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Abstract of the Dissertation
On the Uniqueness of singular Kahler-Einstein metrics
by
Long LI

Doctor of Philosophy

in
Mathematics
Stony Brook University

2014

In this dissertation we provide a new proof of the Bando-Mabuchi-Berndtsson
uniqueness theorem for Kahler Einstein metrics with singularity along a divisor on
Fano manifolds. In 1987, Bando and Mabuchi proved the uniqueness of smooth
Kahler-Einstein metrics on a Fano manifold up to a holomorphic automorphism,
and this automorphism is induced from a holomorphic vector field on the manifold.
It has been noticed that the geodesic connecting two Kahler-Einstein metrics agrees
with the path generated by the vector field. Hence it is natural to ask if we can use
certain properties of geodesics to prove the uniqueness result.

However, the main difficulty comes from the lack of regularities on the geodesic.
According Chen’s results, only C}!' regularity can be guaranteed for the potentials
on the geodesic. We develop a new technique to solve this problem, based on the
convexity of Ding-functional on C'! geodesics and Futaki’s calculation on the spec-
trums of weighted Laplacian operators.

In addition, this method could be generalized to prove the uniqueness of conical
Kahler-Einstein metrics on a Fano manifold, under the condition that certain energy
functional is proper. The idea is to use twisted Kahler-Einstein metrics to approxi-
mate the singular one, and the converging process will preserve the uniqueness. In
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the end, the energy condition provides the existence of such twisted Kahler-Einstein
metrics.
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1 Introduction

The study of Kéahler Einstein metrics on Fano manifolds is an old but lasting subject
in complex geometry: on geometrical point of view, it characterizes the manifold
with constant Ricci curvature, i.e. the Kahler metric satisfies

Ric(w) = w;

on analytical point of view, the complex Monge-Ampere equations arise from the
study of this curvature equation, i.e. the Kahler potential ¢ € H is the solution of
the following equation

(wo 4 100p)" = e fw?

where H := {w = wy+i9dp > 0}. Now as a PDE problem on manifolds, it’s natural
to ask two questions - existence and uniqueness. After Yau’s celebrated work[20] on
solving the Calabi Conjecture, Tian’s « invariant[19] gives a sufficient condition to
solve Monge Ampere equation on Fano manifolds in 1980’s. Then many people con-
tribute to this problem during these years. And quite recently, Chen-Donalson-Sun’s
work([9], [10], [11]) proves the existence of Kéhler Einstein metrics on Fano man-
folds is equivalent to K-stability condition.This settles down a long standing stability
conjecture on Kahler Einstein metrics which goes back to Yau.Their work based on
an investigation on some conical Kahler metrics in a special Holder space C?78 for
v < % — 1, which was introduced by Donaldson[12].

The problem of uniqueness of Kahler Einstein metrics on Fano manifolds also keeps
attractive during these years. It is first proved by Bando and Mabuchi[l] in 1987,
and we will give an alternative proof in this paper. The statement is as follows

Theorem 1 Let X be a compact complex manifold with —Kx > 0. Suppose wy and
wy are two Kahler Finstein metrics on X, then there is a holomorphic automorphism
F', such that

I ((,ug) = W1

where this F is generated by a holomorphic vector field V on X.

They solve this problem by considering a special energy(Mabuchi energy) decreas-
ing along certain continuity path. Then the existence of weak C1'! geodesic between
any two smooth Kéhler potentials is proved by X.X.Chen[8] in 2000, and this idea
turns out to be an important tool in proving uniqueness theorems. For instance,
Berman(5] gives a new proof of Bando-Mabuchi’s theorem by arguing the geodesic
connecting two Kéhler Einstein metrics is actually smooth. And Berndtsson|7] proves
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the uniqueness of possible singular Kahler Einstein metrics along C° geodesics. He
observes the Ding-functional is convex along these geodesics from his curvature for-
mula on the Bergman kernel[6]. Moreover, this curvature formula plays a major role
to create a holomorphic vector fields when the functional is affine. This method
is used by Berman again to prove the uniqueness of Donaldson’s equation[4], and
generalized to the kit — pairs in [2].

The idea of this thesis is also initiated from the convexity of Ding-functional along
geodesics from a different perspective. However, instead of using Berndtsson’s curva-
ture formula, we are going to use the Futaki’s formula(refer to Chapter 2) of weighted
Laplacian operator to derive the holomorphic vector fields. Unlike the former case,
here the main difficulty arises from the change of metrics during the convergence of
Laplacian operators. Fortunately, we have control on the mixed derivatives 0,050
on the product manifold, i.e. Chen’s existence theorem of weak geodesic[8] guaran-
tees a uniform bound of mixed second derivatives of the potential in both space and
time directions on the geodesic. Moreover, we can perturb the weak geodesic to a se-
quence of nearby smooth metrics {g.} with mixed second derivatives under control[8].

Next goal is to prove the uniqueness of C>7# conical Kihler-Einstein metrics, based
on the new technique developed above. As mentioned before, the main ingredients
of this technique consist of Chen’s C'!' geodesics and a generalization of Futaki’s
formula, then these will be extended to prove the uniqueness of the so-called twisted
Kahler-Einstein metrics, i.e. a smooth Kahler metric w satisfies

Ric(w)=w+0
where 6 is some non-negative closed (1,1) form on X. In fact, assuming the correct
cohomology condition(see Chapter 11), we have

Theorem 2 Suppose wy and wy are two solutions of twisted Kahler-FEinstein equation
with the same weight 6, then there exists a holomorphic automorphism F on X,
such that F*(w1) = wo and F*(0) = 0, and this automorphism is induced from a
holomorphic vector field V. Moreover, if there is a point p € X such that the twister
0 s strictly positive, then wy s actually fixed, i.e.

W1 = Wy
on X.

Before considering the singular metrics, we shall investigate the perturbed conical
Kahler-Einstein equation first, i.e. we put

6= (1 - B)dd°x
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where the twister y. = log(|s|? 4+ ee?) and 1 is some smooth positively curved metric
on the line bundle associated with the divisor D. Then we have the uniqueness of
the solution of the following equations

Ric(we) = we + dd®xe.

If we can take the limit when € — 0, then in principle, it will bring us the uniqueness
of the conical Kahler-Einstein metrics wg, i.e. ws satisfies

Ric(wg) =ws + (1 — 5)dp

where dp is the integration current of the divisor D. However, this is not true in
general. In some situations, we can’t not even find solutions of the perturbed Kéahler-
Einstein equations even if the conical Kahler-Einstein metric exists. Hence we need
another condition to guarantee the existence of twisted Kahler-Einstein metrics, i.e.
the properness of twisted Ding functional.

Theorem 3 Suppose the twisted Ding-functional Dg is proper, then there is only
one C**8 solution Wy, for the conical Kdhler-Einstein equation with angle 3 along
the dwisor D on X.

One direct consequence of above theorem is the uniqueness of Donaldson’s equa-
tion, i.e.

Ric(wg) = Pws + (1 — 5)dp.

for 0 < 8 < 1. Here the Kéaher class is proportional to the anti-canonical class, and
the twisted Ding functional is automatically proper in this case[12].



2 Futaki’s formula and Hessian of Ding-functional

The manifolds X in our consideration is Fano, then we can assume the Kéhler class
[w] = c1(X), i.e. for each Kahler metric wy, there exists a smooth function Fj such
that

Ric(wy) — w, = i00F,,

hence we can define a weighted volume form as e’ det g(we will write F}, as ' when
there is no confusion), and a pairing for any u,v € C*(X)

(u,v), :/ uve” det g,
X
then Futaki[13] considers a weighted Laplacian operator
Apu = Agju — VjuVjF.

the reason to do this is because the new Laplacian operator is easy to do integration
by parts under the weighted volume form

/ (Apu)te” det g = —/ (V;Viu+ VIuV,;F)ue" det g
X

X

:/ ViuV ;e det g
b

:/ |Ou|?e” det g
X

where the norm of the 1-form is take with respect to the metric g. Hence it’s an
elliptic operator, and its spectral is discrete as 0 < A\; < Ay < ---. Then for each
eigenfunction Apu = Au, Futaki[14] writes the following formula

)\/ |0u|?e’" det g :/ |Ou|?e” detg+/ |Lyul*e™ det g
X X X
where L, is a second order differential operator defined as

;0 =7

Now observe the RHS of Futaki’s formula is in fact [, [Ap u|?e" det g, we can gen-
eralize it to all smooth function as



Lemma 4 For any smooth function u on X, we have

/ ]Apu\zeFdetg:/ léuIQeFdetg—i-/ |Lyul?e” det g.
b b X

Proof 1 we can decompose u = X a;(u)e; into the eigenspace of the operator Ap,,
and notice that the eigenfunction e; is orthogonal with respect to each other under
the weighted volume form and metric g. Then the first two terms in above equation

will preserve this orthogonality, i.e. choose eigenfunctions u and w of Ar which are
orthogonal to each other, then

/|5u+5w|QeFdetg:/ |5u\2eFdetg+/ |Ow[*e” det g

b b b

and
/|Apu+AFw|26Fdetg:/ |Apu|26Fdetg+/ |Apw]?e’ det g
X X X

Moreover, the differential operator L, keeps this orthogonality of eigenfunctions, but
first notice

