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Abstract of the Dissertation

Compactness Theorems for Riemannian
Manifolds with Boundary and Applications

by

Kenneth Steven Knox

Doctor of Philosophy

in

Mathematics

Stony Brook University

2013

In this thesis we study issues related to the convergence theory of Riemannian
manifolds with boundary. First, we establish a compactness theorem for the
class of compact, uniformly mean-convex Riemannian manifolds with bound-
ary that satisfy bounds on diameter, area of the boundary, and curvature
quantities.

Next, we establish a compactness theorem for manifolds with boundary
that have controlled volume growth and integral bounds on curvature quan-
tities. In dimension three, we replace the volume growth assumption with a
simpler volume condition at the boundary, provided that an integral norm of
the ambient curvature is small.

We use the convergence theory to prove ‘geometric stability theorems’ for
Riemannian 3-manifolds whose ambient curvatures are small. The first theo-
rem applies to 3-manifolds that have Ricci curvature close to 0 (in the pointwise
sense) and whose boundaries are Gromov-Hausdorff close to a fixed metric on
S2 with positive curvature. Such manifolds are close (in a Hölder topology)
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to the region enclosed by a Weyl embedding of the fixed boundary metric
into Euclidean space. This can be thought of as a generalization of a rigidity
theorem of Cohn-Vossen–Pogorelov. We then establish stability theorems cor-
responding to the rigidity theorems of Hopf and Almgren.

The stability theorems have corresponding statements when the Ricci cur-
vature is small in an appropriate integral norm. In particular, we establish
a theorem that applies to compact 3-manifolds that have boundary close to
the round metric on the sphere and Ricci curvature close to 0 in the L2 sense.
Such manifolds are close (in an appropriate Sobolev space topology) to the
unit ball in Euclidean space.
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Chapter 1

Introduction

In what is now commonly referred to as ‘Cheeger-Gromov compactness,’ (cf.
[GPKS06], [Che70]) one studies the class MCG of smooth, compact, Rieman-
nian n-manifolds (M, g) satisfying the bounds | sec(M)| ≤ K, diam(M) ≤ D,
and vol(M) ≥ v0. Here sec(M), diam(M) and vol(M) respectively refer to the
sectional curvature, diameter and volume. The condition | sec(M)| ≤ K is un-
derstood to mean that for each p ∈M and each 2-plane π ⊂ TpM , there holds
| secp(π)| ≤ K. Equivalently, we may write that | sec(g)| ≤ K. Cheeger-
Gromov compactness then asserts that to any sequence (Mi, gi) ∈ MCG,
there is a subsequence (still denoted (Mi, gi)) and a C1,α Riemannian man-
ifold (M∞, g∞) with a C2,α atlas of charts satisfying the following properties.
There exist C2,α diffeomorphisms fi : M∞ →Mi such that f ∗i gi → g∞ in C1,α

with respect to the fixed C2,α atlas on M∞. To state this concisely, we say
that MCG is precompact in the C1,α topology. In fact, one can conclude the
stronger statement that MCG is precompact in the weak L2,p topology, any
p < ∞. Here Ck,α refers to the usual Hölder space of functions whose kth
derivative is Hölder continuous, and Lk,p refers to the Sobolev space of func-
tions with k weak derivatives in Lp.

Let us consider an equivalent formulation of the Cheeger-Gromov compact-
ness theorem. First, we note that the hypotheses | sec(g)| ≤ K, vol(g) ≥ v0

and diam(g) ≤ D are diffeomorphism invariant. It is therefore natural to alter-
natively defineMCG to be the collection of isometry classes (M, [g]) satisfying
the above bounds. Next, we note that for any sequence (Mi, [gi]) ∈ MCG, all
but finitely many terms are diffeomorphic to a limit and thus to each other,
so thatMCG contains only finitely many diffeomorphism types. We may then
restate the Cheeger-Gromov compactness theorem as follows. Associated to
the class MCG, there is a finite list of smooth manifolds (N1, . . . , Nl) with
the following properties. For any (M, [g]) ∈ MCG, there is a diffeomorphism
f : Nk → M , 1 ≤ k ≤ l, and an atlas of charts covering Nk under which f ∗g
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is uniformly controlled in C1,α in terms of the constants that determine the
class, i.e. n,D,K, v0.

Cheeger-Gromov theory is therefore a ‘structure theorem’ for the class
MCG. This provides a natural starting point from which to study Rieman-
nian manifolds with weaker geometric hypothesis, in which case one expects
the formation of singularities. Indeed, the structure theory of Riemannian
manifolds under various geometric bounds remains a vast and active area of
research cf. [CC97], [CC00a], [CC00b], [Che02], [And97], [And01], [NT11],
[Col96b], [Fuk91], [SY05], [Per95], [Fuk88], [Fuk87], [Fuk89], [Col96a], [CG86],
[CG90], and the surveys [Che10], [Sor12], [And93], [HH97], [Pet97].

It is equally fundamental to study the structure of Riemannian manifolds
with boundary under geometric bounds. Comparatively little has been done
in this direction, but see for instance [Kod90], [AKK+04], [Sch01], [And12],
[Won10], [dMA11], [Whi53]. Let us discuss two of these studies in more detail.

Kodani ([Kod90]) has proven what is perhaps the most direct analogue of
Cheeger-Gromov theory for manifolds with boundary. To describe the result,
first consider the class of Riemannian n-manifolds with boundary satisfying
the conditions

vol(M) ≥ V , diam(M) ≤ D,
| sec(M)| ≤ K, λ− ≤ II ≤ λ+.

Here II is the second fundamental form of ∂M in M . If λ− is allowed to be
arbitrary, then this class is not even precompact in the C0 topology. How-
ever, Kodani shows that there exists λ∗ < 0, depending upon n, λ+, K,D, V,
and diam(∂M), so that if λ− > λ∗, then any sequence in the class subcon-
verges in the Lipschitz topology to a limiting C0 Riemannian metric. The
precise control required of λ− is a definite restriction on the applicability of
the theorem. Moreover, the regularity of the limiting metric is not optimal. In
particular, this convergence result does not imply finiteness of diffeomorphism
types. However, since the second fundamental form is a first-order operator,
one hopes to gain control of the first derivatives of g and therefore obtain, for
instance, an L1,p convergence theory. In fact, the techniques developed in this
thesis do show that Kodani’s class of manifolds is precompact in the weak L1,p

topology and therefore admits only finitely many diffeomorphism types (cf.
Chapter 3.1.2).

Extending techniques introduced by Anderson ([And90]), it is shown in
[AKK+04] that the class of Riemannian n-manifolds with boundary satisfying

| ric(M)| ≤ K, | ric(∂M)| ≤ K

inj(M) ≥ i0, inj(∂M) ≥ i0, ib(M) ≥ i0

diam(M) ≤ D, |H|Lip ≤ H0
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is precompact in the weak C2
∗ topology. C2

∗ is the Zygmund space interme-
diate between C1,α and C2, ib is the boundary injectivity radius defined in
Chapter 2 and | · |Lip is the Lipschitz norm. Weak C2

∗ precompactness means
that any sequence subconverges in the C1,α topology (any 0 < α < 1) to a C2

∗
limit. The C2

∗ limit is necessary for the applications in [AKK+04], therefore
Lipschitz control of H is natural in this context. We note that if one strength-
ens the control of H in our Theorem 1.0.1 from pointwise to Lipschitz, then
the techniques in [AKK+04] allow us to obtain weak C2

∗ convergence as well.
Moreover, if one weakens in the above theorem the control of H from Lipschitz
to pointwise, then the techniques developed in Theorem 1.0.1 establish weak
L1,p convergence (see also Remark 1.0.1).

Because of the relative dearth of results in the case of manifolds with bound-
ary, it is still worthwhile to better understand the geometric convergence the-
ory of manifolds with boundary, before undertaking the more general study of
the types of singularities that can occur under geometric bounds. The present
work is concerned with this task.

First, we show that the “almost convexity” condition of Kodani can be
replaced with uniform mean-convexity. Let us assume throughout that all
manifolds being considered are connected.

Definition 1.0.1. WriteM for the class of compact Riemannian n-manifolds
with connected boundary satisfying

| sec(M)| ≤ K, | sec(∂M)| ≤ K
0 < 1/H0 < H < H0

diam(M) ≤ D, area(∂M) ≥ A0.

Theorem 1.0.1. M is precompact in the Cα and weak L1,p topologies, for
any 0 < α < 1 and any p < ∞. Consequently M has only finitely many
diffeomorphism types.

Remark 1.0.1. Roughly speaking, the mean curvature controls the extrinsic or
‘nontangential’ part of the metric, while the (pointwise conformal class of the)
intrinsic boundary metric controls the ‘tangential part’ (cf. [And08]). This
leads one to expect, and it turns out to be true, that stronger L2,p control
of the tangential part of the metric may be obtained under the hypothesis in
Theorem 1.0.1. Alternatively, one could control H in a stronger norm, say
Bε,p(∂M), 0 ≤ ε ≤ 1 − 1/p (resp. Cα(∂M), 0 < α < 1) and expect to obtain
Hε+1/p,p (resp. C1+α) control over the metric. Here Bs,p is a Besov space and
Hs,p is a Bessel potential space (cf. Section 2.3). We will not pursue these
details here. However, let us note that with only minor modification, the
techniques used in the proof of Theorem 1.0.1 already give C1,α and weak L2,p
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compactness results under the additional assumption that H ∈ B1−1/p,p(∂M).
The next result is a compactness theorem for manifolds with boundary

under Lp bounds on the sectional curvature, for p > n/2. Here we also require
uniform control over the volume growth at each point p in the manifold.

Definition 1.0.2. Write rCν (p) := rν(p) for the volume radius at p, i.e. the
largest r so that for any s < r there holds

vol(Bp(s))

sn
≥ C, (1.1)

where Bp(s) is the ball of radius s centered at p. If ∂M 6= ∅, write that rν ≥ C
if rν(p) ≥ C dist(p, ∂M). If ∂M = ∅, write that rν ≥ C if rν(p) ≥ C for each
p ∈M . The quantity rν is called the (interior) volume radius of M .

In this thesis (and in particular in Definition 1.0.3), we will often separately
consider inequalities of the form rν(∂M) ≥ C, denoting an inequality on the
volume radius of the intrinsic boundary manifold, and rν(M) ≥ C, denoting
an inequality on the interior volume radius of the ambient manifold M\∂M .

Definition 1.0.3. WriteM1 for the class of smooth Riemannian n-manifolds
satisfying the following conditions. On the intrinsic Riemannian manifold ∂M
require that

diam(∂M) ≤ D, || sec(∂M)||Lp(∂M) ≤ K, rν(∂M) ≥ r0, (1.2)

where p > n/2. On the ambient manifold M\∂M , require that

diam(M) ≤ D, || sec(M)||Lp(M) ≤ K, rν(M) ≥ r0. (1.3)

Finally, require the following ‘extrinsic’ boundary conditions. Assume that
rν(p) ≥ r0 for each p ∈ ∂M , and that the mean curvature H satisfies

||H||B1−1/p,p(∂M) ≤ H0. (1.4)

Theorem 1.0.2. The class M1 is precompact in the weak L2,p topology.

Finally, we observe that in dimension n = 3 we can get a result that is
stronger than Theorem 1.0.2, provided that the Lp norm of the curvature
is small. In particular, we will make use of the following theorem to study
Riemannian 3-manifolds whose sectional curvature is small in the L2 sense.

Definition 1.0.4. For any p ∈ ∂M , write that p satisfies a (v, r) volume
condition if there exists an n-dimensional cone C ⊂ TpM with central axis of
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length r such that expp is a diffeomorphism on C and there holds

vol(expp(C))
rn

≥ v. (1.5)

Note that the boundary injectivity radius can be arbitrarily small even if
(M, g) satisfies a uniform (v0, r0) volume condition for each p ∈ ∂M .

