θ)) =
1

2

N∑
n=1

n2
(
tr(AnA

∗
n) + tr(BnB

∗
n)
)
. (4.3)

The Schrödinger operator H is defined by

Q(f, g) = (Hf, g), (4.4)

where (f, g) is the inner product on L2(L̃N(P
k)),

(f, g) =

∫
L̃N (Pk)

fḡdvol.

By doing formal integration by part, we see that the Schrödinger is the sum −Δ+U ,
where Δ is the Laplacian operator and V is the potential in (4.3)

4.2 Curvature tensor of L(Pk)
We compute the Riemann curvature tensors of L(Pk) by using the fact that the loop
space L(Pk) is a homogeneous space of the loop group L(U(k + 1)). The general
recipe for computing the curvature tensors of a homogeneous space is as follows.

Let G be a Lie group and (M, g) a G-homogeneous Riemannian manifold. Fix a
point x in M , and let H be the stabilizer of x. Then H is a closed connected Lie
subgroup of G and M 	 G/H. Let g and h be the Lie algebra of G and H, and
assume that g splits

g = h+ p (4.5)

into a direct sum of adjoint representations of h. We identify the tangent space TxM
with g/h = p. The G-invariant metric on G/H defines an inner product on p and is
completely characterized by it. All curvature tensors of G/H are G-invariant. Besse
in [2] gives a formula for curvature tensors R(X, Y ) written purely in terms of the
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inner product (., .) on p, the bracket in g, and decomposition (4.5). We denote by
[a, b]h the projection of [a, b] onto h and by [a, b]p the corresponding projection to p.
According to [2], we have

(R(X, Y )X, Y ) = −3

4
|[X, Y ]p|2 − 1

2
([X, [X, Y ]]p, Y )− 1

2
([Y, [Y,X]]p, X)

+|U(X, Y )|2 − (U(X,X), U(Y, Y )).
(4.6)

where U : p⊗ p → p is defined by

2(U(X, Y ), Z) = ([Z,X]p, Y ) + (X, [Z, Y ]p).

WhenG = L(U(k+1)
)
, H = L(U(1)×U(k)

)
, we have p = L(u(k+1)/u(1)⊕u(k)

)
.

A basis of u(k + 1)/u(1)⊕ u(k) is given by

ξj = E1j − Ej1, ηj = i(E1j + Ej1), j = 2, . . . , k + 1,

where i is the imaginary unit, and this gives a basis of p:{
ξj, ηj, cos(nθ)ξj, cos(nθ)ηj, sin(nθ)ξj, sin(nθ)ηj

}
.

The linear space p is equipped with the inner product:∫
S1

tr(f(θ)ḡ(θ))dθ.

Let eij = (Eij − Eji), εij = i(Eij + Eji), then eij, εij satisfies equations

[eij, ekl] = δjkeil − δjleik − δikejl + δilejk,

[εij, εkl] = −(δjkeil + δjleik + δikejl + δilejk),

[eij, εkl] = δjkεil + δjlεik − δikεjl − δilεjk.

Note that
[ξi, ξj] = −eij, [ηi, ηj] = −eij, [ξi, ηj] = −εij,

therefore
[ξi, ξj]p = [ηi, ηj]p = [ξi, ηj]p = 0,

and equation (4.6) becomes

(R(X, Y )X, Y ) = −1

2
([X, [X, Y ]]p, Y )− 1

2
([Y, [Y,X]]p, X).
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We also have relations
[ξi, [ξi, ξj]]p = −ξj,
[ηi, [ηi, ξj]]p = ξj,

[ξi, [ξi, ηj]]p = −ηj,
[ηi, [ηi, ηj]]p = ηj,

and integrals ∫ 2π

0

sin2(nx) cos2(mx) =

⎧⎪⎨
⎪⎩

π

4
, n = m,

π

2
, n �= m,

∫ 2π

0

sin2(nx) sin2(mx) =

∫ 2π

0

cos2(nx) cos2(mx) =

⎧⎪⎨
⎪⎩

3π

4
, n = m,

π

2
, n �= m.

Using these identities the curvature tensors on L(Pk) can be calculated explicitly. We
list some of the tensors for the basis vectors here:

• For (X, Y ) = (cos(nθ)ξi, cos(mθ)ξj) or (X, Y ) = (sin(nθ)ξi, sin(mθ)ξj), we have

(R(X, Y )X, Y ) =

⎧⎨
⎩

3π

2
, n = m,

π, n �= m,

Similar computations applies to (X, Y ) = (ξi, ξj), (cos(nθ)ξi, sin(mθ)ξj), (ξi, cos(nθ)ξj)
and (ξi, sin(nθ)ξj).

