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Abstract of the Dissertation

Self-dual Hall Modules
by

Matthew Bruce Young

Doctor of Philosophy

in

Mathematics

Stony Brook University

2013

In the past twenty years Hall algebras have played an important role in many

areas of mathematics and physics, including the theory of quantum groups and string

theory. In its original setting the Hall algebra is constructed from a finitary exact

category, the multiplication encoding the extension structure of the category. In this

dissertation we introduce the Hall module of a finitary exact category with duality.

The duality structure allows objects to carry sesquilinear forms and the action of

the Hall algebra provides a categorical generalization of parabolic induction for the

classical groups preserving a sesquilinear form. After developing the basic theory of

Hall modules we study in detail Hall modules arising from the representation theory

of a quiver with involution. In this setting we find a connection with twisted versions

of quantum groups. We also study arithmetic properties of the Hall module structure

constants.
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Chapter 1

Introduction

1.1 Hall algebras in mathematics and physics

The first incarnation of what is currently known as a Hall algebra was introduced
in 1901 by Steinitz [64]. The construction was rediscovered and studied in greater
detail by Hall [24] a half century later. For a fixed prime p, the vector space with
basis labeled by isomorphism classes of finite abelian p-groups was given an associative
product by counting certain short exact sequences of finite abelian p-groups. This
algebra, now termed the classical Hall algebra, was called the algebra of partitions by
Hall due its basis being in bijection with the set of all partitions. The classical Hall
algebra is isomorphic to the algebra of symmetric functions and was used by Green
[19] in his work describing characters of finite general linear groups. From this point
of view, multiplication in the classical Hall algebra is given by parabolic induction
of characters. A thorough account of the combinatorial and representation theoretic
aspects the classical Hall algebra can be found in [47], [71].

Ringel extended the work of Steinitz and Hall to construct from an arbitrary
abelian category A with finite Hom and Ext1 sets an associative algebra HA, again
called the Hall algebra. The multiplication encodes the first order extension structure
of A. When A is the category of finite abelian p-groups the classical Hall algebra
is recovered. Ringel showed [57] that when A = RepFq(Q) is the category of repre-
sentations of a quiver over a finite field the Hall algebra HQ contains a subalgebra
isomorphic to the negative part of the quantum derived Kac-Moody algebra Uv(gQ)
attached to Q, specialized at

√
q−1. Later, Green [20] endowed HA with a natural

coproduct which for hereditary A makes HA into a (braided) bialgebra. In partic-
ular, the Hopf algebra structure of U≤0√

q−1(gQ) is naturally realized by HQ, thereby

clarifying the relationship between Hall algebras and quantum groups. More recently,
Bridgeland [7] realized the full quantum group using the Hall algebra of Z2-graded
complexes of quiver representations.

A second important class of examples of Hall algebras occurs when A is the
(hereditary) category of coherent sheaves on a smooth projective curve X defined
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over Fq. In this case the Hall algebra is closely related to automorphic forms for the
groups GLn, n ≥ 0, over the function field of X. When X = P1, using the (quadratic)
functional equations for Eisenstein series Kapranov showed [33] (see also [2]) that the
Hall algebra contains a subalgebra isomorphic to the non-standard negative part of
the quantum affine algebra U√q−1(ŝl2). The Hall algebra of an elliptic curve is related

to Cherednik’s double affine Hecke algebra [60], while Hall algebras of higher genus
curves remain an active area of research.

The Hall algebra approach to quantum groups paved the way to more geometric
realizations of interesting algebraic structures. In [42, 43, 44], Lusztig used induction
and restriction operators on categories of perverse sheaves on the moduli stack of Fq-
representations of Q to construct U−v (gQ) and its canonical basis. In a similar way,
Ringel’s served as motivation for Nakajima’s construction [49] of modules of quantum
affine algebras using the homology groups of Nakajima quiver varieties.

While Hall algebras have proven to be very interesting from a purely mathematical
point of view, recently their role in physics has been emphasized. In quantum field
theories and string theories with extended supersymmetry the Bogomol’nyi-Prasad-
Sommerfield (BPS) states form a subspace of the Hilbert space of all states about
which exact statements can often be made [50]. BPS states are quantum states
that are invariant under only a fraction of the supersymmetries of the theory. As
such BPS states form short, or of lower expected dimension, representations of the
supersymmetry algebra. This implies that the subspace of BPS states is invariant
under certain deformations of the theory. For example, in Type IIA string theory
compactified on a three dimensional Calabi-Yau variety an appropriate index of BPS
states (which arise from holomorphic cycles) is invariant under deformations of the
complex structure of the Calabi-Yau. From a physical point of view the invariance
of BPS indices yields valuable information about strong/weak coupling duality of the
theory. BPS states are also of interest to mathematicians since these states often
admit interesting geometric interpretations, examples including cohomology classes
of moduli spaces of sheaves, holomorphic curves and special Lagrangian submanifolds.

One important property of the space of BPS states is that it is expected to form
an algebra [25]. The product encodes the ways in which two BPS states can form a
third BPS state as a bound state. From this description it is natural to regard BPS
algebras as a kind of generalization of the Hall algebra. For example, the algebra of
BPS states in Type IIA theory on the crepant resolution of the Kleinian singularity
C2/ZN is related to a complex version of the Hall algebra of the affine quiver asso-
ciated to the singularity through the McKay correspondence [16]. See [17], [9] for
related mathematical treatments. Recently, general mathematical models for BPS
algebras have been suggested, most notably the motivic Hall algebras of Joyce [30]
and Kontsevich-Soibelman [37] (see also [38], [6] for reviews) and the cohomological
Hall algebra of Kontsevich-Soibelman [39]. These algebras are constructed from the
category of coherent sheaves on a Calabi-Yau threefold and, often conjecturally, from
a large class of three dimensional Calabi-Yau categories.
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The Hall algebras of Joyce and Kontsevich-Soibelman are central to the theory
of generalized Donaldson-Thomas (DT) invariants, which roughly speaking count
semistable objects of the category under consideration. Physically, DT invariants
encode the BPS spectrum of the theory. Under certain smoothness assumptions DT
invariants are defined using the intersection theory of the moduli stack of semistable
objects. However, without these assumptions the definition of DT invariants uses the
Hall algebra in an essential way. The Hall algebra also provides an effective tool to
study the basic properties of DT invariants, such as their integrality and behaviour
under change of stability condition, known as wall-crossing. As a concrete exam-
ple, using identities in the motivic Hall algebra Bridgeland proved the Donaldson-
Thomas/Pandharipande-Thomas correspondence for smooth projective Calabi-Yau
threefolds [5].

1.2 Dissertation work

We briefly summarize the contents of each chapter.
In Chapter 2 we review the basic theory of Hall algebras of abelian and exact

categories that will be needed throughout the dissertation. We state Green’s theorem
asserting the compatibility of the algebra and coalgebra structures of the Hall algebra
of a hereditary abelian category.

Following the previously described character theoretic interpretation of the clas-
sical Hall algebra, multiplication in HA can be viewed as a categorical version of
parabolic induction for general linear groups. It is therefore natural to seek a mod-
ification of the Hall algebra construction that gives a categorical generalization of
parabolic induction for the classical groups preserving a non-degenerate sesquilinear
form. This is one of the primary goals of this dissertation and is the focus of Chapter
3. To formulate the problem we work in the setting of exact categories with duality.
We therefore assume that along with a finitary exact category A we are given the ad-
ditional data of a duality structure, that is, an exact contravariant functor S : A → A
whose square is compatibly isomorphic to the identity. A pair (M,ψ) consisting of
an object M ∈ A and a symmetric isomorphism ψ : M

∼−→ S(M) is called a self-dual
object. The morphism ψ can be thought of as a non-degenerate form on M . As is
the case in linear orthogonal or symplectic geometry, given an isotropic subobject
U ⊂M the reduced object U⊥/U inherits a canonical self-dual structure. Denote by
MA the vector space with basis labelled by the set of isometry classes of self-dual
objects. Our first result defines the Hall module of (A, S), which is the central object
of this dissertation.

Theorem 1.2.1 (Theorem 3.2.3). The formula

[U ] ? [M ] =
∑
N

GN
U,M [N ]

3



givesMA the structure of a left HA-module, where U ∈ A, M,N are self-dual objects
of (A, S) and GN

U,M is the number of isotropic subobjects of N isomorphic to U and
with reduction isometric to M .

There is also a version of Theorem 1.2.1 giving MA the structure of a left HA-
comodule. The Hall module carries a canonically defined non-degenerate symmet-
ric bilinear form for which the module and comodule structure maps are adjoint.
This form plays a central role in structure of the Hall module. The Hall module is
naturally graded by the Grothendieck-Witt group of A and decomposes as a direct
sum of modules labeled by the Witt group of A; see Proposition 3.3.1. We use the
Grothendieck-Witt grading to twist the action in Theorem 1.2.1 to obtain a module
over the Ringel’s twisted Hall algebra. This twist is essential for the connection to
quantum groups discussed later in the dissertation. The definition of the twist uses
a homologically defined function E that plays the role of the Euler form for exact
categories with duality and is therefore of independent interest; see Theorem 4.3.3
and Proposition 4.3.5.

The main source of examples of Hall modules studied in this dissertation is con-
structed in Chapter 4. We show that when a quiver is given a contravariant involution
σ there are a number of naturally defined duality structures on Repk(Q). In particular
cases the self-dual objects recover the orthogonal and symplectic quiver representa-
tions of Derksen-Weyman [11]. In all cases, the total space of the representation
carries a hermitian, orthogonal or symplectic form and the structure maps satisfy
certain symmetry conditions. By the work of Ringel and Green and the general the-
ory of Hall modules, to each duality structure on RepFq(Q) there is a corresponding

representation MQ of U−√
q−1(gQ). To better understand MQ we partially describe

the compatibility of its module and comodule structures.

Theorem 1.2.2 (Theorem 4.4.1). The operators of induction and restriction along
the simple representations associated to the nodes of Q give MQ the structure of
a module over Bσ(gQ), the reduced σ-analogue of the quantum Kac-Moody algebra
attached to Q, specialized at

√
q−1.

The proof of Theorem 1.2.2 is based on a series of weighted counts of diagrams
of pairs of isotropic subrepresentations. Using Theorem 1.2.2, MQ can be written
entirely in terms of irreducible highest weight Bσ(gQ)-modules Vσ(λ). We call a
homogeneous (with respect to the Grothendieck-Witt grading) element ξ ∈ MQ

cuspidal if it is annihilated by all simple restriction operators.

Theorem 1.2.3 (Theorem 4.4.7). The Bσ(gQ)-submodule generated by a homoge-
neous cuspidal ξ ∈MQ is isomorphic to Vσ(λξ), the weight λξ being written explicitly
in terms of the Euler form and the function E. Moreover, if CQ is a homogeneous basis
for the submodule of cuspidals, then there is a direct sum decomposition of Bσ(gQ)-
modules

MQ '
⊕
ξ∈CQ

Vσ(λξ).
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In particular, the trivial self-dual representation is cuspidal and so generates an
irreducible direct summand ofMQ. Theorem 1.2.3 can therefore be viewed as a gen-
eralization of a result of Enomoto [14], which states that the submodule generated by
the trivial orthogonal representation is isomorphic to Vσ(0). Enomoto’s approach uses
entirely different methods than those employed here, working over an algebraically
closed field in Lusztig’s geometric setting of perverse sheaves. Our approach is more
basic, relying on the combinatorics of representations defined over finite fields.

From a representation theoretic point of view, the simplest quivers are those having
only finitely many indecomposable representations over any field. These are the
so-called finite type quivers. As proved by Gabriel [18], the connected finite type
quivers are orientations of ADE Dynkin diagrams and their indecomposables are
in bijection with the positive roots of the root system of the corresponding simple
Lie algebra. In Chapter 5 we show that the quivers with involution having only
finitely many indecomposable self-dual representations are precisely the finite type
quivers admitting an involution. This gives a slight generalization of previous results
of Derksen-Weyman [11]. The two basic building blocks of finite type quivers with
involution are type A quivers and disjoint unions of ADE quivers. In these cases, we
explicitly classify the indecomposable self-dual Fq-representations. Unlike ordinary
quiver representations, the self-dual indecomposables over Fq differ from those over
algebraically closed fields (as studied in [11]) because of forms over finite fields. We
can phrase our classification to give a version of Gabriel’s theorem for self-dual Fq-
representations.

Theorem 1.2.4 (Theorem 5.1.3). Fix a finite ground field of odd characteristic.

1. The self-dual indecomposables of a disjoint union Q tQop, with Q finite type, are
in bijection with the positive roots of the root system ∆Q.

2. If the graph underlying Q is of Dynkin type A, then the self-dual indecomposable
representations are in bijection with the positive roots of a (possibly non-reduced) root
system whose short roots are decorated with data labeling inequivalent forms over finite
fields.

Only when Q is finite type is HQ finitely generated over the subalgebra U−√
q−1(gQ),

in which case it is cyclic. Motivated by this we expectMQ to have only finitely many
cuspidals precisely when Q is finite type. When all self-dual representations are
hyperbolic this expectation is true and there is a simple description of MQ.

Theorem 1.2.5 (Theorem 5.2.1). If Q is finite type and all self-dual representations
are hyperbolic, then MQ is generated by the trivial representation. Equivalently, the
only cuspidal is the trivial self-dual representation.

When there are non-hyperbolic self-dual representations, based on Theorem 1.2.4
and evidence from the case of equioriented type A quivers, we conjecture (Conjecture
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5.2.5) that the cuspidals are given by explicit alternating sums of inequivalent forms
of self-dual indecomposables. We outline a strategy to prove this conjecture using the
character theory of Bσ(g)-modules.

In Chapter 6 we study the dependence of the Hall module structure constants
GN
U,M on the underlying finite field Fq. For finite type quivers, the Hall polynomials

[56] specialize to the Hall algebra structure constants at each prime power q, showing
that the Hall numbers depend in a uniform way on the ground field. The polynomality
of the structure constants of MQ is more subtle. We introduce the notion of a self-
dual Hall semi-polynomial, which consists of a pair of polynomials, one of which
specializes to the structure constants of MQ for all q ≡ 1 (mod 4) and the other for
all q ≡ 3 (mod 4)

Theorem 1.2.6 (Theorem 6.2.1). Let Q be an equioriented type A quiver or a finite
type disjoint union quiver. If the indecomposable self-dual representations of Q have
no forms, then self-dual Hall polynomials with integer coefficients exist. Otherwise,
self-dual Hall semi-polynomials with half integer coefficients exist.

We first reduce Theorem 1.2.6 to showing the existence of self-dual Hall semi-
polynomials for the action of simple induction operators. We then prove this simpler
statement by a careful case by case analysis. We conjecture that Theorem 1.2.6 holds
without the equioriented assumption, and hence for all finite type quivers. As an
application we prove in Theorem 6.3.1 that the Hall module is insensitive to the
existence of self-dual Hall semi-polynomials instead of polynomials in the sense that
the two generic Hall modules are isomorphic as modules for the generic Hall algebra.

1.3 Physical motivation: Orientifold and open BPS

states

Compactifying string theory in ten dimensions on a Calabi-Yau threefold X pro-
duces a four dimensional field theory with unitary gauge groups and matter in bifun-
damental representations. More realistic physical models require also orthogonal and
symplectic gauge groups together with matter in symmetric and skew-symmetric rep-
resentations. One method to obtain these modifications is the orientifold projection.
For a review see [51].

Quite generally, orientifolds are defined using a parity operator P , which to a first
approximation is the composition of two operators. Denote by Ω the worldsheet parity
operator, which reverses the orientation of strings. Given a holomorphic involution τ
of X, the parity operator is schematically P = τΩ. If an open string stretches from the
D-brane B1 to the D-brane B2, then upon parity reversal the open string will stretch
from P (B2) to P (B1). Since open strings are precisely the morphisms in the category
D of topological D-branes, we see that the parity operator defines a contravariant
functor on D. More careful analysis shows that in fact (D, P ) is a triangulated
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category with duality [27], [12]. The self-dual brane configurations are precisely the
brane configurations invariant with respect to the orientifold and therefore survive
the orientifold projection. The theory is unchanged away from the fixed points of the
orientifold action, but near the fixed points orthogonal and symplectic gauge groups
appear.

Several categorical models for orientifolds have been introduced in the physics
literature. In the large volume limit of Type IIB theory compactified on a Calabi-
Yau X, D = Db(CohX) and P = Lτ ∗ ◦RHom(−,OX) [12]. At the Landau-Ginzburg
point D is the triangulated category of matrix factorizations of a superpotential W
and P is the composition of the graded transpose and the pullback along τ [27]. At
the orbifold point, where D is described through the representation theory of a quiver,
the duality structure for orientifolds is of the type considered in this dissertation [13],
[68].

Just as BPS states in oriented string theories are expected to form an algebra, so
too are BPS states in unoriented string theories. Since the latter can be obtained using
the orientifold projection, it suggests that a Hall-type algebra should be associated
to certain categories with duality. We expect that the Hall modules constructed in
this dissertation are a shadow of this structure. From this perspective, the module
structure would arise from a morphism from the BPS algebra to the orientifold BPS
algebra, most likely defined using the hyperbolic functor.

One application of this algebraic structure should be to orientifold, or real, DT
invariants. In [40] candidates for orientifold DT invariants of local toric Calabi-Yau
varieties were defined at a number of points in the Kähler moduli space directly us-
ing equivariant torus localization. However, no fundamental definition is given from
which the above examples can be derived as special cases. In view of the relationship
between Joyce and Kontsevich-Soibelman’s Hall algebras and DT invariants, the ori-
entifold BPS algebra or module may provide a fundamental approach to the study of
orientifold DT invariants.