Definition 1.0.5. WriteM2 for the class of smooth Riemannian 3-manifolds
satisfying the following conditions. On the boundary ∂M require that

diam(∂M) ≤ D, || sec(∂M)||Lp(∂M) ≤ K, rν ≥ r0, (1.6)

where p > 3/2. On the ambient manifold M\∂M , require that

diam(M) ≤ D, || sec(M)||Lp(M) ≤ ε, (1.7)

where ε depends on p and D. Finally, require the following ‘extrinsic’ boundary
conditions. There exists v0 > 0 and r0 > 0 so that each p ∈ ∂M satisfies a
(v0, r0) volume condition, and the mean curvature H satisfies

||H||B1−1/p,p(∂M) ≤ H0. (1.8)

Theorem 1.0.3. The classM2 is precompact in the weak L2,p and Cα topolo-
gies, 0 < α < 2−n/p. In particular, M2 admits only finitely many diffeomor-
phism types.

For the rest of the introduction let us assume that n = 3. The first applica-
tion of our convergence theory is an extension of the rigidity theory of convex
isometric immersions to a ‘stability theory’ for Riemannian 3-manifolds with
boundary. To describe the result, let us first recall Cohn-Vossen’s rigidity the-
orem ([CV27], [HH06]). Write (Σ, hΣ) for a smooth, closed, oriented surface
with Gauss curvature KΣ > 0. Cohn-Vossen’s theorem states that all analytic
immersions

i : Σ→ R3

of a closed surface Σ with Gauss curvature K > 0 have the same image,
modulo a rigid motion of R3. Note that the solution to the Weyl problem (cf.
[HH06]) guarantees the existence of such an immersion. We further remark
that the condition K > 0 implies that i(Σ) is convex, and that therefore i is
an isometric embedding. Pogorelov ([Pog73]) removed the restriction on the
regularity, thus proving the result in the context of convex geometry.

5



Cohn-Vossen’s rigidity result can be restated, via the developing map, as a
theorem about flat 3-manifolds with boundary. Thus if (M1, g1) and (M2, g2)
are compact, simply connected, flat 3-manifolds with isometric boundaries
that have positive Gauss curvature, then M1 is diffeomorphic to M2 and the
metrics g1, g2 are in the same isometry class. Such manifolds are therefore
‘geometrically rigid.’

Now fix an (Σ, hΣ), choose an embedding i and write N for the convex
solid region bounded by i(Σ). Then N ⊂ R3 is a smooth, flat manifold with
boundary ∂N = Σ, and Cohn-Vossen’s theorem ensures that the isometry
class of N does not depend on the choice of immersion. The following theorem
is a natural generalization of Cohn-Vossen–Pogorelov’s rigidity theorem.

Theorem 1.0.4. Suppose (M, g) is a compact, oriented, simply connected Rie-
mannian 3-manifold with connected boundary. Write h for the induced metric
on ∂M and write K for the Gauss curvature of h. Suppose that H > 0 and
K > 0. To every ε > 0 there exists a number δ = δ(ε, supH, supK, inf K,α)
so that if

(h, hΣ)GH < δ, | ric(g)| < δ

then there exists a diffeomorphism f : N →M , and

||f ∗g − gEuc||Cα ≤ ε,

where gEuc is the standard Euclidean metric on N and (·, ·)GH is the Gromov-
Hausdorff distance.

Using the same techniques we can obtain a somewhat different result in
the special case that N is a ball. Write B for the unit ball in R3.

Corollary 1.0.1. Suppose (M, g) is a compact oriented Riemannian 3-manifold
with connected boundary and that H > 0. To every ε > 0 there exists
δ = δ(ε, supH, inf H,α) so that if

|K − 1| < δ, | ric(g)| < δ

then there exists a diffeomorphism f : B →M , and

||f ∗g − gEuc||Cα ≤ ε.

Let us provide another application of Theorem 1.0.1, motivated by Hopf’s
rigidity theorem ([Hop51]). Hopf’s theorem states that the image of a C3
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isometric immersion

i : S2 → R3

of a metric on S2 with constant mean curvature is a (Euclidean) sphere. Es-
sentially the same proof shows that the image of a C3 isometric immersion

i : S2 → H3

of a metric on S2 into hyperbolic space is the boundary of a metric ball,
provided H > 2. Here H is the trace of the second fundamental form with
respect to the outward normal, so that in our notation every distance sphere in
H3 has mean curvature H > 2. Almgren ([Alm66]) has shown (making use of
Hopf’s proof) that any analytic minimal immersion of S2 into S3 is congruent
to the equator. To each of these rigidity theorems we associate a geometric
stability theorem.

Theorem 1.0.5. Let (M, g) be a compact, oriented Riemannian 3-manifold
with connected boundary and suppose that χ(∂M) = 2. To every ε > 0 there
exists δ = δ(sup |II|, diam(M), α) such that

i) if

| ric(M)| ≤ δ, |H − 2| ≤ δ

then there exists a diffeomorphism f : B →M and

||f ∗g − gEuc||Cα ≤ ε.

ii) if

| ric(g) + 2g| ≤ δ, |H − 2
√

2| ≤ δ

then there exists a diffeomorphism f : BH →M and

||f ∗g − g−1||Cα ≤ ε,

where BH is a metric ball in hyperbolic space with Gauss curvature of the
boundary equal to 1, and g−1 is the standard metric of curvature −1.

iii) if

| ric(g)− 2g| ≤ δ, |H| ≤ δ

7



then there exists a diffeomorphism f : S3
+ →M and

||f ∗g − g+1||Cα ≤ ε,

where S3
+ is the upper hemisphere in S3 ⊂ R4 and g+1 is the standard metric

of curvature +1.

The preceding theorems are applications of Theorem 1.0.1. However, it is
clear that we could derive similar stability theorems, say for 3-manifolds with
sectional curvature close to 0 in the L2 sense, by making use of Theorem 1.0.3.
Instead of doing this in complete generality, let us focus our attention on a
similar question that was raised by Sergiu Klainerman in connection with his
study of the boudned L2 conjecture of General Relativity (cf. [KRS]). In an
unpublished correspondence with the author’s advisor, Klainerman posed the
following question.

Question 1.0.1. Suppose (M, g) is a Riemannian 3-manifold with boundary
(∂M, h), with metric h close to the round metric g+1 on S2. Suppose further
that

|| ric(g)||L2(M) ≤ ε, (1.9)

where ε is a sufficiently small constant. Is then (M, g) diffeomorphic to the 3-
ball B, and g close to the flat metric on B in the L2,2 metric in local harmonic
coordinates?

Let us first note that there are trivial counterexamples to Question 1.0.1.
For instance, let M̃ be a compact, flat, Riemannian 3-manifold, sufficiently
scaled so that the unit ball B ⊂ M̃ . Then put M = M̃\B. M is flat and has
∂M = S2, but M is obviously not diffeomorphic to B. This issue cannot be
fixed by assuming that M is simply connected, as the following example shows.
Consider a sphere S3 ⊂ R4 of sufficiently large radius, i.e. put M̃ = (S3, r2g+1),
r >> 1, and set Mr = M̃\B. If r is sufficiently large, then || ric(r2g+1)||L2

will be sufficiently small, and the induced metric on ∂Mr will be arbitrarily
close to (S2, g+1). However, this example can be ruled out by assuming that
the diameter of M is uniformly bounded, i.e. assuming that ε may depend
upon diam(M). Moreover, even though the manifolds Mr do not converge as
r →∞, it is clear that Mr → R3\B in the smooth pointed topology, as long as
the basepoints are chosen to be in the boundary ∂Mr. In fact, if ε is allowed to
have a few more reasonable dependencies, the proof of the following theorems
show that, assuming π1(M) = 0, either M ∼ B or M ∼ R3\B.

8



Theorem 1.0.6. Suppose that (M, g) ∈M2. To any ε > 0 there exists δ > 0
so that if

||h− g+1||L2,2(∂M) ≤ δ, || sec(g)||L2(M) ≤ δ, ||H − 2||B1/2,2(∂M) ≤ δ, (1.10)

then there exists a diffeomorphism f : B →M satisfying

||f ∗g − gEuc||L2,2(B) ≤ ε. (1.11)

In case (M, g) is geodesically convex, we can do even better.

Theorem 1.0.7. Suppose that (M, g) is a compact, geodesically convex man-
ifold with boundary, and fix any s > 1/2. To any ε > 0, there exists δ > 0,
depending only upon ε, vol(M), diam(M), and ||H||Bs,2(∂M), with the following
property. If

||h− g+1||L2,2(∂M) ≤ δ and || sec(g)||L2(M) ≤ δ, (1.12)

then there exists a diffeomorphism f : B →M satisfying

||f ∗g − gEuc||L2,2(B) ≤ ε. (1.13)

If we take s = 1/2 in the above hypothesis, then (M, g) is close to (B, gEuc) in
the weak L2,2 topology.

9



Chapter 2

Background Material

2.1 Results from Comparison Geometry

Here we state some preliminary results needed for the proof of Theorem 1.0.1.
Let us therefore begin with a few observations about the elements ofM. Write
t(x) = dist(x, ∂M) and note that t is smooth off of the cut locus of ∂M . Write

ν = −grad t

so that ν is the outward normal of ∂M . Write g(S(X), Y ) for the second fun-
damental form, thus S(X) = ∇Xν. Here ∇ is the usual covariant derivative.
The mean curvature H of ∂M is the trace H := trS. If ei is a basis for Tp∂M
such that S(ei) = λiei, then the Gauss equation reads

λiλj = sec∂M(ei, ej)− secM(ei, ej).

This implies that each pair λiλj is uniformly bounded. Together with the
fact that H =

∑
λi is uniformly controlled we see that each λi is uniformly

controlled as well (in fact |λi| ≤ max{H0 + 2(n− 2)K, 1}).
A consequence of the uniform bound on S is that the elements ofM have a

uniform upper bound, depending only upon the constants that determine the
class M, on the intrinsic diameter of the boundary (see [Won08, Thm 1.1]).
Thus we will assume without loss of generality that if (M, g) ∈M, then

diam(∂M) ≤ D. (2.1)

Write foc(∂M) for the focal locus distance of ∂M . Let us recall a basic
result from comparison geometry.

10



Lemma 2.1.1. Suppose λ and K are any real numbers. Let t0 be the smallest
positive solution to

cot
√
Kt =

λ√
K

if K > 0

t =
1

λ
if K = 0

coth
√
−Kt =

λ√
−K

if K < 0

(a) If S ≤ λ and sec(M) ≤ K, then foc(∂M) ≥ t0.
(b) If S ≥ λ and sec(M) ≥ K, then foc(∂M) ≤ t0.

Write cut(∂M) for the cut locus distance of ∂M . Write ν(∂M) for the
normal bundle of ∂M and define the normal exponential map

expν : ν(∂M)→M.

Define the boundary injectivity radius ib to be the largest t such that expν is
a diffeomorphism on ∂M × [0, t). It is a standard fact that

ib ≥ min{foc(∂M), cut(∂M)}.

Let us show, using the proof of [And12, Lemma 2.4], that any (M, g) ∈ M
has ib uniformly bounded below.

Lemma 2.1.2. Suppose (M, g) ∈M. Then

ib(M) ≥ min{t0,
2

(n− 1)H0K
} (2.2)

for t0 as defined in Lemma 2.1.1. If in addition ric(g) ≥ 0, then ib(M) ≥ t0.