• For (X, Y ) = (cos(nθ)ηi, cos(mθ)ηj) or (X, Y ) = (sin(nθ)ηi, sin(mθ)ηj), we have

(R(X, Y )X, Y ) =

⎧⎨
⎩

−3π

2
, n = m,

−π, n �= m,

Similar computations applies to (X, Y ) = (ηi, ηj), (cos(nθ)ηi, sin(mθ)ηj), (ηi, cos(nθ)ηj)
and (ηi, sin(nθ)ηj).

• When in (X, Y ) one contains ξ and the other contains η the curvature tensor
vanishes.
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4.3 Diameter estimates

The key tool in our diameter estimate is the map (3.2). We compare the product
metric on G(k+1)×LN−1(P

k) with the pull back metric from LN(P
k) by μ in (3.2),

and show that the latter one is dominated by the former one. To be precise, let
gLN

and gLN−1
be the metric on LN(P

k) and LN−1(P
k) respectively, gG the metric

on G(k + 1), we show that the pull back metric μ∗gLN
on G(k + 1) × LN−1(P

k) is
dominated by the product metric gG + gLN−1

.
To compute μ∗gLN

, we fix a point (λ, n) in G(k+1)×LN−1(P
k), and let μ∗ denote

the induced map of μ on the tangent space

μ∗ : TλG(k + 1)⊕ TnLN−1(P
k) −→ Tμ(λ,n)LN(P

k).

Then
μ∗(δλ, δn) = (δλ)nλ−1 − λn(δλ) + λ(δn)λ−1, (4.7)

where δλ ∈ TλG(k + 1) and δn ∈ TnLN−1(P
k).

By (4.7) and triangle inequality, we have

|μ∗(δλ, δn) = |(δλ, δn)|μ∗gLN

= |(δλ)nλ−1 − λn(δλ) + λ(δn)λ−1|
≤ |(δλ)nλ−1|+ |λn(δλ)|+ |λ(δn)λ−1|

where we used | · | to denote the norms | · |gLN
, | · |gLN−1

and | · |gG in all three spaces

without distinction, since gLN
, gLN−1

and gG are all defined by (4.1).
Notice that λ is unitary and nn∗ = R2I, so we have |(δλ)nλ−1| = |λn(δλ)| = R|δλ|

and |λ(δn)λ−1| = |δn|, hence
|(δλ, δn)|μ∗gLN

≤ 2R|δλ|+ |δn|. (4.8)

For any two points (λi, ni) ∈ G(k + 1)× LN−1(P
k), i = 1, 2,

dLN
(μ(λ1, n1), μ(λ2, n2))

≤ dLN
(μ(λ1, n1), μ(λ2, n1)) + dLN

(μ(λ2, n1), μ(λ2, n2))

≤ 2RdG(λ1, λ2) + dLN−1
(n1, n2)

From this we get an inequality of diameters

d(LN(P
k)) ≤ 2Rd(G(k + 1)) + d(LN−1P

k)

which gives us our final estimate for diameters:

d(LN(P
k)) ≤ 2NRd(G(k + 1)) + d(Pk)
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4.4 Volume estimates

Inequality (4.8) also gives an estimate for the volume of L(Pk). Let {ei}, i = 1, . . . , 2k,
be an orthonormal basis of TλG(k + 1), j = 1, . . . , 2Nk, with respect to gG, {ξj} an
orthonormal basis of TnLN−1(P

k) with respect to gLN−1
, then by (4.8), we have

|ei|μ∗gLN
≤ 2R, i = 1, . . . , 2k,

|ξj|μ∗gLN
≤ 1, j = 1, . . . , 2Nk,

Therefore
μ∗dvolgLN

≤ (2R)2kdvolgG+gLN−1

and ∫
LN (Pk)

dvolgLN
≤ (2R)2k

∫
G(k+1)

dvolgG

∫
LN−1(Pk)

gLN−1
.

That is,

Vol(LN(P
k)) ≤ (2R)2kVol(G(k + 1))Vol(LN−1(P

k)).

As a result, we have our estimate for volumes:

Vol(LN(P
k)) ≤ (2R)2NkVol(G(k + 1))NVol(Pk).

