
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



On the Partition Function for CP1
Instantons on

a Flat Torus

A Dissertation Presented

by

Joseph William Walsh

to

The Graduate School

in Partial Ful�llment of the Requirements

for the Degree of

Doctor of Philosophy

in

Mathematics

Stony Brook University

August 2012



Copyright by

Joseph William Walsh

2012



Stony Brook University

The Graduate School

Joseph William Walsh

We, the dissertation committee for the above candidate for the Doctor of Philosophy degree,
hereby recommend acceptance of this dissertation.

Leon Takhtajan � Dissertation Advisor

Professor, Department of Mathematics

Samuel Grushevsky � Chairperson of Defense

Associate Professor, Department of Mathematics

Dror Varolin

Associate Professor, Department of Mathematics

Martin Rocek

Professor, Institute of Theoretical Physics

This dissertation is accepted by the Graduate School.

Charles Taber
Interim Dean of the Graduate School

ii



Abstract of the Dissertation

On the Partition Function for CP1 Instantons on a Flat
Torus

by

Joseph William Walsh

Doctor of Philosophy

in

Mathematics

Stony Brook University

2012

The partition function for the free theory of CP1-valued �elds on a �at two-

dimensional torus is studied. The partition function localizes to an in�nite series

of �nite-dimensional integrals of the form

�
Nd

(det ′∆w)
−1/2

dµd(w)

whereNd is the space of all holomorphic maps w of topological degree d. ∆w is the

Laplace operator on w∗ (TP1) with respect to the pullback of teh Fubini-Study

metric, and dµd is the induced measure.

Through the process of ζ-regularization of the determinant and variation of the

conformal anomaly of the metric, the determinant is explicitly calculated in terms
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of the zeroes a1, a2, . . . , ad, poles b1, b2, . . . , bd, and scaling factor c of w. For each

degree, a simple family of bundle metrics are introduced, parametrized by the

universal cover of the Jacobian variety, to act as the base points for the conformal

variation.

The measure dµd(w) is computed exactly with respect to the same coordinates.

This requires a careful examination of its dependence upon the complex structure

of the torus.

Finally, we discuss the convergence properties of each of the above integrals.
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Chapter 1

Introduction

1.1 Physical Motivation

Let M = R1,3 be Minkowski spacetime with metric −dt2 + dx2 + dy2 + dz2. A �eld φ on

spacetime taking values in some other space X is simply a section of a bundle over M with

�bre X. For example, if X is R (or C), then φ is called a real (or complex) scalar �eld. The

most common example is the case where φ is a section of some tensor or spinor bundle over

M .

A classical �eld theory is given by a functional S, called the action, on the space of

�elds under consideration:

S[φ] =

�
M

L[φ(t, ~x)]dtd3~x,

where L, the Lagrangian density, is a scalar quantity that is constructed out of φ and its

derivatives. The dynamics of the �eld theory are encoded into the action functional by �the

principal of least action.� This states that the physical �elds are those for which the action

is stationary (usually minimum); i.e. the only �elds allowable in the theory are those that

satisfy the cooresponding Euler-Lagrange equations. Thus, the dynamics of the physical
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�elds are completely determined.

In quantum �eld theory, �elds are no longer explicitly determined by the Euler-

Lagrange equations; rather, they are self-adjoint operator-valued distributions, acting on

the space of probability amplitudes, which can be thought of as a complex projective Hilbert

space. The dynamics of the theory is contained in the correlation functions: the expectation

values of these distributions evaluated at di�erent points of spacetime. The classical action

still determines the dynamics of the quantum theory in the following way. If F̃ is a quantum

operator corresponding to the classical functional F , then its expected value is

〈
F̃
〉

:=

�
F [φ]eiS[φ]Dφ�
eiS[φ]Dφ

where the �integral� is performed over the space of classical �elds φ.

In the classical realm, observables are built out of combinations of the �elds and

their derivatives, and we demand that this relationship carry over to the quantum world in

some consistent way. Therefore, the major quantities of interest are the �n-point� correlation

functions 〈φ(x1)φ(x2) · · ·φ(xn)〉, where x1, . . . , xn are distinct time-like separated points of

spacetime, with x1 > x2 > . . . > xn in the time-ordering. These correlation functions are

encoded in a generating functional called the partition function:

Z[J ] =

�
ei(S[φ]+

�
M Jφ)Dφ;

〈φ(x1)φ(x2) · · ·φ(xn)〉 = (−i)n 1

Z[0]

δ

δJ(x1)

δ

δJ(x2)
· · · δ

δJ(xn)
Z[J ]

∣∣∣∣
J=0

.

Some texts call Z[0] the partition function and simply refer to Z[J ] as the generating func-

tional, in order to better match terminology in statistical mechanics.

These integrals do not make sense in the in the usual measure-theoretic sense, as there
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is no translation-invariant measure Dφ on the in�nite-dimensional space of �elds. In order

to make sense of this, we perform a Wick rotation�we formally rotate our time coordinate

so that it takes imaginary values, replacing t by it. This changes the metric on M to one of

Euclidean signature, and therefore changes the action accordingly:

S[φ] 7→ iSE[φ] = i

�
M

LE[φ(t, ~x)]dtd3~x.

Thus, the partition function also changes, ZE[J ] =
�

exp
{
−
�
M

(LE[φ] + Jφ) d4x
}
Dφ, to

one more well understood mathematically. In this case, the kinetic term in the exponent can

be combined with Dφ to determine a Gaussian measure on the space of �elds. If one can

evaluate this Euclidean partition function, it can be analytically continued back to give the

result in Minkowski signature.

It is physically interesting and important to consider spacetimes with other topologies

and curvatures, where computing the partition function is more di�cult. In addition, the

partition function is a valuable tool in string theory, where the objects of interest are not �elds

on spacetime, but rather maps from the string's worldsheet to spacetime. The worldsheet

may be any smooth orientable surface with a Minkowski signature metric. Therefore, it

is important to be able to compute the partition function in a wide variety of situations.

In many of these cases, Wick rotation is harder to de�ne. For instance, in �eld theory it

is only understood if spacetime is a totally hyperbolic manifold [24, 12]. Nevertheless, for

computational reasons, it is still more desirable to work in the Euclidean signature than

the Minkowski signature. In fact, many texts only de�ne the partition function with the

Euclidean convention [21, 5]. This is the approach taken in this thesis.
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1.2 Previous Work

In the late 1970's Fateev, Frolov, Schwarz, and Tyupkin [9] computed the leading terms of

the partition function for maps from R2 with the usual Euclidean metric to the Riemann

sphere with the round metric, subject to the following �free� action:

Sf [w] :=
1

2f

�
R2

gαβ∂αw
i∂βw

jρijdµg,

where g is the metric on R2, ρ, the metric on the Riemann sphere, and f is a coupling con-

stant. In order to make the theory conform to certain physical axioms, they restricted their

attention to �elds whose limit at ∞ was well-de�ned. In order to handle this restriction,

they examined the case of �elds on a sphere of radius R, and then let R tend toward ∞.

Physically, the value w(∞) represents the vacuum expectation value of that �eld. Math-

ematically, some restriction of this sort on the space of �elds is necessary in order for the

partition function to converge.

They computed the partition function in the small-f limit by formally applying

Laplace's method of steepest descent, which localized the integral onto the spaces of holo-

morphic and anti-holomorphic maps, indexed by topological degree:

Z[J ] ≈
∑
d∈Z

(2πf)−(|d|+1) e−
π
f
|d|
�
Nd

e−
�
Jw (det ∆w)−1/2 dµd(w),

where d indexes the topological degree of the �eld w, Nd is the �nite-dimensional subspace

of holomorphic �elds of degree d, det ∆w is the ζ-regularized determinant of a w-dependent

elliptic operator on a particular line bundle over S2, and µd is the measure induced by a

natural metric on Nd. Details of this derivation can be found in Chapter 2.

For any �xed degree d, they parametrized w ∈ Nd in terms of its zeroes a1, · · · , ad
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and poles b1, · · · , bd and a multiplicative factor c, so that

w(z) = c
(z − a1) · · · (z − ad)
(z − b1) · · · (c− bd)

.

∆w is the Laplace operator on w∗ (TS2) with respect to the bundle metric w∗ρ and base

metric g. They were able to compute the dependence of det ∆w on any conformal variations

in either metric. Furthermore, since any two metrics on a given bundle over the sphere are

conformally equivalent, by computing det ∆ with respect to a relatively simple metric, they

were able to extrapolate to an expression of det ∆w in terms of the coordinates.

For w ∈ Nd, a tangent vector v ∈ TwNd can be associated to a holomorphic vector

�eld v(z) ∈ Γ (w∗ (TS2)). A metric can then be de�ned on TwNd by

〈v1, v2〉 =

�
S2

w∗ρ (v1(z), v2(z)) dµg(z).

This de�nes a metric on Nd, which induces a measure µd. By changing from the coordinate

basis of TwNd to the vector �elds de�ned by the monomials 1, z, . . . , zd, some clever linear

algebra allowed them to compute dµd(w) in terms of the local coordinates.

After taking the limit as R → ∞, they were led to the following expression for the

measure in the partition function formula:

(det ∆w)−1/2 dµd(w) = π2d+1e−d(Γ′(1)+2) (|d|!)2 (1 + |c|2
)−2

∏
1≤j<k≤d

|aj − ak|2 |bj − bk|2
∏

1≤l,m≤d

|al − bm|−2

|dc|2
∏

1≤i≤d

|dai|2 |dbi|2

Rather than compute the partition function explicitly, they drew parallels between this

system, a neutrally charged classical Coulomb system, and a sine-Gordon system. This
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allowed them to solve for the two-point correlation function explicitly.

The work of Fateev et al raises a question which has long been unanswered: Can the

partition function be calculated in the case of CP1-valued �elds on other Riemann surfaces?

There has been much work done on circle-valued �elds; for example see [13, 2, 4, 3]. However,

there have been very few mentions of CP1-valued �elds. Sutcli�e discussed CP1-valued

instantons (the higher degree holomorphic maps) on the torus as a tool for approximating

certain periodic sine-Gordon solitons, but he did not attempt to compute the partition

function for these �elds [23]. This thesis aims to be a �rst step toward �lling this gap. Also,

literature on the classical Coulomb system or the sine-Gordon model on a torus is scarce. It

is hoped that the analogy in the genus 0 case still holds, and that the results in this thesis

may shed some light into these other models.
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Chapter 2

Background

In this chapter, we describe the background for the main results of this thesis and establish

notation, following closely the description given by Fateev, Frolov, Schwarz, and Tyupkin

[9]. The material in this chapter describes the �eld theory on any compact Riemann surface.

2.1 The Action Functional

Let Σ be a compact Riemann surface with Riemannian metric g and associated measure

dµg. Let W be the space of smooth maps w : Σ→ P1, later called �elds. We de�ne the free

action functional S on W by

S[w] :=
1

2f

�
Σ

gαβ∂αw
i∂βw

jρijdµg, (2.1.1)

where ρ is the Fubini-Study metric on P1 and
1

2f
is the coupling constant. In terms of a

local holomorphic coordinate z on Σ and the usual coordinate on P1, this can be expressed

as

S[w] =
1

f

�
Σ

|∂zw|2 + |∂z̄w|2(
1 + |w|2

)2 |dz|2 ,
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where |dz|2 is shorthand for the form i
2
dz ∧ dz̄. The topological charge, or degree, of a map

w is given by the integral

degw : =
1

V ol(P1)

�
Σ

w∗ (dµρ)

=
1

π

�
|∂zw|2 − |∂z̄w|2(

1 + |w|2
)2 |dz|2 .

Therefore, we see that

S[w] =
π degw

f
+

2

f

�
Σ

|∂z̄w|2(
1 + |w|2

)2 |dz|
2 (2.1.2)

= −π degw

f
+

2

f

�
Σ

|∂zw|2(
1 + |w|2

)2 |dz|
2 . (2.1.3)

This shows that when restricted toWd, the maps of �xed degree d, S[w] achieves a minimum

value of π
f
|d| on the �nite-dimensional submanifold Nd, consisting of holomorphic functions

when d ≥ 0 and antiholomorphic functions when d ≤ 0. In particular, N0 is the set of

constant maps.

2.2 The Partition Function

The main goal of this thesis is to give meaning to and calculate the normalized partition

function

Z[Φ] :=

�
W Φ[w]e−S[w]Dw�
W e

−S[w]Dw
,

where Φ is a function on the space of �elds. If we take Φ[w] = −
�

Σ
Jwdµg, then Z[Φ] is

equivalent to the quantity ZE[J ]/ZE[0] described in Chapter 1. As stated in Chapter 1, Dw

does not make sense as a translation-invariant measure on the space of �elds. However, the

integral is of a form familiar to physicists, and most likely can be calculated via a lattice
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renormalization procedure in which the coupling constant f becomes dependent upon the

lattice cuto�. (f → 0 as the lattice cuto� is removed.) We will not pursue this course,

but rather simply de�ne Z[Φ] in the small f limit by formally applying Laplace's method of

steepest descent.

Let us brie�y recall how this works in �nite dimensions [11]. Suppose S : Mm → R

is a smooth function that attains its minimum value γ on an n-dimensional submanifold N .

Suppose further that N is a nondegenerate stationary manifold; that at every point x ∈ N ,

0 is an eigenvalue of S ′′(x) with multiplicity n. Then

�
M

g(x) exp(−S(x)/f)dmx = (2πf)(m−n)/2 exp(−γ/f)

�
N

g(x) (detS ′′(x))
−1/2

dnx

+O
(
f (m−n)/2+1

)
.

Here we are taking the regularized determinant, the product of the non-zero eigenvalues,

of the Hessian S ′′(x). It will be useful to scale the Hessian by some constant, k, to be

determined later:

�
M

g(x) exp(−S(x)/f)dmx ≈ (2πfk)(m−n)/2 exp(−γ/f)

�
N

g(x) (det(kS ′′(x)))
−1/2

dnx

If we formally apply this to the partition function, we arrive at

Z[Φ] ≈
∑

d (2πfk)(dimW−dimNd)/2 e−
π
f
|d| �

Nd
Φ[w] (det kS ′′(w))−1/2 dµd(w)∑

d (2πfk)(dimW−dimNd)/2 e−
π
f
|d| �

Nd
(det kS ′′(w))−1/2 dµd(w)

=

∑
d (2πfk)− dimNd/2 e−

π
f
|d| �

Nd
Φ[w] (det kS ′′(w))−1/2 dµd(w)∑

d (2πfk)− dimNd/2 e−
π
f
|d| �

Nd
(det kS ′′(w))−1/2 dµd(w)

. (2.2.1)

Here, S ′′ is the operator-valued function on Nd determined by

S[w + v] = S[w] +
1

2f
〈v, S ′′(w)v〉+ o

(
‖v‖2

)
, (2.2.2)
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for any in�nitesimal variation v of w. To calculate S ′′(w) for (anti-)holomorphic w, we �rst

naturally identify the space of in�nitesimal variations of w with the space, Γ (w∗ (TP1)), of

sections of the pullback via w of the holomorphic tangent bundle, TP1, as follows: Let v be

an in�nitesimal variation of w, that is, v ∈ TwWd. Therefore, there is a smooth curve t 7→ wt

in Wd satisfying w0 = w and
d

dt

∣∣∣∣
t=0

wt = v. For each �xed z ∈ Σ, wt(z) is a smooth curve

in P1, so that
d

dt

∣∣∣∣
t=0

wt(z) ∈ Tw(z)P1 ∼= (w∗ (TP1))z. Thus, we can de�ne

v(z) :=
d

dt

∣∣∣∣
t=0

wt(z),

so that v(z) is a smooth section of w∗ (TP1).

Through this identi�cation, we can express the inner product in (2.2.2) as

〈v1, v2〉 :=

�
Σ

(v1(z), v2(z))w dµg

=
1

2

�
Σ

v1v̄2 + v̄1v2(
1 + |w|2

)2dµg,

where (, )w is the Riemannian metric on w∗ (TP1) associated to the pullback of the Fubini-

Study metric on P1.

Let w be any �eld. The �rst variation of S at w is, in essence, the derivative of S at

w. Let v ∈ TwW , and let w(u) : (−ε, ε) → W be a smooth curve satisfying w(0) = w and
d

du

∣∣∣∣
u=0

w(u) = v. S[w(u)] is a smooth real-valued function of u, and �rst variation of S at w

in the direction of v is de�ned by the formula∂uS[w]|u=0. Assume for now that degw ≥ 0 so

that S is given by (2.1.2). Since degw is a local invariant, the �rst variation can be expressed

as

∂uS[w] = 2

�
Σ

∂u∂z̄w∂zw̄ + ∂u∂zw̄∂z̄w

(1 + |w|2)2 − 2
∂z̄w∂zw̄ (∂uww̄ + w∂uw̄)

(1 + |w|2)3 |dz|2

10



= −2

�
Σ

∂uw∂z̄

(
∂zw̄

(1 + |w|2)2

)
+ ∂uw̄∂z

(
∂z̄w

(1 + |w|2)2

)
+2

∂z̄w∂zw̄ (∂uww̄ + w∂uw̄)

(1 + |w|2)3 |dz|2 ,

where we have integrated by parts to obtain the second formula. From here we clearly see

that ∂uS[w]|u=0 vanishes, independently of the value of ∂uw|u=0, whenever w is holomorphic,

as we expected.

