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Abstract of the Dissertation

Space of Kähler metrics on singular and non-compact
manifolds

by

Seyed Ali Aleyasin

Doctor of Philosophy

in

Mathematics

Stony Brook University

2014

Let H be the space of Kähler metrics in a fixed cohomology class.
This space may be endowed with a Weil-Petersson-type metric, re-
ferred to as the Mabuchi metric, which allows one to study the ge-
ometry of H . It is now well-known that the geometry of the space of
Kähler potentials, in particular, the geodesics in H , may be used for
studying ‘canonical metrics’ on the base manifold. In order to be inter-
preted as the potential of a Kähler metric however, one needs to prove
certain regularity for such solutions.
In the first part, I discuss the deriving weighted estimates for the space
and time derivatives of solutions in the case of ALE Kähler poten-
tials, and further, prove results regarding the Mabuchi energy and the
uniqueness of metrics of constant scalar curvature. In the latter part of
the talk I shall discuss certain weighted estimates for the solutions to
the geodesic equation when the end points have conical singularities.
The results may also be seen as X.-X. Chen’s fundamental work on the
geodesic convexity of H in the case of smooth compact manifolds.
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Chapter 1

Introduction

1.1 Eine bemerkenswerte Hermite’sche Metrik-1933
‘When studying the invariants of a real 2n-dimensional Hermitian metric’

ds2 = ∑gik̄dxidx̄k (1.1)

Kähler found it ‘ ... natural to study, aside from (1.1), the alternating quadratic
differential form (forme extérieure)’

ω = ∑gik̄d(xi, x̄k) (1.2)

‘In this approach, the case ω ′ = 0 appears as a remarkable exception. We find
that the metric can be derived in the following way

ds2 = ∑
∂

2U
∂ xi ∂ x̄k

dxidx̄k (1.3)

from a potential U , which evidently is an invariant property equivalent to ω ′ = 0.’
1

This apparently casual observation made by young Erich Kähler in the early
1930’s was the inception of what is known as Kähler geometry. One of Kähler’s
motivations seems to have been finding explicit solutions to the static Einstein grav-
ity equation, and it is indeed in that short article where Kähler-Einstein metrics are
first considered.

1The notation and the usage of indeces in the first three equations might seem a bit out-dated
as I am quoting Kähler’s original paper and his notation as well. The English translation follows
that of Mr. Wolfgang Globke. In the more modern notation, the term d(xi, x̄k) for example, may be
substituted by dxi∧dxk̄, and ω ′ by dω .
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Regrettably, of all the wonders of this ‘remarkable’ family of metrics, we shall
confine ourselves to stating the properties directly relevant to this work. Any ele-
mentary treatment of Kähler geometry can be consulted for their proof, see [27] or
[20] for instance.

We shall start with the following simple, nevertheless foundational, lemma
which allows us reduce the study of the space of Kähler metrics to the study of
potentials.

Lemma 1.1.1. The ddc-lemma Let [η ] = [ζ ] ∈ H1,1(M), i.e. η and ζ are two
cohomologous closed forms. Then, for some function f , unique up to addition of a
constant, one has

η = ζ +ddc f

Let us then remind some basic identities that will come to our aid in the calcu-
lations in coordinates:

Proposition 1.1.2. We have the following identities about the curvature of a Kähler
manifold:

i. Rα

βν̄λ
= ∂̄ νΓα

λβ
= R

νλ̄
gαβ̄ R

αβ̄νλ̄
,

ii. Rλ ν̄ = gαβ̄ R
αβ̄νλ̄

= Rα

αλν̄
= ∂ λ ∂ν̄ logdetg,

ii’. whereby we have about the Ricci form ρ =−i∂ ∂̄ logdetg,

iii. K = −∆ logdetg = ρ ∧ωn−1 = −i∂ ∂̄ logdetg∧ωn−1 where K denotes the
scalar curvature.

The next assertion, which will appear in the calculation in the last chapter, al-
lows us to choose homorphic coordinates in which the curvature has a simple form
and the Christoffel symbols vanish.

Proposition 1.1.3. Let ω = ig
αβ̄

dzα ∧dzβ̄ be a Kähler form defined on some open
set U . Then, for a given point p there is a biholomorphic change of coordinates in
which the metric satisfies at the point p:

i. g
αβ̄ |p = δαβ ,

ii. ∂ κ gαβ̄ |p = ∂
λ̄
g

αβ̄ |p = 0, and hence the Christoffel symbols vanish,

iii. R
αβ̄κλ̄ |p = g

αβ̄ ,κλ̄ |p .
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1.2 The space of Kähler metrics-1954
The systematic study of the space of Kähler potentials seems to have originated by
the questions Calabi formulated in the proceedings of the international congress of
mathematicians in 1954 [8]. Possibly motivated by the ddc-lemma, there he defines
the space of Kähler metrics on a compact manifold as follows: 2

Definition 1.2.1. Let M be a Kähler manifold with a fixed Kähler form ω . Then
the space of Kähler potentials is given by

H := {φ ∈C∞(X)|ω +ddc
φ > 0} (1.4)

As we shall see, various extensions of this definition will be needed which we
will introduce in the relevant chapter.

But more geometric approach to understanding this space was yet to develop
three decades later. Towards the end of the 1980’s, Mabuchi in [30] and Bour-
guignon in [7] independently started studying the geometric structure of the space
of Kähler metrics in a fixed cohomology class over a given manifold. Later, ap-
parently independently, Semmes in [32] and Donaldson in [16] rediscovered this
idea from a different viewpoint. The fundamental idea behind these works was the
introduction of a Weil-Petersson-type metric on this space that would endow it with
a riemannian metric and a compatible connection.

The study proceeded by formal calculations of the connection coefficients, cur-
vature, and the geodesic equation. For example, it was shown that H is a locally
homogeneous space of non-positive sectional curvature. As in the usual case of rie-
mannian manifolds, one can define the length and energy of a curve, and by taking
the first variation of the energy functional for curves, one can derive the geodesic
equation. It was proved that if the curve φ(t) is a geodesic in H , it must satisfy the
equation 3

φ
′′− 1

2
|dφ
′|2φ = 0 (1.5)

In [16], Donaldson formulated the relation between the geometry of H and
some older problems in few conjectures. This initiated a new programme for study-
ing some classical problems in Kähler geometry. More specifically, these conjec-
tures related problems such as the existence and the uniqueness of extremal Kähler

2Henceforth, we shall assume that ω is a fixed smooth positive definite Kähler metric in the
background. Also, the norm of various tensors are measured with respect to ω .

3Two remarks on notation: Here and hereafter, differential operators without subscript are as-
sumed to be in the space direction. In certain occasions, we may use the subscript X for a space
differential operator for emphasis. Also, both ∂t and t as subscript are used to denote time deriva-
tives.
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metrics and Kähler metrics of constant scalar curvature to the geometry of the space
H . Of particular importance were the geodesics and the the metric structure of the
space H .

Further, it was proved that equation 1.5 can be written as a homogeneous com-
plex Monge-Ampère equation. More precisely, let φ1,φ2 ∈H be two Kähler po-
tentials on X . Then let τ be the complexification of the time variable t ∈ [0,1].
We complexify the time variable in the following manner: put τ := t +

√
−1σ ,

where σ ∈ S1 and the boundary data is extended identically along the imaginary
direction. Then, τ will belong to Σ, a cylinder of unit height and radius. Assume
that π : X ×Σ→ X is the projection on the first component. We then have the fol-
lowing (1,1)- forms on the product: Ω := π∗ω and Ωφ = Ω+ ddc

X φ + ddc
τφ . A

curve, therefore, can be thought of as a potential φ(x,τ) on X ×Σ. The equation of
the geodesic connecting the two potentials φ1 and φ2 will then be equivalent to the
following boundary value problem:

{
Ω

n+1
φ

= 0 on X×Σ

φ |
∂(X×S1×{ j}) = φ j , j = 0,1

Donaldson had conjectured that in H the geodesics realise the minimum dis-
tance, and he further conjectured that the geodesic connecting two smooth poten-
tials is smooth. The X.-X. Chen proved the following theorem in [13]:

Theorem 1.2.2. [13] Assume that the potentials on the end points, φ0 and φ2, are
smooth and ω+ddcφ j > 0, j = 0,1. Then, there exists a function with bounded ∂ ∂̄ -
derivatives on X ×Σ which solves the geodesic equation weakly. More precisely,
there exists a geodesic path φ(t) : [0,1]→H1,1 and a uniform constant such that
0 ≤ ddc

X×Σ
φ ≤ C, wherein the subscripts for ddc are to denote that the operators

are restricted to the corresponding tangent directions.

In this work, I shall present two different extensions to this theorem. First,
we discuss how this theory can be extended to asymptotically locally euclidean
Kähler spaces. In the second part, we shall present some estimates that will allow
us to solve the geodesic equation between two potentials with singularities along
divisors.
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Chapter 2

The space of Kähler metrics over
asymptotically locally euclidean
manifolds

2.1 Introduction
1 In this chapter, we present some generalisations of a the result of X-X. Chen re-
ported in [13] for compact Kähler manifolds to the case of asymptotically locally
euclidean Kähler manifolds. More specifically, In this chapter, we prove the exis-
tence of weak solutions with bounded ddc-derivatives and derive decay estimates
for the potential and the time derivative. This in particular implies that on each
time slice the metric is an ALE metric in the extended sense. Further, we show the
uniqueness of ALE metrics of constant scalar curvature in each Kähler class under
some conditions on the decay rate of curvature and on the anti-canonical bundle.

If we view geodesics as curves with vanishing acceleration, as we shall see, the
main rôle will be played by certain curves with preassigned non-zero acceleration
which we will refer to as the ε-geodesics.

Theorem 2.1.1. Let M be an asymptotically locally euclidean Kähler manifold.
Assume that φ0 and φ1 are two potentials belonging to H µ

ALE . Then, there is a
unique geodesic with spatial laplacian, ∆φ satisfying the decay property:

|∆φ | ≤C,φ = O(r−µ+2),∂ t φ = O(r−µ+2), |∂ tt φ | ≤C (2.1)

wherein C depends only on the end points and on the lower bound of the curvature

1The material for this chapter may be found in [1]
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of the reference metric ω . In particular, at each time slice, the potential satisfies

φ(t) = H̃ µ

ALE

One could derive the Euler-Lagrange equation associated to the energy of curves
on HALE to be the following:

G (φ) := φ
′′−g

αβ̄

φ
φ
′
αφ
′
β̄
= 0 (2.2)

wherein the prime sign denotes time derivative. As in the compact, we interpret the
equation in the way that the problem is reduced to solving a degenerate complex
Monge-Ampère equation. Namely, let us define Σ = [0,1]× S1, and view it as a
Riemann surface with boundary, and extend the potentials on the S1 factor in the
trivial way. Further, let π : M× Σ→ M be the obvious projection. By pulling
back the metric ω , we shall obtain Ω := π∗ω . Then, on M×Σ we may consider
Ω-plurisubharmonic potentials. One may then see by a calculation that

Ω
m+1
φ

= G (φ)
ωm

φ

ωm (2.3)

which allows us to solve the following boundary value problem (2.4) instead.{
Ω

m+1
φ

= 0
φ(x, i) = φ(i), i = 0,1.

(2.4)

The reader is referred to [16] for more on this construction. Notice however
that since there is not yet a lower bound on the rank of the complex hessian of the
solutions to (2.4), one cannot guarantee the non-degeneracy of the volume form
ωm

φ
. As a result, satisfying (2.4), although a necessary condition, is not sufficient

for G (φ) = 0 to hold. One may therefore think of (2.4) as generalised geodesics.
The proof of the Theorem 2.1.1 is based on the resolution of the geodesic equa-

tion and proving appropriate asymptotic behaviour as the following theorem states:

Theorem 2.1.2. Assume that the boundary conditions in the boundary value prob-
lem (2.4) belong to H µ

ALE . Then, there exists a weak solution in the sense that it is
continuous with bounded weak derivative satisfying the decay rates (2.1).

Proof of Theorem 2.1.2 For the proof, we shall approximate the zero right hand
side by strictly positive ones that tend to zero and derive estimates independent of
the lower bound of the right hand side, f . This will guarantee the existence of a
weak solution by the Arzelà-Ascoli theorem. Namely, we solve the following for
positive ε on the right hand side and let ε tend to zero.

