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Abstract of the Dissertation

Ricci-Flat Anti-Self-Dual Asymptotically
Locally Euclidean 4-Manifolds

by

Evan Patrick Wright

Doctor of Philosophy

in

Mathematics

Stony Brook University

2013

A classification result for Ricci-flat anti-self-dual asymptotically lo-

cally Euclidean 4-manifolds is obtained: they are either hyperkähler

(one of the gravitational instantons classified by Kronheimer), or a

cyclic quotient of a Gibbons-Hawking space. In the latter case, the

action of the deck group is described in terms of the corresponding

monopole set in R3, and it is shown that every such quotient is

Kähler.
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Chapter 1

Overview

Given a sequence of compact 4-dimensional Einstein manifolds with volumes

bounded below and diameters and second Betti numbers bounded above, a

subsequence will converge in the Gromov-Hausdorff sense to an Einstein orb-

ifold [1, 39]. To understand the singular points, we can “zoom in” on the

points of maximum curvature by rescaling, and take a limit. The result will

be a Ricci-flat, asymptotically locally Euclidean (ALE) 4-manifold: a “bubble”

[1, 9]. Understanding these bubbles is thus an important step in understanding

the moduli space of Einstein manifolds in dimension 4.

The simply-connected bubbles were classified by Kronheimer [36, 37], but

even when examining a family of metrics on a fixed simply-connected manifold,

it is difficult to rule out non-simply-connected bubbles a priori. Moreover, if

one aims to show compactness by arguing that not enough curvature accumu-

lates to form a bubble, then a complete list is needed, since quotients will have

less total curvature than their covers.

To this end, we prove the following classification result:
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Theorem A. Every Ricci-flat anti-self-dual ALE 4-manifold which is not

simply-connected and not flat is a finite quotient of a Gibbons-Hawking space

by a cyclic group of isometries, and is actually Kähler.

Remark 1.1. The Gibbons-Hawking spaces are parameterized by the finite

subsets of R3, and the quotients of any given Gibbons-Hawking metric can be

described explicitly in terms of the Euclidean isometries which preserve the

corresponding set (see Chapter 7).

Remark 1.2. The fact that every Ricci-flat Kähler ALE 4-manifold is either

hyperkähler or a cyclic quotient of a Gibbons-Hawking space was stated with-

out proof by Nakajima [40], and a proof of that same fact has recently been

given by Ioana Şuvaina [51]. Because our theorem does not require an a priori

assumption that the manifold is Kähler, it applies to bubbles resulting from

any sequence of Einstein 4-manifolds with W+ bounded, rather than just from

sequences of Kähler-Einstein manifolds.

The following “gap theorem” follows quickly as a corollary:

Corollary B. If X is a Ricci-flat anti-self-dual ALE 4-manifold such that

∫
X

|Rm|2 dµ < 6π2,

or such that b2(X) > 0 and

∫
X

|Rm|2 dµ < 8π2

(
b2(X) + 1− 1

b2(X) + 1

)
,

then X is isometric to flat R4.
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An orbifold compactness theorem similar to the one for Einstein manifolds

has been proved for Kähler manifolds with constant scalar curvature by Tian

and Viaclovsky [55, 56] (see [15] for the general extremal Kähler case). The

following corollary is a partial step in the direction of understanding the scalar-

flat Kähler bubbles that result:

Corollary C. If X is a scalar-flat Kähler ALE 4-manifold and b2(X) = 0,

then X is actually Ricci-flat, and is a quotient of a Gibbons-Hawking space X̃

by a cyclic group of order χ(X̃).

Remark 1.3. See the comments before Lemma 18 in [14] for another argument

that X must be Ricci-flat.

Outline

For the sake of being self-contained, in Chapter 2 we will review the definitions,

constructions, and previous results which are needed to make sense of the

statement of our main theorem. Then in Chapter 3, we recall some basic facts

needed for the proof, and set up the overall strategy. In chapters 4 and 5, we

prove that the three “exceptional” cases of Kronheimer’s construction have no

quotients, and then in Chapter 6, we prove it in the remaining infinite family of

cases. The description of the quotients of the Gibbons-Hawking spaces is given

in Chapter 7, and we close with a proof of the two corollaries in Chapter 8.
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Chapter 2

Introduction

2.1 Ricci-Flat Anti-Self-Dual 4-Manifolds

2.1.1 Quaternions and (anti-)self-dual 2-forms

First, let us once and for all fix an identification between R4, C2, and the

quaternions H. Namely,

(x, y, z, w) ∈ R4 7→ (x+ yi, z + wi) ∈ C2,

(a, b) ∈ C2 7→ a+ bj ∈ H.

These identifications are compatible with the standard metrics and orienta-

tions on the three spaces.

In all dimensions n > 2, the special orthogonal group SO(n) has funda-

mental group Z2, and its universal cover is called Spin(n). For n = 4, the spin

group can be concretely represented as follows:

Let Sp(1) be the group of unit quaternions, and consider the action of
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Sp(1)× Sp(1) on H given by:

(u1, u2) · q = u1 q u
−1
2 , (2.1)

where juxtaposition represents multiplication as quaternions. One can check

that this action is orthogonal and preserves the orientation, so via the above

identification between the quaternions and R4, it gives a homomorphism

p : Sp(1)+ × Sp(1)− → SO(4), (2.2)

where the superscripts are simply labels to distinguish the two copies of Sp(1).

The kernel of this action is exactly Z2 = ±(1, 1), so it identifies Spin(4) with

Sp(1)+ × Sp(1)−.

With our chosen identification, the action of Sp(1)− on H is mapped to the

standard action of SU(2) on C2, via an isomorphism Sp(1) ∼= SU(2) which can

be written explicitly as:

a+ jb 7→

 ā b

−b̄ a


To simplify notation, we will replace Sp(1) with SU(2) via this isomorphism,

wherever the former group appears.

Since the universal cover of SO(4) splits as a Lie group, so(4) splits as a

Lie algebra: so(4) ∼= su(2) ⊕ su(2). In any dimension, the action of SO(n)

on 2-forms is equivalent to the adjoint action on so(n), so on an oriented

Riemannian 4-manifold, we have a splitting of the bundle of 2-forms into two

sub-bundles, called the self-dual and anti-self-dual 2-forms:
∧2 =

∧+⊕
∧−.
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Reversing the orientation of M interchanges the factors.

Remark 2.1. Notice that the covering map from Spin(4) to SO(4) restricts to

an injective homomorphism on each copy of SU(2), so we will consider SU(2)±

as subgroups of SO(4) as well (they are no longer complementary, but have

intersection {±1}). The representations corresponding to the self-dual and

anti-self-dual 2-forms yield surjective homomorphisms SO(4) → SO(3)± with

respective kernels SU(2)∓.

2.1.2 Anti-self-dual metrics

The curvature of a Riemannian metric can be thought of as an operator R on

2-forms, so the decomposition of 2-forms into self-dual and anti-self-dual parts

splits the curvature operator into four components (see Equation 2.3). The

trace-free parts of the two diagonal components are called the self-dual (W+)

and anti-self-dual (W−) Weyl curvatures, respectively. Both are conformally

invariant, and their sum is the usual Weyl curvature operator.

R =

 W+ + s
12

r̊

r̊ W− + s
12

 (2.3)

Definition 1. If (M4, g) is an oriented Riemannian manifold with W+ = 0,

then we say that the manifold is anti-self-dual (ASD). Similarly, if W− = 0 we

say that the manifold is self-dual (SD).

Warning. In the physics literature, a metric is said to have self-dual curvature

when the curvature operator itself is self-dual, in the sense that the Hodge star

sends R to itself: ?R = R. By Equation 2.3, this is equivalent to both W−
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and r̊ vanishing, so in our terminology this would be called self-dual Einstein.

Any anti-self-dual manifold is self-dual for the opposite orientation, but we

will prefer to consider the ASD orientation because of the following fact:

Proposition 2.1 (Gauduchon [21]). A Kähler manifold of real dimension 4 is

anti-self-dual for the orientation defined by the complex structure if and only

if it is scalar-flat.

2.1.3 Local complex structures

Suppose that a Riemannian 4-manifold (M, g) is both anti-self-dual and Ricci-

flat. Then from Equation 2.3, we see that the bundle of self-dual 2-forms is flat.

This means that parallel transport around any contractible loop must act by

an element in the kernel of the defining representation SO(4)→ SO(3)+ of
∧+,

which is exactly SU(2)− < SO(4) (see Remark 2.1). But from Equation 2.1,

the action of this subgroup commutes with left-multiplication by quaternions,

so there is a left H-module structure on R4 which is preserved by the action.

From the bundle point of view, this means that in any simply-connected

open set on M , we can find three almost-complex structures I, J , and K

(coming from left-multiplication by the imaginary quaternions i, j, and k)

which satisfy the conditions of the following definition:

Definition 2 (Calabi [12]). A hyperkähler manifold is a Riemannian manifold

(M, g), equipped with three almost-complex structures I, J , and K which are

parallel under the Levi-Civita connection of g, and which satisfy the quater-

nionic relation IJK = −Id.
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Thus, we see that:

Proposition 2.2. Every simply-connected Ricci-flat ASD 4-manifold is hy-

perkähler.

In particular, every Ricci-flat ASD 4-manifold is locally hyperkähler.

2.1.4 Global complex structures

A Ricci-flat anti-self-dual 4-manifold (M, g) must have three independent par-

allel complex structures locally near any point, but ifM is not simply-connected,

then none of them necessarily extends globally. If exactly one of the three ex-

tends, then the metric is Kähler with respect to that complex structure, so

(M, g) is Ricci-flat Kähler. If two of them extend, then so does the third (by

the relation IJ = K), and the metric is globally hyperkähler. Thus, we have

the following relationships in dimension 4:

{hyperkähler} ⊂ {Ricci-flat Kähler} ⊂ {Ricci-flat anti-self-dual}.