32



Chapter 5

The variety L1(P
k)

In this section, we investigate the space L1(P
k), the simplest nontrivial truncated loop

space in our construction. We give an explicit construction of elements in L1(P
k) using

Pauli matrices in Section 5.1, and show that L̃1(P
k), the smooth locus of L1(P

k), is
diffeomorphic to (−1, 1) × SU(k + 1)/U(k − 1). In Section 5.2 we compute the pull
back metric on (−1, 1)× SU(k + 1)/U(k − 1) from L̃1(P

k) using the diffeomorphism
constructed in Section 5.1 and compute the volume form with respect to the metric.
In Section 5.3 we compute the Schrödinger operator H with respect to the SU(k+1)-
symmetry of L1(P

k), and prove the radial part of the discreteness of its spectrum.

5.1 Explicit construction of L1(P
k)

Recall our construction in Section 2.2, the space L1(P
k) consists of triples of (k+1)×

(k + 1) hermitian matrices (A,B, V ) satisfying

A2 = B2, V 2 + A2 = R2I,
AB +BA = 0, V A+ AV = 0, V B +BV = 0,
tr(A) = tr(B) = 0, tr(V ) = (k − 1)R.

(5.1)

The building blocks of hermitian matrices satisfying (5.1) are Pauli matrices,

σ1 =

(
1

1

)
, σ2 =

( −i
i

)
, σ3 =

(
1

−1

)
(5.2)

that satisfy

σiσj = −σjσi, i �= j,

σ2
1 = σ2

2 = σ2
3 = −i σ1σ2σ3 = I.
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We first look at L1(P
1), the space of triplets (A,B, V ) of traceless 2 × 2 hermitian

matrices satisfying equations (5.1). The 3-dimensional group SU(2) acts on the 4-
dimensional space L1(P

1) by simultaneous conjugations on A, B and V , generating a
family of orbits parametrized by t, with representing elements

A = R
√
1− t2σ1, B = R

√
1− t2σ2, V = Rtσ3, −1 < t ≤ 1,

where σi’s, i = 1, 2, 3, are Pauli matrices.
When −1 < t < 1, the stabilizer of each orbit consists of scalar matrices with the

scalar equals to the square roots of unity, which is the center of SU(2). So an open
(smooth) piece of the family of orbits is isomorphic to (−1, 1)× PSU(2).

Next, for L1(P
k), the constraint on the trace of V forces V to be in the form

V = R

⎛
⎜⎜⎜⎜⎜⎝

t
−t

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎠

after diagonalization.
From this together with our result on L1(P

1) we see again there is a family of
orbits under the SU(k + 1) action, with representing elements

A = R
√
1− t2

(
σ1

0

)
, B = R

√
1− t2

(
σ2

0

)
, V = R

(
tσ3

I

)
, −1 < t ≤ 1,

(5.3)
where σi, i = 1, 2, 3, are Pauli matrices in (5.2).

The stabilizer of each orbit consists of matrices in the form⎛
⎝(detU)−

1
2

(detU)−
1
2

U

⎞
⎠ (5.4)

where U is a (k − 1)-dimensional unitary matrix. The form in (5.4) describes an
embedding of U(k − 1) into SU(k + 1).

Proposition 18. There is a map

alg : [−1, 1]× SU(k + 1)

U(k − 1)
−→ L1(P

k)

that is a diffeomorphism away from the boundary.
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In fact, both pieces in the boundary {−1} × SU(k+1)
U(k−1)

∪ {1} × SU(k+1)
U(k−1)

correspond

to the singular locus L0(P
k) in L1(P

k). and L1(P
k) is diffeomorphic to the quotient

space of [−1, 1]× SU(k+1)/U(k− 1) obtained by identifying the two components of
the boundary at t = −1 and t = 1 after each is taking quotient to a P

k.

5.2 Geometry of L1(P
k)

The space L1(P
k) is equipped with a metric

g = tr(dV ∗dV ) +
1

2
(tr(dA∗dA) + tr(dB∗dB)).

We would like to pull back this metric under the map alg in Proposition 18 and
compare it with the standard metric on [−1, 1]× SU(k + 1)/U(k − 1).