EaB = RaB - gaB
from the definition of F', then we compute as follows

/ (Lgu, ng>geF det g = / gaxg#'éu,ﬂﬁw,#aeF det g
X b
— _/ gaxguBu,Xéaw,ueF detg _/ gaxg,uﬁu’;\,éw’u};ﬂ’aeF detg
X X
= —/Xgo‘Ag”/Bu;agw,ueF detg — /Xg“BR%uﬁwWeF det g
+/Xgo"\g“ﬁu,)\w7uﬁF7aeF det g—l—/X g“Bu,;\w,qu\eF det g—l—/X gan“Bu7;w7MEaEBeF det g
= /Xga’\g“ﬁu,mw,we]r detg—l—/Xga’\g“Bu,\aw’#EﬁeF det g
+/ ga;\g“'gu,;w#gﬂaeF det g+/ (go"_\u,;F’,a)(g“Bw#EB)eF det g—/ g“gu’gwueF det g
X X X
= /X (9° o5 + 9 s Fo) (9" 0,5 + ¢"° 0, F 5)e" det g

= / (Apu, Apw)ge” det g = 0.
X



Next let’s consider an easy case: according to He[15], the second derivative of
Ding-functional on a smooth geodesic equals

aQD F, -1 3,112 N2\  F
S =] et ([ (021~ (mg)ef deng)
X X

where the metric ¢ is induced by the Kahler form w,, and the projection operator
is defined as m,u = u — [, ue'vdet g/ [, e det g. This implies Ding-functional is
convex along smooth geodesics. Now suppose there is a smooth geodesic connecting
two Kahler Einstein metrics, the Ding-functional must keep to be a constant along
it. Hence we get

/ |0/ [5e" detg:/(ms@’)QeE@ det g,
X X

then we see the first eigenvalue A; of the weighted Laplacian operator A, is 1, and
w1 ¢ belong to the first eigenspace, i.e.

Ap,(m1¢) =m1¢.
Now by Futaki’s formula, we see

Lg(ﬂl@,) = 07

then the induced vector field V; = Viy/ azi is holomorphic on X. Moreover, let’s

differentiate this vector field with respect to t on the geodesic

(7" eh) = ¢* o} — 999" o

B 05) i — 900"

= gjkgaﬁsdoé%@fgfg =0
by the holomorphicity of V;. Finally, this gives us a holomorphic vector field V =
Vi — 0/0t on X x S, and its induced automorphism will give the uniqueness of the
two Kéhler Einsteim metrics.
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3 Some L? theorems

In this section, we are going to use L? theorem to investigate the weighted Lapla-
cian operator Ap, and its spectrum, then we shall project our target to the front
eigenspace in the proof of uniqueness theorem. First notice that we always have
A1 > 1 by Futaki’s formula. Then we are going to introduce some notations.

From now on, we shall assume the manifold X admits non-trivial holomorphic vec-
tor fields, and H%!'(X) = 0. Then fix one ¢ and restrict our attention to this fiber
X x {t}. Since —Kx = |w], we can write

w, = 100,

where ¢, is a plurisubharmonic metric on the line bundle —Kx. We claim the
measure
efrdet g =e %,

and this is because locally Fj, = —logdet g — ¢,. Then naturally the pairing between
functions on X with this weight can be written as

(u,v)g:/ uve %,
X

Here is the L? theorem coming to play with. Let’s consider the space of all L2
bounded —Kx valued (n,0) forms under the metric ¢,, i.e. it consists of every
function v on X such that

lu|?e™? < +o0,
X

we denote this space as L%n,O) (—Kx, ¢y), and similarly we can consider all L? bounded
—Kx valued (n, 1) forms under the weighted norm

/ go‘Bva%e_% < 400,
b's

and we denote this space as L%m)(_K x,¢y), then we can define an unbounded
operator O between them

6 . L%n,0)<_KX7 ¢g) -2 L?n,l)(_K)ﬁ (b!])

Notice that the domains of these two operator are not the whole L? spaces. In fact,
we can define

dom(é) = {U € L%mO)(_KXa ¢g)7 5'& S L%n,l)(_KXa ¢g)}7
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but it is not densely defined in L? space when g4 is a C LT solution of geodesic equa-
tion on a fiber X x {t}. Hence we should consider the Hilbert space H; to be the

closure of dom(0) in L%n’o)(—KX, ¢g4). We claim that #; is not empty.

First notice that for any non-trivial holomorphic vector field v € L%n_lo)(—K x),
we can solve the following equation

ou = wy, A\,

since O(wy, A v) = 0 in the sense of distributions, but ker(9) = Range(d) from
H%!'(X) = 0. Next, consider the subspace VW containing all such u, i.e. define
W :={uce€ L%n,o)(—Kx, bg); Ou = Wy, ANV, YV € L(QR_LO)(—KX)},

then it is a non-empty subspace in L%n,O)(_K X, 04), and it’s easy to check

W C dom(0),

hence we proved the claim. Now 0 is a densely defined, closed operator on the Hilbert
space H; - it’s closed from the continuity property of differential operators in the
distribution sense. We can discuss its Hilbert adjoint operator 0%, which is a densely
defined, closed operator on L%n,l)(_K X, ®q). Moreover, they have closed ranges

Lemma 5 0 and ézg are densely defined, closed operators with closed ranges.

Proof 2 We need to estimate the L? norm of Ou. Take h to be a fized smooth metric

with positive Ricci curvature on X, and u € dom(d) Nker(9)*, we have

/ Guffe s > / 1Bul? det b
X X

> c/ lu|? det h
X

> c’/ ul2e™?s.
X

this estimate implies O has closed range, and hence its adjoint 5;9 by functional
analysis reason.



Then we can define the Laplacian operator as Oy, = 5:;95, where also as an un-
bounded closed operator, i.e.

D¢g : L%n,O)(_KX7 qbg) - L%n,O)(_KX7 ¢g)
and its domain of definition is
dom(Oy,) :=={u € L?n,O)(_KXa by); u € dom(d) and du € dom(a};g)}.
we claim this operator also has closed range. and

Proposition 6 we have
ker Oy, = cokerdy,,

hence they are both finite dimensional.

Proof 3 First note ker Oy, = ker O is the 1 dimensional space of constant functions
on X. In order to prove cokerOy, also has finite rank, it’s enough to prove the
weighted Laplacian operator has closed range, since it’s self-adjoint

cokerOy, = R(Oy )" =ker Oy, .

Now we are going to prove the closed range property, but this follows from the fol-

lowing estimate for u € dom(0y,) Nker(d)*
lul[} < Clloull;
< C(D¢gu7u)g
< 2018y, ull} + 3 el

and hence
ull; < C'l|0g,ullZ,

which implies the claim.

Notice that this is not enough to guarantee the existence of discrete spectral, but we
have a further estimate,

Lemma 7 For all u € dom(Ogy,) N ker(9)*, there is an uniform constant C, such
that
lullw2 < €0, ullg.



Proof 4 we still compare it with some fized smooth weight(metric) h,
1Bull? < C1joul?
= C<D¢gu7u)9
< Cl|8g,ullgllullg
< 0, ullgllulln
< OB, ullgl[Oulln,

then B
Oull;; < C"||Bg,ully.

finally, an integration by part gives the desired estimate since

/hﬁW@WMh:—/hﬁW@mah
X X

:—/hﬁww@m
X
:/ hagu’gmdeth
X
Then we can discuss the spectral of Oy , when g, is the CY! function. Suppose \ is

an eigenvalue of Oy , and let A be the corresponding eigenspace, we claim

Proposition 8 dim A < 400

Proof 5 Letv; € A be a sequence of eigenfunctions with bound L* norm, i.e. ||v]|2 =
1, then since

[villw2 < C|8g,villg
= C\,

hence there exists a W2 function vs such that v; — Vs in strong L? norm, by
compact embedding theorem. And since A = ker(Og, — AI) is a closed subspace of L*

Voo € A.
This implies every bounded sequence in A has a convergent subsequence, i.e. the unit

ball in A is compact, hence dim A s finite.
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Next we are going to discuss some computations when the weight ¢, is at least
C2%. First notice that formally

< Up,u,v >4 = < u, v >,
for any pairing u, v. It’s easy to see
D¢gu = A¢gu

for all smooth functions u, when the metric ¢, is smooth. If we look closer at these
operators, there is a more computable way to express them. For this purpose, let’s
assume ¢, is a C* metric, then for any (n, 1) form « with value in — K,

_:;ga = 0% (w,0Q)

where 0%v = e?0(e~%v) = Ov—9I¢p Av for any (n—1,0) form with value in — K x (that
is a vector field on X). Hence if we define

V= Wyaa,

we will have B
8;';g04 = 9%

and the weighted Laplacian operator could be computed as
Og,t = 0% (wy0u)

for u € domOy, ﬂL%n 0)(—Kx, @y). Notice that there is commutation relation between
the new defined operator 9% and 0, that is

9°0 4 00 = i00¢ A - (1)

Now if u is any eigenfunction of the weighted Laplacian operator with eigenvalue A,
Le. Oy u = Au, we can decompose it into two equations

wgaOu =v  9%v = Iu.

here we can write v = X1, where the constant function 1 is read as an (n,0)
form with value in —Kx, and X = X32 is a vector field in (1,0) direction on the
manifolds. Next we are going to prove Futaki’s formula by the commutation equality.