6



{
Ω

m+1
φ

= ε

φ(x, i) = φ(i), i = 0,1.
(2.5)

This is done in the following sections. In Section 2.3, we construct classical
solutions for positive right hand side, f , on the strip. In Section 2.4, we derive
weighted estimates independent of the lower bound of the right hand side, and
thereby guarantee the decay rate of the laplacian of the weak solutions. This will
prove that the same bounds hold weakly once one passes to the uniform limit ob-
tained by applying the Arzelà-Ascoli theorem on compact subsets of the strip.

Theorem 2.1.3. Let M be an ALE Kähler space with c1(M) ≤ 0 and µ > 2m− 2.
Then, there is at most asymptotically locally euclidean Kähler metric of constant
scalar curvature in each cohomology class determined by the deacy conditions of
ALE potentials. In the particular case when c1 = 0, in each Kähler class there exists
one and only one scalar-flat metric which is further Ricci-flat.

Besides the uniqueness issue, we can further prove the boundedness from below
of Mabuchi’s K -energy as asserted in the following:

Theorem 2.1.4. Let M be an asymptotically locally euclidean Kähler manifold with
c1(M)≤ 0 and µ ≥ 2m−2. Then, in each cohomology class, the metric of constant
scalar curvature realises the global minimum of the K -energy.

By Theorem 2.1.3 in the case of vanishing first Chern class, ‘Scalar-flat ALE
Kähler metrics are Ricci-flat’. This assertion can already be proved using more
standard methods as we shall describe in §2.5. For the existence of Ricci-flat metrics
in the case of vanishing c1 we rely on the work of Joyce on the extension of the
Calabi conjecture to the ALE Kähler spaces. Along with Theorem 2.1.4, when
c1(M) = 0, the K -energy is bounded from below and there always exists a metric
of zero scalar curvature in each class which realises the minimum. See also Remark
2.2.2. In the case of c1(M) < 0 however, the uniqueness result does not seem to
follow from the methods known before.

2.2 Notation and definitions
In this section, we introduce the basic notations and definitions. The reader can find
extensive background material for the subject in §8 of Joyce’s book [25].

In what follows, we shall always consider operators such as laplacian and in-
trinsic derivatives in terms of the reference smooth ALE Kähler metric; the same
is the case for constants in the estimates whose dependence is not explicitly stated.

7



Recall that an asymptotically locally euclidean, abbreviated to ALE, is a riemannian
manifold that resembles Cm/G at distant points.

To make this idea more specific, let us fix a finite subgroup of G⊂ SU(m) that
acts freely on Cm−{0}. Then, the euclidean metric h0 on Cm descends to a metric
on the quotient Cm−{0}/G. Let r be the euclidean distance on Cm. Then, we have
the following definition:

Definition 2.2.1. Let (Mm,J,g) –which henceforth we shall denote by M for the
sake of brevity– be a non-compact Kähler manifold of dimension n. We say that Mn

is asymptotically locally euclidean of parameter µ asymptotic to Cm/G provided
that there exists a compact set S ⊂⊂ M, a ball of finite radius B0(R) ⊂⊂ Cm, and

a diffeomorphism, also know as the coordinate system at infinity, M−S π−1
→ (Cm−

B0(R))/G. We require the difference of the euclidean metric h0 and the pull-back
of g to satisfy the following decay rates:

∇
k(π∗(g)−h0) = O(r−µ−k) for k ≥ 0

wherein ∇ is the Levi-Civita connection associated to the flat metric h0.

Notice that we have not imposed any restrictions on the complex structure J and
its pull-back to (Cm−B0(R))/G, although in the case of spaces obtained as crepant
resolutions of singular spaces, the coordinate at infinity is indeed a biholomorphism,
cf. Chapter 6 in [25].

Remark 2.2.2. We know after the work of Bando, Kasue and Nakajima [3] on the
asymptotic behaviour of the Calabi-Yau metrics that the decay rate of such metrics
corresponds to the case µ = 2m. In the light of this result, Ricci-flat ALE Kähler
spaces satisfy the decay requirements.

Along the same lines, in order to parametrise the space of metrics, let us intro-
duce the space of ALE Kähler potentials. Unlike the case of compact manifolds,
there is no ambiguity of adding a constant and to each Kähler metric in the Kähler
class there corresponds only one potential. We have the following definition:

Definition 2.2.3. For a given asymptotically locally euclidean Kähler manifold
(M,ω,J) we define the space of ALE Kähler potentials to be as follows:

H µ

ALE := {φ ∈C∞|ω +ddc
φ > 0,∇k

φ = O(r2−µ−k),0≤ k ≤ 3}

Also, we can define a weaker space to which we may refer as the zero-th order
ALE Kähler potentials:

H̃ µ

ALE = {φ |ω +ddc
φ ≥ 0,φ = O(r2−µ), |∆φ | ≤C}

8



In particular, elements of H̃ALE give rise to bounded metrics.
In the rest of this note, we shall refer to the laplacian operators of the metrics ω

and ωφ on each time slice by ∆ and ∆φ . In order to denote the laplacian on the total
space M×Σ with respect to the Kähler forms Ω and Ωφ we shall use ∆̃ and ∆̃φ .

We also define the following weighted version of Hölder spaces. For some
negative real number β , let ‖ f‖Ck

β

be defined as

‖ f‖Ck
β

:=
k

∑
j=1

sup
M

∣∣∣r j−β
∇

j f
∣∣∣

Let δ be the injectivity radius of the metric ω0, and let d(x,y) denote the distance
between x and y with respect to ω0. Since the definition is supposed to take farther
points into account, one may as well think of the euclidean distance pushed forward
via the chart π : Cm−B(0,R)→M−K. Also, let the semi-norm [.]α,γ be defined
as follows:

[ f ]
α,γ sup

x 6=y
d(x,y)<δ

(
((r(x)∨ r(y))−γ | f (x)− f (y)|

d(x,y)α

)
(2.6)

wherein ∨ denotes the minimum of two numbers. The definitions extend from
functions to tensors in the obvious way. We then define the space Ck

β
to consist of

functions that have finite ‖.‖Ck,α
β

-norm defined as follows:

‖ f‖Ck,α
β

:= ‖ f‖Ck
β

+
[
∇

k f
]

α,β−k−α
(2.7)

It is probably the appropriate juncture to clarify the meaning of two key no-
tions we shall use in this context: the ‘first Chern class’ and its sign. In general,
notions such as Chern classes do not directly carry over from the framework of
compact manifold without boundary to the non-compact case in a straightforward
way. Heuristically speaking, we want a notion of the first Chern class that is com-
patible with the trivial topology of the ALE manifolds outside of some compact
set K ⊂⊂ M. Therefore, we define an admissible hermitian metric h on the anti-
canonical bundle, −KM as follows.

Let h0 be the metric induced on −KM by an element of H µ

ALE . We say that h is
an admissible hermitian metric on −KM provided that the function g := h

h0
satisfies

has finite weighted Hölder norm on its derivatives up to the second order:

‖g‖C2,α
β

< ∞ (2.8)

9



for some α and β < 2−2m.
We have chosen this decay rate since it allows us to integrate the curvature. In

particular, the notion of positivity and negativity for a line bundle can be carried
over from the compact case and such notion stays well-define. More precisely:

Definition 2.2.4. Let M be an ALE Kähler manifold and −KM its anti-canonical
bundle. We say that −KM is a negative (respectively positive) line bundle provided
that there exists an hermitian metric h on −KM which satisfies the decay condition
(2.8) and, further, its curvature form ρh is everywhere a non-positive (respectively
non-negative) (1,1)-form and negative (respectively positive) at some point. The
notion of zero c1 can be also extended in the same manner.

We now show that such a notion of sign for a line bundle is well-defined pro-
vided that we impose the decay estimates on metrics. Let η1,η2 be two closed
cohomologous forms with decay rates as in (2.8), such that η2 ≥ 0 whereas η1 < 0.
Since η1 and η2 are required to satisfy the decay conditions and [η1− η2] = 0,
the weighted ddc-lemma, Theorem 8.4.4 in [25], then states that η2 = η1 + ddcv
where v ∈C2,α

β+2. Again, the notion of a form being cohomologous to zero should
be understood in the category of forms with appropriate decay. Gaffney’s ex-
tension of Stokes’s theorem allows us to integrate by parts and thus observe that∫

M ddcv∧ωm−1 = 0. We obtain therefore that

0≤
∫

M
η2∧ω

m−1 =
∫

M
(η1 +ddcv)∧ω

m−1 =
∫

M
η1∧ω

m−1 < 0

which is a contradiction.

2.3 Classical solution of the equation on the the prod-
uct of the manifold and the compact Riemann
surface with positive right hand side

In order to put the geodesic equation that we study here into perspective, we shall
here give the basic concepts. More details may be found in the original works which
appear with the following historical order in [30], [32], and [16].

As Mabuchi had observed, having fixed a Kähler metric ω0 as the reference, the
space of Kähler potentials over a compact Kähler manifold X , denoted by H , can
be endowed with the structure of an infinite dimensional manifold. Formally, the
tangent space at any point of this manifold is isomorphic to the space of sufficiently
smooth functions on X . It is further endowed with a Weil-Petersson-type metric as
follows. At a given potential φ ∈H , let f ,g ∈ TφH be two vectors tangent to H .

10



〈ζ ,ξ 〉φ :=
∫

X
ζ ξ ω

m
φ (2.9)

With respect to this metric, one may define the notions of length and energy of
curves amongst other geometric quantities associated to a riemannian space, at least
formally. In analogy to the case of finite dimensional compact manifolds, one define
the geodesics to be the stationary points of the energy functional over the space of
curves with a fixed end points. The Euler-Lagrange equation corresponding to the
energy functional turns out to be equation 2.2.

One may notice that the inner product defined in (2.9) makes sense for poten-
tials belonging to L2 , in other words, when we have the polynomial decays, when
the parameter µ satisfies µ > 2m+2. Nevertheless, as we shall see, for our appli-
cations we do not need the Mabuchi metric to be finite and hence this integral to
be convergent; we nevertheless are still able to utilise the properties of the geodesic
operator.

In this section, we consider the complex Monge-Ampère equation on the prod-
uct of the asymptotically locally euclidean manifold M and the cylinder Σ -viewed
as a Riemann surface. An appropriately chosen sequence of such solutions will then
be used to construct a weak solution to the degenerate equation. But the classical
solution is important in its own right as we shall see in §2.5 as the ε-geodesics are
our tool in proving Theorems 2.1.2 and 2.1.3. The complex Monge-Ampère equa-
tion was solved in [25] on ALE manifolds without boundary, but in our case, the
presence of the boundary requires a different treatment.

In order to solve the equation with the right hand side f asymptotically equal to
a constant, we shall take a sequence of compact domains that expand to the strip.
In order to prove the existence of classical solutions on the strip, we shall establish
uniform estimates up to order C2,γ on compact sets. We will prove uniform laplacian
and L∞ bounds for such solutions. Existence of the laplacian bounds leads to the
uniform ellipticity of the linearised operator which will be used in deriving the
estimates for the degenerate case.

Theorem 2.3.1. Consider the boundary value problem

{
Ω

m+1
φ

= e f Ωm+1 ; M×Σ

φ = ψ ; ∂ (M×Σ)
(2.10)

wherein M and Σ are an ALE Kähler manifold and the cylinder respectively, and
f ∈ C3(M×Σ) satisfies f = c, for some positive number c, outside of some set
of the form K×Σ, where K ⊂⊂ M. Then, this problem has a unique solution in
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C2,γ(M×Σ) for some γ .

We observe that the estimates we derive for the compact domains are indepen-
dent of their size and are therefore uniform.

Proof of Theorem 2.10 As mentioned before, we solve the equation on a se-
quence of compact domains that grow larger and cover the entire strip. Note that
the right hand side is kept constant in the process. The boundary condition has be
chosen appropriately as we shall explain below. We shall first the detail the tech-
nical points that need to be taken into account in the construction of such domain
below. Afterwards, we prove the existence of uniform L∞, and laplacian bounds
independent of the size of the sets in this family. In order to make the proof easier
to follow, the details of proofs of a priori estimates are postponed to Propositions
2.3.2. Having proved the laplacian estimates, one obtains C2,γ uniform estimates
via the extension of the Evans-Krylov theory to complex hessian equations as is
done in [33] for the interior estimates. The boundary C2,γ estimates follow from
the boundary estimates in the proof Theorem 1 in [11]. Note that since we obtain
a uniform bound on the laplacian, the equation becomes uniformly elliptic with
uniformly bounded complex hessian. This means that the exponent γ and the C2,γ

norm are uniformly bounded from above on the entire domain M×Σ.
The construction of the compact domains converging to the strip is as follows.