All three classes are nonempty, and the inclusions are strict:

• hyperkähler: A K3 surface is a complex manifold (of real dimension 4),

which is simply-connected and has vanishing first Chern class. By Yau’s

solution [58] to the Calabi conjecture [11], there exists a unique Ricci-

flat metric in each Kähler class, which must be hyperkähler because the

manifold is simply-connected.

• strictly Ricci-flat Kähler: An Enriques surface is a holomorphic Z2 quo-

tient of a K3 surface. The first Chern class of an Enriques surface is
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nonzero but it has trivial image in real cohomology, so Yau’s theorem

again produces a Ricci-flat metric in each Kähler class. However, the

canonical bundle (and thus the first Chern class) of a hyperkähler surface

must be trivial, because if ωJ and ωK are the Kähler forms corresponding

to the complex structures J and K, then ωJ + iωK is a non-vanishing

holomorphic 2-form. Thus, an Enriques surface admits metrics which

are Ricci-flat Kähler but not hyperkähler.

• strictly Ricci-flat anti-self-dual: Some Enriques surfaces admit a free

antiholomorphic Z2 action. The Ricci-flat Kähler metric corresponding

to any Kähler class which is preserved by this involution descends to the

quotient, and the quotient metric must at least be Ricci-flat ASD, since

this is a purely local notion. Since the metric upstairs is not hyperkähler,

there is only one complex structure preserved by parallel transport. On

the quotient, any loop which corresponds to a nontrivial element of the

deck group will take this complex structure to its conjugate, so there is

no globally parallel complex structure. Thus, such a metric is Ricci-flat

ASD, but not Kähler.

In fact, Hitchin proves [29, Theorem 1] that these are the only compact

4-dimensional examples of Ricci-flat ASD metrics (excluding flat metrics).

2.2 Gravitational Instantons

Definition 3. A gravitational instanton is a complete, non-compact, hy-

perkähler 4-manifold (M, g) such that
∫
M
|Rm|2 dµg <∞.

9



These space were first studied by physicists, and the name “gravitational

instanton” comes from looking at them as gravitational (i.e., metric) analogues

of the Yang-Mills instantons which occur in gauge theory. Namely, a Yang-

Mills instanton is a connection on a principal bundle with self-dual or anti-self-

dual curvature (corresponding to the hyperkähler condition) which has finite

energy (corresponding to the L2 curvature condition).

Warning. The definition of gravitational instanton varies somewhat in the

literature. In particular, some authors allow compact manifolds or relax the

hyperkähler condition, but essentially all agree that they must be Einstein

4-manifolds and that the curvature of a non-compact gravitational instanton

must decay at infinity.

Gravitational instantons are categorized by the asymptotic form of the

metric at infinity. The simplest case is when the metric approaches a quotient

of flat R4:

2.2.1 Asymptotically locally Euclidean metrics

Definition 4. We say that an oriented Riemannian manifold (M4, g) is asymp-

totically locally Euclidean (ALE) of order τ > 0 if

(i) there is a compact set C ⊂ M and an orientation-preserving diffeomor-

phism (R4 \B)/Γ→M \C, where B is some closed ball centered at the

origin of R4, and Γ is a finite subgroup of SO(4) which acts freely on the

3-sphere; and

(ii) g approximates the Euclidean metric in the sense that the pullback of

10



the metric on M \ C to the cover R4 \B satisfies

∂α(gij − δij) = O(r−τ−|α|) for all multi-indices α,

where |α| denotes the length of the multi-index, and r is the function

given by the distance to 0 in the Euclidean metric.

Remark 2.2. The choice of asymptotic coordinates on M \ C is not unique,

but even without choosing coordinates we can identify the space form S3/Γ

at the “boundary” of M up to an orientation-preserving isometry. Thus, the

group Γ is well-defined up to conjugacy in SO(4). It is called the fundamental

group at infinity of M , and will be denoted by π∞1 (M).

Some authors allow an ALE manifold to have several ends, requiring that

each connected component of the complement of some compact set satisfies the

above hypotheses. Since the ALE metrics we will be considering are Ricci-flat,

our definition does not exclude any nontrivial spaces:

Proposition 2.3. A complete Ricci-flat 4-manifold (M, g) which has more

than one end must be flat.

Proof. Since (M, g) is complete and has more than one end, it must contain

a geodesic line (see for example [43, Lemma 41]). Roughly, one takes two

sequences of points {pi}, {qi} diverging to infinity in two different ends, forms

a geodesic segment between pi and qi, and takes the limit of the segments,

resulting in a line.

Then, since the manifold is Ricci-flat, the Cheeger-Gromoll splitting the-

orem [13] implies that M splits isometrically as a product N × R, where R

11



is equipped with the flat metric, and N is a Ricci-flat 3-manifold. But on a

3-manifold, the Ricci tensor determines the full curvature [10, 1.119], so N

and therefore M are flat.

The definition above may seem unwieldy, in that it requires us to make a

choice of coordinates at infinity, but there is a beautiful characterization of

ALE spaces in the Ricci-flat case by Bando, Kasue, and Nakajima (a special

case of [9, Theorem 1.5]):

Theorem 2.1 (BKN). A Ricci-flat 4-manifold (M, g) is ALE if and only if it

has Euclidean volume growth:

volB(p, r) ≥ Cr4 for some p ∈M and C > 0,

and finite energy: ∫
M

|Rm|2 dµ <∞.

Moreover, one can always choose coordinates at infinity making the metric

ALE of order τ = 4.

See also [54, Theorem 1.3] for a related theorem in which the Ricci-flat

hypothesis is weakened.

2.2.2 History of ALE gravitational instantons

The first nontrivial ALE gravitational instanton was constructed in the late

1970s by Eguchi and Hanson [19], while studying quantum gravity in the

Euclidean signature. The underlying manifold is the cotangent bundle of S2,

12



and the metric can be written explicitly. Shortly after, Gibbons and Hawking

[22] discovered an infinite family, parameterized by a choice of a finite set in R3

(see Chapter 7 for further details), of which the Eguchi-Hanson metric is just

the simplest case. An alternative construction of these metrics was given by

Hitchin [30], who also noted a connection between gravitational instantons and

the finite subgroups of SU(2). Finally, Kronheimer found a construction [36]

of the Gibbons-Hawking metrics and several additional families as hyperkähler

quotients [32] of a flat vector space, and proved that his construction yields

all ALE gravitational instantons [37].

2.3 Kronheimer’s Construction

Let us recall some basic facts that will be needed in order to describe Kron-

heimer’s classification of ALE gravitational instantons.

2.3.1 Finite subgroups of SU(2)

The adjoint action of SU(2) on its (3-real-dimensional) Lie algebra gives a ho-

momorphism φ : SU(2) → SO(3), which is a 2-fold covering map, and repre-

sents the universal cover Spin(3) of SO(3) concretely as SU(2). The nontrivial

element of the kernel is -Id, which is the unique element of order two in SU(2).

Now, consider a finite subgroup Γ of SU(2). If Γ contains the kernel of φ,

then Γ maps 2-to-1 onto a finite subgroup of SO(3). Otherwise, Γ must be of

odd order, and map isomorphically onto a subgroup of SO(3). Thus, finding

all finite subgroups of SU(2) reduces to enumerating the finite subgroups of

SO(3), a very classical problem. Every such subgroup is conjugate to the

13



symmetry group of a polygon (a cyclic group), a degenerate polyhedron with

two faces (a dihedral group), or one of the Platonic solids (the tetrahedral,

octahedral, and icosahedral groups). Pulling back to SU(2) gives the following

classification, where the term “binary” refers to the pullback of a group under

the 2-to-1 map φ:

Proposition 2.4. Each finite subgroup of SU(2) is conjugate to one of the

following:

• The cyclic group Zn for n ≥ 1

• The binary dihedral group D∗4n for n ≥ 2

• The binary tetrahedral group T ∗ of order 24

• The binary octahedral group O∗ of order 48

• The binary icosahedral group I∗ of order 120

Remark 2.3. To minimize ambiguity, subscripts in the names of groups will

always denote the order of the group: e.g., the binary dihedral group of order

8 is D∗8, not D∗2.

2.3.2 Resolution of du Val singularities

Definition 5. Given a complex surface Y with an isolated singular point y, a

resolution of Y is a proper, surjective, holomorphic map f : X → Y such that

• X is nonsingular, and

• the restriction of f to X \ f−1(y) is a biholomorphism.

14



The resolution is called minimal if the exceptional divisor f−1(y) contains no

(−1)-curves.

The quotients C2/Γ for Γ a finite subgroup of SU(2) are complex surfaces

which are singular at the origin. This type of singular point is known as a du

Val singularity (also simple surface singularity, Kleinian singularity, or rational

double point), and each admits a unique minimal resolution π : X → C2/Γ.

There is an amazing relationship between the representation theory of finite

subgroups of SU(2), the exceptional divisors of the minimal resolutions, and

the simply-laced Dynkin diagrams known as the McKay correspondence [38]:

Let {Ri}ni=0 be an enumeration of the irreducible complex representations

of Γ, and let Q be the 2-dimensional representation defined by the inclusion

Γ ⊂ SU(2). Define the McKay quiver as the directed graph with vertices {Ri},

and such that the number of edges from Ri to Rj is equal to the multiplicity

of Rj in the decomposition of Q ⊗ Ri into irreducibles. Because Q ∼= Q∗ as

Γ-spaces, the edges will always occur in oppositely-directed pairs. If we remove

the vertex corresponding to the trivial representation, and change every pair

of opposite edges into a single undirected edge, we produce the McKay graph.

Proposition 2.5 (McKay [38]). The map taking a group to its McKay graph

gives a one-to-one correspondence between the (conjugacy classes of) finite sub-

groups of SU(2) and the simply-laced Dynkin diagrams (those with no multiple

edges: types An, Dn, E6, E7, and E8).