S ′′[w] is de�ned by the second variation of S at w, which is analogous to the Hessian

matrix in �nite dimensions. Let v1 and v2 be any two tangent vectors based at w; we can �nd

a two parameter function w(u1, u2) : (−ε, ε)2 →W where w(0, 0) = w, ∂u1w|(u1,u2)=(0,0) = v1,

and ∂u2w|(u1,u2)=(0,0) = v2. We can compute the second variation ∂u1∂u2S[w] in much the

same way as �rst variation. Evaluating it in the case where w is a holomorphic �eld of degree

d, we �nd the formula

∂u1∂u2S[w]|(u1,u2)=(0,0) = −4

〈
∂u2w,

1

det |g|
(
1 + |w|2

)2
∂z

(
∂z̄∂u1w

(1 + |w|2)2

)〉
.

Therefore, S ′′(w) = 4∆w, where

∆w := − 1

det |g|
(
1 + |w|2

)2
∂z

(
∂z̄

(1 + |w|2)2

)
(2.2.3)

is the ∂̄-Laplace operator acting on sections of w∗(TP1).

In the case of degw < 0 so that the critical points are anti-holomorphic functions,

the same computations carry through with the only change being the switching of ∂z and

∂z̄. Therefore, for anti-holomorphic w, we de�ne:

∆w := − 1

det |g|
(
1 + |w|2

)2
∂z̄

(
∂z(

1 + |w|2
)2

)
.
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Ergo, if we set k = 1
4
in (2.2.1), we see

Z[Φ] ≈
∑

d (2−1πf)
− dimNd/2 e−

π
f
|d| �

Nd
Φ[w] (det ∆w)−1/2 dµd(w)∑

d (2−1πf)−dimNd/2 e−
π
f
|d| �

Nd
(det ∆w)−1/2 dµd(w)

. (2.2.4)

In the rest of this thesis, we will explore this quantity in the case when Σ is a �at

complex torus, with det |g| = 1. In this case, there are no (anti-)holomorphic maps of

degree (-)1, and therefore the integrals over W±1 are suppressed in the small-f limit. Thus,

the sums in (2.2.4) range over all d 6= ±1. In Chapters 3 and 4, we will compute the

terms corresponding to d ≥ 2. In Chapter 3, we will concentrate on the calculation of

det ∆w, while Chapter 4 will cover the computation of the metric dµd. In Chapter 5, we will

complete the computation by examining d ≤ −2 and d = 0 separately. We will then discuss

the convergence of the partition function.
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Chapter 3

Determinant of ∆w

In this chapter, we compute the dependence of det ∆w on w, where ∆w given by (2.2.3)

is an operator on the space of sections of the holomorphic line bundle w∗ (TP1). We will

restrict our attention to the case when d ≥ 2; i.e. w is holomorphic. This computation has

three main parts. First, the entire problem is reframed in terms of the theory of multipliers.

Second, the dependence on the conformal anomaly of the bundle metric is computed in

order to reduce the problem to a computationally easier metric. Third, the spectrum of this

reduced metric will be computed exactly.

Let Σ be the complex torus C/Λ, where Λ is the lattice Z⊕ Zτ with =(τ) > 0. As a

matter of convention in this chapter, variables without decoration such as z and aj will denote

points of C, and the same variables with tildes, z̃ and ãj, will denote the corresponding point

on the torus. Furthermore, we will denote the real part and imaginary part of any complex

number A by Ax and Ay, respectively. The only exception to this rule is the complex variable

z, which we will decompose in the traditional way as x+ iy.
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3.1 Review of the Geometry of Line Bundles and Multi-

pliers

In this section, we describe holomorphic line bundles on Σ in terms of their multipliers. This

is a reformulation of material covered in [10], in particular Chapter 2, Section 6, but this

section sets the notational conventions for the remainder of the thesis.

It is a well known fact [10] that the Picard group of equivalence classes of line bundles

over Σ is parametrized by the group of divisors modulo linear equivalence. As Σ is one-

dimensional, Div(Σ) is simply the group of formal Z-linear combinations of points of Σ.

Given a divisor D =
∑J

j=1 nj z̃j, the corresponding line bundle, LD, has a section 1D, which

we shall call a canonical section of the bundle, with a zero of order nj at z̃j. Zeroes of

negative order are of course interpreted as poles of order |nj|. 1D de�nes a trivialization of

LD over the open set U0 := Σ \ {z̃j}Jj=1. Furthermore, if Uj is a small open disc around z̃j

for each j, then we can trivialize LD over Uj in such a way that the transition map from

U0 to Uj is given by (z̃ − z̃j)nj . Furthermore, this construction is a group homomorphism:

LD+D′
∼= LD ⊗ LD′ .

If π : C → Σ is the quotient map, and LD is a line bundle corresponding to a

divisor D =
∑J

j=1 nj z̃j, then π
−1(LD) is trivializable. In fact, a holomorphic trivialization

can be chosen uniquely (up to a scaling) so that for any continuous section, s, of LD,

π∗s(z + 1) = π∗s(z). More explicitly, let zj be a preimage of z̃j under π. Let n =
∑J

j=1 nj,

and let zD =
∑J

j=1 njzj. De�ne the function fn,zD : C→ C by

fn,zD(z) = exp
{
−η
(
nz2 − 2zDz

)
+ iπnz

}
.

Here, η is de�ned by the equation ζ(z + 1) = ζ(z) + 2η, where ζ(z) is the Weierstrass ζ-

function. Then if σ(z) is Weierstrass's σ-function, we can de�ne a holomorphic trivialization

14



such that, for a given choice of canonical divisor of LD:

sD(z) := π∗(1D)(z) = fn,zD(z)
J∏
j=1

σ (z − zj)nj .

Here, we have abused notation. sD is dependent not only on the divisor D, but also on the

speci�c preimanges zj of the points in D. Changing the choice of preimages will change sD

by an scaling factor. From here, a quick computation using the periodicity relations of the

σ-function [1], we see

sD(z + 1) = sD(z);

sD(z + τ) = (−1)n exp {−2πi (nz − zD)} sD(z). (3.1.1)

These quasi-periodicity relations must be satis�ed for any section of LD. It is important

to note that the multiplier (−1)n exp {−2πi (nz − zD)} only depends on the representatives

{zj} chosen for the points in the divisorD through the combination zD. This is a consequence

of the fact that the Jacobian variety of an elliptic curve is naturally isomorphic to the elliptic

curve, itself. Due to this isomorphism, the line bundle LD is determined up to equivalence

precisely by its degree n and the point on the elliptic curve z̃D.

Another useful fact is that log fn,zD is additive in n and zD;

fn1,zD1
fn2,zD2

= fn1+n2,zD1+zD2
.

This implies a group structure on the set of functions {sD} :

sD+D′(z) = sD(z)sD′(z).

This arises from the fact that tensoring two canonical sections yields a third: If D =
∑

j nj z̃j
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and D′ =
∑

kmkw̃k are two divisors, 1D and 1D′ canonical sections of the corresponding line

bundles, then 1D ⊗ 1D′ is a canonical section of LD ⊗ LD′ ∼= LD+D′ .

Finally, if h is a Hermitian metric on the line bundle LD, for any continuous sections

f and g, h(f, g) is a well-de�ned function on the torus. Pulling back to a holomorphic

trivialization as above, we see that h(z)f(z)g(z) must be a doubly-periodic function, and so

h(z) must be represented by a nonzero function, transforming under the action of the lattice

by:

h(z + 1) = h(z);

h(z + τ) = exp {−4π (ny − yD)}h(z). (3.1.2)

One such metric on LD is given by

hn,zD(z) = exp

{
−2π

τy
[ny (y − τy)− 2yDy]

}
.

This family of metrics has the same additivity properties as the functions fn,zD , and therefore,

we can decompose the bundle, canonical section, and metric:

LD ∼=
J⊗
j=1

(
Lzj
)⊗nj ;

s∑J
j=1 njzj

=
J∏
j=1

(
szj
)nj =

J∏
j=1

(
f1,zj(z)σ(z − zj)

)nj ;

hn,zD =
J∏
j=1

(
h1,zj

)nj .
Now let w : Σ→ P1 be a holomorphic map of degree d; then we can express w as

w(z̃) = c

∏d
j=1 σ (z − aj)∏d
k=1 σ (z − bk)

,
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where {ã1, . . . , ãd} ∩
{
b̃1, . . . , b̃d

}
= ∅, and

∑
j aj =

∑
k bk. Lw := w∗ (TP1) is the line

bundle associated to 2D∞(w), where D∞(w) =
∑
b̃j is the divisor of poles of w. Let

B :=
∑
bj. In addition to the metric h2d,2B, we have another choice of metric on Lw given

by the pullback of the Fubini-Study metric, which we denote as hw. If 1w is the canonical

section of Lw determined by pulling back
∂

∂z
via w, then hw(1w, 1w) =

(
1 + |w|2

)−2
. Since

π∗(1w) =
∏d

j=1

(
f1,bj(z)σ (z − bj)

)2
=
∏d

j=1 sbj(z)2, we see that hw is represented by the

function

hw(z) =

[(
1 + |w|2

) d∏
j=1

∣∣sbj(z)
∣∣2]−2

.

One can easily check that hw(z) is well-de�ned and extends to be nonzero on the complex

plane, and satis�es the correct quasi-periodicity conditions (3.1.2).

3.2 Dependence upon Conformal Anomaly

In this section, we will compute the dependence of det ∆w upon the conformal anomaly in

the metric hw. Formally, of course, if λ1 ≤ λ2 ≤ · · · are the positive eigenvalues of ∆w, we

would like to de�ne

det ∆w =
∞∏
j=1

λ2
j .

We take the product of the squares of the eigenvalues because we wish to calculate the

determinant over the reals, and �bers of the bundle are complex lines. To make sense of this

product, we de�ne:

ln det ∆w := −2ζ ′(0),

where ζ(s) :=
∑∞

j=1 λ
−s for <(s) > 1. It was �rst proven in [17] that ζ can be uniquely

meromorphically extended to the entire complex plane, and this extension is regular at

s = 0.
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3.2.1 Variation of the Conformal Anomaly

The work in this subsection applies to line bundles of su�ciently high degree over any

compact Riemann surface. In particular, the bundle must have degree at least 2G−1, where

G is the genus of the surface.

In order to compute the dependence upon the conformal anomaly, we need a base

metric, which we take to be

h0(z, z̄)

If h := e2σh0 is any metric in the conformal class of h0, then in terms of local coordinates,

∆h := ∂̄∗h ∂̄ = −g−1h−1∂zh∂z̄.

We will also require the operator

∆̃h := −∂z̄g−1h−1∂zh,

which can be thought of as the operator ∂̄∂̄∗ acting on L-valued (0, 1)-forms. Let ψ be a

tangent vector to 0 in the space of smooth real functions on Σ. ψ can be naturally identi�ed

with a function, which we shall also denote by ψ. Let σ(u) be a one-parameter family of

functions such that σ(0) = 0 and d
du

∣∣
u=0

σ(u) = ψ. Then for any metric h, h(u) := e2σ(u)h is

a one-parameter family of metrics satisfying d
du

∣∣
u=0

h(u) = 2ψh. Then,

d

du

∣∣∣∣
u=0

∆h(u) =
d

du

∣∣∣∣
u=0

(
−g−1h(u)−1∂z (h(u)∂z̄)

)
= 2ψg−1h−1∂z (h∂z̄)− g−1h−1∂z (2ψh∂z̄)

= −2ψ∆h − g−1h−1∂z (2ψh∂z̄) .
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Let ζu denote the zeta function associated to ∆h(u). From the result in Appendix A, we know

2Γ(s)ζu(s) =

� 1

0

(
Tr
{
e−t∆h(u)

}
− α0 −

α−1

t

)
ts
dt

t
+

α−1

s− 1
+
α0 − p0

s

+

� ∞
1

(
Tr
{
e−t∆h(u)

}
− p0

)
ts
dt

t
,

where p0 is the dimension of the kernel of ∆h(u) and α−1, α0 are the Seeley coe�cients in the

expansion of the heat kernel. In Appendix B, it is calculated that α−1 and α0 depend only

upon the geometry Σ and the topology of the bundle; they are independent of u. Therefore,

taking advantage of the cyclic nature of Trace, we �nd

2
d

du

∣∣∣∣
u=0

ζu(s) =
1

Γ(s)

� ∞
0

Tr
{
−t
[
−2ψ∆he

−t∆h + 2ψ∆̃he
−t∆̃h

]}
ts
dt

t

=
1

Γ(s)

� ∞
0

Tr
{

2ψ
[
∆he

−t∆h − ∆̃he
−t∆̃h

]}
tsdt

=
1

Γ(s)

� ∞
0

d

dt

[
Tr
{

2ψ
(
−e−t∆h + e−t∆̃h

)}]
tsdt

=
1

Γ(s)

� ∞
0

d

dt

[
Tr
{

2ψ
(
−e−t∆h + e−t∆̃h + P

)}]
tsdt

=
−s

Γ(s)

� ∞
0

Tr
{

2ψ
(
−e−t∆h + e−t∆̃h + P

)}
ts
dt

t
,

where P is the orthogonal projection onto the kernel of ∆h. The integration by parts is valid

for <(s) > 0 because the trace dies exponentially for large t and is O(1) for small t (the t−1

terms from the heat kernels cancel each other). We also used the result from Appendix B.3

that ∆̃h has no kernel for bundles of su�ciently high degree. This resulting integral only

converges for <(s) > 0; however it does have a �nite limit as s approaches 0.

In order to simplify the integral, we �rst split it up into 2 parts:

2
d

du

∣∣∣∣
u=0

ζu(s) =
−s

Γ(s)

(� 1

0

+

� ∞
1

)
Tr
{

2ψ
(
−e−t∆h + e−t∆̃h + P

)}
ts
dt

t
.
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The integral from 1 to ∞ yields an entire function of s. To simplify the integral from 0 to

1, we use the Seeley expansions of the heat kernels (B.1.1,B.2.1). The t−1 terms cancel out,

and the order t part will yield a function analytic in a neighborhood of 0. Therefore, using

the fact that
−s

Γ(s)
= −s2 +O (s3),

2
d

du

∣∣∣∣
u=0

ζu(s) = −s2

� 1

0

[�
Σ

2ψ

(
1

4πg
∂µ∂µ log g +

1

2πg
∂µ∂µ log h

)
dµg

]
ts
dt

t

−s2

� 1

0

Tr (2ψP ) ts
dt

t
+ β(s)

= −s
{�

Σ

2ψ

(
1

4πg
∂µ∂µ log g +

1

2πg
∂µ∂µ log h

)
dµg + Tr (2ψP )

}
+ β(s),

where β(s) is analytic in a neighborhood around 0, satisfying β(0) = β′(0) = 0. All the

manipulations performed are valid in the region <(s) > 0, but the �nal result is once

again valid in a neighborhood of 0. Here, ∂µ∂µ represents the usual Euclidean Laplacian:

∂2
x + ∂2

y = 4∂z∂z̄. Therefore,

−2
d

du

∣∣∣∣
u=0

ζ ′u(s) =

�
Σ

2ψ

(
1

4πg
∂µ∂µ log g +

1

2πg
∂µ∂µ log h

)
dµg + Tr (2ψP ) .

Let Σ̃ be a fundamental domain for Σ in C. Then the variation in the determinant

is:
d

du

∣∣∣∣
u=0

ln det ′∆h(u) =

�
Σ̃

2ψ

(
1

4π
∂µ∂µ log g +

1

2π
∂µ∂µ log h

)
|dz|2 + Tr (2ψP ) ,

where |dz|2 = i
2
dz ∧ dz̄. In general, since h(u) = e2σuh, we can compute d

du
ln det′∆h(u) at

any value of u; the only change in the above formula being that log h becomes log h(u).

In order to integrate this from h0 to h = e2σh0, let σ(u) := uσ, so that 2ψ = 2σ =

log h− log h0. Thus,

log h(u) = 2σ(u) + log h0 = 2uσ + log h0 = u(log h− log h0) + log h0.
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We will use the shorthand log

(
h

h0

)
for 2σ. Integrating the variation, we �nd that

ln det ′∆h − ln det ′∆h0 =

� 1

0

�
Σ̃

(
log

h

h0

)(
1

4π
∂µ∂µ log g +

1

2π
∂µ∂µ log h(u)

)
|dz|2 du

+

� 1

0

Tr
((

log
h

h0

)
P

)
du

=
1

4π

�
Σ̃

(
log

h

h0

)
∂µ∂µ log g |dz|2 (3.2.1)

+
1

2π

�
Σ̃

(
log

h

h0

)
∂µ∂µ log h0 |dz|2 (3.2.2)

+
1

4π

�
Σ̃

(
log

h

h0

)
∂µ∂µ

(
log

h

h0

)
|dz|2 (3.2.3)

+Tr
((

log
h

h0

)
P

)
. (3.2.4)

Before concluding this subsection, let us say one more word about the trace that must be

computed in the last line of this formula. Let {φk(u)}2n
k=1 be an orthonormal (with respect

to h(u)) basis of the kernel of ∆h(u), with φn+k = iφk. Let {Φk} be a basis independent

of u satisfying the same criterion. Let the n × n matrix A be given by φj =
∑

k ΦkAkj

for 1 ≤ j, k ≤ n. Let Q(h(u)) be the n × n matrix given by Q(h(u)) = 〈Φk,Φl〉h(u) for

1 ≤ k, l ≤ n, so that Q(h(u))−1 = AA†. We can calculate

d

du
ln detQ(h(u)) = TrC

[
Q′(h(u))Q−1

]
=

n∑
k,l=1

Q′(h(u))k̄l
(
Q−1

)
lk̄

=
n∑

k,l=1

(�
Σ

log
h

h0

h(u)ΦkΦldµg

)(
Q−1

)
lk̄
.