So far we have discussed only applications to closed BPS states. Another impor-
tant class are open BPS states, which are those BPS states present only in theories
with defects. One such example are maps from a bordered Riemann surface into a
Calabi-Yau threefold with boundary in a Lagrangian submanifold, as appear in open
Gromov-Witten theory. In this example the open BPS states are related to homolog-
ical knot invariants [22], [21]. The algebraic structure of the space of open BPS states
is that of a module over the (closed) BPS algebra [23]. This motivates the general
study of representations of Hall or BPS algebras that are again of Hall-type. The
Hall modules described in this dissertation are but a single example of this structure.
The most accessible example in which to study the open BPS module may be for
D0/D2/D6 branes in a toric Calabi-Yau, in which case the Hall module may admit
a construction in terms of the framed representation theory of quivers [48]. The idea
of constructing a module in this was has also appeared in [65].

Finally, we remark that the open and orientifold BPS invariants are likely re-
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lated. This follows from the belief that there should be an orientifold Donaldson-
Thomas/Gromov-Witten correspondence [40] and the fact that the orientifold Gromov-
Witten invariants can sometimes be expressed in terms of open Gromov-Witten in-
variants where the Lagrangian submanifold is the fixed point locus of the involution.
It would be very interesting to understand this relationship at the level of Hall mod-
ules.
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Chapter 2

The Hall algebra of an exact
category

In this chapter we review the basic properties of the Hall algebra of an exact
category. Full details and proofs can be found in [59], [28].

We begin by recalling the definition of exact categories in the sense of Quillen [53].
We refer the reader to [8] for a thorough account of exact categories.

A kernel-cokernel pair (i, π) in an additive category A is a diagram

U
i→ X

π→ V

with i a kernel of π and π a cokernel of i. Fix a class F of kernel-cokernel pairs in A.
Elements of F will be called short exact sequences. We say that a morphism i is an

admissible monic, and write
i
�, if it appears in a pair (i, π) ∈ F . Admissible epics

are similarly defined and denoted by
π
�.

Definition ([53]). The pair (A,F) is an exact category if F is closed under isomor-
phisms and satisfies the following axioms:

• For any U ∈ A, the identity U
1U−→ U is both an admissible monic and an

admissible epic.

• The class of admissible monics is closed under composition.

• The class of admissible epics is closed under composition.

• The push out of an admissible monic exists and gives an admissible monic:

U X

Y V

9



• The pullback of an admissible epic exists and gives an admissible epic:

U X

Y V

We often refer to A as an exact category, instead of (A,F), if no confusion will
result. Any abelian category is in a canonical way an exact category, taking F
to be the class of all short exact sequences (arising from the abelian structure of
A); this is setting of most examples considered in this dissertation. Similarly, any
extension closed full subcategory of an abelian category has a canonically induced
exact structure.

We assume for the remainder of the dissertation that the category A is essentially
small. In this case there is a set Iso(A) of isomorphism classes of objects of A.
The Grothendieck group K(A) is the abelian group generated by the symbols |X|,
X ∈ Iso(A), modulo the relation |X| = |U | + |V | whenever U � X � V is a short
exact sequence.

The set of all short exact sequences in A of the form U � X � V is written
FXU,V . If for all U, V ∈ A the set Hom(U, V ) is finite and FXU,V is non-empty for only
finitely many X ∈ Iso(A), the category A is called finitary. In this case the Hall
numbers are defined as the cardinalities FX

U,V = |FX
U,V |, where

FX
U,V = {Ũ ⊂ X | Ũ ' U, X/Ũ ' V }.

In FX
U,V all subobjects Ũ are assumed to be admissible. Setting a(U) = |Aut(U)|, the

Hall numbers are related to the cardinality of FXU,V through the equation

FX
U,V =

|FXU,V |
a(U)a(V )

.

All results below can therefore also be stated in terms of |FXU,V |, as in [28].
Let R be an integral domain containing Q and let HA be the free R-module with

basis Iso(A):

HA =
⊕

U∈Iso(A)

R[U ].

Fix a bilinear form c : K(A)×K(A)→ Z and a unit ν ∈ R×.

Theorem 2.0.1 ([56], [28]; [20]). 1. HA is a unital associative algebra when given
the product

[U ][V ] = νc(V,U)
∑

X∈Iso(A)

FX
U,V [X]

and unit [0], the class of the zero object of A.

10



2. HA is a topological counital coassociative coalgebra when given the coproduct

∆[X] =
∑

U,V ∈Iso(A)

νc(V,U)a(U)a(V )

a(X)
FX
U,V [U ]⊗ [V ]

and counit ε[X] = δX,0

We remark that the Hall algebra as defined above uses the opposite multiplication
and comultiplication as compared to [56].

Both the algebra and coalgebra structures respect the natural K(A)-grading

HA =
⊕

α∈K(A)

HA(α), HA(α) =
⊕
|U |=α

R[U ].

In general, the coproduct ∆ takes values in the completion HA⊗̂HA consisting of all
formal linear combinations

∑
U,V cU,V [U ]⊗ [V ]. The meaning of the word topological

in Theorem 2.0.1 is, first, that the coassociativity compositions

(∆⊗ 1) ◦∆, (1⊗∆) ◦∆ : HA → HA⊗̂HA⊗̂HA

are well-defined, and second, that they are in fact equal. See [59, §1.4] and the
proof of Theorem 3.2.3 below for details. If every object of A has only finitely many
subobjects then ∆ is a coproduct in the ordinary sense; this will be the case for most
examples in this paper.

The algebra and coalgebra structures of HA are compatible only under stronger
assumptions on A. Suppose that A is abelian, of finite homological dimension and,
for simplicity, Fq-linear.1 The Euler form is defined as

〈U, V 〉 =
∑
i≥0

(−1)idimFq Exti(U, V )

and descends to a bilinear form on K(A). The symmetrization of 〈·, ·〉 is written
(·, ·). The Ringel-Hall algebra of A is the Hall algebra HA with the choices ν =

√
q−1,

R = Q[ν, ν−1] and c = −〈·, ·〉, HA.
We recall that an abelian category is said to be hereditary if its homological

dimension is at most one.

Theorem 2.0.2 (Green’s theorem [20]). Let HA be the Ringel-Hall algebra of a hered-
itary abelian category A. Equip HA⊗̂HA with the algebra structure given on homo-
geneous elements by

(x⊗ y) · (z ⊗ w) = ν−(y,z)xz ⊗ yw, x, y, z, w ∈ HA.
1Without the linearity assumption multiplicative Euler forms should be used.
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Then ∆ : HA → HA⊗̂HA is an algebra homomorphism.

The (co)algebra structures of HA can be extended to HA ⊗R R[K(A)] in such
a way that Theorem 2.0.2 becomes the statement that the extended Hall algebra
HA ⊗R R[K(A)] is a topological bialgebra.

Finally, Green [20] defined an R-valued non-degenerate symmetric bilinear form

on HA by ([U ], [V ])H =
δU,V
a(U)

. This form satisfies the important property

(x⊗ y,∆z)H⊗H = (xy, z)H, x, y, z ∈ HA

where (x⊗ y, x′ ⊗ y′)H⊗H = (x, x′)H(y, y′)H.

Example. If A,A′ are finitary exact categories, then the product category A ×
A′ is also finitary exact and its Hall algebra satisfies HA×A′ ' HA ⊗R HA′ . So,
from the point of view of Hall algebras is suffices to restrict attention to connected
categories. /

Example. The classical Hall algebra Hcl arises when A is the (hereditary) category
of finite length modules over a discrete valuation ring with finite residue field Fq.
Alternatively, Hcl can be identified with the ring of unipotent characters of GLn(Fq),
n ≥ 0, with multiplication given by parabolic induction [19], [71]. Moreover, Hcl is
isomorphic to the bialgebra of symmetric functions. The structure constants of Hcl

are the classical Hall polynomials and the Green bilinear form recovers the Hall inner
product on symmetric functions. /

We close this chapter by discussing the two primary sources of finitary hereditary
abelian categories. By Theorem 2.0.2 Hall algebras of such categories are twisted
bialgebras. Since the first example is the focus of Chapter 4, we discuss it here only
briefly and refer the reader to Chapter 4 for details and references.

Example. The abelian category of Fq-representations of a quiver Q is finitary and
hereditary. The corresponding twisted bialgebra is denoted by HQ. In particular,
the Hall algebra of nilpotent representations of the quiver consisting of a single loop
recovers Hcl from the previous example. The algebra of HQ contains a subalgebra
isomorphic to the quantum Kac-Moody algebra U−√

q−1(gQ). The entirety of HQ is

itself isomorphic to a specialized quantum Borcherds algebra, whose identification
remains a difficult problem. /

Example. Let X be a smooth projective variety of dimension n defined over Fq.
The abelian category of coherent sheaves on X, written CohX , is finitary and of
homological dimension n. Theorem 2.0.2 therefore only applies when X is a curve
and we henceforth restrict to this case. The category of vector bundles V ectX is a full
exact subcategory of CohX . The submodule HV ectX ⊂ HCohX spanned by elements
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labeled by Iso(V ectX) is a subalgebra (but not a subcoalgebra). Identifying the
moduli stack of rank r vector bundles on X with the double coset

GLr(O)\GLr(A)/GLr(Fq(X))

shows that elements of HV ectX may be interpreted as unramified automorphic forms
for GL defined over Fq(X). Here O, A and Fq(X) are the integer adèles, adèles and
function field ofX, respectively. Multiplication inHV ectX corresponds to the parabolic
Eisenstein series map. Incorporating the action of torsion sheaves recovers Hecke
operators on automorphic forms. This interpretation allows geometric properties of
automorphic forms to be translated into algebraic properties of HCohX . For example,
the quadratic identities satisfied by cusp eigenforms become quadratic relations in
HCohX [33]. In genus zero these relations fully determine HCohP1

, showing that it is
isomorphic to the semidirect product of the Hall algebra of torsion sheaves (which
is a tensor product of classical Hall algebras) with a non-standard negative part
of the quantum affine algebra U√q−1(ŝl2) [33]. In higher genus these relations no
longer determine HCohX and the situation is more complicated. A number of natural

subalgebras of HCohX , which play the role of U−√
q−1(ŝl2) for higher genus curves, have

been studied and shown to be related to Cherednik’s double affine Hecke algebra [60]
and geometric Langlands duality [61]. Recently, the entire Hall algebra of an arbitrary
curve was described in terms of Rankin-Selberg L-functions of cusp eigenforms for
GLr(Fq(X)), r ≥ 0 [34]. When the dimension of X is greater than one very little is
known about HCohX . /

For detailed examples of Hall algebras of hereditary abelian categories the reader
is referred to [59]. See also [3] where similarities between Hall algebras of a large class
of exact categories and quantum nilpotent groups are emphasized.
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Chapter 3

The Hall module of an exact
category with duality

After reviewing some basic properties of exact categories with duality we show
that from such a category there corresponds a module over the Hall algebra, called
the Hall module. This is the central object of this dissertation. We then establish a
number of structural properties of Hall modules that will be used in later chapters.

3.1 Exact categories with duality

A general reference for exact categories with duality is [1].

Definition. An exact category with duality is a triple (A, S,Θ) consisting of an exact
category A, an exact functor S : Aop → A and an isomorphism of functors Θ : 1A →
S2 satisfying S(ΘU)ΘS(U) = 1S(U) for all U ∈ A.

We sometimes refer to A, instead of (A, S,Θ), as an exact category with duality
if S and Θ are clear from the context.

Definition. A self-dual structure on N ∈ A is an isomorphism N
ψ−→ S(N) satisfying

S(ψ)ΘN = ψ. The pair (N,ψ), or just N if no confusion will arise, is called a self-
dual object.

We will write N ∈ AS to indicate that N is a self-dual object. An isometry of self-

dual objects (N,ψ) → (N ′, ψ′) is an isomorphism N
Φ−→ N ′ satisfying S(Φ)ψ′Φ = ψ.

In this case we write N 'S N ′. The set of isometry classes of self-dual objects
Iso(AS) is an abelian monoid under the operation of orthogonal direct sum, defined
by (N,ψ)⊕ (N ′, ψ′) = (N ⊕N ′, ψ ⊕ ψ′).

Example. Let ι be an involutive field automorphism of k with fixed subfield k0.
Define a duality structure on V ectk as follows. For V ∈ V ectk define S(V ) = V
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to be the vector space of additive maps V
f−→ k satisfying f(cv) = ι(c)f(v) for all

v ∈ V, c ∈ k. On morphisms, S sends V
φ−→ V ′ to S(V ′)

φ∨−→ S(V ). The map
ev : V → S2(V ) given by

ev(v)(f) = ι(f(v)), f ∈ V ,

is a k-linear isomorphism. For each s ∈ {±1}, the triple (V ectk, S, s ·ev) is a k0-linear
abelian category with duality. When ι is the identity self-dual structures are simply
orthogonal (s = 1) or symplectic (s = −1) forms. If ι is non-trivial and s = 1 then a
self-dual structure is a hermitian form. /

Example. Generalizing the previous example consider V ectX , the exact category of
vector bundles V ectX on a scheme X. Given a line bundle L → X define a duality
functor by S(V) = V∨ ⊗OX L with V∨ = HomOX (V ,OX). Let ΘV : V ∼−→ V∨∨ be the
standard evaluation isomorphism. Then (V ectX , S,±Θ) is an exact category with
duality [36], the self-dual objects interpreted as L-valued orthogonal or symplectic
vector bundles on X. /

Definition. An isotropic subobject of (N,ψ) is an admissible monic U
i
� N such

that S(i)ψi = 0 and the canonically induced morphism U ↪→ U⊥ is admissible. Here
U⊥ is the kernel of S(i)ψ.

We will use the notation U
⊥
⊂ N to indicate that U is an isotropic subobject.

Definition. 1. A self-dual object is called hyperbolic it is isomorphic to the self-dual
object

H(U) =

(
U ⊕ S(U), ψ =

(
0 1S(U)

ΘU 0

))
,

for some U ∈ A.

2. A self-dual object N is called metabolic if it contains a Lagrangian, i.e. an isotopic
subobject U ⊂ N such that U⊥ = U .

In particular, every hyperbolic self-dual object is metabolic.
The following result provides a categorical generalization of linear orthogonal and

symplectic reduction along an isotropic subspace.

Proposition 3.1.1 ([52, Proposition 5.2]). Let U be an isotropic subobject of (N,ψ).
There exists a self-dual structure ψ̃ on N//U := U⊥/U , unique up to isometry, making
the following diagram commute:

U⊥ N//U

N S(U⊥)

π

k S(π)ψ̃

S(k)ψ

.
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Motivated by Proposition 3.1.1, we introduce a notion of short exact sequences
for exact categories with duality. This will be used in counting arguments in Chapter
4

Definition. Given U ∈ A, M,N ∈ AS, let GN
U,M

be the set of all equivalence classes
of exact commutative diagrams of the form

U E M

U N S(E)

S(U) S(U)

j π

i S(k)ψN

k S(π)ψM

S(i)ψN S(j)

(3.1)

Two such diagrams are equivalent if there exists an isomorphism E
∼−→ E ′ making all

appropriate diagrams commute.

The equivalence relation in the previous definition is imposed so that the orthog-
onal U⊥ can be thought of as a subobject of N . Elements of GN

U,M
are called self-dual

exact sequences and are denoted by U
i
� N

π
M .

3.2 Hall modules

Let A be a finitary exact category with duality. For U ∈ A and M,N ∈ AS define
the finite set

GN
U,M = {Ũ

⊥
⊂ N | Ũ ' U, N//Ũ 'S M}.

The cardinalities GN
U,M = |GN

U,M | are called self-dual Hall numbers. Denote by
AutS(M) the group of isometries of M and put aS(M) = |AutS(M)|. Also put
GNU,M = |GN

U,M
|.

Lemma 3.2.1. The identity GN
U,M =

GNU,M
a(U)aS(M)

holds.

Proof. Denoting a diagram as in (3.1) by (E; i, j, k, π), the group Aut(U)×AutS(M)
acts on GN

U,M
by

(g, h) · (E; i, j, k, π) = (E; ig−1, jg−1, k, hπ), (g, h) ∈ Aut(U)× AutS(M).
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If (g, h) fixes the equivalence class of (E; i, j, k, π), then g = 1U , kr = k and gπ = πr
for some r ∈ Aut(E). The first equation implies r = 1E while the second implies
g = 1M , showing that the action is free.

The map GN
U,M
→ GN

U,M assigning to (E; i, j, k, π) the image of i is Aut(U) ×
AutS(M)-invariant and descends to a bijection GN

U,M
/Aut(U) × AutS(M)

∼−→ GN
U,M ,

proving the lemma.

Self-dual Hall numbers obey the following finite support condition that can be
viewed as a self-dual analogue of Ext1-finiteness of A.

Lemma 3.2.2. For fixed U ∈ A, M ∈ AS, the set GN
U,M

is non-empty for only finitely

many N ∈ Iso(AS).

Proof. If GN
U,M

is non-empty, then N fits into the diagram (3.1). By Ext1-finiteness
only finitely many isomorphism types of E, and hence N , may appear. By Hom-
finiteness, N admits at most finitely many self-dual structures and the statement
follows.

Let MA be the free R-module with basis indexed by the set of isometry classes
of self-dual objects:

MA =
⊕

M∈Iso(AS)

R[M ].

The next theorem defines the Hall module associated to (A, S,Θ). To begin we take
c = 0 in Theorem 2.0.1 to consider untwisted Hall algebras.

Theorem 3.2.3. 1. The formula

[U ] ? [M ] =
∑

N∈Iso(AS)

GN
U,M [N ]

gives MA the structure of a left HA-module.

2. The formula

ρ[N ] =
∑

U∈Iso(A)

∑
M∈Iso(AS)

a(U)aS(M)

aS(N)
GN
U,M [U ]⊗ [M ].

gives MA the structure of a topological left HA-comodule

Proof. The associativity of the action ? is equivalent to the identity∑
W∈Iso(A)

FW
U,VG

N
W,M =

∑
P∈Iso(AS)

GN
U,PG

P
V,M , U, V ∈ A, M,N ∈ AS. (3.2)
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Interpreting equation (3.2) in terms of isotropic filtrations, we find that it is equivalent

to the statement that, for fixed U
⊥
⊂ N , the assignment V 7→ V/U gives a bijection

{V
⊥
⊂ N | U ⊂ V } ←→ {Ṽ

⊥
⊂ N//U} (3.3)

such that (N//U)//(V/U) 'S N//V . To establish the bijection (3.3) we first observe
that the assignment V 7→ V/U gives a bijection

{V ⊂ U⊥ | U ⊂ V } ↔ {Ṽ ⊂ N//U}.