Proof. Since foc(∂M) ≥ t0, it is enough to show that if cut(∂M) < t0, then

cut(∂M) ≥ 2

(n− 1)H0K
. (2.3)

Therefore suppose that cut(∂M) < t0. Choose an arclength parametrized
geodesic γ realizing the cut locus distance. Thus

γ : [0, l]→M

is a minimizing geodesic from p ∈ ∂M to q ∈ ∂M that is orthogonal to ∂M
at the endpoints and such that Image(γ) ∩ ∂M = {p, q}. Consider the index
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form

I(V,W ) =

∫ l

0

g(∇γ′V,∇γ′W )− g(R(γ′, V )W, γ′) dt− g(S(V ),W )|l0, (2.4)

where V and W are vector fields along γ and orthogonal to γ′. Since there are
no focal points along γ it follows that

I(V, V ) ≥ 0

for any such V . Therefore choose an orthonormal basis ei for TpM and define
Vi to be the parallel translation of ei along γ. Then

0 ≤
∑
i

I(Vi, Vi) = −
∫ l

0

ric(γ′, γ′) dt− (H(p) +H(q))

≤ (n− 1)lK − 2/H0,

establishing the first assertion. If in addition ric(g) ≥ 0, then

0 ≤ −2/H0

which contradicts the fact that cut(∂M) < t0.

2.2 Convergence results

As mentioned in the introduction, a sequence (Mi, gi) of Riemannian manifolds
(with or without boundary) converges to (M, g) in the Lk,p topology, k ≥ 1,
if g ∈ Lk,p and there exist diffeomorphisms Fi : M → Mi so that F ∗i gi → g in
the Lk,p topology on M . Lk,p(M) is the usual Sobolev space of functions (or
tensors) with k weak derivatives in Lp. To be somewhat more precise about the
definition of convergence, we require that (M, g) has an Lk+1,p atlas of charts in
which F ∗i gi → g in Lk,ploc in each chart. Similar definitions hold for convergence
in other function spaces. For an introduction to the convergence theory of
Riemannian manifolds see for instance [GPKS06], [Pet06], [Che10],[HH97],
[Sor12].

It is useful to discuss convergence theory in terms that only refer to the
local geometry of M . For this purpose we use terminology first introduced
by Anderson in [And90]. Given p ∈ M\∂M and a number Q > 1, define the
Lk,p harmonic radius at p, denoted rQh (p) := rh(p), to be the largest number
r < dist(p, ∂M) satisfying the following conditions. There exists a harmonic
coordinate system {φi} (i.e. ∆gφi = 0) centered at p and containing the
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geodesic r-ball Br(p) on which there holds, for each multi-index σ with |σ| =
l ≤ k,

Q−1δij ≤ gij ≤ Qδij, (2.1)

rl−n/p||∂σgij||Lp ≤ Q (2.2)

where δij is the standard Euclidean metric. The conditions (2.1) − (2.2) are
invariant under simultaneous rescalings of the metric and the coordinates, so
that rh scales like a distance function, i.e. rh(λ

2g) = λrh(g). Throughout the
discussion we will assume that Q is fixed, say Q = 3/2, so in particular there
is no loss of clarity when supressing the dependence of rh(p) on Q. If q ∈ ∂M ,
define rQh (q) := rh(q) to be the largest r such that r < r∂Mh (q) and such
that there exists a harmonic coordinate system centered at q, containing the
geodesic r-balls Bq(r) and B∂M

q (r), and satisfying equations (2.1)-(2.2). Here
r∂Mh (q) refers to the harmonic radius of q in the manifold ∂M , and B∂M

q (r)
is defined to be the ball of radius r in ∂M . A harmonic coordinate system
at q ∈ ∂M is defined to be a system of coordinates {φi} so that φ1, . . . , φn−1

form a harmonic coordinate system at q in ∂M , φn = 0 on ∂M and each φi is
harmonic on M . We then define the harmonic radius of M , rh(M), to be the
largest r so that for each p in M , either rh(p) > r or there exists q ∈ ∂M with
rh(q) > 2r and p ∈ Br(q).

It is clear how to extend the definition of Lk,p harmonic radius to other
function spaces. We could also consider for instance the Ck,α harmonic radius,
k ≥ 0, 0 < α < 1. By the Sobolev embedding theorem, if p > n then the
Lk,p harmonic radius controls the Ck−1,α harmonic radius, α ≤ n/p. The har-
monic radius of a manifold with boundary was previously defined and studied
in [AKK+04], where it is shown that (for instance) if (M, g) is a Riemannian
manifold with g ∈ L1,p, then M admits an L2,p atlas of harmonic or boundary
harmonic coordinate charts in which g ∈ L1,p (see also [DK81]).

In order to focus our attention on the local geometry of M near the bound-
ary, we will also define the boundary harmonic radius rbh := infq∈∂M{rh(q)}.
The boundary harmonic radius retains all of the important properties of the
harmonic radius. For instance, it is continuous with respect to the Lk,p topol-
ogy, k ≥ 1.

Lemma 2.2.1. Suppose that (Mi, gi) → (M, g∞) in the Lk,p topology, k ≥ 1.
Then

lim
i
rbh(gi) = rbh(g∞).

The corresponding result for the L1,p harmonic radius of a complete mani-
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fold without boundary is done in [AC92], and the continuity of the C2
∗ bound-

ary harmonic radius (under C2
∗ convergence) is done in [AKK+04]. The proof

for the Lk,p boundary harmonic radius is nearly identical to these cases, thus
we will not describe it here.

The same method used in the proof of Lemma 2.2.1 also implies that for a
fixed manifold (M, g) the function rbh : ∂M → R+ is continuous.

The link between the harmonic radius and convergence is established by
the following theorem (See for instance [Kas89] and [Pet06, Theorem 72]. The
proofs there are about Ck,α convergence of manifolds without boundary. How-
ever, the Banach-Alaoglu theorem allows the result to be extended to weak
Lk,p convergence, and we may extend the result to manifolds with boundary
by simply including boundary harmonic coordinate charts in the analysis.)

Theorem 2.2.1. Suppose (Mi, gi) is a sequence of Riemannian manifolds with
boundary such that (for some k ≥ 1) the Lk,p harmonic radius rh(gi) ≥ r0 and
diam(Mi) ≤ D. Then there exists a smooth manifold with boundary (M, g),
g ∈ Lk,p(M), so that (Mi, gi) subconverges in the weak Lk,p topology to (M, g).
In particular, the harmonic coordinate charts on Mi subconverge weakly in
Lk+1,p to harmonic coordinates on M .

In the statement of Theorem 2.2.1 the diameter bound is used to obtain
a uniform upper bound on the number of coordinate charts needed to cover
Mi. We could also remove the diameter bound and consider pointed conver-
gence. Given a sequence of points pi ∈ Mi we say that (Mi, gi, pi) converges
to (M, g, p) in the Lk,p topology if there exist real numbers rk < sk, rk →∞,
and compact sets Ui ⊂Mi, Vi ⊂M so that

Bri(pi) ⊂ Ui ⊂ Bsi(pi), Bri(p) ⊂ Vi ⊂ Bsi(p)

and diffeomorphisms

Fi : Vi → Ui, Fi : Vi ∩ ∂M → Ui ∩ ∂Mi

so that F ∗i gi → g in Lk,ploc and F−1
i (pi) → p. A similar definition of pointed

convergence could also be used to formulate a local version of Theorem 2.2.1.
We will make use of the following result.

Theorem 2.2.2. Let (M, g) be a compact Riemannian n-manifold with bound-
ary with | sec(M)| ≤ K. Suppose that for each x ∈ M\∂M and each r <
dist(x, ∂M) there holds

vol(Br(x)) ≥ v0r
n.

Then for any p < ∞ there exists a constant r0 = r0(n,K, v0) so that the L2,p
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harmonic radius rh(q) satisfies

rh(x) ≥ r0 dist(x, ∂M).

In the case where ∂M = ∅, volume comparison implies that it is sufficient
to assume that vol(M) ≥ v0 and diam(M) ≤ D. In this case Theorem 2.2.2
and Theorem 2.2.1 together imply the usual statement of Cheeger-Gromov
compactness.

Proof of Theorem 2.2.2. We will outline the proof of this well-known result.
Arguing by contradiction, suppose there were a sequence (Mi, g̃i, xi) satisfying
the hypothesis of Theorem 2.2.2 but with

r̃i(xi)

dist(xi, ∂Mi)
→ 0, (2.3)

where r̃i(xi) := r̃i := rh(xi). Consider then the rescaled sequence (Mi,
1
r̃2i
g̃i) =

(Mi, gi). The scaling behavior of the harmonic radius implies that (calculated
with respect to gi) rh(xi) = 1. Since equation (2.3) is scale-invariant it follows
that

distgi(xi, ∂Mi)→∞.

Thus Theorem 2.2.1 implies that (Mi, gi, xi) converges in the pointed weak
L2,p topology to a complete Riemannian manifold (M∞, g∞, x).

As | sec(gi)| ≤ r̃2
iK we see that | sec(gi)| → 0. In particular, | ric(gi)| → 0

in C0. This allows one to improve the convergence from weak L2,p to (strong)
L2,p (see [And90]). Then Lemma 2.2.1 implies that rh(g∞) = 1. However, the
limit (M∞, g∞) is a complete, flat, C∞ Riemannian manifold and is therefore
isometric to a quotient of Rn. The volume growth condition implies that (for
all r)

vol(B(x, r)) ≥ v0r
n.

This implies that (M∞, g∞) = (Rn, gEuc), in contradiction to the fact that
rh(g∞) = 1.

2.3 Function Spaces

Let us give precise definitions for the various function spaces to be used, and
recall some of the basic theorems relating these spaces (cf. [Ste70], [Tri95]).

Write S := S(Rn) for the standard Schwartz space of rapidly decreasing,
complex-valued functions on Rn, and S ′ for the space of tempered distribu-
tions, i.e. the space of continuous linear functionals on S. Define as usual the
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Fourier transform F on S:

(Ff)(ξ) :=

∫
Rn
f(x)eix·ξdx. (2.1)

The Fourier transform naturally extends to a continuous, injective map S ′ →
S ′ defined by

(Ff)(u) := f(Fu), (2.2)

where f ∈ S ′, u ∈ S.
Write C∞0 (Rn) for the collection of smooth, compactly supported, complex-

valued functions on Rn. Denote by Lk,p(Rn), k ∈ Z≥0, p ∈ R, 1 < p < ∞, by
the completion of C∞0 (Rn) with respect to the norm

||f ||p
Lk,p(Rn)

:=
∑
|α|≤k

∫
Rn
|Dαf |pdx. (2.3)

Write p′ for the conjugate exponent of p, thus 1/p+ 1/p′ = 1. Define
(Lk,p(Rn))∗ := L−k,p

′
(Rn) to be the dual of Lk,p(Rn) with respect to the L2

inner product, i.e. continuous linear functionals over Lk,p(Rn) satisfying

||f ||L−k,p′ (Rn) := sup{
∫
Rn |fg|

||g||Lk,p(Rn)

: g ∈ Lk,p(Rn) , g 6= 0}. (2.4)

Here we have used the identification f ↔ (h 7→
∫
Rn fhdx). Alternatively and

equivalently, we may define L−k,p
′
(Rn) to be the completion of C∞0 under the

norm (2.4). The spaces Lk,p(Rn) are known as Sobolev spaces.
Let us define the Bessel potential spaces Hs,p(Rn), s ∈ R, 1 < p < ∞.

