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Abstract of the Dissertation

On the Uniqueness of singular Kähler-Einstein metrics

by

Long LI

Doctor of Philosophy

in

Mathematics

Stony Brook University

2014

In this dissertation we provide a new proof of the Bando-Mabuchi-Berndtsson
uniqueness theorem for Kähler Einstein metrics with singularity along a divisor on
Fano manifolds. In 1987, Bando and Mabuchi proved the uniqueness of smooth
Kähler-Einstein metrics on a Fano manifold up to a holomorphic automorphism,
and this automorphism is induced from a holomorphic vector field on the manifold.
It has been noticed that the geodesic connecting two Kähler-Einstein metrics agrees
with the path generated by the vector field. Hence it is natural to ask if we can use
certain properties of geodesics to prove the uniqueness result.

However, the main difficulty comes from the lack of regularities on the geodesic.
According Chen’s results, only C1,1̄ regularity can be guaranteed for the potentials
on the geodesic. We develop a new technique to solve this problem, based on the
convexity of Ding-functional on C1,1̄ geodesics and Futaki’s calculation on the spec-
trums of weighted Laplacian operators.

In addition, this method could be generalized to prove the uniqueness of conical
Kähler-Einstein metrics on a Fano manifold, under the condition that certain energy
functional is proper. The idea is to use twisted Kähler-Einstein metrics to approxi-
mate the singular one, and the converging process will preserve the uniqueness. In
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the end, the energy condition provides the existence of such twisted Kähler-Einstein
metrics.
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1 Introduction

The study of Kähler Einstein metrics on Fano manifolds is an old but lasting subject
in complex geometry: on geometrical point of view, it characterizes the manifold
with constant Ricci curvature, i.e. the Kähler metric satisfies

Ric(ω) = ω;

on analytical point of view, the complex Monge-Ampère equations arise from the
study of this curvature equation, i.e. the Kähler potential ϕ ∈ H is the solution of
the following equation

(ω0 + i∂∂̄ϕ)n = eh−ϕωn0

where H := {ω = ω0 + i∂∂̄ϕ > 0}. Now as a PDE problem on manifolds, it’s natural
to ask two questions - existence and uniqueness. After Yau’s celebrated work[20] on
solving the Calabi Conjecture, Tian’s α invariant[19] gives a sufficient condition to
solve Monge Ampère equation on Fano manifolds in 1980’s. Then many people con-
tribute to this problem during these years. And quite recently, Chen-Donalson-Sun’s
work([9], [10], [11]) proves the existence of Kähler Einstein metrics on Fano man-
folds is equivalent to K-stability condition.This settles down a long standing stability
conjecture on Kähler Einstein metrics which goes back to Yau.Their work based on
an investigation on some conical Kähler metrics in a special Hölder space C2,γ,β for
γ < 1

β
− 1, which was introduced by Donaldson[12].

The problem of uniqueness of Kähler Einstein metrics on Fano manifolds also keeps
attractive during these years. It is first proved by Bando and Mabuchi[1] in 1987,
and we will give an alternative proof in this paper. The statement is as follows

Theorem 1 Let X be a compact complex manifold with −KX > 0. Suppose ω1 and
ω2 are two Kähler Einstein metrics on X, then there is a holomorphic automorphism
F , such that

F ∗(ω2) = ω1

where this F is generated by a holomorphic vector field V on X.

They solve this problem by considering a special energy(Mabuchi energy) decreas-
ing along certain continuity path. Then the existence of weak C1,1̄ geodesic between
any two smooth Kähler potentials is proved by X.X.Chen[8] in 2000, and this idea
turns out to be an important tool in proving uniqueness theorems. For instance,
Berman[5] gives a new proof of Bando-Mabuchi’s theorem by arguing the geodesic
connecting two Kähler Einstein metrics is actually smooth. And Berndtsson[7] proves
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the uniqueness of possible singular Kähler Einstein metrics along C0 geodesics. He
observes the Ding-functional is convex along these geodesics from his curvature for-
mula on the Bergman kernel[6]. Moreover, this curvature formula plays a major role
to create a holomorphic vector fields when the functional is affine. This method
is used by Berman again to prove the uniqueness of Donaldson’s equation[4], and
generalized to the klt− pairs in [2].

The idea of this thesis is also initiated from the convexity of Ding-functional along
geodesics from a different perspective. However, instead of using Berndtsson’s curva-
ture formula, we are going to use the Futaki’s formula(refer to Chapter 2) of weighted
Laplacian operator to derive the holomorphic vector fields. Unlike the former case,
here the main difficulty arises from the change of metrics during the convergence of
Laplacian operators. Fortunately, we have control on the mixed derivatives ∂α∂β̄φ
on the product manifold, i.e. Chen’s existence theorem of weak geodesic[8] guaran-
tees a uniform bound of mixed second derivatives of the potential in both space and
time directions on the geodesic. Moreover, we can perturb the weak geodesic to a se-
quence of nearby smooth metrics {gε} with mixed second derivatives under control[8].

Next goal is to prove the uniqueness of C2,γ,β conical Kähler-Einstein metrics, based
on the new technique developed above. As mentioned before, the main ingredients
of this technique consist of Chen’s C1,1̄ geodesics and a generalization of Futaki’s
formula, then these will be extended to prove the uniqueness of the so-called twisted
Kähler-Einstein metrics, i.e. a smooth Kähler metric ω satisfies

Ric(ω) = ω + θ

where θ is some non-negative closed (1,1) form on X. In fact, assuming the correct
cohomology condition(see Chapter 11), we have

Theorem 2 Suppose ω0 and ω1 are two solutions of twisted Kähler-Einstein equation
with the same weight θ, then there exists a holomorphic automorphism F on X,
such that F ∗(ω1) = ω0 and F ∗(θ) = θ, and this automorphism is induced from a
holomorphic vector field V. Moreover, if there is a point p ∈ X such that the twister
θ is strictly positive, then ω0 is actually fixed, i.e.

ω1 = ω0

on X.

Before considering the singular metrics, we shall investigate the perturbed conical
Kähler-Einstein equation first, i.e. we put

θ = (1− β)ddcχε
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where the twister χε = log(|s|2 + εeψ) and ψ is some smooth positively curved metric
on the line bundle associated with the divisor D. Then we have the uniqueness of
the solution of the following equations

Ric(ωε) = ωε + ddcχε.

If we can take the limit when ε→ 0, then in principle, it will bring us the uniqueness
of the conical Kähler-Einstein metrics ωβ, i.e. ωβ satisfies

Ric(ωβ) = ωβ + (1− β)δD

where δD is the integration current of the divisor D. However, this is not true in
general. In some situations, we can’t not even find solutions of the perturbed Kähler-
Einstein equations even if the conical Kähler-Einstein metric exists. Hence we need
another condition to guarantee the existence of twisted Kähler-Einstein metrics, i.e.
the properness of twisted Ding functional.

Theorem 3 Suppose the twisted Ding-functional Dβ is proper, then there is only
one C2,α,β solution ωϕβ for the conical Kähler-Einstein equation with angle β along
the divisor D on X.

One direct consequence of above theorem is the uniqueness of Donaldson’s equa-
tion, i.e.

Ric(ωβ) = βωβ + (1− β)δD.

for 0 < β < 1. Here the Käher class is proportional to the anti-canonical class, and
the twisted Ding functional is automatically proper in this case[12].
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2 Futaki’s formula and Hessian of Ding-functional

The manifolds X in our consideration is Fano, then we can assume the Kähler class
[ω] = c1(X), i.e. for each Kähler metric ωg, there exists a smooth function Fg such
that

Ric(ωg)− ωg = i∂∂̄Fg,

hence we can define a weighted volume form as eF det g(we will write Fg as F when
there is no confusion), and a pairing for any u, v ∈ C∞(X)

(u, v)g =

∫
X

uv̄eF det g,

then Futaki[13] considers a weighted Laplacian operator

∆Fu = ∆gu−∇ju∇jF.

the reason to do this is because the new Laplacian operator is easy to do integration
by parts under the weighted volume form∫

X

(∆Fu)ūeF det g = −
∫
X

(∇j∇ju+∇ju∇jF )ūeF det g

=

∫
X

∇ju∇jūe
F det g

=

∫
X

|∂̄u|2eF det g

where the norm of the 1-form is take with respect to the metric g. Hence it’s an
elliptic operator, and its spectral is discrete as 0 < λ1 < λ2 < · · · . Then for each
eigenfunction ∆Fu = λu, Futaki[14] writes the following formula

λ

∫
X

|∂̄u|2eF det g =

∫
X

|∂̄u|2eF det g +

∫
X

|Lgu|2eF det g

where Lg is a second order differential operator defined as

Lgu = ∇j̄∇iu
∂

∂zi
⊗ dz̄j.

Now observe the RHS of Futaki’s formula is in fact
∫
X
|∆Fgu|2eF det g, we can gen-

eralize it to all smooth function as
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Lemma 4 For any smooth function u on X, we have∫
X

|∆Fu|2eF det g =

∫
X

|∂̄u|2eF det g +

∫
X

|Lgu|2eF det g.

Proof 1 we can decompose u = Σ∞0 ai(u)ei into the eigenspace of the operator ∆Fg ,
and notice that the eigenfunction ei is orthogonal with respect to each other under
the weighted volume form and metric g. Then the first two terms in above equation
will preserve this orthogonality, i.e. choose eigenfunctions u and w of ∆F which are
orthogonal to each other, then∫

X

|∂̄u+ ∂̄w|2eF det g =

∫
X

|∂̄u|2eF det g +

∫
X

|∂̄w|2eF det g

and ∫
X

|∆Fu+ ∆Fw|2eF det g =

∫
X

|∆Fu|2eF det g +

∫
X

|∆Fw|2eF det g

Moreover, the differential operator Lg keeps this orthogonality of eigenfunctions, but
first notice

F,αβ̄ = Rαβ̄ − gαβ̄
from the definition of F , then we compute as follows∫

X

〈Lgu, Lgw〉geF det g =

∫
X

gαλ̄gµβ̄u,λ̄β̄w̄,µαe
F det g

= −
∫
X

gαλ̄gµβ̄u,λ̄β̄αw̄,µe
F det g −

∫
X

gαλ̄gµβ̄u,λ̄β̄w̄,µF,αe
F det g

= −
∫
X

gαλ̄gµβ̄u,λ̄αβ̄w̄,µe
F det g −

∫
X

gµβ̄Rγ̄

β̄
u,γ̄w̄,µe

F det g

+

∫
X

gαλ̄gµβ̄u,λ̄w̄,µβ̄F,αe
F det g+

∫
X

gµβ̄u,λ̄w̄,µF
,λ̄

β̄
eF det g+

∫
X

gαλ̄gµβ̄u,λ̄w̄,µF,αF,β̄e
F det g

=

∫
X

gαλ̄gµβ̄u,λ̄αw̄,µβ̄e
F det g +

∫
X

gαλ̄gµβ̄uλ̄αw̄,µF,β̄e
F det g

+

∫
X

gαλ̄gµβ̄u,λ̄w̄,µβ̄F,αe
F det g+

∫
X

(gαλ̄u,λ̄F,α)(gµβ̄w̄,µF,β̄)eF det g−
∫
X

gµβ̄u,β̄w̄µe
F det g

=

∫
X

(gαλ̄u,αλ̄ + gαλ̄u,λ̄F,α)(gµβ̄w̄µβ̄ + gµβ̄w̄µF,β̄)eF det g

=

∫
X

(∆Fu,∆Fw)ge
F det g = 0.
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Next let’s consider an easy case: according to He[15], the second derivative of
Ding-functional on a smooth geodesic equals

∂2D
∂t2

= (

∫
X

eFg det g)−1{
∫
X

(|∂̄ϕ′|2g − (π⊥ϕ
′)2)eFg det g}

where the metric g is induced by the Kähler form ωϕ, and the projection operator
is defined as π⊥u = u −

∫
X
ueFg det g/

∫
X
eFg det g. This implies Ding-functional is

convex along smooth geodesics. Now suppose there is a smooth geodesic connecting
two Kähler Einstein metrics, the Ding-functional must keep to be a constant along
it. Hence we get ∫

X

|∂̄ϕ′|2geFg det g =

∫
X

(π⊥ϕ
′)2eFg det g,

then we see the first eigenvalue λ1 of the weighted Laplacian operator ∆Fg is 1, and
π⊥ϕ

′ belong to the first eigenspace, i.e.

