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Abstract of the Dissertation

Aspects of the Seiberg-Witten equations on

manifolds with cusps

by

Luca Fabrizio Di Cerbo

Doctor of Philosophy

in

Mathematics

Stony Brook University

2011

In this work we study several geometrical and analytical aspects arising from

the study of the Seiberg-Witten equations on manifolds with cusps.

We study the classification of smooth toroidal compactifications of nonuni-

form ball quotients in the sense of Kodaira and Enriques. Moreover, several

results concerning the Riemannian and complex algebraic geometry of these

spaces are given. In particular we show that there are compact complex sur-

faces which admit Riemannian metrics of nonpositive curvature, but which do

not admit Kähler metrics of nonpositive curvature. An infinite class of such ex-
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amples arise as smooth toroidal compactifications of ball quotients. The proof

of these results use a Riemannian cusps closing technique developed by Hummel

and Schroeder.

Using a construction due to Biquard, we derive an obstruction to the ex-

istence of cuspidal Einstein metrics on finite-volume complex surfaces. This

generalizes a theorem of LeBrun for compact complex surfaces. As in the com-

pact case, such a result relies on a Seiberg-Witten scalar curvature estimate.

Then, the obstruction is made explicit on some examples.

Finally, we study the Seiberg-Witten equations on noncompact manifolds

which are diffeomorphic to the product of two hyperbolic Riemann surfaces. By

extending some constructions of Biquard and Rollin, we show how to construct

irreducible solutions of the Seiberg-Witten equations for any metric of finite

volume which has a “nice” behavior at infinity. We conclude by giving the finite

volume generalization of some celebrated results of LeBrun.
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Chapter 1

Introduction

1.1 Introduction

In this chapter, we collect some of the results needed in the rest of this work.

Moreover, we fix the notation.

An outline of the chapter follows. Section 1.2 contains the essential results

about the L2 cohomology of noncompact manifolds. These results are crucially

used in Chapter 3 and Chapter 4.

In Section 1.3 we show that, up to a change of gauge, the Seiberg-Witten

equations are a nonlinear coupled elliptic system of the first order. This fact is

essential for the bootstrap argument contained in Chapter 4.

Finally, in Section 1.4 we give a detailed proof of an unpublished result by J.

Milnor regarding the Euler number of a Riemannian 4-manifold whose sectional

curvatures along perpendicular plane elements have the same sign. This result

plays a role in the proof of Theorem A in Section 2.2.
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1.2 L2 cohomology

Let us start with the definition of the L2-cohomology and its relation to the

space of L2-harmonic forms. For further details we refer to [2], [44] and the

bibliography therein. The results and the notation given in this section will be

widely used in this thesis.

Given a orientable noncompact manifold (M, g) we have, when the differen-

tial d is restricted to an appropriate dense subset, a Hilbert complex

... −→ L2Ωk−1
g (M) −→ L2Ωkg(M) −→ L2Ωk+1

g (M) −→ ...

where the inner products on the exterior bundles are induced by g. Define the

maximal domain of d, at the k-th level, to be

Domk(d) = {α ∈ L2Ωkg(M), dα ∈ L2Ωk+1
g (M)}

where dα ∈ L2Ωk+1
g (M) has to be intended in the distributional sense. In other

words, dα ∈ L2Ωk+1
g (M) if there exists a positive constant C such that for any

β ∈ C∞c Ωk+1(M) we have

|〈α, d∗β〉| ≤ C‖β‖2.

The (reduced) L2-cohomology groups are then defined to be

Hk
2 (M) = Zkg (M)/dDomk−1(d),

where

Zk2 (M) = {α ∈ L2Ωkg(M), dα = 0}.

Thus, the groups Zk2 (M) are simply the spaces of L2 weakly closed forms.
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Let us consider the formally self-adjoint operator

D : C∞c (Ω∗g(M)) −→ C∞c (Ω∗g(M))

where D = d + d∗ is the usual Gauss-Bonnet operator. Let us consider the

minimal self-adjoint extension

D : L2
1(Ω∗g(M)) −→ L2(Ω∗g(M))

where L2
1(Ω∗g(M)) is the Sobolev space obtained by completing C∞c (Ω∗(M))

with respect to the inner product (·, ·)L2 + (D·, D·)L2 . We then obtain that

L2(Ω∗g(M)) = Im(D)⊕ Im(D)
⊥

= Im(D)⊕Ker(D).

This orthogonal decomposition, considered in each degree k, gives precisely the

so-called Hodge-Kodaira decomposition:

L2Ωkg(M) = Hkg(M)⊕ dC∞c Ωk−1 ⊕ d∗C∞c Ωk+1,

where

Hkg(M) = {α ∈ L2(Ωkg(M))| dα = d∗α = 0}.

Let (M, g) be a complete Riemannian manifold. It is well-known that in this

case the Gauss-Bonnet operator D = d + d∗ is essentially self-adjoint, i.e., the

minimal and the maximal extensions coincide [44]. Similarly, the maximal and

minimal domain of d coincide. We then have the following basic result.

Theorem 1 Let (M, g) be a complete Riemannian manifold. Then, we have

the isomorphism Hk
2 (M) = Hk2(M).

It is interesting that, similarly to the compact case, in the complete case

harmonic forms can be characterized as forms that are in the kernel of the

Hodge laplacian.
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Theorem 2 Let (M, g) be complete, then

Hkg(M) = {α ∈ L2(Ωkg(M))| (dd∗ + d∗d)α = 0}.

See [44].

Finally, we end this section by recalling that the L2 cohomology groups are

quasi-isometric invariants, see [44]. Recall that two metrics g and g
′

are said to

be quasi-isometric if there exist positive constants C1 and C2 such that

C1g ≤ g
′
≤ C2g.

Theorem 3 Let (M, g) and (M, g
′
) be a quasi-isometric Riemannian manifold

and assume g to be complete. Then, we have the isomorphism

Hkg(M) ' Hk
g′

(M)

for any k.

1.3 PDE point of view on the Seiberg Witten

equations

The main result of this section is to show that, up to a change of gauge,

the Seiberg-Witten equations are a nonlinear coupled elliptic system of the first

order. Here and in the rest of this thesis we follow the notation of [15]. The

SW equations are given by the following system
DAψ = 0

F+
A = q(ψ) = ψ ⊗ ψ∗ − |ψ|

2

2 Id

where ψ is a plus Spinc spinor, and A is a hermitian connection on the determi-

nant line bundle of the Spinc structure under consideration. The configuration
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space for these equations is the space of L2
2 hermitian connection on the deter-

minant line bundle L and of L2
2 plus spinors

C(P c) = AL2
2
(L)× L2

2(S+(P c)).

The group G := Map(X,S1) acts on the configuration space

f · (A,ψ) = (A− 2
df

f
, fψ)

preserving the space of solutions. The second of the SW equations is clearly

invariant under the gauge transformation described above, for what regard the

equation for the spinor one computes

DA−2 dff
fψ = −df · ψ +DAfψ = −df · ψ + df · ψ + fDAψ = 0.

To preserve the regularity of the configuration space we then consider the space

of L2
3 changes of gauge denoted by L2

3(G). Fix a background C∞ hermitian

connection A0 on L, any other connection A ∈ AL2
2
(L) can then be written as

A = A0 +α with α ∈ L2
2(T ∗X⊗ iR). By the Hodge decomposition we can write

α = α0 + df + d∗β

with α0 harmonic, f ∈ L2
3(Ω0 ⊗ iR) and β ∈ L2

3(Ω3 ⊗ iR). Consider the change

of gauge given by σ = exp(f/2), then

A− 2
dσ

σ
= A0 + a

where a := α0 + d∗β is such that d∗a = 0. Thus, given a solution of the SW

equations (A, φ) ∈ C(P c), the equations satisfied by the pair exp(f/2) · (A, φ),

where we define ψ = exp(f/2)φ, can be written as follows
DA0

ψ = − 1
2a · ψ

(d∗ + d+)a = q(ψ)− F+
A0

(1.1)
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This is an elliptic system of the first order with C∞ coefficients. This remarkable

property can be used to show that any solution of the SW equations is gauge

equivalent to a C∞ solution. Recall that a ∈ L2
2, ψ ∈ L2

2 and F+
A ∈ L2

1.

Thus, a, ψ ∈ Lp for any p and then by the generalized Hölder inequality a ·

ψ ∈ Lp for any p. By the elliptic regularity ψ ∈ Lp1 for any p. Now, by the

Sobolev multiplication L2
2 ⊗ L4

1 → L3
1 the right hand side of the first equation

in 1.1 is in L3
1, and then by the elliptic regularity ψ ∈ L3

2. By the Sobolev

multiplication L2
2 ⊗ L3

2 → L2
2, the same argument shows that ψ ∈ L2

3. The

Sobolev multiplication L2
3 ⊗ L2

3 → L2
3 shows that q(ψ) ∈ L2

3 and therefore by

elliptic regularity a ∈ L2
4. These arguments can now be iterated, by using the

Sobolev multiplication L2
k⊗L2

k → L2
k (k ≥ 3), to show that the pair (a, ψ) ∈ L2

k

for any k. Now, by the Sobolev embedding theorem L2
k ↪→ Ck−3, we conclude

that (A,ψ) ∈ C∞.

1.4 A computation of Milnor

Here we present a computation by J. Milnor regarding the Euler character-

istic of nonpositively curved 4-manifolds. We follow the presentation given in a

old paper by S. S. Chern [20].

Recall that

Ωlk =
1

2
Rijklθ

i ∧ θj

and then

Ωlk ∧ Ωpq =
1

4
RijklRlmqpθ

i ∧ θj ∧ θl ∧ θm.

Following [20], for any point on our 4-dimensional manifold we can find an
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orthonormal frame such that

R1231 = R1241 = R1232 = R1242 = R1332 = R1341 = 0.

It follows that

- Ω1
2 = R1221θ

1 ∧ θ2 +R3421θ
3 ∧ θ4;

- Ω1
3 = R1331θ

1 ∧ θ3 +R2431θ
2 ∧ θ4;

- Ω1
4 = R1441θ

1 ∧ θ4 +R2341θ
2 ∧ θ4.

As a result

- Ω1
2 ∧ Ω3

4 = (R1221R3443 +R1243R3421)θ1 ∧ θ2 ∧ θ3 ∧ θ4;

- Ω1
3 ∧ Ω2

4 = −(R1331R2442 +R1342R2431)θ1 ∧ θ2 ∧ θ3 ∧ θ4;

- Ω1
4 ∧ Ω2

3 = (R1441R2332 +R1234R4321)θ1 ∧ θ2 ∧ θ3 ∧ θ4.

