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Abstract of the Dissertation

Computation of Floer Invariant of (2, 2n)-Torus
link Complement

by

Jaepil Lee

Doctor of Philosophy

in

Mathematics

Stony Brook University

2013

A closed three manifold invariant Heegaard Floer homology was

generalized to bordered Heegaard Floer homology, defined by Robert

Lipshitz, Peter Ozsváth and Dylan Thurston. Bordered Heegaard

Floer homology is an invariant of three manifold with connected

boundary, and its variant doubly bordered Floer homology is a bi-

module defined on three manifold with two disconnected boundary

components. In this thesis, we compute bordered Floer homology

of (2, 2n)-torus link complement.
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Chapter 1

Introduction

In recent years, the Heegaard Floer theory was fascinated many low-dimensional

topologist. P. Ozsváth and Z. Szábo developed the Heegaard Floer invariant

of closed 3-manifold and led to breakthrough in low dimensional topology. It

was also proved to be equivalent to three-dimensional Seiberg-Witten Floer

homology [4] that achieves one of its initial motivation of development. More-

over, Heegaard Floer homology turned out to be useful in defining knot and

link invariant([10], [13], [11]), namely knot Floer homology and link Floer ho-

mology. In particular, knot Floer homology and Heegaard Floer homology of

three manifold obtained by integral surgery on knot turned out to be closely

related([13], [12]). For the link surgery case, the relation was discovered but

more complicated than the knot case([8]).

More recently, Lipshitz, Ozsvath and Thurston extended the theory to the

3-manifold with nonempty boundary. Bordered Floer homology was first in-

troduced by R. Lipshitz in [5], which consists of two different modules; ĈFD
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and ĈFA. Its homotopy type is an topological invariant of three manifold

with connected boundary and diffeomorphism type of its boundary. In addi-

tion, one can recover the Heegaard Floer homology of closed three manifold

by taking “A∞ tensor product” of ĈFA and ĈFD.

Bordered Floer homology of three manifold with genus one is also re-

lated to knot Floer homology. In [6], they described an algorithm to recover

ĈFD(S3\ν(K)) from knot Floer homology CFK− with arbitrary framing.

This enables to compute Heegaard Floer homology of surgered manifold by

taking A∞ tensor product with solid torus.

In [7], they have generalized bordered Floer homology to doubly bordered

Floer homology. As the name suggests, it associates three manifold with two

boundary component to three different types of bimodules; ĈFDA, ĈFDD,

and ĈFAA. It is natural to consider S3\ν(L), where L is a link with two com-

ponents. In this thesis, we give first calculation of ĈFDD(S3\ν(L)), where L

is (2, 2n)-torus link.
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Chapter 2

Backgrounds on Bordered Floer

Theory

In this section, we will quickly define algebraic preliminaries of the bordered

Floer homology.

2.1 A∞-module

Roughly speaking, A∞-module is a right module M on A∞-algebra A, with a

set of maps m : M ⊗ T ∗(A)→M such that m2 vanishes. We will assign A∞-

module to a link complement S3\νL. Most definitions are introduced in [6],

chapter 2.

Definition 2.1.1 Let F be a field of characteristic two. Then A∞-algebra is

a F-vector space A with multilinear maps µi : A⊗i → A for i ≥ 1 satisfying
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compatibility condition

∑
i+j=n+1

n−j+1∑
l=1

µi(a1 ⊗ · · · ⊗ al−1 ⊗ µj(al ⊗ · · · ⊗ al+j−1)⊗ al+j ⊗ · · · ⊗ an) = 0

for all n ≥ 1. An A∞-algebra with unit 1 is said to be strictly unital if

µ2(1, a) = µ2(a, 1) = a and µi(a1 ⊗ · · · ⊗ ai) = 0 if i 6= 2 and aj = 1 for some

j.

We combine maps µi into a single map µ : T ∗(A)→ A.

Above relation can be considered as follows. We define a map D : T ∗(A)→

T ∗(A) by

D(a1 ⊗ · · · ⊗ an) =
n∑
j=1

n−j+1∑
l=1

a1 ⊗ · · · ⊗ µj(al ⊗ · · · ⊗ al+j−1)⊗ · · · ⊗ an,

then the compatibility condition is symbolically written as µ◦D = 0 or D◦D =

0.

Definition 2.1.2 A right A∞-module M is a F-vector space M with maps

mi : M ⊗ A⊗(i−1) →M for i ≥ 1, satisfying compatibility conditions

0 =
∑

i+j=n+1

mi(mj(x⊗ a1 ⊗ · · · ⊗ aj−1)⊗ · · · ⊗ an−1)

+
∑

i+j=n+1

n−j∑
l=1

mi(x⊗ a1 ⊗ · · · ⊗ al−1 ⊗ µj(al ⊗ · · · ⊗ al+j−1)⊗ · · · ⊗ an−1)

An A∞-module is said to be strictly unital if for any x ∈ M , m2(x, 1) = x

and mi(x⊗ a1 ⊗ · · · ⊗ ai−1) = 0 for all i > 2 and some aj = 1.
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Instead of spelling out compatibility conditions, we draw diagram for no-

tational convenience. To do so, first we define a comultiplication

∆(a1 ⊗ · · · ⊗ an) =
n∑

m=0

(a1 ⊗ am)⊗ (am+1 ⊗ · · · ⊗ an).

The map mi takes 1 element from M and i− 1 elements from A. The combi-

nation of maps mi is denoted m, and compatibility condition in Definition 2.2

can be described by diagram below.

���
�
�
�
�

z� ~~~
~~~

���
�
�
�
�
�
�

~� ����������

����������

∆

{� ~~~~
~~~~

�� �
��������

���������

m

���
� + D

z� ||||
||||

= 0.

m
���
� m

���
�

A dashed line represents input from M , and double line from T ∗(A).

2.2 Type D structure

First we fix a unital dg algebra A with differential µ1 : A → A and multipli-

cation µ2 : A ⊗ A → A. Let N be a F2-vector space equipped with a map

δ1 : N → A⊗N satisfying a compatibility condition as follows.

(µ2 ⊗ IN) ◦ (IA ⊗ δ1) ◦ δ1 + (µ1 ⊗ IN) ◦ δ1 = 0

We call a pair (N, δ1) Type D structure over A.
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We define maps δk : N → A⊗k ⊗N inductively

δ0 = IN

δi = (IA⊗(i−1) ⊗ δ1) ◦ δi−1

Thus we have a map δ : N → T ∗(A)⊗N defined to be

δ(x) :=
∞∑
i=0

δi(x)

The algebra we consider later has following properties. First, it has trivial

differential, so the compatibility condition is (µ2 ⊗ IN) ◦ (IA ⊗ δ1) ◦ δ1 = 0.

Second, it has a subset of orthogonal idempotents I = {ι1, ι2} ⊂ A and the

unit element 1 ∈ A which is sum of the idempotents; that is, ι1 + ι2 = 1.

Lastly, N can be written as direct sum of 2 subspaces N1 and N2 with left

I-action such that

• ιi acts trivially on Nj if i = j

• ιiNj = 0 if i 6= j.

2.3 The Strands Algebra

One of the main concern of the bordered Floer homology is associating a type

D structure on bordered Heegaard diagram. Here, the dg algebra of this type

D structure is called strands algebra. Roughly speaking, strands algebra is

a dg algebra imposed on the boundary of 3 manifold, whose generators are

“Reeb” chords on the boundary of its Heegaard diagram. Detailed description
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can be found on chapter 3 of [6].

Let F be a surface of genus k, and choose a preferred disk D ⊂ F and a

point z on ∂D. We consider a a handle decomposition of F as follows. D is

a zero-handle of F and mark 4k points on the boundary of D away from z.

These 4k points are partitioned into pairs so that gluing of 2k 2 dimensional

1-handles on those pairs gives a surface F , i.e, the boundary of handlebody

after attaching 1-handles is a circle. Conventionally we denote the data a

pointed matched circle Z = (Z, a,M, z), where Z = ∂D is an oriented circle,

M : {1, · · · , 4k} → {1, · · · , 2k} a matching data and a = {a1, · · · , a4k} 4k

points on the boundary.

In the chapter 3 of [6], the detailed description on constructing strands

algebra is given. However, since we will be mainly interested on the torus

boundary case, we focus on the surface F of genus 1.

If F is a torus, then we have 4 points a = {a1, · · · , a4} and z on the bound-

ary of its preferred disk D. Cutting open Z = ∂D on z, so that 4 points on the

boundary Z be labeled a1, a2, a3, and a4 along the orientation of Z. The match-

ing M : {1, 2, 3, 4} → {1, 2} sends M(1) = M(3) = 1 and M(2) = M(4) = 2.

See [Figure 2.1]. The diagram denotes the core of 1-handles attached on the

pairs aa1 and aa2, respectively.

Sometimes we will denote ai l aj if i < j.
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There are 6 Reeb chords ρ1, ρ2, ρ3, ρ12, ρ23, ρ123 starting and ending on

a1, · · · , a4. Each Reeb chords travels as follows.

• ρ1 starts at a1 and ends at a2.

• ρ2 starts at a2 and ends at a3.

• ρ3 starts at a3 and ends at a4.

• ρ12 starts at a1 and ends at a3.

• ρ23 starts at a2 and ends at a4.

• ρ123 starts at a1 and ends at a4.

There are constant Reeb chords ιi, (i = 1, · · · , 4) as well, by defining ιi to be

a constant chord starting and ending at ai. We define idempotents ι1 = ι1 + ι3

and ι2 = ι2 + ι4. Products between Reeb chords can be considered as concate-

nation of chords. More precisely, ρ1ρ2 = ρ12, ρ2ρ3 = ρ23, ρ1ρ23 = ρ12ρ3 = ρ123.

Concatenations between Reeb chords and idempotents are also well defined.

For example, ι1ρ1 = ρ1ι2 = ρ1 and so on. For any two chords ρi and ρj such

that the ending point of ρi is different from the starting point of ρj, ρiρj is

defined to be zero.