∆Fg(π⊥ϕ
′) = π⊥ϕ

′.

Now by Futaki’s formula, we see

Lg(π⊥ϕ
′) = 0,

then the induced vector field Vt = ∇iϕ′ ∂
∂zi

is holomorphic on X. Moreover, let’s
differentiate this vector field with respect to t on the geodesic

(gjk̄ϕ′k̄)
′ = gjk̄ϕ′′k̄ − g

jq̄ϕ′pq̄g
pk̄ϕ′k̄

= gjk̄(gαβ̄ϕ′αϕ
′
β̄),k̄ − gjq̄ϕ′pq̄gpk̄ϕ′k̄

= gjk̄gαβ̄ϕ′αϕ
′
,β̄k̄ = 0

by the holomorphicity of Vt. Finally, this gives us a holomorphic vector field V =
Vt − ∂/∂t on X × S, and its induced automorphism will give the uniqueness of the
two Kähler Einsteim metrics.
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3 Some L2 theorems

In this section, we are going to use L2 theorem to investigate the weighted Lapla-
cian operator ∆Fg and its spectrum, then we shall project our target to the front
eigenspace in the proof of uniqueness theorem. First notice that we always have
λ1 > 1 by Futaki’s formula. Then we are going to introduce some notations.

From now on, we shall assume the manifold X admits non-trivial holomorphic vec-
tor fields, and H0,1(X) = 0. Then fix one t and restrict our attention to this fiber
X × {t}. Since −KX = [ω], we can write

ωg = i∂∂̄φg

where φg is a plurisubharmonic metric on the line bundle −KX . We claim the
measure

eFg det g = e−φg ,

and this is because locally Fg = − log det g−φg. Then naturally the pairing between
functions on X with this weight can be written as

(u, v)g =

∫
X

uv̄e−φg .

Here is the L2 theorem coming to play with. Let’s consider the space of all L2

bounded −KX valued (n, 0) forms under the metric φg, i.e. it consists of every
function u on X such that ∫

X

|u|2e−φg < +∞,

we denote this space as L2
(n,0)(−KX , φg), and similarly we can consider all L2 bounded

−KX valued (n, 1) forms under the weighted norm∫
X

gαβ̄vαvβe
−φg < +∞,

and we denote this space as L2
(n,1)(−KX , φg), then we can define an unbounded

operator ∂̄ between them

∂̄ : L2
(n,0)(−KX , φg) 99K L

2
(n,1)(−KX , φg).

Notice that the domains of these two operator are not the whole L2 spaces. In fact,
we can define

dom(∂̄) := {u ∈ L2
(n,0)(−KX , φg); ∂̄u ∈ L2

(n,1)(−KX , φg)},

7



but it is not densely defined in L2 space when gφ is a C1,1̄ solution of geodesic equa-
tion on a fiber X × {t}. Hence we should consider the Hilbert space H1 to be the
closure of dom(∂̄) in L2

(n,0)(−KX , φg). We claim that H1 is not empty.

First notice that for any non-trivial holomorphic vector field v ∈ L2
(n−1,0)(−KX),

we can solve the following equation

∂̄u = ωgφ ∧ v,

since ∂̄(ωgφ ∧ v) = 0 in the sense of distributions, but ker(∂̄) = Range(∂̄) from
H0,1(X) = 0. Next, consider the subspace W containing all such u, i.e. define

W := {u ∈ L2
(n,0)(−KX , φg); ∂̄u = ωgφ ∧ v, ∀v ∈ L2

(n−1,0)(−KX)},

then it is a non-empty subspace in L2
(n,0)(−KX , φg), and it’s easy to check

W ⊂ dom(∂̄),

hence we proved the claim. Now ∂̄ is a densely defined, closed operator on the Hilbert
space H1 - it’s closed from the continuity property of differential operators in the
distribution sense. We can discuss its Hilbert adjoint operator ∂̄∗φ, which is a densely
defined, closed operator on L2

(n,1)(−KX , φg). Moreover, they have closed ranges

Lemma 5 ∂̄ and ∂̄∗φg are densely defined, closed operators with closed ranges.

Proof 2 We need to estimate the L2 norm of ∂̄u. Take h to be a fixed smooth metric
with positive Ricci curvature on X, and u ∈ dom(∂̄) ∩ ker(∂̄)⊥, we have∫

X

|∂̄u|2ge−φg >
∫
X

|∂̄u|2h deth

> c

∫
X

|u|2 deth

> c′
∫
X

|u|2ge−φg .

this estimate implies ∂̄ has closed range, and hence its adjoint ∂̄∗φg by functional
analysis reason.

8



Then we can define the Laplacian operator as 2φg = ∂̄∗φg ∂̄, where also as an un-
bounded closed operator, i.e.

2φg : L2
(n,0)(−KX , φg) 99K L

2
(n,0)(−KX , φg)

and its domain of definition is

dom(2φg) := {u ∈ L2
(n,0)(−KX , φg); u ∈ dom(∂̄) and ∂̄u ∈ dom(∂̄∗φg)}.

we claim this operator also has closed range. and

Proposition 6 we have
ker2φg = coker2φg ,

hence they are both finite dimensional.

Proof 3 First note ker2φg = ker ∂̄ is the 1 dimensional space of constant functions
on X. In order to prove coker2φg also has finite rank, it’s enough to prove the
weighted Laplacian operator has closed range, since it’s self-adjoint

coker2φg = R(2φg)
⊥ = ker2φg .

Now we are going to prove the closed range property, but this follows from the fol-
lowing estimate for u ∈ dom(2φg) ∩ ker(∂̄)⊥

||u||2g 6 C||∂̄u||2g

6 C(2φgu, u)g

6 2C||2φgu||2g +
1

2
||u||2g

and hence
||u||2g 6 C ′||2φgu||2g,

which implies the claim.

Notice that this is not enough to guarantee the existence of discrete spectral, but we
have a further estimate,

Lemma 7 For all u ∈ dom(2φg) ∩ ker(∂̄)⊥, there is an uniform constant C, such
that

||u||W 1,2 6 C||2φgu||2g.

9



Proof 4 we still compare it with some fixed smooth weight(metric) h,

||∂̄u||2h 6 C||∂̄u||2g

= C(2φgu, u)g

6 C||2φgu||g||u||g
6 C ′||2φgu||g||u||h

6 C ′′||2φgu||g||∂̄u||h,

then
||∂̄u||2h 6 C ′′||2φgu||g.

finally, an integration by part gives the desired estimate since∫
X

hαβ̄u,αu,β deth = −
∫
X

hαβ̄u,αβ̄ū deth

= −
∫
X

hαβ̄u,β̄αū deth

=

∫
X

hαβ̄u,β̄u,ᾱ deth

Then we can discuss the spectral of 2φg , when gφ is the C1,1̄ function. Suppose λ is
an eigenvalue of 2φg , and let Λ be the corresponding eigenspace, we claim

Proposition 8 dim Λ < +∞

Proof 5 Let vi ∈ Λ be a sequence of eigenfunctions with bound L2 norm, i.e. ||vi||2g =
1, then since

||vi||W 1,2 6 C||2φgvi||g
= Cλ,

hence there exists a W 1,2 function v∞ such that vi → v∞ in strong L2 norm, by
compact embedding theorem. And since Λ = ker(2φg −λI) is a closed subspace of L2

v∞ ∈ Λ.

This implies every bounded sequence in Λ has a convergent subsequence, i.e. the unit
ball in Λ is compact, hence dim Λ is finite.

10



Next we are going to discuss some computations when the weight φg is at least
C2. First notice that formally

< 2φgu, v >g = < ∂̄u, ∂̄v >g

for any pairing u, v. It’s easy to see

2φgu = ∆φgu

for all smooth functions u, when the metric φg is smooth. If we look closer at these
operators, there is a more computable way to express them. For this purpose, let’s
assume φg is a C2 metric, then for any (n, 1) form α with value in −KX ,

∂̄∗φgα = ∂φg(ωgyα)

where ∂φv = eφ∂(e−φv) = ∂v−∂φ∧v for any (n−1, 0) form with value in −KX(that
is a vector field on X). Hence if we define

v = ωgyα,

we will have
∂̄∗φgα = ∂φgv

and the weighted Laplacian operator could be computed as

2φgu = ∂φg(ωgy∂̄u)

for u ∈ dom2φg∩L2
(n,0)(−KX , φg). Notice that there is commutation relation between

the new defined operator ∂φ and ∂̄, that is

∂φ∂̄ + ∂̄∂φ = i∂∂̄φ ∧ · (1)

Now if u is any eigenfunction of the weighted Laplacian operator with eigenvalue λ,
i.e. 2φgu = λu, we can decompose it into two equations

ωgy∂̄u = v ∂φgv = λu.

here we can write v = Xy1, where the constant function 1 is read as an (n, 0)
form with value in −KX , and X = Xα ∂

∂zα
is a vector field in (1, 0) direction on the

manifolds. Next we are going to prove Futaki’s formula by the commutation equality.
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Lemma 9 (Futaki’s formula) Let u be a eigenfunction of weighted Laplacian with
eigenvalue λ, i.e. 2φgu = λu, then

λ

∫
X

|∂̄u|2ge−φg =

∫
X

(|Lgu|2 + |∂̄u|2g)e−φg .

Proof 6 First notice u is pure real or imaginary. Hence here we will give the proof
when u is real valued - the case when u is pure imaginary is similar. Now by the
commutation relation of ∂φg , we compute ∂̄(λu)

−∂φg ∂̄v + i∂∂̄φg ∧ v = λ∂̄u,

notice that i∂∂̄φg = ωg, hence

−∂φg ∂̄v = (λ− 1)∂̄u,

pair it with ∂̄u,

(λ− 1)

∫
X

|∂̄u|2ge−φg = −
∫
X

〈∂φg ∂̄v, ∂̄u〉ge−φg

=

∫
X

−gλµ̄∂α(e−φg∂µ̄X
α)∂λ̄u

=

∫
X

∂µ̄X
α∂ᾱXµe−φg .