We then conclude that

Pf(Ω) = Ω1
2 ∧ Ω3

4 − Ω1
3 ∧ Ω2

4 + Ω1
4 ∧ Ω2

3

= {R1221R3443 +R1243R3421 +R1331R2442 +R1342R2431

+R1441R2332 +R1234R4321}θ1 ∧ θ2 ∧ θ3 ∧ θ4.

Notice that by the symmetries of the curvature tensor

- R1234R4321 = R2
1234;

- R1342R2431 = R2
1342;

- R1243R3421 = R2
1243.

7



Theorem 4 (Milnor) Let M be a closed orientable Riemannian manifold of

dimension 4. If its sectional curvatures along perpendicular plane elements al-

ways have the same sign, then its Euler characteristic satisfies χ(M) ≥ 0. In

particular if the sectional curvature is semi-definite then the Euler characteristic

is positive semi-definite.

The Euler integrand is pointwise positive semi-definite.
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Chapter 2

On the toroidal

compactifications of finite

volume complex hyperbolic

surfaces

2.1 Introduction

Let M̃ be a symmetric space of noncompact type, and let Iso0(M̃) denote the

connected component of the isometry group of M̃ containing the identity. Recall

that Iso0(M̃) is a semi-simple Lie group. A discrete subgroup Γ ⊂ Iso0(M̃) is

a lattice in M̃ if M̃/Γ is of finite volume. When Γ is torsion free, then M̃/Γ is

a finite volume manifold or a locally symmetric space. A lattice Γ is uniform
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(nonuniform) if M̃/Γ is compact (noncompact).

The theory of compactifications of locally symmetric spaces or varieties has

been extensively studied, see for example [5]. In fact, locally symmetric vari-

eties of noncompact type often occur as moduli space in algebraic geometry and

number theory, see [1]. For technical reasons this beautiful theory is mainly de-

veloped for quotients of symmetric spaces or varieties by arithmetic subgroups.

For arithmetic subgroups of semi-simple Lie groups a nice reduction theory is

available [5]. Among many other things, the aforementioned theory can be used

to deduce their finite generation, the existence of finitely many conjugacy classes

of maximal parabolic subgroups, and the existence of neat subgroups of finite

index.

The celebrated work of Margulis [42] implies that lattices in any semi-simple

Lie group of real rank greater or equal than two are arithmetic subgroups. This

important theorem does not cover many interesting cases such as lattices in

the complex hyperbolic space CHn, where non-arithmetic lattices are known to

exist by the work of Mostow and Mostow-Deligne; see [49] and the bibliography

therein.

It is thus desirable to develop a theory of compactifications of locally sym-

metric varieties modeled on CHn regardless of the arithmeticity of the defining

torsion free lattices. A compactification of finite-volume complex-hyperbolic

manifolds as a complex spaces with isolated normal singularities was obtained

by Siu and Yau in [37]. This compactification may be regarded as a generaliza-

tion of the Baily-Borel compactification defined for arithmetic lattices in CHn.

A toroidal compactification for finite-volume complex-hyperbolic manifolds was

described by Hummel and Schroeder in connection with cusps closing techniques
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arising from Riemannian geometry [22]; see also the preprint by Mok [45] and

the classical reference [1] for what concerns the arithmetic case.

The constructions of both Siu-Yau and Hummel-Schroeder rely on the theory

of nonpositively curved Riemannian manifolds. The key point here is that the

structure theorems for finite-volume manifolds of negatively pinched curvature,

or more generally for visibility manifolds [11], can be used as a substitute of the

reduction theory for arithmetic subgroups.

In this chapter we study torsion-free nonuniform lattices in the complex

hyperbolic plane CH2 and their toroidal compactifications. Let Γ be a lattice

as above and let CH2/Γ denote its toroidal compactification. When CH2/Γ is

smooth, it is a compact Kähler surface [22]. It is then of interest to place these

smooth Kähler surfaces in the framework of the Kodaira-Enriques classification

of complex surfaces [18]. The main purpose of this chapter is to prove the

following:

Theorem A Let Γ be a nonuniform torsion-free lattice in CH2. There exists

a finite subset F ′ ⊂ Γ of parabolic isometries for which the following holds:

for any normal subgroup Γ
′
� Γ with the property that F ′ ∩ Γ

′
is empty, then

CH2/Γ′ is a surface of general type with ample canonical line bundle. Moreover,

CH2/Γ′ admits Riemannian metrics of nonpositive sectional curvature but it

cannot support Kähler metrics of nonpositive sectional curvature.

An outline of the chapter follows. Section 2.2 starts with a summary of the

results of Hummel and Schroeder [22]. Such results are then combined with the

Kodaira-Enriques classification to prove that when the lattice Γ is sufficiently

small then CH2/Γ is a surface of general type with ample canonical bundle.

In Section 2.3 we present some examples of a surfaces of general type which
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do not admit any nonpositively curved Kähler metric, but whose underlying

smooth manifolds admit Riemannian metrics of nonpositive curvature. Finally

the proof of Theorem A is given.

In Section 2.4 we show how Theorem A, combined with the theory of semi-

stable curves on algebraic surfaces [41], can be used to address the problem of the

projective-algebraicity of minimal compactifications (Siu-Yau) of finite-volume

complex-hyperbolic surfaces. The results of section 2.4 are then summarized in

Theorem B.

2.2 Toroidal Compactifications and the Kodaira-

Enriques Classification

Let PU(1, 2) denote the connected component of Iso(CH2) containing the

identity. Let Γ be a nonuniform torsion-free lattice of holomorphic isometries of

the complex hyperbolic plane CH2, i.e., Γ ≤ PU(1, 2). Recall that the locally

symmetric space CH2/Γ has finitely many cusp ends A1, ..., An which are in

one to one correspondence with conjugacy classes of the maximal parabolic

subgroups of Γ [13]. The set of all parabolic elements of Γ can be written as

a disjoint union of subsets Γx, where Γx is the set of all parabolic elements in

Γ having x as unique fixed point. Here x is a point in the natural point set

compactification of CH2 obtained by adjoining points at infinity corresponding

to asymptotic geodesic rays. Thus, given a cuspAi, let us consider the associated

maximal parabolic subgroup Γxi ≤ Γ and the horoball HBxi stabilized by Γxi .

We then have that HBxi/Γxi is naturally identified with Ai.

Recall that after choosing an Iwasawa decomposition [11] for PU(1, 2), we

12



get a identification of ∂HB with the three dimensional Heisenberg Lie group

N . Moreover, N comes equipped with a left invariant metric and then we may

view Γxi as a lattice in Iso(N). The cusps A1, ..., An are then identified with

N/Γxi × [0,∞), for i = 1, ..., n.

The isometry group of N is isomorphic to the semi-direct product Iso(N) =

N o U(1). We say that a lattice in Iso(N) is rotation free if it is a lattice in

N , i.e., if it is a lattice of left translations. A parabolic isometry φ ∈ Γ is called

unipotent if it acts as a translation on its invariant horospheres.

We now briefly summarize some of the results of Hummel [22] and Hummel-

Schroeder [21].

Theorem 5 (Hummel-Schroeder) Let Γ be a nonuniform torsion-free lattice

in CH2. Then, there exists a finite subset F ⊂ Γ of parabolic isometries such

that for any normal subgroup Γ
′
�Γ with the property that F ∩Γ

′
is empty, then

CH2/Γ′ is smooth and Kähler.

Furthermore, using a cusp closing technique arising from Riemannian Ge-

ometry they were able to prove:

Theorem 6 (Hummel-Schroeder) Let Γ be a nonuniform torsion-free lattice

in CH2. Then, there exists a finite subset F ′ ⊂ Γ of parabolic isometries such

that F ′ ⊇ F for which the following holds. For any normal subgroup Γ
′
�Γ with

the property that F ′ ∩ Γ
′

is empty, then CH2/Γ′ admits a Riemannian metric

of nonpositive sectional curvature.

A few remarks about these results. A nonuniform torsion-free lattice in

CH2 admits a smooth toroidal compactification if its parabolic isometries are

all unipotent. In the arithmetic case this is achieved by choosing a neat subgroup
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of finite index [1]. It is also interesting to observe that we have plenty of normal

subgroups satisfying the requirements of Theorem 5 and 6, in fact PU(1, 2) is

linear and then residually finite by a fundamental result of Mal’cev [39]. Finally,

it is interesting to notice that in general one expects the strict inclusion F ′ ⊃ F

to hold. Explicit examples can be derived from the construction of Hirzebruch

[48].

For simplicity, a compactification as in Theorem 6 will be referred as toroidal

Hummel-Schroeder compactification.

Proposition 2.2.1 Let M be a finite-volume complex-hyperbolic surface which

admits a toroidal Hummel-Schroeder compactification. Then the Euler number

of M is strictly positive.

The idea for the proof goes back to an unpublished result of J. Milnor about

the Euler number of closed four dimensional Riemannian manifolds having sec-

tional curvatures along perpendicular planes of the same sign; see the paper by

S. S. Chern [20]. Let (M, g) be the Riemannian manifold obtained by closing

the cusps of M under the condition of nonpositive curvature [21]. Let Ω be its

curvature matrix. We can always choose [20] a orthonormal frame {ei}4i=1 such

that:

R1231 = R1241 = R1232 = R1242 = R1332 = R1341 = 0.

It follows that

Pf(Ω) = Ω1
2 ∧ Ω3

4 − Ω1
3 ∧ Ω2

4 + Ω1
4 ∧ Ω2

3

= {R1221R3443 +R2
1243 +R1331R2442 +R2

1342

+R1441R2332 +R2
1234}dµg,
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where Pf(Ω) is the Pfaffian of the skew symmetric matrix Ω. The statement is

now a consequence of Chern-Weil theory.

We can now use the Kodaira-Enriques classification of closed smooth surfaces

[18] to derive the following theorem. The proof is in the spirit of the theory of

nonpositively curved spaces.

Theorem 2.2.2 Let M be a finite-volume complex-hyperbolic surface which ad-

mits a toroidal Hummel-Schroeder compactification. Then M is a surface of

general type without rational curves.

Since M admits a Riemannian metric of nonpositive sectional curvature,

the Cartan-Hadamard theorem [12] implies that the universal cover of M is

diffeomorphic to the four dimensional euclidean space. Consequently, M is

aspherical and then it cannot contain rational curves. Moreover, the second

Betti number of M is even since by construction it admits a Kähler metric. By

the Kodaira-Enriques classification [18] we conclude that the Kodaira dimension

of M cannot be negative.