Moreover, the Dynkin diagram corresponding to Γ also determines the

minimal resolution of C2/Γ, in the sense that the preimage of 0 is a union

of (−2)-curves, one for each vertex of the diagram, and two curves intersect

15



(with multiplicity +1) exactly when there is an edge joining the corresponding

vertices.

2.3.3 Classification of ALE gravitational instantons

We are now ready to state Kronheimer’s classification theorem:

Theorem 2.2 (Kronheimer [36, 37]). Let Γ be a finite subgroup of SU(2),

and X be the smooth manifold underlying the minimal resolution of C2/Γ.

Choose three cohomology classes α1, α2, α3 ∈ H2(X;R) such that for any Σ in

H2(X;Z) with Σ · Σ = −2, at least one αi satisfies αi(Σ) 6= 0. Then there

exists an ALE hyperkähler structure on X such that [ωi] = αi.

Moreover, if (Y, g) is any ALE hyperkähler 4-manifold, then Y is diffeo-

morphic to C2/Γ for some Γ, the Kähler classes of g satisfy the nondegeneracy

condition above, and they determine the metric uniquely up to isometry.

Remark 2.4. The three Kähler forms ω1, ω2, and ω3 referred to in the theorem

are the Kähler forms corresponding to the three different complex structures

I, J , and K making up the hyperkähler structure.

Since C2 deformation retracts onto the origin, the smooth manifold un-

derlying the resolution of a quotient C2/Γ deformation retracts onto the ex-

ceptional divisor. Thus, the explicit description of those divisors given in

Subsection 2.3.2 tells us everything we need to know about the topology of

the ALE gravitational instantons. (Alternatively, we can think of the Dynkin

diagram corresponding to Γ as a plumbing diagram for the underlying smooth

manifold). In particular,
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Proposition 2.6. Let X be an ALE gravitational instanton. Then

1. X is simply-connected,

2. b1(X) = b3(X) = b4(X) = 0, and

3. the intersection form of X is negative-definite.

Proof. Both (1) and (2) follow immediately from the fact that X is homotopy

equivalent to the exceptional divisor, which is a tree of 2-spheres. Each ir-

reducible component of the exceptional divisor is a sphere of self-intersection

−2, and they span H2(X), giving (3).

This allows us to easily compute the Euler characteristic χ and the signa-

ture τ for each of these spaces:

Table 2.1: Invariants of gravitational instantons
Dynkin diagram Γ |Γ| χ τ

Ak−1 Zk k k −k + 1
Dk+2 D∗4k 4k k + 3 −k − 2
E6 T ∗ 24 7 −6
E7 O∗ 48 8 −7
E8 I∗ 120 9 −8
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Chapter 3

Setup and Strategy

Let X be a Ricci-flat anti-self-dual ALE 4-manifold which is not simply-

connected and not flat. By a theorem of Anderson [2, Corollary 1.5], the

fundamental group is finite; let p : X̃ → X be the universal covering map.

Since this is a finite cover, the L2 norm of the curvature of X̃ is still finite,

and the volume growth remains Euclidean, so by Theorem 2.1, X̃ is also ALE.

Since it is simply connected, by Proposition 2.2 it is hyperkähler, and thus is

covered by Kronheimer’s classification.

Remark 3.1. Because p is a finite covering map, the pullback p∗ acting on

real cohomology is injective [24, Proposition 3G.1]. We saw in Proposition 2.6

that the cohomology of X̃ is trivial except in degrees 0 and 2, and that its

intersection form is negative definite. Thus χ(X) = 1 + b2(X) and τ(X) =

−b2(X) = 1− χ(X).

Kronheimer’s classification implies that X̃ is a Gibbons-Hawking space if

and only if the fundamental group at infinity is cyclic. Thus, in order to

prove the first part of Theorem A, we need to exclude all other possibilities
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for π∞1 (X̃). We can reduce much of the problem to a matter of group theory

via the following:

Proposition 3.1. There are maps π∞1 (X̃) → π∞1 (X) and π∞1 (X) → π1(X)

such that the sequence

1→ π∞1 (X̃)→ π∞1 (X)→ π1(X)→ 1 (3.1)

is exact.

Proof. By the definition of ALE, we can find a compact exhaustion of X (a

sequence of compact subsets {Ki} with Ki ⊂ int(Ki+1) and
⋃
Ki = X) such

that for each i, the complement X \Ki is diffeomorphic to R× (S3/π∞1 (X)).

A finite covering map is proper, so K̃i = p−1(Ki) is a compact exhaustion

of X̃. We know that both X and X̃ have only one end by Proposition 2.3,

so X̃ \ K̃i and X \ Ki are connected for sufficiently large i. Choose some k

making both complements connected, and let K = Kk and K̃ = K̃k

Now, since X̃ \ K̃ is connected and covers a space diffeomorphic to R ×

(S3/π∞1 (X)), it must also be of the form R × (S3/Γ), and this Γ must be

the fundamental group at infinity of X̃. The map of fundamental groups

induced by the restriction of p identifies π∞1 (X̃) with a normal subgroup of

π1(X \ K) ∼= π∞1 (X). Moreover, the quotient of π1(X \ K) by π∞1 (X̃) is

identified with the deck group of p, which is just π1(X).

Remark 3.2. A choice of coordinates at infinity represents π∞1 (X) and π∞1 (X̃)

as finite subgroups of SO(4). In the proof, our chosen coordinates on X and

X̃ were related to each other by a covering map, so the inclusion π∞1 (X̃) →
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π∞1 (X) is compatible with the inclusions of these groups into SO(4). Moreover,

by Kronheimer’s theorem and the discussion in Section 2.1.1, π∞1 (X̃) is con-

tained in the subgroup SU(2)− < SO(4). This is a meaningful statement even

though π∞1 (X̃) is only defined up to conjugacy because SU(2)− is a normal

subgroup.

3.1 Space-Form Groups

If Γ < SO(4) is the fundamental group at infinity of an ALE manifold, then

the action of Γ on R4 is free outside of the origin (otherwise the model space

(R4 \ B)/Γ would be singular), so by restricting the action to vectors of unit

length, we can form a spherical space form S3/Γ. Knowing the conjugacy

class of Γ in SO(4) determines the space form up to oriented isometry, and

vice versa.

The classification of 3-dimensional spherical space forms was first found by

Hopf [34] and Seifert-Threlfall [52, 53] in the early 20th century. In modern

terms, the classification can be described as follows: (see [50, 57])

Proposition 3.2. Let Γ be a subgroup of SO(4) which acts freely on the 3-

sphere, and let p : SU(2)×SU(2)→ SO(4) be the universal covering of SO(4).

Up to conjugation in O(4), one of the following holds:

1. Γ is cyclic;

2. Γ = p(H1 × H2), where H2 is a non-cyclic binary polyhedral group, H1

is cyclic of relatively prime order, and Γ ∼= H1 ×H2;
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3. Γ is a diagonal subgroup of index 3 in p(H1×H2) ∼= H1×H2, where H1

is cyclic of order 3k · n (k > 1 and n odd), and H2 = T ∗; or

4. The pullback of Γ under p is a diagonal subgroup of index 2 in H1×H2,

where H1 is cyclic of order 2k · m (k > 2) and H2 = D∗4b (b odd and

relatively prime to m).

Remark 3.3. A diagonal subgroup of a direct product H1×H2 is a subgroup

of the form {(h1, h2) ∈ H1 × H2 | φ1(h1) = φ2(h2)}, where φ1 : H1 → Q and

φ2 : H2 → Q are homomorphisms onto the same group. In particular, the

projection of a diagonal subgroup onto either factor is surjective.

The following proposition will be used to identify the possibilities for π∞1 (X)

given π∞1 (X̃).

Proposition 3.3. Let G < SO(4) be a finite subgroup acting freely on the

3-sphere, and define G− = G ∩ SU(2)−. If G− is not a cyclic group and not

isomorphic to D∗8, then G = p(Zm × G−) ∼= Zm × G− for some m relatively

prime to |G−|.

Proof. Since G cannot by cyclic, we must be in case (2), (3), or (4) of the

previous proposition. Thus, G = p(H), where

• H1 < SU(2)+ and H2 < SU(2)−

• φ1 : H1 → Q, φ2 : H2 → Q are surjective homomorphisms (in case (2), Q

is the trivial group)

• H < H1 ×H2 is defined as {(h1, h2) | φ1(h1) = φ2(h2)}
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Now, G− can be described as p((1×H2)∩H), but (1, h2) ∈ H1×H2 is an

element of H exactly when φ2(h) = φ1(1) = 1, so G− is equal to p(Kerφ2) and

isomorphic to Kerφ2. According to [42, p. 111], the kernel of φ2 is cyclic in

case (4) and is isomorphic to D∗8 in case (3), so we must be in case (2). This

means that φ1 and φ2 are the trivial maps and H = H1 × H2. If we think

of G− as a subgroup of SU(2)−, then H2 = G−, and H1 is a cyclic group of

relatively prime order.

22



Chapter 4

Binary Icosahedral and

Octahedral Cases

In this chapter, we begin proving the negative part of the main theorem. We

consider the case where π∞1 (X̃) is either binary icosahedral or binary octahe-

dral, which are the simplest cases because of the following:

Claim 1. O∗ and I∗ are maximal finite subgroups of SU(2).

Proof. Let G = O∗ or G = I∗, and suppose that G is a proper subgroup of

some finite H < SU(2). Then H is one of the groups from Proposition 2.4.

Because G is nonabelian, H cannot be cyclic. If H is a binary dihedral group,

then map G and H down to SO(3) by the universal covering map. If G = O∗,

then its image is the symmetry group of an octahedron, and is isomorphic to

the symmetric group S4. If G = I∗, then its image is the symmetry group

of an icosahedron, isomorphic to the alternating group A5. But the image of

H is a dihedral group, which has only cyclic and dihedral subgroups, so this
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case is impossible. Finally, by looking at the orders of the groups, we see that

H cannot be any of the three exceptional groups T ∗, O∗, or I∗, so we have a

contradiction.