Remark 2.3.1 Some readers can consider an element that contains more than

one Reeb chords. In fact, the originial definition given by [6] is that the strands

algebra A(Z) associated to pointed matched circle Z = (Z, a,M, z) can be

decomposed into

A(Z) =
k⊕

i=−k

A(Z, i)

8



Figure 2.1: The figure on the top left corner represents torus with a preferred
disk and two 2-dimensional 1 handles attached to it. The figure on the top
right depicts boundary of the preferred disk after cutting open at the point z,
with matching data given by 1 handles. Idempotents on the middle row are
given as sum of two constant chords on the matching. The bottom row has 6
Reeb nonconstant chords.

where k is the genus of surface given by Z and A(Z, i) is a summand whose

number of Reeb chords equals i + k. However, A(Z, i) acts trivially on ĈFA

and ĈFD unless i = 0. ([6], Chapter 6). Thus we will be mainly interested in

summand A(Z, 0) part only.

Definition 2.3.2 Strands algebra of torusA(T ) is generated over F2 by ρ1, · · · , ρ123

and idempotents ι1, ι2 with ι1 + ι2 = 1, whose product is defined to be a con-

catenation of chords.
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We let I be a set of idempotents of A(T ).

Remark 2.3.3 In [6], more general description of strands algebra is given.

In fact, strands algebra has a differential that “uncrosses” each inversions of

given Reeb chord. However, interesting differential appears only if the genus

of surface F ≥ 2. That means the differential of the torus algebra is trivial.

2.4 Heegaard Floer Homology of Closed 3-Manifold

Let Y be a closed three manifold and Σ be its Heegaard surface of genus g.

In [9], Heegaard Floer homology of Y was originally defined as Lagrangian in-

tersection Floer theory on a symmetric product of Heegaard surface Symg(Σ),

which is a symplectic manifold whose symplectic structure and almost com-

plex structure derived from those of original Heegaard surface Σ. Let α =

{α1, · · · , αg} and β = {β1, · · · , βg} be attaching circles on Σ, thus circles

αi ∈ α are mutually non-intersecting(same is true for βi ∈ β). αi and βj may

intersect, and if so, they intersect transversally. The symmetric product Tα :=

α1×· · ·×αg and Tβ := β1×· · ·×βg are Lagrangian submanifold in Symg(Σ),

and their intersections are g-tuple of points x = {x1, · · · , xg} ∈ Tα∩Tβ where

each αi and βj contains exactly one xl ∈ x.

In Lagrangian Floer intersection theory, it is natural to consider a holo-

morphic disk between intersections. In this Heegaard Floer setting, the holo-

morphic disk flowing between x,y ∈ Tα ∩ Tβ should satisfy following:

• u : D = [0, 1] × iR → Symg(Σ) be J-holomorphic map, where J is a
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generic choice of almost-complex structure on Symg(Σ).

• u({1} × R) ⊂ Tα and u({0} × R) ⊂ Tβ.

• limt→−∞ u(s+ it) = x and limt→+∞ u(s+ it) = y.

R acts on holomorphic curve by reparametrization. We denote the moduli

space of holomorphic strips up to reparametrization MJ(x,y). If we drop

the holomorphic condition, the set of all such maps are denoted π2(x,y), and

such map is called Whitney disk between x and y. Any element of π2(x,x) is

periodic domain.

Suppose that there is a Whitney disk flows from x to y. This condition is

equivalent to say that there is a curve on Y that is trivial in terms of homology

H1(Y ). More precisely, let a be a path from x to y in Tα and b in Tβ. The

difference a − b gives a loop in Symg(Σ), and furthermore a loop in Y using

following identification.

H1(Symg(Σ))

H1(Tα)⊕H1(Tβ)
∼=

H1(Σ)

[α1], · · · , [αg], [β1], · · · , [βg]
∼= H1(Y ; Z)

Let us denote ε(x,y) the image of a− b in H1(Y ; Z). Then ε(x,y) = 0 iff

π2(x,y) 6= φ. This fact enables to read Whitney disk from Heegaard diagram.

In order to see existence of holomorphic curves, we also need to define

multiplicity and domain. Following definitions are from definition 2.13 of [9].

Definition 2.4.1 Fix a point z ∈ Σ− α1− · · · − αg − β1 · · · − βg. Let nz be a
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map which sends a Whitney disk u to the algebraic intersection number

nz(u) = ]u−1({z} × Symg−1(Σ)).

Definition 2.4.2 Let D1, · · · ,Dm be closures of the components of Σ− α1 −

· · · − αg − β1 − · · · − βg. Given a Whitney disk u : D→ Symg(Σ), the domain

associated to u is the formal linear combination of {Di}mi=1:

D(u) =
m∑
i=1

nzi
(u)Di

where zi ∈ Di are the points in the interior of Di. If all the coefficients nzi
≥ 0,

then we write D(u) ≥ 0.

When g = 1, it is not hard to visualize such a holomorphic disk from

Heegaard diagram, since Symg(Σ) = Σ. In fact, any nonnegative bigon do-

main(thus enclosed by α1 and β1 and has 2 intersections are actually x and

y, respectively) has a holomorphic curve of its Whitney disk. By Riemann

Mapping Theorem, existence of the holomorphic disk flowing from x to y is

clear. However, finding holomorphic map when g > 1 is not easy in general.

Remark 2.4.3 The nonnegativeness of coefficients of domain is crucial, be-

cause in the neighborhood of each {zi} × Symg−1(Σ), where zi ∈ Di, we are

assuming integrable almost complex structure so the holomorphic disk u has to

meet it non-negatively.

Remark 2.4.4 Following proposition (Lemma 3.6, [9]) is extremely useful in

computation of holomorphic disk.
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Lemma 2.4.5 Given holomorphic disk u ∈ MJ(x,y), there is a g-folded

branched covering space p : D̂→ D and holomorphic map û : D̂→ Σ, with the

property that for each z ∈ D, u(z) = û ◦ p−1(z).

Let us confine ourselves that g = 2 and Y is a rational homology sphere, in

fact S3. Choose a point z ∈ Σ−α1−· · ·−αg−β1−· · ·−βg. Let x = {x1, x2}

y = {y1, y2}. Suppose there is a rectangular domain D =
∑

i nzi
Di, whose

vertices are alternating between xi and yj in any direction (i, j = 1, 2). If

this is the case, then if fact this is the only domain connecting x and y with

nz(D) = 0, since it is rational homology sphere. In addition, let us assume that

all coefficients are 1. Then there is a biholomorphic map û between rectangular

domain and a unit disk D̂ ⊂ C. Letting p : D̂ → D by z 7→ z2, we can use

lemma above to ensure there is a holomorphic map u : D→ Sym2(Σ) obtained

from û. Hence, if two generators x and y has only rectangular connecting

domains on the Heegaard diagram, computation gets easier.

Heegaard Floer homology ĤF is defined on a pointed Heegaard diagram

(Σ,α,β, z) where z is a point on Σ away from curves α and β. Let S(H) be

a set of g-tuple of points, and ]M(φ) be a signed number of points of moduli

spaceM(φ) of holomorphic disks in homotopy class φ. If the dimension ofM

is not zero, set ]M(φ) = 0. Heegaard Floer homology is generated by S(H)

over F2, whose differential ∂ is defined by

∂̂x =
∑

y∈S(H)
φ∈π2(x,y),nz(φ)=0

](M(φ)) · y

13



A priori, the differential may not be a finite sum, which is the case when

there are infinitely many holomorphic disks of one dimensional moduli space

flowing between generators. To ensure the differential to be a finite sum, we

need Heegaard diagram to be admissible.

Definition 2.4.6 Heegaard diagram is admissible if every nontrivial periodic

domain has both positive and negative multiplicities.

Suppose π2(x,y) is nonempty, then there is domain D corresponding to the

element of π2(x,y). Proposition 2.15 of [9] shows π2(x,y) ∼= Z ⊕H1(Y ; Z).

If diagram is not admissible, then one can find a positive periodic domain cor-

responding to generators of summands. This possibly results infinitely many

holomorphic disks connecting generators.

Lipshitz invented a different approach of Heegaard Floer homology using

cylindrical formulation without introducing a symmetric product of Heegaard

surface Σ, and that still gives same result. One should consult [5] for the de-

tailed description. We spell out the construction only.

The 4-manifold W = Σ × [0, 1] × R is required for his construction. We

14



also consider projections maps

πΣ : W → Σ

πD : W → [0, 1]× R

πR : W → R

Instead of using holomorphic strip, we use a Riemann surface S with

boundary. On the boundary there are g “-”-punctures {p1, · · · pg} and g “+”-

punctures {q1, · · · , qg}. Choosing an appropriate almost complex structure

J on Σ × [0, 1] × R, we will consider following proper J-holomorphic curve

u : (S, ∂S)→ (Σ× [0, 1]× R, (α× 1× R) ∪ (β × 0× R)).

• The source S is smooth (not nodal).

• The map u is an embedding.

• u(∂S) ⊂ (α× {1} × R) ∪ (β × {0} × R)

• There is no component of S on which πD ◦ u is constant.

• For each i, u−1(αi × {1} × R) and u−1(βi × {0} × R) each consist of

exactly one component of ∂S\{p1, · · · , pg, q1, · · · , qg}.

• πD ◦ u is g-folded branched cover.

• At each −-puncture q, limz→q(πR ◦ u)(z) = −∞.

• At each +-puncture q, limz→q(πR ◦ u)(z) = +∞.

15



• πΣ ◦ u does not cover the region of Σ adjacent to z.

• For each t ∈ R and each i = 1, · · · , g − k, u−1(αi × {1} × {t}) consists

of exactly one point.

• The energy of u is finite in the sense of [1].

We call that curve u is connecting x and y. As before ε(x,y) = 0 condition

ensures the existence of topological map for given domain. Lipshitz proves that

homology class H2(Σ × [0, 1],α × {1} ∪ β × {0}) is isomorphic to homotopy

class π2(x,y) from the previous definition. The homology class will be also

denoted π2(x,y), by abusing notation. We will count holomorphic curves

in homology classes in H2(Σ × [0, 1],α × {1} ∪ β × {0}), and denote moduli

space of holomorphic curvesM(x,y). We define Heegaard Floer homology (in

cylindrical setup), a F2-vector space generated by S(H) with similarly defined

differential as below.

∂̂x =
∑

y∈S(H)
φ∈π2(x,y),nz(φ)=0

](M(φ)) · y,

where ]M(φ) counts holomorphic curves in homology class φ. See [5] for the

detailed explanation.

2.5 Bordered Heegaard Floer Homology

We briefly recall the construction of bordered Heegaard diagram of connected

boundary case, then consider two disconnected boundary component case

later. Topics discussed here can be found in [6] in more generalized setup.
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However, we will be mainly focusing on torus boundary case.