Let BT be the metric ball with respect to the metric ω on the manifold M. Set
GT ⊂M×Σ be the domain obtained by smoothing the corners of the region BT ×Σ.
Let ψT be the function obtained by restricting the function ψ , constructed in §2.13,
to GT .

We solve the problem on each G j for j ∈ N along with uniform estimates up to
C2,γ , i.e for each G j we solve{

Ω
m+1
φT

= e f Ωm+1 ; GT

φT = ψT ; ∂ GT
(2.11)

Since the sets G j exhaust the strip, by uniform continuity on the compact sets
and by the usual diagonal argument one may obtain a solution saisfying the same
C2,γ estimates on the entire strip. We then have to guarantee that these estimates
remain valid as T → ∞.

Proposition 2.3.2. In the family of boundary value problems 2.11, we have that
for all domains GT , defined in the proof of Theorem 2.10, the quantities ‖φ‖L∞ ,
‖∇φ‖L∞ , and ‖∆φ‖L∞ are bounded independent of T .

Proof. In order to prove the upper bounds, notice that owing to the fact the bound-
ary data are extended trivially along the S1-factor, the solution is indeed convexi in
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the time direction. The convexity in the temporal direction we have that the upper
bound in the interior does not exceed that of the boundary. As one may check, for
sufficiently large C, the function ψ , which indeed agrees with the solution on the
boundary of the domain GT , clearly serves as a sub-solution and hence provides a
lower bound.

In order to prove the laplacian estimates we follow the calculation of Aubin as
done in [33], §3 of Chapter 2. Namely, in the normal coordinates at any point one
has:

m+1

∑
j=1

1
1+φ j j̄

−B≤ ∆̃φ

(
(m+1+ ∆̃φ)+(B+1)φ

)
(2.12)

wherein B is a constant. In the inequality above, all the operators act on both
time and space directions. One can now follow the standard line of argument: either
the quantity (n+1+ ∆̃φ)+ (B+1)φ attains its maximum in the interior, in which
case we have an upper bound on ∑ j

1
1+φ j j̄

and thereby on ∆̃φ , or its maximum is
attained on the boundary. Since we have already found a uniform L∞ bound, finding
an estimate on the boundary for the laplacian establishes a uniform estimate.

It is essential to note that the constant C on the right hand side depends only on
the curvature properties of the underlying manifold M. In fact, what is needed is
a lower bound of the bisectional curvature, infGT ,α,β R

αᾱβ β̄
, which is, since M is

asymptotically locally euclidean and Σ is flat, bounded independent of T .
In order to prove the boundedness of the quantity ∆̃φT at the boundary points we

follow Chen’s approach in [13], which in turn was inspired by a previous work of
B. Guan on the Dirichlet problem for the complex Monge-Ampère equation [22].
Thanks to the behaviour of the boundary conditions, the boundary estimate for the
laplacian remains valid independent of T . Hence, the laplacian estimates remain
valid independent of T .

Further, we know that for a fixed function f on the strip, boundedness of lapla-
cian leads to strict ellipticity of the operator, which, in turn, combined with a ver-
sion of the Evans-Krylov theory adapted to the operators of the complex hessian,
one obtains C2,γ bounds, see §4 [33]. Observe that the exponent γ and the norm
‖φ‖C2,γ (GT )

only depend on the L∞ and the laplacian estimates, and are, therefore,
uniform for all T . This finishes the proof of the existence of classical solutions for
the boundary value problem 2.10 on the strip, with globally bounded laplacian.

Let us turn to proving the L∞ bounds. The upper bounds are obtained in this case
as in 2.4.1. If the data is not necessarily invariant in the S1 direction, one can notice
that the function is indeed sub-harmonic in the time direction and its maximum
therefore appears on the boundary. For the lower barrier, consider the function:
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ψ̃ =Cr−λ t(t−1)+ tφ0 +(1− t)φ1 (2.13)

One may verify that this function is a lower barrier for the solutions once µ <
λ < 2µ +2, and the constant C is chosen to be appropriately large.

As for the laplacian bounds, we observe that the arguments for proving the
laplacian estimates based on maximum principle are only depend on a lower bound
of the curvature of the reference metric ω , which on an ALE space are bounded,
and on the L∞ estimates. In particular, as the domains expand, the estimates are not
affected once we can prove uniform estimates on the boundary.

2.3.1 Decay of the higher derivatives of the ε-solutions
As we shall see later in the section on the uniqueness of metrics of constant scalar
curvature, for any positive ε on the right hand side, we shall need suitable asymp-
totics for the curvature that will allow us to integrate by parts the terms that involve
the higher derivatives of the ε-approximate geodesics. We therefore make the fol-
lowing assertion concerning space derivatives of solutions.

Proposition 2.3.3. In the boundary value problem (2.10), assume that f > ε

2 > 0,
and that f is equal to ε outside of a compact set, and that the boundary values
belong to H µ

ALE . Then, for any ε > 0 we have:

|∇α∇β ∇γφ | ≤ Cr−µ−1 (2.14)

|∇α∇β ∇γ∇θ φ | ≤ Cr−µ−2
α,β ,γ,θ ∈ {1, ...,m, 1̄, ..., m̄}

wherein C depends on ε > 0. As a consequence,

|Rm(ωφ )|, |Rc(ωφ )|, |K(ωφ )| ≤Cr−µ−2 (2.15)

wherein Rm(ωφ ),Rc(ωφ ) and K(ωφ ) are the curvature tensor, the Ricci tensor,
and the scalar curvature.

Further, we have that

|∇αφ
′|, |∇α∇β φ

′| ≤Cr−µ+1 (2.16)

Proof. The proof is an application of Schuader estimates to the space derivatives
and a type of boot-strap argument. We can apply the Schauder estimates since we
already know membership in C2,α of the potential for the ε-solution.
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We shall first derive estimates for the first space derivative. Since at sufficiently
far points the right hand side is constant, at those points we obtain the following by
differentiating the equation

∆̃φ ∇ξ φ = 0 (2.17)

for some unit spatial direction ξ . We shall now use the fact that the quantity
∇ξ φ using an appropriate barrier. Since the boundary conditions for ∇ξ φ decays
like r−µ+1, one can easily verify that a function v := r−κ(t−t2)+r−µ+1 is an upper
barrier when κ < µ +1. This in particular means that any space derivative decays
at least at the rate of r−2m+1, which is the same as the decay rate of the boundary
conditions.

Using the decay rate for the first derivatives, we now prove some decay estimate
for the space derivatives up to the third order along with their Hölder semi-norms.
Consider now the domains GR ⊂ G′R ⊂ M×Σ defined as follows. Define GR :=
{(x, t)|R−1 < ρ(r)< R+1}, and G′R := {(x, t)|R−2 < ρ(x)< R+2}. The decay
rate we have obtained guarantees that on the pieces of the boundary {ρ(x) = R−
2} and {ρ(x) = R+ 2}, the quantity ∇ξ φ is bounded by CR−µ+1. Owing to the
decay rates of the boundary conditions on the other hand, on the two components
T0,1 := ∂ (Ω′R)∩{t = 0,1} we have ‖∇ξ φ‖C2,α (T0,1)

≤CR−µ+1. We conclude, by the
Schauder estimates, that we have on G′R:

‖∇ξ φ‖C2,α (ΩR)
≤CR−µ+1

As a result, any of the third order derivatives that have at least one spatial di-
rection belong to Cα and their Cα norm is bounded by CR−µ+1. Particularly, this
proves (2.16).

We can now differentiate (2.17) in a unit spatial direction ξ ′ to obtain:

∆̃φ

(
∇ξ ′∇ξ φ

)
= gin̄

φ g
m j̄
φ

φ;mn̄ξ ′φ;ξ i j̄ (2.18)

wherein the Latin indices vary over both time and space coordinates. Thanks to
the decay estimates for the third derivatives of the potential with at least one spatial
direction, we observe that on domains GR and G′R, the right hand side of (2.18)
satisfies:

‖gαν̄
φ g

µβ̄

φ
φµνξ ′φξ αβ̄

‖Cα (G′R)
≤CR−2µ+2

By using an argument similar to the poof of the C3,α estimate in the space
direction, we have that
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‖φ‖C4,α (G′R)
≤CR−µ−2

which finishes the proofs of (2.14) and (2.15).

2.4 A priori estimates for the geodesic equation
As we have seen, the laplacian estimates are reduced to deriving the laplcian es-
timates at the boundary. Further, the estimates of in [22] work in the case of de-
generate right hand side as well and this was further used in [13]. The proof of
Proposition 2.3.2 therefore carry over to the case of degenerate right hand side. We
only prove the weighted L∞ estimates.

2.4.1 L∞-estimates
Similar to the case of compact manifolds, we derive the L∞ estimates. It will be
enough to find a sub- and a super-solution in order to find upper and lower bounds
on the function.
For the upper bound, notice that the function φ is indeed convex in the time direc-
tion, namely φ ′′ ≥ 0. Therefore, the upper bounds can only occur on the boundary
points. This, in particular, proves that the upper bound decays at the same rate as
the boundary conditions. As for the sub-solution, one may consider any Ω-pluri-
subharmonic function that restricts to the the boundary conditions. Consider the
following function:

ψ(z, t) := tφ0 +(1− t)φ1 +Cr3−2µ(t2− t)

wherein γ is the exponent appearing in Theorem 2.10. We show that if the
constant C is chosen to be large enough, then one observes that ψ is indeed a sub-
solution for the homogeneous problem. To see this, we first see by direct calculation
that

ψ(z, t)tα = O(r−µ+1) (2.19)
ψ(z, t)tβ̄ = O(r−µ+1)

ψ(z, t)tt = O(r−2µ−3)

Using these rates of decay, by substituting these terms into the following operator(
ψtt−g

αβ̄

ψ ψtαψtβ̄

) ωm
ψ

ωm
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we see that for sufficiently large C, this expression is positive, whereby we conclude
that ψ is a subsolution.

2.5 K -energy, metrics of constant scalar curvature
Although we shall not explicitly make use of it, one observes that thanks to the
asymptotic behaviour of the potentials and their derivatives we can define the Mabuchi
L2-metric on the space of potentials when m > 2. What we need is will be the
geodesics, the ε-geodesics to be more precise, regardless of their relevance as the
extrema of the length functional.

In our calculation in the proof of the next theorem we shall need the following
second order operator also referred to as the Lichnerowicz operator. It is the com-
plementary part of the -real- hessian to the tensor ddcu. The operator D applied to
a real valued function u, is defined in local coordinates as:

Du := ∇α∇β udzα ⊗dzβ

One important property of this operator that we shall use is that the if u lies in
the kernel of D , then the vector field

↑ ∂̄u := gαβ̄ ∂ u

∂ zβ̄

∂

∂ zα

is holomorphic, cf. §1.22 in [20].
In this section we shall always assume that the first Chern class, c1(M), is non-

positive. As introduces in the case of compact manifolds in [29], we define the
K -energy by its differential as follows:

δψK =−
∫

M
Kφ ψω

n
φ (2.20)

wherein Kφ is the scalar curvature of the metric ωφ . Notice that by the asymptotics
behaviour of the potentials, we know that the integral above is convergent. In this
section, we shall extend the proof given in [13] for the uniqueness of metrics of
constant scalar curvature in each cohomology class of compact Kähler manifolds to
the case ALE Kähler manifolds. It may be seen as a generalisation of the uniqueness
theorem for ALE Ricci-flat Kähler metrics proved in [25].

We now turn our attention to the proof of the uniqueness assertion. As we
shall see, geodesics are not the only -owing to their lack of regularity, if they are
at all- suitable curves for our purpose. The geodesics nevertheless help us find the
right curves for our purpose. As we shall see any curve in H with appropriately
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assigned, and not necessarily vanishing, acceleration, called ε-geodesics in [13],
will do.