Then

� 1

0

TrR

((
log

h

h0

)
P

)
du =

� 1

0

2
n∑
j=1

〈(
log

h

h0

)
φj, φj

〉
du
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= 2

� 1

0

�
Σ

log
h

h0

h(u)

(
n∑
j=1

|φj|2
)
dµgdu

= 2

� 1

0

�
Σ

log
h

h0

h(u)

(
n∑

j,k,l=1

Φ̄kΦlĀkjAlj

)
dµgdu

= 2

� 1

0

�
Σ

log
h

h0

h(u)

(
n∑

k,l=1

Φ̄kΦl

(
AA†

)
lk

)
dµgdu

= 2

� 1

0

�
Σ

log
h

h0

h(u)

(
n∑

k,l=1

(
Q−1

)
lk

Φ̄kΦl

)
dµgdu

= 2

� 1

0

d

du
ln detQ(h(u))du

= 2 ln detQ(h(1))− 2 ln detQ(h(0)). (3.2.5)

3.2.2 Formula for the Dependence upon the Conformal Anomaly

We will now apply the result of the last section to the bundle Lw with metric hw; we take

h2d,2B as our base metric. From these formulae, we can write down the important quantity,

log

(
hw

h2d,2B

)
(z) = −2 log

((
1 + |w|2

) d∏
j=1

h1,bj(z)
∣∣s1,bj(z)

∣∣2) .
This function is well-de�ned on the torus; it is doubly periodic and the argument of the

logarithm has no zeroes or singularities. Before continuing, it is useful to have the asymptotic

expansions of the parts of logarithm for reference.

Claim. Useful asymptotics: As |z − b| → 0, we have

log
(
h1,b(z) |s1,b (z)|2

)
= log |z − b|2 + 2<

[
ηb2 + iπb

]
+

2π

τy

(
b2
y + τyby

)
+O(|z − b|)

= log |z − b|2 + 2<
[
ηb2
]

+
2π

τy
b2
y +O(|z − b|);

∂z log
(
h1,b(z) |s1,b (z)|2

)
=

1

z − b
+O(|z − b|).
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As |z − bk| → 0, we have

∂z̄ log
(
1 + |w|2

)
= −

(
z − bk

)−1
+O(1)

log
(
1 + |w|2

)
= − log

(
|z − bk|2

)
+ log

(
|c|2
∏d

l=1 |σ (bk − al)|2∏
l 6=k |σ (bk − bl)|2

)
+O (|z − bk|) .

Finally, we introduce one �nal bit of notation. Let
{
S0
r,2B

}4d−1

r=0
be the following set

of holomorphic sections of the bundle Lw:

S0
r,2B(z) =

∑
k∈Z

exp

{
πiτ

2d
(2dk + r)2 + 2πi (2dk + r)

(
z − B

d
− 1

2
− τ

2

)}
S0
r+2d,2B(z) = iS0,r(z)

for 0 ≤ r ≤ 2d− 1, where . Later, it will be shown that this set is actually a basis (over the

reals) for the space of holomorphic sections. In fact, for 0 ≤ r ≤ 2d− 1, S0
r,2B(z) is simply a

scaled version of the theta function with characteristics:

S0
r,2B(z|τ) = θ r

2d
,0

(
2d

(
z − B

d
− 1

2
− τ

2

)∣∣∣∣ 2dτ) , (3.2.6)

where θa,b(z|τ) =
∑

k∈Z exp {iπτ(k + a)2 + 2πi(k + a)(z + b)}, for a, b ∈ 1
2d
Z.

Thus, for any metric h on Lw,
{
S0
r,2B

}
r
is a basis for the kernel of ∆h. De�ne

Qj̄k(h) =
〈
S0
j,2B, S

0
k,2B

〉
h

=

�
Σ

hS0
j,2BS

0
k,2Bdµg.

We are now ready to compute the main calculation of this section.

Theorem. The dependence on the conformal anomaly of the metric is given by

ln det ′∆w − ln det ′∆h2d,2B = 4d+ 4d log |c|2 + 4 log

(
d∏

j,k=1

|σ (bk − aj)|2
)
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−4d
d∑
j=1

[
2<(ηb2

j) +
2π

τy
b2
jy

]
+ 8

[
2<(ηB2) +

2π

τy
B2
y

]
−2d

τy

�
Σ

log

(
hw

h2d,2B

)
dµg −

4d

τy

�
Σ

log
(
1 + |w|2

)
dµg

+2 ln detQ(hw) + 4d log 2− 2d log
(τy
d

)
−4πτy

(
2By

τy
+ d

)2

.

Proof. We must compute (3.2.1)-(3.2.4). (3.2.1) is the 0 since Σ is �at.

To calculate (3.2.2), we see that

∂µ∂µ log h2d,2B = −8πd

τy
,

and so

1

2π

�
Σ̃

(
log

hw
h2d,2B

)
∂µ∂µ log h2d,2Bd

2z = −4d

τy

�
Σ

log
hw

h2d,2B

dµg.

Similarly,

∂µ∂µ

(
log

hw
h2d,2B

)
= −2∂µ∂µ log

(
1 + |w|2

)
+

8πd

τy
.

Thus, (3.2.3) also simpli�es, but there is still some work to be done at the end:

1

4π

�
Σ̃

(
log

hw
h2d,2B

)
∂µ∂µ

(
log

hw
h2d,2B

)
d2z

= − 1

2π

�
Σ̃

log
h

h2d,2B

∂µ∂µ log
(
1 + |w|2

)
d2z

+
2d

τy

�
Σ̃

log
hw

h2d,2B

d2z. (3.2.7)
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We are left trying to perform the integral

1

π

�
Σ̃

log

((
1 + |w|2

) d∏
j=1

h1,bj(z)
∣∣s1,bj(z)

∣∣2) ∂µ∂µ log
(
1 + |w|2

)
d2z,

which we interpret as follows: for 1 ≤ j ≤ d, let Dj be a disc centered around b̃j of radius

εj. Furthermore, let us assume that the εj are small enough so that the Dj are mutually

disjoint. Let A = T \
⋃d
j=1Dj. We evaluate the above integral by �rst integrating over A

and then taking the limit as each εj tends to 0. We �rst break up the integral into two main

parts.
2i

π

�
A

log
(
1 + |w|2

)
∂z∂z̄ log

(
1 + |w|2

)
dz ∧ dz̄

+
2i

π

d∑
j=1

�
A

log
(
h1,bj(z)

∣∣s1,bj(z)
∣∣2) ∂z∂z̄ log

(
1 + |w|2

)
dz ∧ dz̄

The �rst integrand only has logarithmic singularities at each bj, and so it is integrable on

the entire torus. Using the fact that w is a d-fold cover, we can then compute

2i

π

�
Σ

log
(
1 + |w|2

)
∂z∂z̄ log

(
1 + |w|2

)
dz ∧ dz̄

=
2i

π

�
Σ

log
(
1 + |w|2

)
∂w∂w̄ log

(
1 + |w|2

)
∂zwdz ∧ ∂z̄w̄dz̄

=
2di

π

�
P1

log
(
1 + |w|2

)
∂w∂w̄ log

(
1 + |w|2

)
dw ∧ dw̄

=
4d

π

� 2π

0

� ∞
0

log (1 + r2)

(1 + r2)2 rdrdθ

= 4d. (3.2.8)

For �xed 1 ≤ j ≤ d, we compute

2i

π

�
A

log
(
h1,bj(z)

∣∣s1,bj(z)
∣∣2) ∂z∂z̄ log

(
1 + |w|2

)
dz ∧ dz̄,
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by integrating by parts twice:

2i

π

�
A

log
(
h1,bj(z)

∣∣s1,bj(z)
∣∣2) ∂z∂z̄ log

(
1 + |w|2

)
dz ∧ dz̄

= −2i

π

d∑
k=1

�
∂Dk

log
(
h1,bj(z)

∣∣s1,bj(z)
∣∣2) ∂z̄ log

(
1 + |w|2

)
dz̄

−2i

π

d∑
k=1

�
∂Dk

∂z log
(
h1,bj(z)

∣∣s1,bj(z)
∣∣2) log

(
1 + |w|2

)
dz

−2i

τy

�
A

log
(
1 + |w|2

)
dz ∧ dz̄.

In the case when k 6= j, we can use the asymptotics to evaluate

−2i

π

�
∂Dk

log
(
h1,bj(z)

∣∣s1,bj(z)
∣∣2) ∂z̄ log

(
1 + |w|2

)
dz̄

= −2i

π

� 2π

0

 log
(
h1,bj(bk)

∣∣s1,bj (bk)
∣∣2)

−εke−iθ
+O(1)

(−iεke−iθdθ)
=

2

π

� 2π

0

[
log
(
h1,bj(bk)

∣∣s1,bj (bk)
∣∣2)+O(εk)

]
dθ

→ 4 log
(
h1,bj(bk)

∣∣s1,bj (bk)
∣∣2)

as εk → 0. Also,

−2i

π

�
∂Dk

∂z log
(
h1,bj(z)

∣∣s1,bj (z)
∣∣2) log

(
1 + |w|2

)
dz

= −2i

π

� 2π

0

(
K log

(
ε2k
)

+O(1)
)
iεke

iθdθ

→ 0,

where K = ∂z|z=bk log
(
h1,bj(z)

∣∣s1,bj (z)
∣∣2) is a constant. The k = j terms are more compli-

26



cated:

−2i

π

�
∂Dj

log
(
h1,bj(z)

∣∣s1,bj (z)
∣∣2) ∂z̄ log

(
1 + |w|2

)
dz̄

=
2

π

� 2π

0

[
log ε2j + 2<

[
ηb2

j

]
+

2π

τy
b2
jy +O (εj log εj)

]
dθ

and

−2i

π

�
∂Dj

∂z log
(
h1,bj(z)

∣∣s1,bj (z)
∣∣2) log

(
1 + |w|2

)
dz

=
2

π

� 2π

0

[
− log ε2j + log

(
|c|2
∏d

k=1 |σ (bj − ak)|2∏
k 6=j |σ (bj − bk)|2

)
+O(εj)

]
dθ.

Adding the two together, we see that the pieces that are divergent as εj → 0 cancel, so we

can take said limit and arrive at

4

[
2<
[
ηb2

j

]
+

2π

τy
b2
jy + log

(
|c|2
∏q

k=1 |σ (bj − ak)|2∏
k 6=j |σ (bj − bk)|2

)]
.

Therefore,

2i

π

d∑
j=1

�
Σ

log
(
h1,bj(z)

∣∣s1,bj (z)
∣∣2) ∂z∂z̄ log

(
1 + |w|2

)
dz ∧ dz̄

= 4
d∑
j=1

[
2<
[
ηb2

j

]
+

2π

τy
b2
jy + log

(
|c|2
∏d

k=1 |σ (bj − ak)|2∏
k 6=j |σ (bj − bk)|2

)]

+4
d∑
j=1

∑
k 6=j

log
(
h1,bj(bk)

∣∣s1,bj (bk)
∣∣2)− 4d

τy

�
Σ

log
(
1 + |w|2

)
dµg

= 4
d∑
j=1

[
log

(
|c|2

d∏
k=1

|σ (bj − ak)|2
)]
− 4d

τy

�
Σ

log
(
1 + |w|2

)
dµg

+4(2− d)
d∑
j=1

[
2<(ηb2

j) +
2π

τy
b2
jy

]
+ 4

∑
j 6=k

[
4<(ηbjbk) +

4π

τy
bjybky

]
.
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= 4
d∑
j=1

[
log

(
|c|2

d∏
k=1

|σ (bj − ak)|2
)]
− 4d

τy

�
Σ

log
(
1 + |w|2

)
dµg (3.2.9)

−4d
d∑
j=1

[
2<(ηb2

j) +
2π

τy
b2
jy

]
+ 8

[
2<(ηB2) +

2π

τy
B2
y

]
. (3.2.10)

Putting (3.2.7) through (3.2.10) together yields the value of (3.2.3).

Finally, the trace in (3.2.4) has already been computed in (3.2.5). We only need to

compute detQ(h2d,2B) to conclude the proof. We claim that Q(h2d,2B) is actually diagonal.

Suppose 0 ≤ j, k ≤ 2d − 1, and suppose j 6= k. Since the summation in S0
r converges

absolutely and uniformly,

Q (h2d,2B)j̄k =

�
Σ

h2d,2B(z)S0
j (z)S0

k(z)dµg

=
∑
m,n∈Z

�
Σ

exp

{
−πiτ̄

2d
(2dm+ j)2 − 2πi (2dm+ j)

(
z̄ − B̄

d
− 1

2
− τ̄

2

)}
· exp

{
πiτ

2d
(2dn+ k)2 + 2πi (2dn+ k)

(
z − B

d
− 1

2
− τ

2

)}
h2q,2B(z)dµg

=
∑
m,n∈Z

exp

{
−πiτ̄

2d
(2dm+ j)2 +

πiτ

2d
(2dn+ k)2

}
· exp

{
2πi (2dm+ j)

(
B̄

d
+

1

2
+
τ̄

2

)
− 2πi (2dn+ k)

(
B

d
+

1

2
+
τ

2

)}
·
� τy

0

h2d,2B(y) exp {−2π [(2dn+ k) + (2dm+ j)] y}

·
� y

τy
τx+1

y
τy
τx

exp {2πi [(2dn+ k)− (2dm+ j)]x} dxdy.

The quantity (2dn+ k)− (2dm+ j) never vanishes, so this integral is 0, and Q is diagonal.

As an aside, let us mention that this result demonstrates the linear independence of the set{
S0
r,2B

}2d−1

r=0
over C. Thus,

{
S0
r,2B

}4d−1

r=0
is linearly independent over R, and therefore a basis,

as desired. In computing the diagonal elements, a similar manipulation shows that all terms
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with m 6= n vanish. Therefore,

Qj̄j =

�
Σ

h2d,2B(z)S0
j,2B(z)S0

j,2B(z)dµg

=
∑
n∈Z

exp

{
−πiτ̄

2d
(2dn+ j)2 +

πiτ

2d
(2dn+ j)2

}
· exp

{
2πi (2dn+ j)

(
B̄

d
+

1

2
+
τ̄

2

)
− 2πi (2dn+ j)

(
B

d
+

1

2
+
τ

2

)}
·
� τy

0

h2d,2B(y) exp {−4π(2dn+ j)y}
� y

τy
τx+1

y
τy
τx

dxdy.

=
∑
n∈Z

� τy

0

exp

{
−πτy

d
(2dn+ j)2 − 2π (2dn+ j)

(
2y − 2By

d
− τy

)}
· exp

{
−2π

τy
[2dy (y − τy)− 4Byy]

}
dy

=
∑
n∈Z

� τy

0

exp

{
−πτy

d

[
j + 2d

(
n+

y

τy

)
− 2

By

τy
− d
]2

+
πτy
d

(
2By

τy
+ d

)2
}
dy

= exp

{
πτy
d

(
2By

τy
+ d

)2
}∑

n∈Z

� (n+1)τy

nτy

exp

{
−πτy

d

(
2d
y

τy
− 2

By

τy
− d+ j

)2
}
dy

= exp

{
πτy
d

(
2By

τy
+ d

)2
}� ∞

−∞
exp

{
−πτy

d

(
2d
y

τy
− 2

By

τy
− d+ j

)2
}
dy

=
τy
2d

exp

{
πτy
d

(
2By

τy
+ d

)2
} � ∞

−∞
exp

{
−πτy

d
v2
}
dv

=
1

2

√
τy
d

exp

{
πτy
d

(
2By

τy
+ d

)2
}
.

This is independent of j, so detQ = 2−2d
( τy
d

)d
exp

{
2πτy

(
2By
τy

+ d
)2
}
. This completes the

proof.
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3.3 Determinant of ∆h2d,2B

In this section, we will �nish the computation of det′∆w by explicitly calculating det′∆h2d,2B .

We will prove the following more general result:

Theorem. Let D =
∑J

j=1 nj z̃j be an e�ective divisor of degree n on Σ. With notation as

in section 3.1, let ∆ be the ∂̄-Laplace operator acting on sections of LD with respect to the

hermitian metric hn,zD . ∆ has pure point spectrum; its eigenvalues are given by

λm :=

(
πn

τy

)
m, m ∈ Z≥0,

each with multiplicity n. A basis of the eigenspace for λm is given by the functions:

Smr,zD(z) :=
∑
k∈Z

exp

{
πiτ

n
(nk + r)2 + Zn,k,r,D

}
Hm

(√
π

2nτy
Yn,k,r,D

)
, (3.3.1)

Zn,k,r,D = 2πi (nk + r)

(
z − zD

n
− 1

2
− τ

2

)
Yn,k,r,D = [(2k − 1)n+ 2r] τy + 2ny − 2yD

where r = 0, 1, . . . , n− 1, and Hm(y) is the mth Hermite polynomial, de�ned by

Hm(y) := (−1)mey
2

(
dm

dym

)
e−y

2

.

From this, we deduce the following corollary:

Corollary. ln det′∆h2d,2B = 2d log
( τy
d

)
.

Proof. ln det′∆h2d,2B = −2ζ ′(0), where ζ(s) is the zeta-function corresponding to ∆h2d,2B .
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The theorem tells us that

ζ(s) = 2d
( τy

2πd

)s
ζR(s),

where ζR(s) is the Riemann zeta-function. The result follows from basic facts about ζR(s);

see for example [8].

Before proving the theorem in this section, let us say a few words about the derivation

of this result, which di�ers greatly from its proof. In terms of the x and y coordinates on

the plane, ∆hn,zD
is expressed as:

−1

4

(
∂2
x + ∂2

y

)
− πi

2τy
[n(2y − τy)− 2yD] (∂x + i∂y) .