Let Σ be a surface of genus g with a puncture p and k be an integer less

less than or equal to g. We will sometimes regard the puncture as a circle

boundary. There are set of pairwise disjoint circles β = {β1, · · · , βg} on Σ,

and set of pairwise disjoint curves α = {αc1, · · · , αcg−k, αa1, · · · , αa2k}. αci are

circles on Σ, but αaj are arcs so that ∂αaj are on the boundary of Heegaard

surface Σ. We also put a point z on the ∂Σ away from endpoints of αaj .

Curves in α and β may intersect transversely. Lastly, Σ \ α and Σ \ β

are connected. Then the boundary of Σ is a pointed matched circle. That

is, Z = ∂Σ, a = {αaj ∩ Z}2k
j=1, M be a matching that matches two points on

Z connected by arcs, and z is a point on the boundary. Σ \ β is connected

implies that the boundary of handlebody after attaching 1-handles along the

matched points is a circle.

Definition 2.5.1 A quadruple H = (Σ, α, β, z) is called a pointed Heegaard

diagram.

Construction of three manifold Y (H) from pointed Heegaard diagram H

is as follows: First, thicken the Heegaard surface [0, 1] × Σ, and attaching 3

dimensional 2 handles to βi × {1} × Σ and αcj × {0} × Σ. Identifying the

boundary of Heegaard surface to a pointed matched circle Z as described

above, we get a parametrization of the boundary surface. More precisely, the

resulting surface ∂Y (H) consists of three components:

• a surface D1, which is obtained after attaching 2 handles βi to {1} × Σ

17



• a surface D2 = [0, 1]× ∂Σ

• a surface D3, which is obtained after attaching 1 handles αcj to {0} × Σ

D1 is a disk, D2 is an annulus and D3 is genus-g surface with a puncture.

Of course ∂Y (H) = D1 ∪ D2 ∪ D3. This data can be considered to be a

parametrization of genus g surface with preferred disk D1 with parametriza-

tion is explicitly given by αai . We denote the boundary surface F (Z).

We now define generator of bordered Floer homology. Let x = {x1, · · · , xg}

such that

• each β circle contains exactly one xi

• each α circle contains exactly one xi

• each α arc contains at most one xi.

We again denote S(H) a set of all generators of Heegaard diagram H.

We also need slightly change Lipshitz’s formulation to define homology

class, domains and admissibility for the bordered Floer homology. First of all,

consider following homology group.

H2(Σ× Is × It, ((Sα ∪ Sβ ∪ S∂)× It) ∪ (Gx × {−∞}) ∪ (Gy × {∞})), (2.1)
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where

Is = [0, 1]

It = [−∞,∞]

Sα = α× {1}

Sβ = β × {0}

S∂ = (∂Σ\z)× Is

Gx = x× Is

Gy = y × Is

The homology class will be also denoted π2(x,y).

Definition 2.5.2 A homology class connecting x to y, denoted π2(x,y), is

element of above homology group. Moreover, projecting a homology class B ∈

π2(x,y) onto Σ gives linear combination of components of Σ\(α ∪ β). We

call such linear combinations domain of B.

By abusing notation, B refers to a domain or homology class.

Remark 2.5.3 Conventionally, we will be only interested in the domain whose

coefficient of the region containing z equals zero, because this theory only in-

terested in ĤF . Under this hypothesis, group of periodic domains π2(x,x) is

isomorphic to H2(Y, ∂Y ) ([6], Lemma 4.18).

A boundary of domain B consists of three different kinds of domains; ∂αB,

∂βB and ∂∂B, contained in α, β and ∂Σ respectively. If ∂∂B = 0, then we
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call B is provincial.

Definition 2.5.4 A bordered Heegaard diagram is admissible if every periodic

domain has both positive and negative coefficients. If every provincial domain

has both positive and negative coefficients, it is called provincially admissible.

Admissibility is a stronger condition then provincial admissibility. Every

admissible diagram is provincially admissible, but this inclusion is strict.

To define bordered Floer homology, we will use cylindrical formulation with

slight change. First fix two generators x = {x1, · · · , xg} and y = {y1, · · · , yg},

and a set of Reeb chords {ρ1, · · · , ρl}. Let S be a Riemann surface with

boundary. On the boundary of S, there are g +-punctures, g −-punctures, and

l e punctures corresponding to Reeb chords. More precisely, each −-puncture

corresponding to xi and +- puncture to yi, and each e puncture corresponding

to Reeb chords. The conditions imposed on u carry on and there are some

additional conditions required to handle the punctures on boundary.

• u extends to a proper map ue : Se → Σe × [0, 1] × R, where Se and Σe

denote result of east punctures filled.

• For each t ∈ R and each i = 1, · · · 2k, u−1(αai × {1} × {t}) consists of at

most one point. (strong boundary monotonicity condition)

e-punctures can be ordered by the map πR◦u, so Reeb chords can be ordered

as well. Thus we can rearrange the sequence of Reeb chords ρ = {ρi1 , · · · , ρil}.

Remark 2.5.5 If genus g of boundary is greater than 1, each ρij may not be

a single chord. In fact, ρij can be a sequence of chords.
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Fix x and y. Let B ∈ π2(x,y) be a homology class, where π2(x,y) is

a set of homology classes connecting x and y. We also fix a sequence of

Reeb chords ρ. Now define a moduli space of curvesMB
(x,y; ρ), and denote

MB(x,y; ρ) :=MB
(x,y; ρ)/R to be a reduced moduli space. Sometimes we

will call a pair (B,ρ) is compatible.

ĈFD(H) is type D structure generated over F2 by set of all generators

S(H). We set a pointed matched circle−Z = (−∂Σ, a = {∂αa1, · · · , ∂αa2k}, z).

Here, the negative sign denotes opposite orientation induced from Σ.

From now on, we will focus more on the torus boundary case. Then −Z =

(−∂Σ, a = {∂αa1, ∂αa2}, z) is the pointed matched circle, and the torus algebra

A(T ) = A(−Z). Let ιi ∈ A(T ) be an idempotent associated to αai , i = 1, 2,

respectively. To get a module structure, the left I-action is defined as follows.

ι1x =

 x if x does not occupy the arc αa1

0 otherwise

ι2x =

 x if x does not occupy the arc αa2

0 otherwise

As an A(T )-module,

ĈFD(H) := A(T )⊗I S(H)
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Type D structure map δ1 : ĈFD(H) → A(T ) ⊗ ĈFD(H) is given by

counting pseudo holomorphic curves inMB(x,y; ρ) whose expected dimension

equals 0. (Equivalently, the index ind(B,ρ) equals 1.)

We define the map δ1 by

δ1(x) :=
∑

y∈S(H)

∑
B∈π2(x,y)

{ρ|ind(B,ρ)=1}

](MB(x,y; ρ))(−ρi1) · · · (−ρil)⊗ y.

Note that the negative signs before torus algebra elements denote orienta-

tions of associated Reeb chords have been reversed.

The number ](MB(x,y; ρ)) of pseudo holomorphic curves is counted mod-

ulo 2. This sum is a finite sum, if the Heegaard diagram is provincially admis-

sible. Chapter 6 of [6] proves that this map is in fact a type D structure map.

Again, a question on finiteness of the differential map δ1 arises. Finiteness

is guaranteed if the bordered Heegaard diagram is admissible. However, to

compute ĈFD, provincial admissibility condition is enough. In fact, a do-

main adjacent to the boundary whose coefficient is different from 1 cannot

contribute to differential. If the coefficient is greater than 1, it leads to same

Reeb chords appear twice or more in the differential and its product must be

zero.
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Expected dimension of MB(x,y; ρ), or index ind(B,ρ) can be computed

from the diagram. First, we define Euler measure of a region in Σ\(α∪β) to

be a Euler characteristic of the region minus (1
4
×{number of 90◦ corners}− 1

4
×

{number of 270◦ corners}). Then we extend it to domain so it to be additive

under union, and denote it e(B). For a homology class B ∈ π2(x,y), where

generators x = {x1, · · · , xg} and y = {y1, · · · , yg}, we define

nx(B) =

g∑
i=1

1

4
{ sum of four coefficients of domains surrounding xi}.

ny(B) is similar.

A sequence of Reeb chords ρ also affects the index. Recall Z = (Z, a,M, z)

denoted pointed matched circle. For a single Reeb chord ρ in (Z\z, a), then

we let ρ− ∈ a denote the initial endpoint and ρ+ ∈ a the final endpoint of ρ.

Definition 2.5.6 Linking of ρ1 and ρ2, denoted L(ρ1, ρ2), is defined as fol-

lows.

L(ρ1, ρ2) =



1/2 if ρ+
1 = ρ−2

−1/2 if ρ+
2 = ρ−1

0 if ρ1 ∩ ρ2 = φ or ρ1 ⊂ ρ2 or ρ2 ⊂ ρ1 or ρ1 = ρ2

1 if ρ−1 l ρ−2 l ρ+
1 l ρ+

2

−1 if ρ−2 l ρ−1 l ρ+
2 l ρ+

1 .
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Then a quantity ι(ρ), where ρ = (ρ1, · · · , ρl), is

ι(ρ) := − l
2

+
∑
i<j

L(ρi, ρj).

Now we are ready to give formula of index of homology class B compatible

to ρ([6], Definition 5.61).

ind(B,ρ) := e(B) + nx(B) + ny(B) + |ρ|+ ι(ρ)

where |ρ| is the length of the sequence ρ.

We can also define rightA(T )-module ĈFA(H). This time we set a pointed

matched circle Z = (∂Σ, a = {∂αa1, ∂αa2}, z) whose orientation is induced

from Σ. The torus algebra A(T ) = A(Z). The right A(T )-module ĈFA(H)

is strictly unital (A∞) algebra, generated by S(H) over F2 with right I-action

xι1 =

 x if x does occupy the arc αa1

0 otherwise

xι2 =

 x if x does occupy the arc αa2

0 otherwise

Then there are maps

mn+1 : ĈFA(H)⊗I A⊗I · · · ⊗I A → ĈFA(H)
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defined by

mn+1(x, ρ1, · · · , ρn) =
∑

y∈S(H)

∑
B∈π2(x,y)
ind(B,ρ)=1

](MB(x,y; ρ1, · · · , ρn))y.

This map is proven to be satisfying A∞ compatibility conditions([6], chapter

7).