Now notice that Xα = gαβ̄u,β̄, under the normal coordinate when gij̄ = δijΛi,

∂µ̄X
α∂αX

µ̄ = gαβ̄u,β̄µ̄g
λµ̄u,λα

=
1

ΛαΛλ

u,ᾱλ̄u,λα

=
1

ΛαΛλ

u,ᾱλ̄u,αλ

= gαβ̄g
λµ̄∂µ̄X

α∂λ̄X
β,

hence we proved the Futaki’s formula

(λ− 1)

∫
X

|∂̄u|2ge−φg =

∫
X

|∂̄X|2ge−φg .
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4 Existence of the C1,1̄ geodesic

Let X be a n dimensional compact complex Kähler manifold with Kähler form ω,
then we can write locally

ω = Σn
i=1gjk̄dz

j ∧ dz̄k.
Consider all the Kähler forms in the same cohomology class with ω, they can be
identified with the space of all smooth strictly ω-plurisubharmonic functions on X,
i.e.

H := {ϕ ∈ C∞(X); ωϕ = ω + ddcϕ > 0},
and this is also called the space of Kähler potentials. It’s easy to see that the tagent
space of H consists of all smooth functions ψ on X, and we can introduce an natural
L2 metric on TϕH as

< ψ1, ψ2 >ϕ=

∫
X

ψ1ψ2ω
n
ϕ

for two tagent vector ψ1, ψ2 ∈ TϕH. Then we can ask what geodesics are on this
Riemannian manifold, and the geodesic equation turns out to be

ϕ′′(t)− |∂̄ϕ′(t)|2gt = 0

where gt corresponds to the metric induced from the Kähler form ωϕt . In order to
figure out the solution of this equation, we need to slightly change our consideration
into a different setting. Think about the product space (z, t) ∈ X × [0, 1], we can
add an extra dimension to complete it into a n + 1 dimensional complex space as
follows

(z, t, eis) ∈ X × [0, 1]× S1

where z = (z1, · · · , zn) and w = zn+1 = t + is is the last complex variable. If we
denote the metrics defined by ω, ωϕ as g and g′, then the top volume forms satisfy
ωn/n! = det g and ωnϕ/n! = det g′, and the geodesic equation is equivalent to

(ϕ′′ − |∂̄ϕ′|2g′) det g′ = 0, (2)

when det g′ 6= 0. Let S = [0, 1]× S1, then we can construct a Kähler form on X × S
from the pull back π∗ωϕ as

Ω = Σn
j,k=1g

′
jk̄dz

j ∧ dz̄k + (∂̄kϕ
′)dzn+1 ∧ dz̄k + (∂kϕ

′)dzk ∧ dz̄n+1 + (ϕ′′)dzn+1 ∧ dz̄n+1.

Notice that sometimes we will write g′
αβ̄

with α, β = 1, · · · , n + 1 standing for the

local coefficients of Ω, and then linear algebra tells us that equation(2) is equivalent
to the following homogeneous Monge-Amprére equation

Ωn+1 = 0. (3)
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In fact, it is possible to solve this equation with the following weak regularities

Theorem 10 (Chen) Let ϕ0, ϕ1 ∈ H, then there exists a unique C1,1̄ geodesic con-
necting them, i.e. the following homogenous Monge-Ampère equation has a unique
weak solution ϕ ∈ H(the closure is taken under the C1,1̄ topology) on X × S

det(gij̄ + ∂i∂j̄ϕ)(n+1)(n+1) = 0

where i, j = 1, · · · , n+ 1, and on the boundary ∂(X × S)

ϕ(0, s, z) = ϕ0(z), ϕ(1, s, z) = ϕ1(z)

with the following estimate

||ϕ||C1(X×S) + max{|∂i∂j̄ϕ|} < C

where C is a uniform constant only depending on ϕ0 and ϕ1.

In order to solve this equation, we refer to the famous continuity method, but first
we need to establish its beginning point. Let ω be the background Kähler metric,
there is another trivial way to construct (n+1, n+1) Kähler form on the total space
X × S from ω by

ω̃ = π∗ω + dzn+1 ∧ dz̄n+1

with its potential ϕ̃ = ϕ − |zn+1|2, and we shall also write (gαβ̄), ϕ instead of
(g̃αβ̄), ϕ̃ when there is no confusion. Then let’s begin with finding a strictly ω-
plurisubharmonic function on the total space with prescribed boundary values ϕ0

and ϕ1

φ(z, t) = tϕ0 + (1− t)ϕ1 − Ct(1− t)
where C is a large positive constant such that ω + i∂∂̄φ > 0 on X × S. Notice
that φ|X×{0} = ϕ0, φ|X×{1} = ϕ1 and φ|X×{t} is a strict ω-plurisubharmonic function
for each t ∈ [0, 1]. Now we can consider a one parameter family of Monge-Amprére
equations as follows

(∗ε) det(gαβ̄ + ∂α∂̄βϕε) = ε det(gαβ̄ + ∂α∂̄βφ), (4)

for ε ∈ [0, 1]. Now define the set

S := {ε ∈ [0, 1]; (∗ε) is solvable}.

The goal is to prove 0 ∈ S. First notice that 1 ∈ S, since ϕ1(z, w) = φ(z, w), and S
is open thanks to the ellipticity of Monge-Amprére equations. We shall prove S is
also closed from a prior estimate as follows

14



4.1 C0 estimates and interior Laplacian estimates

Consider the following Dirichlet problem with boundary condition

∆gh = −n− 1, h|∂(X×S) = φ|∂(X×S).

Then maximal principal implies maxX×S(ϕε − h) 6 0, and hence ϕ 6 h. On the
other hand, the domination principal for complex Monge-Amprére measure implies
µ{ϕε < φ} = 0, where µ is the standard Lebesgue measure on X. Then

Proposition 11 Let ϕε be a sequence of smooth solution of equation (∗ε), then

φ 6 ϕε 6 h

Now let’s invoke Yau’s C2 estimate with respect to ϕε on the total space X×S, then
it gives

∆′F > R1 − C(n+ 1)F +R2e
cϕ/nF 1+ 1

n (ε)−1,

where F = e−cϕ(n+ 1 + ∆ϕ) and R1, R2, C, c are some uniform constants such that
R2 > 0. Since ϕ is uniformly bounded from above, we conclude the maximum of F
is either uniformly bounded or achieved on the boundary. Hence

Proposition 12 There is a uniform constant C such that

max
X×S

(∆ϕε + n+ 1) 6 C(1 + max
∂(X×S)

(∆ϕε + n+ 1)).

4.2 Boundary estimate

Suppose p is a point on the boundary ∂(X × S), there is a local parametrization of
the boundary in a smaller open neighborhood of p, i.e. {zn+1 = 0} = ∂(X × S)∩U ,
where p corresponds to the origin {z = 0} in U . Now since ω is a Kähler form, we
can assume

gαβ̄(p) = δαβ, α, β = 1, · · · , n+ 1

and
1

2
δαβ 6 gαβ̄ 6 2δαβ

for ∀q ∈ U . Furthermore, we can also assume from the positivity of ωφ

gαβ̄ + ∂α∂β̄φ > 2κgαβ̄

for κ > 0 on X × S. Hence near the origin p it implies

gαβ̄ + ∂α∂β̄φ > κδαβ̄.
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for any q ∈ U . Next notice that on the tangential direction of ∂(X × S), the
derivatives of difference vanish as

∂(ϕ− φ)

∂zk
= 0,

∂2(ϕ− φ)

∂zj∂z̄k
= 0

where j, k = 1, · · · , n and ∀q ∈ U ∩ ∂(X × S). Then we claim

Proposition 13 For any point p ∈ ∂(X × S), there is a uniform constant C, such
that

|∂n+1∂̄n+1ϕε| 6 C( max
∂(X×S)

|∇ϕε|2g + 1).

Proof 7 Look at the point p, we can assume gφ(p) is a diagonal matrix with eigen-
values λ1, · · · , λn+1, then the equality on the continuity path implies

det(δαβ̄λα + ∂α∂̄β(ϕ− φ)) = εf

where f = det(gφ). By using the vanishing of the derivatives on the boundary, we
have

λn+1 + (ϕ− φ)′′ = εf + Σn
j=1λ

−1
α ∂α(ϕ− φ)′∂̄α(ϕ− φ)′,

which gives the deserved bound on ϕ′′.

Next we are going to estimate the mixed derivatives terms in the complex Hessian
of ϕ as follows

Proposition 14 There is a uniform constant C such that

max
X×S

(n+ 1 + ∆ϕε) 6 C max
X×S

(1 + |∇ϕε|2g)

Define the following differential operator as

Lu = Σn+1
α,β=1g

′αβ̄u,αβ̄,

and let D denote a first order differential operator standing for ∂
∂x

or ∂
∂y

, where

zj = x+
√
−1y with j = 1, · · · , n. Take

D(log det g′) = D(log tf)

and
g′αβ̄Dϕαβ̄ = D log f − g′αβ̄Dgαβ̄.
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g′αβ̄D(ϕ− φ)αβ̄ = D log f − g′αβ̄Dgφ,αβ̄.
then

LD(ϕ− φ) = g′αβ̄D(ϕ− φ) 6 C(1 + Σn+1
α=1g

′αᾱ).

this is because for a positive Hermitian matrix (hjk̄), we have |hjk̄| 6 hαᾱ + hββ̄.

Next we need to construct a barrier function v for the maximal principle. Let s,N
be some undetermined positive number, and we define

v = (ϕ− φ) + s(h− φ)−Nt2

on the neighborhood Ωδ = (X × S) ∩ Bδ(0), where Bδ(0) is the coordinate ball
centered at p with radius δ.

Lemma 15 For any small κ > 0, there is a δ > 0 such that

Lv 6 −κ(1 + Σn+1
α=1g

′αᾱ)

on Ωδ and v > 0 on ∂Ωδ.

Proof 8 First notice that v = 0 on ∂(X × S) ∩ Bδ(0), and recall that gφ > 4κ(δαβ)
in Bδ(0), then

L(ϕ− φ) = g′αβ̄(g′αβ̄ − gφ,αβ̄)

= n+ 1− g′αβ̄gφ,αβ̄
6 n+ 1− 4κΣn=1

α=1g
′αᾱ.

and
L(h− φ) = g′αβ̄(hαβ̄ − φαβ̄)

6 C1(1 + Σn+1
α=1g

′αᾱ)

for some uniform constant C1. But the last term has Lt2 = 2g′(n+1)(n+1), which gives

Lv 6 (n+ 1)− 4κΣn+1
α=1g

′αᾱ + sC1(1 + Σn+1
α=1g

′αᾱ)− 2Ng′(n+1)(n+1)

Then suppose 0 < λ1 6 λ2 6 · · ·λn+1 are the eigenvalues of the matrix g′, we have

Σn+1
α=1λα = Σn+1

α=1g
′αᾱ, λ−1

n+1 > g′(n+1)(n+1),

and λ1 · · ·λn+1 = εf . Hence

κΣn+1
α=1λ

−1
n+1 +Nλ−1

n+1 = κΣn
α=1λ

−1
α + (κ+N)λ−1

n+1

17



> (n+ 1)κ
n
n+1N

1
n+1 (εf)−

1
n+1

> C2N
1

n+1 .