Proof of 2.1.3. We follow Chen’s approach in [13]. Let us first assume that we
have sufficiently regular geodesics as was done in [16] to motivate our choice of
curves. Evidently, a metric of constant zero scalar curvature is a stationary point of
the functional K . Consider now two potentials φ0 and φ1 that realise two distinct
metrics of constant scalar curvature, in particular, two stationary points of the K -
energy. By a formal calculation, one obtains

d2K

dt2 =
∫

M
|Dφ

′(t)|2φ ω
n
φ

But since we do not have higher regularity of solutions to the geodesic equation,
the term Dφ ′, which requires three bounded derivatives, cannot be defined. If the
calculation were valid however, one could easily deduce that K had to be con-
stant along the geodesic connecting φ0 and φ1. Further, one deduces that the term
Dφ ′ would have to vanish. As a result, ↑ ∂̄ φ ′ would have to be the real part of
a holomorphic vector field (cf. Lemma 1.22.2 in [20]). Assuming that the same
decay rates proved in Proposition 2.3.3 hold for the solutions of the homogeneous
complex Monge-Ampère equation, ↑ ∂̄ φ ′ would have to be a holomorphic vector
field on the entire manifold M which decays at infinity. However, as we shall see
in Lemma 2.5.2, there are no such vector fields but the trivial one. Namely, the dif-
ferential of the function φ ′ would identically vanish . One hence concludes that φ ′

is constant in the space direction. But since the only space-independent solution of
the geodesic equation is the linear interpolation in time of the boundary conditions,
one has that ωφ0 = ωφ1 .

To overcome the problem of lack of higher regularity of the solutions of the
geodesic problem we will use a family of geodesics that approximate the homoge-
neous problem and follow a similar path of reasoning for proving that φ0 = φ1.

Let ω be the an ALE Kähler metric cohomologous to ω0 such that ρ(ω) ≤ 0,
wherein ρ(ω) is the Ricci form of the Kähler form ω . The existence of such an ALE
metric ω ∈ [ω0] is guaranteed since the first Chern class, c1, is assumed to be non-
positive, and we further know that by the extension of the Calabi conjecture to the
ALE space any closed real (1,1)-form χ ∈ [ρ(ω0)] with appropriate asymptotic be-
haviour may be realised as the Ricci form of some unique ALE Kähler metric. (see
§8.4 and 8.5 of [25] for more details on the de Rham cohomology on ALE spaces
and the proof of the Calabi conjecture on ALE spaces). In the case of vanishing
first Chern class one could choose ω0 to be Ricci-flat, and in the case of negative
c1 the form ω0 could be chosen to be so that the Ricci form ρ(ω0) is a negative on
some bounded set and zero outside of it. Let us define G (φ) := φ ′′− 1

2 |dφ ′|2
φ

. We
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now integrate by parts and obtain about the second derivative of the K along an
arbitrary curve, in particular an approximate geodesic, φ(t):

d2K

dt2 =
∫

M
|Dφ

′|2φ ω
m
φ −

∫
M

G (φ)Kφ ω
m
φ (2.21)

Let us observe that by the decay estimates from Proposition 2.3.3 the integral in the
equation above, as well as in the rest of the calculations in this section, are finite.
We now prove that the second integral is non-negative as well.

−
∫

M
G (φ)Kφ ω

m
φ = −

∫
M

G (φ)Ric(ωφ )∧ω
m−1
φ

(2.22)

= −
∫

M
G (φ)

(
Ric(ωφ )−Ric(ω)

)
∧ω

m−1
φ

−
∫

M
G (φ)Ric(ω)∧ω

m−1
φ

=
∫

M
G (φ)ddc log

ωm
φ

ωm ∧ω
m−1
φ
−
∫

M
G (φ)Ric(ω)∧ω

m−1
φ

= −
∫

M
dG (φ)∧dc log

ωn
φ

ωm ∧ω
m−1
φ
−
∫

M
G (φ)Ric(ω)∧ω

m−1
φ

=
∫

dG (φ)∧dc logG (φ)∧ω
m−1
φ
−
∫

M
G (φ)Ric(ω)∧ω

m−1
φ

=
∫

M

|∇G (φ)|2
φ

G (φ)
ω

m
φ −

∫
M

G (φ)Ric(ω)∧ω
m−1
φ

where we have used the fact that logG (φ) = − log
ωm

φ

ωm + logε . Notice that the
integration by parts carried out above is meaningful by virtue of the asymptotics
proved in 2.3.3. More precisely, the asymptotics guarantee the membership in L1 of
the integrands, which, then, by Gaffney’s extension of Stokes’s theorem on compact
riemannian manifold to the case of non-compact manifolds [19], proves the validity
of integration by parts.

Now since Ric(ω) ≤ 0 and G > 0, the second term is a non-negative finite
quantity.

In other words, along the ε-approximate geodesic we have that the K -energy
is convex. Further, since the end points are scalar-flat metrics, they are stationary
points of the K -energy. Hence, the K -energy is constant along the path, and
in particular Dφ ′ = 0 and we can use 2.5.3 to repeat the argument given in the
beginning of the proof with the assumption of the smoothness of geodesics to obtain
φ0 = φ1.
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The following observation can be verified by calculation in local coordinates
and we therefore omit its proof.

Lemma 2.5.1. Let (X ,η) be a Kähler manifold. Assume that Ric ≤ 0, and let Z
be a holomorphic vector field on X. Then ‖Z‖2

η is a sub-harmonic function, i.e.
∆η‖Z‖2

η ≥ 0.

Lemma 2.5.2. Let (M,η) be an ALE Kähler space. Then, any non-negative sub-
harmonic function u which belongs to Lp for some p≥ 1 is identically zero.

Proof. The proof follows from the mean value inequality for subharmonic func-
tions, along with the observation that if u≥ 0 is subharmonic, then so is up for any
p≥ 1. Namely, we have:

u(x)p ≤ 1
Vol(B(x,R))

∫
B(x,R)

up

Since the volume of balls grows polynomially whereas for some p the integral
of up over balls is bounded, u must be zero.

Corollary 2.5.3. Let (M,η) be an ALE Kähler space with c1(M) ≤ 0 in the sense
defined before. Then, any holomorphic vector field, Z that satisfies ‖Z‖η ∈ Lp

for some p ≥ 1 must be identically zero. In particular, for any solution to the ε-
geodesic problem with two scalar-flat end-ponts on a manifold with c1(M)≤ 0, the
time derivative vanishes φ ′ = 0.

Having proved the uniqueness of metrics of constant scalar curvature in each
Kähler class, we can now conclude this section by the proof of the boundedness
from below of the K -energy on such Kähler manifolds.

Theorem 2.1.4. Let ψ be an arbitrary ALE potential cohomologous to χ , where χ

is defined as the proof of 2.1.3. Let φ(t) be some smooth enough path connecting
the two potentials. By the calculations in the the proof of 2.1.3, we have that along
the curve φ(t) the K -energy is convex. Also, since χ realises the minimum of the
K -energy, the first derivative of K along φ vanishes at χ . Hence, K is strictly
increasing along φ(t) which proves the claim.

Corollary 2.5.4. Let (M,ω) be an ALE Kähler manifold with c1(M) = 0. Then,
Ric(ω) = 0 if and only if it is of constant zero scalar curvature. In other words,
any scalar-flat Kähler metric in this case is Ricci-flat. Further, in each Kähler class
there exists one and only one metric of constant scalar curvature which is further
Ricci-flat.
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Proof. Obviously, the fact that being Ricci-flat implies being scalar flat requires no
proof. So we only prove the converse. Uniqueness of the scalar-flat metrics in each
Kähler class is given by Theorem 2.1.3. By the work of Joyce, Theorem 8.5.1 in
[25], there always exists a Ricci-flat metric in each Kähler class when c1 = 0 in the
sense of Definition 2.2.4. These two results together prove the claims.

In the particular case of c1 = 0 we shall give a more direct proof of the unique-
ness of ALE metrics of constant scalar curvature. I am not aware of this proof
having been adapted to the case of ALE manifolds and I found it worth mentioning
here.

Proposition 2.5.5. Let (M,ω) be an ALE Kähler manifold. Then, the Ricci form
ρ(ω) is co-closed, and therefore harmonic, if and only if the scalar curvature s is a
constant.

Proof of Proposition 2.5.5. The fact that the Ricci form, ρ , is co-closed, and hence
harmonic, is a punctual fact and independent of the global geometry of the Kähler
space, cf. Proposition 1.18.2 in [20]. It suffices now to prove that any harmonic
form with appropriate asymptotics is indeed co-closed.

We can now give the following proof of the uniqueness of Corollary 2.5.4 using
the more classical approach.

Alternative proof of Corollary 2.5.4. By Proposition 2.5.5 we know that since the
scalar curvature vanishes identically, the Ricci form ρ must be harmonic. We may
now evoke the Hodge-de Rham-Kodaira decomposition on ALE manifolds, see
Theorem 8.4.1 in [25]. In particular, this means when c1 = 0, the only harmonic
form is the trivial one. Noting however that ρ ∈ 1

2π
c1 yields ρ = 0. By the extension

of the Calabi conjecture to ALE Kähler spaces detailed in [25], we know that in the
same Kähler class one there exists a Ricci-flat, and hence scalar-flat, metric.
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Chapter 3

The space of Kähler potentials with
prescribed singularity

3.1 Introduction
This chapter is dedicated to the resolution of the geodesic equation when the bound-
ary potentials are singular. The results of this chapter have been reported in [2].

We start byu noticing that the existence theorem in [13] requires the Kähler
metrics on the boundaries to be smooth and strictly positive everywhere. In a more
recent work presented in [23], from where our estimates are inspired, W. He has
proved that the assumption on the boundary data may be weakened by considering
the original geodesic equation, (1.5). Namely, one may still prove regularity of the
solution for the boundary conditions whose associated metrics are possibly positive
semi-definite and have a bound on their laplacians.

Theorem 3.1.1. [23] Let φ0 and φ1 be two potentials with bounded laplacian. Then,
there exists a generalised solutions, φ(t), of the geodesic equation, such that

0≤ n+∆φ(t)≤C

where C =C (‖φ0,1‖∞,‖∆φ0,1‖∞,ω). 1

A modification of the estimates used to prove Theorem 3.1.1 will be used in the
present note in order to derive weighted laplacian estimates. Combined with the
observation in [5], it yields the following a priori bound, independent of ε > 0.

|∂ t φ |+ |∆φ |<C

1In this article, the laplacian, ∆, is defined so that it has negative spectrum.
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A class of singularities are the so-called conical singularities a particular case
of which are the orbifold-type singularities. The study of such singularities on
Riemann surfaces goes back to E. Picard [31]. Recently, after Donaldson’s linear
theory [17] on conical Kähler metrics, many interesting results have emerged. For
instance, cf. [6, 24], [28] and [34]. In [18] this is extended to the Poncaré-type
singularities. This generalises the work of Troyanov in [35] on preassigning the
Gauß curvature on Riemann surfaces with prescribed conical singularities. Also,
in his study of extremal hermitian metrics, the second author considered conical
metrics on Riemann surfaces in [12].

Existence of geodesics between conical metrics was studied in [9], where the
approaches of [24] and [17] were combined with those in [13] in order to obtain the
following.

Theorem 3.1.2. [9] Let HC⊂Hω0∩C2,α
β

denote the Kähler potentials with bounded
Levi-Civita connection and lower bound on Ricci curvature. Then, any two Kähler
cone metrics in HC can be connected by a unique C1,1

β
cone geodesic.

In particular, this proves the existence of geodesics once the cone angle is small,
β < 1

2 . The methods used to prove the theorem above are more intrinsic than the
methods we have adopted here in the sense that analysis is done in appropriate
function spaces with respect to the cone metric itself as opposed to our approach,
which uses a smooth reference metric.

3.2 Main results
Our main focus in the present note will be on proving the a theorem which guar-
antees existence and uniqueness of geodesics between two metrics with conical
singularities along a given divisor such that at a given time slice, the space deriva-
tives are bounded on the points away from the divisor. Our method is a modification
of the estimates by W. He and is motivated by the work of Berdtsson in [5], where
existence of weak geodesics between bounded potentials is used in order to prove
uniqueness of weak Kähler-Einstein metrics with bounded potentials in case of pos-
itive Chern class. In light of the crucial rôle this theorem playes in the recent work
of Donaldson, Chen, and Sun, [14], it is perhaps important to give a more direct
proof of Berdntsson’s result on the uniqueness of geodesics between two singular
Kähler-Einstein metrics with C1,1 bounded potentials, utilizing the main theorem in
this paper. We prove the following existence result. For notations and definitions,
see §3.3.