Using the commutative diagram

U⊥ N//U S(V ⊥/U) S(V/U)

V ⊥ V ⊥/U N//V

V V/U

N S(U⊥) S(V ⊥) S(V )

we conclude that V/U ⊂ N//U is isotropic if and only if V ⊂ N is isotropic. The
bijection (3.3) therefore holds.

Next, we claim that (V/U)⊥ ⊂ N//U is naturally identified with V ⊥/U . Indeed,
the previous diagram implies V ⊥/U � (V/U)⊥. This map is surjective since the
canonical map V ⊥ → (V/U)⊥ is surjective. Hence

(N//U)//(V/U) ' N//V.

That this isomorphism is an isometry can be seen by considering the three nested
central squares in the diagram, presenting N//U , N//V and (N//V )//(V/U) as self-
dual reductions as in Proposition 3.1.1. This proves the first statement of the theorem.

Turning to the second statement, we must first show that the compositions

(1⊗ ρ) ◦ ρ, (∆⊗ 1) ◦ ρ :MA → HA⊗̂HA⊗̂MA

are well-defined and equal. The completions again consist of all formal linear com-
binations. For any ξ ∈ MA, the terms in ρ(ξ) contributing to the coefficient of
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[U1] ⊗ [U2] ⊗ [M ] in (1 ⊗ ρ) ◦ ρ(ξ) are of the form [U1] ⊗ [N ] with N//U2 'S M .
By Lemma 3.2.2 the number of such terms is finite. Similarly, the number of terms
contributing to [U1] ⊗ [U2] ⊗ [M ] in (∆ ⊗ 1) ◦ ρ(ξ) is finite. Hence, the compo-
sitions are indeed well defined. A direct calculation now shows that the equality
(1 ⊗ ρ) ◦ ρ = (∆ ⊗ 1) ◦ ρ is equivalent to equation (3.2), which holds from the first
part of the theorem.

The following analogue of Green’s bilinear form will play an important role in
Chapters 4 and 5 when we discuss the structure of MA in specific examples.

Lemma 3.2.4. The R-valued symmetric bilinear form on MA given by

([M ], [N ])M =
δM,N

aS(M)

is non-degenerate and satisfies

(x⊗ ξ, ρ(ζ))H⊗M = (x ? ξ, ζ)M, x ∈ HA, ξ, ζ ∈MA

where (x⊗ ξ, x′ ⊗ ξ′)H⊗M = (x, x′)H(ξ, ξ′)M.

Proof. Non-degeneracy is clear. It suffices to check the second statement on a basis.
The definition gives

([U ]⊗ [M ], ρ[N ])H⊗M =
∑

V ∈Iso(A)
P∈Iso(AS)

a(V )aS(P )

aS(N)
GN
V,P ([U ]⊗ [M ], [V ]⊗ [P ])H⊗M

which simplifies to
GN
U,M

aS(N)
. On the other hand,

([U ] ? [M ], [N ])M =
∑

Q∈Iso(AS)

GQ
U,M([Q], [N ])M =

GN
U,M

aS(N)
.

3.3 Gradings, twists and functorial properties

We continue to denote by A a finitary exact category with duality.
We recall the definitions of the Grothendieck-Witt and Witt groups of an exact

category with duality. To ease notation, we omit the dependence on the duality from
the notation.
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Definition. 1. The Grothendieck-Witt group GW (A) is the Grothendieck group of
Iso(AS) modulo the relation |N | = |H(U)| if N contains U as a Lagrangian subobject.

2. The Witt group W (A) is the abelian monoid Iso(AS) modulo the submonoid of
metabolic objects.

There is a group homomorphism K(A)
H−→ GW (A) defined at the level of objects

by U 7→ H(U). Whenever U ⊂ N is isotropic we have in GW (A) the identity (see
[52])

|N | = |N//U |+ |H(U)|. (3.4)

The Hall module decomposes as an R-module

MA =
⊕

γ∈GW (A)

MA(γ)

withMA(γ) the R-submodule spanned by self-dual objects of class γ. Using equation
(3.4) we find for all α ∈ K(A) and γ, δ ∈ GW (A)

HA(α) ?MA(γ) ⊂MA(H(α) + γ), ρ(MA(δ)) ⊂
⊕

H(α)+γ=δ

HA(α)⊗̂MA(γ).

We summarize.

Proposition 3.3.1. The group homomorphism H makes MA is a GW (A)-graded
HA-module. Moreover, MA decomposes as a direct sum of HA-modules indexed by
W (A).

Proof. By a slight abuse of notation, the first statement is simply a restatement of
the previous two inclusions. The second statement follows from the first and from
the exact sequence of abelian groups [52]

K(A)
H−→ GW (A)→ W (A)→ 0. (3.5)

Remark. Proposition 3.3.1 can be sharpened as follows. The K(A)-grading of
HA can be refined to a grading by ΓA, the Grothendieck monoid [3]. Define the
Grothendieck-Witt monoid ΓSA as IsoS(A) modulo the relation |M | = |M ′| if both
GMU,N and GM ′U,N are non-empty for some U ∈ A, N ∈ AS. The hyperbolic functor
defines a monoid homomorphism ΓA → ΓSA and induces a ΓSA-grading of MA. This
refined may play an important role in determining a minimal generating set of MA.
We use a different approach to this problem below where the GW (A)-grading suffices.

We now discuss how to extend Theorem 3.2.3 to include non-trivial twists c of
the Hall algebra. Let c̃ : GW (A) × K(A) → Z be a function satisfying, for all
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α, β ∈ K(A) and γ ∈ GW (A),

c(α, β) + c̃(γ, α + β) = c̃(γ, α) + c̃(γ +H(α), β). (3.6)

This relation guarantees that the twisted actions

[U ] ? [M ] = ν c̃(M,U)
∑

N∈Iso(AS)

GN
U,M [N ]

and

ρ[N ] =
∑

U∈Iso(A)

∑
M∈Iso(AS)

ν c̃(M,U)a(U)aS(M)

aS(N)
GN
U,M [U ]⊗ [M ]

define on MA the structure of a (co)module for the c-twisted Hall algebra. We
suppose that A is abelian and focus on the case c = −〈·, ·〉. For simplicity we take A
and S to be k-linear. For each p ∈ {±1} define

Exti(S(U), U)pS =
{
ξ ∈ Exti(S(U), U) | S(ξ) = pΘ−1

U∗ξ
}
.

Proposition 3.3.2. Suppose that char(k) 6= 2 and that the abelian category A has
finite homological dimension. Then the function E : Iso(A)→ Z given by

E(U) =
∑
i≥0

(−1)i dimk Exti(S(U), U)(−1)i+1S

descends to a function on K(A).

Proof. Given a short exact sequence 0 → U → W → V → 0 in A there is a cor-
responding dual exact sequence 0 → S(V ) → S(W ) → S(U) → 0. Applying the
bifunctor Hom(·, ·) to the previous two sequences gives six long exact sequences fit-
ting into the diagram
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0 0 0

0 Hom(S(U), U) Hom(S(U),W ) Hom(S(U), V )

0 Hom(S(W ), U) Hom(S(W ),W ) Hom(S(W ), V )

0 Hom(S(V ), U) Hom(S(V ),W ) Hom(S(V ), V )

Ext1(S(U), U) Ext1(S(U),W ) Ext1(S(U), V )

Ext1(S(W ), U) Ext1(S(W ),W ) Ext1(S(W ), V )

Ext1(S(V ), U) Ext1(S(V ),W ) Ext1(S(V ), V )

...
...

...

−

−

−

−

−

−

−

−

The minus signs, indicating that negatives of the canonical maps are taken, are in-
cluded to ensure that each square of the diagram anti-commutes. We can then form
the total complex by summing across the diagonals of the previous diagram. The first
three terms of this complex are given by

0→ Hom(S(U), U)→
Hom(S(U),W )

⊕
Hom(S(W ), U)

→

Hom(S(U), V )
⊕

Hom(S(W ),W )
⊕

Hom(S(V ), U)

→ · · ·

There is an action of Z2 on the total complex, commuting with all differentials, defined
as follows. The generator of Z2 acts by (−1)i+1S on Exti(S(U), U), Exti(S(V ), V ) and
Exti(S(A), B) ⊕ Exti(S(B), A) with A 6= B and acts by (−1)iS on Exti(S(W ),W ).
Viewed as a virtual representation of Z2, the character of the total complex is zero.
This implies the following relation between virtual dimensions of spaces of Z2-invariants

0 = E(U)− 〈S(U),W 〉+ 〈S(U), V 〉+ (〈S(W ),W 〉 − E(W ))− 〈S(W ), V 〉+ E(V ).

The term 〈S(W ),W 〉 − E(W ) appears instead of E(W ) because of the extra sign in
the action of Z2 on Exti(S(W ),W ). Using additivity of the Euler form, the previous
equality is rewritten as

E(W ) = E(U) + E(V ) + 〈S(U), V 〉.

The right hand side of this equation is easily seen to coincide with E(U ⊕V ), proving
the proposition.
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Taking c = −〈·, ·〉 and c̃(M,U) = −〈M,U〉 − E(U) we easily verify that equation
(3.6) holds. With these choices, MA will be called the Ringel-Hall module.

We give an interpretation of E for hereditary abelian categories in terms of La-
grangians; see Proposition 4.3.5 below for an interpretation in terms of self-dual quiver
representations.

Proposition 3.3.3. 1. The stabilizer of a Lagrangian U
i
� (N,ψ) under the ac-

tion of AutS(N) is isomorphic to Hom(S(U), U)−S.

2. Suppose A is linear over a field whose characteristic is not two. There is a
canonical bijection between Ext1(S(U), U)S and the set of all Lagrangian exact
sequences

0→ U
i→ N

S(i)ψ→ S(U)→ 0 (3.7)

modulo equivalence coming from isometries of the middle term.

Proof. Complete the Lagrangian U
i
↪→ N to the short exact sequence (3.7). An

element φ ∈ AutS(N) stabilizing (3.7) can be written φ = 1N + iβS(i)ψ for a unique
β ∈ Hom(S(U), U). Then φ is an isometry if and only if β ∈ Hom(S(U), U)−S. The
converse is similar.

As for the second statement, it is clear that any equivalence class of Lagrangian
exact sequences (3.7) gives a class in Ext1(S(U), U)S. In the other direction, let
ξ ∈ Ext1(S(U), U)S be represented by the exact sequence

0→ U
i→ N

π→ S(U)→ 0. (3.8)

By assumption there exists ψ0 ∈ Hom(N,S(N)) making the following diagram com-
mute:

0 U N S(U) 0

0 S2(U) S(N) S(U) 0

i π

S(π) S(i)

ψ0ΘU (3.9)

Define Ψ0 ∈ Hom(N,S(N)) as the difference Ψ0 = ψ0−S(ψ0)ΘN . Since Ψ0i = 0 and
S(i)Ψ0 = 0 there exists a unique β ∈ Hom(S(U), U)−S for which Ψ0 = S(π)ΘUβπ.
Then ψ = ψ0(1N − 1

2
iβπ) is a self-dual structure on N stabilizing (3.8).

To prove uniqueness of the isometry type of N suppose that ψ1 and ψ2 are two
self-dual structures on N making the diagram (3.9) commute. Arguing as above we
find ψ1 − ψ2 = S(π)ΘUβπ for a unique β ∈ Hom(S(U), U)S. Then 1N + 1

2
iβπ is the

required isometry from ψ1 to ψ2.

Remark. Propositions 3.3.2 and 3.3.3 and their proofs remain valid for extension
closed full subcategories of abelian categories, such as V ectX ⊂ CohX .
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To any finitary exact category A there corresponds a finitary exact category with
duality HA, the hyperbolic category. The underlying exact category of HA is A×Aop
and the duality structure is defined by S(A,B) = (B,A) and Θ = Id. As the
name suggests, all self-dual objects are hyperbolic. Let Hop−cop

A be the (co)algebra
obtained from HA by taking the opposite multiplication and comultiplication. There
are canonical isomorphisms HAop ' Hop−cop

A and HHA ' HA ⊗R Hop−cop
A . The next

proposition shows that in a certain sense the Hall algebra appears as a special case
of the Hall module.

Proposition 3.3.4. The assignment [X] 7→ [H(X)] extends to an isomorphism
HA

∼−→MHA of K(A)-graded left HA⊗Hop−cop
A -(co)modules preserving Green forms.

Proof. The above assignment induces an R-module isomorphism HA
∼−→ MHA. A

subobject of H(X), X ∈ A, is necessarily of the form U1 ⊕ S(U2) for some U1, U2 ∈
A, and is isotropic if and only if S(U2) ⊂ S(X/U1). Summing over the possible
isomorphism types of X/U1 we find

G
H(X)
U1⊕S(U2),H(Y ) =

∑
W∈Iso(A)

FX
U1,W

F
S(W )
S(U2),S(Y ).

By definition we have F
S(W )
S(U2),S(Y ) = FW

Y,U2
so that

G
H(X)
U1⊕S(U2),H(Y ) =

∑
W∈Iso(A)

FX
U1,W

FW
Y,U2

. (3.10)

Equation (3.10) shows that G
H(X)
U1⊕S(U2),H(Y ) is the coefficient of [X] in [U1][Y ][U2], all

multiplication being in HA, proving that MHA ' HA as HA ⊗Hop
A -modules. Using

Aut(U1 ⊕ S(U2)) = Aut(U1)× Aut(U2), AutS(H(X)) = Aut(X),

a similar argument establishes the isomorphism of comodules.
That the isomorphism respects gradings follows from the fact that the restriction

of the hyperbolic functor to A ⊂ HA induces an isomorphism K(A)
∼−→ GW (HA).

Finally, that the Green forms are preserved follows from the previous description of
AutS(H(X)).

Example. LetHV ectX andMV ectXMV ectX be the Hall algebra and module associated
to V ectX , X a curve, with duality determined by a line bundle L. Following the
interpretation of HV ectX in terms of automorphic forms, MV ectX is identified with
the space of L-twisted automorphic forms for symplectic or orthogonal groups. For
curves, the Witt group of (V ectX ,L,Θ) is finite [29] and therefore provides a finite
decomposition of MV ectX . As the duality S does not extend to CohX there is not a
direct Hall module interpretation of Hecke operators on MV ectX . /
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We end this section with some comments on the functorial properties of the as-
signment (A, S,Θ) 7→ MA.

Definition ([1]). A form functor from (A, S,Θ) to (B, T,Ξ) is a pair (Φ, η) consisting
of an exact functor Φ : A → B and a natural transformation η : Φ◦S ∼−→ T ◦Φ making
the following diagram commute:

Φ(M) Φ(S2(M))

T 2(Φ(M)) T (Φ(S(M)))

Φ(ΘM )

ΞΦ(M) ηS(M)

T (ηM )

It is straightforward to verify that a form functor (Φ, η) defines a set mapAS → BT
by (M,ψ) 7→ (Φ(M), ηMΦ(ψ)).

If A and B are finitary, define R-module homomorphisms by

HA
Φ∗−→ HB

[U ] 7→ [Φ(U)]

and

MA
(Φ,η)∗−−−→ MB

[M ] 7→ [Φ(M)]

The following statement is motivated by a functoriality property for Hall algebras
[59, §1.8].

Proposition 3.3.5. Let (Φ, η) be a form functor such that Φ induces isomorphisms

Exti(U, V )
∼−→ Exti(Φ(U),Φ(V ))

for all i ≥ 0. Then (Φ, η)∗ is a module embedding over Φ∗. If, moreover, Φ(A) is
essentially stable under taking subobjects, then (Φ, η)∗ is a comodule embedding over
Φ∗.

Proof. The conditions on Φ ensure that Φ∗ is a (co-)algebra embedding [59]. To show
that no additional assumptions are needed to ensure the module theoretic statements
we use the following facts. First, a subobject U ⊂ N is isotropic if and only if
Φ(U) ⊂ Φ(N) is isotropic. Second, the induced maps

Φ : Exti(S(U), U)±S → Exti(T (Φ(U)),Φ(U))±T

are isomorphisms, implying that Φ preserves E . Finally, if M,M ′ ∈ AS are self-dual
objects such that Φ(M) 'S Φ(M ′), then M 'T M ′. To see this fix an isometry
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Φ(M)
∼−→ Φ(M ′), which is necessarily of the form Φ(g) for some g : M →M ′. Then

T (Φ(g))ηM ′Φ(ψM ′)Φ(g) = ηMΦ(ψM)

which can be rewritten as

ηMΦ(S(g)ψM ′g) = ηMΦ(ψm),

showing that g is an isometry. In particular, the set map (Φ, η)∗ is injective.
With these preliminaries, a direct calculation shows that Φ∗ is a module homo-

morphism if and only if GN
U,M = G

Φ(N)
Φ(U),Φ(M). This equality follows from the first fact

above and the isometry Φ(N//U) 'T Φ(N)//Φ(U).
Finally, Φ∗ is a comodule homomorphism if and only if

G
Φ(N)
A,R =

∑
Φ(U)'A,Φ(M)'TR

GN
U,M .

By assumption there exists a (necessarily unique) U such that Φ(U) ' A. In this
case R 'T Φ(M) and the equality follows from the first part of the proof.

The assumptions on Φ in Proposition 3.3.5 are quite strong but suffice for our
applications. An example where Φ∗ fails to be a coalgebra morphism is the inclusion
Φ : V ectX ↪→ CohX . Explicitly, the object OP1 ∈ CohP1 has many non-trivial
subobjects, namely any OP1(m) with m < 0, while OP1 ∈ V ectP1 is simple.
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Chapter 4

Hall modules from quivers with
involution

In this chapter we study Hall modules arising from the representation theory of a
quiver with involution. Before introducing these objects we recall some preliminary
results about quantum groups and their relationship with Hall algebras of quivers.