From Proposition 2.2.1, we know that the Euler number of M is strictly

positive. The minimal complex surfaces with Kodaira dimension equal to zero

and positive Euler number are simply connected or with finite fundamental

group. Since π1(M) is infinite, the Kodaira dimension of M is bigger or equal

than one.

The fundamental group of an elliptic surface with positive Euler number is

completely understood in terms of the orbifold fundamental group of the base

of the elliptic fibration. More precisely, denoting by π : S −→ C the elliptic

fibration, if S has no multiple fibers then π induces an isomorphism π1(S) '

π1(C). In the case where we allow multiple fibers we have the isomorphism
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π1(S) ' πOrb1 (C). For these results we refer to [16]. We are now ready to

show that M cannot be an elliptic surface. When S has multiple fibers, the

group π1(S) has always torsion and then it cannot be the fundamental group

of a nonpositively curved manifold. If we assume π1(M) ' π1(C), the fact that

π1(M) grows exponentially [3] forces the genus of the Riemann surface C to be

bigger or equal than two. Since all closed geodesics in a manifold of nonpositive

curvature are essential in π1, we have that the fundamental group of the flats

introduced in the compactification injects in π1(M) and then by assumption in

π1(C). By elementary hyperbolic geometry this would imply that Z⊕Z acts as

a discrete subgroup of R, which is clearly impossible.

Corollary 2.2.3 A toroidal Hummel-Schroeder compactification has ample canon-

ical line bundle.

By Theorem 2.2.2 we know that M is a minimal surface of general type with-

out rational curves. The corollary follows from Nakai’s criterion for ampleness

of divisors on surfaces [18].

In the arithmetic case, part of the results contained in Theorem 2.2.2 can

be derived from a theorem of Tai, see [1]. Furthermore, similar results for the

so-called Picard modular surfaces are obtained by Holzapfel in [47].

2.3 Examples

In this section we present examples of surfaces of general type which do

not admit nonpositively curved Kähler metrics, but such that their underlying

smooth manifolds do admit Riemannian metrics with nonpositive Riemannian

curvature. In order to do this one needs to understand the restrictions imposed
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by the nonpositive curvature assumption on the holomorphic curvature tensor.

Thus, define

p = 2Re(ξ), q = 2Re(η)

where

ξ = ξα∂α, η = ηα∂α.

In real coordinates we have

R(p, q, q, p) = Rhijkp
hqiqjpk

while in complex terms

R(ξ + ξ, η + η, η + η, ξ + ξ) = R(ξ, η, η, ξ) +R(ξ, η, η, ξ)

+R(ξ, η, η, ξ) +R(ξ, η, η, ξ).

We then have

Rhijkp
hqiqjpk = Rαβγδξ

αηβηγξδ +Rαβγδξ
αηβηγξδ +Rαβγδξ

αηβηγξδ

+Rαβγδξ
αηβηγξδ

= Rαβγδξ
αηβηγξδ −Rαβγδξ

αηβηδξγ −Rαβγδξ
βηαηγξδ

+Rαβγδξ
βηαηδξγ

= Rαβγδ{ξ
αηβηγξδ − ξαηβηδξγ − ξβηαηγξδ + ξβηαηδξγ}

= Rαβγδ(ξ
αηβ − ηαξβ)(ξδηγ − ηδξγ).

If we assume the Riemannian sectional curvature to be nonpositive we have

Rhijkp
hqiqjpk = Rαβγδ(ξ

αηβ − ηαξβ)(ξδηγ − ηδξγ) ≤ 0.
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Let us write this equation in detail when the dimension is n = 2:

Rαβγδ(ξ
αηβ − ηαξβ)(ξδηγ − ηδξγ) = R1111(ξ1η1 − η1ξ1)(ξ1η1 − η1ξ1)

+R1121(ξ1η1 − η1ξ1)(ξ1η2 − η1ξ2) +R1122(ξ1η1 − η1ξ1)(ξ2η2 − η2ξ2)

+R2211(ξ2η2 − η2ξ2)(ξ1η1 − η1ξ1) +R1212(ξ1η2 − η1ξ2)(ξ2η1 − η2ξ1)

+R2121(ξ2η1 − η2ξ1)(ξ1η2 − η1ξ2) +R1112(ξ1η1 − η1ξ1)(ξ2η1 − η2ξ1)

+R2221(ξ2η2 − η2ξ2)(ξ1η2 − η1ξ2) +R1222(ξ1η2 − η1ξ2)(ξ2η2 − η2ξ2)

+R2122(ξ2η1 − η2ξ1)(ξ2η2 − η2ξ2) +R2111(ξ2η1 − η2ξ1)(ξ1η1 − η1ξ1)

+R2112(ξ2η1 − η2ξ1)(ξ2η1 − η2ξ1) +R1221(ξ1η2 − η1ξ2)(ξ1η2 − η1ξ2)

+R1211(ξ1η2 − η1ξ2)(ξ1η1 − η1ξ1) +R2212(ξ2η2 − η2ξ2)(ξ2η1 − η2ξ1)

+R2222(ξ2η2 − η2ξ2)(ξ2η2 − η2ξ2).

Now

R2211 = R1122, R1221 = R1122, R2112 = R1122,

thus

R1122{(ξ
1η1 − η1ξ1)(ξ2η2 − η2ξ2) + (ξ2η2 − η2ξ2)(ξ1η1 − η1ξ1)

+ (ξ2η1 − η2ξ1)(ξ2η1 − η2ξ1) + (ξ1η2 − η1ξ2)(ξ1η2 − η1ξ2)}

= 2R1122{Re(ξ
1η1 − η1ξ1)(ξ2η2 − η2ξ2) + |ξ1η2 − η1ξ2|2}.

Now

R1212 = R2121

thus

R1212(ξ1η2 − η1ξ2)(ξ2η1 − η2ξ1) +R2121(ξ2η1 − η2ξ1)(ξ1η2 − η1ξ2)

= 2Re{R1212(ξ1η2 − η1ξ2)(ξ2η1 − η2ξ1)}.
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Now

R1112 = R1211, R1121 = R2111, R1112 = R1121,

thus

R1112(ξ1η1 − η1ξ1)(ξ2η1 − η2ξ1) +R1211(ξ1η2 − η1ξ2)(ξ1η1 − η1ξ1)

+R1121(ξ1η1 − η1ξ1)(ξ1η2 − η1ξ2) +R2111(ξ2η1 − η2ξ1)(ξ1η1 − η1ξ1)

= 2R1112(ξ1η1 − η1ξ1)(ξ2η1 − η2ξ1) + 2R1121(ξ1η1 − η1ξ1)(ξ2η1 − η2ξ1)

= 4Re{R1112(ξ1η1 − η1ξ1)(ξ2η1 − η2ξ1)}.

Now

R2212 = R1222, R2122 = R2221, R2212 = R2221,

thus

R2212(ξ2η2 − η2ξ2)(ξ2η1 − η2ξ1) +R1222(ξ1η2 − η1ξ2)(ξ2η2 − η2ξ2)

+R2221(ξ2η2 − η2ξ2)(ξ1η2 − η1ξ2) +R2122(ξ2η1 − η2ξ1)(ξ2η2 − η2ξ2)

= 2R2212(ξ2η2 − η2ξ2)(ξ2η1 − η2ξ1) + 2R2221(ξ2η2 − η2ξ2)(ξ1η2 − η1ξ2)

= 4Re{R2212(ξ2η2 − η2ξ2)(ξ2η1 − η2ξ1)}.

In summary we have the equality:

Rαβγδ(ξ
αηβ − ηαξβ)(ξδηγ − ηδξγ)

= R1111|ξ
1η1 − η1ξ1|2 + 4Re{R1112(ξ1η1 − η1ξ1)(ξ2η1 − η2ξ1)}

+ 2R1122{|ξ
1η2 − η1ξ2|2 +Re(ξ1η1 − η1ξ1)(ξ2η2 − η2ξ2)}

+ 2Re{R1212(ξ1η2 − η1ξ2)(ξ2η1 − η2ξ1)}

+ 4Re{R2212(ξ2η2 − η2ξ2)(ξ2η1 − η2ξ1)}

+R2222|ξ
2η2 − η2ξ2|2.
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Following Siu-Mostow [36], we choose the ansatz

ξ1 = ia, ξ2 = −i, η1 = a, η2 = 1

where a is a real number. We get the inequality

R11114a4 − 2R11224a2 +R22224 ≤ 0.

Since nonpositive Riemannian sectional curvature implies nonpositive holomor-

phic sectional curvature, we conclude that

(R1122)2 ≤ R1111R2222. (2.1)

Theorem 2.3.1 A toroidal Hummel-Schroeder compactification does not admit

any Kähler metric with nonpositive Riemannian sectional curvature.

Let us proceed by contradiction. Consider one of the elliptic divisors added

in the compactification. By the properties of submanifolds of a Kähler manifold

[19], we have that the holomorphic sectional curvature tangent to the elliptic

divisor has to be zero. Let us denote such a holomorphic sectional curvature by

R1111. By the inequality (2.1), we conclude that R1122 = 0. As a result, the

Ricci curvature tangent to the elliptic divisor has to be zero. We conclude that

KM · Σ =

∫
Σ

c1(KM ) = 0,

which contradicts the ampleness of KM , see corollary 2.2.3.

Combining Theorems 2.2.2 and 2.3.1 with Corollary 2.2.3, we have thus

proved Theorem A.
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2.4 Projective-algebraicity of minimal compact-

ifications

Let M be a smooth toroidal compactification of a finite-volume complex-

hyperbolic surface M and let Σ denote the compactifying divisor. The set Σ is

exceptional and it can be blown down. The resulting complex surface, with iso-

lated normal singularities, it is usually referred as the minimal compactification

of M [37]. In this section we address the problem of the projective-algebraicity

of minimal compactifications of finite-volume complex-hyperbolic surfaces. This

is motivated by a beautiful example of Hironaka, see [14] page 417, which shows

that by contracting a smooth elliptic divisor on an algebraic surface one can

obtain a nonprojective complex space. For the sake of readability, we present

this example at the end of the current section. In the arithmetic case, the

projective-algebraicity of minimal compactifications of finite-volume complex-

hyperbolic surfaces it is known by the work of Baily and Borel, see [5].

For completeness, we recall the theory of semi-stable curves on algebraic

surfaces and logarithmic pluricanonical maps as developed by Sakai in [41].

Let M be a smooth projective surface. Let Σ be a reduced divisor having

simple normal crossings on M .

Definition 2.4.1 The pair (M,Σ) is called minimal if M does not contain an

exceptional curve E of the first kind such that E · Σ ≤ 1.