11



Lemma 9 (Futaki’s formula) Let u be a eigenfunction of weighted Laplacian with
eigenvalue A, i.e. Oy u = Au, then

)\/ |Oul2e% :/(|Lgu|2+|8u|§)e_¢9.
X X

Proof 6 First notice u is pure real or imaginary. Hence here we will give the proof
when w is real valued - the case when w is pure imaginary is similar. Now by the
commutation relation of 0%, we compute O(\u)

—0%0v +i00¢, N v = \Ju,
notice that i00¢, = w,, hence
—~0%0v = (A — 1)0u,

pair it with Ou,
- 1) / BufZe b0 = / (0930, Fu) e
X X

— [ ~oau(e ox B
b's
_ / 0, XD X e 1.
X
Now notice that X = gO‘BUﬁ, under the normal coordinate when g;; = 0;;/\;,

3,1X°‘8aXﬂ = gaﬁuﬁgﬂg’\ﬂu,)\a

1

—— U 53U\

A Ny O
1

= ——U g .o
A A, AT

= gaBg)\ﬂaﬂXaaj\Xﬁa

hence we proved the Futaki’s formula
(O — 1)/ BufZe b0 = / 02,
b's b's

12



4 Existence of the C''! geodesic

Let X be a n dimensional compact complex Kahler manifold with Kahler form w,
then we can write locally .
w =X g9;5dz7 A dz".

Consider all the Kahler forms in the same cohomology class with w, they can be
identified with the space of all smooth strictly w-plurisubharmonic functions on X,
ie.

H={p € C*(X); w, =w+ddp >0},
and this is also called the space of Kahler potentials. It’s easy to see that the tagent
space of H consists of all smooth functions ¢ on X, and we can introduce an natural
L? metric on T,H as

< Y1, g >= /Xiﬁﬂ/bwz

for two tagent vector ¢,y € T,H. Then we can ask what geodesics are on this
Riemannian manifold, and the geodesic equation turns out to be

" (t) = |0g'(t)]5, = 0
where g; corresponds to the metric induced from the Kahler form w,,. In order to
figure out the solution of this equation, we need to slightly change our consideration
into a different setting. Think about the product space (z,t) € X x [0, 1], we can
add an extra dimension to complete it into a n + 1 dimensional complex space as
follows .
(z,t,e*) € X x [0,1] x S*
where z = (z1,++,2,) and w = z,,1 = t + is is the last complex variable. If we

denote the metrics defined by w,w, as g and ¢, then the top volume forms satisfy
w"/n! = det g and wj;/n! = det ¢, and the geodesic equation is equivalent to

~ B

(¢" = |0¢']5) det g’ = 0, (2)
when det ¢’ # 0. Let S = [0,1] x S, then we can construct a Kahler form on X x S
from the pull back 7*w, as

O =57, g5pd2? Adzh + (05" d2" N dZF 4 (Ohp)d2t AN dZ 4 (@) AdE

Notice that sometimes we will write g;B with o, 5 = 1,--- ,n + 1 standing for the

local coefficients of 2, and then linear algebra tells us that equation(2) is equivalent
to the following homogeneous Monge-Amprére equation

Q" =0. (3)

13



In fact, it is possible to solve this equation with the following weak regularities

Theorem 10 (Chen) Let o, p1 € H, then there exists a unique CU1 geodesic con-
necting them, i.e. the following homogenous Monge-Ampére equation has a unique
weak solution ¢ € H(the closure is taken under the C*' topology) on X x S

det(gi; + 0:050) m+1)(n+1) = 0
where i,j =1,-+-- ,n+1, and on the boundary d(X x S)

SO(Oa S, Z) = 900(2)7 90(17872) = 901(2’/)
with the following estimate
ller(xxs) + max{[0;0;0[} < C
where C' is a uniform constant only depending on ¢y and ¢ .

In order to solve this equation, we refer to the famous continuity method, but first
we need to establish its beginning point. Let w be the background Kahler metric,
there is another trivial way to construct (n+1,n+ 1) Kéhler form on the total space
X x S from w by

O =7'w+d"T A dz"
with its potential ¢ = ¢ — |2""?, and we shall also write (g,3), ¢ instead of
(Gap), @ when there is no confusion. Then let’s begin with finding a strictly w-
plurisubharmonic function on the total space with prescribed boundary values g
and ¢

d(z,t) =tpg + (1 —t)p; — Ct(1 — 1)

where C' is a large positive constant such that w + i99¢ > 0 on X x S. Notice
that ¢|xxgoy = Yo, ®|xx{1} = 1 and @|x s is a strict w-plurisubharmonic function
for each t € [0,1]. Now we can consider a one parameter family of Monge-Amprére
equations as follows

(xe)  det(gap + Oudppe) = € det(gag + 0a050), (4)
for e € [0, 1]. Now define the set
S:={ee€0,1]; (*) is solvable}.

The goal is to prove 0 € S. First notice that 1 € S, since 1(z,w) = ¢(z,w), and S
is open thanks to the ellipticity of Monge-Amprére equations. We shall prove S is
also closed from a prior estimate as follows

14



4.1 (" estimates and interior Laplacian estimates

Consider the following Dirichlet problem with boundary condition

Agh = —n — 1, h|8(X><S) = ¢|8(X><S)‘

Then maximal principal implies maxxygs(p. — h) < 0, and hence ¢ < h. On the
other hand, the domination principal for complex Monge-Amprére measure implies
pu{pe < ¢} =0, where p is the standard Lebesgue measure on X. Then

Proposition 11 Let ¢, be a sequence of smooth solution of equation (x.), then

P << h

Now let’s invoke Yau’s C? estimate with respect to ¢, on the total space X x S, then
it gives )
A'F > Ry — C(n+1)F + Rye®/"F'u(e) 71,

where F' = e “(n+ 1+ Ayp) and Ry, Ry, C, ¢ are some uniform constants such that
Ry > 0. Since ¢ is uniformly bounded from above, we conclude the maximum of F
is either uniformly bounded or achieved on the boundary. Hence

Proposition 12 There is a uniform constant C such that

Ap. 1) < C(1 Ap, 1)).
max(Age +n+1) < O( +a{§(§>§)( Pe+n+1))

4.2 Boundary estimate

Suppose p is a point on the boundary (X x S), there is a local parametrization of
the boundary in a smaller open neighborhood of p, i.e. {z"™ =0} =9(X x S)NU,
where p corresponds to the origin {z = 0} in U. Now since w is a Kéhler form, we
can assume

gaﬁ_(p):(saﬁa 04,621,"',71“—1

and )
ééaﬂ < gaB < 25aﬂ

for Vg € U. Furthermore, we can also assume from the positivity of wy
9op T 0a050 > 2K4,3
for k > 0 on X x S. Hence near the origin p it implies

9op + 8a55¢ N

15



for any ¢ € U. Next notice that on the tangential direction of (X x §), the
derivatives of difference vanish as

O(p — ¢) 0*(p — ¢)

P9y W9
0zk T 02907k
where j,k=1,--- ,nand Vg € UNI(X x S). Then we claim

Proposition 13 For any point p € (X x S), there is a uniform constant C, such
that

Oni10n110| < C Vo2 +1).
|0n+10n419¢] (Bg§§)| Pcly +1)

Proof 7 Look at the point p, we can assume g,(p) is a diagonal matriz with eigen-
values A1, - -+, Ayi1, then the equality on the continuity path implies

det<5aBAa + 8045,3(90 - ¢)) = Gf

where f = det(gy). By using the vanishing of the derivatives on the boundary, we
have

A1+ (0= 0)" = ef + 57170, 0ale — ) Oalp — ),
which gives the deserved bound on ¢".

Next we are going to estimate the mixed derivatives terms in the complex Hessian
of ¢ as follows

Proposition 14 There is a uniform constant C' such that

< 2
r)r{l%((n + 1+ Ap) < Cl)r(lgé((l +IVed,)

Define the following differential operator as

Lu= EZyilg'aBu,ag,

2]

and let D denote a first order differential operator standing for a% or F, where

2=z 4+ /1y with j =1,--- ,n. Take
D(logdet ¢') = D(log tf)

and B _
§*’Dyoz = Dlog f — ¢*’Dg,j3.

16



JPD(¢ — ¢)us = Dlog f — g’ Dy 5.
then
LD(p—¢) = ¢d’D(p — ¢) < C(1+ Xt g ).

this is because for a positive Hermitian matrix (h;z), we have |h;z| < haa + hgs.

Next we need to construct a barrier function v for the maximal principle. Let s, N
be some undetermined positive number, and we define

v=_(p—¢)+s(h—¢)— Nt*

on the neighborhood 25 = (X x S) N Bs(0), where Bs(0) is the coordinate ball
centered at p with radius 9.

Lemma 15 For any small k > 0, there is a 6 > 0 such that
Lo < —r(1+3E10"7)
on Qs and v = 0 on 0.