Suppose first that the fundamental group at infinity of X̃ is the binary

icosahedral group I∗. From Table 2.1, we know that χ(X̃) = 9, so by the

multiplicativity of the Euler characteristic, the degree of the covering map

p : X̃ → X is either 3 or 9. In the latter case, since every group with 9

elements has a normal subgroup with 3 elements, there is a covering space of

X with fundamental group of order 3, and so in order to rule out this case, it

suffices to assume that π1(X) = Z3. This means that the exact sequence (3.1)

takes the form

1→ I∗ → G→ Z3 → 1

for some spherical space-form group G.

By Remark 3.2, this I∗ lies in the subgroup G− = G∩ SU(2)−. Since I∗ is

maximal in SU(2), we must actually have G− = I∗. Thus, by Proposition 3.3,

G = Z3× I∗. This is not a space-form group, because 3 is not relatively prime

to |I∗| = 120, so the binary icosahedral case is impossible.

Now suppose that π∞1 (X̃) is binary octahedral. In this case, χ(X̃) = 8, so

the degree of the covering must divide 8. However, there are only a few groups

with order dividing 8, and one can check that they all have normal subgroups

of order 2. Arguing exactly as before, this implies that G = Z2×O∗, which is

not a space-form group, so this case is also eliminated.
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Chapter 5

Binary Tetrahedral Case

We now suppose that π∞1 (X̃) is the binary tetrahedral group T ∗. Since χ(X̃) =

7 (Table 2.1), the only possibility for π1(X) is Z7, and the exact sequence

becomes

1→ T ∗ → G→ Z7 → 1.

The binary tetrahedral group is not maximal in SU(2), so we will need a

different argument to show that G is a direct product. Recall the following

result from group theory:

Theorem 5.1 (Schur-Zassenhaus [46, 9.1.2]). If G is a finite group, and N

is a normal subgroup whose order is relatively prime to the other order of the

quotient G/N , then G is a semidirect product of N and G/N .

This means that G = Z7nφT
∗, for some homomorphism φ : Z7 → Aut(T ∗).

But the automorphism group of T ∗ is the symmetric group S4 [48, p. 176],

which has order 24. This is relatively prime to |Z7|, so φ must be the trivial

map, and G = Z7 × T ∗.
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Unfortunately, this actually is a space-form group, so we will need to rule

out this case in another way. This will require a brief detour into 3- and

4-dimensional topology.

5.1 Some Low-Dimensional Topology

5.1.1 Seifert-fibered 3-manifolds

This section follows very closely the paper of Neumann and Raymond [41]:

Definition 6. A Seifert-fibered space is a closed, oriented 3-manifold with a

fixed-point-free action of S1 (nontrivial isotropy is allowed).

Warning. The most common definition of “Seifert-fibered” in the literature

requires only a foliation by circles with a certain local structure near each fiber.

The definition above is more restrictive. In particular, the S1 action gives a

consistent orientation on the circle fibers, which is not possible for a general

foliation.

The quotient of a Seifert fibered space M by its S1 action is homeomorphic

to a closed, oriented surface Σ. Let p : M → Σ be the quotient map, and choose

a collection of orbits {O1, . . . , On}, containing at least all orbits of nontrivial

isotropy. Let xi be the image in Σ of the orbit Oi, and choose a set of disjoint

open discs {Di} ⊂ Σ with xi ∈ Di. Letting Σ0 = Σ\(
⋃
Di) and M0 = p−1(Σ0),

the restriction p : M0 → Σ0 is a principal S1 bundle. Since Σ0 is a compact

surface with boundary, we have H2(Σ0;Z) = 0, so the Euler class of the bundle

is trivial and we can find a section s : Σ0 → M0. The intersection of s with
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the boundary of one of the solid tori Ti is a curve si on ∂Ti. Modulo some

orientation conventions, we can define the Seifert invariants (αi, βi) of the orbit

Oi by noting that si is homologous to some multiple βi of the central fiber Oi,

and letting αi be the order of the isotropy group of the orbit.

Definition 7. The unnormalized Seifert invariant of M is the collection of

numbers

(g; (α1, β1), . . . , (αn, βn)), (5.1)

where g is the genus of the quotient surface, and (αi, βi) are the Seifert invari-

ants of the chosen orbits.

A Seifert-fibered space is determined up to an orientation- and fiber-preserving

homeomorphism by this invariant, but we made some choices in defining it.

Different choices lead to invariants which are related in a simple way:

Theorem 5.2 ([41, Theorem 1.1]). Any two unnormalized Seifert invariants

for the same Seifert-fibered space can be joined by a sequence of the following

operations:

1. permuting the indices

2. adding or deleting a pair (1, 0)

3. replacing (α1, β1), (α2, β2) by (α1, β1 +mα1), (α2, β2 −mα2)

5.1.2 The Rokhlin invariant

Rokhlin’s theorem is a fundamental result in the study of smooth 4-manifolds:
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Theorem 5.3 (Rokhlin’s Theorem [47]). If X is a smooth, closed, spin 4-

manifold, then τ(X) ≡ 0 (mod 16).

This statement about 4-manifolds also leads to an invariant of 3-manifolds.

Let M be a closed, oriented 3-manifold. Then M is automatically spin (see for

example [35, p. 46]), and its spin structures are in one-to-one correspondence

with the elements of H1(M ;Z2). In the special case that M is a Z2-homology

sphere (i.e., its Z2 homology is trivial except in degrees 0 and 3), it has a

unique spin structure.

We can always find a smooth, oriented, spin 4-manifold X with ∂X = M ,

such that the orientation and spin structure on X restrict to the chosen ones

on M . If we chose a different such 4-manifold X ′, then we could glue X and

an orientation-reversed copy of X ′ along their common boundary M to form

a closed spin 4-manifold Y . Rokhlin’s theorem applies to Y and says that

τ(Y ) ≡ 0 (mod 16). Since M may have nontrivial homology over Z, we can’t

simply use the Mayer-Vietoris sequence to split the intersection form of Y

between X and X ′, but a theorem of Novikov says that the signatures are

related anyway:

Theorem 5.4 (Novikov Additivity [35, Theorem 5.3]). If X1 and X2 are

oriented 4-manifolds with ∂X1
∼= ∂X2, and X is the result of gluing X1 and

X2 along their common boundary, then:

τ(X) = τ(X1) + τ(X2).

In our case, since we’ve reversed the orientation of X ′, this means that

τ(Y ) = τ(X)−τ(X ′), and so Rokhlin’s theorem tells us that τ(X)−τ(X ′) ≡ 0
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(mod 16). This proves that the rational residue

µ(M) =
τ(X)

8
(mod 2) (5.2)

is independent of the choice of X, so is an invariant on Z2-homology 3-spheres,

the Rokhlin invariant [49, Chapter 2].

5.2 Exclusion of the Z7 × T ∗ Case

Now let us return the situation we were considering at the beginning of the

chapter. We have a 7-fold covering map p : X̃ → X, where π∞1 (X̃) = T ∗ and

π∞1 (X) = Z7×T ∗. Since X is ALE we can represent it (as a smooth manifold,

not metrically) as the interior of a compact 4-manifold with boundary Y =

S3/π∞1 (X̃).

Now p∗w2(X) = w2(X̃) = 0, and p∗ is injective on H2(X,Z2) because the

degree of the covering is odd, so X is spin. Thus, we must have

µ(Y ) ≡ τ(X)

8
(mod 2).

But since χ(X̃) is equal to the degree of the covering map, we have χ(X) = 1,

and so by Remark 3.1 the signature of X must be 0. Thus, if X̃ has such a

quotient, then µ(Y ) must vanish. We will compute the Rokhlin invariant of

Y explicitly and see that this is not the case.
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5.2.1 Computation of µ(Y )

It turns out that every space-form group in dimension 3 commutes with some

S1 action on the 3-sphere (up to conjugation, they all preserve the Hopf fi-

bration), so every 3-dimensional spherical space form is Seifert-fibered. In

our case, an unnormalized Seifert invariant for Y is (0; (2, 1), (3, 1), (3, 1)) [42,

p. 112].

If M has Seifert invariant (0; (α1, β1), . . . , (αn, βn)), then

|H1(M ;Z)| = |α1 · · ·αn · e(M)|, (5.3)

whenever this value is nonzero [49, p. 31]. The quantity e(M) = −
∑n

i=1 βi/αi

is the so-called Euler number of the Seifert fibration. (When the fibration is

a true S1 bundle, this is the usual Euler number).

In our case, since |H1(Y ;Z)| = 21 is odd, Y is a Z2-homology sphere and

has a well-defined Rokhlin invariant. We can compute it explicitly using the

following theorem of Neumann and Raymond:

Theorem 5.5 ([41, Theorem 6.2]). Given a Seifert-fibered Z2-homology 3-

sphere N with unnormalized Seifert invariant (0; (α1, β1), (α2, β2), (α3, β3)) such

that exactly one αi is even and each αi−βi is odd, the Rokhlin invariant of N

is given by

µ(N) ≡ sign e(N) +
∑3

i=1 c(αi − βi, αi)
8

(mod 2).

Remark 5.1. The notation c(a, b) represents the integer-valued function de-

fined implicitly by:
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1. c(a,±1) = 0 for odd a,

2. c(a± 2b, b) = c(a, b),

3. c(a, b+ a) = c(a, b) + sign b(b+ a), and

4. c(a, b) = −c(−a, b) = −c(a,−b).