We consider the logarithmic canonical line bundle L = KM + Σ associated

to Σ. Given any integer k, define Pm = dimH0(M,O(mL)). If Pm > 0, we
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define the m-th logarithmic canonical map ΦmL of the pair (M,Σ) by

ΦmL(x) = [s1(x), ..., sN (x)],

for any x ∈M and where s1, ..., sN is a basis for the vector spaceH0(M,O(mL)).

At this point one introduces the notion of logarithmic Kodaira dimension ex-

actly as in the closed smooth case. We denote this numerical invariant by k(M)

where M = M\Σ. We refer to [46] for further details.

Definition 2.4.2 A curve Σ is semi-stable if has only normal crossings and

each smooth rational component of Σ intersects the other components of Σ in

more than one point.

The following proposition gives a numerical criterion for a minimal semi-

stable pair (M,Σ) to be of log-general type. For the proof we refer to [41].

Proposition 2.4.3 Given a minimal semi-stable pair (M,Σ) we have that k(M) =

2 if and only if L is numerically effective and L2 > 0.

We can now state one of the main results contained in [41]. In what follows,

we denote by E the set of irreducible curves E in M such that L · E = 0.

Theorem 7 (Sakai) Let (M,Σ) be a minimal semi-stable pair of log-general

type. The map ΦmL is then an embedding modulo E for any m ≥ 5.

It is then necessary to characterize the irreducible divisors in E . In particular,

we need the following proposition.

Proposition 2.4.4 Let (M,Σ) be a minimal semi-stable pair with k(M) = 2.

Let E be an irreducible curve such that L · E = 0. If E is not contained in Σ

then E ' CP 1 and E · E = −2.
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Under these assumptions we know that L2 > 0. By the Hodge index theorem

L2 > 0, L · E = 0 =⇒ E2 < 0.

But now L · E = 0 which implies

KM · E = −Σ · E ≤ 0.

We then have KM · E = 0 if and only if E does not intersect Σ. In this case

pa(E) = 0 and then E ' CP 1 and E2 = −2. Assume now that KM · E < 0,

then KM · E = E2 = −1 and therefore E is an exceptional curve of the first

kind such that E · Σ = 1. This contradicts the minimality of the pair (M,Σ).

We are now ready to prove the main results of this section. Let CH2/Γ

be a finite-volume complex-hyperbolic surface that admits a smooth toroidal

compactification as in Theorem 2.2.2. We then have that CH2/Γ is a surface of

general type with compactification divisor consisting of smooth disjoint elliptic

curves.

Proposition 2.4.5 Let M be a minimal surface of general type. Let Σ be a

reduced divisor whose irreducible components consist of disjoint smooth elliptic

curves. Then, (M,Σ) is a minimal semi-stable pair with k(M) = 2.

Recall that the canonical divisor of any minimal complex surface of non-

negative Kodaira dimension is numerically effective [18]. It follows that the

adjoint divisor L is numerically effective. An elliptic curve on a minimal surface

of general type has negative self intersection. Moreover, for a minimal surface

of general type it is known that the self-intersection of the canonical divisor is

strictly positive [18]. By the adjunction formula

L2 = K2
M
− Σ2 > 0.
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By Proposition 2.4.3, we conclude that k(M) = 2.

Let CH2\Γ1 be a finite-volume complex-hyperbolic surface which admits a

smooth toroidal compactification M1. Let (M1,Σ1) be the associated minimal

semi-stable pair. By Theorem A, we can find a normal subgroup of finite index

Γ2 � Γ1 such that the toroidal compactification M2 of CH2/Γ2 is a minimal

surface of general type with compactification divisor Σ2. Since

π : CH2/Γ2 −→ CH2/Γ1

is an unramified covering we conclude that k(M1) = k(M2) [46]. But by propo-

sition 2.4.5 we know that k(M2) = 2, it follows that (M1,Σ1) is a minimal

semi-stable pair of log-general type. Let us summarize this argument into a

proposition.

Proposition 2.4.6 Let (M,Σ) be a smooth pair arising as the toroidal com-

pactification of a finite-volume complex-hyperbolic surface. The pair (M,Σ) is

minimal and log-general.

The following theorem is the main result of the present section.

Theorem B Let (M,Σ) be a smooth pair arising as the toroidal compactifica-

tion of a finite-volume complex-hyperbolic surface. Then, the associated minimal

compactification is projective algebraic.

By Proposition 2.4.6, the minimal pair (M,Σ) is log-general. By Theorem

7 we know that ΦmL is an embedding modulo E for any m ≥ 5. We clearly

have that Σ is contained in E . We claim that there are no other divisors in

E . Assume the contrary. By Proposition 2.4.4, any other curve in E must be

a smooth rational divisor E with self-intersection minus two. The adjunction
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formula gives KM · E = 0 which implies Σ · E = 0. This is clearly impossible.

By Theorem 7 for m ≥ 5, the map

ΦmL : M −→ CPN−1

gives a realization of the minimal compactification as a projective-algebraic

variety.

For an approach to the projective-algebraicity problem through L2-estimates

for the ∂-operator we refer to [45].

As promised, we end this section with the details of the example by Hironaka.

Example 1 (Hironaka) Let Y0 be a nonsingular cubic in CP 2. Let p0 be an

inflection point. Thus, there exists an hyperplane H such that H ∩Y0 = p0 with

multiplicities three. Choose p0 as the origin for the multiplication law of Y0. In

other words we consider Y0 ' C\Γ for a lattice Γ. Choose points p1, ..., p10 on

Y0 such that
∑10
i=1 n1pi /∈ Γ for any ni ∈ Z. Let Y be the proper transform of

Y0 in CP 2]10CP 2 after we blow up the points {pi}. Y is then a smooth elliptic

curve with self intersection −1. By the Grauert’s contractibility criterion we

can then blow down this exceptional curve and obtain a normal complex space.

Let X0 be the complex space so obtained. We know want to show that X0 is not

projective algebraic. Let p ∈ X0 be the contraction of Y . If we assume X0 to

be projective algebraic we can consider an open affine neighborhood U around p.

Let C̃0 be a curve not containing p, and let C0 be its closure in X0. Let C be

the inverse image of C0 in CP 2]10CP 2. Thus, C is a curve not intersecting Y .

Let C̃ be the image of C in CP 2. By the Bézout theorem, we can write

C̃ · Y0 =

10∑
i=1

nipi
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with ni ≥ 0 and
∑10
i=1 ni = 3d where d = degC̃. Since C̃ ' dH, we have

that H · Y0 ' 3p0. As a result we obtain that
∑10
i=1 nipi = 0 ∈ Γ which is a

contradiction.
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Chapter 3

Finite volume complex

hyperbolic surfaces without

cuspidal Einstein metrics

3.1 Introduction

The aim of modern Riemannian geometry is the study of the interplay be-

tween curvature and topology. The study of Einstein metrics is currently one

of the main themes of research in the field; see [4] and the more recent survey

[30]. Recall that a Riemannian manifold (M, g) is said to be Einstein if its Ricci

tensor is proportional to the metric:

Ricg = λg.

In real dimension 2 and 3 this condition is equivalent to the constancy of

the sectional curvature. The two dimensional case is classically understood in
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terms of the so called “uniformization” theorem for Riemann surfaces, while in

dimension three one has to refer to the recent works of Thurston, Hamilton and

Perelman [43].

Despite the considerable efforts, this condition remains rather obscure in

dimension n ≥ 5. In fact, no uniqueness or non-existence results are known!

In real dimension 4, the geometric and topological meaning of the Einstein

condition is considerably better understood. This is essentially due to the facts

that Chern-Weil theory enjoys, in this dimension, several special features and

to deep gauge theoretic results genuinely concerning this special dimension. For

example, Chern-Weil theory can be easily applied to derive the elegant Hitchin-

Thorpe inequality [38], which gives a necessary condition for the existence of

an Einstein metric on a closed 4-manifold. This important inequality was later

extended in several directions. First, it was refined by Gromov [8] using its

simplicial volume and then by Sambusetti [33] building up on results of Besson,

Courtois and Gallot [7]. Another direction in the study of Einstein metrics on

4-manifolds is through a system of nonlinear elliptic PDEs of the first order: the

Seiberg-Witten equations. Seiberg-Witten theory can in fact be used to derive

non-existence results for Einstein metrics on closed 4-manifolds, when the SW

invariant of the underlying smooth manifold is nontrivial [15]. This approach

was pioneered and pursued by LeBrun in a long series of papers; see [31] and

the bibliography therein.

In this chapter we present an obstruction for cuspidal Einstein metrics on

blow ups of finite volume complex hyperbolic surfaces; see the next section for

the technical definition of cuspidal metric. This result extends to the finite

volume setting the obstructions found by LeBrun in [27]. The proof is based
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on a construction due to Biquard [24] which ensures the existence of irreducible

solutions of the Seiberg-Witten equations on certain finite volume 4-manifolds.

3.2 Cuspidal metrics and Biquard’s argument

In what follows, let M be a noncompact 4-manifolds with finitely many ends.

Assume that each end of the manifold is diffeomorphic to a product R+ × N ,

where N is a compact 3-dimensional manifold. A smooth metric g on M is

called cuspidal if it has bounded curvature and on each end can be written as

dt2 + gt with the following additional properties:

- the diameter of Nt goes to zero as t goes to infinity;

- the mean curvature ht of Nt is bounded below: ht ≥ h0 > 0.

Here the mean curvature is defined as the negative logarithmic derivative

of the volume of Nt, thus the second hypothesis in the definition above implies

that (M, g) has finite volume. The definition of cuspidal metric clearly abstracts

some of the nice properties at “infinity” of complete finite volume metrics with

pinched negative sectional curvature, see [11].

We are now ready to briefly review the results of Biquard [24]. The main

problem with Seiberg-Witten theory on noncompact manifold is that the anal-

ysis becomes much harder. The idea of Biquard to solve the SW system of

nonlinear equations is very elegant and geometric in nature. Let us consider a

finite volume 4-manifold M which admits a “natural” compactification M as

smooth manifold or orbifold. Assume moreover that M fits in the known classes

of 4-manifolds (orbifolds) with nontrivial SW invariant [15]. We can then al-

ways solve the SW equations on M and try to produce an irreducible solution
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on M as limit of solutions on M . From the metric point of view, starting with

(M, g) where g is assumed to be of finite volume and with a “nice” behavior

at infinity, e.g. cuspidal, one has to construct a sequence (M, gj) of metric

compactifications that approximate (M, g) as j goes to infinity.