Since we are looking for eigenfunctions of this operator that have period 1, we suppose the

ansatz: ∑
k∈Z

gk(y)e2πikx,

where gk(y) are functions of the imaginary part of z satisfying the following relation coming

from the action of Zτ :

e2πikτxgk(y + τy) = (−1)ne2πny+2πizDgk+n(y) ∀k ∈ Z (3.3.2)

Writing down the eigenvalue equation for ∆hn,zD
with this ansatz, we get the following ODE

for gk.

g′′k −
2π

τy
[n(2y − τy)− 2yD] g′k −

(
4π2k2 +

4π2k

τy
[n(2y − τy)− 2yD]− 4λ

)
gk = 0.

If we look for solutions to this equation such that the quasi-periodicity relation is satis�ed

and the Fourier series converges, we are led precisely to the functions Smr,zD . Now we are
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ready to prove the theorem.

Proof. First of all, it is easy to see that Smr,zD , given in (3.3.1), converges absolutely and uni-

formly on compact sets. This is because the terms are dominated by a polynomial multiplied

by a decaying Gaussian in k. One also quickly sees that this function transforms according

to (3.1.1) under the action of the lattice, so that it is a well-de�ned section of LD. Now we

will show that this function is indeed an eigenfunction of ∆ with the prescribed eigenvalues.

In order to do this, we will make use of the following recurrence relations satis�ed by the

Hermite polynomials:

Hm(x) = 2xHm−1(x)− 2(m− 1)Hm−2(x),

H ′m(x) = 2mHm−1(x).

∆ = −
(
∂z + πi

τy
[n (2y − τy)− 2yD]

)
∂z̄. Applying this operator to (3.3.1) yields:

∑
k∈Z

exp

{
πiτ

n
(nk + r)2 + 2πi (nk + r)

(
z − zD

n
− 1

2
− τ

2

)}
·

nπ

τy

[√
π

2nτy
Yn,k,r,DH

′
m

(√
π

2nτy
Yn,k,r,D

)
− 1

2
H ′′m

(√
π

2nτy
Yn,k,r,D

)]
.

By applying the second recurrence relation, we can transform the bracketed quantity into

2m

[√
π

2nτy
Yn,k,r,DHm−1

(√
π

2nτy
Yn,k,r,D

)
− (m− 1)Hm−2

(√
π

2nτy
Yn,k,r,D

)]
.

We can now apply the �rst recurrence relation to obtain:

mHm

(√
π

2nτy
Yn,k,r,D

)
.

Therefore, Smr,zD de�nes an eigenfunction of ∆ with eigenvalue nπ
τy
m. Now we will show that
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the collection of these functions generates a dense subset of L2(LD), thereby proving that our

analysis of the spectrum is complete. At the end, we will also prove that the set is linearly

independent, thus completing the proof.

To this end, let f be an L2 section of LD, with respect to the metric hn,zD , and assume

that f is orthogonal to all the above series. We must show that f ≡ 0. Let us introduce new

coordinates u and v so that the fundamental domain of Σ is given simply by 0 ≤ u, v ≤ 1.

u := x− τx
τy
y, v :=

y

τy

In short, u, v are real numbers such that z = x+ iy = u+ τv, and zD = uD + τvD. In these

coordinates, the quasi-periodicity conditions satis�ed by the sections of LD (3.1.1) read:

f(u+ 1, v) = f(u, v)

f(u, v + 1) = (−1)n exp {−2πi (nz − zD)} f(u, v). (3.3.3)

Expressing the eigenfunctions Smr,zD in terms of u and v, we get:

∑
k∈Z

exp

{
πiτ

n
(nk + r)2 + Zn,k,r,D

}
Hm

(√
π

2nτy
Yn,k,r,D

)
,

Zn,k,r,D = 2πi (nk + r)

((
u− 1

2
− uD

n

)
+ τ

(
v − 1

2
− vD

n

))
;

Yn,k,r,D = [(2k − 1)n+ 2r] τy + 2ny − 2yD.

For each k ∈ Z, we introduce a new variable vk, which is simply a translate of v:

vk = v − 1

2
+ k +

r

n
− vD

n
,
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so that Yn,k,r,D = 2nτyvk. In these coordinates, the eigensection is

Sm,r =
∑
k∈Z

exp

{
πiτ

n
(nk + r)2 + Zn,k,r,D

}
Hm

(√
2πnτyvk

)
,

Zn,k,r,D = 2πi (nk + r)

((
u− 1

2
− uD

n

)
+ τ

(
v − 1

2
− vD

n

))

and the metric reads

hn,zD(z) = exp {−2πτy [nv (v − 1)− 2vDv]}

= exp

{
−2πτy

[
nv2

k +
(nk + r)2

n
− 2vk (nk + r)− vD −

v2
D

n

]}
.

Finally, since f is a section of LD, it transforms like (3.3.3) under the action of the lattice.

Therefore,

f(u, v) = f

(
u, vk +

1

2
− k − r

n
− vD

n

)
= (−1)nk exp

{
2πik

[
nu− Au + τ

(
nvk − r −

kn

2

)]}
f

(
u, vk +

1

2
− r

n
− vD

n

)
.

Our assumption about f means that for all m ∈ Z, 0 ≤ r < n,

0 =

� �
Σ

hn,zD f̄Sm,rd
2z

=

� 1

0

� 1

0

hn,zD(u, v)f(u, v)Sm,r(u, v)dudv

=
∑
k∈Z

� 1

0

� 1

0

hn,zDf(u, v) exp

{
πiτ

n
(nk + r)2 + Zn,k,r,D

}
Hm

(√
π

2nτy
Yn,k,r,D

)
dudv

=
∑
k∈Z

� 1+k− 1
2

+ r
n
− vD

n

k− 1
2

+ r
n
− vD

n

� 1

0

f (u, v − k)e2πirue2πirτ̄vk exp
(
−πnτyv2

k

)
H̃m

(√
2πnτyvk

)
dudvk

=

� ∞
−∞

� 1

0

f

(
u, v +

1

2
− r

n
− vD

n

)
e2πirue2πirτ̄v exp

(
−πnτyv2

)
H̃m

(√
2πnτyv

)
dudv,
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where H̃m is the mth Hermite function H̃m(x) := Hm(x)e−x
2/2. De�ne

F (v) :=

� 1

0

f

(
u, v +

1

2
− r

n
− vD

n

)
e−2πirue−2πirτvdu.

(3.3.3) implies that F grows at worst like e2πτy |v|. Therefore, F (v) exp (−πnτyv2) ∈ L2(R).

Since the Hermite functions Hm(x)e−x
2/2 form an orthogonal basis of L2, we must have

F (v) exp (−πnτyv2) ≡ 0. Therefore,
� 1

0
f
(
u, v + 1

2
− r

n
− vD

n

)
e−2πirudu ≡ 0 as a function of

v.

Now that we know
� 1

0
f (u, v) e−2πirudu is identically 0, we are ready to �nish the

proof. f is periodic in u with period 1, and so can be expanded in a Fourier series whose

coe�cients are functions of v:

f(u, v) =
∑
l∈Z

f̂l(v)e2πilu.

We have proven that f̂r ≡ 0. However, the Fourier coe�cients of f are related to one another

is in the formula (3.3.2). Therefore, f̂l ≡ 0 for all l in the residue class of r modulo n. Since

r ranges over a complete set of residues modulo n, we have f ≡ 0 as desired.

The proof that the set
{
Smr,zD

}
m,r

is linearly independent is a direct generalization of

the argument already made in the last section for
{
S0
r,zD

}
. In fact, for each m ≥ 0, the set{

Smr,zD |0 ≤ r < n
}
consists of orthogonal eigensections with respect to hn,zD .
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Chapter 4

Measure on Critical Submanifolds

In this chapter, we will make frequent use of the usual quasi-periodicity relations of the

Weierstrass elliptic functions, which can be found in any introductory text on the subject,

for instance [1]. These relations include:

σ(z ± 1) = −eη(±2z+1)σ(z);

σ(z ± τ) = −eη′(±2z+τ)σ(z);

ζ(z ± 1) = ζ(z)± 2η;

ζ(z ± τ) = ζ(z)± 2η′;

where ζ(z) = ∂z log σ(z), and η and η′ are some τ -dependent complex numbers satisfying

ητ − η′ = iπ.

4.1 Form of the Measure

There is a dense open subset of Nd consisting of those holomorphic maps where all ze-

ros and poles are simple; on this subset, ãj 6= ãk and b̃j 6= b̃k for j 6= k, and ãm 6= b̃n
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for any m,n. In particular, Nd has dimension 2d. We choose the system of coordinates

(c, a1, . . . , ad−1, b1, . . . , bd−1, B) on Nd, where c ∈ C∗, and a1, . . . , ad−1, b1, . . . , bd−1, B lie in

the fundamental domain of Σ with vertices at 0, 1, τ, 1 + τ . De�ning ad = B −
∑d−1

j=1 aj and

bd = B −
∑d−1

j=1 bj,

w(z) := c

∏d
j=1 σ(z − aj)∏d
j=1 σ(z − bj)

de�nes a point ofNd. As the aj's and the bk's can be permuted amongst themselves separately

without changing the instanton w, these coordinates form a (d!)2-fold branched cover of Nd.

For ease of notation, we denote the coordinates by ξj in the following fashion:

ξ0 = c, ξ2d−1 = B

ξj = aj, ξd−1+j = bj for 1 ≤ j ≤ d− 1.

As we mentioned in Chapter 2, there is a natural isomorphism between the tangent space

TwNd and the space of holomorphic sections of w∗(TP1). Under this isomorphism, the coor-

dinate tangent vector ∂/∂ξj|w is identi�ed with the section ωj :=
∂w

∂ξj

∏d
k=1 (s1,bk (z − bk))2.

Let us write out the formulas for these sections:

ω0(z) = f2d,2B(z)
d∏

k=1

(σ(z − ak)σ(z − bk))

ωj(z) = cf2d,2B(z)
d∏

k=1

(σ(z − ak)σ(z − bk)) (ζ(z − ad)− ζ(z − aj))

ωj+d−1(z) = cf2d,2B(z)
d∏

k=1

(σ(z − ak)σ(z − bk)) (ζ(z − bj)− ζ(z − bd))

ω2d−1(z) = cf2d,2B(z)
d∏

k=1

(σ(z − ak)σ(z − bk)) (ζ(z − bd)− ζ(z − ad)) ,
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where 1 ≤ j ≤ d−1. If w ∈ Nd, these sections form a basis of Hol (w∗ (TP1)). To see this, we

�rst note that dim Hol (w∗ (TP1)) = 2d, so there are the correct number of tangent vectors.

It is easy to show that they are also linearly independent. Suppose {xj}2d−1
j=0 are constants

such that
∑

j xjωj(z) = 0. For each 1 ≤ j ≤ d− 1, the only section that doesn't vanish at aj

(resp. bj) is ωj (resp. ωj+d−1). Therefore, xj = 0 for all 1 ≤ j ≤ 2d− 2. Furthermore, ω2d−1

does not vanish at ad while ω0 does. So x2d−1 = 0. Since ω0 is not identically zero, x0 must

now be zero as well. Thus, {ωj}2d−1
j=0 is a maximally linearly independent set of sections.

In terms of these coordinates, the measure induced by the hermitian structure on Nd

is given by

dµd = (d!)−2

(
i

2

)2d

(detW ) dξ0 ∧ dξ̄0 ∧ · · · ∧ dξ2d−1 ∧ dξ̄2d−1,

where W is the w-dependent matrix

Wj̄k =

�
Σ

hw(z)ωj(z)ωk(z)d2z.

In order to compute detW , we �rst change our basis of sections from {ωj}2d−1
j=0 to the

sections
{
S0
r,2B

}2d−1

r=0
discussed in section 3.3. If U is the change of basis matrix, so that

ωj =
∑
r

UrjS
0
r,2B, (4.1.1)

then W = U †Q(hw)U , where Q(hw) is the matrix de�ned in section 3.3, and detW =

|detU |2 detQ(hw). We are left with computing the determinant of U .

4.2 Dependence of detU upon the Coordinates

We �rst determine how the entries of U transform under the lattice action on the coordinates

ξ1, . . . , ξ2d−1. For all r, S0
r,2B(z) is invariant under the transformations ξj 7→ ξj + 1 and
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ξj 7→ ξj + τ for 1 ≤ j ≤ 2d − 2. However, under the lattice action on ξ2d−1 = B, S0
r,2B(z)

transforms in the following way:

S0
r,2B(z) 7→ e−

2πir
d S0

r,2B(z) when ξ2d−1 7→ ξ2d−1 + 1

S0
r,2B(z) 7→ e−

2πiτ
d exp

{
4πi

(
z − B

d
− 1

2
− τ

2

)}
S0
r−2,2B(z) when ξ2d−1 7→ ξ2d−1 + τ.

Here, S0
r−2,2B is interpreted as S0

r−2+2d,2B when r = 0, 1.

Furthermore, w is must be invariant under any of the above lattice actions; a mero-

morphic function on the torus should be independent of the choice of representatives of the

zeroes and poles. Therefore, ξ0 = c transforms under each of the lattice actions in the

following ways:

Table 1: Transformation of the coordinate c under the lattice actions.

c 7→

ξj 7→ ξj + 1
1 ≤ j ≤ d− 1

exp {−η (2ξj − 2ad + 2)} c

ξj 7→ ξj + τ
1 ≤ j ≤ d− 1

exp {−η′ (2ξj − 2ad + 2τ)} c

ξj 7→ ξj + 1
q ≤ j ≤ 2d− 2

exp {η (2ξj − 2bd + 2)} c

ξj 7→ ξj + τ
q ≤ j ≤ 2d− 2

exp {η′ (2ξj − 2bd + 2τ)} c

ξ2d−1 7→ ξ2d−1 + 1 exp {−η (2ad − 2bd)} c

ξ2d−1 7→ ξ2d−1 + τ exp {−η′ (2ad − 2bd)} c

Thus, each ωk(z) transforms as follows:

Table 2a: Transformation of basis elements under lattice actions on ξj, 1 ≤ j ≤ d− 1:
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ξj 7→ ξj + 1 ξj 7→ ξj + τ

ω0 7→ eη(2ξj−2ad+2)ω0 eη
′(2ξj−2ad+2τ)ω0

ωj 7→ ωj + 4ηcω0 ωj + 4η′cω0

ωk 7→
1 ≤ k 6= j ≤ d− 1

(ω + 2ηcω0) ωk + 2η′cω0

ωk 7→
q ≤ k ≤ 2d− 2

ωk ωk

ω2d−1 7→ ω2d−1 + 2ηcω0 ω2d−1 + 2η′cω0

Table 2b: Transformation of basis elements under lattice actions on ξj, d ≤ j ≤ 2d− 2:

ξj 7→ ξj + 1 ξj 7→ ξj + τ

ω0 7→ eη(2ξj−2bd+2)ω0 eη
′(2ξj−2bd+2τ)ω0

ωj 7→ e2η(2ξj−2bd+2) (ωj − 4ηcω0) e2η′(2ξj−2bd+2τ) (ωj − 4η′cω0)

ωk 7→
1 ≤ k ≤ d− 1

e2η(2ξj−2bd+2)ωk e2η′(2ξj−2bd+2τ)ωk

ωk 7→
d ≤ k 6= j ≤ 2d− 2

e2η(2ξj−2bd+2) (ωk − 2ηcω0) e2η′(2ξj−2bd+2τ) (ωk − 2η′cω0)

ω2d−1 7→ e2η(2ξj−2bd+2) (ω2d−1 + 2ηcω0) e2η′(2ξj−2bd+2τ) (ω2d−1 + 2η′cω0)

Table 2c: Transformation of basis elements under lattice actions on ξ2d−1:

ξ2d−1 7→ ξ2d−1 + 1 ξ2d−1 7→ ξ2d−1 + τ

ω0 7→ eη(2ad+2bd+2)ω0 e4πizeη
′(2ad+2bd+2τ)ω0

ωk 7→
1 ≤ k ≤ q − 1

eη(4bd+2) (ωk − 2ηcω0) e4πizeη
′(4bd+2τ) (ωk − 2η′cω0)

ωk 7→
d ≤ k ≤ 2d− 2

eη(4bd+2) (ωk + 2ηcω0) e4πizeη
′(4bd+2τ) (ωk + 2η′cω0)

ω2d−1 7→ eη(4bd+2)ω2d−1 e4πizeη
′(4bd+2τ)ω2d−1

Putting all of this information together, we can write down how each matrix entry

Urk changes under these transformations. For 1 ≤ j ≤ 2d − 2, Urk transforms in the same
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way as ωk under the lattice actions on ξj. (ω0 is replaced by Ur0 when it appears as an

additive factor.) Under the lattice action on ξ2d−1, Urk transforms as follows:

Table 3: Transformation of matrix elements under the lattice action on ξ2d−1:

ξ2d−1 7→ ξ2d−1 + 1 ξ2d−1 7→ ξ2d−1 + τ

Ur0 7→ e2πir/deη(2ad+2bd+2)Ur0 e2πiτ/de4πi(
B
d + 1

2+
τ
2 )eη

′(2ad+2bd+2τ)Ur−2,0

Urk 7→
1 ≤ k ≤ d− 1

e2πir/deη(4bd+2)(Urk − 2ηcUr0) e2πiτ/de4πi(
B
d + 1

2+
τ
2 )eη

′(4bd+2τ)(Ur−2,k − 2η′cUr−2,0

)
Urk 7→

d ≤ k ≤ 2d− 2
e2πir/deη(4bd+2)(Urk + 2ηcUr0) e2πiτ/de4πi(

B
d + 1

2+
τ
2 )eη

′(4bd+2τ)(Ur−2,k + 2η′cUr−2,0

)

Ur,2d−1 7→ e2πir/deη(4bd+2)Ur,2d−1 e2πiτ/de4πi(
B
d + 1

2+
τ
2 )eη

′(4bd+2τ)Ur−2,2d−1

Since detU remains unchanged when a multiple of one column is added to another,

in calculating how detU transforms, we can ignore the additive factors of Ur,0. Under

the transformation ξ2q−1 7→ ξ2q−1 + τ , the rows are cycled by twice, which also does not

a�ect the determinant. Therefore, the only aspect of the lattice actions that would change

the determinant is the scaling factor that multiplies each column. Thus, multiplying these

factors together tells us how detU transforms:

Table 4: Transformation of detU under the lattice actions.

detU 7→

ξj 7→ ξj + 1
1 ≤ j ≤ d− 1

eη(2ξj−2ad+2) detU

ξj 7→ ξj + τ
1 ≤ j ≤ d− 1

eη
′(2ξj−2ad+2τ) detU

ξj 7→ ξj + 1
q ≤ j ≤ 2d− 2

e(4d−1)η(2ξj−2bd+2) detU

ξj 7→ ξj + τ
q ≤ j ≤ 2d− 2

e(4d−1)η′(2ξj−2bd+2τ) detU

ξ2d−1 7→ ξ2d−1 + 1 eη(2ad+2bd+2)e(2d−1)η(4bd+2) detU

ξ2d−1 7→ ξ2d−1 + τ e4πi(2B+(d+1)τ)eη
′(2ad+2bd+2τ)e(2d−1)η′(4bd+2τ) detU
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From this information, we can compute the dependence of detU on the coordinates.