Then for N large enough(C2 could be large when ε is small), we can make

−C2N
1

n+1 + (n+ 1) + sC1 < −κ.

and sC1 < κ for s small enough, hence

Lv < −κ(1 + Σn+1
α=1g

′αᾱ)

on Ωδ. On the other hand, recall ∆g(h − φ) = −trggφ < −4κ on Ωδ, and this
convexity gives the growth control near the boundary

h− φ > C0t,

hence if we further choose δ small enough such that (sC0 −Nδ)t > 0, the inequality
s(h− φ)−Nt2 > 0 holds.

Next we will complete the proof of proposition(14). Let M = maxX×S(1 + |∇ϕ|g),
and for constants A� B � C multiple of M , such that Bδ2 > |D(ϕ−φ)|, we define
then w > 0 on ∂Ωδ, and

w = Av +B|z|2 +D(ϕ− φ).

then w > 0 on ∂Ωδ, and w(0) = 0. Hence compute

Lw 6 −Aκ(1 + Σn+1
α=1g

′αᾱ) + 2B(Σn+1
α=1g

′αᾱ) + C(1 + Σn+1
α=1g

′αᾱ)

6 (−Aκ+ 2B + C)(1 + Σαg
′αᾱ).

Maximal principal implies w > 0 on Ωδ and ∂w
∂t

(p) > 0, but

∂w

∂t
(0) = A

∂v

∂t
(0) +

∂

∂t
(Dϕ− φ)(0),

and
∂v

∂t
(0) =

∂ϕ

∂t
(0)− ∂φ

∂t
(0) + s

∂

∂t
(h− φ).

Notice that φ′(0) 6 ϕ′(0) 6 h′(0), we have

∂

∂t
Dϕ(0) 6 C3M

Finally, we repeat our argument to −D, the same estimate gives

− ∂

∂t
Dϕ(0) 6 C3M

This complete our proof.
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4.3 C1 estimates

The question is reduced to find out an upper bound for |∇ϕε|g along the continuity
path, and here we will invoke the so called blowing up analysis. In the following, we
will concentrate our attention on a small ball in X, so can assume the metric is just
the Euclidean metric in C(n+1). Now suppose on the contrary, there is a subsequence
ϕεi(write as ϕi briefly) and points xi ∈ X, such that

|∇ϕi|g = max
X×S
|∇ϕi| = 1/κi,

and by the above C2 estimates, we have

∆ϕi 6 1/κ2
i ,

and this growth estimate is important because it’s invariant under rescaling. Let’s
define

ψi(x) = ϕi(xi + κix),

for ∀x ∈ Bδ/κi(0) ⊂ Cn+1, where δ is a fixed small number. Then after this rescaling,
we see

max
Bδ/κi

|∇ψi|g = |∇ψi|g(0) = 1, ∆ψi 6 C

for some uniform constant C. In the same time, we can define

φi(x) = φ(xi + κix), hi(x) = h(xi + κix),

and C0 estimate follows as

C ′−1 6 φi 6 ψi 6 hi 6 C ′.

The sequence of points xi will converges to a point p ∈ X × S. One case is that p
is in the interior of X × S, then by using a subsequence of subsequence argument,
there exists a bounded limiting function ψ on Cn+1, such that ψi → ψ in C1,η norm
on any ball BR(0) in Cn+1. Now notice

|∇ψ(0)|g = 1 (5)

and φ(p) 6 ψ(x) 6 h(p), for ∀x ∈ Cn+1. We shall show ψ is in fact a bounded
plurisubharmonic function on Cn+1, then it must be a constant function, which con-
tradicts to equation(9).
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Notice that near the point p, we have the inequality

0 < (δαβ̄ + ∂α∂̄βϕi) <
C

κ2
i

(δαβ̄),

this implies
0 < κ2

i (δαβ) + (∂α∂̄βψi) < C(δαβ)

after rescaling. Take the limits, we have

0 6 i∂∂̄ψ

on Cn+1.

The other case is that p ∈ ∂(X × S), then ψ is a function on the half plane of
Cn+1. But it must be constant since it is squeezed by h and φ on the boundary.
Hence it contradicts to equation(9) again.
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5 Ding-functionals along the approximation geodesics

Chen’s existence theorem has the following direct application to establish the smooth
approximate of weak geodesics

Theorem 16 (ε- approximation geodeiscs) Given ϕ0, ϕ1 ∈ H, we can have a se-
quence of approximation geodesics ϕε(t, z) as follows: for each small ε > 0, there
exists a unique solution of the equation

(ϕtt − |∂Xϕ′|2gϕ) det(gϕ) = ε deth

such that there exists a uniform constant C with

|ϕ′t|+ |ϕ′′t |+ |ϕ|C1 + max{|∂α∂β̄ϕ|} < C,

and ϕε converges to the C1,1̄ geodesic ϕ in the weak C1,1̄ topology.

Notice that for any plurisubharmonic metric φ on −KX , we can write its potential
as ϕ = φ − φ0, where φ and φ0 are corresponding metrics on the line bundle −KX .
Now suppose φ0, φ1 are two smooth Kähler Einstein metrics on X, with their Kähler
forms ωi = i∂∂̄φi, i = 0, 1 satisfying

ωni =
e−φi∫
X
e−φi

.

define the following functionals

F(φ) := − log

∫
X

e−φ

and

E(φ) :=
1

n+ 1
Σn
j=0

∫
X

ϕωj0 ∧ ω
n−j
φ

where ωφ = i∂∂̄φ. Then the Ding-functional is defined as

D = −E + F = − 1

n+ 1
Σn
j=0

∫
X

(φ− φ0)ωj0 ∧ ω
n−j
φ − log

∫
X

e−φ.

Notice the along a curve of metrics φt, the derivative of Ding-functional is

∂D
∂t

=

∫
X

φ′(−ωnφ +
e−φ∫
X
e−φ

).
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we see the critical point of this functional is the Kähler Einstein metric, and its
second derivative is

∂2D
∂t2

= −
∫
X

(φ′′−|∂φ′|2g)ωnφ+(

∫
X

e−φ)−1{
∫
X

(φ′′−|∂φ′|2g)e−φ+

∫
X

(|∂φ′|2g−(π⊥φ
′)2)e−φ}

where the metric g = i∂∂̄φt, and if we denote the term f = φ′′ − |∂φ′|2g, ct =
∫
X
e−φ

and δt = |∂φ′|2g − (π⊥φ
′)2, the equation reads

∂2D
∂t2

= −
∫
X

fωnφ +

∫
X

(f + δt)e
−φ/ct,

then we are going to consider the behavior of Ding-functional on the approximation
geodesic. First from Chen’s theorem, we can find a C1,1̄ geodesic φt connecting the
two Kähler Einstein metrics. Moreover for any small ε > 0, there is the smooth
approximation geodesic φε(t, z) connecting the two end points φ0, φ1, which con-
verges weakly to the C1,1̄ geodesic. Now if we consider the Ding-functional on these
approximation geodesics, we have estimates

∂2D
∂t2

> −ε
∫
X

deth

from f = ε deth/ det g > 0 and
∫
X
δte
−φ > 0. Let ε→ 0, we see that Ding-functional

keeps to be convex on C1,1̄ geodesic. Now we can integrate it back along t

∂D
∂t

(1)− ∂D
∂t

(0) =

∫
X×I
−fωnφdt+

∫
X×I

fe−φ/ctdt+

∫
X×I

δte
−φ/ctdt,

notice that at end points φ0, φ1 are both Kähler Einstein, hence the first derivative of
Ding-functionals vanish. And on the approximation geodesic, we have the equation

f det g = ε deth

and f 6 φ′′ < C uniformly independent of ε. Then the equation above reads

Aε =

∫
X×I

fe−φ/ctdt+

∫
X×I

δte
−φ/ctdt

>
∫
X×I

fe−φdt+

∫
X×I

δte
−φdt,

because we have uniform C0 estimate on φε. Now since we want to discuss the
eigenfunctions on each fiber, we need to a lemma to pull back the estimate to fibers.
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Lemma 17 Suppose Fε(t) is a sequence of non-negative function on [0, 1], with in-
tegration estimate ∫ 1

0

Fεdt < Aε,

then for almost everywhere t ∈ [0, 1], we can find a subsequence(depending on t) Fεj ,
such that

Fεj < Ctεj

where Ct is a constant independent of ε.

Proof 9 Let F̃ε = Fε/ε, then by Fatou’s lemma∫ 1

0

lim inf
ε

F̃εdt 6 lim inf
ε

∫ 1

0

F̃εdt 6 A,

hence the function lim infε F̃ε ∈ L1, i.e. for almost everywhere t, there is a subse-
quence F̃εj and a constant Ct such that

F̃εj < Ct,

hence
Fεj < Ctεj.

Now put Fε =
∫
X
fεe
−φε +

∫
X
δεe
−φε and notice the two terms on RHS are both

non-negative, we have proved

Proposition 18 Consider the approximation geodesic φε connection two Kähler Ein-
stein metrics. For almost everywhere t, there is a constant Ct, such that for each
such t, there exists a subsequence εj, such that the following estimates∫

X

fe−φ(εj) < Ctεj

and ∫
X

(|∂φ′|2g − (π⊥φ
′)2)e−φ(εj) < Ctεj

hold simutaneouly.
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6 Convergence in the first eigenspace

In this section, we shall focus our attention to the one fiber X×{t}, and picked up a
subsequence φεj from above section. Then we can consider the sequence of weighted
Laplacian operator 2φε(we shall omit the subindex j here). For each ε, we can
arrange its eigenvalues as 0 < λε1 6 λε2 6 · · · , corresponding with one eigenfunction
ei(ε), i.e.

2φεei(ε) = λεiei(ε).

Then let uε(z) be a sequence of smooth functions on X, such that uε ⊥ ker ∂̄. Then
it decomposes into the eigenspace of weighted Laplacian operator 2φε , i.e.

uε = ΣNε
i=1ai(ε)ei(ε)

where ei ∈ Λi, and in prior, Nε could equal to +∞ in the above notation. Then
we can consider the action by the weighted Laplacian operator on this sequence of
functions, i.e. we can write 2φεuε as

vε = ωgεy∂̄u

and
∂φεvε = ΣNε

i=1λ
ε
iai(ε)ei(ε).