Let us describe in a more detailed way this approach when M is a finite

volume complex hyperbolic surface. It is known [24] that this manifold can

always be toroidally compactified as a Kähler orbifold. When the compactifica-

tion M is smooth we have a pair (M,Σ), where the compactification divisor Σ

is composed of smooth disjoint elliptic curves. It can be shown that, by even-

tually passing to a finite regular cover, the toroidal compactification of a finite

volume complex-hyperbolic surface is a smooth minimal surface of general type,

see Theorem A. Seiberg-Witten theory on minimal surfaces of general type and

their blow-ups is well understood. In fact, the underlying smooth manifold of a

surface of general type always admits Spinc structures with nontrivial SW in-

variant [15]. Furthermore, we have an explicit classification of all finitely many

Spinc structures with nontrivial invariant, see [17].

We can now state the following existence theorem which can be extracted

from the work of Biquard [24].

Theorem 8 (Biquard) Let M be a finite volume complex hyperbolic surface

such that its toroidal compactification (M,Σ) is a smooth minimal surface of

general type. Let M
′

be obtained from M by blowing up k points. Fix a

Spinc structure on M]kCP 2 with nontrivial SW invariant and determinant

line bundle L. Let g be a smooth cuspidal Einstein metric on M
′
, and let

{gj} be the sequence of metrics on M]kCP 2 that approximate g. Let {(Aj , gj)}

be the sequence of solutions of the SW equations with perturbations {F+
Bj
} on
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{(M]kCP 2, gj)}. Then, up to gauge transformations, the solutions {(Aj , ψj)}

converge, in the C∞ topology on compact sets, to a solution (A,ψ) of the un-

perturbed SW equations on (M
′
, g) such that

- A=C+a where C is a fixed smooth connection on L⊗O(−Σ), d∗a = 0 and

a ∈ L2
1Ω1

g(M
′
);

- ψ ∈ L2
1(M

′
, g) and there exists K > 0 such that supx∈M ′ |ψ(x)| ≤ K.

For the explicit construction of the metrics {gj}, the perturbations {F+
Bj
}

and the proof, we refer to the original paper of Biquard [24].

A few final remarks. We decided to state the main analytical theorem of

[24] as above to avoid several technical difficulties. In fact, when the toroidal

compactification is not smooth, one has to deal with the SW equations on

orbifolds where for example one has to use index theory extended to this wider

context [24]. Furthermore, even in the case when the compactification is smooth,

some extra care is required if we are not working on surfaces of general type.

Note that smooth toroidal compactifications of Kodaira dimension zero do exist

[48].

Finally, the restriction in Theorem 8 on the toroidal compactification to be

minimal of general type is not restrictive. In fact, as mentioned above one can

show that, up to a finite regular cover, any complex-hyperbolic surface satisfies

this requirement. This geometric fact can then be applied to somewhat simplify

the proof of the rigidity result for cuspidal Einstein metrics on finite volume

complex-hyperbolic surfaces, proved by Biquard in [24].
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3.3 The obstruction

Recall from Chapter 1.1 that given a orientable noncompact manifold (M, g)

we have, when the differential d is restricted to an appropriate dense subset, a

Hilbert complex

... −→ L2Ωk−1
g (M) −→ L2Ωkg(M) −→ L2Ωk+1

g (M) −→ ...

where the inner products on the exterior bundles are induced by g. Define the

maximal domain of d, at the k-th level, to be

Domk(d) = {α ∈ L2Ωkg(M), dα ∈ L2Ωk+1
g (M)}

where dα ∈ L2Ωk+1
g (M) has to be intended in the distributional sense. The

(reduced) L2-cohomology groups are then defined to be

Hk
2 (M) = Zkg (M)/dDomk−1(d),

where

Zk2 (M) = {α ∈ L2Ωkg(M), dα = 0}.

On (M, g) there is a Hodge-Kodaira decomposition

L2Ωkg(M) = Hkg(M)⊕ dC∞c Ωk−1 ⊕ d∗C∞c Ωk+1,

where

Hkg(M) = {α ∈ L2Ωkg(M), dα = 0, d∗α = 0}.

Moreover, if we assume (M, g) to be complete the maximal and minimal domain

of d coincide. In other words

dDomk−1(d) = dC∞c Ωk−1,
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which implies

Hk
2 (M) = Hkg(M).

Here the completeness assumption is crucially used to show that given α ∈

L2Ωkg(M) with dα ∈ L2Ωk+1
g (M), we can always generate a sequence {αn} ∈

C∞c Ωk(M) such that ‖α− αn‖L2 + ‖dα− dαn‖L2 → 0.

Summarizing, if the manifold is complete, the harmonic L2-forms compute

the reduced L2-cohomology. Moreover, in this case the L2 harmonic forms can

be characterized as follows

Hkg(M) = {α ∈ L2Ωk2(M), (dd∗ + d∗d)α = 0}.

Finally, the orientability of M gives a duality isomorphism via the Hodge ∗

operator

Hkg(M) ' Hn−kg (M).

If the manifold M has dimension 4n it then makes sense to talk about L2

selfdual and anti-selfdual forms on L2Ω2n
g (M). If H2n

g (M) is finite dimensional,

the concept of L2-signature is well defined.

Let (M, g) be a complete finite-volume 4-manifold. Let L be a complex line

bundle on M . By extending the Chern-Weil theory for compact manifolds, we

can define the L2-Chern class of L. More precisely, given a connection A on L

such that FA ∈ L2Ω2
g(M), we may define

c1(L) =
i

2π
[FA]L2

where with FA we indicate the curvature of the given connection. It is an

interesting corollary of the L2 cohomology theory that, on complete manifolds,
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such an L2 cohomology element is connection independent as long as we allow

connections that differ by a 1-form in the maximal domain of the d operator.

More precisely, let A
′

be a connection on L such that A
′

= A + α with α ∈

L2
1Ω1

g(M). We then have FA′ = FA + dα and therefore by the Hodge-Kodaira

decomposition we conclude that i
2π [FA]L2 = i

2π [FA′ ]L2 .

The associated L2 Chern number c21(L) is also well defined. In fact, α ∈

Dom1(d) and then we can find a sequence {αn} ∈ C∞c Ωk(M) such that ‖α −

αn‖L2 + ‖dα− dαn‖L2 → 0. This implies that∫
M

FA′ ∧ FA′dµg = lim
n→∞

∫
M

(FA + dαn) ∧ (FA + dαn)dµg

=

∫
M

FA ∧ FAdµg.

The following lemma is an easy consequence of the Hodge-Kodaira decom-

position.

Lemma 3.3.1 Given L and A as above, we have∫
M

|F+
A |

2dµg ≥ 4π2(c+1 (L))2

where c+1 (L) is the selfdual part of the g-harmonic L2 representative of [c1(L)].

We have∫
M

|F+
A |

2dµg = 2π2

∫
M

c1(L) ∧ c1(L)dµg +
1

2

∫
M

|FA|2dµg

= 2π2c21(L) +
1

2

∫
M

|FA|2dµg.

By Hodge-Kodaira decomposition, given any L2 cohomology class, we have

a unique harmonic representative that minimizes the L2 norm. Thus, given

FA ∈ L2Ω2
g(M), let us denote by ϕ its harmonic representative. We then have

1

2

∫
M

|FA|2dµg ≥
1

2

∫
M

|ϕ|2dµg
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which implies

∫
M

|F+
A |

2dµg ≥ 2π2c1(L)2 +
1

2

∫
M

|ϕ|2dµg

=

∫
M

|ϕ+|2dµg = 4π2(c+1 (L))2.

We can now formulate the L2 analogue of the scalar curvature estimate

discovered in [26] for compact manifolds.

Theorem 3.3.2 Let (M4, g) be a finite volume cuspidal manifold. Let (A,ψ) ∈

L2
1(M, g) be an irreducible solution of the SW equations associated to a Spinc

structure c with determinant line bundle L. Then

∫
M

s2
gdµg ≥ 32π2(c+1 (L))2

with equality if and only if g has constant negative scalar curvature, and is

Kähler with respect to a complex structure compatible with c.

By the twisted Lichnerowicz formula [6], we know that

0 =

∫
M

Re(∇∗A∇Aψ,ψ) + (
s

4
ψ,ψ) +

1

4
|ψ|4dµg. (3.1)

Recall that the spinor ψ is in L2
1. Since (M, g) is complete we can generate a

sequence ψn ∈ C∞c such that ‖ψ−ψn‖L2 + ‖∇Aψ−∇Aψn‖L2 → 0. As a result

we can integrate by parts in (3.1) to obtain

0 =

∫
M

|∇Aψ|2 + s|ψ|2 + |ψ|4dµg

so that
∫
M

(−s)|ψ|2dµg ≥
∫
M
|ψ|4dµg, with equality if and only if ψ is parallel.

By the Schwartz inequality we have

(

∫
M

s2dµg)
1
2 (

∫
M

|ψ|4dµg)
1
2 ≥

∫
M

(−s)|ψ|2dµg,
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and then

∫
M

s2dµg ≥
∫
M

|ψ|4dµg,

with equality if and only if ψ is parallel and s is constant. But now |F+
A |2 =

1
8 |ψ|

4, which implies

∫
M

s2dµg ≥ 8

∫
M

|F+
A |

2dµg.

Therefore we have

∫
M

s2dµg ≥ 32π2(c+1 (L))2,

with equality if and only if ψ is parallel and sg is a negative constant. Under the

equality assumption, the non zero constant length self dual 2-form F+
A can now

be used to produce a g-compatible almost complex structure J . Since ∇Aψ = 0

we have that ∇F+
A = 0. Thus, the almost complex structure J is integrable and

g is Kähler. Finally, c is the Spinc determined by J .

The following theorem gives an obstruction to the existence of cuspidal Ein-

stein metrics on blow-ups of finite volume complex hyperbolic surfaces. The

strategy of the proof follows [27]. Nevertheless, in the finite volume setting one

has to employ the results of [24], see theorem 8.

Theorem C Let M be a finite volume complex hyperbolic surface such that its

toroidal compactification (M,Σ) is a smooth minimal surface of general type.

Let M
′

= M#kCP 2 be obtained from M by blowing up k > 0 points. If

k ≥ 2

3
(c21(M)− Σ2),

then M
′

does not admit cuspidal Einstein metrics.
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Let {Ei}ki=1 denote the exceptional divisors in M
′
. By a result of Morgan

and Friedman [17], we know that the manifold M]kCP 2 admits 2k different

Spinc structures with determinant line bundles

L = K−1

M
± E1 ± ...± Ek,

for which the SW equations have irreducible solutions for each metric. Since

(c1(L)+)2 = (c1(M)+ ± E+
1 ± ...± E

+
k )2

= (c1(M)+)2 + 2
∑
i

c1(M)+ · (±E+
i ) + (

∑
i

±E+
i )2

we can chose a Spinc structure whose determinant line bundle satisfies

(c1(L)+)2 ≥ (c+1 (M))2 ≥ c21(M).