Proof 8 First notice that v =10 on (X x S) N Bs(0), and recall that g, > 4k(0a3)
in Bs(0), then

Ll —0)=9"(g.5— 9s.a5)
=n+1- g’O‘ngz,’ag
<n+1—4rX"=1g
and )
L(h—¢) = g°%(has — dap)
< Ci(1+ 3557

for some uniform constant Cy. But the last term has Lt = 2¢'* V0D which gives

L < (n 4 1) . 4522219/0@ + 801(1 + Zziiglao’z) . 2Ng/(n+1)(n+l)

Then suppose 0 < A\ < Ag < -+ A\,u1 are the eigenvalues of the matriz ¢', we have

)\—1 > g/(n+1)(n+1)

n+1 _ s+l _raa
zazl)\a - 2ozzlg ) n+l1l =

and \1 - Apy1 = €f. Hence
“ZZE)‘;}A + N)‘;-lu = KSa Ay (K + N))‘:Hl-l

17



> (n+ 1)1 N7 (ef) it
> CyNwi,
Then for N large enough(Cy could be large when € is small), we can make
—CoN™ + (n+1) + sC; < —k.
and sCy < Kk for s small enough, hence

Lv < —k(1+ X0 g%

on Qs. On the other hand, recall Aj(h — ¢) = —trygy < —4k on 5, and this
convexity gives the growth control near the boundary
h — (b 2 COtu

hence if we further choose § small enough such that (sCy — NO)t > 0, the inequality
s(h — ¢) — Nt* > 0 holds.

Next we will complete the proof of proposition(14). Let M = maxxxs(1+ [Vl,),
and for constants A > B > C multiple of M, such that Bé* > |D(¢ — ¢)|, we define
then w > 0 on 0€)s, and

w = Av+ Bl|z]* + D(p — ).
then w > 0 on 9€, and w(0) = 0. Hence compute
Lw < —Ar(1+ 8¢ +2B(E311¢") + C(1 + 23119%)
< (=Ak + 2B+ C)(1 4 Zag*%).
Maximal principal implies w > 0 on {25 and %(p) > 0, but

ow dv 9
57 (0) = A= (0) + (D = 9)(0),

and B ) 06 B
Y0)= L) - 22 9 h—
Notice that ¢'(0) < ¢'(0) < h'(0), we have
0
—Dyp(0) < CsM
Finally, we repeat our argument to —D, the same estimate gives
0
——D < OsM
ot ¢(0) < Cs

This complete our proof.
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4.3 (! estimates

The question is reduced to find out an upper bound for |Ve,|, along the continuity
path, and here we will invoke the so called blowing up analysis. In the following, we
will concentrate our attention on a small ball in X, so can assume the metric is just
the Euclidean metric in C"*Y. Now suppose on the contrary, there is a subsequence
@, (write as ¢; briefly) and points z; € X, such that

Vil = max [V = 1/k;,

and by the above C? estimates, we have
A‘:Di < 1/’%?

and this growth estimate is important because it’s invariant under rescaling. Let’s

define

Yi(z) = @iz + Kix),
for Vx € Bs),,,(0) C C", where 6 is a fixed small number. Then after this rescaling,
we see

?aXW@Mg = |V¢il,(0) =1, Ay, <C

/K4

for some uniform constant C'. In the same time, we can define
oi(x) = ¢(z; + kiz),  hi(x) = h(x; + Kix),
and C° estimate follows as
C 1<y < by <hy <O

The sequence of points x; will converges to a point p € X x S. One case is that p
is in the interior of X x S, then by using a subsequence of subsequence argument,
there exists a bounded limiting function ¢ on C*™!, such that v¢; — v in C" norm
on any ball Bg(0) in C**'. Now notice

[Vip(0)]g =1 (5)

and ¢(p) < ¥(x) < h(p), for Vo € C*'. We shall show 1 is in fact a bounded
plurisubharmonic function on C"*!, then it must be a constant function, which con-
tradicts to equation(9).
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Notice that near the point p, we have the inequality

_ C
0 < (05 + 0a0s9p;) < ?(5015)7

i

this implies

0 < K2 (6ap) + (00051i) < C(bup)

after rescaling. Take the limits, we have
0 < 00
on C"*1,

The other case is that p € 9(X x S), then ¢ is a function on the half plane of
C™1. But it must be constant since it is squeezed by h and ¢ on the boundary.
Hence it contradicts to equation(9) again.
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5 Ding-functionals along the approximation geodesics

Chen’s existence theorem has the following direct application to establish the smooth
approximate of weak geodesics

Theorem 16 (e- approzimation geodeiscs) Given g, o1 € H, we can have a se-
quence of approximation geodesics p.(t,z) as follows: for each small € > 0, there
exists a unique solution of the equation

(u — |8X(P,|§w) det(g,) = edet h
such that there exists a uniform constant C with
o] + |} + |eler +max{]0.050]} < C,
and @, converges to the CV1 geodesic ¢ in the weak CY' topology.

Notice that for any plurisubharmonic metric ¢ on —Kx, we can write its potential
as ¢ = ¢ — ¢g, where ¢ and ¢g are corresponding metrics on the line bundle — K.
Now suppose ¢g, ¢1 are two smooth Kahler Einstein metrics on X, with their Kahler
forms w; = i00¢;,1 = 0, 1 satisfying

define the following functionals

and
1

E(p) = - 12?0/)(g0w6 Awy™

where wy = i09¢. Then the Ding-functional is defined as

1 . A
D=-¢+F=- X7 /((b—gbo)wé/\wg_]—log/ e .
X

n+41770 b%

Notice the along a curve of metrics ¢;, the derivative of Ding-functional is

oD om e ?
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we see the critical point of this functional is the Kahler Einstein metric, and its
second derivative is

or == [@—ospg( [ e @-osie s [ (0s—moe)

where the metric g = i00¢;, and if we denote the term f = ¢" — [0¢|2, ¢, = [y e
and 0, = [0¢'|2 — (m.¢')?, the equation reads

8;12?_ /fw(;, /f+5t) /e,

then we are going to consider the behavior of Ding-functional on the approximation
geodesic. First from Chen’s theorem, we can find a C!! geodesic ¢, connecting the
two Kéahler Einstein metrics. Moreover for any small € > 0, there is the smooth
approximation geodesic ¢(t,z) connecting the two end points ¢g, ¢, which con-
verges weakly to the Ct'! geodesic. Now if we consider the Ding-functional on these
approximation geodesics, we have estimates

0°D
W 2 —E/Xdeth

from f = edeth/detg > 0and [, d.e% > 0. Let € — 0, we see that Ding-functional
keeps to be convex on C!'! geodesic. Now we can integrate it back along ¢

oD oD _ _
E(l) —E(O) = \/XXI —fwgdt—i— o f@ ¢/Ctdt+/ 5t€ ¢/Ctdt,

XxI

notice that at end points ¢q, ¢; are both Kéahler Einstein, hence the first derivative of
Ding-functionals vanish. And on the approximation geodesic, we have the equation

fdetg=cedeth

and f < ¢” < C uniformly independent of e. Then the equation above reads

Ae = fe=?/cudt —I—/ 5e=? Jeydt

XxI XxI

> fe*‘ﬁdt + / Sie0dt,
XxI XxI

because we have uniform CY estimate on ¢.. Now since we want to discuss the
eigenfunctions on each fiber, we need to a lemma to pull back the estimate to fibers.
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Lemma 17 Suppose F.(t) is a sequence of non-negative function on [0, 1], with in-

tegration estimate
1
/ F.dt < Ae,
0

then for almost everywhere t € [0,1], we can find a subsequence(depending ont) F,,
such that
Fej < CtEj

where Cy is a constant independent of €.

Proof 9 Let ]56 = F./e, then by Fatou’s lemma
1 B 1
/ liminf F.dt < lim inf/ F.dt < A,
0 € € 0

hence the function liminf, F. e L', i.e. for almost everywhere t, there is a subse-
quence Fe, and a constant C; such that

FEj < Ct7

hence
Fej < CtEj .

Now put F, = [, fee™% + [, d.e~? and notice the two terms on RHS are both
non-negative, we have proved

Proposition 18 Consider the approximation geodesic ¢. connection two Kdhler Ein-
stein metrics. For almost everywhere t, there is a constant Cy, such that for each
such t, there exists a subsequence ¢€;, such that the following estimates

/ f6_¢(€j) < Cth
X

and
/ (062 — (r.6))e*(c;) < Cue,
X

hold simutaneouly.

23



6 Convergence in the first eigenspace

In this section, we shall focus our attention to the one fiber X x {t}, and picked up a
subsequence ¢, from above section. Then we can consider the sequence of weighted
Laplacian operator O (we shall omit the subindex j here). For each e, we can
arrange its eigenvalues as 0 < A\{ < A < -+, corresponding with one eigenfunction
ei(€), i.e.
Og.ei(€) = Ajes(e).

Then let u.(z) be a sequence of smooth functions on X, such that u, L kerd. Then
it decomposes into the eigenspace of weighted Laplacian operator Oy , i.e.

ue = B a;(€)e;(e)

where e; € A;, and in prior, N, could equal to +oc in the above notation. Then
we can consider the action by the weighted Laplacian operator on this sequence of
functions, i.e. we can write Oy u, as

Ve = Wy, 10U

and
0%v, = BN Xoay(e)e;(e).

Under certain constraint, we claim these vector fields v, will converge to a holomor-
phic one with the same equation satisfied,

Proposition 19 Let u. be a sequence of functions as above. Suppose it satisfies the
following conditions:

1) B |a;(e)|? < A for an uniform constant A, and the sums does not converge
to zero.