Usually ĈFA has richer structure than ĈFD. For example, if a sequence

ρ = {ρ1, · · · , ρn} of a compatible pair (B,ρ) has two consecutive Reeb chords

ρi and ρi+1 such that ρi ·ρi+1 = 0, ĈFD considers terms related the compatible

pair zero. However, such compatible pair may result nontrivial term in ĈFA.

2.6 Doubly Bordered Heegaard Floer Homol-

ogy

If a three manifold Y has connected boundary, the surface F (Z), preferred

disk D and a point on the ∂D determine parametrization of the boundary

of Y . We write this data a triple (F (Z), D, z). However if Y has two

disconnect boundary components, we need to fix two surfaces (F1(Z1), D1, z1)

and (F2(Z2), D2, z2). Fixing a framed arc pointing into Di at zi, i = 1, 2, we

drill a tunnel along the framed arc so that we get a single boundary surface

whose genus is the sum of genuses of F1(Z1) and F2(Z2). The the bimodule

of the doubly bordered three manifold Y is defined via ĈFD of the drilled
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manifold, namely Ydr.

Definition 2.6.1 An arced bordered Heegaard diagram with two boundary

component is a tuple (Σ, α, β, z) satisfying:

• Σ is a compact, genus g surface with 2 boundary component ∂LΣ and

∂RΣ.

• β is g-tuple of pairwise disjoint curves in the interior of Σ.

• α = {αa,L = {αa,L1 , · · · , αa,L2l }, αa,R = {αa,R1 , · · · , αa,R2r }, αc = {αc1, · · · , αcg−l−r}},

is a collection of pairwise disjoint embedded arcs with boundary on ∂LΣ

(the αa,Li ), arcs with boundary on ∂RΣ (the αa,Ri ), and circles (the αci) in

the interior of Σ.

• z is a path in Σ\(α ∪ β) between ∂LΣ and ∂RΣ.

As usual, we denote ZL (respectively, ZR) be a pointed matched circle on

the left (respectively, on the right).

Construction of doubly bordered three manifold from an arced bordered

Heegaard diagram is as follows. First cut open Σ along the path z. Since

z is connecting to boundaries ∂LΣ and ∂RΣ of Σ, the resulting diagram

Hdr is a Heegaard diagram of single boundary. Thicken Hdr and attaching

3-dimensional 2-handles on it, we get a bordered manifold Ydr with single

boundary component. The boundary can be decomposed into three pieces:

F1(ZL)\D1, F2(ZR)\D2, and an annulus A. If we glue another 3-dimensional

2 handles along the annulus, we obtain the required doubly bordered three
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manifold.

There are three types of bimodule; ĈFAA, ĈFDA, ĈFDD. We will

be interested in ĈFDD and ĈFAA only. Before giving definitions of these

bimodules, we introduce algebraic preliminaries of them.

Definition 2.6.2 Let A and B be A∞-algebras over F. A∞-bimodule AMB

over A and B consists of (F,F)-bimodule M and maps

mi,1,j : A⊗i ⊗M ⊗B⊗j →M

such that following compatibility condition holds.

0 =
∑

k+l=i+1
λ+η=j+1

mk,1,λ(ml,1,η(x, a
L
1 ⊗ · · · ⊗ aLl−1, a

R
1 ⊗ · · · ⊗ aRλ−1), aLl ⊗ · · · ⊗ aLi−1, a

R
λ ⊗ · · · ⊗ aRj−1)

+
∑

k+l=i+1

i−l∑
n=1

mk,1,j(x, a
L
1 ⊗ · · · ⊗ aLn−1 ⊗ µl(aLn ⊗ · · · ⊗ aLn+l−1)⊗ · · · ⊗ aLi−1, a

R
1 ⊗ · · · ⊗ aRj−1)

+
∑

λ+η=j+1

j−η∑
n=1

mi,1,λ(x, a
L
1 ⊗ · · · ⊗ aLi−1, a

R
1 ⊗ · · · ⊗ aRn−1 ⊗ µl(aRn ⊗ · · · ⊗ aRn+l−1)⊗ · · · ⊗ aRj−1)

for all i and j. By denoting m =
∑

i,jmi,1,j, the compatibility condition can
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be drawn in diagram as below.
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As in section 3.1, a dashed line represents module element, and a double

line represents element from tensor algebra T ∗(A).

Definition 2.6.3 Let A and B are A∞-algebras over F. A∞-bimodule AMB

over A and B consists of (F,F)-bimodule M and maps

δ1 : M → A⊗M ⊗B

satisfying following compatibility condition.

((µL2 , µ
R
2 )⊗IM)◦((IA, IB)⊗δ1)◦δ1+((µL1 , IB)⊗IM)◦δ1+((IA, µR1 )⊗IM)◦δ1 = 0
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Again, the compatibility condition is drawn in diagram as below.

���
�

���
�

���
�

δ1

���
�

�����������

��0
00000000 δ1

���
�
�
�
�
�
�

�����������

��)
))))))))))))) δ1

���
�
�
�
�
�
�

��0
00000000



��������������

δ1

���
�
�
�

~~||||
  BBBB + + = 0

µ2

��

µ2

��

µ1

��

µ1

��

A generating set of bimodules ĈFDD(H) and ĈFAA(H) is same as the

set S(Hdr) of generators of drilled diagram, which will be denoted S(H). For

given two generators x and y, a homology class π2(x,y) connecting x and y is

defined in similar manner. Likewise, a domain of homology class B ∈ π2(x,y)

is a linear combination of components of Σ\(α∪β). By convention, we do not

count homology classes or domains that crosses the region contains the path z.

A boundary of domain of homology class B is union of left and right bound-

aries; that is, ∂∂B = ∂∂LB ∪ ∂∂RB. We let

π∂
2(x,y) = {B ∈ π2(x,y)|∂∂B = 0}

π∂L
2 (x,y) = {B ∈ π2(x,y)|∂∂LB = 0}

π∂R
2 (x,y) = {B ∈ π2(x,y)|∂∂RB = 0}.

We denote elements of the homology classes above provincial domain, left-

provincial domain, right-provincial domain respectively.
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A doubly bordered Heegaard diagram is provincially admissible if the bor-

dered diagram Hdr is admissible. Moreover, we call a diagram is left (re-

spectively right) admissible if every nontrivial left-provincial periodic domain

B ∈ π∂L
2 (x,x) (respectively right-provincial periodic domain B ∈ π∂R

2 (x,x))

has positive and negative coefficients.

We now turn to moduli space of curves. Let x and y be generators, and

B ∈ π2(x,y) be homology class connecting them. Once the homology class B

is fixed, there is a compatible pair (B,ρ). The ordered set of Reeb chords ρ

has both left and right Reeb chords. Consider a union of two ordered sets of

Reeb chords
−→
ρL

∐−→
ρR, where

−→
ρL (respectively

−→
ρR) consists of left Reeb chords

(respectively right Reeb chords). An ordered set of Reeb chords ρ said to

interleave
−→
ρL

∐−→
ρR, if ρ =

−→
ρL

∐−→
ρR as a set and the orderings of

−→
ρL and

−→
ρR

agree with the orderings induced by ρ. We will sometimes use (B,
−→
ρL,
−→
ρR) and

MB(x,y;
−→
ρL,
−→
ρR) to denote the compatible pair and its moduli space. The

expected dimension of moduli space of MB(x,y;
−→
ρL,
−→
ρR), or ind(B,

−→
ρL,
−→
ρR) is

computed by formula given above, but it also can be written in terms of
−→
ρL

and
−→
ρR as below.

ind(B,ρ) = e(B) + nx(B) + ny(B) + |
−→
ρL|+ |

−→
ρR|+ ι(

−→
ρL) + ι(

−→
ρR)

Now we are ready to associate two types of bimodules on doubly bordered

Heegaard diagram. First we define ĈFDD(H).
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The left boundary −∂LΣ with a point zL = ∂LΣ ∪ z, whose orientation

is opposite from the induced orientation, can be considered as a pointed

matched circle; i.e, we let −ZL = (−∂LΣ, aL = {∂αa,L1 , ∂αa,L2 }, zL) is the

pointed matched circle. Then the we get the torus algebra A(T ) = A(−ZL)

on the left boundary. Construction of the torus algebra on the right boundary

is also similar.

There is an idempotent action on S(H). Recall that the torus algebra

has a subset I of idempotent elements, namely IL := {ι1, ι2} ⊂ A(−ZL) and

IR := {1, 2} ⊂ A(−ZR). The left and right idempotent action is defined to

be,

ιijx =

 x if αa,Li and αa,Rj are not occupied by x

0 otherwise

Then the map δ1 : S(H) → A(−ZL) ⊗IL
A(−ZR) ⊗IR

S(H) is similarly

defined by taking summation on all possible holomorphic representatives of

compatible pair (B,ρ).

δ1(x) :=
∑

y∈S(H)

∑
B∈π2(x,y)

ind(B;
−→
ρL,
−→
ρR)=1

](MB(x,y;
−→
ρL,
−→
ρR))(−ρLi1) · · · (−ρ

L
il
)⊗(−ρRj1) · · · (−ρ

R
jm)⊗y

where
−→
ρL = {ρLi1 , · · · , ρ

L
il
} and

−→
ρR = {ρRj1 · · · ρ

R
jl
}. Provincial admissibility en-

sures that this sum is finite.
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ĈFAA(H) is an A∞-bimodule over left and right A∞ algebras A(ZL)

and A(ZR) also generated by S(H). The idempotent action is opposite from

ĈFDD case.

xιij =

 x if αa,Li and αa,Rj are occupied by x

0 otherwise

Then following A∞ module map

mi,1,j : S(H)⊗IL
A(ZL)⊗ · · · ⊗ A(ZL)︸ ︷︷ ︸

i times

⊗IR
A(ZR)⊗ · · · ⊗ A(ZR)︸ ︷︷ ︸

j times

→ S(H)

satisfies compatibility condition([7]).

mi,1,j(x; ρLi1 , · · · ρ
L
il
, ρRj1 , · · · , ρ

R
jm) =

∑
y∈S(H)

∑
B∈π2(x,y)

ind(B,
−→
ρL,
−→
ρR)=1

](MB(x,y;
−→
ρL,
−→
ρR))y
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Chapter 3

Computation of ĈFDD of (2, 2n)

Torus link

3.1 Schubert normal form and diagram of 2-

bridge link complement

We will be mainly interested in 2-bridge link, so it is useful to mention Schu-

bert normal form of 2-bridge link(or knot). Let p be an even positive integer

and q be an integer such that 0 < q < p and gcd(p, q) = 1. Let us consider

a circle with 2p marked point on its boundary. Choose a point and label it

a0. Label other points a1, · · · , a2p−1 in clockwise direction. Then connect ai

and a2p−i with straight line, i = 1, · · · , p− 1. Finally connect a0 and ap with

underbridge, a straight line that crosses below other straight lines.