We can put the Seifert invariant (0; (2, 1), (3, 1), (3, 1)) into the form re-

quired by the theorem using two applications of operation (3) from Theo-

rem 5.2:

(0; (2, 1), (3, 1), (3, 1)) ≈ (0; (2, 1− 1 · 2), (3, 1 + 1 · 3), (3, 1))

≈ (0; (2, 1− 1 · 2− 1 · 2), (3, 1 + 1 · 3), (3, 1 + 1 · 3))

≈ (0; (2,−3), (3, 4), (3, 4))

Thus, by Theorem 5.5 we have

µ(Y ) ≡ sign e(Y ) + c(5, 2) + c(−1, 3) + c(−1, 3)

8
(mod 2).

We can easily compute e(M) := −
∑n

i=1 βi/αi = −7/6, and either from

the implicit definition or the table on p. 185 of [41], we see that c(5, 2) = 1

and c(−1, 3) = −2. Putting it all together, we have µ(Y ) ≡ −1/2 (mod 2).

This is nonzero, so by our previous discussion the π∞1 (X̃) = T ∗ case has no

Riemannian quotient.
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Chapter 6

Binary Dihedral Case

Suppose now that π∞1 (X̃) is the binary dihedral group D∗4b. Just as before, we

have an exact sequence

1→ 1×D∗4b → G→ H → 1,

where G is a space-form group.

Consider the group G− = G ∩ SU(2)−. By assumption, G− contains D∗4b.

Notice that D∗4b /G and SU(2)− / SO(4), so D∗4b /G
−. To identify G− we need

to understand the lattice of normal subgroups in SU(2):

Proposition 6.1. The non-cyclic normal subgroups of the binary polyhedral

groups are:

• D∗4b / D∗8b for all b,

• D∗8 / T ∗ and D∗8 / O
∗, and

• T ∗ / O∗.
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Proof. Let B∗ be a non-cyclic binary polyhedral group, and B be its projection

in SO(3) under the covering map SU(2)→ SO(3). If N is a normal subgroup

of B∗, then either N contains {±1} and projects onto a normal subgroup of B,

or it has odd order and must be cyclic. Thus, it suffices to find the non-cyclic

normal subgroups of the polyhedral groups. The images of D∗4n, T ∗, O∗, and I∗

are isomorphic to D2n, A4, S4, and A5 respectively, and the normal subgroups

of dihedral, alternating, and symmetric groups are all well known.

Remark 6.1. If b = 2, we can rule out the extra possibilities as follows: We

see from Table 2.1 that χ(X̃) = 5, so D∗8 must be a subgroup of index 5 in G.

Since D∗8 < G− < G, this means that the index of D∗8 in G− is either 1 or 5.

This, together with the proposition, imply that G− = D∗8.

If G− = D∗4b, then Proposition 3.3 implies that G = Zm × D∗4b for some

m relatively prime to 4b. The other possibility is G− = D∗8b, in which case

G = Zm×D∗8b. But in this case, π1(X) = G/D∗4b is isomorphic to Zm×Z2. The

Zm is a normal subgroup of index 2, so by replacing X with the covering space

corresponding to this subgroup, we may assume in this case that G = D∗8b and

π1(X) = Z2.

This is the furthest we can go by looking only at the boundary of X: both

Zm×D∗4b and D∗8b actually are the fundamental group of some quotient of ∂X̃.

We will again need to look at the signature of X itself, this time by using the

η-invariant. This requires another detour.
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6.1 The η-Invariant

6.1.1 The signature theorem

The signature of a compact 4-manifold without boundary can be expressed in

terms of characteristic classes using Hirzebruch’s signature theorem:

Theorem 6.1 ([26, p. 86]). Let M be a closed, oriented 4-manifold. Then

τ(M) =

∫
M

1

3
p1(TM).

We can in fact think of this as a special case of the Atiyah-Singer index the-

orem [7, 6, 8] (though it was discovered earlier): Denote the space of smooth,

complex p-forms by Ωp, and define an involution t on the space Ω∗ = ⊕4
i=1Ωi

by

tα = −ip(p−1) ∗ α for α ∈ Ωp,

where ∗ is the Hodge star. Let Ω± be the ±1 eigenspaces of t. (The in-

tersections with Ω2 are exactly the complexified self-dual and anti-self-dual

2-forms).

Let δ be the formal adjoint of d (explicitly, δ = − ∗ d∗), and consider the

differential operator D = d + δ. This is a self-adjoint elliptic operator with

the same kernel as the Hodge Laplacian (in fact, D2 = ∆). It splits into two

pieces, D+ : Ω+ → Ω− and D− : Ω− → Ω+, which are adjoints of each other.

The component D+ is often called the signature operator.

The kernel of D± is the intersection of Ω± with the space of harmonic
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forms; call this space H±. Thus,

Ind(D+) = dim KerD+ − dim CokerD+

= dim KerD+ − dim KerD−

= dimH+ − dimH−

Finally, note that if α is a harmonic form of degree p 6= 2, then α+ tα and

α− tα are nonzero elements of H+ and H−, respectively. Thus, the difference

dimH+ − dimH− cancels except in degree 2, so Ind(D+) is the dimension of

the space of harmonic self-dual 2-forms minus the dimension of the space of

harmonic anti-self-dual 2-forms, which is the signature of M .

The Atiyah-Singer theorem expresses the signature of the elliptic operator

D+ in terms of characteristic numbers, which in this case takes the form of

Equation 6.1.

Curvature integral

The integral in the signature theorem is just a notation for pairing a coho-

mology class with the fundamental homology class of M , but it is suggestive.

If M is given a Riemannian metric, then Chern-Weil theory allows us to re-

express this equation in terms of an actual integral involving the curvature of

the metric:

τ(M) =
1

12π2

∫
M

|W+|2 − |W−|2 dµg (6.1)

In particular, this makes it clear that τ is multiplicative under finite coverings:

just pull back the metric and integrate.
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The signature theorem with boundary

Formula 6.1 does not in general hold for a 4-manifold with boundary, but by

gluing together two 4-manifolds along a common boundary, we see that the

defect

def(M, g) = τ(M)− 1

12π2

∫
M

|W+|2 − |W−|2 dµg

depends only on the geometry of ∂M (at least if the glued metric is sufficiently

smooth across the boundary).

Atiyah, Patodi, and Singer proved an extension of the index theorem to

manifolds with boundary, which when specialized to the case of the signature

operator identifies def(M, g) with a spectral invariant of the boundary. Let us

review their theorem.

The η-invariant of the signature operator

Let A be a first-order self-adjoint elliptic operator on a closed manifold N .

Then its eigenvalues {λ} are real numbers, and for complex numbers s with

sufficiently large real part, the series

ηA(s) :=
∑
λ 6=0

signλ

|λ|s

converges. In fact, it extends to a meromorphic function on the entire complex

plane, and one can prove that ηA(0) is finite. This value, called the η-invariant

of A, is a way to make sense of “the number of positive eigenvalues minus the

number of negative eigenvalues” when both quantities are infinite.

Now, consider the case where M is a compact, oriented, Riemannian 4-
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manifold with boundary ∂M = N . Suppose that the metric on M is iso-

morphic to a product [0, 1] × N near the boundary. Then for some bundle

isomorphism σ, the restriction of the signature operator to [0, 1] × N can be

written as

D+ = σ

(
∂

∂u
+ A

)
,

where ∂/∂u is the inward-pointing normal, and A is an elliptic operator on N .

The restriction of Ω+ to the boundary yields all differential forms on N , and

the operator A preserves the parity of forms on N , so it splits into even and

odd pieces: A = Aev+Aodd. Let η(N) be the η-invariant corresponding to Aev.

Since we’ve assumed that the metric on M is a product near the boundary,

this value depends only on the metric on N .

The signature of M is then given by

Theorem 6.2 (Atiyah-Patodi-Singer [5]).

τ(M) =
1

12π2

∫
M

|W+|2 − |W−|2 dµg − η(N).

The signature theorem for ALE spaces

So far, our discussion of the η-invariant has assumed that we were working on

a compact manifold equipped with a product metric near the boundary. We

will now sketch an argument that the same formula applies to ALE manifolds.

(See [31] for more details).

The Euclidean metric on R4 can be written in polar coordinates as

gEcl = dr2 + r2gS3 .
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Away from the origin, consider the conformally equivalent metric r−2gEcl =

r−2dr2 + gS3 . Via the substitution ρ = log r, this becomes the cylindrical

metric dρ2 + gS3 .

Now, suppose that (M, g) is ALE with coordinates at infinity of order

τ > 0, and let u be a smooth function on M which is equal to r−1 outside

of a compact set. Then by the above, the conformally related metric u2g is

asymptotically cylindrical. For all r sufficiently large, let Kr be a compact

subset of M which in the coordinates at infinity corresponds to the closed ball

of radius r centered at the origin. The signature theorem on Kr with respect

to the metric u2g takes the form

τ(Kr) =
1

12π2

∫
Kr

|W+|2 − |W−|2 dµ+
1

24π2

∫
∂Kr

Tr(R∧ Π)− η(∂Kr),

whereR is the curvature 2-form, and Π is the second fundamental form of ∂Kr.

The new integral term appears because the metric on Kr is not a product near

the boundary [18]. We wish to take a limit of this equation as r →∞.

All of the spaces Kr are diffeomorphic to each other and to M , so the left-

hand side of the equation becomes τ(M). By construction, the union of all

Kr is M , so the integrals over Kr converge to the integral over M . Moreover,

the integrand is conformally invariant, so we can replace u2g with the original

metric. One can check that the ALE condition implies that Π → 0, and the

curvature stays bounded, so the boundary integral goes to zero. Finally, since

we’ve rescaled the metric to be asymptotically cylindrical, the metric on ∂Kr

converges smoothly to the round metric on the space form S3/Γ at infinity,

and one can check that this implies convergence of the η-invariants. (For an
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arbitrary elliptic operator, the η-invariant of a smooth family of metrics can

have integer jumps, but this does not occur with the signature operator). Thus

the signature theorem for ALE spaces is:

Proposition 6.2. If (M, g) is a 4-dimensional ALE manifold, then

τ(M) =
1

12π2

∫
M

|W+|2 − |W−|2 dµg − η(S3/π∞1 ). (6.2)

6.1.2 The G-signature theorem with boundary

As one might expect, the description of η(N) in terms of the spectrum of a

differential operator is not very conducive to calculation. However, there is a

related generalization of theG-signature theorem of Atiyah-Singer [8, (6.12)] to

manifolds with boundary due to Donnelly [17] which will allow us to calculate

the η-invariants of the space forms we are interested in.