It’ll be convenient to do so by fixing an orthonormal basis {ev, ea, eb, aαi, bαi | α =
1, 2, i = 1, . . . , k − 1} of su(k + 1)/u(k − 1), where

ev =
i√
2
(E11 − E22), ea =

i√
2
(E12 + E21), eb =

1√
2
(E21 − E12),

aαi =
1√
2
(Eα,i+2 − Ei+2,α), bαi =

i√
2
(Eα,i+2 + Ei+2,α).

(5.5)

Computed using Mathematica, the pull back of the metric g with respect to this
basis equals to

alg∗g = R2
( 1

1− t2
dt2 + gΩ(t)

)
, (5.6)

where

gΩ(t) = 4(1−t2)de2v+2(1+t2)(de2a+de
2
b)+2

k−1∑
i=1

[
(1−t)(da21i+db21i)+(1+t)(da22i+db

2
2i)
]
.

Let G = dt2 + gref be the product metric on (−1, 1)× SU(k + 1)

U(k − 1)
, where

gref = de2v + de2a + de2b +
k−1∑
i=1

(
da21i + db21i + da22i + db22i

)
.

The quantity dvolalg∗g/dvolG is equal to

ωk
alg(t) = 22kR4k(1 + t2)(1− t2)k−1. (5.7)

We will use this quantity to prove the discreteness of the spectrum in the next section.
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5.3 Spectrum for L1(P
k)

We described the Schrödinger operator H using the quadratic form Q(f, g) in Section
4.1. The potential function U is simple on L1(P

k)

U =
1

2

(
tr(AA∗) + tr(BB∗)

)
= 2R2(1− t2),

where we used equations in (5.3).
Due to large symmetry group of the problem it is reasonable to start the analysis of

H with the SU(k+1)-radial part. The quadratic form Q(f, g) simplifies significantly
when f and g are SU(k + 1)-radial, that is, if f and g depends only on t:

Qrad(f, g) =

∫ 1

0

(1− t2

R2
f ′(t)ḡ′(t) + 2R2(1− t2)f(t)ḡ(t)

)
ω(t)dt, (5.8)

where
ω(t) = ωalg(t) = 22kR4k(1 + t2)(1− t2)k−1

from (5.7).
Recall the desired definition of H in (4.4), applying integration by part to (5.8)

gives
H(f) = −ω−1(pf ′)′ + ω−1qf, (5.9)

where

p =
1− t2

R2
ω(t) and q = 2R2(1− t2)ω(t).

We are interested in defining the operator H on an appropriate domain such
that H is self-adjoint, then looking into the eigenvalue problem Hf = λf . For this
purpose, let M = ωH, that is,

Mf = −(pf ′)′ + qf. (5.10)

We will define M as an operator in section 5.3.1 and use it, together with the the
associated maximal domain, to define the Schrödinger operator H and show its self-
adjointness. In terms of M , the eigenvalue problem Hradf = λf becomes

Mf = −(pf ′)′ + qf = λωf. (5.11)

Equation (5.11) is a Sturm-Liouville equation, which we will look into in section 5.3.2.
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5.3.1 Hilbert space and self-adjointness of H

We would like to define M as a differential operator using the differential expres-
sion in (5.10). To this end, we bring in the Hilbert space L2(−1, 1), the space of all
complex-valued Lebesgue square integrable functions. To make sense of the differ-
ential expression in (5.10), we need to work in a subspace D ⊂ L2(−1, 1) consisting
of functions such that both f and pf ′ are absolutely continuous on any compact
subinterval of (−1, 1). To be more precise, let ACloc(−1, 1) denote the space of all
complex-valued functions on (−1, 1) that are absolutely continuous on any compact
interval [α, β] ⊂ (−1, 1). Define

D =
{
f ∈ L2(−1, 1) | f, pf ′ ∈ ACloc(−1,1)

}
.

As we mentioned above, D is the maximal domain of M in L2(−1, 1).
Our goal is to define H by

H =
1

ω
M, (5.12)

and an appropriate domain on which H is a self-adjoint operator. To make sense of
equation (5.12), we need further restrictions on the underlying domain.

Let L2
ω(−1, 1) be the space of Lebesgue measurable functions on (−1, 1) that

satisfy

(f, f)ω =

∫ 1

−1

ω|f |2dt <∞.

The space L2
ω(−1, 1) is a Hilbert space with respect to inner product (f, g)ω =∫ 1

−1
ωfḡdt. Following [12], we define the maximal domain generated byM in L2

ω(−1, 1)
to be the subspace

Δ =

{
f ∈ D | f, 1

ω
Mf ∈ L2

ω(−1, 1)

}
.