Now consider two copies of such circle. Draw arcs between these two cir-

33



Figure 3.1: Schubert normal form of S(8, 3)-link. According to Thistleth-
waite’s table, it is L5a1 link.

cles, so that each arc is connecting ai from on one circle and aq−i on the

other(the labeling is modulo 2p). These arcs should not intersects any other

straight lines nor other arcs. The resulting diagram gives a link that we denote

S(p, q). The diagram is called Schubert normal form of the link. See [Figure

3.1]. More detailed description, especially about the Schubert normal form of

2-bridge knot can be found in chapter 2 of [13].

Recall that 2-bridge link L is a link in S3 that admits a link diagram with

two maxima and two minima. Given such a link diagram we can also construct

Schubert normal form. Let B1 and B2 be small neighborhoods of those two
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maxima. Consider (S3\νL)\(B1 ∪ B2). Drilling a tunnel connecting B1 and

B2 gives a three-manifold Y with single boundary and the boundary is a genus

2 surface.

The boundary of Y can be viewed as 2-sphere with 4 punctures attached to

2 tubes. For simplicity we assume the two punctures on the left corresponds

to the link component on the left and vice versa. Each component has its

longitude, and it passes on the 4-punctured sphere as a straight line segment

connecting two punctures of the component.

This genus 2 surface divides S3 into two pieces and one of them may not

be a handlebody. Now we apply isotopy on the tubes on the surface so that

the two pieces of S3 are both 2-handlebodies. During this procedure, the

part of the longitudes on the 2-sphere become 2 arcs connecting corresponding

punctures on the sphere. Regard the 4-punctured sphere as D2 ∪ {∞} with 4

marked points, then the longitudes are 2 arcs connecting 2 marked points of

each component on plane. Finally draw two “underpasses” connecting corre-

sponding marked points. See [Figure 3.2].

In this section, we compute a bimodule of torus link complement. (2, 2n)

torus link is a 2 bridge link which can be embedded on unknotted torus, whose

number of crossing is 2n. See [Figure 3.3]. (2, 2n)-torus link can be written as

S(2n, 1) link in Schubert normal form.

We will construct doubly bordered Heegaard diagram of (2, 2n) torus link
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Figure 3.2: The picture above is a genus two surface obtained by digging a
tunnel between two components of S3\νL. Below is obtained after untwist
braid in the middle.
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Figure 3.3: (2, 6)-torus link. In general, (2, 2n)-torus link has 2n crossings in
its alternating projection.

complement from Schubert normal form. Consider Schubert normal form of

the link, which consists of genus 2 surface Σ and two longitudes αL and αR.

The genus 2 surface Σ has two underpasses that can be considered as annuli.

Each annulus has a circle that generates its first homology class, and we denote

these two generators µL and µR. Let βL and βR be circles on Σ such that each

circle crosses µL or µR, respectively. We consider µL and µR as meridians of

components of the link. Each meridians intersects its corresponding longitude

at a single point. Puncture the intersections so that we get a doubly bordered

Heegaard diagram. Thus we get αa,L1 and αa,R1 from αL and αR, and αa,L2 and

αa,R2 from µL and µR. To maintain notational consistency with [7], we will use

β1 for βL, β2 for βR, and ∂LΣ and ∂RΣ for left and right punctures. Lastly,

choose a domain whose boundary is adjacent to ∂LΣ and ∂RΣ, and draw an

(framed) arc connects ∂LΣ and ∂RΣ that lies on the chosen domain. See [Fig-

ure 3.5].

Remark 3.1.1 Reader should be aware that to connect left and right punctures
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Figure 3.4: Top figure is a diagram of (2,6) torus link, where black dots repre-
sents left and right punctures. Middle and bottom figures shows two linearly
independent periodic domains of the diagram.
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Figure 3.5: A general diagram of (2, 2n) torus link. Domain Q0 has framed
arc. The orientation on the boundaries is opposite from usual “right hand”
orientation.

with an (framed) arc is not always possible. In fact, a domain that is adjacent

to both punctures does not exist except for the (2, 2n) torus link case. To fix

this, choose µL or µR and apply a finger move on the chosen meridian along

the longitude so that the resulting puncture is on the domain that is adjacent

to the another puncture.
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3.2 Computation of map δ1 of ĈFDD

Now we will compute ĈFDD(H), where H is Heegaard diagram of (2, 2n)-

torus link complement. The Heegaard diagram is given in [Figure 6].

Periodic domain First we investigate periodic domains π2(x,x). It is

well known that π2(x,x) ∼= H2(Y (H), ∂Y (H)) ∼= Z ⊕ Z, by Meyer-Vietoris

sequence. Thus there are two linearly independent periodic domain in the

diagram. Recall that homology group π2(x,x) ∼= H2(Y, ∂Y ) from Remark

2.13. The proof can be found in [5], Lemma 2.6.1. or [6], Lemma 4.18. In

their proof, they use the isomorphism

π2(x,x) ∼= H2(Σ′ × [0, 1], (α× {1}) ∪ (β × {0}))

where Σ′ = (Σ/∂Σ)\{z}. The isomorphism given above is proved by investi-

gating long exact sequence of pair (Σ′ × [0, 1], (α × {1}) ∪ (β × {0})). That

is,

· · · → H2(Σ′ × [0, 1])︸ ︷︷ ︸
∼=0

→ H2(Σ′ × [0, 1], (α× {1}) ∪ (β × {0}))

→ H1((α× {1}) ∪ (β × {0}))→ H1(Σ′).

Thus periodic domain π2(x,x) ∼= ker(H1(α/∂α)⊕H1(β)→ H1(Σ/∂Σ)). This

isomorphism enables us to find periodic domain from given diagram by choos-

ing right combinations of α and β curves such that sum of their image in

H1(Σ/∂Σ) equals zero. We briefly describe how to find periodic domain from
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such combinations. Explicitly, first choose any orientation on the longitude

αa,L1 (αa,R1 , respectively). This induces orientation of β1 (β2, respectively) fol-

lows. For example, if orientation of αa,L1 is in counterclockwise direction, then

the orientation of β1 is from right to left in the diagram. Then we impose coef-

ficient zero to the outermost region that contains the framed arc. Starting from

the outermost region, we impose regions adjacent to it according to following

rule. Suppose we have two adjacent region A and B such that coefficient of

A equals l and coefficient of B is not determined. If we can reach region B

from region A by crossing a curve of multiplicity k from right to left(notion of

“left” and “right” is justified since we have orientation of curves), we give the

region B coefficient k + l; otherwise we give coefficient −k + l. If we can give

coefficients to all regions in this way consistently, then the orientations given

to curves α and β is boundary in H1(Σ/∂Σ).

Since there are two possible choices of orientations of longitudes up to sign,

we found two generators of π2(x,x). Then the periodic domains are,

Q3 +Q5 +
2n−3∑
i=1

(i+ 1)(Pi +Ri) + (n+ 2)(Q1 +Q4) + (n+ 3)Q2

and

Q3 −Q5 +
2n−3∑
i=1

(1 + (−1)i)

2
(Pi −Ri) +Q4 −Q1.

See also [Figure 3.4].
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Thus this diagram is provincially admissible; in fact, there is no provincial

periodic domain here.

Generators According to the labeling given in the diagram, There are

2n2 + 2n generators and classified into 4 groups.



xiyj where i and j have same parity

ayi where i is even

xib where i is even

ayi,xjb where i and j are odd

From now on, we will disregard generators of last kind because of following

reason. The main purpose of the bordered Floer homology is to compute Hee-

gaard Floer homology of three manifold obtained by taking boundary sum.

In link complement case, we take boundary sum with solid tori. Typically

bordered Heegaard diagram of solid tori is a genus one surface with a punc-

ture, equipped with β = {β1} and α = {αa1, αa2}. In particular, these αai arcs

are glued to αa,Lj or αa,Ri of doubly bordered diagram. Every generator of the

diagram of solid tori occupying exactly one α arc, therefore after gluing two

diagrams the generators of last kind cannot appear in the generators of result-

ing diagram.

Remark 3.2.1 As we have decomposed strands algebra A(Z) into direct sum

of A(Z, i), i ∈ {−1, 0, 1} (see Remark 2.3.1), we can decompose ĈFDD(H)
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as follows.

ĈFDD(H) =
1⊕

i=−1

ĈFDD(H, i)

where

• ĈFDD(H,−1) consists of generator that occupies αa,R1 and αa,R2 .

• ĈFDD(H,+1) consists of generator that occupies αa,L1 and αa,L2 .

• ĈFDD(H, 0) consists of all other generators.

First three groups of generators belong to ĈFDD(H, 0), but last group of gen-

erators does not.

Clearly on the summand ĈFDD(H, 0) has contribution to tensor product

with ĈFA or ĈFD, considering the only nontrivial algebra of ĈFA and ĈFD

is A(Z, 0). Moreoever, since A(Z,−1) and A(Z,+1) are quasi-isomorphic to

F2([6], Example 3.25), so any invertible bimodule over either of these algebras

is also quasi-isomorphic to F2([7], 10.0).

From now on, we will be only interested in the generators belong to ĈFDD(H, 0).

The number of such generators are 2n2, so we will be working on 2n2 genera-

tors placed as in [Figure 3.6].

Domains We will consider domains that contributes to the differential δ1.

First obvious condition is domain should have at most four corners, thus it

can have two or four corners. In [Figure 6] there is no bigon domain, so let

us consider a connected rectangular domain with four corners first. In order
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Figure 3.6: Generators of ĈFDD(H). Blurred generators do not belong to

ĈFDD(H, 0). ayodd are in ĈFDD(H,+1) and xoddb are in ĈFDD(H,−1).

to get such domains, typically we need to stack up regions as follows. First

begin with any provincial region (that is not adjacent to boundaries). Then

one can extend the region by choosing a region adjacent to it. For example, if

one begin with Ri, then may extend it by adding another provincial domain

Ri±1 or Pi±1. The former way of extending region or domain, we will call the

region or domain is horizontally extended. The later will called to be vertically

extended. It is worth pointing out that a provincial region cannot be extended

horizontally and vertically at the same time, because in such cases Maslov in-

dex cannot be one(see [Figure 3.7]). Also we need to consider non-rectangular
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Figure 3.7: Top left : horizontally extended domain. Top right : vertically
extended. Bottom : extended in both ways. Such domain has Maslov index
different from one.

domains. For example, annular domain or genus 2 domain. Annular domains

that have holomorphic representatives also arise, but they do not contribute

to the map δ1. The genus 2 domains have to contain Q1 +Q2 +Q4 and it can

be interpreted as annular domain or rectangular domain. Explanation is given

later in this section.