4.1 Quantum Kac-Moody algebras

Let A be a symmetric generalized Cartan matrix. That is, A = (aij)
n
i,j=1 satisfies

aij ∈ Z and
aii = 2, aij = aji and aij ≤ 0 if i 6= j.

Let (π, π∨, h) be a realization of A. Then h is a complex vector space of dimension
n+ corankA and π, π∨ are linearly independent sets

π∨ = {h1, . . . , hn} ⊂ h, π = {ε1, . . . , εn} ⊂ h∨

satisfying εi(hj) = aij. Denote by g = g(A) the symmetric Kac-Moody algebra
attached to A [31]. The Cartan form on h∨ is written (·, ·). We denote by g′ = [g, g]
the corresponding derived algebra, whose Cartan subalgebra is h′ =

⊕n
i=1 Chi ⊂ h

and whose root lattice is Φ =
⊕n

i=1 Zε∨i .
Let v be an indeterminate and let Q(v) be the field of rational functions in v.

Define the quantum combinatorial symbols by

[n]v =
vn − v−n

v − v−1
, [n]v! =

n∏
i=1

[i]v,

[
n
k

]
v

=
[n]v!

[k]v![n− k]v!
.

Note that each of these expressions is an element of Z[v].
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Definition. The quantum Kac-Moody algebra Uv(g) is the Q(v)-algebra generated by
the symbols Ei, Fi, i = 1, . . . , n and vh, h ∈ h, subject to the relations

1. vhvh
′
= vh+h′

2. vhEiv
−h = vεi(h)Ei, vhFiv

−h = v−εi(h)Fi

3. [Ei, Fj] = δij
vhi − v−hi
v − v−1

4.

1−(εi,εj)∑
l=0

(−1)l
[

1− (εi, εj)
l

]
v

El
iEjE

1−(εi,εj)−l
i = 0, i 6= j.

5.

1−(εi,εj)∑
l=0

(−1)l
[

1− (εi, εj)
l

]
v

F l
iFjF

1−(εi,εj)−l
i = 0, i 6= j

The final two relations in the previous definition are called the quantum Serre
relations. The quantum group of the derived algebra g′, denoted Uv(g

′), is the Q(v)-
subalgebra of Uv(g) generated by Ei, Fi, T

±1
i = v±hi . The algebra Uv(g) is a Hopf

algebra with coproduct defined by

∆(vh) = vh ⊗ vh, ∆(Ei) = Ei ⊗ 1 + vhi ⊗ Ei, ∆(Fi) = 1⊗ Fi + Fi ⊗ v−hi

and antipode given by

S(vh) = v−h, S(Ei) = v−hiEi, S(Fi) = −vhiFi.

Then Uv(g
′) is a Hopf subalgebra. Denote by U−v (g) (resp. U≤0

v (g)) the subalgebras
of Uv(g) generated by Fi (resp. Fi, v

h). Note that U≤0
v (b) is a Hopf subalgebra, but

U−v (g) is not. Similar statements hold for the derived quantum group.
If ν ∈ C× is not a root of unity, the specialized quantum group Uν(g) is the

Q[ν, ν−1]-algebra with the same generators and relations as Uv(g) but with v replaced
with ν. The algebras Uν(g

′), U−ν (g) are defined analogously.
The reader is referred to [46] for a detailed discussion of quantum groups.

4.2 The Hall algebra of a quiver

Fix a ground field k. A quiver Q consists of a finite set of nodes Q0, a finite set of
arrows Q1 along with head and tail maps h, t : Q1 → Q0. An arrow α from the node
i to the node j, that is, t(α) = i and h(α) = j, is written i

α−→ j. A cyclic in Q is an
oriented path which starts and ends at the same node. A loop is cycle of length one.
A representation of Q is a finite dimensional Q0-graded vector space V =

⊕
i∈Q0

Vi

together with a linear map Vi
vα−→ Vj for each i

α−→ j. The dimension vector of V is
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dimV = (dimVi)i∈Q0 ∈ ZQ0

≥0. The abelian group ZQ0 has a natural basis {εi}i∈Q0

consisting of unit vectors supported at i ∈ Q0. To each node i ∈ Q0 there is an
associated simple representation Si with dimension vector εi and all structure maps
zero. The category of finite dimensional k-representations of Q is an abelian category
and will be denoted by Repk(Q). It is hereditary and, if k is a finite field, finitary.
For further discussion of the representation theory of quivers the reader is referred to
[10].

Suppose that Q has no loops. Denote by HQ the Ringel-Hall algebra of RepFq(Q).
The composition subalgebra CQ is defined to be the subalgebra of HQ generated by
the simple representations [Si]. Since Q has no loops, the matrix of the symmetrized
Euler form of Q is a generalized Cartan matrix. Write gQ for the corresponding
symmetric Kac-Moody algebra. The following fundamental theorem provides a con-
nection between the representation theory of quivers and the theory of quantum
groups.

Theorem 4.2.1 ([57], [20]). Let Q be a quiver without loops. The composition sub-
algebra CQ is isomorphic to U−ν (gQ), the negative part of the quantum Kac-Moody
algebra associated to gQ specialized at

√
q−1.

In the isomorphism of Theorem 4.2.1 the Chevalley generator Fi is mapped to [Si].
That the simple representations satisfy the quantum Serre relations is then verified by
direct calculation. The proof of injectivity of U−ν (gQ)→ HQ relies on the verification
that the Green bilinear form pulls back to Lusztig’s non-degenerate bilinear form.

Theorem 4.2.1 can be used to realize the Hopf algebra U≤0
ν (g′Q) inside the extended

Hall algebra of Q [69]. Theorem 4.2.1 has been generalized to quivers with loops, the
(suitably modified) composition subalgebra being the negative part of a quantum
generalized Kac-Moody (or Borcherds) algebra [32]. In another direction, HQ itself
is the negative part of a quantum generalized Kac-Moody algebra, which in general
depends on the finite field Fq [63].

4.3 Quivers with involution

We study natural duality structures on Repk(Q) constructed from a contravariant
involution of Q. We assume throughout that the characteristic of the ground field k
is not two.

Definition. An involution of Q is a pair of involutions Qi
σ−→ Qi, i = 0, 1, such that

for all α ∈ Q1, h(σ(α)) = σ(t(α)) and if σ(t(α)) = h(α) then σ(α) = α.

Diagrammatically, the first condition reads

i j

α ⇐⇒
σ(j) σ(i)

σ(α)
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While the second assumption on σ can be dropped, nothing new is gained by doing
so. Not every quiver has an involution. For example, no orientation of the graph

admits an involution.
Let (Q, σ) be a quiver with involution. Fix an involutive field automorphism

k
ι−→ k with fixed field k0 ⊂ k, a sign s ∈ {±1} and a σ-invariant function τ : Q1 →

{±1}. Define an exact k0-linear contravariant functor S : Repk(Q) → Repk(Q) as
follows. For a representation (M,m) put S(M)i = Mσ(i) and define the structure

map S(m)α = ταm
∨
σ(α). Similarly, given a morphism M

φ−→M ′ the components of

S(M ′)
S(φ)−−→ S(M)

are S(φ)i = φ∨σ(i). Exactness of the functor S follows from its exactness at the level

of Q0-graded vector spaces. Define Θ : 1Rep(Q) → S2 by ΘM = s · evM . The triple
(Repk(Q), S,Θ) is then a k0-linear abelian category with duality.

A self-dual representation (M,ψ) has the following geometric interpretation. De-
fine a non-degenerate form on the total space of M by 〈v, w〉 = ψ(v)(w). The form
is linear in the first variable, ι-linear in the second variable and satisfies 〈v, w〉 =
sι(〈w, v〉). Moreover, the subspaces Mi and Mj are orthogonal unless i = σ(j). The

isomorphism M
ψ−→ S(M) requires that the structure maps of M satisfy

〈mαv, w〉 − τα〈v,mσ(α)w〉 = 0, v ∈Mt(α), w ∈Mσ(h(α)).

If ι is the identity then 〈·, ·〉 is s-symmetric. In this case and with the choice
τ = −1, the self-dual objects are precisely the orthogonal and symplectic quiver
representations originally introduced by Derksen-Weyman [11] and we will refer to
them as such. If k0 ⊂ k is a separable quadratic extension and ι is the unique non-
trivial k0-linear automorphism of k, then 〈·, ·〉 is a hermitian form. For example, if
the prime power q is a perfect square, the extension F√q ⊂ Fq is quadratic and the

involution is given by ι(x) = x
√
q. In this case the self-dual representations with

the choice (s, τ) = (1,−1) will be referred to as unitary representations. It will be
convenient to also refer to this as the s = 0 case.

Self-dual representations can also be described in terms of collections of matrices
as follows. Define a partition Q0 = Qσ

0 t Q+
0 t Q−0 where Qσ

0 consists of nodes fixed
by σ and Q+

0 consists of a single node from each two-point σ-orbit. There is a similar
decomposition of Q1. We impose the compatibility condition supp(Q+

1 ) ⊂ Q+
0 t Qσ

0 .
For concreteness, fix k to be a finite field. The non-degenerate form on the total space
of a d-dimensional self-dual representation is nearly unique up to isometry. The only
ambiguity is in the orthogonal case, where the Witt type of each node i ∈ Qσ

0 must
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be given. Fix a model for this form. The affine scheme of orthogonal, unitary or
symplectic representations of dimension vector d is then

Rg
d =

⊕
i
α−→j∈Q+

1

Homk(k
di , kdj)⊕

⊕
i
α−→σ(i)∈Qσ1


Λ2kdi , if s = 1
sherm(di), if s = 0
Sym2kdi if s = −1

Here sherm(di) is the k0-vector space of di×di-skew-hermitian matrices. The reductive
algebraic group

Gg
d =

∏
i∈Qσ0

Gdi ×
∏
i∈Q+

0

GLdi .

acts on Rg
d, the quotient being the moduli space of d-dimensional self-dual represen-

tations. Here Gdi is Odi , Spdi or Udi as appropriate.
We will sometimes refer to a symplectic representation of (Q, σ) simply as a rep-

resentation of Qsp and write Msp
Q for the associated Hall module.

In the unitary case, RepFq(Q) is regarded as a F√q-linear category and the cor-

responding Ringel-Hall algebra is defined over Q[ν0, ν
−1
0 ] with ν0 = 4

√
q−1. Then

HQ ' HQ(Fq) ⊗Q Q[ν0, ν
−1
0 ], where HQ(Fq) is the Ringel-Hall algebra of RepFq(Q)

viewed as a Fq-linear category. For a more uniform discussion in what follows, we
write the HQ-module structure of Mu

Q in terms of ν =
√
q−1 instead of ν0. We also

rescale the definition of E in Proposition 3.3.2 by a factor of 1
2
. While E is then only

half-integral valued, expressions of the form ν−E(U) remain well-defined.

Example. The quiver A2 = has a unique involution, swapping the nodes and
fixing the arrow. An orthogonal representation consists of a vector space V and a
skew-symmetric linear map V

v−→ V ∨. The form on V ⊕ V ∨ is induced from the
canonical pairing V × V ∨ → k. Isometry classes of (n, n)-dimensional orthogonal
representations are parameterized by Λ2kn/GLn(k). /

Example. The Jordan quiver has a unique involution, fixing the node and arrow.
A symplectic representation consists of a symplectic vector space M and m ∈ sp(M).
The moduli space of 2n-dimensional symplectic representations is sp2n/Sp2n. /

Example. For any quiver Q let Qop be the quiver obtained by reversing the orienta-
tions of all arrows Q. Then Qt = QtQop has a canonical involution that sends a node
or arrow of Q to the corresponding node or arrow of Qop. The following proposition
describes the associated Hall modules. /

Proposition 4.3.1. For all (τ, s), MQt ' MHRep(Q) ' HQ(k0) as HQ(k0) ⊗Q
HQ(k0)op-(co)modules.

Proof. Let S be the duality functor on Repk(Q
t) determined by (s, τ) and SH the du-

ality functor on HRepk(Q). Define F : HRepk(Q)→ (Repk(Q
t), S,Θ) by F (A,B) =
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A⊕S(B) and define η : F ◦SH → S◦F as

(
0 1
Θ 0

)
. The pair (F, η) is a form functor

and induces an equivalence of k0-linear categories with duality. The proposition now
follows by functoriality; see Proposition 3.3.5.

For arbitrary Q the Grothendieck group K(Repk(Q)) is the free abelian group on
the set S of simple objects of Repk(Q). The duality S induces an involution on S
which gives a non-canonical decomposition S = S+ tSS tS−. Here SS consists of
simples fixed by S and S restricts to a bijection from S+ to S−.

Proposition 4.3.2. There are group isomorphisms

GW (Repk(Q)) '
⊕
U∈S+

Z|H(U)| ⊕
⊕
U∈SS

GW (AU)

and
W (Repk(Q)) '

⊕
U∈SS

W (AU)

where AU is the semisimple abelian category with duality generated by U .

Proof. Let N be a self-dual representation. If U
i
↪→ N is a simple subrepresentation,

by Schur’s lemma the composition S(i)ψi is either zero or an isomorphism. If it is zero
then U is isotropic and |N | = |H(U)| + |N//U | in GW (Repk(Q)). If instead S(i)ψi
is an isomorphism then it is a self-dual structure on U and there is a corresponding
orthogonal decomposition N 'S U ⊕ Ñ , implying |N | = |U | + |Ñ |. Since every
representation has a finite composition series we can repeatedly apply the above
procedure, establishing the claimed description of the Grothendieck-Witt group. The
isomorphism of Witt groups now follows from the exact sequence (3.5).

The primary interest of this paper is k = Fq, q odd and Q acyclic. In this case
S = {Si}i∈Q0 and the categories AU in Proposition 4.3.2 are equivalent to V ectk
with dualities determined by s. Explicitly, GW (k) := GW (V ectk) is isomorphic to
Z if s = −1, 0, with generators H(S0) and S0, respectively. If s = 1 then GW (k)
is isomorphic to Z2 with generators the two non-isometric orthogonal structures on
S0 = k. The corresponding Witt groups are

W (k) '


pt, if s = −1
Z2, if s = 0
Z4, if s = 1 and char(k) ≡ 3 (mod 4)
Z2 × Z2, if s = 1 and char(k) ≡ 1 (mod 4)

In particular, the Grothendieck-Witt class of N is essentially its dimension vector,
with additional decorations at σ-fixed vertices in the orthogonal case.
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We now study the function E of Proposition 3.3.2 in more detail for quivers. Given
representations (V, v) and (W,w), define

A0(V,W ) =
⊕
i∈Q0

Homk(Vi,Wi), A1(V,W ) =
⊕

i
α−→j∈Q1

Homk(Vi,Wj).

There is a differential A0(V,W )
δ−→ A1(V,W ) given by δ{fi}i = {wαfi − fjvα}α. The

complex A•(V,W ) fits into the exact sequence

0→ Hom(V,W )→ A0(V,W )
δ−→ A1(V,W )→ Ext1(V,W )→ 0. (4.1)

An immediate consequence is that the Euler form depends only on the dimension
vectors of its arguments and is given explicitly by

〈d, d′〉 =
∑
i∈Q0

did
′
i −
∑
i
α−→j

did
′
j, d, d′ ∈ ZQ0 .

The following identity plays an important role in the next chapter but is also of
independent interest. Take k = Fq.

Theorem 4.3.3. For all representations U and self-dual representations M the iden-
tity ∑

N

GNU,M
aS(N)

= q−〈M,U〉−E(U)

hods, the sum being over isometry classes of self-dual representations.

Proof. The functor S defines an involution on the complex A•(S(U), U) through the
composition

Ai(S(U), U)
S−→ Ai(S(U), S2(U))

Θ−1
U∗−−→ Ai(S(U), U),

or in components

S{fi}i = {Θ−1
i f∨σ(i)}i, S{eα}α = {ταΘ−1

j e∨σ(α)}α.

Then δ(S{fi}i) = {uαΘ−1
i f∨σ(i) − ταΘ−1

j f∨σ(j)u
∨
σ(α)}α while

S(δ{fi}i) = {Θ−1
j τα(uσ(α)fσ(j) − τσ(α)fσ(j)u

∨
α)∨}α

= {−Θ−1
j u∨∨α f∨σ(i) + ταΘ−1

j f∨σ(j)u
∨
σ(α)}α.

Comparing these two expressions and using Θ−1
j u∨∨α = uαΘ−1

i , we conclude δ(S{fi}) =

−S(δ{fi}). The subcomplex of (anti-)fixed points A0(S(U), U)−S
δ−→ A1(S(U), U)S,
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denoted B•(U), fits into the exact sequence

0→ Hom(S(U), U)−S → B0(U)
δ−→ B1(U)→ Ext1(S(U), U)S → 0. (4.2)

Note that each of the terms in (4.2) are k0-vector spaces.
Let N be the Q0-graded vector space with sesquilinear form underlying the split

self-dual extension U⊕M⊕S(U). The degree zero term of the direct sum C•(M,U) =
A•(M,U)⊕B•(U) is naturally interpreted as the Lie algebra of the unipotent radical
U of the parabolic subgroup of AutS(N) stabilizing the isotropic subspace U ⊂ N .
To each c = {dα, eα}α ∈ C1(M,U) there corresponds a self-dual representation Nc

with structure maps, in the natural basis of N ,

nα =

 uα dα eα − dαψ−1
j d∨σ(α)

0 mα ψ−1
j d∨σ(α)

0 0 ταu
∨
σ(α)

 .

The group U acts on C1(M,U) by conjugating the associated structure maps {nα}α.
Then g ∈ U fixes c ∈ C1(M,U) if and only if g ∈ AutS(Nc), in which case it is
immediate that g preserves the natural self-dual exact sequence structure of Nc. We
have defined a set map ⊔

N

GN
U,M

/AutS(N)← C1(M,U)/U .