Write Hs,p(Rn) for the set of those f ∈ S ′ so that

||f ||Hs,p(Rn) := ||F−1(1 + |ξ|2)s/2Ff ||Lp(Rn) <∞. (2.5)

The norm (2.5) makes Hs,p(Rn) into a Banach space. Equivalently, we may
define the space Hs,p(Rn) as follows. Define the operator

(1−∆)−s/2 := F−1(1 + |ξ|2)−s/2F . (2.6)

Then Hs,p(Rn) is the image of Lp(Rn) under the mapping (1−∆)−s/2, together
with the norm (2.5). We point out that if s = k ∈ Z, then it is well-known
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(and not difficult to prove) that

Hk,p(Rn) = Lk,p(Rn). (2.7)

Thus, the Bessel potential spaces are an equivalent description of the Sobolev
spaces, as well as an extension of the Sobolev spaces to arbitrary real-valued
differential dimension. Furthermore, we remark that C∞0 (Rn) is dense in
Hs,p(Rn), and that H−s,p

′
(Rn) is dual to Hs,p(Rn) with respect to the L2

inner product.
Let Ω denote either the closed upper half plane Rn

+ or a bounded domain
in Rn with smooth boundary. For s ≥ 0, 1 < p < ∞, we define Hs,p(Ω) by
restricting elements of Hs,p(Rn) to Ω. Thus, define

||f ||Hs,p(Ω) := inf{||f̃ ||Hs,p(Rn) : f̃ = f on Ω}. (2.8)

We then define H−s,p(Ω) by dualizing with respect to the L2 inner product,
thus

||f ||H−s,p(Ω) := sup
g∈Hs,p′ (Ω)

|
∫

Ω
fgdx|

||g||Hs,p′ (Ω)

. (2.9)

Setting s = k ∈ Z, this provides a description of the Sobolev spaces Lk,p(Ω).
Write Σ = ∂Ω, and define the Besov space Bs,p(Σ) (s > 0, p ∈ (1,∞)) to

be the collection of restrictions of elements of Hs+1/p, p(Ω) to Σ, thus

||f ||Bs,p(Σ) := inf{||f̃ ||Hs+1/p, p(Rn) : f̃ = f on Ω}. (2.10)

Define B−s,p(Σ) by duality, thus

||f ||B−s,p(Σ) := sup
g∈Bs,p′ (Σ)

|
∫

Σ
fgdx|

||g||Bs,p′ (Σ)

. (2.11)

In this thesis we will not formally define or make use of the space B0,p(Σ),
but we note in passing that B0,p(Σ) may be defined, for instance, by using the
method of complex interpolation. It then turns out that the spaces Bs,p(Σ)
form complex interpolation scales.

Let us point out the following important characterization of the norm
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Bs,p(Rn), valid for those s > 0, s 6∈ N (cf. [Tri95]).

||f ||Bs,p(Rn) ∼ ||f ||Lp(Rn)

+
∑
|σ|≤[s]

(∫
Rn×Rn

|Dσf(x)−Dσf(y)|p

|x− y|n+{s}p dxdy
)1/p

. (2.12)

Here [·] is the floor function and {s} denotes the fractional part of s. Thus, the
Bs,p norm is equivalent to the fractional Sobolev-Slobodeckij norm W s,p(Rn),
provided s > 0, s 6∈ N.

Write M for a compact, differentiable manifold with boundary ∂M . The
function spaces above can also be defined on the manifold M, provided that
M admits a “sufficiently smooth” atlas of charts. In this thesis, we will make
use of the space Bs,p(∂M), 0 < s < 1, 1 < p <∞, but we will not make use of
any other globally defined function spaces. In order to avoid technical details
that are not relevant to the present work, we will therefore provide a definition
for the space Bs,p(∂M), 0 < s < 1, 1 < p < ∞, but we will not otherwise
discuss the properties of globally defined function theory on M .

Our definition of Bs,p(∂M) is motivated by the relation (2.12). Thus,
define Bs,p(∂M), 0 < s < 1, 1 < p <∞, to be the completion of differentiable
functions on ∂M under the norm

||f ||Bs,p(∂M) := ||f ||Lp(∂M) +
(∫

∂M×∂M

|f(x)− f(y)|p

dist(x, y)n+sp
dVol

)1/p

. (2.13)

Suppose that f ∈ Bs,p(∂M), that (φ,Ω) is a boundary coordinate chart on
M , i.e. φ : φ−1(Ω) → Ω ⊂ Rn

+, and that Ω is compact. Then it is clear
that f ◦ φ−1 ∈ Bs,p(∂Ω), where ∂Ω denotes Ω ∩ Rn−1 ⊂ Rn

+. Suppose that
(ψ,Ω) is another boundary coordinate chart on M . Then the C1 bound on the
transition maps implies that there exists a constant C, depending only upon
the differentiable structure of M , so that

1/C||f ◦ ψ−1||Bs,p(∂Ω) < ||f ◦ φ−1||Bs,p(∂Ω) < C||f ◦ ψ−1||Bs,p(∂Ω). (2.14)

2.3.1 Continuous and Compact Embedding Theorems

Let us recall some standard embedding and compactness theorems relating
the function spaces described above. First, suppose 1 < p < ∞, t ≥ 0, and
s > t+n/p. Then we have the continuous embedding (cf. [Tri95] and [Roi96])

Hs,p(Ω) ⊂ Ct(Ω). (2.15)
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Moreover, if t is not an integer, then the embedding (2.15) is continuous for
s = t+ n/p. If

1 < p ≤ q <∞, −∞ < t ≤ s <∞, s− n

p
≥ t− n

q
, (2.16)

then we have the continuous embedding

Hs,p(Ω) ⊂ H t,q(Ω). (2.17)

If

1 < p ≤ q <∞, −∞ < t ≤ s <∞, s− n− 1

p
≥ t− n− 1

q
, (2.18)

then we have the continuous embedding

Bs,p(Σ) ⊂ Bt,q(Σ). (2.19)

Finally, let us mention the following generalizations of the Rellich-Kondrachov
compactness theorem, which play an important role in the work to follow (cf.
[Tay11a], [Tay11b]). If −∞ < t < s <∞, 1 < p <∞, then the embeddings

Hs,p(Ω) ⊂ H t,p(Ω), Bs,p(Σ) ⊂ Bt,p(Σ) (2.20)

are compact.
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Chapter 3

Convergence Theorems for
Manifolds with Boundary

3.1 Convergence Under Pointwise Curvature

Bounds

3.1.1 Uniformly Mean-Convex Manifolds (Theorem 1.0.1)

The proof of Theorem 1.0.1 proceeds in two basic steps. The first is to control
from below the Euclidean volume growth of any point p in the interior of
M . The second is to show that the L1,p boundary harmonic radius rbh is
bounded from below. These two facts together with Theorem 2.2.2 imply that
the harmonic radius rh(g) is uniformly bounded below, so that Theorem 2.2.1
establishes the result.

Let us begin by controlling the volume of small cylinders in M with base
B ⊂ ∂M . Therefore define, for 0 ≤ t1 ≤ t2 < ib/2,

C(B, t1, t2) := {expν(q, t) : t1 ≤ t ≤ t2, q ∈ B}.

Lemma 3.1.1. Suppose (M, g) ∈M and choose q ∈ ∂M . Suppose there exists
s > 0 so that B∂M

q (s) ⊂ B. Then there exists a constant a0, depending only
upon M, so that

vol(C(B, t1, t2)) ≥ a0s
n−1(t2 − t1).

Proof. First note that volume comparison (in ∂M) implies that

area(B) ≥ csn−1 (3.1)

for some c that only depends on n, diam(∂M), and ric(∂M). Let Br be the
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level set

{expν(q, r) : q ∈ B∂M
q (s)}.

Since vol(C(B, t1, t2)) ≥
∫ t2
t1

area(Br) dr, it suffices to show that area(Br) is
uniformly controlled in terms of M and area(B). We note that if another
constant c is chosen so that the inequality

1

K(ib − t)2
>

c2

(1− c)
,

holds for all 0 < t < ib/2, then

H(t) ≤ n− 1

c(ib − t)
. (3.2)

This estimate is proved for instance in Lemma 3.2.2 of [AKK+04] (with a
specific choice of c).

Write A(r) := area(Br) and write A0 := area(B). Consider the first varia-
tion of area

A′(r) = −
∫
Br

Hdµr

where dµr is the volume form onBr. Together with (3.2) this gives a differential
inequality for the area

A′(r) ≥ −
∫
Br

(n− 1)

c(ib − r)
dµr = − (n− 1)

c(ib − r)
A(r) (3.3)

This implies that

A(r) ≥ A0(ib)
−n−1

c (ib − r)
n−1
c . (3.4)

Since ib only depends on M (Lemma 2.1.2), A(r) only depends on M and
area(B).

Proposition 3.1.1. There exists a constant v0 = v0(M) so that for each
x ∈ (M, g) ∈M and each r < dist(x, ∂M),

vol(Br(x)) ≥ v0r
n.

Proof. Put rx = dist(x, ∂M). Choose an arclength parametrized minimizing
geodesic γ from x to q ∈ ∂M . Consider the unique point y in the image of γ sat-
isfying ry = min(rx, ib/2). Write Σt for the level set of constant t from ∂M and
suppose that t ≤ ib/2. Hessian comparison implies that there exists a constant
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C = C(M) so that if dist∂M(p, q) ≤ ε, then distΣt(expν(p, t), expν(q, t)) ≤ Cε.
Put

B := B∂M
ry
4C

(q), (3.5)

i.e. the (ry/4C)-ball about q in ∂M . From the triangle inequality we see that

C(B, 3/4ry, ry) ⊂ Bry(y) ⊂ Brx(x), (3.6)

where C(B, 3/4ry, ry) is the cylinder defined in Lemma 3.1.1. Then by Lemma
3.1.1 there exists a0 = a0(M) so that

vol(Brx(x)) ≥ vol(C(B, 3/4ry, ry)) ≥ a0r
n
y . (3.7)

Thus either

vol(Brx(x)) ≥ a0r
n
x

or

vol(Brx(x)) ≥ a0i
n
b

2n
.

In either case (and we remark again that ib is uniformly bounded below, cf.
Lemma 2.1.2), volume comparison applied to the ball Brx(x) establishes the
desired result.

It remains to show that the boundary harmonic radius is bounded from
below.

Proposition 3.1.2. For large enough p (depending only upon n) there exists
r0 > 0, depending only upon the constants that determine the classM, so that
for any (M, g) ∈M, the L1,p boundary harmonic radius rbh ≥ r0.

Proof. We proceed by contradiction. If the conclusion were false, then there
exists a sequence (Mi, g̃i) ∈ M so that r̃i = rbh(gi) → 0. Choose points
pi ∈ ∂Mi satisfying rbh(pi) = r̃i and consider the normalized sequence

(Mi, gi, pi) := (Mi,
1

r̃2
i

g̃i, pi).

Note that ri = rbh(gi) = 1 and so Theorems 2.2.1 and 2.2.2 imply that the
sequence (Mi, gi, pi) converges weakly in L1,p to a limit (M∞, g∞, p). Write h̃i
and hi for the metrics on ∂Mi induced respectively from g̃i and gi. Due to the
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scaling properties of the various quantities we see that

| sec(hi)| ≤ r̃2
iK → 0

Hi ≤ r̃iH0 → 0

| sec(gi)| ≤ r̃2
iK → 0

ib(gi) =
1

r̃i
ib(g̃i)→∞.