To find the maximal domain in L2
ω(−1, 1) on which H can be defined and is self-

adjoint, it’s necessary to classify the endpoints −1, 1 in L2
ω(−1, 1). The endpoints are

classified as either regular, limit-circle singular or limit-point singular. An endpoint
a is a limit-circle singularity if, for all λ ∈ C, all solutions of equation (5.11) live in
the space L2

ω(U), where U is a neighborhood of a. That is, ω|f |2 is locally integrable
near a for any solution f . On contrary, the endpoint a is limit-point singularity if
differential equation (5.11) has for some λ ∈ C a solution f such that ω|f |2 is not
integrable near a.

We follow [1] to derive the following classification.
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Proposition 19. The following classification of end-points of the equation (5.11)
holds:

(a) t = −1 and t = 1 are limit-circle singularities if k = 1,

(b) t = −1 and t = 1 are limit-point singularities if k ≥ 2.

Proof. Equation (5.11) is equivalent to

− f ′′ +
q − p′

p
f − λω

p
f = 0. (5.13)

The function p−1 is never integrable near t = −1 and t = 1. It’s clear that both
t = −1 and t = 1 are singularities.

To determine if a singular point a limit circle or limit point singularity, we need
to see if ω|f |2 is locally integrable near the singular point. To this end, we need to
first examine the local solutions of the equation.

The formula in (5.9) defines an operator, which we denote by the same symbol,
in the extended domain Hrad : O(C \ {0,−1, 1}) → O(C \ {0,−1, 1}). Here O stands
for complex analytic functions of parameter z ∈ O(C \ {0,−1, 1}). The eigenvalue
problem Hradf = λf in this space becomes an ODE:

− f ′′ −
( 2z

z2 + 1
+

k

z + 1
+

k

z − 1

)
f ′ +

2R4(z2 − 1) +R2λ

z2 − 1
f = 0 (5.14)

Frobenius method [8] gives local solutions to the ordinary differential equation
in (5.14). In terms of the method of Frobenius, z = −1 and z = 1 are regular
singularities both of characteristic exponents 1 − k and 0. It follows that locally
equation (5.14) has a general solution of the form

f(z) = c1y1(z − z0) + c2

(
1

(z − z0)k−1
y2(z − z0) + α(k,R, λ) ln(z − z0)y1(z − z0)

)
(5.15)

near z = z0, where z0 = −1, 1 and y1(z), y2(z) are analytic functions near zero.
With help of general solutions in (5.15), it’s easy to see that ω|f |2 is locally

integrable at either t = −1 or t = 1 for any solution f of equation (5.11) iff k ≤ 1.

Following the classification of singularities above, we have the following definition
and theorem.

38



Definition 20. Define an operator H : Ωk → L2
ω(−1, 1), k = 1, 2, . . . by

Hf =
1

ω
Mf,

where

1. Ω1 =

{
f ∈ Δ | lim

t→−1+
(pf ′)(t) = lim

t→1−
(pf ′)(t) = 0

}
,

2. Ωk = Δ, k ≥ 2.

Theorem 21. The operator H is self-adjoint in the Hilbert space L2
ω(−1, 1).

Proof. We refer the reader to [12] Section 18 and [1] Theorem 6.

5.3.2 Discrete spectrum of H

We have the following spectral properties of the self-adjoint operator H.

Theorem 22. Let H be the self-adjoint operator defined in Definition 20. Then H
has the following spectral properties:

1. The spectrum σ(H) is real simple and discrete, that is, the spectrum consists
solely of real simple eigenvalues

σ(H) = {λn ∈ R, n ∈ N},

with properties
(i) λ0 ≥ 0,

(ii) λn < λn+1, n ∈ N,

(iii) lim
n→+∞

λn = +∞.

The operator H is bounded below in L2
ω(−1, 1) with

(Hf, f)ω ≥ 0, f ∈ Ω.

Since each eigenvalue is simple, the eigenspaces satisfy

dim{f ∈ Ω : Hf = λnf} = 1, n ∈ N.

2. Let the eigenfunction be denoted by {ψn | n ∈ N}, then
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(a) The eigenfunction ψn satisfy boundary conditions formulated in Definition
20.

(b) The space of eigenfunctions {ψn | n ∈ N} is orthogonal and complete in
L2
ω(−1, 1).