Consider the same situation as before: (M, g) is a compact Riemannian

4-manifold with ∂M = N , such that g is a product metric near the boundary,

and let Aev be the even component of the tangential signature operator on N .

But now suppose that we have a compact group G of orientation-preserving

isometries on M such that the action is a product near the boundary. Any

isometry f ∈ G defines a map on the even-dimensional forms of N which com-

mutes with Aev, so in particular we have a linear map f#
λ on each eigenspace.

Define the equivariant η-function on G× C by

ηf (N, s) :=
∑
λ6=0

signλ · Trf#
λ

|λ|s
. (6.3)
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Just as before, one can prove that ηf (N, 0) is always finite; it will be denoted

by ηf (N).

In a similar way, each f ∈ G defines a map on the harmonic forms which

commutes with the involution t from Section 6.1.1 and thus preserves the ±1

eigenspaces. We can define a signature corresponding to f by

τ(f,M) = Tr(f |H+)− Tr(f |H−).

As before, the difference always cancels except on forms of degree 2. In par-

ticular, if f is the identity then this gives the usual signature of M .

If we assume that the boundary of M is empty, Atiyah and Singer’s G-

signature theorem says [8, (6.12)]:

τ(f,M) =
∑
F∈Ω

Ψ(F, f), (6.4)

where the sum is taken over the connected components of the fixed-point set

of f , and Ψ(F, f) is the integral over F of a cohomology class built up from

the action of f on the normal bundle. Donnelly’s generalization to manifolds

with boundary identifies the difference between the two sides of this equation

with the equivariant η-invariant [17, I.4]:

τ(f,M) =
∑
F∈Ω

Ψ(F, f)− ηf (N). (6.5)

Moreover, in the special case where N̂ → N is a finite, regular covering
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with deck group G, he proves that [17, I.6]:

η(N̂)− |G|η(N) = −
∑
f 6=1

ηf (N), (6.6)

where the η-invariants on the left-hand side are the ordinary (non-equivariant)

invariants defined in Section 6.2. This relates the η-invariants of S3 and S3/π∞1

and will allow us to compute the latter one.

Isolated fixed points

The formula for Ψ(F, f) on an arbitrary component of the fixed point set is

quite complicated, but we will need it only in the case where F is an isolated

fixed point. The G-signature theorem in this special case was discovered by

Atiyah and Bott [3, 4].

Suppose that f : M → M is an orientation-preserving isometry of a Rie-

mannian 4-manifold, with an isolated fixed point at some p ∈M . By choosing

a basis, we can represent the action of f on TpM as an element of SO(4). Any

element of SO(4) can be conjugated into the maximal torus, which consists of

block matrices of the form  R(θ1) 0

0 R(θ2)

 ,
where R(θ) is the 2x2 clockwise rotation matrix with angle θ. If f ∈ U(2),

then the angles θi are exactly the arguments of the two complex eigenvalues.
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With respect to these two angles, Ψ is given by [4, (6.25)]:

Ψ(p, f) = − cot(θ1/2) cot(θ2/2). (6.7)

(This is finite because if either angle was 0, then the fixed point would not be

isolated).

6.1.3 Dedekind sums

From equations 6.7 and 6.6, the η-invariant of a space form S3/G can be ex-

pressed in terms of η(S3) and a sum of products of cotangents. Such sums

occur in a surprising array of places in mathematics (see the book by Hirze-

bruch and Zagier for many examples [28]). We will now describe a connection

to number theory.

Let ((.)) : R→ R be the “sawtooth” function given by:

((x)) =


x− bxc − 1

2
if x ∈ R \ Z

0 if x ∈ Z

where bxc means the floor of x (the greatest integer ≤ x). Then for integers

a, b, and c which are pairwise relatively prime, we define the Dedekind sum

D(a, b; c) by

D(a, b; c) =
c−1∑
i=1

((
ai

c

))((
bi

c

))
. (6.8)

These sums are named after Richard Dedekind because he first studied the

special case s(p, q) := D(1, p; q), in relation to transformation properties of

modular forms.
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Our interest in Dedekind sums is that they can also be expressed as a

cotangent sum [45]:

D(p, q; r) =
1

4r

r−1∑
k=1

cot

(
πpk

r

)
cot

(
πqk

r

)
. (6.9)

6.1.4 Properties of Dedekind sums

To calculate the η-invariant of a space form, we will need to compute some

Dedekind sums. Let us review some of the properties that will allow us to

complete the calculation:

1. If a ≡ a′ (mod c) and b ≡ b′ (mod c), then D(a, b; c) = D(a′, b′, c).

2. If z is relatively prime to c, then D(a, b; c) = D(az, bz; c).

3. D(−a, b; c) = D(a,−b; c) = −D(a, b; c)

4. For any a and b, we have D(a, b; 1) = 0. (In particular, s(a, 1) = 0.)

5. Rademacher Reciprocity [44]:

D(a, b; c) +D(b, c; a) +D(c, a; b) =
1

12

a2 + b2 + c2

abc
− 1

4

6. Dedekind Reciprocity [16, vol. 1, pp. 159-173]:

s(b, c) + s(c, b) =
1

12

(
b

c
+

1

bc
+
c

b

)
− 1

4

Proof of 1-4. Since ((.)) has period 1, each sawtooth factor in every term is

unaltered by changing a or b by a multiple of c, giving property 1. This
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implies property 2, because multiplying by a relatively prime integer is an

invertible operation, so multiplying a and b by z just changes the order of the

terms in the sum without changing the result. The sawtooth function is odd

and vanishes at every integer, giving properties 3 and 4, respectively.

6.2 The η-Invariant of S3/(Zu ×D∗4v)

Consider a 3-dimensional spherical space form Y = S3/G with fundamental

group G = Zu ×D∗4v.

In the signature theorem with boundary,

τ(M) =
1

12π2

∫
M

|W+|2 − |W−|2 dµg − η(∂M),

reversing the orientation negates both the signature of M and the curvature

integral, so it must also negate η. Since S3 admits an orientation-reversing

isometry, this implies that η(S3) = 0, and Equation 6.6 becomes

η(Y ) = − 1

|G|
∑
f 6=1

cot

(
θ1(f)

2

)
cot

(
θ2(f)

2

)
.

For notational convenience, define r(θ) = e2πiθ, and for any element A of

SO(4), denote by η(A) the quantity − cot(θ1/2) cot(θ2/2) described above. We

will only need to work with matrices that are unitary, and either diagonal or

anti-diagonal as complex matrices. The second case turns out to be trivial:
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Claim 2. For any A ∈ U(2) of the form

 0 r(a)

r(b) 0

 ,
we have η(A) = 1.

Proof. This matrix has eigenvalues r(a+b
2

) and r(a+b
2

+ 1
2
). Thus

η(A) = − cot

(
π(a+ b)

2

)
cot

(
π(a+ b)

2
+
π

2

)
.

But the angle-addition formula for cotangent gives cot(x + π
2
) = −1/ cot(x),

and the claim follows.

Consider first the case where v is even. According to Wolf [57], up to

equivalence and automorphisms of the group, the only representation of this

group into SO(4) which acts freely on the 3-sphere has image in U(2) < SO(4)

generated by the matrices

A =

r
(

2v+u
2uv

)
0

0 r
(

2v−u
2uv

)


and

B =

 0 1

−1 0

 .
This representation comes from the presentation

〈A,B | A2uv = 1, B2 = Auv, BAB−1 = Ak 〉,
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where k is chosen so that k ≡ −1 (mod 2v) and k ≡ 1 (mod u). (This choice

is unique by the Chinese remainder theorem).

We wish to compute the quantity η(Y ) = 1
4uv

∑
f 6=1 η(f), identifying G

with the image of the representation above. Notice that every element of G

can be uniquely written as ApBq for some p ∈ Z2uv and q ∈ Z2. The elements

with q = 0 are diagonal, and those with q = 1 are anti-diagonal. Because

of Claim 2, each anti-diagonal element contributes 1 to the above sum, and

there are 2uv of them, so η(Y ) = 1
2

+ 1
4uv

∑2uv−1
j=1 η(Aj). But since each Aj is

diagonal, this latter sum is equal to

− 1

4uv

2uv−1∑
j=1

cot

(
πj(2v + u)

2uv

)
cot

(
πj(2v − u)

2uv

)
,

We can write this in terms of Dedekind sums using Equation 6.9. Thus the

η invariant of Y is just given by

η(Y ) =
1

2
− 2D(2v + u, 2v − u; 2uv).

We will simplify this in a moment, but let us first examine the case where

v is odd. There is again just one orthogonal representation up to equivalence

and automorphisms, given in a complex basis by the generators

A =

r
(

1
v

)
0

0 r
(
− 1
v

)
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and

B =

 0 1

r
(

1
2u

)
0

 .
Every element of the group can be written uniquely as AsBt with s ∈ Zv

and t ∈ Z4u. It is easy to see that B2 commutes with A, and that the set of

elements with t even is a cyclic subgroup generated by

AB2 =

r
(
v+2u
2uv

)
0

0 r
(
v−2u
2uv

)
 .

The elements with t odd are all anti-diagonal, and by the same reasoning as

in the even case, we obtain the formula

η(Y ) =
1

2
− 2D(v + 2u, v − 2u; 2uv) =

1

2
+ 2D(2u+ v, 2u− v; 2uv).