The metrics h̃i have bounded curvature, diameter and volume so that pass-
ing to a subsequence if necessary we can assume (as in the proof of Lemma
2.2.2) that (∂Mi, hi, pi) converges to (Rn−1, gEuc, 0) in C1,α and L2,p. The limit
(M∞, g∞) satisfies (in the L1,p sense)

ric(h∞) = 0 (3.8)

H∞ = 0 (3.9)

ric(g∞) = 0. (3.10)

As noted in [AKK+04], when expressed in boundary harmonic coordinates
on (M∞, g∞) one obtains the system of equations (writing g := g∞ for the
moment)

∆gin = Bin(g, ∂g)− 2 ric(g)in = Bin(g, ∂g) (3.11)

∂νg
nn = −2(n− 1)Hgnn = 0 (3.12)

∂νg
αn = −(n− 1)Hgαn +

1

2
√
gnn

gαk∂kg
nn =

1

2
√
gnn

gαk∂kg
nn (3.13)

∆gαβ = Bαβ(g, ∂g)− 2 ric(g)αβ = Bαβ(g, ∂g) (3.14)

gαβ|∂M = hαβ (3.15)

for 1 ≤ i, j ≤ n, 1 ≤ α, β ≤ n−1, and ∂ν denoting the normal derivative. Here
B(g, ∂g) is a polynomial in g and is quadratic in ∂g. We remark again that
these equations must be (initially) interpreted in the L1,p sense even though
we did not write them in this way.

Let us show that (M∞, g∞) is a smooth Riemannian manifold with smooth
metric tensor (in fact it turns out that (M∞, g∞) = (Rn

+, gEuc)). As remarked
above, h∞αβ ∈ C∞ so that [AKK+04, Proposition 5.2.2] applied to equations
(3.14)-(3.15) shows that gαβ ∈ C1,ε for some ε > 0. Similarly we can obtain C1,ε

regularity for the other metric components by applying [AKK+04, Proposition
5.4.1] to the equations (3.11)-(3.13). In [And08] it is shown that, in harmonic
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coordinates, the system

Φ(g) = ric(g) (3.16)

B1(g) = H (3.17)

B2(g) = [h] (3.18)

is an elliptic boundary value problem. Here [h] is the pointwise conformal class
of h. Since ric(g) = 0, H = 0 and [h] = [gEuc] (and since gij ∈ C1), elliptic
regularity (see for instance [Mor08, Theorem 6.8.3]) shows that g∞ ∈ C∞ in a
neighborhood of ∂M∞. The corresponding interior estimates are well known
(see for instance [And90]).

Let us show that the convergence is in the strong L1,p topology. We will es-
tablish this by separately obtaining estimates for the Dirichlet problem (3.14)-
(3.15) and the Neumann problem (3.11)-(3.13). The estimates themselves will
be established as a consequence of the Fredholm property for distributional
linear elliptic boundary value problems (cf. [Roi96]) and potential theory for
the laplacian ([MT05], [MT00]).

Write Ω for the interior of the upper half of the unit ball in Rn and write
Σ = Ω ∩ Rn−1, where Rn−1 = {(x1, . . . , xn−1, 0)}. Consider the elliptic equa-
tions

L :=
∑
|σ|≤2

aσ∂
σ on Ω, (3.19)

B :=
∑
|σ|≤m

bσ∂
σ on Σ, (3.20)

where σ is a multi-index, m = 0 or m = 1 is fixed, bσ ∈ C0,β(Σ), and aσ ∈
C0,α(Ω). As a consequence of the Fredholm property established in [Roi96,
Theorem 4.1.5], we may immediately deduce the following local boundary
estimates. Write Ω′ ⊂ Ω for a domain compactly contained in Ω ∪ Σ.

Proposition 3.1.3. Suppose that α > |s − 2|, β > |s − m − 1/p|, and u ∈
Hs,p(Ω) (p > 1). Then there exists a constant C, independent of u, so that

||u||Hs,p(Ω′) ≤ C
(
||Lu||Hs−2,p(Ω) + ||Bu||Bs−m−1/p,p(Σ) + ||u||Lp(Ω)

)
.

Making use of the potential theory developed in [MT05], [MT00], we obtain
another boundary estimate which will also be of use.

Proposition 3.1.4. Suppose that g is a C0,α Riemannian metric on Ω ∪ Σ
and that Ω∪Σ is contained in a boundary harmonic coordinate chart. Suppose
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that u ∈ L1,p(Ω) is a solution to

∆gu = f, ∂νu = φ,

where f ∈ Lp(Ω) and φ ∈ Lq(Σ), nq
n−1
≥ p > n. Choose ε ≥ 0 satisfying ε < α

and ε < 1− n/p. Then there exists a constant C, independent of u, so that

||u||L1,nq/(n−1)(Ω′) ≤ C
(
||f ||H−ε,p(Ω) + ||φ||Lq(Σ) + ||u||H−ε,p(Ω)

)
.

Moreover, one has the following estimate on the non-tangential maximal func-
tion of the gradient (cf. [MT99, Appendix A])

||(grad u)∗||Lq(Σ) ≤ C||φ||Lq(Σ). (3.21)

Proof. It suffices to assume Ω is a domain with smooth boundary ∂Ω = Σ.
Then the local version (i.e. Proposition 3.1.4) follows from a standard ar-
gument using a cutoff function (cf. the proof of [AKK+04, Theorem 5.4.1]).
Write V for a nonzero bump function V ≥ 0 supported in Ω and write O for an
open neighborhood containing Ω. Extend g to a Cα metric on O and extend
f by setting f ≡ 0 on O\Ω. Define the operator

L := ∆g − V.

Setting f̃ := f − uV we get Lu = f̃ . Without loss of generality assume that
O has smooth boundary ∂O. It follows that there exists a unique solution
v ∈ L2,p(O) satisfying Lv = f̃ and v|∂O = 0. More generally, the maximum
principle implies that the dirichlet problem

u 7→ (Lu, u|∂O) (3.22)

is an injective map L2,p(O) → Lp(O) × B2−1/p,p(∂O). In fact, since L is
Fredholm and formally self-adjoint, it follows that this assignment is an iso-
morphism. Then [Roi96, Theorem 4.1.5] implies that (3.22) is an isomorphism
when viewed as a map H2−ε,p(O)→ H−ε,p(O)×B2−ε−1/p,p(∂O). This implies
the estimate

||v||H2−ε,p(Ω′) ≤ C||Lv||H−ε,p(Ω). (3.23)

Set w = u−v. Since H2−ε,p(Ω) ⊂ C2−ε−n/p(Ω∪Σ) it follows that ∂νv is Hölder
continuous. In particular we see that ∂νw ∈ Lq(Σ) and Lw = 0. Then the
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proof of [AKK+04, Proposition 5.5.1] shows that

||w||H1,nq/(n−1)(Ω) ≤ C||φ||Lq(Σ), (3.24)

||(grad w)∗||Lq(Σ) ≤ C||φ||Lq(Σ). (3.25)

The hypothesis on ε implies that H2−ε,p(Ω) ⊂ L1,nq/(n−1)(Ω). Together with
equations (3.23) and (3.24), this establishes the result.

Let us fix a term (Mi, gi, pi) and set ∆gi := ∆i. Suppress the subscript on
gi for the moment, setting g := gi. From the definition of pointed convergence
we may assume that the metric g is defined on a region (containing p) of fixed
but arbitrarily chosen size in M∞. In what follows we assume that Ω ∪ Σ
is simultaneously contained in the image of boundary harmonic coordinate
charts for g and g∞, and we work in boundary harmonic coordinates for g.
Write gij and g∞ij for the coordinate expressions of g and g∞.

Consider first the ‘tangential’ components gαβ, 1 ≤ α, β ≤ n − 1. If s
satisfies 1 + n/p < s < 2, then Proposition 3.1.3 implies that

||gαβ||Hs,p(Ω) ≤ C
(
||∆ggαβ||Hs−2,p(Ω) + ||hαβ||Hs−1/p,p + ||gαβ||Hs−2,p(Ω).

)
(3.26)

Noting that

∆ggαβ = Bαβ(g, ∂g)− 2 ric(g)αβ (3.27)

we see that in order to control gαβ inHs,p(Ω) it is sufficient to controlBαβ(g, ∂g)
in Hs−2,p(Ω). Since Bαβ(g, ∂g) is quadratic in the derivatives of g, the Hölder
inequality implies that Bαβ(g, ∂g) is controlled in Lp/2. Choosing s small
enough so that Lp/2(Ω) ⊂ Hs−2,p(Ω), it follows that gαβ is uniformly con-
trolled in Hs,p(Ω).

Let us consider then the ‘non-tangential’ components gin. From Proposi-
tion 3.1.4 we see that gnn is uniformly bounded in L1,q(Ω), q <∞. Moreover,
since the metric is smooth we have (grad gnn)∗ = grad gnn, so that in the
given harmonic coordinate system the boundary estimate of Proposition 3.1.4
implies uniform control of ∂gnn in Lq(Σ), q <∞. Similarly for the components
gαn we have the estimate

||gαn||L1,qn/(n−1)(Ω) ≤C
(
||∆gg

αn||H−ε,p(Ω) + || − (n− 1)H +
1

2
√
gnn

gαk∂kg
nn||Lq(Σ)

(3.28)

+||gαn||H−ε,p(Ω)

)
,

any 0 < ε < 1−n/p. As noted above, that the term ||∆gg
αn||H−ε,p(Ω) is bounded
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follows from the fact that Lp/2(Ω) ⊂ H−ε,p(Ω) if ε is chosen close enough to
1− n/p. Control of the other terms comes from the fact that |H|L∞ ∼ 0 and
the Lq(Σ) bound on ∂gnn. Thus we see that gαn is uniformly controlled in
L1,q(Ω) and ∂gαn is uniformly controlled in Lq(Σ), q < ∞. In particular, we
now have uniform control of gij in Cβ(Ω), any β < 1. This allows us to apply
Proposition 3.1.3 with 1 < s < 1 + 1/p. We then obtain the estimate

||gnn||Hs,p(Ω) ≤C
(
||Bnn(g, ∂g)− 2 ricnn(gnn)||Hs−2,p(Ω) (3.29)

+|| − 2(n− 1)H||Bs−1−1/p,p(Σ) + ||gnn||Hs−2,p(Ω)

)
.

As before we note that s can be chosen large enough so that Bnn(g, ∂g) ⊂
Hs−2,p(Ω); thus the first term of the right hand side of (3.29) is controlled.
Since s− 1− 1/p < 0 it follows that L∞(Σ) ⊂ Bs−1−1/p,p(Σ), and thus gnn is
uniformly controlled in the norm Hs,p(Ω). The components gαn are estimated
similarly, making use of the fact that ∂gnn ∈ Lq(Σ), q < ∞. From this
we readily conclude that, passing to a subsequence if necessary, the pointed
sequence (Mi, gi, pi) converges weakly in the Hs,p topology to (M∞, g∞, p).
Due to the compact inclusion Hs,p(Ω) ⊂ H1,p(Ω) = L1,p(Ω), it follows that
(Mi, gi, pi) converges strongly in the L1,p topology.

From Lemma 2.2.1 we see that rbh(g∞) = 1. We will derive a contradiction
from this by showing that (M∞, g∞) = (Rn

+, gEuc). We have already seen that
the boundary (∂M∞, h∞) = (Rn−1, gEuc). The fact that ib(Mi) → ∞ and the
definition of pointed convergence shows that M is diffeomorphic to Rn

+. Since
M is flat, the Gauss constraint equation reads

||S||2 = H2 = 0.

On whatever interval boundary normal coordinates exist we have the equation

∇∂tS − S2 = 0. (3.30)

The initial condition S(0) = 0 implies that S ≡ 0 and thus the metric is
Euclidean on this interval. On the other hand it is easy to see that boundary
normal coordinates exist for all t > 0, since M is flat and diffeomorphic to
Rn

+.