Theorem 3.2.1. Let φ0 and φ1 be two potentials whose corresponding metrics ωφ0

and ωφ1 have conic singularities of angle β along the smooth divisor V . Then,
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there is a unique weak geodesic, φ(t), connecting them in the following sense:
the solution is everywhere Hölder continuous, and on compact sets away from the
singularity, its -spatial- complex hessian is uniformly bounded.

We can then formulate the more general version of theorem 3.2 the previous
theorem as follows.

Theorem 3.2.2. Assume that φ0,φ1 are two potentials which belong to the space
Hξ (X) for a singularity S , and an admissible weight function ξ . Then, there is
a unique weak geodesic connecting them with bounded laplacian away from the
singular set.

The proof of Theorem which follows depends on the a priori bounds that are
proved in Theorem 3.2.3.

Proof of Theorem 3.2 We prove Theorem 3.2 by considering the following fam-
ily of boundary value problems to approximate the degenerate equation 1.5.

(
φtt−|∂ φt |2φ

)
ωn

φ
= εe f

(|s|2+η)
p ωn

φ(x, i) = φ(i), i = 0,1.
(3.1)

and its equivalent form
Ω

n+1
φ

Ωn+1 =
εe f

(|s|2+η)
p on X×Σ

φ |∂ (X×R) = φ j , j = 0,1
(3.2)

Uniqueness of generalised solutions amongst bounded potentials is already known,
see for example [5]. Here and hereafter, we take η to be η(ε) so that η → 0 as
ε → 0. We shall, however, drop the explicit dependence. We remark whenever re-
quired as to how this dependence may be chosen so that the estimates will hold. In
order to prove existence of solutions to this equation, we will need to prove a priori
estimates for the second derivative of the potential. These estimates are stated in
Theorem 3.2.3. Since the second derivative will blow up at a certain rate, depending
on the cone angle, close to the divisor, we need to prove that the rate of blowing up
is bounded close to the divisor. In particular, we prove that on any compact set not
intersecting S , the gradient, ‖∇φ‖, and the laplacian, ∆φ , are uniformly bounded.

More precisely, let φ k
i , for i = 0,1, be a sequence of smooth potentials that ap-

proximate the boundary data in the following sense: on any compact set K that does
not intersect the singularity, we let φ k

i → φi in C1,µ in such a way that ∆φ k
i is pre-

served uniformly bounded. If β > 1
2 , then keep ‖∇φ k

i ‖ uniformly bounded as well,
and if β ≤ 1

2 , that is, the boundary data is merely Hölder continuous of exponent
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2β across the divisor, keep the 2β -Hölder norm bounded across the singular set.
Also, choose ε to be 1

k and choose η accordingly as it is allowed for the estimates
to hold. Thich has been explicitly derived for each estimate. Under these condi-
tions, one also can make the choice so that right hand side of equation 3.1 will tend
to zero and

{
(ε j,η j)

}
j→ (0,0). The weak solution will be the limit of the smooth

solutions thus obtained once we can prove a uniform bound and a uniform modulus
of continuity for these solutions. In Section 3.4 we shall derive the C0 estimates. In
Section 3.6, uniform gradient bounds for the case of differentiable boundary data,
and a rate of growth for the gradient in the case of smaller angles will be proved.
The latter will be used in Section 3.5 to show δ -Hölder norm is bounded across the
divisor for some small enough δ .

One will then have a sequence of smooth solutions
{

φ k}
k for the the sequence of

boundary value problems with a controlled growth of laplacian close to the divisor
and controlled gradient or Hölder norm across the divisor, and with a uniform bound
on the time derivative. Therefore, one can extract a subsequence

{
φ km
}

m that will
converge in Cγ for some small enough γ , to the generalised solution φ . Therefore,
in the generalised sense, φ will also satisfy the growth conditions on laplacian and
will be of class Cγ . In particular, the convergence will be in C1,µ on compact sets
that do not intersect the singularity.

Proof of Theorem 3.2.2 The uniqueness is already known from [13]. In order
to prove 3.2.2, we shall need to prove that that the Hξ -norm of the solutions in the
following continuity family are uniformly bounded.

Similar to the case of divisorial conical singularities, we are going to prove
existence of solutions to (1.5) in an appropriate sense. We state the following gen-
eralisation of Theorem 3.2 for the the following family of boundary value problems,
where η > 0 is chosen depending on ε > 0.{

ωn
φ

ωn

(
φtt−|dφt |2φ

)
= εe f

∏ j ξ j,η

φ(x, i) = φ(i), i = 0,1.
(3.3)

Here, as in Equation 3.1, η and ε are two parameters, but we shall see how η

may be chosen depending on ε in order for the estimates to hold. The content of
the following theorem is the required bounds for this equation.

Theorem 3.2.3. In the family of boundary value problems 3.1, assume that the
boundary conditions have conical singularities of angles β j along Vj. Then, for
any ε > 0, the solution φη of 3.1

• if for all β j we have β j >
1
2 , then |∂ t φ |+ |φ |+ |∇φ |+ξ |∆φ |<C,

• if, for some j we have β j ≤ 1
2 , then |∂ t φ |+ |φ |+ξ |∆φ |+‖φ‖C0,δ <C for any

δ < 2β .
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In the expressions above, C only depends on ∆ f and the supremum of |φ |+ ξ |∆φ |
on the boundary.

The proof of the last theorem in turn will take up §3.4 to §3.7 and Appendix A.
The proof of the L∞-estimate is given first. Then follow the Cα - and C1-estimates,
which in turn rely on the weighted laplacian estimate.

Remark 3.2.4. Note that this theorem does not guarantee that the conical singular-
ity is preserved, but rather, it proves that the growth of the derivatives at any point is
not worse than that of the boundary condition, namely the conical case. As a result,
away from the singularity of the boundary data we have the usual bounds on the ∂ ∂̄ -
derivatives. It also allows a wider class of singularities than conical singularities on
the boundary.

Remark 3.2.5. Since C only depends on the Hξ -norm of boundary data, we may
choose the boundary condition to be Kähler metrics that are semi-definite.

Remark 3.2.6. In the the theorem above, we could have stated the theorem in the
general case, without differentiating between smaller and larger angles. Namely,
we could have used the second estimate for the gradient for both larger and smaller
angles.

3.3 Conical Metrics and more general singularities
In this section, basic facts and definitions will be presented. Most of these observa-
tions are in some way proved in [18, 24].

Let Xn be a compact Kähler manifold of dimension n and When we talk about
a metric with a cone of angle β along a subvariety we mean a metric whose local
model is the following metric on Cn with a cone of angle β along the divisor [z1 =
0].

ωmodel =
i
2
|z1|2β−2dz1∧dz̄1 +

i
2 ∑

j=2
dz j∧dz̄ j

After an appropriate -singular- change of coordinates, one can see that this
model metric indeed represents a euclidean cone of total angle θ = 2πβ , whose
model on R2 is the following metric: dθ 2 + β 2dr2. By the assumption on the
asymptotic behaviour we we mean there exists some coordinate chart in which the
zero-th order asymptotic of the metric agrees with the model metric. In other words,
there is a constant C, such that

1
C

ωmodel ≤ ω ≤Cωmodel
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This asymptotic behaviour of metrics can be translated to the second order
asymptotic behaviour of their potentials.

Of particular interest is the case where the conical singularity occurs along a
divisor. That is, assume that V ⊂ X is a smooth complex hypersurface. Also, let
(L,h) be the line bundle associated to this hypersurface endowed with some her-
mitian metric h, and let s ∈ O(L) be the defining section of V . We can assume
that there are multiple hypersurfaces. Unless stated otherwise, we assume that all
the hypersurfaces are smooth and that they do not intersect. In this case, we may
observe that in the proofs we can consider the weight functions and hypersurfaces
individually. Let us set the following notation for the rest of this article. Let (L j,h j)
be holomorphic line bundles endowed with hermitian metrics h j. We then refer by
s j to some -global- holomorphic section of L j, an element of H0(X ,OX(L j)). Also,
let D := ∪Vj.

Lemma 3.3.1. Let s j and (L j,h j) be as before. Then, for sufficiently small c, the
following (1,1)-form

ωβ := ω + c∑
j

ddc|s j|
2β j
h j

(3.4)

defines a Kähler metric with conical singularities of angle β j along Vj.

Proof. Since the divisors do not intersect, we can consider them individually. We
shall therefore drop the subscript in what follows. Adopt a coordinate system in a
neighbourhood so that in this coordinate system the divisor corresponds to [z1 = 0].
Also, choose unit vector e in that neighbourhood for (L,h). Then, we shall have
that s = σ(z)e for some holomorphic function, and further, that |s|h = |σ |. Now, by
differentiating in local coordinates, one observes that ddc|s|2β

h can be decomposed
into a smooth part and a conical part.

It can be then observed that if we set a smooth metric ω in the background
and if we let ωφ = ω + ddcφ be a conical metric, then, close to the singular set,
the laplacian of the potential with respect to the reference metric ω , ∆φ , grows at
the rate of |s|2β−2

h . That is, ∆φ = O(|s|2β−2
h ). Similarly, we have about the first

derivative that |∇φ |= O(|s|2β−1
h ).

The advantage of using |s|h is that it is a global function and has an intrinsic
geometric meaning. One can, however, observe that as long as the hypersurface is
smooth, close to the hypersurface, we could substitute |s|h with the distance func-
tion to the divisor, call it ρD(x). Since the distance function is not smooth farther
from the support of the divisor, we can define ρD to be the distance, with respect
to the reference metric ω , to the support of the divisor in the vicinity of suppD and
extend it smoothly to the rest of X . This family of distance functions will be used
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when we consider more general singularities. We can, therefore, state the growth
rate of derivatives in terms of ρD as well.

Definition 3.3.2. Assume that S , the singular set, is a subset of the manifold X . A
function ξ is called to an admissible defining function or admissible weight function
for the set S if the following conditions are satisfied:

• the function ξ is an exhaustion function for S , that is it vanishes on, and
only on S with precompact sub-level sets,

• the complex hessian, with respect to the reference metric ω , of logξ is uni-
formly bounded from below on X−S .

In other words, we require that the mixed derivaives of logξ be currents bounded
from below by some multiple −C of the Kähler form. The following observation
provides us with two important families of weight functions.

Lemma 3.3.3. Let V ⊂ X be a complex hypersurface.

1. Assume that ρV is a function equal to the distance to V in a tubular neigh-
bourhood of V and extended smoothly on the rather points. Then, any posi-
tive power of the distance function to V , ρν

V for some ν > 0, is an admissible
weight function.

Further, if Vj ⊂ X are hypersurfaces and ρV j’s are the corresponding weight
functions, the product ∏ρV j is also an admissible weight function for ∪Vj.

2. Assume that (L,h) is a hermitian holomorphic line bundle and s∈H0(X ,OX(L))
is the defining section of V . Then, |s|νh with ν > 0 is an admissible weight
function.

3. More generally, any analytic set admits admissible weight functions. More
specifically, assume that the set S is the common zero locus of the holomor-
phic functions f1, ..., fN . Then, ξ may be taken to be any power of ∑

N
j=1 | f j(z)|2

is an admissible weight function.

Proof. The fact that admissibility of weight functions is preserved under multipli-
cation follows from its definition. The proofs for other claims follow from calcula-
tions in local coordinate systems around the submanifolds.

It will make some of statements clearer if we introduce certain weighted func-
tional spaces. As before, let ξ be a weight function for the gradient and the laplacian
of the potential measured with respect to the smooth background metric ω . Since
we only use continuous potentials, we have not put a weight on the growth of the
C0. Then, we define the following spaces:
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Definition 3.3.4. Let ξ be an admissible weight function. We say that a continuous
potential φ belongs to the space Hξ if ω +ddcφ ≥ 0 and it further satisfies ‖φ‖ξ :=
|φ |+ |∆φ |ξ < ∞. We may also speak of an admissible pair (S ,ξ ) consisting of the
singular set and an admissible weight function.