For the differential δ1 : S(H)→ A(−∂LΣ)⊗A(−∂RΣ)⊗S(H) on ĈFDD(H),

it acts on a generator x ∈ S(H) typically as δ1(x) =
∑
ρI ⊗ σJ ⊗ y, where

I, J ∈ {φ, 1, 2, 3, 12, 23, 123}. Here ρI means an algebra element comes from

the left boundary strands algebra and σJ right strands algebra. To investigate

δ1 actions on generators, it is convenient to classify the resulting terms by its

strands algebra elements.
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Remark 3.2.2 A priori, one may consider a differential that gives product of

multiple algebra elements. For instance, ρIρJ where I, J ∈ {1, 2, 3, 12, 23, 123}.

Clearly, if these Reeb chords cannot be concatenated then its product equals zero

and has no contribution to δ1.

Algebra element 1 We should find all provincial domains. We claim that

only rectangular domains contribute to the differential δ1.

Lemma 3.2.3 Every non-rectangular domain with ind(B,ρ) = 1, its se-

quence of Reeb chords ρ is nonempty.

proof Suppose there is a non-rectangular provincial domain(in this case, an

annulus) that has nontrivial contribution to differential δ1. Then the number

of corners of the domain must be two. This claim is justified by considering

number of different types of corners. Since the number of corners of any

domain should not exceed four, there are only 5 possibilities;

• four 270◦ corners

• four 90◦ corners

• three 270◦ corners and one 90◦ corner

• one 270◦ corner and three 90◦ corners

• two 270◦ corners and two 90◦ corners.

Since the domain was assumed to be provincial, it must be a combination of

regions P1, · · · , P2n−3 and R1, · · ·R2n−3. Considering index formula e(A) +
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nx(A) +ny(A), indices of first three cases cannot be one. Likewise we can eas-

ily rule out the last case. The fourth case does not exist by following reason;

since the shape of domain is annulus, the 270◦ corner must be on the boundary

of the domain. Then the other boundary must have two 90◦ corner. If not, i.e,

if one boundary component has all three 90◦ corners, then there cannot be a

holomorphic involution interchanging inner and outer boundaries. Thus, the

one boundary has two 90◦ corners and the other boundary has one 90◦ corner

and one 270◦ corner. Especially the boundary that has two 90◦ corners should

consist of one α curve and one β curve, and the intersections have to be 90◦.

However such a boundary cannot be obtained by any combination of domains

in [Figure 3.5]. �

Therefore, P1, · · · , P2n−3 and R1, · · ·R2n−3 are only domains not adjacent

to the boundaries, so extending these regions horizontally or vertically is the

only possibility to get provincial domains. Such combinations of extension can

be written explicitly as below.

Pi, Pi +Ri+1 + Pi+2, · · ·

Pi + Pi+1 + Pi+2, Pi + · · ·+ Pi+4, · · · , P1 + · · ·P2n−3,

Ri, Ri + Pi+1 +Ri+2, · · ·

Ri +Ri+1, Ri+2, · · · , R1 + · · ·+R2n−3
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All of these domains are rectangular so each of these domains contribute

nontrivial differential with algebra element 1. In terms of generators,

xiyj 7→



xj−1yi+1 + xi+1yj−1 if j − i > 2

xj+1yi−1 + xi−1yj+1 if i− j > 2

xi+1yj−1 if j − i = 2

xi−1yj+1 if i− j = 2

0 if i = j

Some parts of these differentials are depicted in [Figure 3.8].

Algebra element ρ1 and σ1. Domain Q3 is adjacent to algebra element

ρ1. By the nature of type D structure, any domain whose multiplicity of Q3 is

greater than 1 cannot contribute nontrivial differential. By similar argument

as in previous case, we list possible domains as below.

Q3, Q3 + P1 + P2, Q3 + P1 + P2 + P3 + P4, · · ·

All such domains are extended horizontally. On the other hand,

Q3 +R1 + P2, Q3 +R1 + P2 +R3 + P4, · · ·

which are extended vertically.
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Figure 3.8: Differentials induced by provincial domains.

These domains are all quadrilateral thus dimension of moduli space and

number of holomorphic curves (modulo 2) are obvious, as written below.

ay2k 7→


ρ1 ⊗ (x1y2k−1 + x2k−1y1) if k 6= 1

ρ1 ⊗ x1y1 otherwise.

Differentials involving σ1 can be found in parallel manner, by using sym-

metry of the diagram.

x2kb 7→


σ1 ⊗ (x2k−1y1 + x1y2k−1) if k 6= 1

σ1 ⊗ x1y1 otherwise.
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Algebra element ρ3 and σ3. Similarly, domains adjacent to ρ3 are all

listed

Q1, Q1 +R2n−3 +R2n−2, Q1 +R2n−3 +R2n−4 +R2n−5 +R2n−6, · · ·

and,

Q1 + P2n−3 +R2n−4, Q1 + P2n−3 +R2n−4 + P2n−5 +R2n−6, · · ·

Domains adjacent to σ3 are similar. We get differentials as below.

ay2k 7→

 ρ3 ⊗ (x2k+1y2n−1 + x2n−1y2k+1) if k 6= n− 1

ρ3 ⊗ x2n−1y2n−1 otherwise.

x2kb 7→

 σ3 ⊗ (x2n−1y2k+1 + x2k+1y2n−1) if k 6= n− 1

σ3 ⊗ x2n−1y2n−1 otherwise.

Algebra element ρ2 ⊗ σ2. A domain Q2 adjacent to ρ2 is adjacent to σ2

as well. So this is the one and only domain occurs an algebra element ρ2⊗σ2.

Thus we have x2n−1y2n−1 7→ ρ2 ⊗ σ2 ⊗ ab.

Algebra element ρ3⊗σ1 and ρ1⊗σ3. There are two domains contributes

ρ3 ⊗ σ1; those are Q1 + R1 + R2 + · · ·R2n−3 + Q5 and Q1 + P1 + R2 + P3 +
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Figure 3.9: Thin solid arrows imply algebra element 1. Bold solid arrows
mean algebra element ρ1 and doubly solid arrows algebra element ρ3. Finely
dashed arrows and coarsely dashed arrows represents σ1 and σ3 respectively.
In addition, The arrow from x2n−1y2n−1 to ab has algebra element ρ2 ⊗ σ2.
Lastly, arrows starting from ab are both imply ρ3 ⊗ σ1 + ρ1 ⊗ σ3.

R4 + · · ·R2n−4 +P2n−3 +Q5. This gives ab 7→ ρ3⊗ σ1⊗ (x1y2n−1 + x2n−1y1).

Again, using symmetry of the diagram, ab 7→ ρ1⊗ σ3⊗ (x1y2n−1 + x2n−1y1).

These differentials we have considered so far are depicted in the [Figure 3.9].

Now, we will be mostly working on differentials whose domain is non-

rectangular. To find holomorphic curves of such domains we will dualize

ĈFDD to ĈFAA, so that we can use A∞ structure of it and ensure exis-
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tence of holomorphic curves and its count(modulo 2).

Algebra element contains ρ12. To take advantage of A∞ structure

of ĈFAA, the orientation of two boundaries of Heegaard diagram has to

be reversed. We denote ρI (respectively, σI) denote the algebra element

of strands algebra A(Z); that is, for a orientation reversing diffeomorphism

R : S1\{z} → −S1\{z}, stands algebra of left boundary maps R∗(ρ1) = ρ3,

R∗(ρ2) = ρ2, and R∗(ρ3) = ρ1. Right boundary is similar.

Returning to ĈFDD, domains contribute to ρ12 are Q2 + Q3 + P1 +

· · · + P2n−3 + Q4 and Q2 + Q3 + R1 + P2 + · · · + R2n−3 + Q4. The domain

Q2 + Q3 + P1 + · · · + P2n−3 + Q4 cannot give nonzero differential because of

index reason, and the domain Q2 +Q3 +R1 + P2 + · · ·+R2n−3 +Q4 is not a

Whitney disk connecting two generators.

Algebra element contains ρ23. Roughly speaking, domains that pos-

sibly contribute algebra element ρ23 is obtained by vertically or horizontally

extending domain Q2 so that resulting domains contain Q1. We do not extend

Q2 horizontally and vertically at the same time to get a Maslov index one

domain with at most four corners.
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Case 1. We will first consider following annular domains.

Q1 +Q2,

Q1 +Q2 +Q4 +R2n−3 + P2n−3 +R2n−4,

Q1 +Q2 +Q4 +R2n−3 + P2n−3 +R2n−4 + · · ·+ P2k−1 +R2k,

...

We will first consider domain Q1 + Q2. The domain can be interpreted

as M(ay2n−2, ab; ρ12, σ2). The modulo 2 count of the moduli space can

be computed by using A∞ relation of m2(ay2n−2, ρ1, ρ2, σ2). Recall that

m(ay2n−2, ρ1) = x2n−1y2n−1 and m(x2n−1y2n−1, ρ2, σ2) = ab since the as-

sociated domains are rectangles.

0 = m(m(ay2n−2, ρ1), ρ2, σ2) +m(ay2n−2, (ρ1, ρ2), σ2) +m(m(ay2n−2, σ2), ρ1, ρ2)

= ab +m(ay2n−2, ρ12, σ2) +m(m(ay2n−2, σ2), ρ1, ρ2)

The last term on the right hand side equals zero because m(ay2n−2, σ2) =

0(domainQ2 is adjacent to Reeb chords ρ2 and σ2). This impliesm(ay2n−2, ρ12, σ2) =

ab, hence ]M(ay2n−2, ab; ρ12, σ2) = 1.

Remark 3.2.4 An annulus domain of such kind (i.e, outside boundary con-

sists of both α and β curves and inside boundary α curve only, and a cut

on the inside boundary) always admits a holomorphic representative, since we

are free to choose the length of the cut starting from the point a. so that the
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annulus admits a biholomorphic involution of it, in the sense of Lemma 9.4 of

[9].