We can now apply Biquard’s construction [24] for any of the above Spinc struc-

tures and with respect to the cuspidal Einstein metric g on M
′
. We then

construct 2k irreducible solutions (A,ψ) ∈ L2
1(M

′
, g), where A = C + a with C

a fixed smooth connection on L⊗O(−Σ) and a ∈ L2
1Ω1

g(M
′
). By choosing the

Spinc structure as above and using theorem 3.3.2 we compute

1

32π2

∫
M ′

s2dµg ≥ (c1(L⊗O(−Σ))+)2

≥ c21(M)− Σ2

where the last inequality holds by the adjunction formula. We then obtain

1

32π2

∫
M ′

s2dµg ≥ c21(M)− Σ2

= 2χ(M) + 3σ(M)− Σ2.

Following [24], when the toroidal compactification is smooth, we have the finite

volume analogue of the 4-dimensional Gauss-Bonnet and Hirzebruch formulas.
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More precisely, given M
′

equipped with a cuspidal metric g one has

χ(M
′
, g) = χ(M) + k

σ(M
′
, g) = σ(M)− 1

3
Σ2 − k.

where χ(M
′
, g) and σ(M

′
, g) are defined by the usual curvature integrals. Thus,

if we assume g to be Einstein

c21(M)− Σ2 − k = 2χ(M
′
) + 3σ(M

′
)

=
1

4π2

∫
M ′

2|W+|2 +
s2

24
dµg

≥ 1

96π2

∫
M ′

s2dµg

≥ 1

3
(c21(M)− Σ2)

so that

2

3
(c21(M)− Σ2) ≥ k.

In other words if

k >
2

3
(c21(M)− Σ2),

we cannot have a cuspidal Einstein metric on M]kCP 2. The equality case can

also be included and the proof goes as in the compact case. For further details,

see [29]. This completes the proof.

It is natural to ask what is the sign of the contribution coming from the

self-intersection of the compactification divisor Σ.

Thus, let M be a surface of general type as above and let Σi be a smooth

elliptic divisor contained in Σ. The canonical line bundle KM of a minimal

surface of general type is numerically effective and has positive self intersection

38



[10]. By the Hodge index theorem [10], if a divisor E is such that KM · E = 0

then E is a smooth rational curve with E · E = −2. Since KM · Σi > 0 and

pa(Σi) = 1 +
KM · Σi + Σi · Σi

2
= 1

we conclude that Σi · Σi < 0 for any irreducible components of the compactifi-

cation divisor Σ.

3.4 Final remarks

In [27], LeBrun showed the following theorem:

Theorem 9 (LeBrun) Let X be a minimal surface of general type, and let

M = X#kCP 2 be its blow-up at k > 0 points. If k ≥ 2
3c

2
1(X), then M does not

admit Einstein metrics.

In light of this result and several subsequent developments, it is conjectured

[29] that non-minimal surfaces of general type do not admit Einstein metrics.

Unfortunately, all of the obstructions known at present, depend on the Chern

number c21 of the associated minimal model. Therefore, these results are not

strong enough to provide an obstruction that is uniform in the number of blow-

ups. In fact, one can simply consider a sequence of Fermat hypersurfaces Vn

in CP 3. Recall that such hypersurfaces are defined as the zero locus of the

homogeneous polynomials zn0 + zn1 + zn2 + zn3 in CP 3. Moreover, for n ≥ 5

they are of general type since they have ample canonical line bundle. For these

surfaces one has c21(Vn) = n(4− n)2, which diverges as n goes to infinity.

In the noncompact case it is somewhat more complicated to construct ex-

plicit examples. Nevertheless, one can use the constructions of Holzapfel [47]
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and Hirzebruch [48]. For example, Hirzebruch [48] constructed a sequence of ball

quotients Xn (n ≥ 2) which have smooth toroidal compactifications (Xn,Σn)

of general type, where Σn is the disjoint union of 4n4 smooth elliptic divisors

with self intersection −n, and where the Chern numbers of Xn are given by

c2(Xn) = n7,

c21(Xn) = 3n7 − 4n5.

By Theorem C, it follows that Xn]kCP 2 does not admit cuspidal Einstein met-

rics if k ≥ 2n7. Similar examples can also be constructed from the ball-quotients

considered by Holzapfel [47]. Details are left to the interested reader.

In conclusion, as in the compact case, Theorem C is far from providing an

obstruction that is uniform in the number of blow-ups.
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Chapter 4

Seiberg-Witen Equations on

finite volume manifolds

with cusps

4.1 Introduction

In this chapter we study the Seiberg-Witten equations on product manifolds

M = Σ× Σg, where Σ is a finite volume hyperbolic Riemann surface and Σg a

compact Riemann surface of genus g.

The main problem with Seiberg-Witten theory on noncompact manifold is

the lack of a satisfactory existence theory. Following Biquard [24], we solve

the SW equations on M by working on the compactification M . Here the

compactification M is the obvious one coming from the compactification of

Σ. More precisely, we produce an irreducible solution of the unperturbed SW

41



equations on M as limit of solutions of the perturbed SW equations on M .

From the metric point of view, starting with (M, g) where g is assumed to be

of finite volume and with a “nice” behavior at infinity, one has to construct

a sequence (M, gj) of metric compactifications that approximate (M, g) as j

goes to infinity. The irreducible solution of the SW equations on (M, g) is then

constructed by a bootstrap argument with the solutions of the SW equations

on (M, gj) with suitably constructed perturbations.

When M = Σ × CP 1 this construction was carried out by Yann Rollin in

[40].

An outline of the chapter follows. Section 4.2 describes explicitly the metric

compactifications (M, gj). These metrics are completely analogous to the one

used by Rollin and Biquard in [40] and [24]. Furthermore, few results concerning

the scalar curvatures and volumes of the spaces (M, gj) are given.

In Section 4.3 we compute the L2 cohomology of (Σ × Σg, g) when g is a

metric C0 asymptotic to a product metric g−1 + g2, where g−1 is a hyperbolic

metric on Σ and g2 any metric on Σg.

Sections 4.4 and 4.5 contain the proofs of the uniform Poincaré inequalities

on functions and 1-forms needed for the bootstrap argument. Moreover the

convergence, as j goes to infinity, of the harmonic forms on (M, gj) is studied

in detail. These results are then combined with the results given in Section 4.3

to provide an explicit isomorphism between the DeRham cohomology of M and

the L2 cohomology of (M, g).

In Section 4.6 the bootstrap argument is carefully worked out. The existence

result so obtained is summarized in Theorem D.

In Section 4.7, Theorem D is applied to derive several geometrical conse-
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quences. First, we give the sharp minimization of the Riemannian functional∫
s2
gdµg on M . Second, an obstruction to the existence of Einstein metrics

on blow-ups of M is given. These results are summarized in Theorem E and

Theorem F. These theorems are the finite volume generalization of some cele-

brated and well-known results of Claude LeBrun for closed four manifolds, see

for example [29] and the bibliography therein.

4.2 The Metric Compactifications

Let Σ be a finite volume hyperbolic Riemann surface and denote with Σg

a compact Riemann surface of genus g. In this chapter, we study the Seiberg-

Witten equations on manifolds that topologically are products of the form Σ×

Σg. Recall that Σ is conformally equivalent to a compact Riemann surface Σ

with a finite number of points removed, say {p1, ..., pl}, satisfying the condition

that 2g(Σ) − 2 + l > 0. Conversely, given a compact Riemann surface Σ and

points {p1, ..., pl} such that 2g(Σ) − 2 + l > 0, the open Riemann surface Σ =

Σ\{p1, ..., pl} admits a finite volume real hyperbolic metric. In summary, a finite

volume hyperbolic Riemann surface (Σ, g−1) is a manifolds with finitely many

cusps corresponding to the marked points of the associated compactification

Σ. Our hyperbolic cusps are modeled on R+ × S1 with the metric g−1 =

dt2 + e−2tdθ2. We can now fix a metric g2 on the compact Riemann surface

Σg and consider the Riemannian product (Σ×Σg, g−1 + g2). For simplicity we

define M = Σ×Σg. It is then clear that M is a complete finite volume manifold

with cusp ends modeled on R+×S1×Σg with the metric gt = dt2 +e−2tdθ2 +g2.

Definition 4.2.1 A metric g̃ on M of the form g−1+g2 will be called a standard
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model.

We now want to study the natural compactification of M . It is clear that

each of the cusp end of M can be closed topologically as a manifold by adding

a compact genus g Riemann surface. Let us denote by N the disjoint union of

these embedded curves. Denoted with M the compactification of M , we then

have M\N 'M . If we know consider Σ and Σg as complex manifolds, it is clear

that M can be compactified as a complex manifold by adding a finite number

of genus g divisors with trivial self intersection. According to the genus of Σ,

we have the following classification for M as a complex manifold:

- if g(Σ) = 0 =⇒ M is rational ruled with c21(M) = 4χ(Σg);

- if g(Σ) = 1 =⇒ M is elliptic with c21(M) = 0;

- if g(Σ) ≥ 2 =⇒ M is of general type with c21(M) = 2χ(Σ) · χ(Σg).

Let us now consider a standard model g̃ on M . We want to construct

a sequence of metrics {g̃j} on M that approximate (M, g̃). More precisely,

choose coordinates on the cusp ends of M such that the metric g̃ is given by

gt = dt2 + e−2tdθ2 + g2 for t > 0. Define then

g̃j = dt2 + ϕ2
j (t)dθ

2 + g2

where ϕj(t) is a smooth warping function such that:

1. ϕj(t) = e−t for t ∈ [0, j + 1];

2. ϕj(t) = Tj − t for t ∈ [j + 1 + ε, Tj ];

where ε is a fixed number that can be chosen to be small, and Tj is an appropriate

number bigger than j + 1 + ε. Because of the second condition above, g̃j is a
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smooth metric on M for any j. Moreover the metrics {g̃j} are by construction

isometric to g̃ on bigger and bigger compact sets of M . For later convenience

we want to prescribe in more details the behavior of ϕj(t) in the interval t ∈

[j + 1, j + 1 + ε]. We require that ∂2
t ϕj(t) decreases from e−(j+1) to 0 in the

interval [j + 1, j + 1 + δj ] where δj is a positive number less than ε. Then for

t ∈ [j + 1 + δj , ε], we make ∂2
t ϕj very negative in order to decrease ∂tϕj to

−1 and smoothly glue ϕj(t) to the function Tj − t. Moreover, by eventually

letting the parameters δj go to zero as j goes to infinity, we require
|∂tϕj |
ϕj

to

be increasing in the interval [j + 1, j + 1 + δj ]. Finally, we require
|∂tϕj |
ϕj

to be

bounded from above uniformly in j.