Theorem 3.3.5. Assume that in the boundary value problem 3.3, the boundary data,
φ0 and φ1 belong to the weighted space Hξ for some admissible pair (S ,ξ ). Then,
for any ε > 0, the C1,1 norm of the solution on any compact subset away from S
is bounded independent of η . More precisely, for any ε > 0, we have the following
bound independent of η .

|∂ t φ |+ξ |∆φ |<C (3.5)

for any µ ∈ (0,1).

Since the proof of theorem 3.3.5 is mutatis mutandis the same as that of 3.2.3,
we shall only prove the latter.

3.4 L∞-estimate
There are various ways to see that the solutions of boundary value problem 3.1
are bounded. One can, for example, generalise the argument [13], where sub- and
super-solutions are constructed, to the case of less regular boundary data.

Proposition 3.4.1. In the boundary value problem{
Ωm

φ

Ωm = ψ

φ|∂ (X×Σ) = φ0,1
(3.6)

the L∞ norm of φ in the interior is bounded as soon as the right hand side is
square integrable, ψ ∈ L2(X×Σ,Ω).

Proof. Let h be a solution to the following boundary value problem:{
∆h = n+1
φ|∂ (X×Σ) = φ0,1

One can verify that h is indeed a supersolution. Also, let φ0 be a an Ω-plurisubharmonic
function on X×Σ whose restriction to the boundary agrees with φ0,1. Clearly, φ0 is
a subsolution. Therefore, φ is bounded from above and below on X×Σ.

Remark 3.4.2. In order for this estimate to hold, one needs to choose η(ε) so that
the right hand side in boundary value problem 3.1 stays uniformly bounded, namely,
ε ≤ η p.
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3.5 Cα-estimate
In case of certain singularities, including the case of conical metrics, we can prove
that the Cα norm of the solutions are bounded. In case of conical metrics of angles
β > 1

2 , since the potential is C1, this information will be superfluous. However, in
the case of smaller angles, β ≤ 1

2 , we shall prove that not only away from the sin-
gularity, but also across the divisor Hölder continuity of the solutions is preserved
for some appropriate exponent.

Let us first make some observations: 2

Lemma 3.5.1. Assume that g : [0,1]→ R is continuous on (0,1]. Further, assume
that g is locally Lipschitz of constant λ (τ) on intervals of the form [τ,1]. Then, g is
Hölder continuous of exponent µ on [0,1] provided that the following holds:

lim
x→0

x1−µ
λ (x)< ∞

Proof. This can be seen by decomposing the interval [0,1] into subintervals with
end points belonging to the sequence {2−n}n.

The previous lemma will allow us to prove µ-Hölder continuity in directions
transversal to the divisor once we prove the upper bound on the rate of growth of
laplacian. We need to prove that the µ-Hölder modulus is bounded in tangential
directions as well. Knowing the rate of growth of the gradient, which is provided
in the next section, combined with the following observation, we obtain uniform
Hölder continuity.

Lemma 3.5.2. Assume that Nn⊂Mm is an immersed submanifold and let ρN be the
distance to N. Let f ∈C0 (M)∩C1 (M−N) be µ-Hölder continuous in directions
transversal to N. Further, assume that ∇ f , at worst, grows at the rate of ρ

−ν

N for
some ν . Then, for β = µ

µ+ν
, one has f ∈Cβ (M).

Proof. Since we already know Hölder continuity in the normal directions, we shall
make use of it to prove Hölder continuity in the tangential direction as well. For
simplicity, let N and M be Rn and Rm respectively.

Since we already assume the control in the normal directions, it will be enough
to show that for any two point on the submanifold, p,q ∈ Rn, | f (q)− f (p)| ≤
C‖q− p‖α . More specifically, let p =

(
p1, ..., pn,0, ...,0

)
,q =

(
q1, ...,qn,0, ...,0

)
for simplicity, let us let r = ‖q− p‖. Choose γ = 1

µ+ν
. Also, as usual, let en denote

the n-th element of the standard basis of Rm. Then, by our assumption on the rate
of growth of the gradient,

2‘...It is, of course, a trifle, but there is nothing so important as trifles....’ S.H.
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| f (p)− f (q)| ≤ | f (p+ rγen)− f (p)|+ | f (p+ rγen)− f (q+ rγen)|

+ | f (q)− f (q+ rγen)| ≤C1rγµ +C2r−γν+1 =Cr
µ

µ+ν (3.7)

which proves the claim.

Now, since our estimate on the rate of growth of laplacian close to the divisor
only depends on the L∞ bound, cf. section 3.7, we can estimate the rate of growth of
the gradient, as is done in the next section. Combined with the preceding lammata,
we may obtain the following proposition which can be interpreted as the continuous
embedding Hξ ↪→Cδ .

Proposition 3.5.3. Let φ be a solution of the boundary value problem 3.1 for some
ε > 0. Then, for δ < 2β , ‖φ‖0,δ ≤C for some uniform C which only depends on
the boundary conditions and the geometry of the reference metric ω .

Remark 3.5.4. The Cα estimate is only useful across the divisor. One can easily
observe that away from the divisor the solution is indeed C1.

A more straightforward, nevertheless quite restrictive, approach to proving the
Hölder estimates is through the W 2,p estimates and the embedding of Sobolev
spaces into Hölder spaces which is the content of the following proposition. On
complex surfaces, it provides the estimate for β > 1

2 .

Proposition 3.5.5. Let the weight function for the laplacian, ξ , satisfy the property
that 1

ξ
∈ Lp for some p> d, where d denotes the complex dimension of the manifold

X . Further, assume that the continuous function φ is a solution of boundary value
problem 3.1 for some ε > 0. Then, φ ∈Cµ for µ ≤ 2− 2d

p . In particular, in the case
of conical singularity along a divisor, it will suffice to have β > 1− 1

d .

3.6 C1-estimate
We shall derive two different first order estimates, one for the case of differentiable
boundary data, corresponding to the cone angle less than half, and the case of larger
cone angle. The distinction, however, is that in the case of smaller cone angle,
β > 1

2 , we prove that the first space derivatives are bounded. Note that we shall
prove the boundedness of the space gradient. In a general context, the boundedness
of the temporal derivative was already proved by Berndtsson:

Proposition 3.6.1. [5] Let the H ∞ be the set of bounded potentials such that ω +
ddcφ ≥ 0, where the inequality is interpreted in the sense of currents. Assume that
φ is the solution of the following boundary value problem

31



{
ωn

φ

ωn

(
φtt−|dφt |2φ

)
= 0

φ(x, i) = φ(i) ∈H ∞ i = 0,1.
(3.8)

Then, ‖∂ t φ‖L∞ ≤ C for some C which depends on the geometry of the back-
ground metric and the boundary conditions.

Proposition 3.6.2. In the boundary value problem 3.1, assume that the boundary
conditions have singularities that are no worse that conical singularity of total angle
2πβ along the divisor D. Then, if β ≥ 1

2 , we have

|∇φ | ≤C

In case of angles strictly larger than 1
2 , we have that for any µ ∈ (0,1), the

gradient of the solution to 3.1 satisfies the following growth condition close to the
set suppD.

‖∇φ‖ ≤C|s|µ−2+2β

h ,∀µ ∈ [0,1)

In both cases C is a constant independent of ε > 0 and only dependent on the bound-
ary conditions and the background geometry.

Remark 3.6.3. Applied to our case, we have an a priori growth rate for the lapla-
cian ∆φ which gives a bound for the rate of growth of µ-Hölder constant of the
gradient, ∇φ , as we approach the singularity. If we consider the conic singularity,
when β < 1

2 , we have seen in the previous section that ∇φ is bounded. This can
be retrieved from the lemma above as well by observing that C(t) . 1

ξ
. O(t−2β )

as t → 0 and therefore, since 2β < 1, if we take µ to satisfy 0 < 2β < µ < 1, the
integral in Inequality 3.10 of Corollary 3.6.6 will be finite and therefore ∇φ will be
bounded everywhere.

Remark 3.6.4. If we had an estimate on the -real- hessian tensor of φ , we could
have integrated it to obtain the gradient estimate. However, bounding the growth of
laplacian only allows us to bound the growth of C1,µ norm for any µ ∈ [0,1).

Remark 3.6.5. Proposition 3.6.2 can be generalised to the case of any admissible
pair of singularities, cf. Definition 3.3.2. Indeed, we need the more general form
in the proof of Theorem 3.3.5 we need the more general version whose details we
have omitted for the sake of simplicity of this exposition.

Proposition 3.6.2 combined with the bound obtain in [5] for ∂ t φ gives the fol-
lowing:
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Corollary 3.6.6. For the boundary value problem 3.1, subject to the same condi-
tions as in proposition 3.6.2, we have the following a priori estimate when β < 1

2 :

‖∇φ‖|s|2−2β−µ

h + |∂ t φ |<C (3.9)

where C is independent of ε , and µ ∈ [0,1).

In order to prove the uniform C1 bounds in the space directions, as in the case of
Cα bounds, we shall use the rate of growth of laplacian close to the divisor, which,
in turn, as we shall see, only depends on the rate of growth of laplacian on the
boundary and the uniform L∞ estimate. Since the laplacian estimates only depend
on the L∞ estimates of the solution and not the gradient estimates, we can use them
to extract information about the rate of growth of the gradient. In particular, in case
of a cone singularity along a sub-manifold, we have that the rate of growth of the
first derivative close to the divisor is O(r2β−1) when β ≤ 1

2 . Moreover, we shall
prove that, provided that β > 1

2 , the derivative is uniformly bounded as it is the case
for the boundary conditions.

In the case where the angle, β , is smaller than 1
2 , however, even the boundary

values might not be differentiable, but on the boundary we have a control on the
rate of blows-up of the gradient , namely |∇φ | = O(r2β−1). Let us consider the
sub-level sets of the weight function, {ξ ≤ t}. We will give the rate of growth of
µ-Hölder constant, Cµ(t), of ∇φ on the set {ξ ≤ t}. Indeed, since we have bounded
the rate of growth of laplacian close to the divisor, we know that for any µ such that
0 < µ < 1 the µ-Hölder constant, call it Cµ(t), has, in the worst case, the rate of
growth of the laplacian, ∆φ . That is, Cµ(t). ξ−1 = O(r2β−2). Hence, using 3.6.7
we obtain that for any 0 < µ < 1, |∇φ | . O(rµ−2+2β ) as r→ 0 which is not as
strong as the growth rate on the boundary, O(r2β−1).

Let s be the defining section of the smooth divisor V . This means ∇s is no
where vanishing. Therefore, there exists some positive number δ > 0, such that
‖∇s‖ > δ > 0 along the divisor. We can therefore state the following lemma. We
shall omit the proof since the idea is similar to that of 3.5.1.

Lemma 3.6.7. Assume g : [0,1]→ R is continuous on (0,1]. Further, assume that
g is of Hölder class for some exponent µ on any set of the form [τ,1],0 < τ with
constant C(τ). Then, g is -uniformly- bounded if∫ 1

0
tµ−1C(t)dt < ∞ (3.10)

More generally, if the integral above does not converge, the C0-norm on [τ,1]
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will not grow worse than the function Θ(τ) defined as follows.

Θ(τ) :=
∫ 1

τ

tµ−1C(t)dt (3.11)

In particular, if C(t) = O(t−γ), we can re-write the expression in 3.11 as follows:

Θµ(τ) :=
∫ 1

τ

tµ−1t−γdt = O
(
τ

µ−γ
)

About which we have the following Θ(τ). O(τµ−2β ).

Proof of Proposition 3.6.2 We know already that for any ε > 0, the gradient is
bounded on uniformly on a compact set, call it K, away from the singularity. We
can now use lemma 3.6.7 and integrate on a curve connecting some point q ∈ K to
the a point close to the singularity. In the vicinity of the divisor, we can choose this
point to be along the shortest path to S . We may now apply the last lemma to the
rate of growth of the laplacian and obtain the following

‖∇φ‖ ≤Cr2β−2+µ

3.7 Laplacian estimates
In order to prove the second order estimates, we adopt the approach presented in
[23].

3.7.1 Divisorial singularities
As discussed before, consider the divisor V and its defining section s.

Consider the family of equations In this section, we shall prove the laplacian
estimate stated in the following proposition:

Proposition 3.7.1. Let (L j,h j) and s j be as before. Assume that in the following
family of boundary value problems(

φtt−|dφt |2φ
)

ω
n
φ =

εe f

(|s|2 +η)
p ω

n (3.12)

the boundary conditions satisfy the condition ∆φk|s|ph < C < ∞, for k = 0,1.
Then, the same holds for ε ∈ (0,1], independent of ε > 0 provided that ε ≤ η p.