(c) For each n, ψn has exactly n isolated zeros on (−1, 1).

(d) For each n, the limits limt→x0 ψn(t) exist and are finite, where x0 = 0+ and
1−. The eigenfunctions ψn are absolutely continuous on [−1, 1].

Proof. The proof follows from that for the similar statements for Heun equation in
[1].
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Appendix A

Cohomology of complexification

Let k=2, and

A =

⎛
⎝ x1 y1 + iz1 y2 + iz2
y1 − iz1 x2 y3 + iz3
y2 − iz2 y3 − iz3 x3

⎞
⎠ ∈ V

be a 3× 3 hermitian matrix. The set of equations {A2 = R2I, trA = R} becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1y1 + x2y1 + y2y3 + z2z3 = y3z1 + x1z2 + x3z2 + y1z3
= x1y2 + x3y2 + y1y3 − z1z3 = y3z1 + x1z2 + x3z2 + y1z3
= y1y2 + x2y3 + x3y3 + z1z2 = −y2z1 + y1z2 + x2z3 + x3z3 = 0
x21 + y21 + y22 + z21 + z22 = x22 + y21 + y23 + z21 + z23

= x23 + y22 + y23 + z22 + z23 = R2,
x1 + x2 + x3 = R

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

The complexification of P2 is a projective complex manifold Y given by

Y = {(x1 : · · · : x3 : y1 : · · · : y3 : z1 : · · · : z3 : w) ∈ P
9 | I},

where I consists of relations given by the set of equations

I =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1y1 + x2y1 + y2y3 + z2z3 = y3z1 + x1z2 + x3z2 + y1z3
= x1y2 + x3y2 + y1y3 − z1z3 = y3z1 + x1z2 + x3z2 + y1z3
= y1y2 + x2y3 + x3y3 + z1z2 = −y2z1 + y1z2 + x2z3 + x3z3 = 0
x21 + y21 + y22 + z21 + z22 = x22 + y21 + y23 + z21 + z23

= x23 + y22 + y23 + z22 + z23 = R2w2,
x1 + x2 + x3 = Rw

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.
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The space Y can be identified with a subspace of the projectivization of non-zero
complex matrices of dimension 3,

Y 	 {[A] ∈ (M3×3(C)− 0)/C∗ | A2 = I, trA = 1 or A2 = 0, trA = 0}.
The SU(3) action on P

2 extends to an action of SL(3,C) on Y , which has two
orbits

O1 = O(

⎛
⎝1 0 0
0 1 0
0 0 −1

⎞
⎠), O2 = O(

⎛
⎝0 1 0
0 0 0
0 0 0

⎞
⎠),

with corresponding stabilizers

Stab(

⎛
⎝1 0 0
0 1 0
0 0 −1

⎞
⎠) 	 SL(2,C)×C

∗, Stab(

⎛
⎝0 1 0
0 0 0
0 0 0

⎞
⎠) =

⎧⎨
⎩
⎛
⎝a b c
0 d 0
0 e f

⎞
⎠ ∈ SL(3,C)

⎫⎬
⎭ .

We compute the cohomology of Y . We do so by first computing the cohomology
of O1 and O2, then put the cohomology of the three into a long exact sequence.

For O1, it’s isomorphic to SL(3,C)/Stab(O1), which is homotopy equivalent to the
compact homogeneous space SU(3)/(SU(3) ∩ Stab(O1)). Since SU(3) ∩ Stab(O1) 	
U(2), the homogeneous space is isomorphic to P

2. Therefore, the cohomology groups
of O1 are

Hk(O1;Z) =

{
Z for k even
0 for k odd,

k = 0, · · · , 4.

For O2, it’s isomorphic to SL(3,C)/Stab(O2), which is homotopic equivalent to
the compact homogeneous space SU(3)/(SU(3)∩Stab(O2)). Since SU(3)∩Stab(O1) 	
S1×S1, the homogeneous space is a complex flag variety, and the cohomology groups
of O2 are

Hk(O2;Z) =

⎧⎨
⎩

Z for k = 0, 6
Z

2 for k = 2, 4
0 otherwise.