In summary, given a standard model g̃ for M we can always generate a

sequence of metrics {g̃j} on M approximating (M, g̃). A similar argument shows

that this is indeed the case for any metric g on M , that is asymptotic to a

standard model. For later convenience, we restrict ourself to metrics that are

asymptotic to a standard model at least in the C2 topology. More precisely, if

g is such a metric we set

gj = (1− χj)g + χj g̃j

where χj(t) is a sequence of smooth increasing functions defined on the cusps

of M such that χj(t) = 0 if t ≤ j and χj(t) = 1 if t ≥ j + 1.

Proposition 4.2.2 The scalar curvature of the metrics {gj} can be expressed

as

sgj = sbgj − 2χj
∂2
t ϕj
ϕj

where sbgj is a smooth function on M that can be bounded uniformly in j.
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For t ≤ j, the metrics gj and g are isometric and therefore sgj = sg. If

t ∈ [j, j + 1], the metric gj is close in the C2 topology to g and then sgj ≈ sg.

Finally if t ≥ j + 1, the scalar curvature function is explicitly given by

sgj = sg̃j = sg2 − 2
∂2
t ϕj
ϕj

.

We conclude this section with a proposition regarding the volumes of the

Riemannian manifolds (M, gj).

Proposition 4.2.3 There exists a constant K > 0 such that

V olgj (M) ≤ K

for any j.

4.3 L2 cohomology of products

Let (Σ, g−1) be a finite volume hyperbolic Riemann surface. Furthermore,

let (Σg, g2) be a genus g compact Riemann surface equipped with a fixed metric.

Let us consider (Σ × Σg, g−1 + g2), where by g−1 + g2 we denote the product

metric. We then want compute the L2 cohomology of (Σ × Σg, g) when g is a

metric “asymptotic” to the product metric g−1 + g2. Following the definition

of section 4.2 a metric of the from g−1 + g2 is referred as standard metric or

model. For simplicity let us define M := Σ×Σg. Let us start by computing the

L2 cohomology of M when equipped with a standard metric.

Regarding the L2 cohomology of (M, g−1 + g2), an L2-Künneth formula

argument [50] reduces the problem to the computation of the L2 cohomology of

a hyperbolic Riemann surface of finite topological type. This computation can

be achieved by using the following classical theorem.

46



Theorem 10 (Huber) Let (Σ, g) be a complete finite volume Riemann surface

with bounded curvature. Then Σ is conformally equivalent to a compact Riemann

surface Σ with a finite number of points removed.

See [35].

Corollary 4.3.1 Let (Σ, g−1) be a complete finite volume hyperbolic Riemann

surface. Then we have the isomorphism

H∗2 (Σ, g−1) ' H∗(Σ).

We clearly just have to prove that H1
2 (Σ) ' H1(Σ). Since Σ is com-

plete, the space of L2 harmonic forms computes the L2 cohomology. Let

(Σ\{p1, ..., pl}, g) as in theorem 10, where g = e2ug. Since g and g−1 de-

fine the same global L2 inner product on 1-forms and d∗g = e−2ud∗g−1 , we

have that H1
g(Σ\{p1, ..., pl}) ' H1

g−1
(Σ). But now one can show that any har-

monic field in H1
g(Σ\{p1, ..., pl}) can be smoothly extended across the cusps

points. For the proof of this simple analytical fact see [44]. We therefore have

H1
g(Σ\{p1, ..., pl}) ' H1

g(Σ). The corollary is now a consequence of the classical

Hodge theorem for closed manifolds.

We can now formulate the main result of this section.

Proposition 4.3.2 In the notation above, consider (M, g) where g is a Rieman-

nian metric C0 asymptotic a standard model. Then we have the isomorphism

H∗2 (M) ' H∗(M ;R).

The L2 cohomology is a quasi-isometric invariant.
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4.4 Poincaré inequalities and convergence of 1-

forms

We need to show that, given the sequence of metrics {gj}, we can find a

uniform Poincaré inequality on functions. We have the following lemma.

Lemma 4.4.1 Consider the metric g = dt2 + gt on the product [0,∞) × N ,

such that the mean curvature of the cross section N is uniformly bounded from

below by a positive constant h0. Then, for any function f we have

∫
|∂tf |2dµg ≥ h2

0

∫
|f |2dµg + h0

∫
t=T

|f |2dµgt − h0

∫
t=0

|f |2dµgt .

See Lemma 4.1 in [24].

Using this lemma, we can now derive the desired uniform Poincaré inequality.

Proposition 4.4.2 There exists a positive constant c, independent of j, such

that

∫
M

|df |2dµgj ≥ c
∫
M

|f |2dµgj

for any function f on M such that
∫
M
fdµgj = 0.

Assume the existence of a sequence of functions {fj} such that
∫
M
fjdµgj =

0, ‖fj‖L2(gj) = 1, and for which ‖dfj‖L2(gj) → 0. Fixed a compact set K,

the sequence {fj} is bounded in L2
1(K, gj). We can then extract a weak limit

fj ⇀ f where f ∈ L2
1(K, g). By the compactness of the embedding L2

1(K, g) ↪→

L2(K, g), we have fj → f in L2(K, g). Since ‖df‖L2 = 0, f is constant. Given

ε > 0, we can always chose K big enough such that V olgj (M\K) ≤ ε. Since

∫
K

fdµg = lim
j→∞

∫
K

fjdµgj
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and
∫
K
fjdµgj = −

∫
M\K fjdµgj , we conclude that

∣∣∣ ∫
M\K

fjdµgj

∣∣∣ ≤ V olgj (M\K)
1
2 ‖fj‖L2

gj
= V olgj (M\K)

1
2 .

In other words
∫
K
fdµg can be made arbitrarily small and then f has to be

equal to zero. Fix a big compact set K and a smooth cut off function χ such

that χ = 1 on K and equal to zero outside an open set containing K. We then

compute

1

2

∫
M

|χfj + (1− χ)fj |2dµgj ≤
∫
M

|χfj |2dµgj +

∫
M

|(1− χ)fj |2dµgj

but by lemma 4.4.1 we know that

∫
M

|(1− χ)fj |2dµgj ≤ h−2
0

∫
M

|∂t(1− χ)fj |2dµgj ≤ h−2
0

∫
M

|d(1− χ)fj |2dµgj

and therefore

1

2

∫
M

|χfj + (1− χ)fj |2dµgj ≤
∫
M

|χfj |2dµgj + 2h−2
0

∫
M

|dχfj |2dµgj

+ 2h−2
0

∫
M

|dfj |2dµgj .

Since the elements in the right hand side of the inequality above can be made

arbitrarily small by taking K and j big enough, we conclude that ‖fj‖L2(gj) → 0

which is a contradiction.

The uniform Poincaré inequality proved in proposition 4.4.2, can now be

used to derive a Poincaré inequality for the limiting open manifold (M, g). This

result will not be used anywhere in this thesis, we thus omit the proof.

Corollary 4.4.3 There exists a positive constant c such that

∫
M

|df |2dµg ≥ c
∫
M

|f |2dµg

for any function f such that
∫
M
fdµg = 0.

49



We now have to derive a uniform Poincaré inequality on 1-forms for the

sequence of metrics {gj}. On the products [0, Tj)×S1×Σg consider the metrics

gj = dt2 + ϕj(t)
2dθ2 + g2,

where g2 is a fixed metric on Σg and ϕj(t) is a smooth warping function as in

section 4.2 . For simplicity we denote by N the product S1 × Σg. Thus, given

a 1-form α we want to compute ∇α. First, let us write

∇α = dt⊗∇∂tα+∇|Nα

where ∇|Nα is an element in T ∗N ⊗Ω1([0, T )×N). Write α = fdt+ α1 where

α1 is such that i∂tα1 = 0. Thus

∇|Nα = dNf ⊗ dt+ f∇|Ndt+∇|Nα1.

Given a metric of the form dt2 + gt and denoted by II its second fundamental

form, we have II = − 1
2∂tg. As a result

IIgj = −∂tϕj
ϕj

(ϕjdθ)
2.

Next we compute that

∇X∂t =
∂tϕj
ϕj

X, ∇Y ∂t = 0,

if X and Y are respectively tangent to S1 and Σg. In other words ∇|Ndt has

components in the direction of the S1 factor only. Thus, given X1 and X2

tangent to S1, we compute

(∇X1dt)X2 = X1dt(X2)− dt(∇X1X2) = −dt(∇X1X2)

= −gj(∇X1X2, ∂t) = gj(X2,∇X1∂t)

=
∂tϕj
ϕj

(ϕjdθ)
2(X1, X2) = −IIgj (X1, X2),
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and then

f∇|Ndt = −fII(·, ·).

It remains to study the term ∇|Nα1. The component in the direction of N is

clearly ∇Nα1, where with ∇N we indicate the Levi-Civita connection induced

by gj on N . Let us compute the component of ∇|Nα1 in the direction of dt. Let

X be tangent to N , since gj(∇Xα1, dt) = −gj(α1,∇Xdt), we can assume X to

be tangent to the S1 factor. We then have

gj(∇Xα1, dt) = −∂tϕj
ϕj

g(α1, X) = II(α1, X)

which implies

∇|Nα1 = ∇Nα1 + II(α1, ·)⊗ dt

where here α1 has to be considered as a vector. In summary

∇α = dt⊗∇∂tα+ dNf ⊗ dt− fII(·, ·) + II(α1, ·)⊗ dt+∇Nα1.

Next we can decompose α1 as follows

α1 = f1ϕjdθ + α2

where ivθα2 = 0. Since N is a product manifold we compute

∇Nα1 = dNf1 ⊗ ϕjdθ + f1∇N (ϕjdθ) +∇Nα2

= dΣgf1 ⊗ ϕjdθ + ϕ−1
j ∂θf1(ϕjdθ)

2 +∇S
1

α2 +∇Σgα2.

Recall that given a 1-form α, we have the identity

(LXα)(Y ) = Xα(Y )− α[X,Y ] = (∇Xα)Y + α(∇XY )

51



thus

∇S
1

α2 = ϕjdθ ⊗ Lϕ−1
j ∂θ

α2

which implies the identity

∇Nα2 = dΣgf1 ⊗ ϕjdθ + ϕ−1
j ∂θf1ϕjdθ ⊗ ϕjdθ +∇Σgα2 + ϕjdθ ⊗ Lϕ−1

j ∂θ
α2.