3.1.2 Almost Convex Manifolds (A Refinement of a The-
orem of Kodani)

As in the introduction we consider Kodani’s class of almost convex manifolds
MKod, defined to be the class of Riemannian n-manifolds with boundary sat-
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isfying the conditions

vol(M) ≥ V , diam(M) ≤ D,
| sec(M)| ≤ K, λ∗ ≤ II ≤ λ+,

where λ∗ < 0 depends upon n, λ+, K,D, V, and diam(∂M). Kodani’s theorem
([Kod90]) states that any sequence in MKod subconverges in the Lipschitz
topology to a limiting C0 Riemannian metric. Here we note that, as a corollary
to Theorem 1.0.1, we can improve the convergence of Kodani’s theorem to Cα

and weak L1,p. In particular, our improvement shows that the class MKod

admits only finitely many diffeomorphism types. This fact does not directly
follow from Kodani’s result.

Theorem 3.1.1. The class MKod is precompact in the Cα and weak L1,p

topologies, any p <∞. In particular, MKod admits only finitely many diffeo-
morphism types.

Proof. We first note that the proof of Theorem 1.0.1 applies to the class M∗

of manifolds with boundary satisfying

area(∂M) > a0, | sec(∂M)| < K (3.31)

diam(M) ≤ D, | sec(M)| ≤ K (3.32)

|H| < H0, ib > i0. (3.33)

In fact, essentially the first step in the proof is to make this reduction. We
further note that Kodani shows that each (M, g) ∈MKod satisfies ib > i0 > 0,
and moreover each p ∈ M satisfies inj(p) ≥ i0 dist(p, ∂M), where i0 only
depends upon the constants that determine the classMKod. Finally, the Gauss
equation shows that | sec(g)| ≤ K. Thus, in order to show that MKod ⊂M∗,
it suffices to show that area(∂M) ≥ a0 for each (M, g) ∈MKod.

As noted above, ∂M admits a collar neighborhood C of radius i0, so that
there exists a ball Bp(r) ⊂ C of fixed but definite radius r, say r > i0/4.
Then the Riemannian manifold (Bp(r), g) has bounded diameter, sectional
curvature, interior injectivity radius, and satisfies inj(p) ≥ i0/4. In particular,
vol(B) is uniformly boudned below. On the other hand, a theorem of Heintze-
Karcher ([HK78]) shows that vol(C) ≤ C area(∂M), where C only depends
upon ib, the uniform curvature bound for M , and the uniform bound on the
second fundamental form of M . These two facts together imply that area(∂M)
is uniformly bounded below.
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3.2 Convergence Under Lp curvature Bounds

3.2.1 Convergence of 3-Manifolds with Boundary (The-
orem 1.0.3)

Proof of Theorem 1.0.3. Write rh(p) for the L2,p harmonic radius at p ∈ M ,
and define rbh := rbh(g) := infp∈∂M rh(p). In order to establish Theorem 1.0.3 it
suffices to show that there exists a constant C1 > 0, C1 = C1(H0, C, v0, r0, D,A0)
so that if (M, g) ∈M2, then for each p ∈M\∂M there holds

rh(p) ≥ C1 dist(p, ∂M), (3.1)

rbh ≥ C1. (3.2)

Let us first establish equation (3.2). Arguing by contradiction, if equation
(3.2) were false then there exists a pointed sequence (Mi, g̃i, pi) ∈ M2 with
pi ∈ ∂Mi, rh(pi) = rbh and rh(pi) → 0. Consider then the rescaled sequence
(Mi, gi, pi), gi = 1

r2bh
g̃i. The scaling properties of the hypothesis then imply

that

| sec(∂Mi)| → 0, || sec(Mi)||L2(Mi) → 0.

In case p ≤ 2, the scaling behavior of H does not imply that ||H||Lp(∂Mi) →
0. However, a standard embedding theorem shows that ||H||Lq(∂M) is uniformly
contolled for some q > 2 ≥ p, so that ||H||Lq(∂Mi) → 0. Next choose a
fixed but arbitrary scale R and consider a region R ⊂ Bpi(R). We have that
Lq(R) ⊂ Lp(R) independent of i, so that

||H||Lp(R) → 0 (3.3)

and thus

||H||B1−1/p, p(R) → 0. (3.4)

In order to show that (Mi, gi, pi) admits an L2,p limit, it suffices to show
that, for each fixed R > 0 and any p ∈ BR(pi), the harmonic radius rh(p) is
uniformly bounded below, independent of i. Since the boundary harmonic
radius rbh(q) ≥ 1 for each q ∈ ∂M , it suffices to control rh(p) for those
p satisfying p ∈ BR(pi) and dist(p, ∂Mi) > 1. Thus, choose such a point
p and consider a unit-speed minimizing geodesic segment γ from ∂Mi to
p, i.e. assume that γ(0) ∈ ∂Mi, γ(l) = p, dist(γ(t), ∂Mi) = t and that
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l = dist(p, ∂M). Put q = γ(1/2). Since rbh(Mi) = 1 it follows that B1/2(q)
satisfies vol(B1/2(q)) ≥ C, where C is a constant that can be chosen inde-
pendent of i. Therefore the triangle inequality shows that vol(Bl(p)) ≥ C.
Now Lemma 3.13 of [And97] shows that the volume radius rν(p) is bounded
below by a constant that only depends on R, || ric(gi)||L2 , and C. From here a
standard blowup argument as in Theorem 2.2.2 shows that rh(p) is bounded
below (cf. also [Pet97]).

Since the L2,p harmonic radius of (Mi, gi, pi) is uniformly controlled in
a definite scale, it follows that there exists an L2,p Riemannian manifold
(M∞, g∞, p∞) with

(Mi, gi, pi)→ (M∞, g∞, p∞) (3.5)

in the weak L2,p topology. The remarks above imply that (M∞, g∞, p∞) sat-
isfies ||H||Lp(∂M∞) = 0 and thus H = 0. Moreover, since definition 1.0.4 is
scale-invariant, we see that every point p ∈ ∂M∞ satisfies a (v0, r) volume
condition, any r < ∞. Parallel to the proof of Theorem 1.0.4 we see that
(M∞, g∞, p∞) is a flat C∞ Riemannian manifold with boundary.

Let us show that (Mi, gi, pi) converges in the (strong) L2,p topology. In
case gi ∈ C1(M), we could make use of well-known L2,p elliptic estimates
for boundary value problems (cf. [ADN59]). However, gi need not be C1

if p < 3. Nevertheless, making use of the Maz′ya- Shaposhnikova theory of
Sobolev Multipliers (cf. [MS85]), let us show that it is sufficient to assume
that g ∈ L2,p(M), p > 3/2.

As before, write Ω for the interior of the upper half of the unit ball in Rn

and write Σ = Ω ∩ Rn−1, where Rn−1 = {(x1, . . . , xn−1, 0)}. We are interested
here in the case n = 3, but the estimate to follow is of course valid for any n.
Consider the elliptic equations

L :=
∑
|σ|≤2

aσ∂
σ on Ω, (3.6)

B :=
∑
|σ|=1

bσ∂
σ on Σ, (3.7)

where σ is a multi-index, bσ ∈ L2, p(Ω), and aσ ∈ L2,p(Ω), p > n/2. Write
Ω′ ⊂ Ω for a domain compactly contained in Ω ∪ Σ.

Proposition 3.2.1. Suppose that u ∈ H2,p(Ω) (p > n/2). Then there exists a
constant C, independent of u, so that

||u||H2,p(Ω′) ≤ C
(
||Lu||Lp(Ω) + ||Bu||B1−1/p,p(Σ) + ||u||Lp(Ω)

)
.
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Proof. Inspecting the proof of the Fredholm property [Roi96, Theorem 4.1.5]
(see also [Roi96, Remark 2.3.1] and [Roi96, Corollary 2.5.1]), it is sufficient
to show that multiplication by bσ is a continuous mapping B1−1/p, p(Σ) →
B1−1/p, p(Σ), satisfying in addition (for some ε > 0) the inequality

||Bu||B1−1/p,p(Σ) ≤ c1||bσ||C0(Σ)||u||L2,p(Ω) + c2||u||H2−ε,p(Ω), (3.8)

where c1 does not depend upon bσ (and, of course, c1 and c2 are independent
of u). We remark that equation (3.8) is a crucial inequality involved in the
well-known method of ‘freezing the coefficients’. Denote by f an element
of B1−1/p, p(Σ) and consider its extension (still denoted f) to an element of
B1, p(Ω). Then bσf is an extension of the product (on Σ) to Ω and it follows
from [MS85, Sections 2.2.9 and 2.3] that bσf ∈ L1,p(Ω). Since

||bσf ||B1−1/p,p(Σ) = inf
g
||g||L1,p(Ω), (3.9)

where the infimum is taken over all L1,p(Ω) functions g extending bσf from Σ
to Ω, it follows that bσf ∈ B1−1/p,p(Σ). In order to establish inequality (3.8),
consider first the expression ||Dbσf ||Lp(Ω), where Dbσ is a derivative of bσ in a
fixed but arbitrary direction. Making use of Hölder’s inequality and standard
embedding theorems, we see that

||Dbσf ||Lp(Ω) ≤ ||Dbσ||L2p(Ω)||f ||L2p(Ω) ≤ C||Dbσ||L1,p(Ω)||f ||H1−ε,p(Ω), (3.10)

where ε > 0 is chosen to satisfy the condition H1−ε, p(Ω) ⊂ L2p(Ω). Note that
the condition H1−ε, p(Ω) ⊂ L2p(Ω) is satisfied if ε ≤ 1 +n/2p−n/p, thus ε can
be chosen to be positive due to the fact that p > n/2. Using an argument as
above together with the Leibniz rule, we conclude that

||bσf ||L1,p(Ω) ≤ ||bσ||C0(Ω)||f ||L1,p(Ω) + C||f ||H1−ε, p(Ω), (3.11)

where C depends on ||bσ||L2,p(Ω). This implies that

||bσf ||B1−1/p, p(Σ) ≤ ||bσ||C0(Σ)||f ||B1−1/p, p(Σ) + C||f ||B1−1/p−ε, p(Σ). (3.12)

Equation (3.8) then follows from equation (3.12) and the fact that u 7→ Du|Σ
is a continuous mapping L2,p(Ω)→ B1−1/p,p(Σ).

Let us fix a term (Mi, gi, pi) and set ∆gi := ∆i. Suppress the subscript on
gi for the moment, setting g := gi. From the definition of pointed convergence
we may assume that the metric g is defined on a region (containing p) of fixed
but arbitrarily chosen size in M∞. In what follows we assume that Ω∪Σ is si-
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multaneously contained in the image of boundary harmonic coordinate charts
for g and g∞, and we work in boundary harmonic coordinates for g. Write gij
and g∞ij for the coordinate expressions of g and g∞.

A simple calculation using the fact that (in the boundary harmonic coor-
dinates {xi}) ∂ν = gradxn

|| gradxn|| shows that

∂ν =
gni√
gnn

∂

∂xi
. (3.13)

Therefore the Maz′ya-Shaposhnikova theory on Sobolev Multipliers cited above
implies that the boundary operator B(u) = ∂νu has coefficients that are re-
strictions of functions in L2,p(Ω). Thus Proposition 3.2.1 and equations (3.11)-
(3.13) imply the estimate

||gnn − gnn∞ ||L2,p(Ω) ≤ C
(
||∆i(g

nn − gnn∞ )||Lp(Ω) + || − 2(n− 1)Hgnn||H1−1/p,p(Σ)

+ ||gnn||Lp(Ω)

)
.