Thus, if we can compute D(2x+y, 2x−y; 2xy) for 2x and y relatively prime,

then we will have a formula for both cases. Rademacher reciprocity (property 5

from Section 6.1.4) expresses the sum D(a, b; c)+D(b, c; a)+D(c, a; b) in closed

form, which reduces our problem to that of computing D(2x− y, 2xy; 2x+ y)

and D(2xy, 2x + y; 2x − y). We will sketch the calculation of the first; the

second is similar.

By reducing the first two arguments modulo the third,

D(2x− y, 2xy; 2x+ y) = D(−2y, 2xy; 2x+ y).

Since 2x and y are relatively prime, the sum 2x + y is relatively prime to 2y,
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so we can divide the first two arguments by it:

D(−2y, 2xy; 2x+ y) = D(−1, x; 2x+ y).

Then, we can pull out the negative sign from the first argument, and it becomes

equivalent to a 2-argument Dedekind sum:

D(−1, x; 2x+ y) = −D(1, x; 2x+ y) = s(x, 2x+ y).

Dedekind reciprocity expresses this 2-argument sum in terms of s(2x + y, x),

which by reducing the first argument modulo y is equal to s(y, x). Putting it

all together, we get the following:

D(2x+ y, 2x− y; 2xy) =
1

12xy
+

y

6x
− 1

4
− 2s(y, x).

Applying this in the odd case, we get:

η(Y ) =
1

2
+ 2D(2u+ v, 2u− v; 2uv) =

1

6uv
+

v

3u
− 4s(v, u),

and in the even case:

η(Y ) =
1

2
− 2D(2v + u, 2v − u; 2vu) = 1− 1

6vu
− u

3v
+ 4s(u, v).

But by applying Dedekind reciprocity to the Dedekind sum in this last

expression, we get exactly the same formula as in the odd case. Thus, we

have:
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Lemma 1. If Y is a 3-dimensional spherical space form with fundamental

group Zu ×D∗4v, then

η(Y ) =
1

6uv
+

v

3u
− 4s(v, u). (6.10)

6.3 Exclusion of the Remaining Cases

Let us now return to the situation at the beginning of the chapter. We have

an ALE gravitational instanton X̃ with π∞1 (X̃) = D∗4b, and a Riemannian

quotient with G = π∞1 (X) given by the exact sequence

1→ 1×D∗4b → G→ H → 1.

By looking at the topology of the boundary, we excluded all cases except

• G = Zm ×D∗4b and H = Zm (with m relatively prime to 4b), or

• G = D∗8b and H = Z2.

Now, since the metric on X is anti-self-dual, the signature formula (6.2)

reduces to

τ(X) = − 1

12π2

∫
X

|W−|2 dµ− η(S3/G).

We can compute the first two terms of this equation directly. Let d be the

degree of the covering map. We know that χ(X̃) = b + 3 from Table 2.1, so

we must have χ(X) = (b + 3)/d. By Remark 3.1, this means that τ(X) =

1 − (b + 3)/d. The Gauss-Bonnet formula for Ricci-flat anti-self-dual ALE
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spaces is

χ(M) =
1

8π2

∫
|W−|2 dµ+

1

|π∞1 |
, (6.11)

which implies that

∫
X̃

|W−|2 dµ = 8π2

(
b+ 3− 1

4b

)
.

We know that
∫
X
|W−|2 dµ = 1

d

∫
X̃
|W−|2 dµ, so putting everything together,

we get that the eta invariant of the boundary of X must be given by

η(∂X) =
b

3d
+

1

d
+

1

6bd
− 1. (6.12)

Now, the case G = D∗8b corresponds to Equation 6.10 with u = 1 and

v = 2b. The Dedekind sum in the formula vanishes by property 4, so

η(∂X) =
1

12b
+

2b

3
.

The degree of the covering is 2, so setting this equal to Equation 6.12 and

substituting d = 2, we have

1

12b
+

2b

3
=
b

6
+

1

12b
− 1

2
.

The only solution of this equation is negative (b = −1), so this case is impos-

sible.

In the case G = Zm × D∗4b, the space X̃ has Euler characteristic b + 3

(Table 2.1), and the group of covering transformations is Zm, so b+ 3 must be

divisible by m. This implies that b ≡ −3 (mod m), so that the Dedekind sum
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in Equation 6.10 is equal to s(−3,m) = −s(3,m). The Dedekind reciprocity

formula allows us to write this last sum in terms of either s(0, 3), s(1, 3), or

s(2, 3), depending on the residue class of m modulo 3, but these three sums

are easy to evaluate by hand. Thus, we determine that

η(∂X) =
1

6mb
+

b

3m
+



(m−10)(m+1)
9m

m ≡ 0 (mod 3)

(m−10)(m−1)
9m

m ≡ 1 (mod 3)

(m−5)(m−2)
9m

m ≡ 2 (mod 3)

. (6.13)

If we set this equal to Equation 6.12 and set d = m, we have

1

m
− 1 =



(m−10)(m+1)
9m

m ≡ 0 (mod 3)

(m−10)(m−1)
9m

m ≡ 1 (mod 3)

(m−5)(m−2)
9m

m ≡ 2 (mod 3)

.

It is easily verified that the only positive integer solution of these equations

is m = 1, so there are no non-trivial quotients in this case. Thus, the binary

dihedral gravitational instantons have no quotients.
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Chapter 7

Cyclic Case

We will work from the other direction in this case: starting with the universal

covering and determining all isometric quotients.

7.1 The Gibbons-Hawking Ansatz

Let (M, g, π) be a Gibbons-Hawking space with k monopoles, i.e., given by

the following ansatz:

Theorem 7.1 (Gibbons-Hawking [22]). Let π : M0 → R3 − {p1, . . . , pk} be

the principal S1-bundle whose first Chern class yields −1 when paired with the

generators of second homology given by small 2-spheres about the “monopole”

points {p1, . . . , pk}. Let V be the function on R3 given by

V (x) =
1

2

k∑
i=1

1

|x− pi|
.

If we equip the bundle M0 with the connection 1-form ω defined by dω =
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π∗(∗dV ), then the metric

g = V (dx2
1 + dx2

2 + dx2
3) + V −1ω2

on M0 can be smoothly completed, yielding a hyperkähler manifold M .

The difference M \M0 consists of k points {p̃1, . . . , p̃k}, and the map π on

M0 extends to a map π : M → R3 such that π(p̃i) = pi. To see the 2-sphere of

parallel complex structures, first let ∂θ denote the vertical vector field on M0

defined by ω(∂θ) = 1. Then the horizontal lifts of the vector fields V 1/2∂θ and

V −1/2∂xi give an orthonormal trivialization of the tangent bundle of M0. Thus

an orthogonal almost-complex structure I on M0 which is compatible with

the orientation is uniquely determined by where it sends V 1/2∂θ, which must

be a unit vector in Span{V −1/2∂xi} ∼= R3. One needs only check that these

almost-complex structure all extend to M , and that the result is integrable.

Notice also that the S1 action coming from the principal bundle structure

on M0 extends to an action on M by leaving M \M0 fixed pointwise, so that

∂θ extends by zero to M . One can check from the above description that this

S1 action is actually triholomorphic. It also follows from the construction that

π is both the (ordinary) quotient map and the hyperkähler moment map for

this S1 action (see [32]).

We will determine the isometries of M by looking at holomorphic curves

in M :

Proposition 7.1. Every real surface C ⊂ M which is a (−2)-curve with

respect to some parallel complex structure is the preimage under π of a straight

line segment between monopoles.
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Proof. Equip M with the parallel complex structure I that makes C into a

(−2)-curve. Since ∂θ is triholomorphic, the translations of C along that field

are also (−2)-curves, and they are homologous to the original, so they must

actually coincide. Thus, C is the union of fibers of π. For p ∈ R3 such that

C contains π−1(p), we see that I(∂θ)x is tangent to C for each x ∈ π−1(p).

But by construction of M , π∗(I(∂θ)x) is independent of x ∈ π−1(p). Let l

be the line in R3 containing p and tangent to π∗(I(∂θ)x). Then π−1(l) is a

non-compact holomorphic curve with respect to I, and its intersection with C

contains a circle, so it must be all of C. Thus C ⊂ π−1(l). If {pi1 , . . . , pim} are

the monopoles lying on l, then π−1(l) is a chain of m− 1 spheres intersecting

transversely, together with two discs intersecting the end spheres transversely.

It follows that C must be the preimage of a segment between monopoles.

Corollary 1. If k > 2, then the identity component of the group of triholo-

morphic isometries of M is isomorphic to U(1).

Proof. Take 3 distinct monopoles p, q, r and assume that the line segments pq

and qr intersect only at q (by reordering). The preimage of these two segments

will be two spheres intersecting transversely.

Now, any isometry of M takes a parallel complex structure to another one,

so it must permute the union of all real surfaces which are (−2)-curves for some

parallel complex structure. Thus the identity component of the triholomorphic

isometry group acts by homeomorphisms isotopic to the identity on the union

of these curves. In particular, every element must fix the point π−1(q). Since

isometries are determined by their value and differential at any single point, we

have a faithful representation of the identity component of the triholomorphic
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isometry group into GL(Tπ−1qM). Identify this tangent space with C2 in a way

that is compatible with the parallel complex structure making the preimage

of the segment between p and q into a (−2)-curve. Then the image of the

representation must lie in SU(2). Moreover, it must take the tangent spaces

of the two intersecting spheres into themselves. Thus the image must actually

lie in { diag(a, a−1) | a ∈ U(1) } ∼= U(1). The identity component also contains

a U(1), namely the subgroup generated by ∂θ, so it follows that it must be

isomorphic to U(1).