Under certain constraint, we claim these vector fields vε will converge to a holomor-
phic one with the same equation satisfied,

Proposition 19 Let uε be a sequence of functions as above. Suppose it satisfies the
following conditions:

1) ΣNε
i=1|ai(ε)|2 < A for an uniform constant A, and the sums does not converge

to zero.
2) there exists a uniform constant K, such that λεNε < K for each ε
3) the following estimate holds∫

X

(|∂̄uε|2gε − (π⊥uε)
2)e−φε < Cε. (6)

then by passing to a subsequence, we have

uε → u∞

in strong L2 sense, where u∞ ∈ W 1,2 is nontrivial. Moreover there exists a nontrivial
holomorphic (n− 1, 0) form v∞ with value in −KX , such that

vε → v∞
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in strong L2 sense, and the equation

ωg ∧ v∞ = ∂̄u∞

holds in the sense of L2 functions, where g is the metric found on the C1,1̄ geodesic.

before proving the proposition, we need a lemma

Lemma 20 Let fj, gj be two sequence of L2 functions with ||fjgj||Lp < C for some
p > 1. Suppose that

∫
X
|fj|2dµ < C ′ and gj → g ∈ L2 in L2 norm, then there exists

an L2 function f such that
fjgj → fg ∈ Lp

in the sense of distributions.

Proof 10 First note there exists an L2 function f such that fj → f in weak L2

topology. Then we check∫
X

(fg − fjgj)dµ =

∫
X

g(f − fj)dµ+

∫
X

fj(g − gj)dµ,

the first term on the RHS of above equation converges to zero from the weak conver-
gence of fj, and the second term converges to zero too, since

|
∫
X

f(g − gj)dµ|2 6 (

∫
X

|f |2dµ)(

∫
X

|g − gj|2dµ)→ 0.

hence fjgj converges to fg in the sense of distributions. Moreover, from the Lp bound
of fjgj, we have an Lp function k such that fjgj → k in weak Lp topology. Then

fg = k

as Lp functions.

Remark 1 Suppose the sequence |fj| is uniformly bounded in lemma 13, then the
limit f is an L∞ function, then fg ∈ L2 automatically.

Proof 11 (of proposition19.) First we can write equation (2) as

ΣNε
i=1(λεi − 1)|ai(ε)|2 < Cε

by Futaki’s formula, we know∫
X

|Lgεuε|2e−φε = ΣNε
i=1λ

ε
i(λ

ε
i − 1)|ai(ε)|2
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6 KCε

from condition (2) and (3). But if we write vε = Xεy1 for some vector field Xε =
Xα
ε

∂
∂zα

, then

(Lgu) i
j̄ == gik̄u,k̄j̄ =

∂X i

∂z̄j
,

hence the L2 norm is

|Lgu|2 = gαβ̄g
µλ̄∂X

α

∂z̄λ
∂Xβ

∂z̄µ
= |∂X

∂z̄
|2g.

now we choose a fixed smooth background metric h to estimate

|∂X
∂z̄
|2h = hαβ̄h

µλ̄∂X
α

∂z̄λ
∂Xβ

∂z̄µ

= hαβ̄h
µλ̄gαη̄u,η̄λ̄g

γβ̄u,γµ =
1

Λ2
α

|u,ᾱλ̄|2

6 Σ(
Λλ

Λα

)Σ
1

ΛαΛλ

|u,ᾱλ̄|2

6 C(trgh)|∂X
∂z̄
|2g

where we compute in some normal coordinate. And correspondingly, the L2 norm of
X can be estimated by

|X|2h = hαβ̄g
αλ̄u,λ̄g

βη̄u,η̄

=
1

Λ2
α

|u,ᾱ|2

6 Σ(
1

Λα

)Σ
1

Λα

|u,ᾱ|2

6 (trgh)|∂̄u|2g.

Recall that f = φ′′ − |∂φ′|2g is bounded from above, then we can estimate the L2

norm of ∂̄v as ∫
X

|∂X
∂z̄
|2h deth 6 C

∫
X

|∂X
∂z̄
|2h

1

f
deth

6
C

ε

∫
X

|∂X
∂z̄
|2g(trgh) det g
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6
C ′

ε

∫
X

|∂X
∂z̄
|2ge−φg 6 C ′′.

note X is a vector in (1, 0) direction, which means locally its coefficients are func-
tions. Hence its full gradient is uniformly bounded in L2 norm, i.e.∫

X

|∇Xε|2h deth < C

for some constant independent of ε. We claim it’s also L1 bounded. Recall from our
choice of ε, we have ∫

X

fe−φε < C1ε,

then we can estimate ∫
X

eFε deth =
1

ε

∫
X

fe−φε < C1,

hence

(

∫
X

|X|h deth)2 6 C(

∫
X

|X|2heFg det g)2

6 C(

∫
X

|X|2h(det g)2eFg)(

∫
X

eFg)

6 C ′(

∫
X

|∂̄u|2ge−φg) < C ′′.

Hence it’s uniformly L1 bounded, then by Poincáre inequality, we know ||X||L2 < C
for some uniform constant. These together imply the sequence of vector fields Xε are
uniformly W 1,2 bounded. Now by compact imbedding theorem, there exists a vector
field X = Xα ∂

∂zα
∈ W 1,2 such that Xε → X in strong L2 norm.

Moreover, observe that

(

∫
X

|∂X
∂z̄
|he−φg)2 = (

∫
X

|∂X
∂z̄
|heFg det g)2

6 (

∫
X

|∂X
∂z̄
|2h(det g)2eFg)(

∫
X

eFg)

6 (C

∫
X

|∂X
∂z̄
|2ge−φg)(

∫
X

eFg)

6 C ′ε

∫
X

eFg = C ′
∫
X

fe−φg
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< C ′′ε→ 0

from our choice of sequence ε. Hence ∂̄X → 0 in weak L1 sense, but this is enough
to imply ∂̄X = 0 in the sense of distributions. Then X is in fact a holomorphic (1, 0)
vector field on the manifolds, and we can define v∞ = Xy1, which is a −KX valued
holomorphic (n− 1, 0) form.

On the other hand, for the function uε itself, we have∫
X

|∂̄uε|2h deth 6 C

∫
X

|∂̄uε|2gεe
−φε

= CΣNε
i=1λ

ε
i |ai(ε)|2 6 C ′,

hence uε has a uniform W 1,2 bound, and it converges to a function u∞ ∈ W 1,2 in
strong L2 norm. Then by condition (1), the L2 norm of u∞ is non-trivial. Moreover,
we know the equation

gεαβ̄X
α
ε = u(ε),β̄

holds for every ε. Now gε
αβ̄

is uniformly bounded from above, hence converges to

gαβ̄ in weak L∞, where gαβ̄ is the weak C1,1̄ solution of the geodesic equation. And
Xε → X in strong L2, hence by the Remark after lemma 13, we see that the equation

gαβ̄X
α = ∂β̄u∞

holds in the sense of L2 functions. In particular, they are equal almost everywhere.
Finally, observe that u∞ ⊥ ker ∂̄, since∫

X

u∞e
−φ = lim

ε→0

∫
X

uεe
−φε = 0.

Hence if v∞ is trivial, then ∂̄u = 0, i.e. u ∈ ker ∂̄, which implies u = 0, a contradic-
tion. So v∞ is non-trivial too.

Notice that before taking the limits, the vector field vε also satisfies another
equation, i.e.

∂φεvε = ΣNε
i=1λ

ε
iai(ε)ei(ε).

the LHS converges weakly to ∂φv∞, since for any smooth testing (n, 0) form W ,∫
X

vε ∧ ∂̄We−φε →
∫
X

v∞ ∧ ∂̄We−φ
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and the RHS converges to u∞ since condition (3). And the RHS

||ΣNε
i=1λ

ε
iai(ε)ei(ε)− uε||2 6 KΣNε

i=1(λεi − 1)|ai(ε)|2

converges to zero. We have equality

∂φv∞ = u∞

holds in the weak sense. But since both sides of above equation are L2 functions,
the equation actually holds as L2 functions. This reminds us that u∞ might be the
eigenfunction of the operator 2φ with eigenvalue 1. In fact, we have

Corollary 21 Let uε be a sequence of functions satisfying condition (1) - (3) in
proposition 7, then there exists a function u∞ ∈ W 1,2 such that

uε → u∞

in strong L2 sense, and u∞ is a nontrivial eigenfunction of the operator 2φg with
eigenvalue 1.

Proof 12 First notice u∞ ∈ dom(2φg). This is because ∂̄u = ωg ∧ v∞, hence u ∈
W ⊂ dom(∂̄), and ∂̄u ∈ dom(∂̄∗φg) since v∞ is holomorphic. Now for any smooth
testing (n, 0) form W with value in −KX , we compute∫

X

∂̄∗φg ∂̄u∞ ∧We−φg = (∂̄∗φg ∂̄u∞,W )g

= 〈∂̄u∞, ∂̄W 〉g
= 〈ωg ∧ v∞, ∂̄W 〉g

=

∫
X

vα∞∂ᾱWe−φg

= (∂φgv∞,W )g

=

∫
X

u∞ ∧We−φg .

hence 2φgu∞ = u∞ as L2 functions.
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7 the eigenspace decomposition of φ′ (the easy

case)

In this section, we shall construct a sequence of functions uε, which could satisfy the
condition (1)− (3) in proposition(19) from φ′ε, then construct a holomorphic vector
field from there. However, we need to discuss case by case this time, i.e. let

π⊥φ
′
ε = Σ+∞

i=1 ai(ε)ei(ε),

then
2φε(π⊥φ

′
ε) = Σ+∞

i=1λ
ε
iai(ε)ei(ε).

Note the restriction from the vanishing of Ding-functional gives

Σ+∞
i=1 (λεi − 1)|ai(ε)|2 < Cε (7)

by passing to the chosen subsequence εj. And notice that∫
X

|∂̄φ′ε|2h 6 C

∫
X

|∂̄φ′ε|2gεe
−φε

6 C

∫
X

φ′′ε e
−φε < C ′,

then there exists a function ψ ∈ W 1,2 such that φ′ε → ψ in strong L2 norm. Hence
we can assume

1

2
< Σ+∞

i=1 |ai(ε)|2 < 2 (8)

for ε small enough.

Remark 2 In fact ,we have |φε|C1 < C, hence ||φε||W 1,p < C for any p large. Then
by compact imbedding theorem, we can assume

φε → φ

in C0,α norm.

In fact, we are going to prove

Theorem 22 There is a holomorphic vector field v on the manifolds, such that

ωg ∧ v = ∂̄ψ

where ψ is the L2 limit of φ′ε and g is the C1,1̄ solution of geodesic equation. Moreover,
ψ is a eigenfunction of the operator 2φg with eigenvalue 1, i.e.

2φgψ = ψ.
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In order to prove this theorem, we shall discuss case by case. First there are two
possibilities for the convergence of eigenvalue λεi :

Case 1, there exist a finite integer k such that the following two things hold
i) for each 1 6 i 6 k, λεi → 1 as ε→ 0;
ii) λεk+1 does not converges to 1.

Case 2, for each 1 6 i < +∞, λεi → 1 as ε→ 0.

Let’s discuss Case 1 first in this section. In this case, we shall define

uε := Σk
i=1ai(ε)ei(ε).

Notice that the divergence of λεi implies λεi > 1 + δ for some small δ > 0, by passing
to a subsequence. Then since λεi is a non-decreasing sequence in i, we have for all
i > k

λεi > 1 + δ

for the same subsequence. Now by equation (3), we see

Cε > Σ+∞
i=k+1(λεi − 1)|ai(ε)|2

> Σ+∞
i=k+1δ|ai(ε)|

2,

hence Σ+∞
i=k+1|ai(ε)|2 → 0 when ε→ 0. This gives condition (1), i.e.