We note that if aj = ak or bj = bk for any 1 ≤ j 6= k ≤ d − 1, then detU = 0. (Either

ωj = ωk or ωj+q−1 = ωk+q−1.) Furthermore, if aj = ad or bj = bd, then ωj = 0 or ωj+d−1 = 0,

so detU = 0. If al = bm for any 1 ≤ l,m ≤ d − 1, then ωl + ωm+d−1 + ω2d−1 = 0. Finally,

if al = bd or bm = ad, then ωl + ω2d−1 = 0 or ωm+d−1 + ω2d−1 = 0, and if ad = bd, then

ω2d−1 = 0. Furthermore, there is a factor of c in every column of U aside from the �rst.

Therefore, detU is divisible by

c2d−1
∏

1≤j<k≤d

σ (aj − ak)σ (bj − bk)
∏

1≤l,m≤d

σ (al − bm) .

This quantity transforms in the correct way under the lattice actions on ξ1, . . . , ξ2d−2. In

order to make it transform correctly under the lattice action on ξ2d−1, we need to add the

exponential factor exp (4ηB2 + 4πidB). Hence,

detU = Kd[τ ]c2d−1 exp
(
4ηB2 + 4πidB

) ∏
1≤j<k≤d

σ (aj − ak)σ (bj − bk)
∏

1≤l,m≤d

σ (al − bm) ,

(4.2.1)

where Kd[τ ] is independent of all the coordinates ξ0, . . . , ξ2d−1.

4.3 Dependence of Kd on τ

To calculate Kd[τ ], we �rst determine its τ -dependence by computing how it transforms

under the modular group PSL2(Z). PSL2(Z) acts on the upper half plane by fractional

linear transformations, and this action is generated by the transformations

S · τ = −1

τ
, T · τ = τ + 1.
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4.3.1 Transformation under τ 7→ τ + 1

It is easy to see that σ(z|τ + 1) = σ(z|τ) and ζ(z|τ + 1) = ζ(z|τ), and thus η[τ + 1] = η[τ ],

where η[τ ] = ζ
(

1
2
|τ
)
. Therefore, ωj is invariant under T for each j. However, for any

a, b ∈ 1
2d
Z,

θa,b (2dz|2d (τ + 1)) =
∑
k∈Z

exp
{
iπ2d (τ + 1) (k + a)2 + 2πi (k + a) (2dz + b)

}
=

∑
k∈Z

e2πid(k2+2ka+a2) exp
{
iπ2dτ (k + a)2 + 2πi (k + a) (2dz + b)

}
= exp

{
2dπia2

}
θa,b (2dz|2dτ) .

Therefore, from (3.2.6), we see that S0
r,2B(z|τ) transforms as:

S0
r,2B(z|τ + 1) = θ r

2d
,0

(
2d

(
z − B

d
− 1

2
− τ + 1

2

)∣∣∣∣ 2d (τ + 1)

)
= exp

{
πi

2d
r2

}
θ r

2d
,0

(
2d

(
z − B

d
− 1

2
− τ

2

)
− d
∣∣∣∣ 2dτ)

= exp

{
πi

2d
r2

}
exp {πir} θ r

2d
,0

(
2d

(
z − B

d
− 1

2
− τ

2

)∣∣∣∣ 2dτ)
= exp

{
πi

2d

(
r2 − 2dr

)}
S0
r,2B(z|τ).

We conclude that Urj [τ + 1] = exp
{
− πi

2d
(r2 − 2dr)

}
Urj [τ ] (4.1.1). Therefore,

detU [τ + 1] = exp

{
−πi

2d

2d−1∑
r=0

(
r2 − 2dr

)}
detU [τ ]

= exp

{
−πi

(
(2d− 1) (4d− 1)

6
− (2d− 1) (2d)

2

)}
detU [τ ]

= exp

{
πi

6

(
4d2 − 1

)}
detU [τ ]
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Finally, by (4.2.1),

Kd[τ + 1] = exp

{
πi

6

(
4d2 − 1

)}
Kd[τ ]. (4.3.1)

4.3.2 Transformation under τ 7→ −τ−1

The transformation under the �ip, S, is trickier to calculate. First,

σ

(
z| − 1

τ

)
=

1

τ
σ (τz|τ)

ζ

(
z| − 1

τ

)
= τζ (τz|τ)

η

[
−1

τ

]
= τη′ [τ ] = η [τ ] τ 2 − iπτ,

where η′ [τ ] = ζ
(
τ
2
|τ
)
. Therefore,

f1,zD

(
z| − 1

τ

)
σ

(
z − zD| −

1

τ

)
=

1

τ
eiπτ(z

2−2zDz−z)+iπzf1,τzD (τz|τ)σ (τ(z − zD)|τ)

ω0

(
z| − 1

τ

)
= τ−2deiπτ(2dz2−4Bz−2dz)+2dπizω0 (τz|τ)

ωj

(
z| − 1

τ

)
= τ−2d+1eiπτ(2dz2−4Bz−2dz)+2dπizωj (τz|τ)

for 1 ≤ j ≤ 2d− 1. Therefore,

2d−1∑
r=0

Ur0

[
−1

τ

]
S0
r,2B

(
z

∣∣∣∣−1

τ

)
= τ−2deiπτ(2dz2−4Bz−2dz)+2dπiz

2d−1∑
s=0

Us0 [τ ]S0
s,2Bτ (τz|τ) .

(4.3.2)

Let C be the matrix de�ned by Crs = exp
{
iπ
2d
rs
}
for 0 ≤ r, s ≤ 2d − 1. C is basically the

character table for the group Z/2dZ, and so it is invertible. We have the following result:
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Lemma. Given any 0 ≤ r ≤ 2d− 1,

θ r
2d
,0

(
2dz

∣∣∣∣−2d

τ

)
=
√
−2diτe2dπiτz2

2d−1∑
s=0

(
C−1

)
sr
θ s

2d
,0 (2dτz|2dτ) .

Proof. This relies on two relations involving theta functions. The �rst is that

θ0, s
2d

(
z

∣∣∣∣− 1

2dτ

)
=

2d−1∑
r=0

Crsθ r
2d
,0

(
2dz

∣∣∣∣−2d

τ

)

for any 0 ≤ s ≤ 2d− 1. To show this, we merely compare Fourier coe�cients on both sides,

since θ r
2d
,0

(
2dz

∣∣−2d
τ

)
only have Fourier coe�cients equivalent to r modulo 2d.

θ0, s
2d

(
z
∣∣∣ τ
2d

)
=
∑
k∈Z

exp
{
iπ
τ

2d
k2 + 2πik

(
z +

s

2d

)}
;

so its rth Fourier coe�cient is exp
{
iπ τ

2d
r2 + πi

d
rs
}

= exp
{
iπ τ

2d
r2
}
Crs. Also, the rth Fourier

coe�cient of θ r
2d
,0 is exp

{
iπ τ

2d
r2
}
. This proves the formula. Thus,

θ r
2d
,0

(
2dz

∣∣∣∣−2d

τ

)
=

2d−1∑
s=0

(
C−1

)
sr
θ0, s

2d

(
z

∣∣∣∣− 1

2dτ

)

The second relation is the well-known action on the theta function by the involution

in the modular group:

θ0,0

(
z

∣∣∣∣−1

τ

)
=
√
−iτeπiτz2θ0,0 (τz|τ) .

Replacing τ by 2dτ and z by z + s
2d
, we see:

θ0, s
2d

(
z

∣∣∣∣− 1

2dτ

)
= θ0,0

(
z +

s

2d

∣∣∣∣− 1

2dτ

)
=
√
−2diτe2dπiτ(z+ s

2d)
2

θ0,0 (2dτz + τs| 2dτ)

=
√
−2diτe2dπiτ(z+ s

2d)
2∑
k∈Z

exp
{
πi (2dτ) k2 + 2πik (2dτz) + 2πiτks

}
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=
√
−2diτe2dπiτ(z+ s

2d)
2∑
k∈Z

exp
{
πi (2dτ)

(
k2 + 2k

s

2d

)
+ 2πik (2dτz)

}
=
√
−2diτe2dπiτ(z+ s

2d)
2

e−πiτs(2z+ s
2d)
∑
k∈Z

eπi(2dτ)(k+ s
2d)

2
+2πi(k+ s

2d)(2dτz)

=
√
−2diτe2dπiτz2θ s

2d
,0 (2dτz|2dτ) .

This �nishes the lemma.

Using (3.2.6), we can apply this lemma to S0
r,2B

(
z
∣∣− 1

τ

)
:

S0
r,2B

(
z

∣∣∣∣−1

τ

)
= θ r

2d
,0

(
2d

(
z − B

d
− 1

2
+

1

2τ

)∣∣∣∣− 2d

τ

)
=
√
−2diτe2dπiτZ2

2d−1∑
s=0

(
C−1

)
sr
θ s

2d
,0 (2dτZ| 2dτ)

=
√
−2diτe2dπiτZ2

2d−1∑
s=0

(
C−1

)
sr
θ s

2d
,0 (2d (τZ − 1) + 2d| 2dτ)

=
√
−2diτe2dπiτZ2

2d−1∑
s=0

(
C−1

)
sr
θ s

2d
,0 (2d (τZ − 1)| 2dτ)

=
√
−2diτe2dπiτZ2

2d−1∑
s=0

(
C−1

)
sr
θ s

2d
,0

(
2d

(
τz − τB

d
− τ

2
− 1

2

)∣∣∣∣ 2dτ)

=
√
−2diτe2dπiτZ2

2d−1∑
s=0

(
C−1

)
sr
S0
s,2Bτ (τz|τ) ,

where Z = z − B
d
− 1

2
+ 1

2τ
. Now we can calculate how the matrix entries transform. From

(4.3.2),

√
−2diτe2dπiτZ2

2d−1∑
s=0

(
2d−1∑
r=0

(
C−1

)
sr
Ur0

[
−1

τ

])
S0
s,2Bτ (τz|τ)

= τ−2deiπτ(2dz2−4Bz−2dz)+2dπiz
2d−1∑
s=0

Us0 [τ ]S0
s,2Bτ (τz|τ)
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Therefore,

√
−2diτe2dπiτZ2

(
2d−1∑
r=0

(
C−1

)
sr
Ur0

[
−1

τ

])
= τ−2deiπτ(2dz2−4Bz−2dz)+2dπizUs0 [τ ]

2d−1∑
r=0

(
C−1

)
sr
Ur0

[
−1

τ

]
=

τ−2d

√
−2diτ

e−2dπiτ(−Bd −
1
2

+ 1
2τ )

2

Us0 [τ ]

Ur0

[
−1

τ

]
=

τ−2d

√
−2diτ

e−2dπiτ(−Bd −
1
2

+ 1
2τ )

2
2d−1∑
s=0

CrsUs0 [τ ] .

For 1 ≤ j ≤ 2d − 1, the only di�erence is that ωj contains a di�erence of Weierstrass

ζ-functions, which adds a power of τ to the numerator of the computation:

Urj

[
−1

τ

]
=

τ−2d+1

√
−2diτ

e−2dπiτ(−Bd −
1
2

+ 1
2τ )

2
2d−1∑
s=0

CrsUsj [τ ]

Therefore, U
[
− 1
τ

]
= τ−2d+1
√
−2diτ

e−2dπiτ(−Bd −
1
2

+ 1
2τ )

2

DCU [τ ], where D is the diagonal matrix with

Djj = τ−1 if j = 0, and 1 otherwise. Therefore,

detU

[
−1

τ

]
= τ−4d2+2d−1 (−2diτ)−d e−4d2πiτ(−Bd −

1
2

+ 1
2τ )

2

detC detU [τ ] .

Since C is the character table of the group Z/(2d)Z. The character orthogonality

relations imply CC̄t = (2d) I, and therefore, detC = γ (2d)d, for some root of unity γ.

Hence,

detU

[
−1

τ

]
= γτ−4d2+2d−1 (−iτ)−d e−4d2πiτ(−Bd −

1
2

+ 1
2τ )

2

detU [τ ] . (4.3.3)

The exponential factor on the other side of (4.2.1) transforms as follows:

e4η[−τ−1]B2+4πidB = e4η[τ ]τ2B2−iπτB+4πidB

= e4η[τ ](τB)2+4πid(τB)e
−4πid2τ

(
B2

d2
+ B
dτ
−B
d

)
.
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Each σ-function transforms like σ
(
ai − aj

∣∣− 1
τ

)
= 1

τ
σ (τai − τaj|τ). Furthermore, there are

2d2 − d σ-factors on the right-hand side of (4.2.1). Therefore, if we plug in the appropriate

expressions for detU in both sides of (4.3.3) and cancel corresponding factors, we �nd

τ−2d2+dKd

[
−1

τ

]
= γτ−4d2+2d−1 (−iτ)−d e−d

2πi(τ+τ−1)Kd [τ ]

Kd

[
−1

τ

]
= γi−2d2+d−1 (−iτ)−d e−d

2πi(τ+τ−1)Kd [τ ] .

If we plug in τ = i, we can compute the value of γ:1 = γi−2d2+d−1; γ = (−i)−2d2+d−1.

Therefore,

Kd

[
−1

τ

]
= (−iτ)−2d2−1 e−d

2πi(τ+τ−1)Kd [τ ] . (4.3.4)

If we set K̃d[τ ] := e−d
2πiτKd[τ ], then we can rewrite (4.3.1) and (4.3.4) as:

K̃d[τ + 1] = exp

{
πi

6

(
−2d2 − 1

)}
K̃d[τ ]

K̃d

[
−τ−1

]
= (−iτ)−2d2−1 K̃d[τ ].

Therefore, K̃[τ ] transforms in the same way under the modular group as the (−4d2 − 2)th

power of Dedekind's η-function:

η(τ) = e
πiτ
12

∞∏
n=1

(1− qn) ; q = e2πiτ .

Thus K̃d[τ ] (η(τ))4d2+2 is invariant under the modular group. Furthermore, either η (τ) or

K̃d[τ ] have any zeroes or poles in the upper half plane. (For η, this fact is evident from the

product expansion above. K̃d cannot have zeroes or poles because the invertibility of U is

independent of the complex structure on the torus.) Therefore, K̃d[τ ] (η(τ))4d2+2 must be

constant. Thus,

Kd[τ ] = Ade
d2πiτη (τ)−4d2−2 (4.3.5)

48



for some constant Ad.

4.4 Asymptotics as τ → i∞

From [1], we have the following asymptotics as τ → i∞:

f1,zD (z)σ (z − zD|τ) = exp
{
−η
(
z2 − 2zDz

)
+ iπz

}
σ (z − zD|τ)

= exp
{
ηz2

D

}
exp

{
−η (z − zD)2}σ (z − zD|τ) eiπz

= exp
{
ηz2

D

} θ11(z − zD)

θ′11(0)
eiπz

= exp

{
π2

6

(
1 +O

(
e2πiτ

))
z2
D

}
sin (π (z − zD)) +O (e2πiτ )

π (1 +O (e2πiτ ))
eiπz

= exp

{
π2

6
z2
D

}
eiπz

sin (π (z − zD))

π
+O

(
e2πiτ

)
.

Also,

ζ (z − zD) =
π2

3
(z − zD) + π cot (π (z − zD)) +O

(
e2πiτ

)
.

ζ (z − a)− ζ (z − b) =
π2

3
(b− a) + π

sin (π (a− b))
sin (π (z − a)) sin (π (z − b))

.