The moduli space M(ay2n−2, ab; ρ12, σ2) = M(ay2n−2, ab; ρ23, σ2) corre-

sponds to ρ23 ⊗ σ2 ⊗ ab term occurs in δ1(ay2n−2) in ĈFDD. However, the

right hand side is zero by idempotent reasons. Explicitly,

δ1(ay2n−2) = ρ23 ⊗ σ2 ⊗ ab + · · ·

= ρ23ι2 ⊗ σ2 ⊗ ab + · · · = ρ23 ⊗ σ2 ⊗ ι2ab + · · ·

Recall that ι2ab = 0 since idempotent ι2 occupies αa,L2 , and the arc is also

occupied by ab. Therefore the moduli space does not contribute to the differ-

ential δ1.

Likewise, domains Q1 + Q2 + Q4 + R2n−3 + P2n−3 + R2n−2, Q1 + Q2 +

Q4 + R2n−3 + P2n−3 + R2n−2 + · · · + P2k−1 + R2k, · · · allow interpretation

M(ay2j, ay2j+2; ρ12, σ2, σ1), whose modulo 2 count is 1. These contribute to

differential between generators ay2j and ay2j+2 with algebra element contains

ρ23, but all go to zero because of idempotents (There is only one exception;

that is,M(ab, ay2; ρ12, σ3, σ2, σ1). However it has no contribution in differen-

tial in ĈFDD either because of idempotent action).

Remark 3.2.5 The domains considered above allow interpretation

M(ay2j, ay2j+2; ρ12, σ12).
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Modulo 2 count of the moduli space equals zero can be proved by considering

following A∞ relation.

0 = m(m(ay2j, ρ12, σ1, σ2)) +m(m(ay2j, σ1), ρ12, σ2)

+ m(m(ay2j, ρ12), σ1, σ2) +m(m(ay2j, ρ12, σ1), σ2) +m(ay2j, ρ12, (σ1, σ2))

m(ay2j, ρ12, σ1, σ2) = 0 since Maslov index is not one. m(ay2j, ρ12) and

m(ay2j, ρ12, σ1) equal zero, because σ2 was not involved and there is no such do-

main corresponding to these interpretation. m(ay2j, σ1) = 0 is clear from the

diagram. Thus, the last term m(ay2j, ρ12, (σ1, σ2)) = m(ay2j, ρ12, σ12) equals

zero, too.

Case 2. Next we will consider following domains.

Q1 +Q2 + P2n−3 +R2n−4 + · · ·+R2k + P2k−1,

Q1 +Q2 + P2n−3 +R2n−4 + · · ·+R2k + P2k−1

+ Q4 +R2n−3 + P2n−4 + · · ·+ P2l +R2l−1,

...

These domains are obtained by vertically extending domain Q2; first kind

of domains have interpretationM(x2k−1y2n−1,x2k−2b; ρ2, ρ1, σ2), which is es-

sentially a rectangle. Second domains are also rectangles with moduli space

M(x2k−1y2l−1,x2k−2y2l; ρ2, ρ1, σ2, σ1). Dualizing them, they yield algebra el-
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Figure 3.10: A diagram of (2,6) torus link complement. The shaded region is a
domain obtained by vertically extending domain Q2. This domain corresponds
to a differential from x1y3 to x2y2. Cutting along the bold curve on the
boundary of domain, the domain turns out to be rectangular.

ements ρ23 ⊗ σ2 and ρ23 ⊗ σ23 for the type-D structure map δ1 in ĈFDD,

respectively.

Remark 3.2.6 Again, modulo 2 count of moduli spaceM(x2k−1y2l−1,x2k−2y2l; ρ12, σ12)

equals zero by considering similar A∞ relation discussed in Remark 3.2.5.

Case 3. Domains that possibly contribute differential with algebra ele-

ment that contains ρ23 are obtained by horizontally extending Q1 +Q2. That

is, we add 2j − 1 domains, j = 1, · · · , n − 1 on the top and resulting do-
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main is R2n−2j−1 + · · ·+R2n−3 +Q1 +Q2. The only possible interpretation is

M(x2n−1y2n−2j−1,x2n−2jb; ρ12, σ2). It doe not allow holomorphic representa-

tive, because the domain does not allow holomorphic involution interchanging

two boundaries.

Likewise, we consider domains obtained by adding horizontally extended

domains to Q2 on top and bottom. Consider a domain

Q1 +Q2 +Q3 + (R2n−k + · · ·R2n−3) + (P2n−l + · · ·+ P2n−3).

The domain is obtained by adding k− 2 domains on top and l− 2 domains on

bottom. If k = l, then the domain obtained is the case that we have considered

in vertically extended case above. If k 6= l, then two interpretations are possi-

ble. First isM(x2n−ly2n−k,x2n−k+1y2n−l+1; ρ12, σ12). This is a genus two do-

main, and modulo two count of this moduli space is zero by similar reason given

in Remark 3.2.5. Second one isM(x2n−ly2n−k,x2n−k+1y2n−l+1; ρ12, σ2, σ1)(or

M(x2n−ly2n−k,x2n−k+1y2n−l+1; ρ2, ρ1, σ12)). This is an annular interpreta-

tion, and that does not have holomorphic representative because it does not

allow holomorphic involution.

Algebra element contains ρ123. Domains that possibly contribute to
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Figure 3.11: Above diagram shows examples of obtaining non-rectangular do-
mains of (2, 6)-torus link. Top left can be interpreted as an annular domain,
but it cannot give nontrivial differential due to idempotents. Top right is ob-
tained by horizontally extending Q2 on top, but its only possible interpretation
does not allow any holomorphic representative. Bottom left and bottom right
were obtained by horizontally extending Q2 on top and bottom. If number of
regions attached on top is not equal to number of regions attached on bottom,
it has two interpretations; and they do not allow holomorphic representative
either(bottom left). If two numbers are equal, then the domain can be also
obtained by vertically extending Q2, which gives nontrivial differential. These
four cases, in addition to the case of vertical extension of Q2, covers all possible
domains that could contribute algebra element ρ23.

algebra element ρ123 are as follows.

(Q1 +Q2 +Q3 +Q4 +R2n−3) +R1 + P2 +R3 + · · ·+ P2n−4

(Q1 +Q2 +Q3 +Q4) + P1 + · · ·P2n−3

(Q1 +Q2 +Q3 +Q4 +R2n−3 + P2n−3 +R2n−4 + P2n−4 +R2n−5) +R1 + P2 +R3 + · · ·+ P2n−6

(Q1 +Q2 +Q3 +Q4 +R2n−3 + P2n−4 +R2n−4 + P2n−4 +R2n−5) + P1 + · · ·P2n−5

...

Q1 + · · ·+Q5 + P1 + · · ·+ P2n−3 +R1 + · · ·+R2n−3
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Each of these domains are obtained by adding horizontally extended do-

main containing ρ1 to the annular domain listed in algebra element ρ23.

For the first two domains, the only possible interpretation is

M(ay2n−2,x1y2n−1; ρ123, σ2, σ1)

and

M(ay2n−2,x2n−1y1; ρ123, σ2, σ1)

Modulo 2 count of these moduli spaces follows by investigating coefficients

of A∞ relation of m2(ay2n−2, ρ12, ρ3, σ2, σ1). Since m(ay2n−2, ρ12, σ2) = ab,

combined with the fact m(ab, ρ3, σ1) = x1y2n−1 + x2n−1y1,

m(ay2n−2, ρ123, σ2, σ1) = x1y2n−1 + x2n−1y1

This implies modulo 2 count of above moduli spaces are 1.

Similarly, the other domains (except for the last domain) give Whitney

disks, and moduli spaces corresponding to the domains areM(ay2j,x1y2j+1; ρ123, σ2, σ1)

and M(ay2j,x2j+1y1; ρ123, σ2, σ1). Each of these moduli space has count 1

modulo 2.

The moduli space of the last domain Q1 + · · ·+Q5 +P1 + · · ·+P2n−3 +Q1 +

· · · + Q2n−3 can be interpreted in three ways. First, M(ab,x1y1; ρ123, σ123)
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whose Maslov index is different from one. Second possible interpretation is

M(ab,x1y1; ρ123, σ3, σ2, σ1)

A∞ relation of m2(ab, ρ12, ρ3, σ3, σ2, σ1) gives m(ab, ρ123, σ3, σ2, σ1) = x1y1,

by considering m(ab, ρ12, σ3, σ2, σ1) = ay2 and m(ay2, ρ3) = x1y1. Thus the

modulo 2 count of the moduli space is 1. The last interpretation is

M(ab,x1y1; ρ3, ρ2, ρ1, σ3, σ2, σ1)

Although this interpretation cannot be obtained from previous A∞ relations,

existence of holomorphic curve and its modulo 2 count is quite clear from the

diagram; the domain is essentially rectangular in this interpretation.

For the algebra elements of A(ZR), we take advantage of symmetry of the

diagram. A∞ relations are listed as follows.

m(x2n−2b, ρ2, σ12) = ab

m(x2jb, ρ2, ρ1, σ12) = x2j+2b for j = 1, · · · , n− 2

m(ab, ρ3, ρ2, ρ1, σ12) = x2b

m(x2jb, ρ2, ρ1, σ123) = x1y2j+1 + x2j+1y1 for j = 1, · · · , n− 1

m(ab, ρ3, ρ2, ρ1, σ123) = x1y1

Dualizing above result, one should reverse the orientations of left and right
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punctures and consider idempotent restrictions. Dualized result can be sum-

marized as,

δ1(ab) = ρ123σ123 ⊗ x1y1 + · · ·

δ1(ay2j) = ρ123σ23 ⊗ (x1y2j+1 + x2j+1y1) + · · · for j = 1, · · · , n− 1

δ1(x2jb) = ρ23σ123 ⊗ (x2j+1y1 + x1y2j+1) + · · · for j = 1, · · · , n− 1

It is worth mention that there are three holomorphic disks contributing ρ123σ123⊗

x1y1 term in δ1(ab) from following moduli spaces.

M(ab,x1y1; ρ123, σ3, σ2, σ1),

M(ab,x1y1;σ123, ρ3, ρ2, ρ1),

M(ab,x1y1; ρ3, ρ2, ρ1, σ3, σ2, σ1).