Proof. In order to prove this, we consider, for a fixed ε , the family of equations:
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(
φtt−|dφt |2φ

)
ω

n
φ =

εe f

(η + |s|2)p ω
n (3.13)

With the notation as in [23], we shall prove that the following term

wη := ζ
p
η (n+∆φ) :=

(
|s|2 +η

)p
(n+∆φ)

can be estimated. The family of functions ζη :=
(
|s|2 +η

)
are approximations

of ζ by functions and all have positive lower bounds. We use the fact that for
any ε,η > 0, when the right hand side in 3.13 finite, the linearised equation is the
laplacian with respect to the metric Ωφ on the manifold with boundary X ×Σ, and
therefore satisfies the maximum principle. Namely, for any positive ε , the linearised
operator, which we shall denote by D, attains its maximum on the boundary. We
use this fact in order to prove that the quantity logwη in the interior, that is for the
time 0 < t < 1, is controlled by its value on the boundary, t = 0,1.

We can rewrite the equation as follows:

logdet
(
g

αβ̄
+φ

αβ̄

)
+ log

(
φtt−|dφt |2φ

)
= logε + f + logdetg

αβ̄
− p logζη

(3.14)
Let D denote the linearisation of the left hand side in 3.14. One can easily verify

that

Dψ = ∆φ ψ +
ψtt +gαλ̄

φ
g

κβ̄

φ
φtαφtβ̄ ψ

κλ̄
−g

αβ̄

φ

(
ψtαφtβ̄ +ψtβ̄ φtα

)
φtt−|dφt |2φ

(3.15)

In order to keep the expressions shorter, let us choose a shorthand for what we
will call the ‘geodesic operator’ as follows:

G (φ) := ∂ tt φ − 1
2
|dφt |2φ (3.16)

Of course, by the definition of our continuity family, for any ε > 0 we have
G (φε) > 0. We will estimate D logζ

p
η = pD logζη from below in terms of φ and

∆φ . If we apply 3.15 to ζη , for which we of course have ∂ t ζη = 0, we shall obtain
the following:

D logζη = ∆φ logζη +
g

αβ̄

φ
g

κβ̄

φ
φtiφtβ̄ (logζη)κβ̄

G (φ)
(3.17)
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We shall also need the following observation, that in a given coordinate system
and at a point off the divisor we have

∂
2

∂ zl ∂ z̄l
log
(
|s|2h +η

)
≥
|s|2h
|s|2h +η

∂
2

∂ zl ∂ z̄l
log |s|2h ≥−C1 (3.18)

for some positive constant C1. To see why the inequalities of 3.18 hold, let us
first recall that on X−D, the (1,1)-form ddc log |s|2h represents the first Chern form
of the hermitian line bundle (L,h). Therefore, if we take the trace of this form with
respect to the Kähler form ωφ , we shall have the lower bound for some constant
C1 which depends only on the geometric properties of (L,h). This also shows that
the lower bound holds on the entire manifold X so long as η > 0. Indeed, one can
observe that as currents the following holds on the entire X :

ddc log
(
|s|2h +η

)
≥ ddc log |s|2h ≥−C1ω

From this point to the end of this section we will postpone the proof of some
inequalities to the last chapter, where the calculations of [23] are presented in fur-
ther details. Also, we will introduce the two quantities E2 and A in the following
inequality which are clarified in the last chapter.

We now consider the linearisation of the left hand side of 3.14 operator, D,
applied to the function log(n+∆φ)−Cφ for some constant C whose suitable choice
will become clear in the estimates. We shall then have the following inequality
which is proved in the last chapter:

D(log(n+∆φ)−Cφ) ≥ ∆ f −B−S
n+∆φ

− p
∆ logζη

n+∆φ
+∑

λ

C−B
1+φ

λλ̄

− (n+1)C

+ (C−2B)
1

G (φ)∑
λ

φtλ φtλ̄
(1+φ

λλ̄
)2 +

E2

(n+∆φ)G (φ)

− A (n+∆φ) (3.19)

where B is an expression in terms of the infR
ββ̄κκ̄

and S is the scalar curvature of
g.
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We, however, need the combination of this and 3.17 as follows:

D(logw−Cφ) = D(logψ + p logζ −Cφ)≥ ∆ f −B−R
n+∆φ

− p
∆ logζη

n+∆φ

− ∑
λ

C−B
1+φ

λλ̄

− (n+1)C+(C−2B)
1
G ∑

λ

φtλ φtλ̄
(1+φ

λλ̄
)2 +E2

1
(n+∆φ)G (φ)

− A (n+∆φ)+ p∆φ logζη + p
1

G (φ)∑
λ

φtλ φtλ̄ (logζ )
λλ̄(

1+φ
λλ̄

)2

=
∆ f −B−R

h
− (n+1)C+E2

1
(n+∆φ)G (φ)

−A (n+∆φ)

+ (C−B)∑
κ

1
1+φκκ̄

+
1
G ∑

λ

φtλ φtλ̄(
1+φ

λλ̄

)2

(
p(logζ )

λλ̄
+C−2B

)
+ p∑

λ

(
1

1+φ
λλ̄

− 1
n+∆φ

)
(logζη)λλ̄

(3.20)

We show that

1
G (φ)∑

λ

φtλ φtλ̄(
1+φ

λλ̄

)2

(
p(logζ )

λλ̄
+C−2B

)
≥ 0 (3.21)

for large enough C. To see this, we first observe that for a column vector α , the
hermitian matrix obtained by αα† is non-negative. In particular, the vector can
be taken to be α j = φt j. Also, from 3.18 we know a lower bound for the mixed
derivatives of logζ . We can estimate the last term in (3.23) as follows

∑
λ

(
1

1+φ
λλ̄

− 1
n+∆φ

)
(logζη)λλ̄

≥−C1 ∑
λ

1
1+φ

λλ̄

(3.22)

where C1 is the constant from 3.18. We can then obtain the following:

D(logw−Cφ) =
∆ f −B−R

h
− (n+1)C+E2

1
(n+∆φ)G (φ)

−A (n+∆φ)

+ (C−B− pC1)∑
κ

1
1+φκκ̄

(3.23)

In the expressions above, if we let C be a large number, the coefficient of the
last term, C−B− pC1, will be larger than 1.
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Therefore, 3.19 can gives the following:

D(logw−Cφ) ≥ ∆ f −B−R
n+∆φ

− (n+1)C+E2
1

(n+∆φ)G (φ)

− A (n+∆φ)+∑
κ

1
1+φκκ̄

(3.24)

After some further manipulation of 3.23, the details of which can be found in
the last chapter, we obtain:

D(logw−Cφ)≥∑
λ

1
1+φ

λλ̄

− (n+1)C (3.25)

Let us observe that, similar to 2.19 in [36], we have

∑
λ

1
1+φ

λλ̄

+
1

G (φ)
≥

{
∑(1+φ

λλ̄
)+G (φ)(

∏(1+φ
λλ̄

)
)
G (φ)

} 1
n

(3.26)

Combining 3.25, 3.34, and the preceding inequality we have the following:

D

(
logw−Cφ +

t2

2

)
≥ ∑

λ

1
1+φ

λλ̄

− (n+1)C+
1

G (φ)

≥

{
∑(1+φ

λλ̄
)+G (φ)(

∏(1+φ
λλ̄

)
)
G (φ)

} 1
n

− (n+1)C

= (n+∆φ +G (φ))
1
n

(
(|s|2 +η)p

εe f

) 1
n

− (n+1)C

=
{
(n+∆φ)(|s|2 +η)p +(|s|2 +η)pG (φ)

} 1
n
(

εs f
)−1

n

− (n+1)C

≥ w
1
n

(
εs f
)−1

n − (n+1)C (3.27)

Having this differential inequality, one can argue that either logw−Cφ + t2

attains its maximum at some interior point P, in which case D
(
logw−Cφ + t2)≤
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0, which gives the following upper bound for w:

w(P)≤ εe f ((n+1)C)n

or the maximum of logw−Cφ + t2 occurs on the boundary.

The calculations are valid for arbitrary p. In the case of conical singularity,
we have seen that (∆φ) |s|2β

h is bounded on the boundary, therefore, we can choose
p = β . Of course the proposition will still hold for larger p as well, however, that
will not be optimal.

3.7.2 Non-divisorial singularities

We may observe that in the proof of Theorem 3.2.3, the only property of |s|2β

h we
have used is boundedness from below of the mixed derivative of log |s|h on X −D.
We can therefore generalise this result to the case of more general singular sets so
long as we can find admissible weight functions.

Proposition 3.7.2. Let W be a smooth embedded complex submanifold of X . Then,
the distance function to W , ρW , is an admissible weight function.

Similar to what we did in section zero, we consider the family of equations
modified as follows: (

φtt−|dφt |2φ
)

ω
n
φ =

εe f

ξη

ω
n (3.28)

where ξη =
(
ρ(z)2 +η

)α

We claim that the quantity ξη (ρ(z))∆φ(t) stays bounded independent of η . We
shall henceforth denote ξη by ξ .

In the end, we can consider the equation modified as follows:(
φtt−|dφt |2φ

)
ω

n
φ =

εe f

∏ j ξ j
ω

n (3.29)

where each ξ j is a weight function with certain properties that vanishes on a set
containing the singularity. Since we only need the mixed derivatives of logξ , we
can merely assume ξ is a function whose log is θ -plurisubharmonic for some fixed
form θ . This need to hold only in the vicinity of the singular set S such that on
the singularity we have ξ |S = 0. We observe that this holds when ξ = |s|h, where
s ∈ H0(L,O) and (L,h) is a holomorphic line bundle equipped with a hermitian
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metric h by inequality 3.18. It also holds if we take ξ to be the distance to a complex
submanifold containing the singularity. (cf. lemma 3.3.3).

We also need the following observation.

Lemma 3.7.3. If ξ is an admissible weight function, then, the elements of the family
of function ξη := ξ +η , which approximate ξ by strictly positive functions, have a
uniform lower bound on ddc logξη , namely, as currents ddc logξη ≥ −Cω where
C is a uniform constant.

We can repeat

D
(
log(ξηφ)−Cφ + t2)≥ (ξη(n+∆φ))

1
n

(
εs f
)−1

n − (n+1)C (3.30)

And it is thus proved that

sup
M×[0,1]

{ξ (n+∆φ)} ≤ sup
M

{
ξ (n+∆φ0,1)

}
(3.31)

3.8 Final remarks-Some special cases of singularities
We finish this chapter with some remarks.

Remark 3.8.1. 3 So far we have only considered the case where the singular set
is given by the zero locus of some holomorphic section. But thanks to the local
nature of the operations, one can merely require that the sigular set be the locally
the zero set of a finite number of holomorphic functions. In that case also one may
take any power of the modulus those local defining functions to be the ‘local’ weight
function. More specifically, let V be the common zero set of function f j,k = 1, ...,k.
Then, the function

(
∑ j | f j|2

)p, for p > 0, is an admissible weight function for the
common zero locus of the functions { f j} j.
Further, if the defining functions are defined locally, as in an algebraic variety, one
can still construct an admissible weight function for V as follows. Let us observe
that if one has a partition of unity µ j(x) subordinate to U j, and if one has admissible
weight functions ξ j on each of the open sets U j, then the function ξ := ∑ j µ jξ j is
a global admissible weight function. This allows us, in particular, to construct an
admissible weight function when the singular set is contained in the common zero
set of locally defined holomorphic functions.

Remark 3.8.2. Having obtained an upper bound for the space laplacian of the po-
tential, ∆φ , we can show that the diameter is uniformly bounded. To see this, let us

3I am grateful to Prof. Bedford for pointing this out to me.
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note that the set X −D is path connected. Let x be a fixed point outside of the divi-
sor, x ∈ X−D. Then, any point q ∈ X−D may be connected by a curve γ ⊂ X−D.
Also, since the divisor is smooth, for any point on the divisor, p∈D, there is a curve
γ connecting p to the point x, contained in X−D except at p, which is perpendicular
to D at p.