Therefore, for 1 ≤ j ≤ d− 1

ω0(z) =
1

π2d
e
π2

6

∑d
k=1 a

2
k+b2ke2diπz

d∏
k=1

sin (π (z − ak)) sin (π (z − bk)) +O
(
e2πiτ

)
ωj(z) =

c

π2d

[
π2

3
(aj − ad) + π

sin (π (ad − aj))
sin (π (z − aj)) sin (π (z − ad))

]
exp

{
π2

6

d∑
k=1

a2
k + b2

k

}

·e2diπz

d∏
k=1

sin (π (z − ak)) sin (π (z − bk)) +O
(
e2πiτ

)
ωj+d−1(z) =

c

π2d

[
π2

3
(bd − bj) + π

sin (π (bj − bd))
sin (π (z − bj)) sin (π (z − bd))

]
exp

{
π2

6

d∑
k=1

a2
k + b2

k

}
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·e2diπz

d∏
k=1

sin (π (z − ak)) sin (π (z − bk)) +O
(
e2πiτ

)
ω2d−1(z) =

c

π2d

[
π2

3
(ad − bd) + π

sin (π (bd − ad))
sin (π (z − ad)) sin (π (z − bd))

]
exp

{
π2

6

d∑
k=1

a2
k + b2

k

}

·e2diπz

d∏
k=1

sin (π (z − ak)) sin (π (z − bk)) +O
(
e2πiτ

)
.

The same argument that shows that the set {ωj}2d−1
j=0 is linearly independent demonstrates

that their leading terms are independent, as well. In addition, the leading terms span the

subspace of polynomials in e2πiz of degree 2d satisfying the condition:

c2d = e−4πiBc0,

where c0 is the constant term and c2d is the coe�cient of e2πi(2d)z. Let ω̃j be de�ned as

follows:

ω̃0(z) = e2dπiz

d∏
k=1

sin (π (z − ak)) sin (π (z − bk))

ω̃j(z) =
e2dπiz

sin (π (z − aj)) sin (π (z − ad))

d∏
k=1

sin (π (z − ak)) sin (π (z − bk))

ω̃j+d−1(z) =
e2dπiz

sin (π (z − bj)) sin (π (z − bd))

d∏
k=1

sin (π (z − ak)) sin (π (z − bk))

ω̃2d−1(z) =
e2dπiz

sin (π (z − bd)) sin (π (z − ad))

d∏
k=1

sin (π (z − ak)) sin (π (z − bk))

for 1 ≤ j ≤ d−1. Furthermore, for 0 ≤ k, r ≤ 2d−1, de�ne Ũrk to be the Fourier coe�cients

of ω̃j:

ω̃k(z) = Ũ0k

(
1 + e−4πiBe4dπiz

)
+

2d−1∑
r=1

Ũrke
2πirz.

In particular, Ũ0k = 0 for k > 0.
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On the other hand, for any r,

S0
r,2B (z|τ) =

∑
k∈Z

exp

{
πiτ

2d
(2dk + r)2 + 2πi (2dk + r)

(
z − B

d
− 1

2
− τ

2

)}
=

∑
k∈Z

exp

{
πiτ

2d

[
(2dk + r)2 − 2d (2dk + r)

]
+ 2πi (2dk + r)

(
z − B

d
− 1

2

)}
=

∑
k∈Z

exp

{
πiτ

2d

[
(2dk + r − d)2 − d2

]
+ 2πi (2dk + r)

(
z − B

d
− 1

2

)}
= e−

dπiτ
2

∑
k∈Z

exp

{
πiτ

2d
(2dk + r − d)2 + 2πi (2dk + r)

(
z − B

d
− 1

2

)}
.

Therefore, for any 0 ≤ r ≤ 2d−1, the leading term in S0
r,2B(z|τ) grows like e

πiτ
2d (r2−2dr), while

the rest of the terms die o� exponentially as τ → i∞. More explicitly, for 1 ≤ r ≤ d− 1,

S0
0,2B(z|τ) =

(
1 + e4dπize−4πiB

)
+O

(
e4dπiτ

)
S0
r,2B(z|τ) = e

πiτ
2d (r2−2dr) exp

{
2πir

(
z − B

d
− 1

2

)}
+O

(
e
πiτ
2d (2dr+r2)

)
S0
d,2B(z|τ) = e−

dπiτ
2 exp

{
2πid

(
z − B

d
− 1

2

)}
+O

(
e

3
2
dπiτ
)

S0
d+r,2B(z|τ) = e−

dπiτ
2 e

πiτ
2d
r2 exp

{
2πi (d+ r)

(
z − B

d
− 1

2

)}
+O

(
e
πiτ
2d (3d2−4dr+r2)

)
.

As functions of z, the leading terms of S0
r,2B(z|τ) are clearly a basis for the same space as

those of the ωj. Expanding the matrix entries asymptotically from (4.1.1), we �nd that the

leading term in the asymptotic expansion of Urk is:

Table 5: Leading Terms in the Asymptotic Expansion of Matrix Entries
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Leading Term

Ur0
1
π2d exp

{
π2

6

∑d
j=1

(
a2
j + b2

j

)}
e
πiτ
2d (2dr−r2)e2πir(Bd + 1

2)Ũr0

Urk
1 ≤ k ≤ d− 1

c
π2d exp

{
π2

6

∑d
j=1

(
a2
j + b2

j

)}
e
πiτ
2d (2dr−r2)e2πir(Bd + 1

2)

·
[
π2

3
(ak − ad) Ũr0 + π sin (π (ad − ak)) Ũrk

]
Urk

d ≤ k ≤ 2d− 2

c
π2d exp

{
π2

6

∑d
j=1

(
a2
j + b2

j

)}
e
πiτ
2d (2dr−r2)e2πir(Bd + 1

2)

·
[
π2

3
(bd − bk) Ũr0 + π sin (π (bk − bd)) Ũrk

]
Ur,2d−1

c
π2d exp

{
π2

6

∑d
j=1

(
a2
j + b2

j

)}
e
πiτ
2d (2dr−r2)e2πir(Bd + 1

2)

·
[
π2

3
(ad − bd) Ũr0 + π sin (π (bd − ad)) Ũr,2d−1

]
Therefore, the leading term of detU is

c2d−1

π4d2
exp

{
2dπ

2

6

∑d
j=1

(
a2
j + b2

j

)}
exp

{
πiτ
6

(4d2 − 1)
}
eπi(4d−2)B (−1)d π2d−1

· sin (π (bd − ad))
[∏d−1

j=1 sin (π (ad − ak)) sin (π (bk − bd))
]

det Ũ .

Furthermore, the asymptotics of Kd can be determined from (4.3.5):

Kd[τ ] = Ade
d2πiτ

(
e
πiτ
12

(
1 +O

(
e2πiτ

)))−4d2−2

= Ade
d2πiτ exp

{
πiτ

6

(
−2d2 − 1

)} (
1 +O

(
e2πiτ

))
= Ad exp

{
πiτ

6

(
4d2 − 1

)} (
1 +O

(
e2πiτ

))
.

Therefore, the right-hand side of (4.2.1) has the form

Ad exp

{
πiτ

6

(
4d2 − 1

)}
c2d−1 exp

(
4
π2

6
B2 + 4πidB

)
π−2d2+d

∏
1≤j<k≤d

eπ
2(aj−ak)2/6 sin (π (aj − ak)) eπ

2(bj−bk)2/6 sin (π (bj − bk))
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∏
1≤l,m≤d

eπ
2(al−bm)2/6 sin (π (al − bm)) +O

(
e2πiτ

)
.

Cancelling common factors from the dominant terms yields

det Ũ = Ade
2πiBπ2d2−d+1

∏
1≤j<k≤d−1

sin (π (aj − ak)) sin (π (bj − bk))
∏

1≤l,m≤d
(l,m) 6=(d,d)

sin (π (al − bm)) .

But det Ũ = Ũ00 det Ũ ′ = (2i)−2d e2πiB det Ũ ′, where Ũ ′ is the lower right (2d− 1)× (2d− 1)

block of Ũ . Thus,

det Ũ ′ = Ad (2i)2d π2d2−d+1
∏

j<k≤d−1

sin (π (aj − ak)) sin (π (bj − bk))
∏

1≤l,m≤d
(l,m)6=(d,d)

sin (π (al − bm)) .

We can compute det Ũ ′(d), and thus Ad, inductively. First, for d = 2,

det Ũ ′(2) =

∣∣∣∣∣∣∣∣∣∣
−1

4
eπiB −1

4
eπiB −1

4
eπi(a1+b1)

1
2

cos (π (b2 − b1)) 1
2

cos (π (a2 − a1)) 1
2

cos (π (b1 − a1))

−1
4
e−πiB −1

4
e−πiB −1

4
e−πi(a1+b1)

∣∣∣∣∣∣∣∣∣∣
= − i

8
sin (π (a1 − b1)) sin (π (a1 − b2)) sin (π (a2 − b1)) .

Therefore, − i
8

= A2 (2i)4 π7. So A2 = − (2πi)−7.

Furthermore, for d ≥ 2,

lim
ad+1→bd+1

det Ũ ′(d+1)∏d
l=1 sin (π (al − bd+1)) sin (π (ad+1 − bl))

=
Ad+1

Ad
(2i)2π4d+1 sin (π (ad − bd))

(
d−1∏
j=1

sin (π (aj − ad)) sin (π (bj − bd))

)
det Ũ ′(d).

However, det Ũ ′(d+1) = det

(
ω̃

(d+1)
1 · · · ω̃

(d+1)
2d+1

)
, where ω̃(d+1)

j has been equated with
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its column vector
(
Ũ ′(d+1)

rj

)
r
. Furthermore, the angle addition formula for sine lets us

rewrite sin (π (z − bd+1)) as sin (π (z − aj)) cos (π (aj − bd))+cos (π (z − aj)) sin (π (aj − bd)).

Therefore, for 1 ≤ j ≤ d,

ω̃
(d+1)
j (z) = cos (π (aj − bd+1)) ω̃

(d+1)
2d+1 (z)+sin (π (aj − bd+1)) cos (π (z − aj))

ω̃
(d+1)
j (z)

sin (π (z − bd+1))
.

A similar expansion of sin (π (z − ad+1)) yields the identity

ω̃
(d+1)
d+j (z) = cos (π (bj − ad+1)) ω̃

(d+1)
2d+1 (z)+sin (π (bj − ad+1)) cos (π (z − bj))

ω̃
(d+1)
j (z)

sin (π (z − ad+1))
.

In taking the determinant, the extra multiples of ω̃(d+1)
2d+1 do not contribute, and therefore,

det Ũ ′(d+1) = (−1)d
d∏
l=1

sin (π (al − bd+1)) sin (π (ad+1 − bl))

· det

(
cos(π(z−a1))ω̃

(d+1)
1 (z)

sin(π(z−bd+1))
· · · cos(π(z−bd))ω̃

(d+1)
2d (z)

sin(π(z−ad+1))
ω̃

(d+1)
2d+1 (z)

)
.

None of the columns in the remaining determinant have any dependence upon ad+1 or bd+1.

In the limit as ad+1 approaches bd+1, then, does not have any overt e�ect on the determinant,

but it does ensure that
∑d

j=1 aj = B − ad+1 = B − bd+1 =
∑d

j=1 bj. Therefore, in this limit,

cos (π (z − aj)) ω̃(d+1)
j (z)

sin (π (z − bd+1))
= e2πiz cos (π (z − aj)) sin (π (z − ad)) ω̃(d)

j (z)

and
cos (π (z − ad)) ω̃(d+1)

d (z)

sin (π (z − bd+1))
= e2πiz cos (π (z − ad)) sin (π (z − aj)) ω̃(d)

j (z)

for each 1 ≤ j ≤ d−1. Therefore, subtracting the dth column from the jth column transforms

the jth column into

e2πiz sin (π (aj − ad)) ω̃(d)
j (z).
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Similarly, subtracting the 2dth column from the (d+ j)th column transforms the jth column

into

e2πiz sin (π (bj − bd)) ω̃(d)
j+d−1(z),

and subtracting the 2dth column from the dth column changes the dth column to

e2πiz sin (π (ad − bd)) ω̃(d)
2d−1(z).

Since the functions ω̃(d) have two fewer sinusoidal factors than ω̃(d+1), the Fourier coe�cients

of e2πiz and e(4d+2)πiz in the expansion of e2πizω̃(d) both vanish. Hence,

lim
ad+1→bd+1

det Ũ ′(d+1)∏d
l=1 sin (π (al − bd+1)) sin (π (ad+1 − bl))

= (−1)d sin (π (ad − bd))

(
d−1∏
j=1

sin (π (aj − ad)) sin (π (bj − bd))

)

· det


0 0 0 0 0

ω̃
(d)
1 · · · ω̃

(d)
d−1 ω̃

(d)
2d−1 ω̃

(d)
d · · · ω̃

(d)
2d−2

cos(π(z−bd))ω̃
(d+1)
2d (z)

sin(π(z−ad+1))
ω̃

(d+1)
2d+1 (z)

0 0 0 0 0


= sin (π (ad − bd))

(
d−1∏
j=1

sin (π (aj − ad)) sin (π (bj − bd))

)

· det


0

Ũ ′(d) cos(π(z−bd))ω̃
(d+1)
2d (z)

sin(π(z−ad+1))
ω̃

(d+1)
2d+1 (z)

0

 .

By expressing ω̃
(d+1)
2d (z) and ω̃

(d+1)
2d+1 (z) has a product of sines, cosines, and exponentials,

it is easy to read o� the coe�cients of e2πiz and e(4d+2)πiz. The coe�cient of e2πiz in
cos(π(z−bd))ω̃

(d+1)
2d (z)

sin(π(z−ad+1))
is −1

2
(2i)−2d+1 eπi

∑d
j=1 aj+bj , and the coe�cient of e(4d+2)πiz is 1

2
(2i)−2d+1 ·

e−πi
∑d
j=1 aj+bj . Similarly, the corresponding coe�cients in the expansion of ω̃(d+1)

2d+1 (z) are
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(2i)−2d eπi
∑d
j=1 aj+bj and (2i)−2d e−πi

∑d
j=1 aj+bj . Ergo,

lim
ad+1→bd+1

det Ũ ′(d+1)∏d
l=1 sin (π (al − bd+1)) sin (π (ad+1 − bl))

= sin (π (ad − bd))

(
d−1∏
j=1

sin (π (aj − ad)) sin (π (bj − bd))

)

· det


0 −1

2
(2i)−2d+1 eπi

∑d
j=1 aj+bj (2i)−2d eπi

∑d
j=1 aj+bj

Ũ ′(d) ∗ ∗

0 1
2

(2i)−2d+1 e−πi
∑d
j=1 aj+bj (2i)−2d e−πi

∑d
j=1 aj+bj


= sin (π (ad − bd))

(
d−1∏
j=1

sin (π (aj − ad)) sin (π (bj − bd))

)
· (2i)−4d+1 det

(
Ũ ′(d)

)
.

Therefore, Ad+1

Ad
(2i)2π4d+1 = (2i)−4d+1. We have proven the following:

Lemma. A2 = − (2πi)−7 and for d ≥ 2, Ad+1 = (2πi)−4d−1Ad.

It follows that Ad = − (2πi)−2d2+d−1 for all d ≥ 2. This �nishes the computation of

the determinant of U . Using this fact in conjunction with (4.3.5) and (4.2.1) yields

Theorem.

detU = − (2πi)−2d2+d−1 ed
2πiτη (τ)−4d2−2 c2d−1 exp

(
4ηB2 + 4πidB

)
∏

1≤j<k≤d

σ (aj − ak)σ (bj − bk)
∏

1≤l,m≤d

σ (al − bm) .
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Chapter 5

Partition Function

5.1 The d = 0 Case

As stated in chapter 2, N0 consists of constant maps; N0 = {w(z) ≡ c|c ∈ P1}. By ignoring

the point at ∞, we restrict ourselves to a dense open subset of N0 with holomorphic coor-

dinate c. If w ∈ N0, then w∗(TP1) is the trivial bundle. Furthermore, the space TwN0 is

identi�ed with the holomorphic, whence constant, sections of this bundle. Recall a Rieman-

nian metric was placed on N0 by the following formula, valid in our dense open coordinate

chart:

〈v1, v2〉 =
1

2

�
Σ

v1v̄2 + v̄1v2(
1 + |w|2

)2dµg,

where v1, v2 are now restricted to be elements of TwN0. We can easily express this metric in

terms of the coordinates c and c̄:

[�
Σ

(
1 + |c|2

)−2
dµg

]
dcdc̄ =

V ol(Σ)(
1 + |c|2

)2dcdc̄.
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The associated volume form, and hence the measure on N0 is given by

dµ0 =
i

2

V ol(Σ)(
1 + |c|2

)2dc ∧ dc̄.

=
iτy
2

(
1 + |c|2

)−2
dc ∧ dc̄.

Now we must discuss the regularized determinant of the Laplace operator:

− 1

det |g|
(
1 + |w|2

)2
∂z

(
∂z̄

(1 + |w|2)2

)
= −∂z∂z̄ = −1

4

(
∂2
x + ∂2

y

)
.

It is well-known that this operator is diagonalized in the Fourier basis. Let Λ∗ = Z
(
i
τy

)
⊕

Z
(
iτ
τy

)
be the dual lattice to Λ.

{fw(z) = exp [πi (zw̄ + wz̄)] |w ∈ Λ∗}

is an orthogonal basis satisfying −∂z∂z̄fw(z) = π2 |w|2 fw(z). Therefore, the regularized zeta

function for this Laplacian is de�ned by

ζ(s) =
∑

w∈Λ∗\{0}

(
π2 |w|2

)−s
= τ syπ

−2s
∑

(n,m)∈Z2\{(0,0)}

τ sy

|n+mτ |2s

for <(s) > 1. The sum is an Eisenstein series E(τ, s), studied extensively by Kronecker [14].

The constant term of the expansion around s = 1 of E(τ, s) is the content of his �rst limit

formula:

E(τ, s) =
π

s− 1
− π log

{
4τy |η (τ)|4

exp (2Γ′(1))

}
+O(s).
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E(τ, s) also satis�es the functional equation:

π−sΓ(s)E(τ, s) = πs−1Γ(1− s)E(τ, 1− s),

which, when combined with the limit formula and the expansion of Γ(s), yields an expansion

of E(τ, s) around s = 0 :

π−2sE(τ, s) = −1− log
{

4τy |η(τ)|4
}
s+O(s2).