2) there exists a uniform constant K, such that Ny < K for each €

3) the following estimate holds

/X (0ul?. — (mLu)?)e < Ce. (6)

then by passing to a subsequence, we have
Ue = Uso

in strong L? sense, where us, € W12 is nontrivial. Moreover there exists a nontrivial
holomorphic (n — 1,0) form vs with value in —Kx, such that

Ve = Vo
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in strong L* sense, and the equation

Wy N\ Voo = 5%0
holds in the sense of L? functions, where g is the metric found on the CY1 geodesic.
before proving the proposition, we need a lemma

Lemma 20 Let f;, g; be two sequence of L* functions with ||f;g;||z» < C for some
p > 1. Suppose that [, |f;|*dp < C" and g; — g € L* in L? norm, then there exists
an L? function f such that

fi9; — fg € LP

in the sense of distributions.

Proof 10 First note there exists an L* function f such that f; — f in weak L*
topology. Then we check

/X(fg — [i9;)dp = /Xg(f — [)dp + /X filg — g;)du,

the first term on the RHS of above equation converges to zero from the weak conver-
gence of f;, and the second term converges to zero too, since

[t gau < ([ 15an) [ 1o gPdn) .

hence f;g; converges to fg in the sense of distributions. Moreover, from the LP bound
of fjgj, we have an LP function k such that f;g; — k in weak LP topology. Then

fo=k
as LP functions.

Remark 1 Suppose the sequence |f;| is uniformly bounded in lemma 13, then the
limit f is an L™ function, then fg € L? automatically.

Proof 11 (of proposition19.) First we can write equation (2) as
S (Af = Das(e)]* < Ce
by Futaki’s formula, we know

/x |Lg.ucl?e™ = B N4 — 1las(e)
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< KCe
fmm condition (2) and (3). But if we write v. = X 11 for some vector field X, =

Xfaza, then
< - 0X?
7 ik
hence the L? norm is
0X*9XB 0X
2 by 2
ILgul” = 9059"" x5 = I35 1o

now we choose a fixed smooth background metric h to estimate

|8_X|2 _ g 2X° d
9z In = has

5 o _
— haB hH ga”u,ﬁ;\ g“’ﬁu,w —

1
FU,&Z\F
Ao 1 ,
A ) A A |ua)\|

0X
< Cltrgh)| =1,

<E(

where we compute in some normal coordinate. And correspondingly, the L* norm of
X can be estimated by

| XT7 = Pagg™ u g™

< (trgh)|oul?.
Recall that f = ¢" — ya¢’\3 is bounded from above, then we can estimate the L*

norm of Ov as
X X 51
/|8—|2deth /|6_|h det h
X 82

C 0X
< — _2
S / |82 \g(trgh)detg
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/ | ‘2 7¢g C”.

note X is a vector in (1,0) direction, which means locally its coefficients are func-
tions. Hence its full gradient is uniformly bounded in L* norm, i.e.

/ IVX.|2deth < C
X

for some constant independent of e. We claim it’s also L' bounded. Recall from our

choice of €, we have
/ fe_d)E < Che,
X

eFEdeth— /fe P < O,

then we can estimate

hence

/|X|hdeth /|X|2 Fo det, g)?
o [ X[ (det g)%e™)( / o)
X

X
< 0'(/X BufZet0) < C".

Hence it’s uniformly L' bounded, then by Poincdre inequality, we know || X||z: < C
for some uniform constant. These together imply the sequence of vector fields X, are
uniformly W42 bounded. Now by compact imbedding theorem, there exists a vector

field X = X* 831 W2 such that X, — X in strong L* norm.

Moreover, observe that

([ (G = ([ 1G5 et detg)
< ([ 155 Bengrem)( [ o)
x 0z X

0X

< 2 —g Fy

< [ Gk e

<C”6/ ng:C"/ fe %
X X
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<(C"e—=0

from our choice of sequence €. Hence 0X — 0 in weak L' sense, but this is enough
to imply OX = 0 in the sense of distributions. Then X is in fact a holomorphic (1,0)
vector field on the manifolds, and we can define voo = X 11, which is a —Kx wvalued
holomorphic (n — 1,0) form.

On the other hand, for the function u. itself, we have

/ |Ou,|} det h < C/ |Ou|? e
be be

= Co5 Xlai()? < 7,

hence u. has a uniform W42 bound, and it converges to a function u,, € Wt? in
strong L? morm. Then by condition (1), the L* norm of us is non-trivial. Moreover,
we know the equation

Gop X = ule) 5
holds for every €. Now Yep s uniformly bounded from above, hence converges to

9o M weak L*, where g5 is the weak CY solution of the geodesic equation. And
X. — X in strong L?, hence by the Remark after lemma 13, we see that the equation

9ap X = Ogtse

holds in the sense of L* functions. In particular, they are equal almost everywhere.
Finally, observe that us L ker 0, since

/ U™ ® = lim [ ue % =0.
X

e—0 X

Hence if voo is trivial, then Ou = 0, i.e. u € ker 0, which implies u =0, a contradic-
tion. So vy 1 non-trivial too.

Notice that before taking the limits, the vector field v, also satisfies another

equation, i.e.
%0, = BN Xeay(e)e;(e).

the LHS converges weakly to 9%v.,, since for any smooth testing (n,0) form W,

/ Ve /\We_d’g — / Voo /\We_d’
X X
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and the RHS converges to u., since condition (3). And the RHS
=2 Xai(e)ei(e) — uel | < KB (] — 1)]ai(e)]
converges to zero. We have equality
0%V = Uy

holds in the weak sense. But since both sides of above equation are L? functions,
the equation actually holds as L? functions. This reminds us that u., might be the
eigenfunction of the operator Oy with eigenvalue 1. In fact, we have

Corollary 21 Let u. be a sequence of functions satisfying condition (1) - (3) in
proposition 7, then there exists a function us, € W42 such that

Ue — Uoo

in strong L? sense, and us is a nontrivial eigenfunction of the operator Oy, with
eigenvalue 1.

Proof 12 First notice u € dom(Dy,). This is because Ou = wy A Voo, hence u €

W C dom(0), and Ou € dom(é(}';g) since Voo 18 holomorphic. Now for any smooth
testing (n,0) form W with value in —Kx, we compute

/X 35, Buce ATV = (85, D, W),
= (Do, OW),
= (Wy A Voo, OW),
= / V2 OaWe %
X

- (8¢QUOO7 W)Q

:/uoo/\We_%.
X

hence Oy s = Uso as L? functions.
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7 the eigenspace decomposition of ¢’ (the easy
case)

In this section, we shall construct a sequence of functions u., which could satisfy the
condition (1) — (3) in proposition(19) from ¢., then construct a holomorphic vector
field from there. However, we need to discuss case by case this time, i.e. let

Tid = LT ai(e)es(e),
then
O (m10,) = BT Nai(e)ei(e).
Note the restriction from the vanishing of Ding-functional gives
IO = Dlay(e)? < Ce (7)

by passing to the chosen subsequence €;. And notice that

/ 882 < C / B2 e
X X
< C/ gbé'e’“z’é <,
X

then there exists a function ¢» € W2 such that ¢/ — ¢ in strong L? norm. Hence

we can assume .
F < Sl < 2 )
for € small enough.

Remark 2 In fact ;we have |¢c|cr < C, hence ||pc||wir < C for any p large. Then
by compact imbedding theorem, we can assume

P = ¢
in C%% norm.
In fact, we are going to prove
Theorem 22 There is a holomorphic vector field v on the manifolds, such that
wy Av = 0

where 1) is the L* limit of ¢. and g is the CY1 solution of geodesic equation. Moreover,
Y is a eigenfunction of the operator Oy with eigenvalue 1, i.e.

D¢gw = w
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In order to prove this theorem, we shall discuss case by case. First there are two
possibilities for the convergence of eigenvalue Af:

Case 1, there exist a finite integer k such that the following two things hold
i) for each 1 <i <k, \{ = 1 as € — 0;
ii) Aj,, does not converges to 1.

Case 2, for each 1 <7 < 400, \{ =+ 1 as e — 0.

Let’s discuss Clase 1 first in this section. In this case, we shall define
ue = X% a;(€)es(e).

Notice that the divergence of A§ implies A\{ > 1 + ¢ for some small § > 0, by passing
to a subsequence. Then since A{ is a non-decreasing sequence in 7, we have for all
1>k

A >1490

for the same subsequence. Now by equation (3), we see
Ce > S, (A = Dai(e)

> % 0lai(e)l,

hence X% |a;(€)|* — 0 when € — 0. This gives condition (1), i.e.
S Jai(e)]? > 1/4.

condition (2) is satisfied because A — 1 by the assumption, and condition (3) is
automatically satisfied by equation (3). Hence we can generate a holomorphic vector
field vy from proposition(19).

Moreover, we could see || ¢L —u.||L2 converges to zero in above argument, hence
we actually have

) = Un

after taking the limit. And hence it’s the eigenfunction of Oy with eigenvalue 1, by
corollary (14). Hence we proved theorem(22) in this case.
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8 the hard case

Now we are going to deal with Case 2, i.e. we assume

A — 1
for each 1 < i < +00. Here we still subdivide it into two subcases as follows:
subCase 1, for any 1 < k < oo, the partial sum ¥~ !a;(¢)|> — 0, when € — 0.

subCase 2, there exists a finite number K, such that ¥ '|a;(¢)|? does not con-
verge to zero.