We show that this is a bijection by constructing an inverse. Given a self-dual exact
sequence with middle term N , pick an isometry N ' N that is also an equivalence of
self-dual extensions of vector spaces. In the natural basis of N , the difference between
the structure maps of N and H(U) ⊕M is an element of C1(M,U) and defines the
inverse map. Moreover, the stabilizer of c ∈ C1(M,U) under the action of U has
cardinality equal to that of the stabilizer of Nc, viewed as a self-dual exact sequence,
under the action of AutS(Nc). Applying Burnside’s lemma gives

∑
N

GNU,M
aS(N)

=
|C1(M,U)|
|U|

As |U| = |C0(M,U)|, this sum is equal to |k0|−χ(C•(M,U)) and the theorem now follows
from the exact sequences (4.1) and (4.2).

Remark. The analogue of Theorem 4.3.3, which holds for arbitrary hereditary fini-
tary abelian categories, states [55]

∑
X∈Iso(A)

FXU,V
a(X)

= q−〈V,U〉.
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Its proof relies on the simple fact that the stabilizer of a short exact sequence 0→ U →
X → V → 0 under the action of Aut(X) is canonically isomorphic to Hom(V, U).
The situation is necessarily more subtle in the self-dual situation as the stabilizer of
a self-dual exact sequence 0 → U → N 99K M → 0 under the action of AutS(N) is
not determined solely by M and U . The additional data needed to fix the cardinality
of the stabilizer is the extension class ξ associated to 0 → U → U⊥ → M →
0. Explicitly, the stabilizer of the above self-dual exact sequence has cardinality
| ker δSξ ||Hom(S(U), U)−S| where δSξ : Hom(M,U)→ Ext1(S(U), U)S is defined by

δSξ β = β∗ξ + Θ−1
U∗S(β∗ξ) = δξβ + Θ−1

U∗S(δξβ).

Here δξ is the connecting homomorphism in the long exact sequence obtained by
applying Hom(−, U) to ξ.

Corollary 4.3.4. When A = Repk(Q), E(U) depends only on u = dimU and is
given explicitly by

E(U) =
∑
i∈Qσ0

ui(ui − s)
2

+
∑
i∈Q+

0

uσ(i)ui −
∑

(σ(i)
α−→i)∈Qσ1

ui(ui + ταs)

2
−

∑
(i
α−→j)∈Q+

1

uσ(i)uj.

Proof. This follows by direct calculation using the exact sequence (4.2).

The function E has the following interpretation that should be compared with the
fact that the dimension of the moduli stack of d-dimensional representations of Q is
−〈d, d〉. Let Mg

d be the global quotient stack associated to the action of Gg
d on Rg

d.

Proposition 4.3.5. The dimension of Mg
d is −E(d).

Proof. Verifying that dimRg
d − dimGg

d is equal to −E(d) gives a simple proof of the
proposition. We give here a more conceptual proof.

The scheme Rg
d represents the functor f.g.Algk → Set given by

A 7→ HomkQ0(kQ,EndA(A⊗N))S.

Here kQ is the path algebra of the quiver and kQ0 is the subalgebra generated by
the nodes of Q. The functor S acts on the path algebra by σ and on EndA(A ⊗ N)
by its action on N . Writing D = k[ε]/〈ε2〉 for the algebra of dual numbers, a Zariski
tangent vector to Rg

d at N is an element v ∈ HomkQ0(kQ,Endk(N)) such that N+εv ∈
HomkQ0(kQ,EndD(D⊗N))S. This requires for all α, α′ ∈ Q1

nαα′ + εvαα′ = nαnα′ + ε(vαnα′ + nαvα′)

which is equivalent to requiring v ∈ DerkQ0(kQ,End(N)). The self-duality of N + εv
requires that v be self-dual. This gives TNR

g
d = DerkQ0(kQ,End(N))S. Next, we
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describe the tangent space to the Gσ
d -orbit through N . For any x ∈ Lie(Gσ

d) =
EndkQ0(N)−S we have

(1N + εx)N(1N − εx)|α = nα + ε(xjnα − nαxi).

The coefficient of ε, which is a tangent vector to the orbit, is an element of the
inner derivations InnDerkQ0(kQ,End(N))S. Combining the previous two results we
conclude TNM

g
d = Ext1(N,N)S.

To complete the proof we use that the infinitesimal isometries of N are End(N)−S,
which can be verified as in the previous calculation.

4.4 Quantum groups and Hall modules

In view of the realization of quantum groups via Hall algebras it is natural to
expect a connection between Hall modules and representations of quantum groups.
The goal of the remainder of this chapter is to investigate such a connection. We
assume that Q has no loops.

Theorems 3.2.3 and 4.2.1 show at once that MQ is a representation of U−ν (gQ).
Using [63] we can similarly conclude that MQ is a representation of a much larger
quantum group, namely HQ itself. However, without a better understanding of the
latter quantum group it seems unlikely that this structure can be used to say much
about MQ. In order to further constrain MQ we instead focus on incorporating the
comodule structure. The most obvious guess is that MQ is a Hopf module, i.e. the
comodule structure map

ρ :MQ → HQ ⊗MQ

is a homomorphism of modules, possibly with HQ⊗MQ having a twisted HQ⊗HQ-
module structure; compare with Theorem 2.0.2. However, already for A1 this is seen
to not be the case. We therefore seek a modification of the Hopf module condition
to describe the compatibility of the module and comodule structures ofMQ. To this
end, we describe in Theorem 4.4.1 below the relationship between multiplication and
comultiplication along the simple representations Si.

To state the result we require a twisted version of quantum groups. To motivate
this, given a symmetric Kac-Moody algebra g define linear operators E ′i and E∗i on
U−v (g) according to

[Ei, Fj] = δij
E∗i FjTi − T−1

i E ′iFj
v − v−1

.

The operators E ′i satisfy the quantum Serre relations and also the relation

E ′iFj = v−(εi,εj)FjE
′
i + δij.

The subalgebra of EndQ(v)(U
−
v (g)) generated by E ′i and Fi is called the reduced ana-
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logue of Uv(g) and is denoted by B(g) [35].
To modify B(g) in the self-dual case, suppose that we are given a (·, ·)-preserving

involution σ of the set of simple roots.

Definition ([15]). The reduced σ-analogue Bσ(g) is the Q(v)-algebra generated by
symbols Ei, Fi, Ti, T

−1
i , i = 1, . . . , n, subject to the relations

1. TiTj = TjTi, TiT
−1
i = 1, Ti = Tσ(i) (4.3)

2. TiEj = v(εj+εσ(j),εi)EjTi, TiFj = v−(εj+εσ(j),εi)FjTi (4.4)

3. EiFj = v−(εi,εj)FjEi + δi,j + δi,σ(j)Ti (4.5)

4.

1−(εi,εj)∑
l=0

(−1)l
[

1− (εi, εj)
l

]
v

El
iEjE

1−(εi,εj)−l
i = 0, i 6= j. (4.6)

5.

1−(εi,εj)∑
l=0

(−1)l
[

1− (εi, εj)
l

]
v

F l
iFjF

1−(εi,εj)−l
i = 0, i 6= j (4.7)

For generic t ∈ C× the specialization Bσ(g)t is the Q[t, t−1]-algebra with the same
generators and relations as Bσ(g), but with v replaced by t.

Returning to the quiver setting, for each i ∈ Q0 define the induction operator Fi
by

Fi[M ] = [Si] ? [M ]

and define the restriction operator Ei as the projection of the comodule structure
map onto the subspace [Si]⊗MQ ⊂ HQ ⊗MQ. That is,

ρ([M ]) = [Si]⊗ Ei[M ] + (ρ[M ])′

where (ρ[M ])′ is a linear combination of terms of the form [U ] ⊗ [N ] with U 6' Si.
The action of Ti is given by

Ti[M ] = ν−(M,εi)−E(εi)−E(εσ(i))[M ].

Theorem 4.4.1. The operators Ei, Fi, Ti, i = 1, . . . , n, give MQ the structure of a
Bσ(gQ)ν ⊗Q Q[ν0, ν

−1
0 ]-module.

Beginning of Proof. We first verify the relations (4.3), (4.4), (4.6) and (4.7). The
first two parts of relation (4.3) are trivial and Ti = Tσ(i) because (d, εi) = (d, εσ(i))
whenever d = σ(d). Relation (4.4) follows from the explicit description of the action of
Ti and the fact that Fi (resp. Ei) increases (resp. decreases) the dimension vector by
εi+ εσ(i). The Serre relation (4.7) follows from Theorems 3.2.3 and 4.2.1. Interpreting
Lemma 3.2.4 in terms of induction and restriction operators we find

(Fiξ, ζ)M =
1

ν−2 − 1
(ξ, Eiζ)M, ξ, ζ ∈MQ.
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Using this, the relation (4.6) now follows from the non-degeneracy of (·, ·)M and the
Serre relations for Fi. To complete the proof it remains to verify relations (4.5). Since
this is quite involved, we break the verification into a number of parts.

Using Lemma 3.2.1 to rewrite the action of the Hall algebra in terms of the
numbers GNU,M , we find that relation (4.5) holds if and only if for all i, j ∈ Q0 and
self-dual representations N, Y , the following identity holds:

∑
X

GXSi,NG
X
Sj ,Y

aS(X)
=
|Ext1(Sσ(j), Si)|
|Hom(Sσ(j), Si)|

∑
Z

GYSi,ZG
N
Sj ,Z

aS(Z)
+ δi,σ(j)δN,Y a(Si)aS(N)

+ δi,jδN,Y a(Si)aS(N)
|Ext1(N,Si)||Ext1(Sσ(i), Si)

S|
|Hom(N,Si)||Hom(Sσ(i), Si)−S|

(4.8)

Unless otherwise noted, all sums in what follows will be over isometry classes of
self-dual representations. We will establish relation (4.5) in this formulation.

Given self-dual representations X, Y,N , let CX(i, j;N, Y ) be the set of crosses of
self-dual exact sequences

Sj

X

Y

Si N

b

ρ

a π (4.9)

The group AutS(X) acts on CX(i, j;N, Y ) with orbit space C̃X(i, j;N, Y ). Burnside’s
lemma gives for the sum on the left-hand side of equation (4.8)

∑
X

GXSi,NG
X
Sj ,Y

aS(X)
=
∑
X

|CX(i, j;N, Y )|
aS(X)

=
∑
X

∑
C∈C̃X(i,j;N,Y )

1

|StabAutS(X)C|
.

Similarly, for a self-dual representation Z let DZ(i, j;N, Y ) be the set of all corners
of self-dual exact sequences

Sj

N

ZYSi

b̃

ρ̃

π̃ã

(4.10)

The group AutS(Z) acts freely on DZ(i, j;N, Y ) with orbit space D̃Z(i, j;N, Y ). The
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sum on the right-hand side of equation (4.8) can then be written as

∑
Z

GYSi,ZG
N
Sj ,Z

aS(Z)
=
∑
Z

|DZ(i, j;N, Y )|
aS(Z)

=
∑
Z

|D̃Z(i, j;N, Y )|.

If in the notation of the cross (4.9) the subrepresentation Im(a⊕b) ⊂ X is isotropic,

then the cross descends to a corner on Z = X//Im(a⊕b) as follows. The map Sj
b̃
� N

is induced by Ei
π
� N , where Ei = Im(a)⊥, the map Si

ã
� Y being defined similarly.

Picking an orthogonal E ′ ⊂ X for Im(a⊕ b), define ρ̃ and π̃ by the pushout diagram

Sj Sj

E ′ Ẽj

Ẽi Z

Si

Si

b′ b̃

ρ̃ρ′

π̃

π′a′

ã

(4.11)

where π′ and ρ′ are the canonical maps induced by Ei
π
� N and Ej

ρ
� Y , respectively.

Lemma 4.4.2. If the cross (4.9) does not descend to a corner, then N 'S Y .

Proof. The cross fails to descend if and only if Im(a ⊕ b) is not a two dimensional
isotropic subrepresentation, which occurs in precisely two cases. The first is if Im(a) =
Im(b), in which case clearly N 'S Y . The second is if Im(a ⊕ b) is non-degenerate
and hence necessarily isometric to H(Si). In this case X 'S H(Si)⊕N 'S H(Si)⊕Y
and we again have N 'S Y .

The strategy to establish equation (4.8) is as follows. We will show that the
sum on the right hand side counts crosses that descend to corners, with appropriate
multiplicity, while the two remaining terms count crosses that fail to descend for each
of the two reasons indicated in the proof of Lemma 4.4.2. Since the left hand side
of equation (4.8) counts all crosses, the identity will follow. From this point of view,
the spirit of the proof is similar to [20, Theorem 2].

Lemma 4.4.3. There are exactly a(Sj)aS(N) crosses in C̃X(i, j;N, Y ) in which
Im(a⊕ b) is non-degenerate.

Proof. Suppose we are given a cross in CX(i, j;N,N) with Im(a⊕ b) non-degenerate.
Then X 'S H(Si) ⊕ N . Acting by the subgroups AutS(H(Si)) and AutS(N) of
AutS(X) we may take a to be the standard inclusion and π to be the projection onto
N . The set of all pairs (b, ρ) completing the cross forms a torsor for Aut(Si)×AutS(N)
and different choices for (b, ρ) give different classes in C̃X(i, j;N, Y ).

39



Proposition 4.4.4. Let C ∈ CX(i, j;X,N).

1. If C descends to a corner, then StabAutS(X)(C) ' Hom(Sσ(i), Sj).

2. If Im(a⊕ b) is non-degenerate, then StabAutS(X)(C) = {1}.
Proof. We make two preliminary observations. Suppose φ ∈ AutS(X) fixes (Ei; a, l, k, π) ∈
GX
Si,N

. Then there exists r ∈ Aut(Ei) such that

rl = l, πr−1 = π, kr−1 = φk.

The first two equations state that r stabilizes Si
l
� Ei

π
� N and hence is uniquely

determined by an element of Hom(N,Si). The third equation states that Ei is φ-
stable and φ|Ei = r, so that φ|Ei is also determined by an element of Hom(N,Si). If

moreover, φ|Ei = 1Ei , then φ also stabilizes Ei
k
� N

S(a)ψ
� S(Si). In this case φ is

uniquely determined by an element of Hom(Sσ(i), Si)
−S

We prove the first statement; the second is similar. Suppose that C descends to
a corner and let φ ∈ StabAutS(X)(C). The restrictions of φ|Ei and φ|Ej are determined
uniquely by elements of Hom(N,Si) and Hom(Y, Sj), respectively. As Im(a)∩Im(b) =
0, the restriction of φ to Ei ∩ Ej is the identity and φ is determined uniquely by an
element of Hom(Sσ(i) ⊕ Sσ(j), Si ⊕ Sj)−S. Compatibility with φ|Ei and φ|Ej requires
that the component of φ from Hom(Sσ(i), Si) and Hom(Sσ(j), Sj) vanish, leaving only a
factor determined by Hom(Sσ(i), Sj). Reversing this argument, any of Hom(Sσ(i), Sj)
gives rise to an isometry of X stabilizing C.

We need a final result before being able to establish equation (4.8).

Proposition 4.4.5. There are |Ext1(Sσ(i), Sj)| elements of
⊔
X C̃X(i, j;N, Y ) that

descend to each D ∈
⊔
Z D̃Z(i, j;N, Y ).

Proof. The first part of the proof is as in [20]. To avoid clutter write U = Si and
V = Sj. Start with the corner (4.10). Let E ′ be the pullback of π̃ and ρ̃ in diagram
(4.11) and let ξ ∈ Ext1(N,U) map to (a′, π′) ∈ Ext1(ẼV , U) in the long exact sequence

0→ Hom(S(V ), U)→ Hom(N,U)→ Hom(ẼV , U)→
Ext1(S(V ), U)→ Ext1(N,U)→ Ext1(ẼV , U)→ 0

The set of morphisms τ making the diagram

U E ′ ẼV

U EU N

S(V ) S(V )

a′ π′

π

τ k̃

S(b̃)ψN
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commute is a torsor for Hom(ẼV , U). The middle row is a representative of ξ. The
map U � EU is determined by commutativity. The group Aut(EU) acts transitively
on the set of choices for π, with stabilizer Hom(N,U). From the long exact sequence,
we find that there are

a(EU)
|Ext1(S(V ), U)EU |
|Hom(S(V ), U)|

diagrams as above with central term EU . Because of the equivalence in the definition
of self-dual exact sequences, we are only interested in such diagrams up to the action
of Aut(EU). Each diagram has stabilizer Hom(S(V ), U) under Aut(EU). Summing
over isomorphism types of EU , we find that there are |Ext1(S(V ), U)| equivalence
classes of diagrams, keeping the outside maps fixed.

Fix a diagram as above. We show by constraining the possible structure maps
that there is a unique way of extending this diagram to a cross inducing the original
corner. Let εU ∈ A1(N,U) determine EU and let X, the central term in the cross, be
determined by

(x1, x2) ∈ A1(S(U), EU) = A1(S(U), N)⊕ A1(S(U), U).

If the canonical bilinear form is to make X self-dual, then x1 must be the transpose
of εU . Moreover, the element x2 is uniquely determined by the requirement that the
canonical map V ⊥ → Y be an isometry.

Completion of the proof of Theorem 4.4.1. Write

CX(i, j;N, Y ) = C
(1)
X (i, j;N, Y )

⊔
C

(2)
X (i, j;N, Y )

where C
(1)
X (i, j;N, Y ) is the set of crosses that descend to corners. By Proposition

4.4.4 ∑
X

|CX(i, j;N, Y )|
aS(X)

=
∑
X

|C̃(1)
X (i, j;N, Y )|
|Hom(Sσ(i), Sj)|

+
∑
X

|C(2)
X (i, j;N, Y )|
aS(X)

.

Proposition 4.4.5 shows

∑
X

|C̃(1)
X (i, j;N, Y )|
|Hom(Sσ(i), Sj)|

=
|Ext1(Sσ(j), Si)|
|Hom(Sσ(j), Si)|

∑
Z

|D̃Z(i, j;N, Y )|.