Σk
i=1|ai(ε)|2 > 1/4.

condition (2) is satisfied because λεk → 1 by the assumption, and condition (3) is
automatically satisfied by equation (3). Hence we can generate a holomorphic vector
field v∞ from proposition(19).

Moreover, we could see ||π⊥φ′ε−uε||L2 converges to zero in above argument, hence
we actually have

ψ = u∞

after taking the limit. And hence it’s the eigenfunction of 2φg with eigenvalue 1, by
corollary (14). Hence we proved theorem(22) in this case.
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8 the hard case

Now we are going to deal with Case 2, i.e. we assume

λεi → 1

for each 1 6 i < +∞. Here we still subdivide it into two subcases as follows:

subCase 1, for any 1 < k <∞, the partial sum Σk−1
i=1 |ai(ε)|2 → 0, when ε→ 0.

subCase 2, there exists a finite number K, such that ΣK−1
i=1 |ai(ε)|2 does not con-

verge to zero.

Before going to the subcases, we need a lemma first

Lemma 23 Let ei(ε) be the eigenfunction of the weighted Laplacian 2φε with eigen-
value λεi, i.e.

2φεei(ε) = λεiei(ε).

Suppose there exists an uniform constant C, such that λεi < 1 + Cε, then ei(ε) con-
verges to a non-trivial eigenfunction ei of the operator 2φg with eigenvalue 1. More-
over, suppose there is another j 6= i, such that λj satisfies the same condition, then
ei, ej are mutually orthogonal to each other.

Proof 13 we define uε = ei(ε), then condition (1) and (2) hold automatically. And
condition (3) is also satisfied because∫

X

(|∂̄uε|2gε − (π⊥uε)
2)e−φε = (λεi − 1) < Cε,

hence by proposition(22), we get
ei(ε)→ ei

in strong L2 sense, where ei ∈ W 1,2 is a eigenfunction of 2φg with eigenvalue 1. Now
for j 6= i, we have similar convergence and eigenfunction ej, but∫

X

eiēje
−φg = lim

ε→0

∫
X

ei(ε)ej(ε)e
−φε = 0

by the strong L2 convergence of ei(ε), and L∞ convergence of φε.
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Now let’s begin to discuss the subCase 1. For any fixed k, by equation (8), we
can find a large integer Nε,k such that

Σ
Nε,k
i=1 |ai(ε)|2 > 1/4

by the assumption in this subcase, for ε small

Σ
Nε,k
i=k |ai(ε)|

2 > 1/8.

but then by equation (7),

1

8
(λεk − 1) 6 Σ

Nε,k
i=k (λεi − 1)|ai(ε)|2 < Cε,

because the sequence λεi is non-decreasing. Hence we proved for each k,

λεk < 1 + 8Cε

for ε small enough. Now by lemma 16, we get an eigenfunction ek for each 1 6 i <
∞, and they are orthogonal to each other. However, this is impossible since the
eigenspace with eigenvalue 1 of an elliptic operator 2φg has only finite rank. Hence
the subCase 1 actually never happens.
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9 the final case

Let’s discuss subCase 2. Under the assumption in this case, we can find K1, a finite
integer, to be the first number such that ΣK1−1

i=1 |ai(ε)|2 does not converge to zero.
Then by passing to a subsequence, we can assume ΣK1−1

i=1 |ai(ε)|2 > δ1 for some fixed
positive number δ1. Now consider the truncated sequence

Λ1(φ′) = Σ+∞
i=K1

ai(ε)ei(ε).

suppose there exists another integer K2 > K1, such that ΣK2−1
i=K1
|ai(ε)|2 does not

converge to zero, and then we can assume ΣK2−1
i=K1
|ai(ε)|2 > δ2. We can repeat this

argument, to find 0 < K1 < K2 < K3 < · · · , but we claim this process will terminate
in finite steps.

Lemma 24 There exists an finite integer n, such that

Σ+∞
i=Kn
|ai(ε)|2 → 0.

Proof 14 Let’s define a sequence of sequence of functions u
(j)
ε as

u(0)
ε := ΣK1−1

i=1 ai(ε)ei(ε)

u(1)
ε := ΣK2−1

i=K1
ai(ε)ei(ε)

· · ·
u(j)
ε :== Σ

Kj+1−1
i=Kj

ai(ε)ei(ε)

and so on. We now claim u
(j)
ε satisfying all the conditions (1) - (3) in proposition(19).

Condition (1) is satisfied automatically by assumption, and condition (2) is satisfied
since λεk → 1 for any fixed k. Condition (3) is satisfied too because of equation (3),
i.e.

Σ
Kj+1−1
i=Kj

(λεi − 1)|ai(ε)|2 < Cε,

then by proposition(19) and corollary (14), we see there exists an non-trivial W 1,2

function u(j) such that
u(j)
ε → u(j)

in strong L2 norm. And u(j) is a eigenfunction of operator 2φg with eigenvalue 1.

However, notice that ujε and u
(k)
ε are mutually orthogonal, and by the same argument

used in lemma 16, this implies
u(j) ⊥ u(k)

for all different j and k. Now we can find finite many such u(j) since they are all in
the eigenspace with eigenvalue 1 of the weighted Laplacian operator 2φg , hence we
proved the lemma.
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Next we are going to complete the proof of theorem(22). Now let’s define

uε := ΣKn−1
i=1 ai(ε)ei(ε)

where Kn is the number appearing in lemma(24). Now people can check the three
conditions in proposition(19) are satisfied, and hence there exists a W 1,2 function u
such that

uε → u

in L2 sense, and u is a eigenfunction with eigenvalue 1 of operator 2φg , and there is
a holomorphic vector field v such that

ωg ∧ v = ∂̄u.

Moreover, the difference of the L2 norm is

||π⊥φ′ε − uε||L2 = Σ+∞
i=Kn
|ai(ε)|2 → 0

by our choice of Kn, hence we have

ψ = u.

And we complete the proof.

Remark 3 If there is no any non-trivial holomorphic vector field on X, then propo-
sition 12 directly implies φ′ = 0 almost everywhere on X × I from above case by case
discussion. Without using corollary 14, we don not need to invoke any eigenfunction
of the first eigenspace of the weighted Laplacian operator in the limit. Hence we
proved uniqueness in this case.
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10 Time direction

Up to now, we construct a holomorphic vector field vt on a fiber X × t for almost
everywhere t ∈ [0, 1]. And this vector field can be computed as

vt = ωgy∂̄ψ

where φ′ε → ψ in strong L2 norm at time t. Notice that there are more information
to use for the convergence of φ′ε. In fact, we know |φ′|, |φtz̄| and |φzt̄| are all uniformly
bounded on X × I, i.e.

|φ′|C1 < C,

then we can assume φ′ε → φ′ ∈ C1(X×I), in C0,α norm. Hence the two limits actually
agree with each other, i.e.

ψ = φ′

as L2 functions on X. Now the holomorphic vector field can be written as

vt = ωgy∂̄φ
′.

Then we can define the following subset of the unit interval

S := {t ∈ I; there is a holomorphic vector field vt on X×{t} satisfying ωg∧vt = ∂̄φ′}

we know the set I−S has measure zero. Next we are going to prove a stronger result

Proposition 25 The subset S coincides with the whole unit interval, i.e.

S = I.

Proof 15 First recall that φε → φ in C0,α(X × I) norm, by the uniform bound on
C1 norm of φ. Then on each fiber X × {t}, the convergence still holds, i.e.

φε → φ

in C0,α(X), and this implies
gε,αβ̄ → gαβ̄

in the sense of distribution on the fiber X × {t}. Pick up a point t ∈ I − S, and a
sequence ti ∈ S such that ti → t. Observe that the space of all holomorphic vector
fields is finite dimensional, i.e. let

Γ(X) := H0(TX),
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then Γ is a finite dimensional vector space. Write vti = Xiy1, where vti ∈ Γ is
the vector field satisfying the equation in the definition of S. Observe that vt is the
unique solution to the following equation

∂φtvt = 2φtφ
′ = π⊥φ

′

under the condition H0,1(X) = 0, then the standard L2 estimate(Berndtsson[7]] gives
us

||vt||h 6 C||π⊥φ′||h
for some fixed metric h and uniform constant C independent of time t. Consider the
sequence {Xi} ∈ H0(TX), the uniform bounds on the L2 norm of Xi shows it must
converges under the fixed metric h, i.e. there exists a vector field X ∈ Γ such that

||X −Xi||2h → 0.

Let’s write gαβ̄ = gαβ̄(t) and gi,αβ̄ = gαβ̄(ti), then

||X −Xi||2g 6 C||X −Xi||2h,

hence converges to zero too. Now we claim the equation

ωg ∧X = ∂̄φ′

holds in the sense of distribution. Put χ(z) be any smooth compact supported testing
function on X(we can further assume χ is supported in some coordinate chart), we
fix a pair of index α, β, and compute∫

X

(gαβ̄X
α − gi,αβ̄Xα

i )χ(z) deth

=

∫
X

χ(gαβ̄ − gi,αβ̄)Xα deth+

∫
X

χ(Xα −Xα
i )gi,αβ̄ deth,

since gi,αβ̄ is uniformly bounded, the second term in above equation converges to zero
in strong L2 sense. And the first term, we can decompose it into∫

X

χ(gαβ̄ − gi,αβ̄)Xα deth

=

∫
X

χ(gαβ̄ − gεαβ̄)Xα deth−
∫
X

χ(gi,αβ̄ − gεi,αβ̄)Xα deth+

∫
X

χ(gεi,αβ̄ − g
ε
αβ̄)Xα deth,
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the first and second terms converge to zero as ε → 0, and for the third term, we
integration by parts∫

X

χ(gεi,αβ̄ − g
ε
αβ̄)Xα deth =

∫
X

χ,β̄(φεi,α − φεα)Xα deth

=

∫
X

χ,β̄(ti − t)φ′,α(t)Xα deth

6 A|ti − t|

where A is a constant independent of ε. Hence∫
X

χ(gαβ̄ − gi,αβ̄)Xα deth→ 0

as ti → t, and we proved
gi,αβ̄X

α
i → gi,αβ̄X

α
i

in the sense of distributions. But we know φ′i → φ′ in C0,α norm, hence ∂̄φ′i → ∂̄φ′

in the sense of distribution too. Finally, the limit equation

gαβ̄X
α = φ′,β̄

holds in distribution sense on X × {t}. Now since both sides in above equation are
L∞ functions, we see the equation actually holds in the sense of L2 functions by the
same argument in Remark 1.

Now it makes sense to talk about the time derivative of vector fields vt in distri-
bution sense, i.e. on the C1,1̄ geodesic, we compute in the sense of distributions

φ′′,β̄ = (gαβ̄X
α)′,

and computation implies

(gαλ̄φ′,αφ
′
,λ̄),β̄ = φ′αβ̄X

α + gαβ̄(Xα)′.

note the RHS is in fact equal to

∇β̄(φ′,αX
α) = φ′,αβ̄X

α + φ′,αX
α
,β̄ = φ′,αβ̄X

α,

here Leibniz rule makes sense since X is holomorphic. Hence we get

gαβ̄(Xα)′ = 0
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which is equivalent to the vanishing of ∂
∂t
vt = 0, i.e. we have an unchanged holomor-

phic vector field v on the geodesic.