Here and above n = 3, but we continue to use the variable in order to empha-
size the fact that this portion of the proof is valid an all dimensions. A well-
known argument making use of the formula ∆ig

nn = Bnn(g, ∂g) − 2 ric(g)nn,
the fact that ric(g)→ 0, and the Hölder inequality (cf. [Pet97]) shows that

||∆i(g
nn − gnn∞ )||Lp(Ω) → 0. (3.14)

The fact that ||H||B1−1/p,p(Σ) → 0, together with the fact that multiplication by

gnn is a continuous operator B1−1/p,p → B1−1/p,p (this follows from the Maz′ya-
Shaposhnikova theory of Sobolev Multipliers mentioned above, together with
the definition of the norm B1−1/p,p(Σ)) implies that

|| − 2(n− 1)Hgnn||H1−1/p,p(Σ) → 0. (3.15)

Thus the component gnn converges strongly in L2,p(Ω). The same argument
shows that, in order to establish strong convergence gαn → gαn∞ , it is sufficient
to show that

|| 1

2
√
gnn

gαk∂kg
nn − 1

2
√
gnn∞

gαk∞ ∂kg
nn
∞ ||B1−1/p,p(Σ) → 0. (3.16)

Consider first the expression

|| 1

2
√
gnn

gαk(∂kg
nn − ∂kgnn∞ )||B1−1/p, p(Σ). (3.17)
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Since 2p > n and g ∈ L2,p(Ω) it follows from [MS85, Section 2.3] that
1

2
√
gnn
gαk ∈ L2,p(Ω). Also from [MS85] it therefore follows that multiplication

by 1
2
√
gnn
gαk is a bounded operator on B1−1/p, p(Σ). Due to the strong conver-

gence established above, we see that equation (3.17) tends to 0 as i→∞.
Next consider the expression

||∂kgnn∞
( 1

2
√
gnn

gαk − 1

2
√
gnn∞

gαk∞
)
||B1−1/p,p(Σ). (3.18)

The term ∂kg
nn
∞ is a fixed C∞ function on Σ and as before we note that

1

2
√
gnn

gαk − 1

2
√
gnn∞

gαk∞ ∈ L2,p(Ω). (3.19)

Due to the compact inclusion B2−1/p, p(Σ) ⊂⊂ B1−1/p, p(Σ) it therefore follows
that

|| 1

2
√
gnn

gαk − 1

2
√
gnn∞

gαk∞ ||B1−1/p,p(Σ) → 0. (3.20)

This shows that gαn → gαn∞ in L2,p(Ω).
Next let us consider the metric components gαβ. Standard estimates for the

Dirichlet problem (that only require C0 regularity of the metric coefficients,
cf. [Mor08]) imply that

||gαβ − g∞αβ||L2,p(Ω) ≤ C
(
||∆i(gαβ − g∞αβ)||Lp(Ω) + ||hαβ − h∞αβ||B2−1/p,p(Σ)

+ ||gαβ||Lp(Ω)

)
.

In this case the strong L2,p(Ω) convergence hαβ → h∞αβ and the arguments
above show that gαβ → g∞αβ in L2,p(Ω).

A simple linear algebra argument allows us to express the components gαn
as an algebraic combination of terms of the form gαβ and gαn (cf. [AKK+04,
Lemma 2.1.4]). Then the strong L2,p(Ω) convergence of gαβ and gαn, together
with the fact that L2,p(Ω) is closed under multiplication, shows that gαn →
g∞αn in L2,p(Ω).

The continuity of the L2,p harmonic radius then implies that rh(p∞) = 1.
In order to derive a contradiction from this, let us show that (M∞, g∞) is
isometric to (Rn

+, gEuc).
To begin, define Vr(pi) := Br(pi) ∩ exppi(C), where C is the cone in TpiM

guaranteed by definition 1.0.4. Provided that r < r0, the fact that secg̃i(Mi) ∼
0 and the proof of the volume comparison theorem in Lemma 3.13 of [And97]
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(cf. also [PW97]) implies that (calculated with respect to g̃i)

vol(Vr(pi))

rn
≥ C, (3.21)

any r < r0. Since the inequality is scale invariant, this implies that (M∞, g∞, p∞)
satisfies inequality (3.21) about p∞ for any r <∞. In particular, we note that

vol(Br(p∞))

rn
≥ C, (3.22)

any r <∞.
Standard Cheeger-Gromov theory applied to the sequence (∂Mi, hi, pi)

shows that (∂M∞, h∞) is isometric to (Rn−1, gEuc). Moreover, as noted above
we have that sec(g∞) = 0 and H = 0. The Gauss constraint equation then
implies that the second fundamental form II = 0.

Thus (M∞, g∞) is a flat, smooth, Riemannian manifold with totally geodesic
boundary such that each boundary component is isometric to Rn−1. Standard
comparison geometry shows that ∂M∞ has no focal points in M∞. If ∂M∞
has no cut points, then the normal exponential map induces an isometry from
M∞ to Rn

+. Therefore suppose the cut locus distance is finite. Choose a point
q ∈ ∂M∞ and suppose that γ is a geodesic intersecting ∂M∞ orthogonally
at q = γ(0). Write tf < ∞ for the first time (after t = 0) that γ intersects
∂M∞. Since ∂M∞ is totally geodesic, we may consider two disjoint copies
of M∞ and identify their boundaries to form the double D(M), a complete,
flat, C2 (and by elliptic regularity, C∞) Riemannian manifold without bound-
ary. The geodesic γ constructed above then extends to a closed geodesic in
D(M), possibly with a non-smooth point at γ(tf ). However, since smooth,
flat, Riemannian manifolds are characterized as quotients of Rn, we see that
the extension of γ is smooth at the point γ(tf ). It follows that D(M) is a
nontrivial quotient of Rn. However, it is clear D(M) also satisfies inequality
(3.21), which shows that D(M) = Rn. This contradiction shows that M∞ has
no cut locus, and we may therefore conlude that (M∞, g∞) = (Rn, gEuc). This
establishes equation (3.2).

Let us demonstrate that equation (3.1) is true. The proof is essentially
already contained in our analysis of the blowup argument above. For conve-
nience, we present it again here. Suppose that (M, g) ∈ M2. Since rbh ≥ C1,
it follows in particular that for any point p ∈ M with dist(p, ∂M) ≤ C1/2 we
have (setting rp = dist(p, ∂M))

vol(Bp(rp)) ≥ Crnp , (3.23)
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for some constant C depending only upon the constants that determine the
class M2. Since we have already shown that rbh ≥ C1, it is sufficient to
show that if rp ≥ C1/2, then rh(p) ≥ C, for some new constant C depending
on C1 (and, of course, the constants that determine the class M2). Thus,
suppose p ∈ M satisfies rp ≥ C1/2. Choose a geodesic γ from p to ∂M that
minimizes the distance to the boundary, and choose a point q ∈ Image(γ)
so that rq = C1/2. The triangle inequality implies that Bq(C1/2) ⊂ Bp(rp).
Therefore equation (3.23) shows that

vol(Bp(rp)) ≥ C, (3.24)

for some constant C. Since || sec(g)||L2(Bp(rp)) ≤ ε, the local volume compar-
ison result of Lemma 3.13 of [And97] implies that the volume radius rν(p)
is uniformly bounded below. As before, this implies that rh(p) is uniformly
bounded below.

3.2.2 Convergence of n-manifolds with Boundary (The-
orem 1.0.2)

In the proof of Theorem 1.0.3, the restrictions to n = 3 and || sec(g)||Lp(M) ≤ ε
are only used to control the volume radius rν(p) uniformly from below. Since
Theorem 1.0.2 already assumes uniform boundedness of the volume radius, we
see that Theorem 1.0.2 follows immediately from the proof of Theorem 1.0.3.
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Chapter 4

Geometric Stability Theorems

4.1 Generalization of Cohn-Vossen–Pogorelov’s

Rigidity Theorem

4.1.1 Theorem 1.0.4

Proof of Theorem 1.0.4. Suppose that (Mi, gi) is a sequence of compact, ori-
ented, simply connected Riemannian 3-manifolds and write hi for the induced
metric on ∂Mi. To prove Theorem 1.0.4 it is enough to show that if

ric(gi)→ 0,

0 < Hi < H0,

0 < 1/K0 < Ki < K0,

hi
GH→ h

then (Mi, gi) subconverges to (N, gEuc) in the Cα topology. Since | ric(g)|
controls | sec(g)| in dimension 3, we may assume that sec(gi) → 0. We will
first show that for large i, (Mi, gi) ∈M. If {e1, e2} is an orthonormal basis so
that S(ek) = λkek at some point p, then the Gauss equation gives

λ1λ2 = Ki − secMi
(e1, e2) > 0. (4.1)

Since Hi = λ1 + λ2 > 0 we see that λ1 and λ2 are both positive. The upper
bound on H then implies that each λk is uniformly bounded above, while the
inequality Ki > 1/K0 shows that λk is uniformly bounded below. Thus there

is a constant H̃0 > 0 so that

1/H̃0 < λk < H̃0.
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In particular, each Mi is uniformly convex when i is large.
Let us find an upper bound for diam(Mi). Myers’ theorem implies that

the diameter of ∂Mi is bounded above. Let k be a negative lower bound for
sec(gi). If i is large enough then −k can be chosen small enough so that

1

H̃0

√
−k

> 1.

Thus there exists a positive solution t0 to the equation

coth(
√
−kt) =

1

H̃0

√
−k

and by Lemma 2.1.1 it follows that foc(∂Mi) ≤ t0. To any p ∈Mi there exists
a length minimizing geodesic from p to ∂Mi that meets ∂Mi orthogonally.
Since normal geodesics do not minimize distance to the boundary past the
first focal point it follows that dist(p, ∂Mi) ≤ t0. Thus diam(Mi) is bounded
above by diam(∂Mi) + 2t0.

The Gauss-Bonnet theorem and the inequality 1/K0 < Ki < K0 implies
that area(∂Mi) is uniformly bounded below when i is large enough.

Therefore eventually (Mi, gi) ∈ M for appropriately defined constants.
Theorem 1.0.1 then shows that, passing to a subsequence if necessary, (Mi, gi)
converges to an L1,p limit (M∞, g∞). Moreover, by Theorem 2.2.2 the metrics
gi converge in the weak L2,p

loc topology on the interior M∞\∂M∞. Write h∞
for the boundary metric of g∞. Applying Cheeger-Gromov compactness to
the sequence (∂Mi, hi) we can assume that hi → h∞ in the C1,α or weak
L2,p topology. Since hi → h in the Gromov-Hausdorff topology we see that
(∂M∞, h∞) and (Σ, h) are isometric as metric spaces. Since ∂M∞ is orientable
and admits a metric of positive curvature it follows that ∂M∞ is diffeomorphic
to S2.

The condition sec(gi) → 0 implies that sec(g∞) = 0 in the L2,p sense in
(compact regions of) the interior of M∞. Elliptic regularity then implies that
the interior of M∞ is C∞ and flat.

Since M∞ is simply connected we may consider the developing map

ξ : M∞\∂M∞ → R3.

The limit M∞ has an L2,p atlas of coordinate charts and therefore ξ extends
to an L2,p (and thus C1,α) isometric immersion M∞ → R3. Let us show that
the interior of ξ(M∞) is a convex region in R3. Fix q1, q2 ∈ ξ(M∞) and choose
p1, p2 so that ξ(pi) = qi. Choose a compact set Ω ⊂ M∞ so that pi ∈ Ω and
dist(Ω, ∂M∞) = ε for some small ε > 0. From Theorem 2.2.2 it follows that
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gi → g∞ in C1,α on Ω. Let γi be a geodesic with respect to the metric gi from
p1 to p2. We may choose ε small enough so that Image(γi) ⊂ Ω for large i.
The γi subconverge continuously (see [Pet87]) to a g∞-geodesic γ from p1 to
p2. The metric g∞ is a flat metric on a simply connected region, therefore ξ(γ)
is just the straight line segment from q1 to q2.