Let dφ (p,q) denote the distance with respect to the metric ωφ between two
points p and q. Fix a point x ∈ X−S . Then, by the triangle inequality,

diam(M)≤ sup
p,q

(
dφ (p,x)+dφ (x,q)

)
However, dφ (x, p) can be estimated from above by measuring the length of the
curve γ , connecting p to x, described in the previous paragraph. The length of any
such curve, in turn, can be estimated since we have growth rate of O(|s|2β−2

h ) close
to the divisor for the metric.

Remark 3.8.3. Singularities along a totally real submanifold One may observe
that the one example of of admissible function is the distance function to a totally
real submanifold, R of Xn once one has that, n, the complex dimension of X , is
larger than 1.
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3.9 Postponed calculations
In this appendix, we shall provide the details we omitted, including the proof of
3.19, in the proof of laplacian estimates. Much of the calculation is borrowed from
[23]. We will henceforth use the normal coordinates, in which at a the given point q,
g

αβ̄
= δαβ , ∂ κ gαβ̄

= ∂
λ̄
g

αβ̄
= 0, and g

φ ,αβ̄
= δαβ (1+φ

αβ̄
), whenever coordinates

appear.
We first recall Equation 3.15, the linearisation of the left hand side of (3.14):

Dψ = ∆φ ψ +
ψtt +gαλ̄

φ
g

κβ̄

φ
φtαφtβ̄ ψ

κλ̄
−g

αβ̄

φ

(
ψtαφtβ̄ +ψtβ̄ φtα

)
G (φ)

(3.32)

If we substitute ψ = φ , we obtain the following:

Dφ = (n+1)−∑
β

1
1+φ

ββ̄

− 1
G (φ)∑

β

φtβ φtβ̄

(1+φ
ββ̄

)2 (3.33)

And for ψ = t2:

Dt2 =
2

G (φ)
(3.34)

We shall also need the following identity later in calculations:

D logψ =
Dψ

ψ
−

gκλ̄
φ

ψκψ
λ̄

ψ2 −

(
ψt−gαλ̄

φ
φtαψ

λ̄

)(
ψt−gκλ̄

φ
φtβ̄ ψκ

)
ψ2G (φ)

=:
Dψ

ψ
−

gκλ̄
φ

ψκψ
λ̄

ψ2 −A (ψ) (3.35)

We have implicitly defined A (ψ) in the identity above. Let us substitute ψ = ∆φ

and obtain the following:

D(∆φ)=∆φ ∆φ +
∆∂ tt φ +gαλ̄

φ
g

κβ̄

φ
(∆φ)

κλ̄
φtαφtβ̄ −g

αβ̄

φ

(
(∆φ)tα φtβ̄ +(∆φ)tβ̄ φtα

)
G (φ)

(3.36)
We can substitute the first two terms, namely ∆φ ∆φ + ∆∂ ttφ

G (φ) , following the cal-
culations in section 2 , equations 2.7 and 2.9, of [36], and obtain:
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∆φ ∆φ = ∑
κ

g
αβ̄

φ
g

µν̄

φ
φαν̄κφ

µβ̄ κ̄
+∆ f −∆ logζ

p
η −∆ log

(
∂ tt φ −|d ∂ t φ |2φ

)
+ I

≥ ∑
k
g

αβ̄

φ
g

µν̄

φ
φαν̄κφ

µβ̄ κ̄
+∆ f −

∆

(
∂ tt φ −|d ∂ t φ |2

φ

)
G (φ)

+
|dG (φ)|2

G (φ)2 + I

− ∆ logζ
p
η

≥ ∑
κ

g
αβ̄

φ
g

µν̄

φ
φαν̄κφ

µβ̄ κ̄
+∆ f −

∆

(
∂ tt φ −|d ∂ t φ |2

φ

)
G (φ)

+ I−∆ logζ
p
η

where C1 is the same constant that appears in equation 3.18,

I = ∑
α,κ

1+φκκ̄

1+φαᾱ

Rαᾱκκ̄ −S

Here S and R denote scalar curvature and curvature tensor respectively. Now if we
let B be a positive constant such that −B≤ infRαᾱκκ̄ , then I satisfies the following
inequality:

I ≥−B(n+∆φ)∑
α

1
1+φαᾱ

−B−S =:−B(n+∆φ)∑
α

1
1+φαᾱ

−C2 (3.37)

We would like to bound the terms containing time derivatives from below. Sub-
stituting 3.37 into 3.36, leads us to the following:

D(∆φ) ≥ ∆ f +∑
κ

g
αβ̄

φ
g

µν̄

φ
φαµ̄κφ

µβ̄ κ̄
+ I +E (φ)− p∆ logζη

+
gαλ̄

φ
g

κβ̄

φ
(∆φ)

κλ̄
φtαφtβ̄ −g

αβ̄

φ

(
(∆φ)tα φtβ̄ +(∆φ)tβ̄ φtα

)
G (φ)

(3.38)

where

E (φ) =
∆ |dφt |2φ
G (φ)

(3.39)

We now study the term E (φ) as follows. After calculations in normal coor-
dinates, we observe that in the expression above, the numerator, ∆|dφt |2φ , can be
written as the sum of three terms which may be analysed separately as follows.
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∆ |dφt |2φ = E1 +E2−gαλ̄
φ g

κβ̄

φ
(∆φ)

κλ̄
φtαφtβ̄ +g

αβ̄

φ

(
(∆φ)tα φtβ̄ +(∆φ)tβ̄ φtα

)
where the terms are defined as follows:

E1 :=gαν̄
φ g

µβ̄

φ
R

µν̄κλ̄
φtαφtβ̄

(
gκλ̄ +φ

κλ̄

)
E2 :=gκλ̄gαν̄

φ g
µβ̄

φ

{
g

ρσ̄

φ
φtρφtβ̄

(
φασ̄κφ

µν̄λ̄
+φµν̄κφ

ασ̄λ̄

)
+φ

µν̄λ̄

(
φtακφtβ̄ +φtαφtκβ̄

)
+φµν̄κ

(
φtαλ̄

φtβ̄ +φtαφtβ̄ λ̄

)}
+gκλ̄g

αβ̄

φ

(
φtαλ̄

φtβ̄κ
+φtακφtβ̄ λ̄

)
The last calculation allows us to cancel the fourth order terms in 3.38 with those

of E (φ). Since the derivation of the preceding inequality is done by straightfor-
ward, nevertheless long, calculations in normal coordinates, we omit the calculation
and refer the reader to 2.10 in [23].

We now use 3.38 to obtain

D(∆φ) ≥ ∆ f +∑
κ

g
αβ̄

φ
g

µν̄

φ
φαν̄κφ

µβ̄ κ̄
+ I +

E1 +E2

G (φ)
− p∆ logζη (3.40)

By the definition of B, we have R
αβ̄κλ̄

≥−B(δαβ δκλ +δαλ δκβ ). We may now
combine this piece of information with the obvious inequality n+∆φ ≥ 1+ φ j j̄,
and obtain:

E1 ≥ −gαν̄
φ g

µβ̄

φ
B(δµνδκλ +δµλ δκν)φtαφtβ̄

(
gκλ̄ +φ

κλ̄

)
> −2B(n+∆φ)∑

β

φtβ φtβ̄

(1+φ
ββ̄

)2 (3.41)

Note that E3 appears in the numerator of the last term in 3.38. We can, therefore,
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combine 3.37, 3.38 and 3.41 and get:

D(∆φ) ≥ ∆ f +∑
κ

g
αβ̄

φ
g

µν̄

φ
φαν̄κφ

µβ̄ κ̄
−B(n+∆φ)∑

α

1
1+φαᾱ

−C2 +
E1 +E2

G (φ)

− p∆ logζη

≥ ∆ f +∑
κ

g
αβ̄

φ
g

µν̄

φ
φαν̄κφ

µβ̄ κ̄
−B(n+∆φ)∑

α

1
1+φαᾱ

−C2

− 2B(n+∆φ)

G (φ) ∑
β

φtβ φtβ̄

(1+φ
ββ̄

)2 +
E2

G (φ)
− p∆ logζη

≥ ∆ f −C2−B(n+∆φ)∑
α

1
1+φαᾱ

+
gκλ̄

φ
(∆φ)

κ
(∆φ)

λ̄

n+∆φ

− 2B(n+∆φ)

G (φ) ∑
β

φtβ φtβ̄

(1+φ
ββ̄

)2 − p∆ logζη

In the last inequality, we have used the following consequence of the Schwarz
inequality for the third order terms (cf. 2.15 in [36]):

∑
κ

g
αβ̄

φ
g

µν̄

φ
φαν̄κφ

µβ̄ κ̄
≥

(d∆φ ,d∆φ)φ

n+∆φ
=

gκλ̄
φ

(∆φ)
κ
(∆φ)

λ̄

n+∆φ

We now use the last inequality, 3.35, with ψ = n+∆φ , and 3.33 to obtain the
following
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D(log(n+∆φ)−Cφ) =
D(∆φ)

n+∆φ
+

∑κ g
αβ̄

φ
g

µν̄

φ
φαν̄κφ

µβ̄ κ̄

n+∆φ
−A (n+∆φ)

− (n+1)C+C∑
β

1
1+φ

ββ̄

+
C

G (φ)∑
β

φtβ φtβ̄

(1+φ
ββ̄

)2

≥ ∆ f −C2

n+∆φ
− p

∆ logζη

n+∆φ
− E2(φ)

G (φ)(n+∆φ)
−A (n+∆φ)

+ ∑
λ

(∆φ)λ (∆φ)
λ̄

(1+φ
λλ̄

)(n+∆φ)2 −∑
λ

ψλ ψ
λ̄

ψ2(1+φ
λλ̄

)

− (n+1)C+(C−B)∑
β

1
1+φ

ββ̄

+
C−2B
G (φ) ∑

β

φtβ φtβ̄

(1+φ
ββ̄

)2

=
∆ f −C2

n+∆φ
− p

∆ logζη

n+∆φ
− E2

G (φ)(n+∆φ)
−A (n+∆φ)

− (n+1)C+(C−B)∑
β

1
1+φ

ββ̄

+
C−2B
G (φ) ∑

β

φtβ φtβ̄

(1+φ
ββ̄

)2

for any constant C, which is 3.19.

We now turn to proving 3.25 based on 3.24. Recall that by 3.24 we had:

D(logw−Cφ) ≥ ∆ f −C2

n+∆φ
−A (n+∆φ)+E2

1
(n+∆φ)G (φ)

− (n+1)C

+ ∑
κ

1
1+φκκ̄

(3.42)

It will suffice to prove that

E2 ≥ (n+∆φ)A (n+∆φ)G (φ) (3.43)

which is equivalent to the following:

E2(n+∆φ)≥
(

ψt−gαλ̄
φ φtαψ

λ̄

)(
ψt−g

κβ̄

φ
φtβ̄ ψκ

)
for ψ = n+∆φ . Since this also follows from a straightforward calculation, we refer
the reader to (2.21) in [23].
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[34] Sun, S. Wang, Y. On the Kähler-Ricci flow near a Kähler-Einstein metric. To
appear in J. Reine Angew. Math.

[35] Troyanov, M. Prescribing curvature on compact surfaces with conical singu-
larities. Trans. Am. Math. Soc. 325, 793-821 (1991).

[36] Yau, S-T. On the Ricci curvature of a compact Kähler manifold and the com-
plex Monge-Ampère equation, I. Comm. Pure and App. Math. 31-3, 339-411
(1978).

49


	Introduction
	Eine bemerkenswerte Hermite'sche Metrik-1933
	The space of Kähler metrics-1954

	The space of Kähler metrics over asymptotically locally euclidean manifolds
	Introduction
	Notation and definitions
	Classical solution of the equation on the the product of the manifold and the compact Riemann surface with positive right hand side
	Decay of the higher derivatives of the -solutions

	A priori estimates for the geodesic equation
	L-estimates

	K-energy, metrics of constant scalar curvature

	The space of Kähler potentials with prescribed singularity
	Introduction
	Main results
	Conical Metrics and more general singularities
	L-estimate
	C-estimate
	C1 -estimate
	Laplacian estimates
	Divisorial singularities
	Non-divisorial singularities

	Final remarks-Some special cases of singularities
	Postponed calculations