We finished the proof of uniqueness theorem by taking the holomorphic vector field

V :=
∂

∂t
− V,

then it’s easy to check LV(i∂∂̄φt) = 0 during the flow, hence the induced the auto-
morphism F preserves the metric along the geodesic.
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11 Twisted Kähler-Einstein metrics

Let X be a compact complex Kähler manifold with −KX > 0, and S be a semi-
positive R-line bundle on X, i.e. there exists a smooth Hermitian metric ψ on the
line bundle S such that

θ = i∂∂̄ψ > 0.

Notice here θ is a globally defined closed (1, 1) form, and then we are going to consider
the following twisted Kähler-Einstein equation

Ric(ω) = ω + θ (9)

on X. Here we assume −(KX + S) > 0, and a Kähler form ω can always be written
as

ω = i∂∂̄φ

where φ is a positively curved smooth metric on the R-line bundle −(KX +S). And
we will also use another notation when there is no confusion, i.e.

ωϕ = ω0 + ddcϕ

where ω0 is a fixed background Kähler metric in the same cohomology class, and ϕ
is the Kähler potential. We shall consider all such metric with L∞ potentials, i.e.

|φ′ − φ| < +∞

Let’s denote these metrics as PSH∞(−KX − S), and we always assume
∫
X
ωn = 1

in the following. Now suppose there exists two Kähler metrics φ0 and φ1 satisfying
equation (9), i.e.

ωnφi =
e−φi−ψ∫
X
e−φi−ψ

(10)

for i = 1, 2. We then claim they are the same up to a holomorphic automorphism,
i.e.

Theorem 26 Suppose ω1 = i∂∂̄φ1 and ω2 = i∂∂̄φ2 are two solutions of twisted
Kähler-Einstein equation with the same weight θ, then there exists a holomorphic
automorphism F on X, such that F ∗(ω2) = ω1 and F ∗(θ) = θ. Moreover, this
automorphism is induced from a holomorphic vector field V.

This is the twisted version of uniqueness theorem on Kähler-Einstein metrics on
Fano manifolds. In order to investigate this equation from variational methods, we
shaw introduce the twisted Ding-functional, whose critical point corresponds to the
twisted Kähler-Einstein metric.
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Definition 1 The twisted Ding-functional D is a functional defined on the space of
all plurisubharmonic metrics φ ∈ PSH∞(−KX − S), such that

D := −E + Fψ

where

E(φ) :=
1

n+ 1

∫
X

Σn
j=0(φ− φ0)ωjφ ∧ ω

n−j
φ0

and

Fψ(φ) := − log

∫
X

e−φ−ψ.

Remark 4 Since φ is a metric on the line bundle −(KX + S) and ψ is a metric on
S, we see τ = φ+ ψ is a metric on −KX , and e−τ is a volume form on X.

Notice that the two functionals E and F will be changed in a new normalization,
but Ding-functional is a normalization invariant. Now suppose there is a smooth
curve φt in the space of metrics, and we can compute derivatives of twisted Ding-
functional on it, i.e.

∂D
∂t

=

∫
X

φ′(ωnφ −
e−φ−ψ∫
X
e−φ−ψ

).

Hence twisted Kähler-Einstein metric is its critical point, and

∂2D
∂t2

=

∫
X

(φ′′ − |∂φ′|2gφ)ωnφ + (

∫
X

e−τ )−1{
∫
X

(φ′′ − (πτ⊥φ
′)2)e−τ}

where τ = φ + ψ, and the orthogonal projection is πτ⊥u = u−
∫
ue−τ/

∫
X
e−τ . Now

suppose φt, 0 6 t 6 1 is a smooth geodesic connecting φ1 and φ2, we see

(

∫
X

e−τ )
∂2D
∂t2

=

∫
X

(|∂̄φ′|2gτ − (πτ⊥φ
′)2)e−τ +

∫
X

(|∂̄φ′|2gφ − |∂̄φ
′|2gτ )e

−τ (11)

where gτ is the metric corresponding to the Kähler form ωτ = i∂∂̄τ , and hence

ωτ > ωφ.

This implies the second term on the RHS of equation(11) is non-negative, i.e. gαβ̄φ φ′
,β̄
φ′,α >

gαβ̄τ φ′
,β̄
φ′,α, and the first term is non-negative from the Futaki’s formula with respect

to the weighted Laplacian operator [16]

2τ = ∂̄∗τ ∂̄.

Hence we proved the following
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Proposition 27 The twisted Ding-functional is convex along smooth geodesics.

We can further observe that on the smooth geodesic φt, the twisted Ding-functional
must keep to be a constant, i.e. ∂2D/∂t2 ≡ 0 on the geodesic, and then the following
two equations

δτ (t) :=

∫
X

(|∂̄φ′|2gτ − (πτ⊥φ
′)2)e−τ = 0 (12)

k(t) :=

∫
X

(|∂̄φ′|2gφ − |∂̄φ
′|2gτ )e

−τ = 0 (13)

hold simultaneously for each 0 6 t 6 1. The equation (12) implies there exists a
time independent holomorphic vector field V = Xα ∂

∂zα
, where

Xα = gαβ̄τ φ′,β̄

such that the Lie derivative
LV(τt) = 0

where Vt = V − ∂
∂t

, i.e. the induced automorphism F preserves the metric as

F ∗(ωτ (t)) = ωτ (0)

for any 0 6 t 6 1. Then from the twisted Kähler-Einstein equation we see

F ∗(Ric(ωφ1)) = F ∗(ωφ1 + θ) = ωφ0 + θ = Ric(ωφ0),

hence (F ∗ωφ1)
n = (ωφ0)

n because they are in the same cohomology. By the unique-
ness of Monge-Ampère equation, we get

F ∗(ωφ1) = ωφ0 ,

the equation
F ∗(θ) = θ

follows directly. Up to here, we proved theorem 26 under the assumption of smooth
geodesics. Moreover, the equation (13) implies the twisted Kähler-Einstein metric is
really unique if θ is strictly positive. Next, we shall prove the theorem in the case
when there is only C1,1̄ geodesic connecting two twisted Kähler-Einstein metrics.
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Proof 16 (of theorem 26) Let’s consider the ε-approximation geodesics connect-
ing φ1 and φ2, i.e. the solution of the following equation

(φ′′ − |∂φ′|2gφ) det gφ = ε deth

with boundary values

φ(0, z) = φ1(z); φ(1, z) = φ2(z).

Now if we define f = φ′′ − |∂φ′|2gφ > 0, then we can see

f det gφ = ε deth

and the second time derivative of twisted Ding-functional is

∂2D
∂t2

= −
∫
X

f det gφ + (

∫
X

e−τ )−1{
∫
X

(f + δτ + k)e−τ}.

Notice that
∫
X
fτe
−τ ,

∫
X
δτe
−τ and

∫
X
ke−τ are all non-negative, hence∫

X×I
(f + δτ + k)e−τdt 6 εC

for some uniform constant C independent of ε. If put fτ = φ′′− |∂φ′|2gτ = f + k > 0,
we see that for almost everywhere t ∈ [0, 1], there exists a constant C(t) and a
subsequence εj(t) such that∫

X

fτe
−τ (εj) < C(t)εj;

∫
X

δτe
−τ (εj) < C(t)εj

from Fatou’s lemma. Furthermore, all the uniform C1,1̄ estimates hold for metrics
τ(ε) on the approximation geodesics, because

τε = φε + ψ

and ψ is a fixed smooth twister here. Hence by considering the weighted Laplacian
operator 2τ , the same argument in [16] implies there exists a time independent
holomorphic vector field V = Xα ∂

∂zα
, such that the induced automorphism F of X

will preserve the metric, i.e. F ∗t (ωτ (t)) = ωτ (0), then as we argued before in smooth
case,

F ∗(ωφ1) = ωφ0

and
F ∗(θ) = θ

for all t ∈ [0, 1].
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In prior, the holomorphic vector field V = Xα ∂
∂zα

obtained from above proof is
computed with respect to the metric τ , hence

Xα = gαβ̄τ φ′,β̄.

However, we know the condition

F ∗t (ωφt) = ωφ0 + θ − F ∗t θ

for each t ∈ [0, 1] from the proof. Hence the geodesic gφt is smooth both in space and
time directions, and the twisted Ding-functional D keeps being a constant along the
geodesic φt, i.e.

∂D
∂t
≡ 0

for all t ∈ [0, 1]. Hence φt keeps to be the local minimizer of the twisted D-functional
along the whole curve, i.e. it satisfies

Ric(ωφt) = ωφt + θ.

From the same argument as above we have

F ∗t (ωφt) = ωφ(0); F ∗t (θ) = θ

for each 0 6 t 6 1. Then the curve generated by the one parameter group of
automorphisms Ft coincides with the geodesic ωφt , and this is to say the C1,1̄ geodesic
is in fact smooth. Moreover, we can prove

Corollary 28 Suppose there is one point p ∈ X, such that the closed (1,1) form θ is
strictly positive, i.e. θ(p) > 0, then the twisted Kähler-Einstein metric ω1 is actually
unique.

Proof 17 Suppose we have two different twisted Kähler-Einstein metrics ω1 and ω2,
then we can assume there is a smooth geodesic connecting them by the argument
before the corollary. And this curve is the one parameter group of Automorphism Ft
generated by a nontrivial holomorphic vector field V . Now take the time derivative
in the integral equation, we see

F ∗t (LV(ωφt)) = 0,

and hence
∂(V y ωφt) = ω′φt = ω′τ
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which implies
∂(V y θ) = 0

Now notice the existence of twisted Kähler-Einstein metrics on the manifold X im-
plies the first betti number b1 = 0, i.e. there is no nontrivial harmonic (0,1) form,
hence V y θ = 0, i.e.

Xαθαβ̄ = 0

and then we can write
Xα = gαβ̄φ φ′β̄;

for any time 0 6 t 6 1. Now in a neighborhood of the point p ∈ U , the (1,1) form θ
keeps to be strictly positive, i.e.

θ > εω

in U . But the equation Xαθαβ̄ = 0 implies the holomorphic vector field V is iden-
tically zero in an open set U , hence it must be identically zero on X, which is a
contradiction.

Finally by combining the results from theorem 26 and corollary 28, the proof of
theorem2 is finished.
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12 Smooth perturbation of conical Kähler-Einstein

metrics

We shall introduce conical Kähler-Einstein metrics first in this section, and consider
the perturbation of these metrics. Let D be a smooth divisor on the manifold X,
such that the associated line bundle SD of this divisor is semi-positive. Suppose the
R-line bundle −(KX + (1 − β)SD) is strictly positive, where 0 < β < 1 is any real
number. Then each L∞ strictly plurisubharmonic metric φ on this R-line bundle
associates with a Kähler form

ωφ = i∂∂̄φ > 0

as before.