Proofs of these formulas can be found in Chapter 8 of [25] or Chapter 20 of [15]. It follows

that

ζ ′(0) = − log τy − log
{

4τy |η(τ)|4
}

= − log
{

4τ 2
y |η(τ)|4

}
.

Therefore, det′∆ = exp {−2ζ ′(0)} = 16τ 4
y |η(τ)|8. This computation has been performed

many times with slight variations in di�erent contexts: see for example Appendix 1.1 of [22],

or [20, 16] for a mathematical perspective; or [19, 13] for an independent physics derivation.

Thus, the degree zero measure is given by:

(
2−1πf

)−1 (
16τ 4

y |η(τ)|8
)−1/2

τy
(
1 + |c|2

)−2 |dc|2

=
(
2πfτy |η (τ)|4

)−1 (
1 + |c|2

)−2 |dc|2 .

5.2 The d ≥ 2 Case

Combining the theorem from 3.2.2 and the corollary from 3.3, we get the following formula

for det′∆w, for any w ∈ Nd, in terms of the coordinates on Nd:
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det ′∆w = (2e)4d |c|8d
(

d∏
j,k=1

|σ (bk − aj)|8
)

exp

{
16<(ηB2)− 4πτy

(
4Byd

τy
+ d2

)}

· exp

{
−4d

d∑
j=1

[
2<(ηb2

j) +
2π

τy
b2
jy

]
− 2d

τy

�
Σ

log

(
hw
(
1 + |w|2

)2

h2d,2B

)
dµg

}
· (detQ(hw))2

Also, the measure dµd(w) can be expressed as

(d!)−2 detQ(hw) |detU |2 |dc|2 |da1|2 · · · |dad−1|2 |db1|2 · · · |dbd−1|2 |dB|2 ,

where detU is the result of the calculation in chapter 4:

|detU |2 = (2π)−4d2+2d−2 e−2d2πτy |η (τ)|−8d2−4 |c|4d−2 exp
(
8<
(
ηB2

)
− 8πdBy

)
·
∏

1≤j<k≤d

|σ (aj − ak)σ (bj − bk)|2
∏

1≤l,m≤d

|σ (al − bm)|2 .

It follows that

(det ′∆w)
− 1

2 dµd(w) = (d!)−2 (2e)−2d (2π)−4d2+2d−2 |η (τ)|−8d2−4∏
1≤j<k≤d

|σ (aj − ak)σ (bj − bk)|2
∏

1≤l,m≤d

|σ (al − bm)|−2 (5.2.1)

exp

{
2d

d∑
j=1

[
2<(ηb2

j) +
2π

τy
b2
jy

]
+
d

τy

�
Σ

log

(
hw
(
1 + |w|2

)2

h2d,2B

)
dµg

}
(5.2.2)

∣∣∣∣dcc
∣∣∣∣2 |da1|2 · · · |dad−1|2 |db1|2 · · · |dbd−1|2 |dB|2 . (5.2.3)
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One should check that this is a well-de�ned measure on Nd; that it is invariant under the

lattice actions on ξ1, . . . , ξ2d−1, and so is independent of the choice of representatives of

the zeroes and poles of w. Indeed, the lattice acts by translation on the representatives

a1, . . . , ad−1, b1, . . . , bd−1, B, and scales c. Therefore, (5.2.3) is invariant under the lattice ac-

tions. It is an easy computation to see that (5.2.1) is also invariant, using the transformation

rules of σ and the de�nition of ad and bd. It is more di�cult to see the invariance of (5.2.2),

but it is easier if we rewrite the integral as

d

τy

�
Σ

log

(
hw
(
1 + |w|2

)2

h2d,2B

)
dµg =

d∑
j=1

−2d

τy

�
Σ

log
(
h1,bj(z)

∣∣s1,bj(z)
∣∣2) d2z.

From the de�nitions of h1,bj(z) and s1,bj(z), we see that

h1,bj+1(z)
∣∣s1,bj+1(z)

∣∣2 = exp {2< [η (2bj + 1)]}h1,bj(z)
∣∣s1,bj(z)

∣∣2 .
Thus, under the transformation bj 7→ bj + 1,

−2d

τy

�
Σ

log
(
h1,bj(z)

∣∣s1,bj(z)
∣∣2) d2z 7→ −2d

τy

�
Σ

log
(
h1,bj(z)

∣∣s1,bj(z)
∣∣2) d2z−4d<{η (2bj + 1)} .

But this is equal and opposite to the transformation undergone by 2d
[
2<(ηb2

j) + 2π
τy
b2
jy

]
. A

similar computation can be performed for the transformation bj 7→ bj + τ . This proves the

invariance of (5.2.2). As a side note, we observe that the �rst term in (5.2.2) can be brought

inside the integral as follows:

exp

{
−2d

τy

d∑
j=1

�
Σ

[
log
(
h1,bj(z)

∣∣s1,bj(z)
∣∣2)− 2<(ηb2

j)−
2π

τy
b2
jy

]
d2z

}
.

Comparing this expression with the asymptotics given in Section 3.2.2, we see that the extra

terms precisely cancel the z-independent terms of the expansion around z = bj.
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The above shows that (det ′∆w)−
1
2 dµd(w) is well-de�ned on our dense open subset of

Nd. Furthermore, it extends continuously to all of Nd: the remainder of Nd consists precisely

of degree-d meromorphic functions whose zeroes and poles are not all simple. The formula

given for (det ′∆w)−
1
2 dµd(w) vanishes identically on this set.

5.3 The d ≤ −2 Case

As mentioned in Chapter 2, in this case, the partition function integral localizes to the space

of anti-instantons (anti-holomorphic maps.) Any and every anti-holomorphic map may be

obtained through complex conjugation of a holomorphic map with the same zeroes and

poles. Therefore, this case completely reduces to the positive d case discussed above, if w

is replaced with w̄. w̄∗ (TP1) is the anti-holomorphic bundle determined by the multiplier

conjugate to that of w∗ (TP1). Hence, metrics on w̄∗ (TP1) and w∗ (TP1) obey the same

quasi-periodicity relations, and furthermore, the pullback of the Fubini-Study metric by w̄

is represented by the same function as the pullback by w. Thus, despite that ∆w̄ = ∂∗∂, it

follows that det′∆w̄ = det′∆w.

Similarly, upon taking conjugates when computing the measure, the matrix U is

replaced by Ū , leaving |detU |2 unchanged. Hence, as would be expected, the measure on

Nd is the same as that on N−d. Thus, for d ≤ −2, we have

(det ′∆w̄)
− 1

2 dµd(w̄) = (det ′∆w)
− 1

2 dµ|d|(w).
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5.4 Conclusions and Avenues for Future Research

We have successfully computed the approximation to the partition measure for all values of

d.

Z[Φ] ≈
∑

d (2−1πf)
− dimNd/2 e−

π
f
|d| �

Nd
Φ[w] (det ∆w)−1/2 dµd(w)∑

d (2−1πf)− dimNd/2 e−
π
f
|d| �

Nd
(det ∆w)−1/2 dµd(w)

.

However, the only convergent term in the denominator is d = 0, which has the value

(
2fτy |η (τ)|8

)−1
.

For |d| ≥ 2,
�
Nd

(det ′∆w)−
1
2 dµd(w) diverges due to the behavior of the measure near the

boundary of Nd. One cause of divergence occurs when zeroes and poles become arbitrarily

close: if ãl and b̃m tend toward each other, for some l and m, then by (5.2.1), the integrand

grows like C |al − bm|−2, which is not integrable in two dimensions. This is not entirely

unexpected, however. Physical theories are rarely expected to hold to all length scales.

The procedure to resolve this issue is to introduce an ultraviolet cuto�, for example by

treating each zero and pole as having a �hard core��enforcing that the distance between any

zero and pole is greater than some small �xed length ε, and then taking the principal part

as ε → 0. This is precisely what Fateev et al did in the genus 0 case, where analogous

divergences occurred. This was part of their analogy with the classical Coulomb system at

a temperature T = 1.

There is one other source of divergence, however: the integral over the scaling variable
�
C∗
∣∣dc
c

∣∣2. This did not occur in the genus zero case, but an examination of the work in

Chapters 3 and 4 leads to a conjecture that similar divergences will occur if Σ is of higher

genus G, provided that degree d is large enough. Indeed, if w is a map of degree d, then

(det′∆w)
−1/2 contributes a factor of |c|−4d, however, the measure dµd(w) contributes a factor

63



of |c|2n, where n = h0 (Σ, w∗ (TP1)) − 1. Therefore, by Riemann-Roch, |c|−2 will appear in

the partition function measure with a power of

degw∗ (TP)1 − h0
(
Σ, w∗

(
TP1

))
+ 1 = h0

(
Σ, w∗

(
TP1

)−1 ⊗K
)

+G,

where K, the canonical bundle of Σ, has degree 2G−2 [18]. Thus, in particular, if d > G−1,

then h0
(

Σ, w∗ (TP1)
−1 ⊗K

)
= 0 independently of the map w, and a factor of

∣∣∣∣dccg
∣∣∣∣2 will

appear in the measure.

In the genus zero case, the quantity c had physical signi�cance as the vacuum expec-

tation value (the value at ∞) of the �eld. However, this variable still had to be integrated

out before a comparison with either the classical Coulomb model or the sine-Gordon model.

In our case, c o�ers no physical interpretation. Therefore, one possible solution to this prob-

lem is to de�ne physically relevant observables as those for which the factors of c can be

decoupled from the other variables and formally cancelled out of the equation. Future work

is required to see if such a procedure can be carried out. Alternatively, it may be possible

to introduce a cuto� to the domain of |c| in some way, such as demanding 1
R
≤ |c| ≤ R,

and then �nding a coherent way to take the remove the cuto� as R →∞. Some consistent

method must be found if any analogy is to be drawn between this model and either the

classical Coulomb model or the sine-Gordon model.

The methods in this thesis may be able to be generalized to CP1-instantons on higher

genus surfaces, but only in the case where the degree of the instanton is large. Eells proved

that, in the case of large degree, every harmonic map is holomorphic, and every cohomology

class has a holomorphic representative [7, 6]. In general, it is a much more di�cult question

to describe low-degree harmonic and holomorphic maps on higher-genus Riemann surfaces,

and di�erent methods would be required to pursue this topic in that setting.

64



Bibliography

[1] N. I. Akhiezer. Elements of the theory of elliptic functions, volume 79 of Translations

of Mathematical Monographs. American Mathematical Society, Providence, RI, 1990.

Translated from the second Russian edition by H. H. McFaden.

[2] Orlando Alvarez. Theory of strings with boundaries: �uctuations, topology and quan-

tum geometry. Nuclear Phys. B, 216(1):125�184, 1983.

[3] Eric D'Hoker. String theory. In Quantum �elds and strings: a course for mathe-

maticians, Vol. 1, 2 (Princeton, NJ, 1996/1997), pages 807�1011. Amer. Math. Soc.,

Providence, RI, 1999.

[4] Eric D'Hoker and D. H. Phong. On determinants of Laplacians on Riemann surfaces.

Comm. Math. Phys., 104(4):537�545, 1986.

[5] Philippe Di Francesco, Pierre Mathieu, and David Sénéchal. Conformal �eld theory.

Graduate Texts in Contemporary Physics. Springer-Verlag, New York, 1997.

[6] J. Eells and L. Lemaire. Another report on harmonic maps. Bull. London Math. Soc.,

20(5):385�524, 1988.

[7] J. Eells and J. C. Wood. Restrictions on harmonic maps of surfaces. Topology, 15(3):263�

266, 1976.

65



[8] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi.

Higher transcendental functions. Vol. I. Robert E. Krieger Publishing Co. Inc., Mel-

bourne, Fla., 1981. Based on notes left by Harry Bateman, With a preface by Mina

Rees, With a foreword by E. C. Watson, Reprint of the 1953 original.

[9] V. A. Fateev, I. V. Frolov, A. S. Schwarz, and Yu. S. Tyupkin. Quantum �uctuations of

instantons. In Mathematical physics reviews, Vol. 2, volume 2 of Soviet Sci. Rev. Sect.

C: Math. Phys. Rev., pages 1�51. Harwood Academic, Chur, 1981.

[10] Phillip Gri�ths and Joseph Harris. Principles of algebraic geometry. Wiley Classics

Library. John Wiley & Sons Inc., New York, 1994. Reprint of the 1978 original.

[11] Victor Guillemin and Shlomo Sternberg. Geometric asymptotics. American Mathemat-

ical Society, Providence, R.I., 1977. Mathematical Surveys, No. 14.

[12] Stefan Hollands and Robert M. Wald. Axiomatic quantum �eld theory in curved space-

time. Comm. Math. Phys., 293(1):85�125, 2010.

[13] C. Itzykson and J.-B. Zuber. Two-dimensional conformal invariant theories on a torus.

Nuclear Phys. B, 275(4):580�616, 1986.

[14] Leopold Kronecker. Leopold Kronecker's Werke. Bände I�V. Herausgegeben auf Ve-

ranlassung der Königlich Preussischen Akademie der Wissenschaften von K. Hensel.

Chelsea Publishing Co., New York, 1968.

[15] Serge Lang. Elliptic functions, volume 112 of Graduate Texts in Mathematics. Springer-

Verlag, New York, second edition, 1987. With an appendix by J. Tate.

[16] A. McIntyre and L. A. Takhtajan. Holomorphic factorization of determinants of Lapla-

cians on Riemann surfaces and a higher genus generalization of Kronecker's �rst limit

formula. Geom. Funct. Anal., 16(6):1291�1323, 2006.

66



[17] S. Minakshisundaram and Å. Pleijel. Some properties of the eigenfunctions of the

Laplace-operator on Riemannian manifolds. Canadian J. Math., 1:242�256, 1949.

[18] Rick Miranda. Algebraic curves and Riemann surfaces, volume 5 of Graduate Studies

in Mathematics. American Mathematical Society, Providence, RI, 1995.

[19] Joseph Polchinski. Evaluation of the one loop string path integral. Comm. Math. Phys.,

104(1):37�47, 1986.

[20] D. B. Ray and I. M. Singer. Analytic torsion for complex manifolds. Ann. of Math. (2),

98:154�177, 1973.

[21] Lewis H. Ryder. Quantum �eld theory. Cambridge University Press, Cambridge, second

edition, 1996.

[22] Albert S. Schwarz. Quantum �eld theory and topology, volume 307 of Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].

Springer-Verlag, Berlin, 1993. Translated from the 1989 Russian original by Eugene

Yankowsky [E. M. Yankovski��] and Silvio Levy.

[23] Paul M. Sutcli�e. Kink chains from instantons on a torus. Nonlinearity, 8(3):411�421,

1995.

[24] Robert M. Wald. The formulation of quantum �eld theory in curved spacetime. 2009.

[25] André Weil. Elliptic functions according to Eisenstein and Kronecker. Classics in Math-

ematics. Springer-Verlag, Berlin, 1999. Reprint of the 1976 original.

67



Appendix A

Analytic Continuation of the Zeta

Function

Suppose ∆h is the ∂̄-Laplacian on a complex line bundle π : L → Σ with hermitian metric

h over a compact Riemann surface Σ. If 0 = λ0 < λ1 ≤ λ2 ≤ · · · are the eigenvalues of ∆h.

We de�ne ζ(s) :=
∑∞

j=1 λ
−s
j . We continue ζ(s) by examining Γ(s)ζ(s). Since ζ(s) converges

absolutely for <(s) > 1 [22], we have:

Γ(s)ζ(s) =

(� ∞
0

e−tts
dt

t

) ∞∑
j=1

λ−sj

=
∞∑
j=1

� ∞
0

e−t
(
t

λj

)s
dt

t

=
∞∑
j=1

� ∞
0

e−λjtts
dt

t

=

� ∞
0

∞∑
j=1

e−λjtts
dt

t
.
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For �nite t, 2
∑∞

j=0 e
−λjt is the trace of the heat operator e−t∆h . Therefore, if p0 is the

dimension of the kernel of ∆h, then we obtain

2Γ(s)ζ(s) =

� ∞
0

(
Tr
{
e−t∆h

}
− p0

)
ts
dt

t
.

This is not de�ned in a neighborhood of 0, so we expand the trace of the heat kernel. For

small t,

Tr
{
e−t∆h

}
=
α−1

t
+ α0 +O(t),

where αj are the Seeley coe�cients for this Laplacian. Also, for large t, Tr(e−t∆h)−p0 decays

exponentially, and so

ϕ(s) :=

� ∞
1

(
Tr
{
e−t∆h

}
− p0

)
ts
dt

t

is an entire function in s. Therefore, for <(s) > 1,

2Γ(s)ζ(s) : =

� 1

0

(
Tr(e−t∆h)− p0

)
ts
dt

t
+ ϕ(s)

=

� 1

0

(
Tr(e−t∆h)− α0 −

α−1

t

)
ts
dt

t
+

α−1

s− 1
+
α0 − p0

s
+ ϕ(s)

=

� 1

0

O(ts)dt+
α−1

s− 1
+
α0 − p0

s
+ ϕ(s).

The remaining integral converges for <(s) > −1, and so we have meromorphically continued

2Γ(s)ζ(s) to a neighborhood of 0. So

2ζ(s) =
α0 − p0

sΓ(s)
+ Φ(s)
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where Φ is analytic in a neighborhood of 0, and 0 at 0. 2ζ(s) is thus analytic at 0 as sΓ(s)

analytically continues to be 1 at s = 0, and we can de�ne

det ∆h = e−2ζ′(0).
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Appendix B

Asymptotics of Green's Functions

In this section, let Σ be a genus n Riemann surface with Riemannian metric g, and let

π : L → Σ be a holomorphic line bundle with hermitian metric h. Also assume the degree

of L is at least 2n− 1. We will be working in a local coordinate system such that the metric

g has the form:

gzz = gz̄z̄ = 0,

gzz̄ = gz̄z.