Again, differentials that yield algebra elements σ23 and σ123 can be ob-

tained using symmetry of the diagram with exactly parallel manner.
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Figure 3.12: A diagram of (2, 6)-torus link complement, with all differentials
are included.
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Chapter 4

Examples

In this section, we will relate our result to known calculation for knot comple-

ments and closed 3-manifolds. These examples show how to use the algebraic

structure of pairing theorem given in [6].

4.1 A∞-tensor product

Originally, bordered Floer homology was invented so that A∞ module and

type-D structures with diffeomorphic boundaries are merged, and computes

ĤF of resulting 3-manifold. This procedure, namely A∞ tensor product, will

be described below.

Gluing Diagram Let Hi = (Σi,αi,βi, zi), i = 1, 2, be genus gi Heegaard

diagrams with single boundary components representing bordered 3 manifolds

Y1 and Y2 respectively. We assume −∂Y1 and ∂Y2 are diffeomorphic genus k

surface. We glue two diagrams −H1 and H2 along the boundaries such that

63



boundary points of arcs ∂αai and marked points zi agree respectively. Then

resulting Heegaard diagram −H1∪∂H2 has genus g1 + g2 with curves α1∪α2,

β1 ∪ β2 and z1 = z2. It follows from standard Morse Theory argument that

the Heegaard diagram −H1 ∪∂ H2 represents 3 manifold −Y1 ∪∂ Y2.

Computing ĤF (H1 ∪∂ (−H2)) from ĈFA(H1) and ĈFD(H2) Gen-

erators S(H1 ∪∂ (−H2)) are a subset of S(H1) ⊗ S(H2); that is, if x ⊗ y ∈

S(H1)⊗S(H2) occupies a curve of α1 ∪α2 more than once, then x⊗ y has

to be excluded from computation.

Let x ∈ S(H1) and y ∈ S(H2), where S(H1) is a set of generators of ĈFA

and S(H2) is a set of generators of ĈFD. Assume x⊗ y ∈ S(H1 ∪∂ (−H2)).

Then differential of the complex ĈFA(H1) � ĈFD(H2) is defined as follows.

∂�(x⊗ y) :=
∞∑
k=0

(mk+1 ⊗ I
ĈFD

)(x⊗ δk(y)).

Then, there is a homotopy equivalence ĤF (Y1 ∪∂ −Y2) ∼= ĈFA(H1) �

ĈFD(H2)([6]).

We denote � a box tensor product.

Gluing of doubly bordered case is also similar; the only difference is the

framed arc z. If we glue doubly bordered diagram and single boundary dia-

gram, we match marked point z from the single boundary diagram and the one

end of framed arc z. After gluing, the framed arc reduces to a marked point
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on the other side of boundary(if gluing two doubly bordered diagrams, then

we connect two framed arc). In our example, we will be mainly interested in

a type-D structure obtained by box tensor product ĈFA(H1) � ĈFDD(H2),

where single boundary diagram H1 is glued on the right side of doubly bor-

dered diagram H2. The resulting type-D structure map (δ′)1 is,

(δ′)1 =
∞∑
k=1

((mR)k+1 ⊗ µL ⊗ I
ĈFDD

)(x⊗ δk(y))

where x ∈ S(H1) and y ∈ S(H2).

4.2 ∞-surgery on right component of link

First we will consider an ∞-surgery on the right component of (2, 2n) torus

link complement. Since the longitudes αa,L1 and αa,R1 of left and right com-

ponents are passing through the β1 and β2 respectively, so the ∞-surgery on

the right components gives a unknot complement with framing (n − 1). We

compute ĈFD of the unknot complement as follows.

Let H(2,2n) be a doubly bordered diagram of (2, 2n) torus link comple-

ment, and H∞ be a single bordered diagram of solid torus. Then generators

of S(H∞ ∪∂ H(2,2n)) consists of w ⊗ ab and w ⊗ x2kb, k = 1, · · · , n− 1.
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Computing ĈFA(H∞) is easy; that is,

mk+3(w, σ3, σ23, · · · , σ23︸ ︷︷ ︸
ktimes

, σ2) = w

Now we consider type-D structure of ĈFDD(H(2,2n)). We omit terms

which do not appear after taking box tensor product with ĈFA(H∞), thus

have no contribution in computing ĈFA(H∞) � ĈFDD(H(2,2n)).

δ2(ab) = (ρ1 ⊗ ρ23)⊗ (σ3 ⊗ σ2)⊗ x2b + · · ·

δ2(x2kb) = (ρ23)⊗ (σ3 ⊗ σ2)⊗ x2k+2b + · · · for k = 1, · · ·n− 2

δ2(x2n−2b) = (ρ2)⊗ (σ3 ⊗ σ2)⊗ ab + · · ·

Thus type-D structure (δ′)1 is,

(δ′)1(w ⊗ ab) = µ(ρ1 ⊗ ρ23)⊗m3(w, σ3, σ2)⊗ x2b

= ρ123 ⊗w ⊗ x2b

(δ′)1(w ⊗ x2kb) = µ(ρ23)⊗m3(w, σ3, σ2)⊗ x2k+2b

= ρ23 ⊗w ⊗ x2k+2b for k = 1, · · ·n− 2

(δ′)1(w ⊗ x2n−2b) = µ(ρ2)⊗m3(w, σ3, σ2)⊗ ab

= ρ2 ⊗w ⊗ ab

Compare this result with [2], Example 2.2.
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Figure 4.1: The diagram H∞ on the left shows ∞-surgery on right com-
ponent of the link. The diagram H+2 on the right is +2-surgery on the

right component. The A∞ relation of ĈFA(H+2)is given as m(q, σ2) = p1,
m(p1, σ3, σ2) = p2, and m(p2, σ3, σ2, σ1) = q.

4.3 Knot complement of trefoil

Consider (2, 4) torus link. If we glue right component by solid torus of framing

+2, then resulting diagram will be diffeomorphic to trefoil after handleslide

and blow down +1 unknot component. A type-D structure (N1, (δ1)1) :=

ĈFA(H+2) � ĈFDD(H(2,4)) computes,

p1 ⊗ ab

&&MMMMMMMMMMMMMMMM
q⊗ x3y3

ρ2oo q⊗ ay2
ρ3oo

ρ1

��
q⊗ x1y1

p2 ⊗ ab

ρ123

OO

The dashed line denotes unstable chain, where
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· · · → p1 ⊗ ab ρ123
// p2 ⊗ x2b ρ23

//

ρ23

��

q⊗ x1y3

1

��

ρ23
// p1 ⊗ x2b ρ2

// p2 ⊗ ab→ · · ·

q⊗ x3y1
1
// q⊗ x2y2

We claim that the chain complex described above is homotopy equivalent

to a complex (N2, (δ2)1) which is identical to the complex above but unstable

complex has been replaced by

· · · → p1 ⊗ ab ρ123
// p2 ⊗ x2b ρ23

// q⊗ x1y3 ρ23
// p1 ⊗ x2b ρ2

// p2 ⊗ ab→ · · ·

Define a map π : N1 → N2 such that π(q ⊗ x3y1) and π(q ⊗ x2y2) equal

zero, and otherwise acts as identity. We also define a map ι : N2 → N1 as an

inclusion. Then π ◦ ι = IN2 is obvious. In addition, a homotopy equivalence

H : N1 → N1 is given as,

H(x) :=



q⊗ x3y1 if x = q⊗ x2y2

q⊗ x1y3 + q⊗ x3y1 if x = q⊗ x1y3

p2 ⊗ x2b if x = p2 ⊗ x2b

0 otherwise.

which extends as a A(T )-equivariant map. Then it is clear that ι ◦ π =

(δ1)1 ◦H +H ◦ (δ1)1.

Remark 4.3.1 Compare above result with section 11.5 of [6], from which they
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spelled out an algorithm to recover ĈFD(S3\νK) from CFK−. According to

their notation, the length of unstable chain is 3 (the number of generators

between two outermost ones). This length is closely related to the framing of

knot complement and concordance invariant τ(K)(see equation(11.18) from

[6]). In our case, the framing of left component of link was originally -1,

but handleslide procedure has added +4 and therefore the framing is 3. Since

τ(Trefoil) = 1 is less than the framing, the length of unstable chain agrees with

the framing. Theorem A.11 from [6] has the precise description of relation

between τ(K) and unstable chain.

4.4 (n1, n2)-surgery on Hopf link

Hopf link is (2, 2) torus link. If n1 and n2 are two positive integers such that

n1n2 6= 1, then (n1, n2)-surgery on Hopf link results a lens space L(n1n2−1, n1).

Heegaard Floer homology of the lens space has n1n2− 1 generators whose dif-

ferentials equal zero.

Diagram of Hopf link complement is easy. In addition, αa,L1 (respectively,

αa,R1 ) does not intersect β1(respectively, β2), therefore gluing the diagram with

HL
n1

and HR
n2

will result closed Heegaard diagram of lens space L(n1n2−1, n1).

The A∞ relation of ĈFA(Hm) is as follows(see [Figure 4.1]).

m(q, ρ2) = p1

m(pi, ρ3, ρ23, · · · , ρ23︸ ︷︷ ︸
j times

, ρ2) = pi+j+1

m(pm, ρ3, ρ2, ρ1) = q
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ĈFDD(S3\ν(Hopf link)) has two generators ab and x1y1. Its type-D struc-

ture is given as below.

δ1(ab) = (ρ1 ⊗ σ3 + ρ3 ⊗ σ1 + ρ123 ⊗ σ123)⊗ x1y1

δ1(x1y1) = ρ2 ⊗ σ2 ⊗ ab

Remark 4.4.1 See [7], Proposition 10.1. Note that Hopf link complement is

T 2 × [0, 1] and it is exactly an identity module described in [7].

Let pLi and qL(pRj and qR, respectively) be points of bordered Heegaard

diagram HL
n1

attached to the left (HR
n2

attached to the right, respectively).

Then we have following n1n2 + 1 generators of ĈFA(HL
n1

) � ĈFA(HR
n2

) �

ĈFDD(S3\ν(Hopf link)).

pLi ⊗ pRj ⊗ ab i = 1, · · · , n1 and j = 1, · · · , n2

qL ⊗ qR ⊗ x1y1.

The only nontrivial differential is,

∂�(qL ⊗ qR ⊗ x1y1) = m(qL, ρ2)⊗m(qR, σ2)⊗ ab = pL1 ⊗ pR1 ⊗ ab.

Thus the homology of ĈFA(HL
n1

) � ĈFA(HR
n2

) � ĈFDD(S3\ν(Hopf link))

has n1n2 − 1 generators as expected.
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