Before going to the subcases, we need a lemma first

Lemma 23 Let ¢;(€) be the eigenfunction of the weighted Laplacian Oy with eigen-
value XS, i.e.

Og.ei(€) = Aei(e).

Suppose there exists an uniform constant C, such that \{ < 1+ Ce, then e;(€) con-
verges to a non-trivial eigenfunction e; of the operator Oy, with eigenvalue 1. More-
over, suppose there is another j # i, such that \; satisfies the same condition, then
ei, €j are mutually orthogonal to each other.

Proof 13 we define u. = e;(€), then condition (1) and (2) hold automatically. And
condition (3) is also satisfied because

/ (|5u€\i — (miu)?)e % = (A — 1) < Ce,
X

hence by proposition(22), we get
ei(e) — e

in strong L* sense, where e; € W' is a eigenfunction of Oy, with eigenvalue 1. Now
for j # 1, we have similar convergence and eigenfunction e;, but

/ eije % =lim [ ele)ej(e)e =0
b

e—0 X

by the strong L* convergence of e;(€), and L™ convergence of ¢..
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Now let’s begin to discuss the subCase 1. For any fixed k, by equation (8), we
can find a large integer N, such that

Dot las(e)? = 1/4

by the assumption in this subcase, for e small

Ne,k

x5 ai(e)]2 > 1/8.

but then by equation (7),

1

g = D ST - D]a()F < Ce,

because the sequence \{ is non-decreasing. Hence we proved for each £,
A <1+8Ce

for € small enough. Now by lemma 16, we get an eigenfunction e for each 1 <17 <
oo, and they are orthogonal to each other. However, this is impossible since the
eigenspace with eigenvalue 1 of an elliptic operator Oy  has only finite rank. Hence
the subCase 1 actually never happens.
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9 the final case

Let’s discuss subCase 2. Under the assumption in this case, we can find K7, a finite
integer, to be the first number such that X "a;(€)|*> does not converge to zero.
Then by passing to a subsequence, we can assume Y| a;(€)|> > 6, for some fixed
positive number d;. Now consider the truncated sequence

Ai(¢) = B0, ai(e)es(e).

suppose there exists another integer Ky > Kl, such that Y% 1]al( )|? does not
converge to zero, and then we can assume E |a,( )| > 8. We can repeat this
argument, to find 0 < K; < Ko < K3 < ---, but we claim this process will terminate
in finite steps.

Lemma 24 There exists an finite integer n, such that
2% Jai()f? = 0.

Proof 14 Let’s define a sequence of sequence of functions u as

ul =B ai(e)eq(e)

:
ul) =% ai(e)ei(e)

ul == Efij};_lai(e)ei(e)

€

and so on. We now claimu¥ satisfying all the conditions (1) - (3) in proposition(19).
Condition (1) is satisfied automatically by assumption, and condition (2) is satisfied
since N, — 1 for any fived k. Condition (3) is satisfied too because of equation (3),
1.€.
ik (6 = Dla()” < Ce,
then by proposition(19) and corollary (14), we see there exists an non-trivial W2
function u'9) such that
w9 5 )

in strong L? norm. And u'9) is a eigenfunction of operator Og, with eigenvalue 1.
However, notice that u! and u® are mutually orthogonal, and by the same argument

used in lemma 16, this implies
OB

for all different j and k. Now we can find finite many such u'9) since they are all in
the eigenspace with eigenvalue 1 of the weighted Laplacian operator Oy , hence we
proved the lemma.
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Next we are going to complete the proof of theorem(22). Now let’s define
ue = B a(e)eq(e)

where K, is the number appearing in lemma(24). Now people can check the three
conditions in proposition(19) are satisfied, and hence there exists a W12 function u
such that

Ue — U

in L? sense, and u is a eigenfunction with eigenvalue 1 of operator Og,, and there is
a holomorphic vector field v such that

wg Nv = ou.
Moreover, the difference of the L? norm is
1710, = uellz2 = B% lai(e)|* — 0
by our choice of K,,, hence we have
UV = u.
And we complete the proof.

Remark 3 If there is no any non-trivial holomorphic vector field on X, then propo-
sition 12 directly implies ¢’ = 0 almost everywhere on X x I from above case by case
discussion. Without using corollary 14, we don not need to invoke any eigenfunction
of the first eigenspace of the weighted Laplacian operator in the limit. Hence we
proved uniqueness in this case.
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10 Time direction

Up to now, we construct a holomorphic vector field v; on a fiber X x ¢ for almost
everywhere ¢ € [0, 1]. And this vector field can be computed as

vy = wg_néw

where ¢, — 1) in strong L? norm at time ¢. Notice that there are more information
to use for the convergence of ¢.. In fact, we know |¢/|, |¢:z| and |¢,7| are all uniformly
bounded on X x I, i.e.

|¢/|C1 < C,

then we can assume ¢, — ¢/ € C'(X xI), in C>* norm. Hence the two limits actually
agree with each other, i.e.

b=
as L? functions on X. Now the holomorphic vector field can be written as
vy = wy 0.
Then we can define the following subset of the unit interval
S := {t € I; there is a holomorphic vector field v, on X x{t} satisfying w, vy = 0¢'}
we know the set [ — S has measure zero. Next we are going to prove a stronger result

Proposition 25 The subset S coincides with the whole unit interval, i.e.
S=1.

Proof 15 First recall that ¢ — ¢ in C¥*(X x I) norm, by the uniform bound on
C! norm of ¢. Then on each fiber X x {t}, the convergence still holds, i.e.

Ge — ¢

in CO*(X), and this implies
Yeaf " Jop

in the sense of distribution on the fiber X x {t}. Pick up a pointt € [ — S, and a
sequence t; € S such that t; — t. Observe that the space of all holomorphic vector
fields is finite dimensional, i.e. let

I'(X):= HY(TX),
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then ' is a finite dimensional vector space. Write v;, = X;11, where v,; € I' is
the vector field satisfying the equation in the definition of S. Observe that vy is the
unique solution to the following equation

0%vy = O,/ =719

under the condition H*'(X) = 0, then the standard L? estimate(Berndtsson[7]] gives
us

[lodlln < CllmwL¢|[n

for some fixed metric h and uniform constant C' independent of time t. Consider the
sequence {X;} € HY(TX), the uniform bounds on the L? norm of X; shows it must
converges under the fized metric h, i.e. there exists a vector field X € I' such that

IX — Xill; — 0.
Let’s write g,z = go3(t) and g; .5 = gap(ti), then
1X = Xi|l; < ClIX = X,
hence converges to zero too. Now we claim the equation
wy AN X = 0¢'

holds in the sense of distribution. Put x(z) be any smooth compact supported testing
function on X (we can further assume x is supported in some coordinate chart), we
fix a pair of index «, B, and compute

/ (905X = 9i,0pXi)x(2) det I
X

= / X(9ap = 9i.0p) X" deth +/ X(X* — X7")g; 05 det b,
X X

since g; o5 18 uniformly bounded, the second term in above equation converges to zero
in strong L* sense. And the first term, we can decompose it into

/X(ga,@_gi,aﬁ)Xadeth

X

_ / X(0a5 — 955) X det . — / (G503 — 9.05) X® det i+ / M6 o5 — 065) X deth,
X X X
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the first and second terms converge to zero as € — 0, and for the third term, we
integration by parts

/ X(G a5 — Gop) X" deth = / X3(¢5 0 — ¢5) X" deth
X X

= / Xa(ti — )¢, (1) X det h
X
< Alt — ¢

where A is a constant independent of €. Hence

/ X(9ap — Giap) X deth — 0
X

as t; — t, and we proved
gi,aBXia — gi,aBXia

in the sense of distributions. But we know ¢, — ¢ in C** norm, hence 0¢}, — 0¢'
in the sense of distribution too. Finally, the limit equation

gaBXa = (bf/é

holds in distribution sense on X x {t}. Now since both sides in above equation are
L functions, we see the equation actually holds in the sense of L? functions by the
same argument in Remark 1.

Now it makes sense to talk about the time derivative of vector fields v; in distri-
bution sense, i.e. on the C''' geodesic, we compute in the sense of distributions

95 = (905X°)
and computation implies
(900 0'5) 5 = o5 X + gas(X*)'.
note the RHS is in fact equal to
V5(0aX?) = ¢ogX* + 90X = P05 X",
here Leibniz rule makes sense since X is holomorphic. Hence we get
9ap(X*) =0
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which is equivalent to the vanishing of %vt = 0, i.e. we have an unchanged holomor-
phic vector field v on the geodesic.

We finished the proof of uniqueness theorem by taking the holomorphic vector field

0

V:ZE—

v,

then it’s easy to check £y (i00¢;) = 0 during the flow, hence the induced the auto-
morphism F' preserves the metric along the geodesic.
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11 Twisted Kahler-Einstein metrics

Let X be a compact complex Kéahler manifold with —Ky > 0, and S be a semi-
positive R-line bundle on X, i.e. there exists a smooth Hermitian metric ¢) on the
line bundle S such that

0 =00y > 0.

Notice here 6 is a globally defined closed (1, 1) form, and then we are going to consider
the following twisted Kahler-Einstein equation

Ric(w) =w+0 9)

on X. Here we assume —(Kx + 5) > 0, and a Kéhler form w can always be written
as B

w = 100¢
where ¢ is a positively curved smooth metric on the R-line bundle —(Kx +5). And
we will also use another notation when there is no confusion, i.e.