Definition 2 A singular Kähler metric ω is a conical Kähler metric with angle β
along D if the following conditions are satisfied:

(i) ω is a closed positive (1,1) current on X, and is smooth on X\D;

(ii) for every point p ∈ D, there exists a constant C, such that in D∩U = {z1 = 0},
where U is a coordinate neighborhood of p, we have

C−1ωβ 6 ω 6 Cωβ

where ωβ is a local model conical metric on D ∩ U , i.e.

ωβ :=
√
−1(

dz1 ∧ dz̄1

|z1|2−2β
+ Σn

i=2dz
i ∧ dz̄i)

From now on, we shall suppose ωφ is always a conical Kähler metric, and then we
can talk about the Kähler-Einstein equation in this setting: we call ωφ is a conical
Kähler-Einstein metric if the following equation is satisfied in current sense

Ric(ωφ) = ωφ + (1− β)δD (14)

where δD is the integration current of the divisor D, and it’s equivalent to the fol-
lowing Monge-Ampère equation

ωnφ =
e−φ/|s|2−2β∫
X
e−φ/|s|2−2β

, (15)
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where D = {s = 0}. Notice that e−φ/|s|2−2β is a volume form on X by the coho-
mology condition, since log |s|2 corresponds to a plurisubharmonic metric on the line
bundle S.

Before going to this singular case, it’s natural to consider the perturbed version
of this equation, i.e. we shall consider the following smooth approximation equation

ωnφε =
e−φε

µε(|s|2 + εeψ)1−β (16)

where ψ is any semi-positively curved smooth metric on the line bundle S, and

µε =

∫
X

e−φε

(|s|2 + εeψ)1−β

is the normalization constant. This is equivalent to the following geometric equality

Ric(ωφε) = ωφε + (1− β)χε (17)

where
χε = ddc log (|s|2 + εeψ)

Now we claim that χε is an non-negative closed (1,1) form as

Lemma 29 For any ε > 0, we have

ddc log (|s|2 + εeψ) > 0.

Proof 18
∂∂̄ log (|s|2 + εeψ)

= ∂{sds̄+ εeψ∂̄ψ

|s|2 + εeψ
}

=
εeψ

|s|2 + εeψ
{∂∂̄ψ + |ds− s∂ψ|2},

and notice the above term is non-negative if the smooth metric ψ is.

Now suppose we have a smooth solution ωφε of equation(16), then theorem(2)
tells us

Corollary 30 The smooth solution of the perturbed conical Kähler-Einstein equation
ωφε is actually unique.
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Proof 19 It’s enough to prove there exist one point p ∈ X, such that χε(p) > 0.
First notice that this is the case if the metric i∂∂̄ψ is not completely degenerate.
Otherwise, we have

∂∂̄ψ ≡ 0

on X. But meanwhile we should have

∂̄ψ =
ds̄

s̄

if χε vanishes. And then i∂∂̄ψ = δD, where δD is the integration current of D, which
is a contradiction.
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13 Construction of the perturbed solution

In this section, we shall discuss the existence of the solution of the perturbed Kähler-
Einstein equation. In general, this is unknown even if the solution of equation (15)
exists. So, here we need an extra assumption: the twisted Ding-functional is proper.

In the following, we shall write the twisted Ding-functional as Dε with respect to
the smooth twister χε, and Dβ with respect to the singular twister (1−β)δD, i.e. we
have

Dε(φ) = −E(φ)− log

∫
X

e−φ

(|s|2 + εeψ)1−β

and

Dβ(φ) = −E(φ)− log

∫
X

e−φ

|s|2−2β
.

Notice that the critical point of the twisted Ding-functional Dε (or Dβ) is the solution
of the twisted Kähler-Einstein equation with twister χε (or (1−β)δD). Next, we shall
introduce another important functional Aubin’s J functional, i.e.

J (φ) :=

∫
X

ϕωn0 − E(ϕ)

where ϕ = φ−φ0. This functional is a kind of W 1,2 norm of the potential ϕ, and we
can compare it with Ding-functional

Definition 3 The twisted Ding-functional Dε(or Dβ) is called proper if there exists
some constant a > 0 and b such that

D.(φ) > aJ (φ) + b

for all φ ∈ PSH(−KX − S).

Remark 5 Notice that the properness of the twisted Ding-functional is in fact in-
dependent of the twister as long as the twister is smooth. This is because the twisted
Ding-functionals are comparable for two different smooth twisters, i.e. let ψ1 and ψ2

be the corresponding metrics associated to the twisters θ1 and θ2 , then there exists
a constant C such that

−C < ψ1 − ψ2 < C

then the twisted functionals satisfy

Fψ2(φ) = − log

∫
X

e−φ−ψ2 = − log

∫
X

e−φ−ψ1+(ψ1−ψ2)
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hence
|Fψ1 −Fψ2| < C ′

for some uniform constant C ′. And since E and J functionals are independent of
the twister, the assertion follows.

Remark 6 For the special twister χε, observe that the major term F in the twisted
Ding-functional has the following relation

Fε 6 Fε′

if ε 6 ε′, hence Dε is decreasing when ε becomes smaller. Moreover, if ε = 0, it
achieves its minimum , i.e.

Dβ 6 Dε
for all ε > 0 small. Hence in the practice, we can simply require Dβ to be proper.

Generally speaking, the purpose for introducing properness of Ding-functional is
to solve the following continuity path

Ric(ωφt) = tωφt + (1− t)ω0 + (1− β)χε.

where ω0 is a fixed smooth Kähler metric in the same cohomology with ωφ, and
χε = i∂∂̄ψε for ψε = log(|s|2 + εeψ). This equation is solvable up to t = 1 if the
twisted K − energy [4] is proper, and this condition is equivalent to the properness
of the twisted Ding-functional from the argument of Berman[4], so the existence of
smooth perturbed solutions are guaranteed from here. However, this is not the end
of the story since we want to make sure these perturbed solutions can approximate
the conical one in some sense.

In order to do this, we need to consider a kind of conical Kähler metrics with
better regularity. Donaldson[12] introduced a special Hölder space C2,α,β where 0 <
α < 1

β
− 1 for real valued functions on X, and we can define the so called C2,α,β

conical Kähler metric[12] by requiring that a local Kähler potential lies in C2,α,β, i.e.
in a local coordinate chart near the divisor D, we can always write

ω = i∂∂̄(ϕ+ ψ)

where ϕ ∈ C2,α,β, and ψ is some smooth function. Be aware that this condition is
stronger than the condition of conical Kähler metrics. Simply speaking, for fixed
angle β, a C2,α,β conical Kähler metric is a conical Kähler metric with uniform C2,α,β

norm.
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Now let’s take ωϕβ to be a C2,α,β conical Kähler-Einstein metrics on X and assume
the twisted Ding-functional Dβ is proper, then Chen, Donaldson and Sun’s work[9]
provided a way to construct the following a family of sequence of perturbed solutions

ωφε(t, .) = ω0 + i∂∂̄φε,

and it satisfies the following equation

Ric(ωφε(t)) = tωφε(t) + (1− t)ωϕε + (1− β)χε.

Notice that for t = 1, ωφε(1, .) = ωφε is exactly the solution of the twisted Kähler-
Einstein equation with smooth twister (1− β)χε, i.e.

Ric(ωφε) = ωφε + (1− β)χε,

and when t = 0, the metric ωφε(0, .) = ψε will approximate the original metric ωβ
because we require

ωnψε = e−ϕε+hω0
1

(|s|2h + ε)1−βω
n
0

where ωϕε is a small perturbation of the original metric such that ωϕε → ωβ in Cγ(X).
Moreover, we know that when ε → 0, the sequence of metrics φε(t, .) converges to
a metric φ0(t, .) globally in Cγ and locally in C3,γ outside the divisor D, and the
limiting metric φ0(t, .) will satisfy the following equation outside D

ωnφ0 = e−tφ0−(1−t)ϕβ+hω0
1

|s|2−2β
h

ωn0 (18)

with
φ0(0, .) = ϕβ.

Observe that above equation is in fact equivalent to

ωnφ0 = e−t(φ0−ϕβ)ωnϕβ (19)

with t ∈ [0, 1]. Now we claim the curve of metrics φ0(t, 0) is in fact fixed. The
argument of the claim is similar with the end of the paper [9], and we shall recall it
here for convenience of the reader

Lemma 31 The continuous family φ0(t, .) is independent of the time t, and hence

φ0(1, .) = ϕβ.
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Proof 20 We shall argue like the end of the paper [9]. First notice that the weighted
Laplacian operator ∆ϕβ is continuous and invertible as a map

∆ϕβ : C2,γ,β
0 → C,γ,β

for some γ < 1
β
− 1, and C2,γ,β

0 is the space of functions in C2,γ,β with zero average.

In fact, by Donaldson’s Hölder estimate of conical metrics in [12], we can prove the
first eigenvalue of this operator is strictly positive, i.e.

∆ϕβ > λ

for some constant λ > 0, and any u ∈ C2,γ,β
0 . Now since the term e−t(φ0−ϕβ) lies

in C,γ,β, Implicit Function Theorem implies the existence of a continuous family of
solution of the following equation

ωnψ = e−t(φ0−ϕβ)

with ψ(t, .) ∈ C2,γ,β
0 , for t ∈ [0, ε0). Notice that ψ(0, .) = ϕβ, hence ψ(t, .) must

coincide with φ0(t, .) up to a constant in this short time. Then we can guarantee that
φ0(t, .) ∈ C2,γ,β for t ∈ [0, ε0).

Next we consider a constant continuity path ϕt ≡ ϕβ, which satisfies the equation

ωnϕt = e−t(ϕt−ϕβ)ωnϕβ .

Now by Implicit Function Theorem again, we have a unique path of solution for
t < min(ε0, λ/2), and hence

φ0(t, .) = ϕβ, ∀ 0 6 t < min(ε0, λ/2).

Finally we can repeat this procedure again and again, it will reach t = 1, i.e.

φ0(1, .) = ϕβ.

Recall from our previous construction, we see the sequence of twisted Kähler-
Einstein metric φε will converges to ϕβ in Cγ, hence we have

Proposition 32 Suppose ωϕβ is a C2,α,β solution for the conical Kähler-Einstein
equation along the divisor D on X, and the twisted Ding-functional is proper, we
can construct a sequence of perturbed Kähler-Einstein metrics φε, such that

φε → ϕβ

globally in Cγ, and locally in Ck,γ for some k > 3 outside of D.
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and this brings the proof our uniqueness.

Proof 21 (of theorem 3) Suppose ωϕβ and ω′ϕβ are two different C2,α,β conical
Kähler-Einstein metrics on X with cone angle β along the divisor D. From above
argument, we can construct a sequence of smooth twisted Kähler-Einstein metrics φεj
to approximate ϕβ in some Hölder space Cγ. Then repeat the construction again, we
can find a subsequence φεn(j) to approximate ϕ′β by the actual uniqueness of φε, and
this implies φβ = φ′β on X, which is a contradiction.

In the end of the paper, a new point in the above proof should be mentioned.
Unlike the end of the paper[9], the vanishing of tangential holomorphic vector fields
is not necessary in the proof of lemma(31), i.e. the properness of twisted Ding
functional has not been used here. So we can try to generalize this method by
starting from the construction of some suitable approximation of conical Kähler-
Einstein metrics without properness of Ding functional.
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