The number of crosses in CX(i, j;N, Y ) that fail to descend to corners because
Im(a) = Im(b) is equal to a(Si)aS(N)

∑
X GXSi,N . Applying Lemma 4.4.3 and Propo-

sition 4.4.4 gives

∑
X

|C(2)
X (i, j;N, Y )|
aS(X)

= δN,Y δi,ja(Si)aS(N)
∑
X

GXSi,N
aS(X)

+ δN,Y δi,σ(j)a(Si)aS(N)
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Using Theorem 4.3.3 to evaluate the sum on the right hand side now completes the
proof.

In order to say more about the Bσ(gQ)ν-module structure of Mg
Q we recall a

characterization of certain highest weight Bσ(g)-modules.

Proposition 4.4.6 ([15, Proposition 2.11]). Let λ ∈ Hom(Φ,Z) be a σ-invariant
integral weight. Then there exists a Bσ(g)-module Vσ(λ) generated by a non-zero
vector φλ such that Tiφλ = vλ(εi)φλ, Eiφλ = 0 for all i = 1, . . . , n and

{x ∈ Vσ(λ) | Eix = 0, ∀i = 1, . . . , n} = Q(v)φλ.

Moreover, Vσ(λ) is irreducible and unique up to isomorphism.

We require two straightforward modifications of Proposition 4.4.6. The first is an
extension to σ-invariant half-integral weights λ ∈ Hom(Φ, 1

2
Z) that will arise from

unitary representations. In this case we have a representation of Bσ(g) ⊗Q(v) Q(v
1
2 ).

The second is a version of Proposition 4.4.6 (or its aforementioned extension) for the
specializations Bσ(g)t to generic t ∈ C, the corresponding modules being denoted by
Vσ(λ)t. The proof of Proposition 4.4.6 given in [15] carries over directly in both cases.

Definition. An non-zero element ξ ∈Mg
Q is cuspidal if Eiξ = 0 for all i ∈ Q0.

Example. If U is a simple representation admitting a self-dual structure ψ, then
[(U, ψ)] ∈ Mg

Q is cuspidal. The submodule generated by [(U, ψ)] lies in the direct
summand of Mg

Q labelled by the Witt class of ψ; see Proposition 3.3.1. /

If ξ is cuspidal, then its components of homogeneous dimension vector are also
cuspidal. We may therefore without loss of generality take cuspidals to be of homo-
geneous dimension. Let CgQ be a homogeneous orthogonal basis for the R-submodule

of cuspidals of Mg
Q. To any σ-invariant dimension vector d ∈ ZQ0

≥0 we associate a

σ-invariant weight λd ∈ Hom(Φ, 1
2
Z) by defining λd on a basis of Φ

λd(εi) = −(d, εi)− E(εi)− E(εσ(i))

and extending linearly. Note that Ti[M ] = vλdimM (εi)[M ]. The weight λd is indepen-
dent of the orientation of Q. Given ξ ∈ CgQ, we will write λξ for λdim ξ.

Theorem 4.4.7. There is a direct sum decomposition of Bσ(gQ)ν ⊗Q Q[ν0, ν
−1
0 ]-

modules
Mg

Q =
⊕
ξ∈CgQ

Vσ(λξ)ν .
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Proof. We first prove that the submodule 〈ξ〉 ⊂ Mg
Q generated by ξ ∈ CgQ is isomor-

phic to Vσ(λξ)ν . Suppose that x ∈ 〈ξ〉 is non-zero with Eix = 0 for all i ∈ Q0. If
x =

∑
i∈Q0

Fiyi for some yi ∈ 〈ξ〉, then

(x, x)M =
∑
i∈Q0

(x, Fiyi)M =
1

ν−2 − 1

∑
i∈Q0

(Eix, yi)M = 0.

However, writing x in the natural basis of Mg
Q as x =

∑
M cM [M ] we have

(x, x)M =
∑
M

c2
M

aS(M)
> 0,

a contradiction. Therefore x must be a scalar multiple of ξ. From Proposition 4.4.6
we conclude 〈ξ〉 ' Vσ(λξ)ν .

Next, suppose that ξ1 and ξ2 are two distinct cuspidals. An arbitrary element of
〈ξ1〉 is of the form p(Fi)ξ1 for some non-commutative polynomial p. Then (p(Fi)ξ1, ξ2)M
is zero, as follows from the adjointness of Ei and Fi and the fact that ξ2 is cuspidal.
This shows that 〈ξ1〉 and ξ2 are orthogonal. Arguing in the same way we find 〈ξ1〉
and 〈ξ2〉 are orthogonal. Hence we have

⊕
ξ∈CgQ

Vσ(λξ)ν ↪→Mg
Q.

To prove that this inclusion is an isomorphism note that the restriction of (·, ·)M to
〈ξ〉, and hence to

⊕
ξ∈CgQ

Vσ(λξ)ν , is non-degenerate. Let 0 6= ζ ∈ Mg
Q be orthogonal

to
⊕

ξ∈CgQ
Vσ(λξ)ν and of minimal dimension with this property. In particular, ζ is

not cuspidal. Hence there exists i ∈ Q0 so that Eiζ is non-zero. By the minimality
assumption on ζ, Eiζ ∈

⊕
ξ∈CgQ

Vσ(λξ)ν . Since FiEiζ ∈
⊕

ξ∈CgQ
Vσ(λξ)ν it follows that

(Eiζ, Eiζ)M = (ν−2 − 1)(ζ, FiEiζ)M = 0,

contradicting Eiζ 6= 0. This completes the proof.

For all quivers the trivial self-dual representation [0] is cuspidal. We define the
composition submodule of Mg

Q by Mg
Q = 〈[0]〉. The proof of Theorem 4.4.7 shows

Mg
Q ' Vσ(λ[0])ν . In particular, the isomorphism type of Mg

Q is independent of the
orientation of Q.

For orthogonal representations we have E(εi) = 0 for all i ∈ Q0, from which we
conclude λ[0] = 0 and Mo

Q ' Vσ(0)ν . A geometric version of this result was previously
obtained by Enomoto [14, Theorem 5.12]. In loc. cit., by studying induction and
restriction operators on the Grothendieck group σK(Q) of a certain category of per-
verse sheaves on the moduli stack of orthogonal representations of Q (with Qσ

0 = ∅),
Enomoto established an isomorphism of Bσ(gQ)-modules σK(Q) ' Vσ(0). He also
showed that the simple perverse sheaves in σK(Q) give a lower global basis of Vσ(0),
giving an orthogonal analogue of Lusztig’s construction of the lower global basis of
U−v (gQ) [42]. See also [45] where orthogonal representations of Q = A∞ are treated
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using perverse sheaves. In [67] Enomoto’s approach was generalized to construct lower
global bases of Vσ(λ) for more general λ.

In another direction, van Leeuwen [66] studied the Hall module of unipotent char-
acters of the orthogonal, symplectic and unitary groups over finite fields, following
the approach of Green [19] and Zelevinsky [71]. In the language of quivers, this can
be interpreted as the study of self-dual Hall modules of nilpotent representations of
the Jordan quiver. van Leeuwen obtained a complete description of the relationship
of the module and comodule structures. Precisely, it is shown that there is a ring
homomorphism Ψ : HQ → HQ ⊗ HQ such that ρ([U ] ? [M ]) = Ψ([U ]) ? ρ([M ]). If
Ψ were the coproduct (and therefore first order in the Hall numbers), this would
simply be the Hopf module condition. Instead, Ψ is third order in the Hall numbers.
The relation (4.5) recovers a particular component of this Ψ-twisted Hopf module
structure.1 It would be very interesting to generalize this result to arbitrary (Q, σ).

1While Theorem 4.4.1 is stated for loopless quivers, the verification of relation (4.5) above holds
without this assumption.
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Chapter 5

Finite type Hall modules

In this chapter we restrict attention to finite type quivers with involution. In this
case we completely classify self-dual representations. The classification is then used
to obtain a more detailed description of the corresponding Hall modules.

5.1 Classification of self-dual representations over

finite fields

Recall that a quiver Q is called finite type if it has only finitely many indecom-
posable representations over any algebraically closed ground field. A connected finite
type quiver is an orientation of an ADE Dynkin diagram, as shown by Gabriel [18].
Moreover, in this case the indecomposable representations are in bijection with the
set of positive roots ∆>0

Q of the simple Lie algebra gQ [18].

Definition ([11]). A quiver with involution (Q, σ) is called finite type if it has only
finitely many isometry classes of indecomposable self-dual representations over any
algebraically closed field whose characteristic is not two.

We will need the following basic result.

Lemma 5.1.1. 1. The representation underlying a self-dual indecomposable is ei-
ther indecomposable or of the form I ⊕ S(I) for some indecomposable I.

2. Let Q be finite type and suppose that the indecomposable I does not admit a
self-dual structure. Then, up to isometry, the hyperbolic form is the unique
self-dual structure on I ⊕ S(I).

Proof. The first statement is given in [11, Proposition 2.7]. In loc. cit. the authors
work over an algebraically closed field but this result and its proof are valid without
this assumption.

Before proving the second statement, recall [10] that when Q is finite type there
exists a total order � on the indecomposable representations such that Hom(I, J) =
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Ext1(J, I) = 0 if J ≺ I. Such an order is independent of the ground field and will be
called an Auslander-Reiten order. Moreover, Ext1(I, I) = 0 and End(I) = k for any
indecomposable I.

As for the second statement, write a self-dual structure ψ on I ⊕ S(I) as

I ⊕ S(I)

 a b
c d


−−−−−−−→ S(I)⊕ S2(I).

This requires S(a)ΘI = a. If I ' S(I), then Hom(I, S(I)) ' End(I) = k. In this
case a = 0; otherwise a is a self-dual structure on I, a contradiction. Similarly d = 0.
It is now straightforward to see that ψ is isometric to H(I). If instead I 6' S(I), we
may without loss of generality assume S(I) ≺ I. In this case a = 0 and acting by

Aut(I) we may also take b = 1S(I) and c = ΘI . Then

(
1 −1

2
d

0 1

)
is an isometry

from ψ to H(I).

Remark. When k is algebraically closed the second part of Lemma 5.1.1 is true for
arbitrary Q [11].

We now give a slight generalization of a result of Derksen-Weyman [11, Theo-
rem 3.1], which describes the pairs (Q, σ) that are finite type when considering only
orthogonal and symplectic representations. We find that including unitary represen-
tations case does not affect the classification.

Theorem 5.1.2. (Q, σ) is finite type if and only if Q is finite type.

Proof. Suppose that Q is finite type. If I is an indecomposable that does not admit
a self-dual structure, the second part of Lemma 5.1.1 implies that H(I) is the unique
self-dual structure on I ⊕ S(I). If I does admit a self-dual structure, then the isom-
etry classes of self-dual structures on I are in bijection with the isometry classes of
orthogonal or hermitian forms on k, according to the choice of duality functor. Since
the latter are finite in number (see for example [62]), so too are the isometry classes
of self-dual structures on I. Using the first part of Lemma 5.1.1 we conclude that
(Q, σ) is finite type.

Conversely, if Q is not finite type let {Iβ}β be an infinite set of pairwise non-
isomorphic indecomposables such that Iβ 6' S(Iγ) if β 6= γ. Then {Iβ, H(Iβ)}β
contains an infinite set of pairwise non-isometric indecomposable self-dual represen-
tations. Hence (Q, σ) is not finite type.

If (Q, σ) is finite type with Q connected, then Q is necessarily of Dynkin type A,
as orientations of type DE Dynkin diagrams do not admit involutions. If Q is not
connected but (Q, σ) is not a disjoint union of quivers with involution, then Q = Q′t

with Q′ an orientation of an ADE Dynkin diagram. All other finite type quivers with
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involution can be obtained as disjoint unions of the previous two types, so we do not
consider these in what follows.

We now show that for the purposes of studying Hall modules of finite type quivers
it suffices to restrict attention to orthogonal, symplectic and unitary representations,
i.e. τ ≡ −1. We saw this in Chapter 4 for disjoint union quivers. Let Q be of
type A with τ , τ ′ two σ-invariant functions on Q1 determining duality functors S,
S ′, respectively. For simplicity we take ι to be the identity; non-trivial ι is dealt
with similarly. Assume that τ and τ ′ differ at a single α∗ ∈ Q+

1 ; the general case
can be obtained inductively from this case. Define an autoequivalence F of Repk(Q)
by sending (U, u) to (U, u′), where uα = u′α if α 6= α∗ and u′α∗ = −uα∗ . Then
F∗ = 1HQ . The pair (F, id) is a form functor and by Proposition 3.3.5 induces an

isomorphism Mτ
Q
∼−→ Mτ ′

Q . If instead τ and τ ′ differ at α∗ ∈ Qσ
1 and define F as

above but take S ′ = −S. Then (F, id)∗ is an isomorphism Mτ,S
Q

∼−→Mτ ′,S′

Q . Since F
preserves dimension vectors, and hence 〈·, ·〉 and E , the above isomorphisms extend
to Ringel-Hall modules.

Before describing the self-dual indecomposables of type A quivers we recall the
ordinary indecomposables. For Q of type A2n or A2n+1, label the nodes −n, . . . , n,
omitting 0 for A2n, with i and i+1 adjacent. Denote by Ii,j, i ≤ j, the representation
with dimension vector εi + · · · + εj and all intermediate structure maps the identity.
Over any field, the collection {Ii,j}−n≤i≤j≤n is a complete set of isomorphism classes
of indecomposable representations.

The indecomposable orthogonal and symplectic representations of finite type quiv-
ers, over an algebraically closed field k whose characteristic is not two, were classified
in [11] and shown to have a partial interpretation in terms of root systems; see The-
orem 5.1.3 below. We require a version of this result for finite fields and for unitary
representations. Write ∆g

Q and ∆
g

Q for the self-dual indecomposables over Fq and Fq,
respectively.

To describe the self-dual indecomposables we proceed as in the proof of Theorem
5.1.2. The only non-trivial task is to identify the self-dual structures on indecompos-
able representations, which can be done directly. For Ao

2n and Asp
2n+1 indecomposables

do not admit self-dual structures. Hence in these cases the self-dual indecomposables
are simply the hyperbolics {H(Ii,j)}. For Asp

2n and Ao
2n+1 the indecomposables I−i,i

admit exactly two self-dual structures, corresponding to the two non-isometric or-
thogonal forms on k. For Au

n the indecomposables I−i,i admit a unique unitary,
corresponding to the unique hermitian form on k.

We denote by Rc
i a self-dual representation with underlying representation isomor-

phic to I−i,i. The superscript c labels the Witt type of the the induced sesquilinear
form on ki ⊂ Rc

i obtained by composing all structure maps of Rc
i . The label c may

be omitted when it is trivial.
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Example. The indecomposables of Ao
3 are

H(S1) : k → 0→ k, H(I0,1) : k

 1
0


−−−−→ k2

(
0 −1

)
−−−−−−−→ k

and
Rc

0 : 0→ k → 0, Rc
1 : k

1−→ k
−c−→ k

where in the final two examples the orthogonal form of the central node has Witt
index c, identified with either 1 or a fixed element of k2\k. /

Given a root system ∆, let ∆2 and ∆δ be the decorated root systems obtained
from ∆ by giving each short root of ∆ multiplicity two. In ∆2 the doubled roots are
viewed as independent, whereas those in ∆δ are viewed as being split from a single
short root. In the iteration ∆2,δ each short root has multiplicity three; two viewed as
split from a single short root and the third viewed as independent. With this notation
we can now give a self-dual analogue of Gabriel’s theorem for finite fields, refining the
algebraically closed version of [11, Propositions 3.6, 3.8].

Theorem 5.1.3. 1. The indecomposable self-dual Fq-representations of Qt are in
bijection with ∆>0

Q .

2. The indecomposable self-dual Fq-representations of A2n+1 are in bijection with

∆sp
A2n+1

' C>0
n+1, ∆o

A2n+1
' B>0,δ

n+1 , ∆u
A2n+1

' B>0
n+1

3. The indecomposable self-dual Fq-representations of A2n are in bijection with

∆o
A2n
' BC>0

n , ∆sp
A2n
' B>0,2,δ

n , ∆u
A2n
' B>0,2

n .

Proof. The self-dual indecomposables of Qt are bijection with the indecomposables
of Q. By Gabriel’s theorem, the latter are in bijection with ∆>0

Q . This establishes the
first statement.

We describe the bijections for Ag
2n; the discussion for Ag

2n+1 is similar. To fix
notation, set B>0

n = {εi± εj, εi | 0 ≤ i ≤ j ≤ n− 1} and BC>0
n = B>0

n

⊔
{2εi}n−1

i=0 . For
Ao

2n we assign 2εn−i to the indecomposable H(I−i,i). Consistency then requires

H(Ii,j) 7→ εn−j − εn−i+1, 1 ≤ i ≤ j ≤ n.

The convention εn = 0 is used, so that in particular H(I1,j) 7→ εn−j. Similarly

H(I−i,j) 7→ εn−i + εn−j, 1 ≤ i < n, 1 ≤ j ≤ n

and we obtain the bijection with BC>0
n .
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For Asp
2n the only difference is that we begin by assigning εcn−i to Rc

i . The as-
signments for hyperbolics are unchanged. In this case Rc

i and H(I1,i) have the same
image, giving the short roots multiplicity three.

Finally, for Au
2n we assign εn−i to Ri and proceed as above.

For algebraically closed ground fields Theorem 5.1.3 is modified by omitting the δ
construction, since the indecomposables I−i,i do not have non-trivial forms. This is the

result of [11]. We will write ∆
g

Q for the corresponding set of self-dual indecomposables.
A weak version of the Krull-Schmidt theorem holds for self-dual representations

over Fq. Namely, any self-dual representation decomposes into an orthogonal direct
sum of self-dual indecomposables. However, this decomposition is in general non-
unique; the Witt type of each isotypic component R⊕m,ci is determined but the Witt
types of the individual summands are not. In any case, combining this with Theorem
5.1.3 we find that isometry classes of representations of Qg are in bijection with a
subset of the set of all functions

∆
g

Q → Z≥0 × L.