Wy = wo + ddp

where wy is a fixed background Kéhler metric in the same cohomology class, and ¢
is the Kahler potential. We shall consider all such metric with L> potentials, i.e.

¢ — @] < +o0

Let’s denote these metrics as PSHo(—Kx — S), and we always assume [, w" = 1
in the following. Now suppose there exists two Kahler metrics ¢y and ¢; satisfying
equation (9), i.e.
. e~ bi—v
w(m = W (10)
for i = 1,2. We then claim they are the same up to a holomorphic automorphism,
ie.

Theorem 26 Suppose w; = i00¢1 and wy = i00py are two solutions of twisted
Kahler-Einstein equation with the same weight 0, then there exists a holomorphic
automorphism F on X, such that F*(wy) = wy and F*(0) = 0. Moreover, this
automorphism is induced from a holomorphic vector field V.

This is the twisted version of uniqueness theorem on Kahler-Einstein metrics on
Fano manifolds. In order to investigate this equation from variational methods, we
shaw introduce the twisted Ding-functional, whose critical point corresponds to the
twisted Kéhler-Einstein metric.
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Definition 1 The twisted Ding-functional D is a functional defined on the space of
all plurisubharmonic metrics ¢ € PSHo(—Kx — S), such that

D .= —5+f¢

where
1

£0) = i [ THalo —ouh

and

Fuy(@) = —log/)(e_¢_w.

Remark 4 Since ¢ is a metric on the line bundle —(Kx 4+ S) and v is a metric on
S, we see T = ¢+ is a metric on —Kx, and e™7 is a volume form on X.

Notice that the two functionals £ and F will be changed in a new normalization,
but Ding-functional is a normalization invariant. Now suppose there is a smooth
curve ¢, in the space of metrics, and we can compute derivatives of twisted Ding-

functional on it, i.e.
82) e Y
¢ 6 o— w)

Hence twisted Kahler-Einstein metric is its crltlcal point, and

= s+ ([ e[ @ -

where 7 = ¢ + 1, and the orthogonal projection is 77u =u — [ue™"/ fX e~ 7. Now
suppose ¢y, 0 < ¢t < 1is a smooth geodesic connecting ¢, and ¢o, we see

—T 821) ) T —T 2 2 —T
([ ez = [ (00, — wiey)e+ [ (00, ~ 1000 )
b's b's b's
where g, is the metric corresponding to the Kihler form w, = i007, and hence
Wr 2 We.

This implies the second term on the RHS of equation(11) is non-negative, i.e. g f ¢’ ﬁqb’ o =

g‘T’B ¢ B(bfa, and the first term is non-negative from the Futaki’s formula with respect
to the weighted Laplacian operator [16]

Hence we proved the following



Proposition 27 The twisted Ding-functional s convex along smooth geodesics.

We can further observe that on the smooth geodesic ¢y, the twisted Ding-functional
must keep to be a constant, i.e. 9*D/0t?> = 0 on the geodesic, and then the following
two equations

6,(t) = /X (1067 — (x7¢)2)e™ =0 (12)

k(1) = /X (1062, — 1082 )e™™ =0 (13)

hold simultaneously for each 0 < ¢t < 1. The equation (12) implies there exists a
time independent holomorphic vector field V = X 0‘%, where

X = gfﬂébfg

such that the Lie derivative
Ly (Tt) =0

where V, =V — %, i.e. the induced automorphism F' preserves the metric as
F*(w-(t)) = w:(0)
for any 0 <t < 1. Then from the twisted Kahler-Einstein equation we see
F*(Ric(wg,)) = F*(wg, +0) = wg, + 0 = Ric(wyg,),

hence (F*wy, )™ = (wg,)"™ because they are in the same cohomology. By the unique-
ness of Monge-Ampere equation, we get

F*(w¢1) = Wey)

the equation
F*(0)=10

follows directly. Up to here, we proved theorem 26 under the assumption of smooth
geodesics. Moreover, the equation (13) implies the twisted Kahler-Einstein metric is
really unique if € is strictly positive. Next, we shall prove the theorem in the case
when there is only C*' geodesic connecting two twisted Kahler-Einstein metrics.
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Proof 16 (of theorem 26) Let’s consider the e-approximation geodesics connect-
ing o1 and ¢s, i.e. the solution of the following equation

(¢" — |8¢’|Z¢) det g, = edet h
with boundary values
$(0,2) = ¢1(2);  &(1,2) = da(2).
Now if we define f = ¢" — |8¢’]§¢ > 0, then we can see
fdetgs =edeth

and the second time derivative of twisted Ding-functional is

%2722)_ /fdetg¢+/ 1{/ (f +0, +k)e T}

Notice that [, f-e™", [y 6-e77 and [y ke™™ are all non-negative, hence

/ (f +06, +k)e7dt < eC
XxI

for some uniform constant C' independent of €. If put f, = ¢" — |8¢'|3T =f+k>0,
we see that for almost everywhere t € [0,1], there exists a constant C(t) and a
subsequence €;(t) such that

| rem@ <cws [ 5eo) <l

from Fatou’s lemma. Furthermore, all the uniform CY' estimates hold for metrics
7(€) on the approximation geodesics, because

Te:(ée—i_w

and Y is a fixed smooth twister here. Hence by considering the weighted Laplacian
operator O, the same argument in [16] implies there exists a time independent
holomorphic vector field V = X* ‘Za, such that the induced automorphism F of X
will preserve the metric, i.e. F)(w,(t)) = w,(0), then as we argued before in smooth
case,
F*(W%) = Wey
and
F*(0) =10
for all t € [0,1].
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In prior, the holomorphic vector field V = X*-Z obtained from above proof is

0z«
computed with respect to the metric 7, hence
[ aB /-
X - g'r ¢7ﬁ
However, we know the condition
Ft*(w¢t) = w% + 60— F[‘@

for each ¢ € [0, 1] from the proof. Hence the geodesic g4, is smooth both in space and
time directions, and the twisted Ding-functional D keeps being a constant along the

geodesic ¢y, i.e.

oD
o =

for all t € [0,1]. Hence ¢; keeps to be the local minimizer of the twisted D-functional
along the whole curve, i.e. it satisfies

Ric(wg,) = wy, + 0.
From the same argument as above we have
F(wg,) = we(o);  Fy(0) =6

for each 0 < ¢ < 1. Then the curve generated by the one parameter group of
automorphisms F; coincides with the geodesic wg,, and this is to say the C'! geodesic
is in fact smooth. Moreover, we can prove

Corollary 28 Suppose there is one point p € X, such that the closed (1,1) form 0 is
strictly positive, i.e. 0(p) > 0, then the twisted Kahler-Einstein metric wy is actually
unique.

Proof 17 Suppose we have two different twisted Kdhler-FEinstein metrics wy and wo,
then we can assume there is a smooth geodesic connecting them by the argument
before the corollary. And this curve is the one parameter group of Automorphism F;
generated by a nontrivial holomorphic vector field V. Now take the time derivative
in the integral equation, we see

Ff (Ly(wg,)) =0,

and hence
O(Vawg,) =wy, =wl,

44



which implies

oVi0)=0

Now notice the existence of twisted Kdhler-FEinstein metrics on the manifold X im-
plies the first betti number by = 0, i.e. there is no nontrivial harmonic (0,1) form,
hence V30 =0, i.e.
X5 =
and then we can write B
X* = 9370l
for any time 0 <t < 1. Now in a neighborhood of the point p € U, the (1,1) form 6

keeps to be strictly positive, 1.e.
0 > ew

in U. But the equation X*0.,5 = 0 implies the holomorphic vector field V' is iden-
tically zero in an open set U, hence it must be identically zero on X, which is a
contradiction.

Finally by combining the results from theorem 26 and corollary 28, the proof of
theorem?2 is finished.
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12 Smooth perturbation of conical Kahler-Einstein
metrics

We shall introduce conical Kahler-Einstein metrics first in this section, and consider
the perturbation of these metrics. Let D be a smooth divisor on the manifold X,
such that the associated line bundle Sp of this divisor is semi-positive. Suppose the
R-line bundle —(Kx + (1 — 3)Sp) is strictly positive, where 0 < 8 < 1 is any real
number. Then each L* strictly plurisubharmonic metric ¢ on this R-line bundle
associates with a Kahler form

Wy = zaggb >0

as before.

Definition 2 A singular Kdhler metric w is a conical Kahler metric with angle [
along D if the following conditions are satisfied:

(i) w is a closed positive (1,1) current on X, and is smooth on X\D;

(i) for every point p € D, there exists a constant C, such that in DNU = {z; = 0},
where U s a coordinate neighborhood of p, we have

C'_lwg <w < Cuwg
where wg s a local model conical metric on DN U, i.e.

dzt A dz?
21228

wg =V —1( + Z?Zdei A dii)

From now on, we shall suppose wy is always a conical Kéahler metric, and then we
can talk about the Kahler-Einstein equation in this setting: we call wy is a conical
Kahler-FEinstein metric if the following equation is satisfied in current sense

Ric(w¢) = Wy + (1 - 6)6D (14)

where dp is the integration current of the divisor D, and it’s equivalent to the fol-
lowing Monge-Ampere equation

e ?/|s]>~*
Jx e ?/|sP=2#

Wy = (15)
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where D = {s = 0}. Notice that e%/|s|>=%? is a volume form on X by the coho-
mology condition, since log |s|? corresponds to a plurisubharmonic metric on the line
bundle S.
Before going to this singular case, it’s natural to consider the perturbed version
of this equation, i.e. we shall consider the following smooth approximation equation
o=

n o= 16
R R 1o

where ) is any semi-positively curved smooth metric on the line bundle S, and

e %
He = / 2 W\1-8
x ([s[* +ee?)
is the normalization constant. This is equivalent to the following geometric equality
Ric(wy,) = wy, + (1 = B)xe (17)

where
Xe = dd®log (|s|? + ee¥)

Now we claim that y. is an non-negative closed (1,1) form as

Lemma 29 For any € > 0, we have
dd“log (|s|* + ee?) > 0.