The convexity of M∞ implies that ξ is an embedding. Composing the
restriction of ξ to ∂M∞ with a distance preserving bijection (∂M∞, h∞) →
(S2, h), we obtain an isometric embedding (of metric spaces) from (S2, h) to
(R3, gEuc) whose image bounds a convex connected open set.

A theorem of Pogorelov [Pog73, Thm 3.1.6] implies that ξ(∂M∞) differs
from N by a rigid motion of R3. Composing ξ by this rigid motion, we obtain
the required C1,α isometry between M∞ and N .

4.1.2 Corollary 1.0.1

Proof of Corollary 1.0.1. Consider a sequence (Mi, gi) satisfying

Ki → 1

sec(gi)→ 0

0 < 1/H0 < H < H0.

As demonstrated in the proof of Theorem 1.0.4, Mi ∈ M for large i. Thus
Theorem 1.0.1 shows that there exists a flat limit (M∞, g∞) in which g∞ ∈ L1,p

on M∞ and g∞ ∈ C∞ in the interior. Since Ki → 1 and ∂Mi is oriented, it
follows that ∂Mi = S2 and that the boundary metrics are tending to the round
sphere in the C1,α topology, any 0 < α < 1. In particular, Theorem 1.0.4 then
shows that the universal cover (M∞, g∞) is isometric to the (Euclidean) unit
ball in R3. Since the projection map is an isometry, (M∞, g∞) satisfies, in the
L1,p sense, the curvature conditions

K = 1,

ric(g∞) = 0,

S = Id .

Similar to the analysis in Theorem 1.0.1, elliptic regularity implies that (M∞, g∞)
is a smooth Riemannian manifold. Then it is easy to deduce from the above
curvature conditions that (M∞, g∞) is isometric to the unit ball.
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4.2 Generalization of Hopf’s Rigidity Theo-

rem

4.2.1 Theorem 1.0.5

Proof. Let us begin by proving part i of Theorem 1.0.5. Suppose (Mi, gi) is
a sequence of compact, oriented Riemannian 3-manifolds with χ(∂Mi) = 2,
Hi → 2, and ric(gi)→ 0. Write hi for the induced metrics on ∂Mi. It is suffi-
cient to show that if |Si| ≤ C and diam(Mi) ≤ D, then (Mi, gi) subconverges
to (B, gEuc) in the Cα topology, where B is the unit ball. Let us show that
gi ∈ M for large enough i. As before we may assume that sec(gi) → 0. The
Gauss equation then implies that Ki = sec∂Mi

(gi) is bounded. The Gauss-
Bonnet theorem ∫

∂Mi

Ki = 4π

shows that area(∂Mi) is uniformly bounded below. By Theorem 1.0.1 it follows
that (Mi, gi) subconverges in the weak L1,p topology to an L1,p limit (M∞, g∞).
The limit (M∞, g∞) satisfies weakly the equations

H = 2, ric(g∞) = 0.

As in the proof of Theorem 1.0.1 we can use the fact that h∞ ∈ L2,p and
H ∈ C∞ to conclude that g∞ ∈ C1,ε for some ε > 0. It follows that the
developing map from the universal cover

ξ : M∞ → R3 (4.1)

is a C2,ε isometric immersion. Restricting ξ to ∂M∞ we get a C2,ε isometric
immersion of a closed 2-manifold of genus 0 and with H = 2 into R3. As
mentioned in the introduction, Hopf’s rigidity theorem implies that if ξ were
C3, then ξ(∂M∞) is a sphere. It is straightforward to show (Lemma 4.2.1)
that C3 may be replaced with C2,α. Therefore ξ(∂M∞) is a sphere and it
follows that K = 1 in the L2,p sense. Elliptic regularity applied to the system
(see the equations (3.11)-(3.15) and the arguments nearby)

K = 1 H = 2 ric(g) = 0 (4.2)

implies that (M∞, g∞) (and thus (M∞, g∞)) is a smooth Riemannian 3-manifold
with boundary. This, together with the equations (4.2), implies that (M∞, g∞)
is isometric to (B, gEuc).

The other cases follow from similar arguments. Let us briefly outline their
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proofs. Suppose that (Mi, gi) is a sequence with χ(∂Mi) = 2, Hi → 2
√

2 and
sec(gi) → −1, and suppose that diam(Mi) ≤ D and |Si| ≤ C. Then Theo-
rem 1.0.1 shows that (Mi, gi) → (M∞, g∞) in the weak L1,p topology, where
(M∞, g∞) is an L1,p Riemannian manifold satisfying

H = 2
√

2, sec(g∞) = −1.

Elliptic regularity then shows that g ∈ C1,ε for some ε > 0, and thus the
developing map

ξ : M∞ → H3

induces a C2,ε isometric immersion of S2 = ∂M∞ into H3. The proof of Lemma
4.2.1 shows that the second fundamental form of ξ is constant, i.e. S =

√
2 Id.

This implies that Image(ξ) is a distance sphere in H3. In particular K = 1,
where K is the Gauss curvature of g∞. From elliptic regularity we conclude
that (M∞, g∞) is a C∞ Riemannian manifold, and the curvature conditions

K = 1, H = 2
√

2, sec(g∞) = −1

imply that (M∞, g∞) is isometric to a metric ball in H3 with boundary iso-
metric to the Euclidean sphere.

Now suppose that (Mi, gi) is a sequence with sec(gi) → 1, Hi → 0,
χ(∂Mi) = 2, diam(Mi) ≤ D and |Si| ≤ C. In this case the sequence (Mi, gi)
is not contained in M (since Hi → 0). However, if sec(gi) is close enough
to 1 and Hi is close enough to 0, then the proof of Lemma 2.1.2 implies that
ib(gi) is uniformly bounded below. Then the proof of Theorem 1.0.1 shows
that the sequence (Mi, gi) converges weakly in L1,p to an L1,p limit (M∞, g∞)
of constant curvature 1. The developing map induces a C2,ε minimal isometric
immersion of S2 into S3. Almgren has shown in [Alm66] that if this immersion
were analytic, then its image would be congruent to the equator. His proof
is based on the vanishing of the same holomorphic quadratic differential de-
fined in Lemma 4.2.1. Therefore essentially the same proof as in Lemma 4.2.1
shows that ‘analytic’ may be replaced with ‘C2,ε’. This implies that M∞ has
constant Gauss curvature K = 1. Elliptic regularity implies that (M∞, g∞) is
a C∞ manifold with

K = 1, H = 0, sec(g∞) = 1

and thus M∞ is isometric to the upper hemisphere of (S3, g+1).

Lemma 4.2.1. Suppose (Σ, g) is a closed surface of genus 0 and ξ : Σ→ R3 is
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a C2,α isometric immersion. Suppose that H = c > 0. Then ξ(Σ) is a sphere.

Proof. We will verify one of Hopf’s classical proofs, applying only a minor
modification. First note that g induces a complex structure on Σ, so that Σ
is a Riemann surface. If u and v are isothermal coordinates on Σ, define the
complex parameters

w = u+ iv, w = u− iv.

Write L,M , and N for the coefficients of the second fundamental form in the
coordinates u, v and write the metric

g = E(du2 + dv2).

Write k1 and k2 for the principal curvatures. Define the complex function

φ(w,w) =
L−N

2
− iM.

From the formulas

K = k1k2 =
LN −M2

E2

and

H = (k1 + k2) =
L+N

E

we see that
2|φ|
E

= |k1 − k2|

so that the zeroes of φ correspond to the umbilic points of Σ. Since ξ ∈ C2,α,
we see that E ∈ C1,α and L, N , M ∈ Cα. Therefore the Codazzi equations
hold weakly

Lv −Mu =
EvH

2

Mv −Nu = −EuH
2

A simple calculation gives(L−N
2

)
u

+Mv =
EHu

2
(4.3)(L−N

2

)
v
−Mu = −EHv

2
(4.4)
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As H is constant, it follows that these are the Cauchy-Riemann equations for
φ. Equations (4.3)-(4.4) form an elliptic system and from the regularity theory
for weak solutions to elliptic systems (cf. [Mor08, Thm. 6.4.4]) it follows that
φ is complex-analytic. Therefore φdw2 is a holomorphic quadratic differential.
It is a consequence of Liouville’s theorem that there are no nontrivial holomor-
phic quadratic differentials on a Riemann surface of genus 0, so that φ ≡ 0.
Therefore every point of M is umbillic, so that S = k Id for some k : Σ→ R.
The Codazzi equations show that Dk = 0 in the distributional sense, so that
k = const = c/2. Identifying ξ with the position vector of the immersion and
n for the unit normal, we get in local coordinates the system of equations

(n+ c/2ξ)u = 0

(n+ c/2ξ)v = 0.

These equations only require two derivatives of the immersion, so they are
valid classically. This gives the usual proof that ξ(M) is a sphere.

4.3 Remarks on a Question of Klainerman

Proof of Theorem 1.0.6. Suppose (Mi, gi) ∈M2 is a sequence with

|| sec(gi)||L2(M) → 0, ||Hi − 2||B1/2,2(∂Mi) → 0, and hi → g+1 (4.1)

in the L2,2 topology. To establish the result it is sufficient to prove that
(Mi, gi) subconverges in the L2,2 topology to (B, gEuc). Theorem 1.0.3 shows
that this sequence subconverges in the weak L2,2 topology. However, the same
argument, together with equation (4.1), shows that the convergence is actu-
ally in the L2,2 topology. Thus there exists an L2,2 limit (M∞, g∞) satisfying
(∂M∞, h∞) = (S2, g+1), || sec(g∞)|| = 0, and H = 2. Elliptic regularity on
the limit implies that (M∞, g∞) is a C∞ Riemannian manifold with boundary.
In particular, M∞ is flat, H = 2 in the classical sense, and (∂M∞, h∞) =
(S2, g+1). The Gauss equation, together with the condition that H = 2 im-
plies that either II = h∞ or II = −h∞. Since h∞ = g+1, the Riccati equation
then implies that either (M∞, g∞) = (B, gEuc) or (M∞, g∞) = (R3\B, gEuc).
The fact that the diameter of M∞ is uniformly bounded rules out the latter
case.

Proof of Theorem 1.0.7. Consider a geodesically convex sequence (Mi, gi) with
uniformly bounded volume, diameter, and with uniform control over the norm
||Hi||B1/2,2(∂Mi). Since Mi is convex, volume comparison implies that the vol-
ume radius of each point (even those points on the boundary) is bounded
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below. Then the proof of Theorem 1.0.3 shows that (Mi, gi) has an L2,2 limit
(M∞, g∞) satisfying (∂M∞, g∞) = (S2, g+1) and sec(g∞) = 0. Elliptic regular-
ity on the interior shows that M∞ is smooth away from the boundary. Thus
we may consider the developing map on the universal cover, which induces
a C1,α isometric immersion ∂M∞ → R3. Since each (Mi, gi) is geodesically
convex, and geodesics converge to geodesics under Cα convergence, it follows
that M∞ and its universal cover are convex as well. This implies that the
developing map is an embedding, and that the image of ∂M∞ in R3 bounds
a convex region. The rigidity theorem of Pogorelov–Cohn-Vossen then im-
plies that the image of ∂M∞ is a sphere. From this we deduce that the mean
curvature H of M∞ satisfies H = 2. Elliptic regularity shows that M∞ is
smooth, and we conclude from the boundary and curvature conditions that
(M∞, g∞) = (B, gEuc). This shows that (Mi, gi) converges to (B, gEuc) in the
weak L2,2 topology. To establish strong convergence, we note that the weak
convergence Hi ⇀ 2 in B1/2,2 and the compact embedding Bs,2 ⊂⊂ B1/2,2

implies that Hi → 2 in the B1/2,2 topology. Then the proof of Theorem 1.0.3
establishes strong convergence of (Mi, gi) as desired.
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