Since O1 = Y −O2, O2 is closed and of complex codimension 1, we have Thom’s
isomorphism H i(Y,O1;Z) 	 H i(Y, Y −O2;Z) 	 H i−2(O2;Z). Combine this with the
long exact sequence of relative cohomology

· · ·H i(Y,O1;Z) → H i(Y ;Z) → H i(O1;Z) → H i+1(Y,O1;Z) → · · · ,
we get a long exact sequence relating the cohomology of Y , O1 and O2

· · ·H i−2(O2;Z) → H i(Y ;Z) → H i(O1;Z) → H i−1(O2;Z) → · · · . (A.1)
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Plug in the cohomology groups of O1 and O2 to the long exact sequence (A.1),
we obtain a long exact sequence for Hk(Y,Z)’s

0 H0(Y ;Z) Z

0 H1(Y ;Z) 0

Z H2(Y ;Z) Z

0 H3(Y ;Z) 0

Z
2 H4(Y ;Z) Z

0 H5(Y ;Z) 0

Z
2 H6(Y ;Z) 0

0 H7(Y ;Z) 0

Z H8(Y ;Z) 0
.

From the long exact sequence we get

Hk(Y ;Z) =

⎧⎪⎪⎨
⎪⎪⎩

Z for k = 0, 8
Z

2 for k = 2, 6
Z
3 for k = 4

0 otherwise,

which is consistent with our construction using P(V )× P(V ∗) in Proposition 7.
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Appendix B

Computation of injectivity for
G(k + 1)× L0(P

k) → L1(P
k)

Proposition 23. The map G(k+1)×L0(P
k) → L1(P

k) is injective at generic points.

Proof. Let P (z) = P

(
z

I

)
P ∗, Q(z) = Q

(
z

I

)
Q∗ be two elements in G(k + 1),

where P , Q are unitary matrices, n1, n2 belongs to L0, such that

P (z)n1P (z)
∗ = Q(z)n2Q(z)

∗. (B.1)

Note that P (1) = Q(1) = I, the identity matrix. Let z = 1 in (B.1), we have

n1 = n2.

Therefore (B.1) becomes

Q(z)∗P (z)n1 = n1Q(z)
∗P (z). (B.2)

Since n1 ∈ L0, n1 has canonical form

n1 = Ω

(−2
0

)
Ω∗ + I, (B.3)

plug (B.3) into (B.2), we have

Ω∗Q(z)∗P (z)Ω
(−2

0

)
=

(−2
0

)
Ω∗Q(z)∗P (z)Ω, (B.4)
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that is, Ω∗Q(z)∗P (z)Ω commutes with

(−2
0

)
.

Therefore

Ω∗Q(z)∗P (z)Ω = Ω∗Q
(
z̄

I

)
Q∗P

(
z

I

)
P ∗Ω

must be block-wise diagonal

Ω∗Q
(
z̄

I

)
Q∗P

(
z

I

)
P ∗Ω =

(
λ(z)

∗
)
, (B.5)

where λ(z) = 1, zorz̄ since it’s unitary.
Let e1 = (1, 0, . . . , 0)T , then (B.5) is equivalent to

Ω∗Q
(
z̄

I

)
Q∗P

(
z

I

)
P ∗Ω e1 = λ(z)e1.

Multiply

(
z

I

)
Q∗Ω on both sides and denote m = P ∗Ω e1, the equation becomes

Q∗P
(
z

I

)
m = λ(z)

(
z

I

)
Q∗Pm. (B.6)

Let Q∗P and m be in block forms

Q∗P =

(
a b
c d

)
, m =

(
m1

m2

)
,

respectively, then (B.6) becomes

(
za b
zc d

)(
m1

m2

)
= λ(z)

(
za zb
c d

)(
m1

m2

)
.

There are three possibilities for the equation to hold:

1. m1 �= 0, λ(z) = 1, c = 0.

2. m1 �= 0, λ(z) = z,m2 = 0.

3. m1 = 0.
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In case (1), since Q∗P =

(
a b
c d

)
is unitary, c = 0 implies b = 0. Therefore

Q∗P =

(
a

d

)
is diagonal, P = Q

(
a

d

)
, P (z) = Q(z), the map is injective.

In case (2) and (3), m is the first column of P ∗Ω, either m1 = 0 or m2 = 0 will

guarantee R(z) = Ω∗P
(
z

I

)
P ∗Ω being diagonal. Then

P (z)n1P (z)
∗ = ΩR(z)

(−2
0

)
R(z)∗Ω∗ + I = Ω

(−2
0

)
Ω∗ + I = n1 ∈ L0

which is a singular point.
Therefore, the map is injective at generic points.
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