We also abuse notation, using g to denote the function 2gzz̄. Let ∆h = ∂̄∗∂̄ = −g−1h−1∂zh∂z̄

be the ∂̄-laplacian on the space of sections L. We also de�ne ∆̃h := ∂̄∂̄∗ = −∂z̄ (g−1h−1∂zh),

acting on E-valued (0, 1)-forms. We will compute the large-t and small-t asymptotics for

e−t∆h and e−t∆̃h .
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B.1 Seeley Coe�cients of exp (−t∆h)

Let G be the Green's function for ∆h. G(z, z′; t) satis�es

∂G

∂t
= −∆z

hG;

G(z, z′; 0) = δ(z − z′).

Seeley tells us that G has an asymptotic expansion in t near t = 0 [22]:

G(z, z′; t) = 〈z′| exp(−t∆h)|z〉

= exp

(
−S(z, z′)

t

)(
A−1(z, z′)t−1 + A0(z, z′) + A1(z, z′)t+O(t2)

)
.

Therefore,

∂G

∂t
=

S

t2
exp

(
−S
t

)(
A−1t

−1 + A0 + A1t+O(t2)
)

+ exp

(
−S
t

)(
−A−1t

−2 + A1 +O(t)
)

= exp

(
−S
t

)(
SA−1t

−3 + [SA0(x, y)− A−1] t−2 + SA1t
−1 +O(1)

)
;

−∆hG = − exp

(
−S
t

)(
∆hA−1t

−1 + ∆hA0 + ∆hA1t+O(t2)
)

+ exp

(
−S
t

)(
∆hSA−1t

−2 + ∆hSA0t
−1 + ∆hSA1 +O(t)

)
+g−1 exp

(
−S
t

)(
∂zS∂z̄SA−1t

−3 + ∂zS∂z̄SA0t
−2 + ∂zS∂z̄SA1t

−1 +O(1)
)

−g−1 exp

(
−S
t

)(
∂zS∂z̄A−1t

−2 + ∂zS∂z̄A0t
−1 + ∂zS∂z̄A1 +O(t)

)
−g−1 exp

(
−S
t

)(
∂z̄S∂zA−1t

−2 + ∂z̄S∂zA0t
−1 + ∂z̄S∂zA1 +O(t)

)
.
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Comparing the coe�cients for t−3, we see that we must have

S = g−1∂z̄S∂zS.

A solution to this is given by S(z, z′) = d(z, z′)2, where d(z, z′) is the distance between z

and z′ in the metric g. Thus, expanding around z′, we have

S(z, z′) = g(z′) |z − z′|2 +O
(
|z − z′|3

)

This is most easily seen in polar coordinates around z′. Plugging this into G we examine

the initial condition to �nd the value of A−1 on the diagonal. We want

lim
t→0+

1

t

�
Σ

A−1(z, z′) exp

(
−d(z, z′)2

t

)
dµg(z) = 1.

But the integrand has a single critical point (and a maximum) at z = z′, so we can now

evaluate the integral via steepest descent. The determinant of the Hessian of S at z′ is easily

seen to be (2g(z′))2. Therefore, we must compute the Gaussian integral

�
R2

exp

(
−g(z′)(z − z′)2

t

)
d2z =

t

g(z′)

�
R2

exp
(
−u2

)
d2u =

tπ

g(z′)

Hence, we get

lim
t→0+

A−1(z′, z′)g(z′)

t

πt

g(z′)
= 1.

So, A−1(z′, z′) =
1

π
. Note that this di�ers by a factor of 4 from the result in [9]. This is due

to a reparameterization of t.

Now, we compare t−2 terms to get

SA0 − A−1 = g−1∂zS∂z̄SA0 + ∆hSA−1 − g−1∂zS∂z̄A−1 − g−1∂z̄S∂zA−1.
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The equation for S cancels the A0 terms in this expression, leaving us with an equation that

we can solve for higher coe�cients in the Taylor expansion of A1 around the diagonal, we

will denote z − z′ simply by Z so the formulas appear less cluttered.

−A−1 = ∆hSA−1 − g−1∂zS∂z̄A−1 − g−1∂z̄S∂zA−1.

Let us solve for A−1 up to the quadratic level:

A−1(z, z′) =
1

π
+ a−1,1 (Z) + a−1,2 (Z,Z) +O

(
|Z|3

)
.

To do this, we will need more terms in the approximation for S above.

g−1(z) = g−1(z′)

(
1− (log g)′ · (Z)− 1

2
(log g)′′ (Z,Z) +

1

2

(
(log g)′ · (Z)

)2
+O(|Z|3)

)

S = g(z′) |Z|2 + S3(Z,Z, Z) + S4(Z,Z, Z, Z) +O
(
|Z|5

)
.

S3(Z,Z, Z) =
1

2
g(z′) (log g)′ · (Z) |Z|2

S4(Z,Z, Z, Z) = g(z′)

(
1

6
(log g)′′ (Z,Z)− 1

48
|(log g)′|2 |Z|2 +

1

6

(
(log g)′ · (Z)

)2
)
|Z|2

From this, we can easily calculate the �rst few derivatives of S:

g−1(z)∂z∂z̄S = 1 +
1

12
(∂µ∂µ log g) (z′) |Z|2 +O

(
|Z|3

)

g−1(z)∂z log h(z)∂z̄S = (∂z log h)Z +
(
(∂z log h)′ · Z

)
Z

− (∂z log h)
(
(log g)′ · Z

)
Z +

1

2
(∂z log h) (∂z̄ log g) |Z|2
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+
1

2
(∂z log h) ((log g)′ · Z)Z +O

(
|Z|3

)
Now we can �nd a−1,1 and a−1,2 by expanding the equation for A−1 in powers of Z :

A−1 = −∆hSA−1 + g−1∂zS∂z̄A−1 + g−1∂z̄S∂zA−1

a−1,1(Z) = a−1,1(Z) +
1

π
(∂z log h)Z + Z̄∂z̄ (a−1,1(Z)) + Z∂z (a−1,1(Z))

a−1,1(Z) = − 1

π
(∂z log h) (z′)Z

a−1,2(Z,Z) = a−1,2(Z,Z) +
1

12

1

π
(∂µ∂µ log g) |Z|2 + Z (∂z log h) a−1,1(Z)

+
1

π

(
(∂z log h)′ · Z

)
Z − 1

π
∂z log h

(
(log g)′ · Z

)
Z

+
1

π

1

2
∂z log h (∂z̄ log g) |Z|2 +

1

π

1

2
(∂z log h) ((log g)′ · Z)Z

+
∑
j=1,2

(
Z̄∂z̄,ja−1,2 + Z∂z,ja−1,2

)
− ((log g)′ · Z)

(
Z̄∂z̄a−1,1 + Z∂za−1,1

)
+

1

2
Z̄
(
(log g)′ · Z

)
∂z̄a−1,1 +

1

2
Z
(
(log g)′ · Z

)
∂za−1,1

+
1

2
(∂z log g) |Z|2 ∂z̄a−1,1 +

1

2
(∂z̄ log g) |Z|2 ∂za−1,1

−2a−1,2(Z,Z) =
1

12

1

π
(∂µ∂µ log g) |Z|2 − 1

π
(∂z log h)2 Z2 +

1

π
((∂z log h)′ · Z)Z

a−1,2(Z,Z) = − 1

24

1

π
(∂µ∂µ log g) |Z|2 +

1

2π
(∂z log h)2 Z2 − 1

2π
Z(∂z log h)′ · Z

where ∂µ∂µ is shorthand for ∂2
x + ∂2

y = 4∂z∂z̄. The t−1 term in the expansion of the Green's

function and heat equation gives:

(−∆hS)A0 = −∆hA−1 − g−1(z) (∂zS∂z̄A0 + ∂z̄S∂zA0)
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Expanding to lowest order in |Z| gives

A0 = a0,0 +O(|Z|)

(−∆hS)A0 = a0,0 +O(|Z|)

−∆hA−1 = − g
−1

24π
∂µ∂µ log g − g−1

8π
∂µ∂µ log h+O(|Z|)

A0(z′, z′) = − g
−1

24π
∂µ∂µ log g − g−1

8π
∂µ∂µ log h

Thus, the Seeley expansion for small t is

〈z′| exp(−t∆h)|z′〉 =
2

π
t−1 − g−1(z′)

12π
∂µ∂µ log g(z′)− g−1(z′)

4π
∂µ∂µ log h(z′) +O(t). (B.1.1)

We multiplied the result by 2 because we wanted to take the real trace of the heat kernel.

Additionally, we note that − 1
2g(z)

∂µ∂µ log g(z) = K(z), where K is the Gaussian curvature

of Σ. Furthermore,

(
g−1∂µ∂µ log h

)
dµg = (∂µ∂µ log h)

dz ∧ dz̄
−2i

= 2i∂∂̄ log h,

which is 2i times the curvature of L. Thus, for small t,

Tr
(
e−t∆h

)
=

�
Σ

〈z |exp (−t∆h)| z〉 dµg(z)

=
2

π
Area (Σ) t−1 +

1

6π

�
Σ

Kdµg −
i

4π

�
Σ

∂∂̄ log h+O(t)

=
2

π
Area (Σ) t−1 +

1

3
χ (Σ)− 1

2
deg(L) +O(t).

Here, we have used the Gauss-Bonnet theorem to compute the �rst integral. The second

used the fact that i
2π
∂∂̄ log h is a representation of the Chern class of the bundle.
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B.2 Seeley Coe�cients of exp
(
−t∆̃h

)
Now we must do the same for exp(−t∆̃h).

∆̃h = −g−1∂z∂z̄ − g−1 (∂z log h) ∂z̄ −
(
∂z̄g

−1
)
∂z −

(
∂z̄
(
g−1∂z log h

))
We will denote the zeroth order term by C. Let G̃ be the Green's function for ∆̃h. G̃(z, z′; t)

satis�es

∂G̃

∂t
= −∆̃hG̃;

G̃(z, z′; 0) = δ(z − z′).

For small t, the Seeley expansion of G̃ is given by:

G̃(z, z′; t) = 〈z′| exp(−t∆̃h)|z〉

= exp

(
−S̃(z, z′)

t

)(
Ã−1(z, z′)t−1 + Ã0(z, z′) + Ã1(z, z′)t+O(t2)

)
.

Therefore, as before:

∂G̃

∂t
=

S̃

t2
exp

(
−S̃
t

)(
Ã−1t

−1 + Ã0 + Ã1t+O(t2)
)

+ exp

(
−S̃
t

)(
−Ã−1t

−2 + Ã1 +O(t)
)

= exp

(
−S̃
t

)(
S̃Ã−1t

−3 +
[
S̃Ã0(x, y)− Ã−1

]
t−2 + S̃Ã1t

−1 +O(1)
)

;

−∆̃hG̃ = − exp

(
−S̃
t

)(
∆̃hÃ−1t

−1 + ∆̃hÃ0 + ∆̃hÃ1 +O(t2)
)

+ exp

(
−S̃
t

)((
∆̃h − C

)
S̃Ã−1t

−2 +
(

∆̃h − C
)
S̃Ã0t

−1 +
(

∆̃h − C
)
S̃Ã1 +O(t)

)
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+g−1 exp

(
−S̃
t

)(
∂zS̃∂z̄S̃Ã−1t

−3 + ∂zS̃∂z̄S̃Ã0t
−2 + ∂zS̃∂z̄S̃Ã1t

−1 +O(1)
)

−g−1 exp

(
−S̃
t

)(
∂zS̃∂z̄Ã−1t

−2 + ∂zS̃∂z̄Ã0t
−1 + ∂zS̃∂z̄Ã1 +O(t)

)
−g−1 exp

(
−S̃
t

)(
∂z̄S̃∂zÃ−1t

−2 + ∂z̄S̃∂zÃ0t
−1 + ∂z̄S̃∂zÃ1 +O(t)

)
.

The t−3 term and initial condition have not changed. Therefore, S̃ = S and

Ã−1 =
1

π
+ ã−1,1(Z) + ã−1,2 (Z,Z) +O

(
|Z|3

)
.

To �nd ã−1,1 and ã−1,2, we look at the t−2 term:

Ã−1 = −
(

∆̃h − C
)
SÃ−1 + g−1∂zS∂z̄Ã−1 + g−1∂z̄S∂zÃ−1.

ã−1,1(Z) = ã−1,1(Z) +
1

π
Z∂z log h− 1

π
Z̄ (∂z̄ log g)

+Z̄∂z̄ã−1,1 + Z∂zã−1,1;

ã−1,1(Z) = − 1

π
Z∂z log h+

1

π
Z̄∂z̄ log g.

ã−1,2(Z,Z) = ã−1,2(Z,Z) +
1

12

1

π
(∂µ∂µ log g) |Z|2 + Z∂z log hã−1,1(Z)

+
1

π
Z (∂z log h)′ · Z − 1

π
Z∂z log h (log g)′ · Z

+
1

π

1

2
∂z log h (∂z̄ log g) |Z|2 +

1

π

1

2
Z∂z log h(log g)′ · Z

+
∑
j=1,2

(
Z̄∂z̄,j ã−1,2 + Z∂z,j ã−1,2

)
− ((log g)′ · Z)

(
Z̄∂z̄ã−1,1 + Z∂zã−1,1

)
+

1

2
Z̄
(
(log g)′ · Z

)
∂z̄ã−1,1 +

1

2
Z
(
(log g)′ · Z

)
∂zã−1,1

+
1

2
(∂z log g) |Z|2 ∂z̄ã−1,1 +

1

2
(∂z̄ log g) |Z|2 ∂zã−1,1

− 1

π
Z̄
(
(∂z̄ log g)′ · Z

)
+

1

π
Z̄
(
(log g)′ · Z

)
∂z̄ log g
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− 1

π

1

2
(∂z̄ log g)

(
|Z|2 (∂z log g) + Z̄ (∂z log g · Z)

)
− Z̄∂z̄ log gã−1,1(Z);

−2ã−1,2 (Z,Z) =
1

12

1

π
(∂µ∂µ log g) |Z|2 − 1

π
(∂z log h)2 Z2

+
1

π
((∂z log h)′ · Z)Z +

2

π
∂z log h∂z̄ log g |Z|2

− 1

π
Z̄
(
(∂z̄ log g)′ · Z

)
− 1

π
(∂z̄ log g)2 Z̄2;

α̃2(Z,Z) = − 1

24

1

π
(∂µ∂µ log g) |Z|2 +

1

2π
(∂z log h)2 Z2 − 1

2π
Z(∂z log h)′ · Z

+
1

2π
Z̄
(
(∂z̄ log g)′ · Z

)
− 1

π
∂z log h∂z̄ log g |Z|2 +

1

2π
(∂z̄ log g)2 Z̄2.

The t−1 term in the expansion of the Green's function and heat equation gives:

(
−∆̃hS

)
Ã0 = −∆̃hÃ−1 − g−1(z)

(
∂zS∂z̄Ã0 + ∂z̄S∂zÃ0

)
.

Expanding to lowest order in (z − z′) gives

Ã0 = ã0,0 +O(|Z|);(
−∆̃hS

)
Ã0 = ã0,0 +O(|Z|);

−∆̃hÃ1 =
g−1

12π
∂µ∂µ log g − g−1

8π
∂µ∂µ log h− g−1

π
∂z log h∂z̄ log g

+
g−1

π
∂z̄ log g∂z log h+

g−1

π
∂z log h∂z̄ log g

+
1

π

(
g−1∂z̄∂z log h− g−1∂z̄ log g∂z log h

)
+O(|Z|);

Ã0(z′, z′) =
g−1

12π
∂µ∂µ log g(z′) +

g−1

8π
∂µ∂µ log h.

Thus, the Seeley expansion for small t is

〈z′| exp(−t∆̃h)|z′〉 =
1

π
t−1 +

g−1

12π
∂µ∂µ log g(z′) +

g−1

8π
∂µ∂µ log h(z′) +O(t).
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Again, we multiply by two to get the real trace:

〈z′| exp(−t∆̃h)|z′〉 =
2

πt
+
g−1(z′)

6π
∂µ∂µ log g(z′) +

g−1(z′)

4π
∂µ∂µ log h(z′) +O(t). (B.2.1)

Thus, for small t,

Tr
(
e−t∆̃h

)
=

�
Σ

〈z |exp (−t∆h)| z〉 dµg(z)

=
2

π
Area (Σ) t−1 +

1

3π

�
Σ

Kdµg +
i

4π

�
Σ

∂∂̄ log h+O(t)

=
2

π
Area (Σ) t−1 +

2

3
χ (Σ) +

1

2
deg(L) +O(t).

B.3 Expansion at large t

It is obvious that when t gets large, exp (−t∆h) approaches P , the orthogonal projection

operator onto the subspace of holomorphic sections of L. Our claim is that under our

assumption about the degree of L, exp
(
−t∆̃h

)
approaches 0; i.e. ∆̃h has no kernel. Indeed,

by basic Hodge theory and Serre duality, the space of harmonic L-valued (0, 1)-forms is

isomorphic to H1 (Σ, L) ∼= H0 (Σ, K ⊗ L∗)∗. Since K has degree 2n−2, where n is the genus

of Σ, H0 (Σ, K ⊗ L∗) is guaranteed to be trivial if L has degree at least 2n− 1.
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