When Qg has no forms, L is trivial, there are no restrictions on the functions and
uniqueness holds in the Krull-Schmidt theorem. When Qg has forms, L = W and
the W -label of r ∈ ∆

g

Q is required to be the identity if the self-dual representation
associated to r has no forms and to be of appropriate dimension otherwise.

5.2 Applications to Hall modules

Hall algebras of finite type quivers are particularly simple: the embedding

U−ν (gQ) ↪→ HQ

of Theorem 4.2.1 is an isomorphism, as follows from Gabriel’s theorem and the quan-
tum Poincaré-Birkhoff-Witt theorem. For all other quivers the Hall algebra is much
larger than U−ν (gQ) and lacks an explicit description.

With this in mind we move towards describing the entire Hall module of a finite
type quiver. We approach this problem using Theorem 4.4.7. From this point of
view, a complete description of the Hall module is equivalent to the classification of
cuspidal elements.

We begin with two important examples.

Example. The decomposition of the Hall module Mg
A1

into irreducible Bσ(sl2)-
modules agrees with the Witt decomposition of Proposition 3.3.1. Explicitly,

Msp
A1

= Vσ(−2), Mu
A1

= Vσ(−1)⊕ Vσ(−2)
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and
M0

A1
= Vσ(0)⊕ Vσ(−1)⊕2 ⊕ Vσ(−2).

Here we have identified the T -weights with Z. /

Example. The first non-trivial example is Mo
A2

. We show that Mo
A2

is generated
by [0]. For simplicity we work with the untwisted Hall module and the orientation
−1→ 1. Let T = H(S1) and R = H(I−1,1). We claim that for all k+ l = t+ 2r with
k ≤ t we have

GT⊕t⊕R⊕r
S⊕k−1⊕S

⊕l
1 ,0

=

[
t
k

]
where

[n] =
qn − 1

q − 1
, [n]! =

n∏
i=1

[i],

[
n
k

]
=

[n]!

[k]![n− k]!
.

To see this, note that if S⊕k−1 ⊕ S⊕l1 is embedded as a Lagrangian in T⊕t ⊕ R⊕r then

S⊕k−1 ⊂ T⊕t, since R⊕r has no kernel. This gives

[
t
k

]
choices for the image of S⊕k−1 .

The image of S⊕l1 is determined by the condition that it be orthogonal to the image
of S⊕k−1 , establishing the formula.

Since Ao
2 has no forms, an arbitrary representation is of the form T⊕t ⊕ R⊕r,

t, r ≥ 0. We prove by induction on r that [T⊕t ⊕ R⊕r] ∈ Mo
A2

. The case r = 0
follows from [S⊕t−1] ? [0] = [T⊕t]. Assuming the statement holds for r < n, using the
Lagrangian Hall number above we find

[S⊕k−1 ⊕ S⊕2n
1 ] ? [0] = [T⊕k ⊕R⊕n] +

n∑
i=1

[
k + 2i
k

]
[T⊕k+2i ⊕R⊕n−i].

By the inductive hypothesis each term in the sum lies in Mo
A2

, and hence so too does
[T⊕k ⊕R⊕n]. /

This example generalizes as follows.

Theorem 5.2.1. If (Q, σ) is finite type and Qg has only hyperbolic representations,
then Mg

Q = Mg
Q ' Vσ(λ[0])ν.

Proof. Consider a hyperbolic representation H(U). Writing U as a direct sum of
indecomposables we have

H(U) 'S
l⊕

i=1

H(Ii)
⊕mi

for positive integers mi and indecomposables Ii such that Ii 6' Ij and Ii 6' S(Ij) for
i 6= j. Since Q is finite type, relabeling if necessary we may suppose that S(Ii) � Ii ≺
Ii+1 ≺ · · · ≺ Il for i = 1, . . . , l. This implies Ext1(S(Ii), Ij) = 0 for all i ≤ j, which

50



by duality gives Ext1(S(Ii), Ij) = 0 for all i ≥ j. Hence Ext1(S(U), U) = 0 and we
find

[U ] ? [0] = νE(U)G
H(U)
U,0 [H(U)],

showing [H(U)] ∈ Mg
Q. The equality Mg

Q = Mg
Q now follows from the fact that

the Hall algebra of a finite type quiver is generated by simple representations. The
isomorphism Mg

Q ' Vσ(λ[0])ν follows from Theorem 4.4.7.

Remark. The previous example showed slightly more than Theorem 5.2.1, namely,
that the integral form Mo

A2,Z (defined by taking R = Z[ν, ν−1]) is generated by [0].
A similar result likely extends to Mo

A2n
.

The Hall modules for Ao
2n+1, Asp

2n and Au
n are not covered by Theorem 5.2.1. Before

describing their (conjectural) decompositions into irreducibles we study an illustrative
example.

Example. We claim thatMsp
A2

is generated by [0] and [R+]−[R−]. We first show that
Msp

A2
has a basis consisting of all hyperbolics and all elements of the form [H(U) ⊕

R+] + [H(U)⊕ R−] and [H(U)⊕ R⊕2,−]. That Msp
A2

contains all hyperbolics follows
from the proof of Theorem 5.2.1. Mirroring the calculations in the example of Mo

A2

above, we find

[S⊕k−1 ⊕S⊕r1 ] ? [0] = [T⊕k⊕R⊕r,+] + [T⊕k⊕R⊕r,−] +
∑
c

r∑
i=1

[
k + i
k

]
[T⊕k+i⊕R⊕r−i,c]

Proceeding by induction on the number r of symmetric summands we find that Msp
A2

contains all elements of the form [H(U)⊕R+] + [H(U)⊕R−]. We also have

[S⊕k−1 ⊕ I⊕n] ? [0] = |OGr+(n, 2n)|[T⊕k ⊕R⊕2n,+] =
n−1∏
i=0

(qi + 1)[T⊕k ⊕R⊕2n,+]

where OGr+(n, 2n) denotes the Lagrangian Grassmannian of the 2n-dimensional hy-
perbolic orthogonal space. It follows that Msp

A2
also contains all elements of the form

[H(U)⊕R⊕2,−].
Let U = S⊕k−1 ⊕ I⊕i. Note that Ext1(S(U), U) = 0. We have

[U ] ? ([R+]− [R−]) = |OGr(i, 2i+ 1)|
(
[H(U)⊕R+]− [H(U)⊕R−]

)
=

i∏
j=1

(qj + 1)
(
[H(U)⊕R+]− [H(U)⊕R−]

)
.

Combining this calculation with those for Msp
A2

, a basis of 〈[R+] − [R−]〉 consists of
the elements [H(U)⊕R+]− [H(U)⊕R−], with U an arbitrary representation of A2.
We conclude that [0] and [R+] − [R−] are the sole cuspidals of Asp

2 . In particular,
Msp

A2
= Vσ(1)ν ⊕ Vσ(0)ν . /
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We now generalize this example toMsp
A2n

. Let W = W (Ao
1) and write w+

1 , w
−
1 ∈ W

for the classes of the one dimensional orthogonal spaces with descriminant one and a
non-square, respectively. Set ξ0 = [0] and for each 1 ≤ i ≤ n define

ξi =
∑

w∈{w+
1 ,w

−
1 }i

aw[Rw] ∈Msp
A2n

.

Here Rw =
⊕i

j=1R
wj
j and aw =

∏
j oddwj, with w±1 being with ±1 ∈ Z. Let λspi be

the T -weight of λξi . Explicitly, λspn = 0 and

λspi = ε∨−(i+1) + ε∨i+1, i = 0, . . . , n− 1

where ε∨i is dual to εi ∈ ZQ0 . We say that Q = An is equioriented if its arrows are
i→ i+ 1.

Proposition 5.2.2. If Q = A2n equioriented, there is an inclusion of Bσ(sl2n+1)ν-
modules

n⊕
i=0

Vσ(λspi )ν ⊂Msp
Q .

Proof. For j > 0 we have
R±j //Sj 'S R

±η(−1)
j−1 (5.1)

with η : Fq → Z is the quadratic character. For w ∈ {w±1 }i, the orientation as-
sumption implies Rw contains at most one (necessarily isotropic) subrepresentation
isomorphic to Sj if 1 ≤ j ≤ i and none otherwise. Using this and equation (5.1) it is
straightforward to verify that the choice of coefficients aw ensures that ξi is cuspidal.
The proposition now follows from Theorem 4.4.7.

The case Q = Ao
2n+1 requires a slight refinement because of its non-trivial Witt

group. For each b ∈ W let Wb = {w ∈ {w±1
1 }i+1 |

∑i
j=0 wj = b}. For each 0 ≤ i ≤ n

this gives a partition
⊔
b∈W W i

b = {w±1
1 }i+1. Define

ξbi =
∑
w∈W i

b

aw[Rw] ∈Mo
A2n+1

with Rw =
⊕i

j=0 R
wj
j and aw =

∏
j oddwj. Let λo− and λoi be the T -weights of [R⊕2,−

0 ]

and ξbi (which is independent of b), respectively. Explicitly,

λo− = 2ε∨−1 − 4ε∨0 + 2ε∨1 , λoi = ε∨−(i+1) − 2ε∨0 + ε∨i+1, i = 0, . . . , n− 1

and λon = 2ε∨0 . If n = 0 the terms involving ε∨±1 are omitted.

52



Proposition 5.2.3. If Q = A2n+1 equioriented, there is an inclusion of Bσ(sl2n+2)ν-
modules

Vσ(0)ν ⊕ Vσ(λo−)ν ⊕
n⊕
i=0

Vσ(λoi )
⊕2
ν ⊂Mo

Q

Proof. The submodule Vσ(0)ν is the composition submodule while Vσ(λo−)ν is gener-

ated by R2,−
0 , which is obviously cuspidal. The summands Vσ(λoi )ν are generated by

ξbi . The remainder of the proof is as in Proposition 5.2.2.

Finally, for unitary representations the statement is much simpler.

Proposition 5.2.4. For all σ-compatible orientations there are inclusions of Bσ(gQ)ν-
modules

1. Vσ
(

1
2
(ε∨1 + ε∨−1)

)
ν
⊂Mu

A2n

2. Vσ(−ε∨0 )ν ⊕ Vσ
(
−3ε∨0 + (ε∨1 + ε∨−1)

)
ν
⊂Mu

A2n+1
.

Proof. In each case the first summand is the composition submodule, while for A2n+1

the second summand is generated by [R0].

We believe that the previous discussion in fact gives a full description of the finite
type Hall modules.

Conjecture 5.2.5. The inclusions in Propositions 5.2.2, 5.2.3 and 5.2.4 are isomor-
phisms and hold for all σ-compatible orientations.

One strategy to prove Conjecture 5.2.5 is to develop the character theory for
Bσ(g)-modules. Precisely, given a Bσ(g)-module L with finite dimensional T -weight
spaces, define its character by

ch(L) =
∑
λ∈Φ∨

(dimLλ)e
λ

where Lλ = {x ∈ L | Tix = vλ(εi)x, i = 1, . . . , n}. We first compute the character
of the entire Hall module. The form in which we write the character is motivated by
Lemma 5.2.7 below.

Proposition 5.2.6. If (Q, σ) is finite type, then the character of the Hall module is
given by

ch(Mg
Q) =

eλ[0]
∏

α∈∆>0,+(1− e−(α+σ(α)))
∏

α∈∆>0,σ(1 + e−α)m∏
α∈∆>0(1− e−(α+σ(α)))

where ∆ is the root system associated to Q and

m =


2, for Asp

2n, Ao
2n+1

1, for Au
n

0, otherwise.
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Proof. Partition the set of positive roots as ∆>0 = ∆>0,+t∆>0,σt∆>0,−. Here ∆>0,σ

is the set of positive roots fixed by σ and ∆>0,+ is a choice of one point from each
two-point orbit of σ on ∆>0. First, suppose that all self-dual representations of Qg

are hyperbolic. In this case the Krull-Schmidt theorem holds and from Theorem 5.1.3
we have

ch(Mg
Q) =

eλ[0]∏
α∈∆>0,+t∆>0,σ(1− e−(α+σ(α)))

.

This proves the proposition when m = 0. For Asp
2n and Ao

2n+1 the symmetric in-
decomposables, i.e. those representations corresponding to elements of ∆>0,σ, each
admit exactly two distinct self-dual structures. Hence each symmetric indecompos-
able α ∈ ∆>0,σ contributes to the character a factor of

1 + 2e−α + 2e−2α + · · · = 1 + e−α

1− e−α
=

(1 + e−α)2

1− e−2α
,

establishing the case m = 2. For Au
n the symmetric indecomposables admit a unique

unitary structure and therefore contribute to a factor of 1
1−e−α = 1+e−α

1−e−2α , which is the
case m = 1.

The problem is then to compute the characters ch(Vσ(λ)). Consider the subalgebra
Q(v)[T1, . . . , Tn] ⊂ Bσ(g) generated by T1, . . . , Tn and let Q(v)λ be the rank one
Q(v)[T1, . . . , Tn]-module with generator φ′λ and module structure Ti · φ′λ = vλ (εi)φ′λ.
Define a highest weight λ Verma-type module for Bσ(g) by

M(λ) = Bσ(g)⊗
B≤0
σ (g)

Q(v)λ.

Lemma 5.2.7. For an arbitrary acyclic quiver in with involution

ch(M(λ)) = eλ
∏

α∈∆>0

(
1− e−(α+σ(α))

)−mult(α)
.

Proof. This follows at once from the Poincaré-Birkhoff-Witt theorem for U−v (g) and
the isomorphism B−σ (g) ' U−v (g).

We believe that the irreducible representation Vσ(λ) has a resolution of the fol-
lowing form, analogous to the BGG resolution of a highest weight Uq(g)-module [4],
[26]:

0→M(w0 ? λ)→ · · · →
⊕
`(w)=1

M(w ? λ)→M(λ)→ Vσ(λ)→ 0. (5.2)

The surjection M(λ)� Vσ(λ) is canonically defined. One corollary of the resolution
(5.2) would be a Weyl character-type formula for ch(Vσ(λ)). The proof of Conjecture
5.2.5 would then be reduced to the verification of an algebraic identity. We give a
number of examples providing some hints as to the likely structure of (5.2).
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Example. If Qg has only hyperbolic representations and is finite type, by Theorem
5.2.6 the numerator of ch(Mg

Q) is the product over the root subsystem ∆̃g ⊂ ∆g

obtained by removing from ∆g all indecomposable symmetric roots. From this obser-
vation, the Weyl denominator identity for ∆̃g and Theorem 5.2.1 we find

ch(Vσ(λ[0])) = eλ[0]
∑
w∈W̃

(−1)`(w)ch(M(w · 0)).

Here W̃ denotes the Weyl group of ∆̃g. Explicitly, ∆̃g is ∆>0
Q , B>0

n and D>0
n for Qt,

Ao
2n and Asp

2n+1, respectively. /

Example. The case of Bσ(sl2) is easily dealt with: M(λ) = Vσ(λ) and the resolution
(5.2) collapses to

0→M(λ)→ Vσ(λ)→ 0.

Note that in this case ∆̃g is empty. /

Example. For Bσ(sl3), the resolution (5.2) should be

0→M(−λ+ 1)→M(λ)→ Vσ(λ)→ 0.

Here λ ∈ 1
2
Z≥0. This can be proved directly for λ = 0, 1

2
, 1, which is sufficient to prove

Conjecture 5.2.5 for Ag
2. This resolution resembles the BGG resolution for B1 = A1,

but with the half-sum of the positive roots replaced by the quarter sum. This must
be accounted for in the ? action in (5.2). /

To end this chapter we speculate on some general properties of the set of cusp-
idals CgQ. There is a decomposition CgQ =

⊔
d∈ZQ0 C

g
Q(d) according the homogenous

dimension vector of cuspidals. Note that each set CgQ(d) is finite.

Conjecture 5.2.8. 1. (Q, σ) is finite type if and only if CgQ is finite.

2. The cardinality of CgQ(d) is the specialization at q of a polynomial that depends
only on the underlying graph of Q with involution.

Note that Conjecture 5.2.5 is closely related to the finite type part of Conjecture
5.2.8. We give some evidence for Conjecture 5.2.8 in non-finite type cases.

Example. Any element ξ ∈ Mg
Qt is of the form x + S(x) for a unique x ∈ HQ.

Then ξ is cuspidal if and only if eix = 0 for all i ∈ Q0, where ei denotes the operator
of restriction along [Si] in HQ. A basis for the R-submodule of such x is a minimal
generating set of HQ, viewed as a CQ-module. If Q is not finite type then HQ is not
a finitely generated CQ-module. This can be seen by comparing the Hilbert series
of HQ and CQ, viewed as ZQ0-graded R-modules. The first part of Conjecture 5.2.8
therefore holds for disjoint union quivers. /
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Example. The Kronecker quiver

has a unique involution, swapping the nodes and fixing the arrows. Label a (1, 1)-
dimensional representation by (µ, λ) ∈ F2

q, where µ corresponds to the upper arrow.
There are 2q+3 isometry classes of (1, 1)-dimensional symplectic representations, with
representatives (0, 0), (0, 1), (0, δ), (1, λ), (δ, λ) where δ ∈ Fq\F2

q is fixed and λ ∈ Fq is
arbitrary. Then F−1[0] = [(0, 0)] and F1[0] is the sum of all isometry classes of (1, 1)-
dimensional representations. The (1, 1)-cuspidals can therefore be described as a basis
for the (2q + 1)-dimensional hyperplane in span{[(0, 1)], [(0, δ)], [(1, λ)], [(δ, λ)]}λ∈Fq
orthogonal to the vector

[(0, 1)] + [(0, δ)] +
∑
λ∈Fq

([(1, λ)] + [(δ, λ)]).

If we consider instead the equioriented affine Dynkin diagram Ã1

with the same involution, we may take for representatives of the (1, 1)-cuspidals
[(1, 0)] − [(δ, 0)] and [(0, 1)] − [(0, δ)] together with {[(1, λ)], [(δ, λ)]}λ6=0. There are
again 2q + 1 cuspidals. /

Example. If U is a simple representation that is not isomorphic to Si for some i ∈ Q0,
then {H(U)⊕m}m∈N is an infinite set of cuspidals. /
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Chapter 6

Self-dual Hall polynomials

In this final chapter we study the dependence of self-dual Hall numbers of finite
type quivers on the finite field Fq. We prove existence of universal polynomials spe-
cializing to self-dual Hall numbers for equioriented type A quivers without forms.
The situation is more complicated when forms are present. In this case we prove that
universal polynomials exist only once the residue of q modulo four is fixed.