Proof 18 B
001og (|s|* + ee?)
sds + ee¥ O
— a —_—
{ |s|? + ee? }
ee? = 9

and notice the above term is non-negative if the smooth metric 1 is.

Now suppose we have a smooth solution wy, of equation(16), then theorem(2)
tells us

Corollary 30 The smooth solution of the perturbed conical Kdhler-Einstein equation
wg, 5 actually unique.

47



Proof 19 It’s enough to prove there exist one point p € X, such that x.(p) > 0.
First notice that this is the case if the metric 100v is not completely degenerate.
Otherwise, we have

oY =0
on X. But meanwhile we should have
_ ds
gy =2
s

if xe vanishes. And then 100y = 8p, where 6p is the integration current of D, which
1S a contradiction.
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13 Construction of the perturbed solution

In this section, we shall discuss the existence of the solution of the perturbed Kahler-
Einstein equation. In general, this is unknown even if the solution of equation (15)
exists. So, here we need an extra assumption: the twisted Ding-functional is proper.

In the following, we shall write the twisted Ding-functional as D, with respect to
the smooth twister x., and Dy with respect to the singular twister (1 —3)dp, i.e. we

have
67(25

De(¢) = —=&(¢) — log/X (|82 + ee?) =5

and
67(25

DM¢»——6@0—kg/QE@:£.

Notice that the critical point of the twisted Ding-functional D, (or Dg) is the solution
of the twisted Kéahler-Einstein equation with twister x. (or (1—/)dp). Next, we shall
introduce another important functional Aubin’s J functional, i.e.

T (9) :z/waS—S(sO)

where ¢ = ¢ — ¢. This functional is a kind of W2 norm of the potential ¢, and we
can compare it with Ding-functional

Definition 3 The twisted Ding-functional D.(or Dg) is called proper if there exists
some constant a > 0 and b such that

D(¢) = aJ(9) +b
for all p € PSH(—Kx — S).

Remark 5 Notice that the properness of the twisted Ding-functional is in fact in-
dependent of the twister as long as the twister is smooth. This is because the twisted
Ding-functionals are comparable for two different smooth twisters, i.e. let 1y and 1o
be the corresponding metrics associated to the twisters 01 and 65 , then there exists
a constant C' such that

—C < =Py <C

then the twisted functionals satisfy

Funl0) = o |

etV — _log / o= d— 1+ (1 —2)
X X
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hence

|F¢1_‘F¢2|<C/

for some uniform constant C'. And since € and J functionals are independent of
the twister, the assertion follows.

Remark 6 For the special twister ., observe that the major term F in the twisted
Ding-functional has the following relation

-Feg-/—:e’

if € < €, hence D, is decreasing when € becomes smaller. Moreover, if ¢ = 0, it

achieves its minimum , i.e.
DB < De

for all € > 0 small. Hence in the practice, we can simply require Dg to be proper.

Generally speaking, the purpose for introducing properness of Ding-functional is
to solve the following continuity path

Ric(wd)i) = tw¢t + (1 — t)w() + (1 — ﬁ)Xe

where wy is a fixed smooth Kahler metric in the same cohomology with wg, and
Xe = 100, for ¥, = log(|s|? + ee¥). This equation is solvable up to t = 1 if the
twisted K — energy [4] is proper, and this condition is equivalent to the properness
of the twisted Ding-functional from the argument of Berman[4], so the existence of
smooth perturbed solutions are guaranteed from here. However, this is not the end
of the story since we want to make sure these perturbed solutions can approximate
the conical one in some sense.

In order to do this, we need to consider a kind of conical Kéahler metrics with
better regularity. Donaldson[12] introduced a special Holder space C>%# where 0 <

1

o< g - 1 for real valued functions on X, and we can define the so called C?*”

conical Kihler metric[12] by requiring that a local Kihler potential lies in C>%#, i.e.
in a local coordinate chart near the divisor D, we can always write

w = i00(p + )

where ¢ € C?**#, and v is some smooth function. Be aware that this condition is
stronger than the condition of conical Kéhler metrics. Simply speaking, for fixed
angle 3, a C>*? conical Kahler metric is a conical Kéhler metric with uniform C>®#
norm.
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Now let’s take w,, to be aC 2,08 conical Kihler-Einstein metrics on X and assume
the twisted Ding-functional Dg is proper, then Chen, Donaldson and Sun’s work|[9]
provided a way to construct the following a family of sequence of perturbed solutions

We, (tv ) = wp + Zaé(bev
and it satisfies the following equation

Ric(wg, 1)) = twg, (1) + (1 = Hwy, + (1 = B)xe.

Notice that for ¢t = 1, wy (1,.) = wy, is exactly the solution of the twisted Kéhler-
Einstein equation with smooth twister (1 — 3)xe, i.e.

Ric(w(be) = Wy, + (1 - /B)XE7

and when ¢ = 0, the metric wy, (0,.) = 1. will approximate the original metric wg

because we require
1

(Is[; +e)'=7

where w,,_is a small perturbation of the original metric such that w, — ws in C7(X).
Moreover, we know that when ¢ — 0, the sequence of metrics ¢.(t,.) converges to
a metric ¢g(t,.) globally in C7 and locally in C®7 outside the divisor D, and the
limiting metric ¢y (¢, .) will satisfy the following equation outside D

n _ —pethuyg n
Wy, = € o)

1
n — —(1— ho n

wh = e tpo—(1—t)pp+ OTQ,BWO (18)

Eln

with
¢0(0’ ) = ¥g-

Observe that above equation is in fact equivalent to

wgo — 6_t(¢°_‘p5)w25 (19)

with ¢ € [0,1]. Now we claim the curve of metrics ¢o(¢,0) is in fact fixed. The
argument of the claim is similar with the end of the paper [9], and we shall recall it
here for convenience of the reader

Lemma 31 The continuous family ¢o(t,.) is independent of the time t, and hence
¢0(17 ) = ¥g-

51



Proof 20 We shall argue like the end of the paper [9]. First notice that the weighted
Laplacian operator A, is continuous and invertible as a map

A - Cgmﬁ N Cmﬁ

¥p -

Y8

for some v < % — 1, and Cg is the space of functions in C*7? with zero average.

In fact, by Donaldson’s Hélder estimate of conical metrics in [12], we can prove the
first eigenvalue of this operator is strictly positive, i.e.

Ay, > A

for some constant A > 0, and any u € Cg’%ﬁ. Now since the term e "%0=98) [jes
in CVP, Implicit Function Theorem implies the existence of a continuous family of
solution of the following equation

w:/i — o tdo—vp)
with Y(t,.) € CS’V’B, for t € [0,e). Notice that ¢(0,.) = g, hence (t,.) must
coincide with ¢o(t,.) up to a constant in this short time. Then we can guarantee that

dolt,.) € C27 for t € [0,c).

Next we consider a constant continuity path ¢, = pg, which satisfies the equation

— o tet=pp) ,n

n
w@t '2°h

Now by Implicit Function Theorem again, we have a unique path of solution for
t < min(ey, A/2), and hence

oo(t,.) = ¢, YV 0<t<min(e,\/2).
Finally we can repeat this procedure again and again, it will reach t =1, i.e.
¢0<1’ ) = ¥g-

Recall from our previous construction, we see the sequence of twisted Kéahler-
Einstein metric ¢, will converges to ¢g in C7, hence we have

Proposition 32 Suppose w,, is a C>8 solution for the conical Kdhler-Einstein
equation along the divisor D on X, and the twisted Ding-functional is proper, we
can construct a sequence of perturbed Kdhler-FEinstein metrics ¢., such that

¢e_)905

globally in C7, and locally in C*" for some k > 3 outside of D.
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and this brings the proof our uniqueness.

Proof 21 (of theorem 3) Suppose w,, and wy, —are two different C%*P conical
Kahler-Einstein metrics on X with cone angle 8 along the divisor D. From above
argument, we can construct a sequence of smooth twisted Kahler-Einstein metrics ¢.;
to approximate pg in some Holder space C7. Then repeat the construction again, we
can find a subsequence e, ;) to approzimate ¢ by the actual uniqueness of ¢, and
this implies ¢pg = gzﬁ/’B on X, which is a contradiction.

In the end of the paper, a new point in the above proof should be mentioned.
Unlike the end of the paper[9], the vanishing of tangential holomorphic vector fields
is not necessary in the proof of lemma(31), i.e. the properness of twisted Ding
functional has not been used here. So we can try to generalize this method by
starting from the construction of some suitable approximation of conical Kahler-
Einstein metrics without properness of Ding functional.
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