7.2 Isometries of Gibbons-Hawking Metrics

Let f be an isometry of a Gibbons-Hawking space with k > 1 monopoles. By

Table 2.1, the signature of M is nonzero, so f must preserve the orientation.

We first consider the case k > 2. Since the pushforward f∗ must send ∂θ

to another triholomorphic Killing field of unit length, by Corollary 1 we must

have f∗∂θ = ±∂θ. Notice that since ∂θ is exactly tangent to the fibers of π,

f must take fibers of π to fibers, and so we get an induced map f̂ : R3 → R3

on the quotient space. The orientation on the circle fibers is preserved (resp.

reversed) when f∗ preserves (resp. reverses) ∂θ.

If instead k = 2 (which is the Eguchi-Hanson metric [20]), then the tri-

holomorphic isometry group is SO(3) (see [23]), so this same argument doesn’t

work. From Proposition 7.1, it follows that f must preserve the 2-sphere S

given by the preimage of the segment between the two monopoles and act

freely on it, so f must have order 2. Let A ∈ GL(3;R) be the corresponding

action on the space of triholomorphic Killing fields so(3) ∼= R3. Then A must
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have a nonzero eigenvector, but A2 = Id implies that the only possible eigen-

values are ±1. This means that G must send some triholomorphic Killing field

to itself or its negative. However, consider the explicit form

g =

[
1−

(a
4

)4
]
dr2 + r2

[
1−

(a
4

)4
]

(dψ + cos θdφ)2 +
r2

4
(dθ2 + sin2 θdφ2)

for the metric, where θ, φ, and ψ are Euler angles on SO(3). The triholomor-

phic SO(3) in this picture is exactly the standard SO(3) acting on the round

2-sphere r = a, which corresponds to S in the previous picture. It then follows

that the triholomorphic isometry group acts transitively on the unit sphere of

the triholomorphic Killing fields, so by conjugating f by some triholomorphic

isometry, we may assume that f sends ∂θ to itself or its negative. Thus, we are

in exactly the same situation as before: f∗∂θ = ±∂θ, and there is an induced

map f̂ : R3 → R3.

Since π is also the hyperkähler moment map for the S1 action, there are

parallel complex structures I, J , and K with Kähler forms ωI , ωJ , and ωK

such that the 1-forms defined by dx = ωI(∂θ, ·), dy = ωJ(∂θ, ·), dy = ωK(∂θ, ·)

are actually the differentials of the component functions of π : M → R3.

Now, f acts on the space of parallel self-dual 2-forms by pullback, so in

the basis for this space given by ωI , ωJ , and ωK , we can think of this action

as being an element ρ(f) of SO(3). Let d~x be the R3-valued 1-form on M

with components (dx, dy, dz), and ~ω the R3-valued 2-form with components
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(ωI , ωJ , ωK). We compute:

(f ∗d~x)(v) = f ∗(~ω(∂θ, ·))(v)

= ~ω(∂θ, f∗v)

= ±(f ∗~ω)(∂θ, v)

= ±(ρ(f) · ~ω)(∂θ, v)

= ±ρ(f) · d~x(v),

where the sign in the same as in f∗∂θ = ±∂θ.

Thus, if we go back to the induced map f̂ : R3 → R3, we see that it has

constant differential, given by ±ρ(f), so f̂ is an affine transformation. The

monopoles are the only points in R3 whose fibers are single points, so f̂ must

permute them. If we let o be the center of mass of the monopoles for the

Euclidean metric on R3, this means that f(o) = o. By modifying π by a

translation, we may assume that o is the origin, making f an element of O(3).

If f̂ fixes any monopole p, then since the fiber over p contains only one

point, it must be fixed by f . In particular, if o is a monopole point, then every

isometry of M has a fixed point. If we assume that this is not the case, then we

can completely identify the isometry group of M via some general arguments

of Honda and Viaclovsky:

Theorem 7.2 ([33]). Let f̂ : R3 → R3 be an isometry which preserves the

monopole points. Then f̂ lifts to an orientation-preserving isometry of M

which preserves (resp. reverses) the orientation of the circle fibers when f̂ is

orientation-preserving (resp. orientation-reversing). The lift is unique up to
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the S1 action generated by ∂θ.

Thus, we have an exact sequence

1→ S1 → Iso(M)→ G→ 1

where G is the subgroup of O(3) which takes monopoles to monopoles. We

claim that this sequence admits a splitting homomorphism φ : G → Iso(M).

First, fix an origin for the circle fiber lying over the origin, so that it is iden-

tified with the circle group {λ ∈ C : |λ| = 1}. Then a lifting of f ∈ G is

uniquely determined by its action on this fiber. Let φ(f) be the unique lift-

ing which acts trivially on the fiber if f is orientation-preserving, and acts by

complex conjugation if f is orientation-reversing. This identifies Iso(M) with

the semidirect product S1nG, where f ∈ G acts on λ ∈ S1 by fλf−1 = λdet f .

7.2.1 Free quotients

We are now ready to determine the quotients of M . Let H be a subgroup of

Iso(M) which acts freely. As we saw before, this implies that H descends to

a subgroup Ĥ < O(3) which acts freely on the monopole points. If ĥ ∈ Ĥ

reverses the orientation of R3, then h reverses the orientation of the circle fiber

over o. But every orientation-reversing isometry of a circle has fixed points,

so this is impossible. Since every element of Ĥ is orientation-preserving, the

group of liftings in Iso(M) is actually a direct product S1× Ĥ: the projection

onto S1 is given by the action on the fiber over o.

Now, if the projection of H onto Ĥ were not injective, then H would

contain a nontrivial element of the form (λ, 1) ∈ S1 × Ĥ. But every such
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element fixes the points of M lying over the monopoles, so this is impossible.

This means that H is the graph of a homomorphism c : Ĥ → S1 (in particular,

H is isomorphic to Ĥ). In a similar way, every element of the form (1, λ) fixes

the circle lying over the origin, so c is also injective and thus Ĥ is a cyclic

group.

Every cyclic subgroup of SO(3) is a group of rotations about some fixed

axis, so the action of H will preserve some constant vector field w on R3. Since

it permutes the monopoles, it will also preserve the function V , so V −1/2w will

be invariant. By our previous argument, we see that H preserves ∂θ and the

orientation, so the action of H must actually preserve the complex structure

given by I(∂θ) = V −1/2w, and therefore the quotient M/H is always Kähler.

This concludes the proof of Theorem A.

This also gives us an explicit description of the quotients. Given a fixed

cyclic group Ĥ < SO(3) which acts freely on the monopoles, the liftings H

which act freely on M are determined by the injective homomorphism c : Ĥ →

S1. The circle contains only one finite group of each order n, the n-th roots of

unity, so c is determined by the choice of a primitive n-th root of unity. Some

of these choices yield isometric quotients, however. In particular, if two groups

have the same projection in SO(3) and the corresponding maps c1 and c2 are

complex conjugates of one another, then the groups are conjugate in Iso(M),

and the quotients are isometric. In rare cases, it is even possible that the

choice of Ĥ is not uniquely determined by the order of H. Consider the case

of an even number of equally-spaced collinear monopoles. This space admits

an S1 worth of different Z2 actions which act freely on the monopoles, but all

of them are conjugate in the full isometry group.
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Chapter 8

Consequences

We now use the classification theorem to prove the two corollaries mentioned

earlier:

Corollary B. If X is a Ricci-flat anti-self-dual ALE 4-manifold such that

∫
X

|Rm|2 dµ < 6π2,

or such that b2(X) > 0 and

∫
X

|Rm|2 dµ < 8π2

(
b2(X) + 1− 1

b2(X) + 1

)
,

then X is isometric to flat R4.

Proof. If X is flat, then it must be isometric to R4: The universal cover of X

must be R4, and the results of Anderson [2] imply that π1(X) is finite. But

every finite group of isometries of R4 has a fixed point (just take the center of

mass of any orbit), so we must have π1(X) = 1.
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If X is not flat, then the only non-vanishing component of the curvature

tensor of X is W−, so in this case the Gauss-Bonnet formula (6.11) gives

∫
X

|Rm|2 dµ = 8π2

(
χ(X)− 1

|π∞1 (X)|

)
,

which by Remark 3.1 is equal to

8π2

(
b2(X) + 1− 1

|π∞1 (X)|

)
.

Thus to find the minimum curvature, it is enough to find the minimum of

|π∞1 | for each fixed b2. From Table 2.1, it is clear that the Gibbons-Hawking

spaces dominate the other gravitational instantons in this respect, so we need

only compare the Gibbons-Hawking spaces and their quotients. From the

same table, we see that a d-fold quotient of a Gibbons-Hawking space with k

monopoles has |π∞1 | = dk and b2 = (k/d)− 1, so |π∞1 | = d2(b2 + 1). Thus, for

each b2, the minimum |π∞1 | occurs when d = 1, the Gibbons-Hawking space

itself. Note, however, that the 1-monopole Gibbons-Hawking space is just

flat R4, so the non-flat metric with smallest |π∞1 | for the b2 = 0 case occurs

when k = d = 2, a 2-fold quotient of the Eguchi-Hanson metric. Plugging

these minimizing parameters back into the curvature formula above yields the

minimum curvatures listed in the theorem.

Corollary C. If X is a scalar-flat Kähler ALE 4-manifold and b2(X) = 0,

then X is actually Ricci-flat, and is a quotient of a Gibbons-Hawking space X̃

by a cyclic group of order χ(X̃).

Proof. Since X is scalar-flat, the Ricci form ρ of X must be harmonic [10,
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2.33], and since X is ALE, it must moreover be square-integrable. However,

on an ALE 4-manifold, the space of L2 harmonic forms is isomorphic to the

image of H2(X, ∂X;R) in H2(X;R) [25, Theorem 1A]. Therefore, if b2(X) = 0,

then ρ must be the zero form, and so X is Ricci-flat. The last assertion then

follows immediately from the main theorem and Remark 3.1.
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