6.1 Definitions and reduction to simple case

We begin by recalling the definition of Hall polynomials [56]. Fix a finite type
quiver Q with associated root system ∆. By Gabriel’s theorem, isomorphism classes
of representations of Q are labelled, independently of the ground field, by functions
∆>0 → Z≥0. Write U(α) for the representation assigned to ∆>0 α−→ Z≥0. For each
triple of such functions α, β, γ there exists a polynomial fβα,γ ∈ Z[q ] such that

fβα,γ(q) = F
U(β)
U(α),U(γ)

for all prime powers q. In this equation the Hall numbers are defined with respect
to the ground field Fq. The polynomials fβα,γ are called Hall polynomials and arise in
many areas of representation theory. For example, Hall polynomials are closely related
to the Poincaré-Birkhoff-Witt basis for Lusztig’s integral form of U−v (gQ). From
a different perspective, Hall polynomials and their generalizations to polynomials
counting rational points of quiver Grassmannians play an important role in the theory
of cluster algebras.

When Q admits an involution, the discussion after Theorem 5.1.3 defined a bi-
jection between the isometry classes of representations of Qg and certain functions
∆

g → Z≥0 ×L. Moreover, this bijection was independent of the (finite) ground field.
This allows us to make the following definition.

Definition. Fix functions α : ∆>0 → Z≥0 and χ, ω : ∆
g → Z≥0 × L determining a

representation U(α) and self-dual representations M(χ),M(ω). A polynomial gωα,χ ∈
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Q[q ] satisfying

gωα,χ(q) = G
N(ω)
U(α),N(χ)

for all odd prime powers q is called a self-dual Hall polynomial. In the above equality
the self-dual Hall number is defined for Fq-representations.

We need two slight modifications of the previous definition. In the unitary case
only finite fields Fq2 should be considered and the polynomials gωα,χ are specialized to
q as opposed to q2. If instead there exists a pair of polynomials gωα,χ, g

′ω
α,χ specializing

to self-dual Hall numbers for all prime powers q ≡ 1, 3 (mod 4), respectively, we refer
to the pair {gωα,χ, g′ωα,χ} as self-dual Hall semi-polynomials.

Example. Self-dual Hall polynomials with integer coefficients exist for Ag
1 and are

equal to the polynomials counting Fq-rational points of appropriate isotropic Grass-
mannians. The existence of these polynomials can be deduced from a Schubert cell
decomposition, or alternatively, by a direct counting argument. /

Example. The existence of Hall polynomials of a finite type quiver Q together with
equation (3.10) show that self-dual Hall polynomials exist for Qt and have integer
coefficients. /

Example. Symplectic Hall polynomials do not exist for Asp
2n, n ≥ 2. Taking the

equioriented case for simplicity, we have

G
R+

2

S2,R
+
1

=

{
1
0

}
:=

{
1, η(−1) = 1
0, η(−1) = −1

We have introduced the notation {·} as a shorthand for the rightmost expression.
However in this example self-dual Hall semi-polynomials exist

g
R+

2

S2,R
+
1

= 1, g
′R+

2

S2,R
+
1

= 0.

/

Motivated by these examples we make the following conjecture.

Conjecture 6.1.1. Let (Q, σ) be finite type.

1. If Qg has no forms, then self-dual Hall polynomials exist and have coefficients in
Z.

2. If Qg has forms, then self-dual Hall semi-polynomials exist and have coefficients
in Z[1

2
].

Having established Conjecture 6.1.1 for disjoint union quivers above, we take Q
to be of type A. We first reduce Conjecture 6.1.1 to showing that the self-dual Hall
numbers of the form GN

Si,M
are (semi-)polynomial in q. We will refer to this as the

simple case. Let R be Z or Z[1
2
] as in Conjecture 6.1.1.
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Proposition 6.1.2. Let (Q, σ) be of Dynkin type A. If simple self-dual Hall (semi-)
polynomials exist, then self-dual Hall (semi- polynomials exist.

Proof. The proof uses the reduction method of [56] and ultimately relies on Theorem
3.2.3 and the fact that the Hall algebra of a finite type quiver is generated by simples.
We will prove the proposition for self-dual Hall polynomials; the argument for semi-
polynomials is the same.

We are given that gNSi,M ∈ R[q ] exists for all M,N with the desired properties.
Assuming gN

S⊕di ,M
∈ R[q ] exists, define

gN
S
⊕(d+1)
i ,M

=
1

[d+ 1]

∑
P

gNSi,Pg
P
S⊕di ,M

∈ Q(q). (6.1)

Since [Si][S
⊕d
i ] = [d + 1][S

⊕(d+1)
i ], equation (3.2) shows that gN

S
⊕(d+1)
i ,M

specializes to

GN

S
⊕(d+1)
i ,M

for each odd prime power q. This ensures gN
S⊕di ,M

∈ Q[q ]; see for example

[54, Proposition 6.1]. From equation (6.1), we have [d + 1]gN
S
⊕(d+1)
i ,M

∈ R[q ] which

in turn implies gN
S
⊕(d+1)
i ,M

∈ R[q ]. Hence self-dual Hall polynomials exist when the

ordinary representation is an isotypic direct sum of simples.
We now proceed by induction on dimU . If U = 0 put gNU,M = δNM . Suppose

self-dual Hall polynomials exist for representations with dimension less than dimU .
Writing U interms of indecomposables as U =

⊕r
i=1 I

⊕mi
i with I1 ≺ · · · ≺ Ir, mi ≥ 1.

If r ≥ 2, put U ′ = I⊕m1
1 , U ′′ =

⊕r
i=2 I

⊕mi and define

gNU,M =
∑
P

gNU ′,Pg
P
U ′′,M ∈ R[q ].

Specializing to q, equation (3.2) shows

gNU,M(q) =
∑
V

F V
U ′,U ′′G

N
V,M .

But F V
U ′,U ′′ = δVU by definition of U ′ and U ′′ and it follows that gNU,M(q) = GN

U,M .
Finally, if U = I⊕m write dimU =

∑
i∈Q0

diεi with Si ≺ Sj if i < j. Then

[U ] = [S⊕d11 ] · · · [S⊕drr ]−
∑
V

[V ] ∈ HQ,

the sum being over classes of representations V , V 6' U , with dimension vector dimU .
Then

gNU,M =
∑

N1,...,Nr

gN
S
⊕d1
1 ,N1

· · · gNr
S⊕drr ,M

−
∑
V

gNV,M ∈ R[q ]

specializes at q to GN
U,M .
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6.2 Equioriented self-dual Hall polynomials

In this section we use Proposition 6.1.2 to prove Conjecture 6.1.1 for equioriented
type A quivers.

Theorem 6.2.1. Conjecture 6.1.1 holds for equioriented type A quivers.

Proof. Fix i ∈ Q0. An arbitrary self-dual representation N can be uniquely decom-
posed as N = N1 ⊕ N2 where N1 contains all isotypic summands of N into which
Si can be isotropically embedded. Then GN

Si,M
is non-zero only if M = M ′ ⊕ N2, in

which case GN
Si,M

= GN1

Si,M ′
. It therefore suffices to assume that N = N1.

We first establish two special cases of the theorem and then combine them to
prove the general case. Consider a self-dual representation of the form H(U) with

U =
⊕

j≤i,j 6=−i

I
⊕mj
j,i , mj ≥ 0.

This is the most general self-dual representation without symmetric summands and
containing Si as an isotropic subrepresentation. If Si ' V ⊂ H(U) is isotropic, then
necessarily V ⊂ U and H(U)//V 'S H(U/V ). This gives

G
H(U)
Si,H(X) = FU

Si,X
. (6.2)

Next suppose that N = R⊕m,ci . The structure maps of N define a bilinear form B
on Ni. This leads to a partition of the space of lines in Ni

PNi ' Pm−1 = Q+ tQ0 tQ−

with Qb = {` ∈ PNi | η(B(`, `)) = b}. If needed we will write Qcb to indicate the type
c ∈ W of B. The partition determines the reduction type N//V as follows:

R⊕m,ci //V 'S
{
R⊕m−2,c
i ⊕H(I−(i−1),i), if V ∈ Q0

R⊕m−1,c−b
i ⊕Rb

i//Si, if V ∈ Qb, b = ±1.
(6.3)

To see this, let v ∈ V and write v ∈ N−i for the unique element with image v under the
structure maps of N . If V ∈ Q0, then 〈v, v〉 = 0 and the subrepresentation generated
by v, written 〈v〉, is isotropic and isomorphic to I−i,i. Hence N 'S H(〈v〉)⊕R⊕m−2,c

i

with V ⊂ H(〈v〉) and the first equality follows. Similarly, if V ∈ Qb with b = ±1,
then 〈v〉 is isometric to Rb

i . Hence N 'S R⊕m−1,c−b
i ⊕Rb

i with V ⊂ Rb
i and the second

equality follows.
Next we show that equation (6.3) gives polynomial self-dual Hall numbers. Iden-

tify w±i ∈ W with ±1 ∈ Z. Consider first the orthogonal and symplectic cases. Using
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[41, Theorems 6.24, 6.27] we compute

|Qc0| =
{

[m− 1] , if m is odd

[m− 1] + cq
m−2

2 , if m is even

and

|Qc±| =

{
1
2
(qm−1 ± cqm−1

2 ), if m is odd
1
2
(qm−1 − cqm−2

2 ), if m is even.

Applying equation (6.3) we get

G
R⊕m,ci

Si,R
⊕m−2,c
i ⊕H(I−(i−1),i)

= |Qc0|

which is polynomial in q with integer coefficients. If Qg has no forms the sets Qc± are
empty. Otherwise, we must deal with Hall numbers counting quotients of the second
type in equation (6.3).

When m is odd, we find

G
R⊕m,ci

Si,R
⊕m−1,w+

2
i ⊕Rci−1

=

{
|Qcc|

0

}
, G

R⊕m,ci

Si,R
⊕m−1,w+

2
i ⊕Rci−1

=

{
0
|Qcc|

}
and

G
R⊕m,ci

Si,R
⊕m−1,w−2
i ⊕Rci−1

=

{
|Qcc|

0

}
, G

R⊕m,ci

Si,R
⊕m−1,w−2
i ⊕Rci−1

=

{
0
|Qcc|

}
.

In these calculations we have used equation (5.1) to determine the dependence of the
Hall numbers on η(−1). From these expressions it is obvious that once the residue
of q modulo four is fixed, the self-dual Hall numbers of the second type in equation
(6.3) are polynomial in q with coefficients in Z[1

2
].

When m is even |Qc±| is independent of ± and the self-dual Hall numbers (6.3) for
m even are polynomial in q with coefficients in Z[1

2
], with no condition on the residue

of q. For example,

G
R
⊕m,w+

2
i

Si,R
⊕m−1,c
i ⊕Rci−1

=

{
|Qw

+
2

c |
|Qw

+
2

c |

}
=

1

2
(qm−1 − q

m−2
2 ).

In the unitary case equation (6.3) simplifies to

R⊕mi //V 'S
{
R⊕m−2
i ⊕H(I−(i−1),i), if W ∈ Q0

R⊕m−1
i ⊕Ri−1, otherwise.

(6.4)

The variety Q0 is set of all isotropic lines in Fmq2 with its standard hermitian form.
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We have

|Q0| =


[m

2

]
(qm−1 + 1), if m is even[

m− 1

2

]
(qm + 1), if m is odd.

Hence the cardinalities of Q0 and its complement are polynomial in q with integer
coefficients.

We now reduce the polynomality of GN
Si,M

for arbitrary N to the previous two

cases. Let R⊕m,ci , m ≥ 1, be the symmetric summand of N and suppose that N
contains at least one summand of the form H(Ij,i) with −i < j. Write a basis vector
of V ⊂ N as v = v1 + vR with vR the component of v in R⊕m,ci . There exists
φ ∈ Hom(Ij,i, R

⊕m,c
i ) such that φ(v1) = −vR. Then

1N + φ− S(φ)ψ − 1

2
S(φ)ψφ ∈ AutS(N)

maps v to v1, showing N//V 'S N//〈v1〉. If instead all non-symmetric summands of
N have j < −i in the previous notation above, we may apply a similar argument to
reduce v to vR, in which case N//V 'S N//〈vR〉.

Summarizing, we see that an arbitrary simple self-dual Hall polynomial GN
Si,M

can be written as a power of q times one of the two types of simple self-dual Hall
polynomials described at the beginning of the proof. Since the latter have the desired
polynomality properties this completes the proof.

The proof of Theorem 6.2.1 shows that self-dual Hall polynomials with integer
coefficients exist for Asp

2 (this could also be checked directly). The quivers Ao
1 and Asp

2

are exceptional in the sense that they are the only finite type quivers with forms for
which self-dual Hall polynomials exist.

The cardinalities |Q±| are responsible for both the semi-polynomiality and non-
integrality of self-dual Hall numbers. This is related to the fact that Q± do no have
natural scheme structures. However, the cardinality of Q+ t Q− is polynomial in q
with integer coefficients, as can be verified from the proof of Theorem 6.2.1. Indeed,
this must be the case as the counting polynomial of a variety defined over a finite
field (like Q+ tQ−) must have integer coefficients [54].

Another example in which to investigate self-dual Hall polynomials is the Hall
module of nilpotent representations of the Jordan quiver. Partial results in this
direction were obtained for symplectic representations [70], where it was shown that
Lagrangian Hall numbers GN

U,0 are polynomial in q.

6.3 Generic Hall modules

We briefly discuss an application of self-dual Hall polynomials to Hall modules.
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The existence of Hall polynomials fγα,β ∈ Z[q ] for a finite type quiver Q allows a
direct definition of the generic Hall algebra [58]

HQ =
⊕

α:∆>0→Z≥0

Z[v, v−1]uα

with multiplication given by

uαuβ = v−〈β,α〉
∑
γ

fγα,β(v−2)uγ.

Here v is an indeterminate satisfying v−2 = q . Theorem 4.2.1 is upgraded to the
statement that HQ is isomorphic to U−v (gQ)Z, Lusztig’s integral form of the quantum
group [57]. In particular, HQ is a coalgebra whose structure constants specialize at
q−1 to the coalgebra structure constants of HQ.

In situations where self-dual Hall polynomials exist we can follow the above ap-
proach and define the generic Hall module by

Mg
Q =

⊕
ω:∆

g→Z≥0×L

R[v, v−1]ξω

with HQ-module structure

uα ? ξχ = v−〈χ,α〉−E(α)
∑
ω

gωα,χ(v−2)ξω.

There are two generic Hall modules MQ, M′
Q with structure constants g, g′ when

Qg has forms. We would also like to give Mg
Q a comodule structure. However, to do

this a version of Conjecture 6.1.1 is needed for the comodule structure constants. In
the following basic examples the comodule structure can be defined directly and we
obtain non-specialized a result from the previous chapter.

Example. The generic Hall moduleMQt is well-defined when Q is finite type. More-
over, a simple argument using the existence of Hall polynomials for comultiplication
in HQ and equation (3.10) shows that the comodule structure constants of MQt are
polynomial in v. Combining this with Theorem 5.2.1 we conclude MQt ' Vσ(0). /

Example. The comodule structure constants of Msp
A1

count the reciprocal of the
number of Fq-rational points of unipotent radicals of maximal parabolic subgroups of
the symplectic group and so are polynomial in v2. Hence Msp

A1
is a Bσ(sl2)-module

and Msp
A1
⊗Z[v,v−1] Q(v) ' Vσ(−2). Similar statements hold for Mo

A1
and Mu

A1
. /

Finally, we show that in an appropriate sense the generic Hall module is insensitive
to the splitting of self-dual Hall polynomials when Qg has forms. Define an automor-
phism ϕ ∈ Aut(W ) by w±1 = w∓1 . Extend this to an automorphism of Iso(Qg), again
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denoted by ϕ. Define an R-linear map Ψ : MQ →M′
Q by [M ] 7→ [ϕd

m
2
e(M)] where

m = dimM and d·e is the ceiling function.

Theorem 6.3.1. If Q is an equioriented type A Dynkin quiver then Ψ is a HQ-module
isomorphism.

Proof. We note two symmetries of self-dual Hall semi-polynomials. First, we claim
that gNU,M = g

ϕ(N)
U,ϕ(M) with an analogous identity holding for g′NU,M . When U is sim-

ple the identity is checked directly using the explicit self-dual Hall semi-polynomials
computed in the proof of Theorem 6.2.1. The rest of the proof can then be carried
out by induction on the Auslander-Reiten quiver, as in Proposition 6.1.2. Second,
self-dual Hall polynomials for different residue classes of q in Z4 are related through
the identity gNU,M = g′NU,ϕu(M). This can be proved in the same way as the first identity.

Denote the action ofHQ onMQ andM′
Q by ? and ?′. Since Ψ preserves dimension

vectors it suffices to omit twists. Using the two identities above we verify that Ψ is a
homomorphism:

Ψ([U ] ? [M ]) =
∑
N

gNU,M [ϕd
m
2
e+u(N)]

=
∑
N

g′NU,ϕu(M)[ϕ
dm

2
e+u(N)]

=
∑
N

g
′ϕd

m
2 e+u(N)

U,ϕu(M) [N ]

=
∑
N

g′N
U,ϕd

m
2 e(M)

[N ] = [U ] ?′ Ψ([M ])

The isomorphism Ψ acts rather simply on the cuspidals described before Conjec-
ture 5.2.5. ForMsp

A2n
the map Ψ acts by ±1 while forMo

A2n+1
it acts by the identity

or swaps the cuspidal ξbi with ξb
′
i . The simple form of Ψ is not surprising in view

of Conjecture 5.2.5 and the belief that this result should extend to the generic Hall
module.
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