In summary we obtain

∇α = dt⊗∇∂tα+ {ϕ−1
j ∂θf −

∂tϕj
ϕj

f1}ϕjdθ ⊗ dt+ {ϕ−1
j ∂θf1 +

∂tϕj
ϕj

f}ϕjdθ ⊗ ϕjdθ

+ dΣgf ⊗ dt+ dΣgf1 ⊗ ϕjdθ + ϕjdθ ⊗ Lϕ−1
j ∂θ

α2 +∇Σgα2.

The Ricci curvature of a doubly warped product can be computed explicitly

[12], in our case we obtain

Ricgj (α, α) = RicΣg (α2, α2)− ∂2
t ϕj
ϕj
{|f |2 + |f1|2}

which implies∫
N

|∇α|2 + Ricgj (α, α)dµgt ≥
∫
N

|∇∂tα|2 +
{∂tϕ2

j

ϕ2
j

− ∂2
t ϕj
ϕj

}
{|f |2 + |f1|2}dµgt

+

∫
N

|ϕ−1
j ∂θf |2 + |ϕ−1

j ∂θf1|2dµgt

− 2

∫
N

(ϕ−1
j ∂θf,

∂tϕj
ϕj

f1)dµgt

+ 2

∫
N

(ϕ−1
j ∂θf1,

∂tϕj
ϕj

f)dµgt .

If now t ≤ j+1, by construction we know that ϕj(t) = e−t. Under this assump-

tion want to show that the mixed terms (ϕ−1
j ∂θf, f1)L2(Nt) and (ϕ−1

j ∂θf1, f)L2(Nt)

are controlled, for big t big enough, by the terms ‖ϕ−1
j ∂θf‖2L2(Nt)

and ‖ϕ−1
j ∂θf1‖2L2(Nt)

.

More precisely, integrating by parts with respect to θ, we can always assume

that f and f1 are such that∫
S1

fdθ =

∫
S1

f1dθ = 0.
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The Wirtinger (Poincaré) inequality can be used to obtain

∫
N

|∂θf |2dµgt ≥
∫
N

|f |2dµgt ,
∫
N

|∂θf1|2dµgt ≥
∫
N

|f1|2dµgt .

By the Cauchy inequality

∫
N

|(ϕ−1
j ∂θf, f1)|dµgt ≤

1

ϕj
‖f1‖L2‖∂θf‖L2 ,

∫
N

|(ϕ−1
j ∂θf1, f)|dµgt ≤

1

ϕj
‖f‖L2‖∂θf1‖L2 .

and then

1

ϕj
{‖f1‖L2‖∂θf‖L2 + ‖f‖L2‖∂θf1‖} ≤

1

ϕj
{‖∂θf‖2L2 + ‖∂θf1‖2L2}.

Since ϕj(t)→ 0 we have that for t→∞

∫
N

|ϕ−1
j ∂θf |2dµgt +

∫
N

|ϕ−1
j ∂θf1|2dµgt ≥ 2

∫
N

(ϕ−1
j ∂θf, f1)− (ϕ−1

j ∂θf1, f)dµgt .

In conclusion there exists T > 0 such that

∫
N

|∇α|2 + Ricgj (α, α)dµgt ≥
∫
N

|∇∂tα|2dµgt . (4.1)

for any t ∈ [T, j + 1].

Let us study the range t ∈ [j + 1, j + 1 + δj ]. By construction the term

∂tϕ
2
j

ϕ2
j
− ∂2

tϕj
ϕj

is nonnegative. We then have to study the mixed terms

(ϕ−1
j ∂θf,

∂tϕj
ϕj

f1)L2(Nt), (ϕ−1
j ∂θf1,

∂tϕj
ϕj

f)L2(Nt).

We have the estimates

∫
N

|(ϕ−1
j ∂θf,

∂tϕj
ϕj

f1)|dµgt =
|∂tϕj |
ϕ2
j

∫
N

|(∂θf, f1)|dµgt ≤
|∂tϕj |
ϕ2
j

‖∂θf‖L2‖f1‖L2∫
N

|(ϕ−1
j ∂θf1,

∂tϕj
ϕj

f)|dµgt ≤
|∂tϕj |
ϕ2
j

‖∂θf1‖L2‖f‖L2 .

Moreover

|∂tϕj |
ϕ2
j

‖∂θf‖L2‖f1‖L2 ≤ |∂tϕj |
2ϕ2

j

{
‖f1‖2L2 + ‖∂θf‖2L2

}
≤ |∂tϕj |

2ϕ2
j

{
‖∂θf1‖2L2 + ‖∂θf‖2L2

}
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and similarly

|∂tϕj |
ϕ2
j

‖∂θf1‖L2‖f‖L2 ≤ |∂tϕj |
2ϕ2

j

{
‖∂θf1‖2L2 + ‖∂θf‖2L2

}
.

In conclusion

∫
N

|ϕ−1
j ∂θf |2 + |ϕ−1

j ∂θf1|2dµgt − 2

∫
N

(ϕ−1
j ∂θf,

∂tϕj
ϕj

f1)− (ϕ−1
j ∂θf1,

∂tϕj
ϕj

f)dµgt ≥

1

ϕ2
j

{
‖∂θf‖2L2 + ‖∂θf1‖2L2

}
− 2

∫
N

|(ϕ−1
j ∂θf,

∂tϕj
ϕj

f1)|+ |(ϕ−1
j ∂θf1,

∂tϕj
ϕj

f)|dµgt ≥

1

ϕ2
j

{
‖∂θf‖2L2 + ‖∂θf1‖2L2

}
− 2
|∂tϕj |
ϕ2
j

{
‖∂θf‖2L2 + ‖∂θf1‖2L2

}
.

Since ϕj(t)→ 0 and
|∂tϕj |
ϕj

is bounded between two fixed positive real numbers

for any j, there exists a a number T > 0 such that

∫
N

|∇α|2 + Ricg(α, α)dµgt ≥
∫
N

|∇∂tα|2dµgt (4.2)

for any t ∈ [j + 1, j + 1 + δj ] ∩ [T,∞).

By construction, in the interval t ∈ [j+1+δj , j+1+ε] we have−∂2
t ϕj\ϕj ≥ 0,

since

∫
N

|∇α|2 + Ricgj (α, α)dµgt ≥ −
∂2
t ϕj
ϕj

{
‖f‖2L2 + ‖f1‖2L2

}
+

∫
N

|∇∂tα|2dµgt

we conclude that

∫
N

|∇α|2 + Ricgj (α, α)dµgt ≥
∫
N

|∇∂tα|2dµgt . (4.3)

It remains to study the interval t ∈ [j + 1 + ε, Tj ]. In this range −∂2
t ϕj = 0,

and then by the same argument above we conclude that

∫
N

|∇α|2 + Ricgj (α, α)dµgt ≥
∫
N

|∇∂tα|2dµgt . (4.4)

In summary combining 4.1 up to 4.4 we have the following lemma.
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Lemma 4.4.4 There exists T > 0 such that∫
N

|∇α|2 + Ricgj (α, α)dµgt ≥
∫
N

|∇∂tα|2dµgt

for any t ∈ [T, Tj).

We can now prove the desired uniform Poincaré inequality on 1-forms for

the metrics {gj}. First, observe that for [t1, t2] ⊂ [T, Tj ]∫
∂{[t1,t2]×N}

|α|2dµgj =

∫
[t1,t2]×N

∂t(|α|2dµgt)dt =

∫
[t1,t2]×N

∂t|α|2dµgtdt

+

∫
[t1,t2]×N

|α|2∂tdµgtdt

=

∫
[t1,t2]×N

∂t|α|2dµgj − 2

∫
[t1,t2]×N

h|α|2dµgj .

We then obtain∫
[t1,t2]×N

∂t|α|2dµgj ≥
∫
∂{[t1,t2]×N}

|α|2dµgj + 2h0

∫
[t1,t2]×N

|α|2dµgj .

where h0 is a uniform lower bound for the mean curvature. But now

∂t|α|2 = 2(α,∇∂tα) ≤ 2|α||∇∂tα| ≤ h0|α|2 +
1

h0
|∇∂tα|2

which then implies∫
[t1,t2]×N

|∇∂tα|2dµgj ≥ h0

∫
∂{[t1,t2]×N}

|α|2dµgj + h2
0

∫
[t1,t2]×N

|α|2dµgj . (4.5)

We summarize the discussion above into the following lemma.

Lemma 4.4.5 There exist positive numbers c > 0, T > 0 such that∫
[t1,t2]×N

|dα|2 + |d∗gjα|2dµgj ≥ c
∫

[t1,t2]×N
|α|2dµgj

for any [t1, t2] ⊂ [T, Tj) and α with support contained in [t1, t2]×N .

Combining lemma 4.4.4 and 4.5, the lemma follows from the well know

Bochner formula for 1-forms.

Let us study the convergence of harmonic 1-forms.
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Proposition 4.4.6 Let [a] ∈ H1
dR(M) and {αj} be the sequence of harmonic

representatives with respect the metrics {gj}. Then {αj} converges, with respect

to the C∞ topology on compact sets, to a harmonic 1-form α ∈ L2Ω1
g(M).

Let β be a closed smooth representative for [a] ∈ H1
dR(M). Given gj , by the

Hodge decomposition theorem, we can write αj = β+dfj with αj harmonic and

fj a C∞ function. Without loss of generality we can assume that
∫
M
fjdµj = 0.

Furthermore, we have

0 = d∗αj = d∗β + d∗dfj =⇒ ∆
gj
H fj = −d∗β.

By construction of the metrics {gj}, it is clear that ‖β‖L2(M,gj)
is bounded

independently of j. By Proposition 4.4.2 we have

c

∫
M

|fj |2dµgj ≤
∫
M

|dfj |2dµgj = (dfj , dfj)L2(gj)

= (fj , d
∗dfj) = −(d∗β, fj)

= −(β, dfj) ≤ ‖dfj‖L2(gj)‖β‖L2(gj)

and then

c

∫
M

|fj |2dµgj ≤ ‖dfj‖2L2(gj)
≤ ‖dfj‖L2(gj)‖β‖L2(gj) ≤ ‖β‖

2
L2(gj)

. (4.6)

Since ‖β‖L2(M,gj)
is uniformly bounded in j, the inequality 4.6 allows us to

conclude that the sequence of functions {fj} is uniformly bounded in L2
1(M, gj).

By using a standard diagonal argument we can extract a subsequence, that

for simplicity we still denote with {fj}, converging on compact sets of M to

a weak limit f ∈ L2
1(M, g). To show that f ∈ L2

1(M, g) one uses the lower

semicontinuity of the Hilbert space norm with respect to the weak convergence.

Indeed using 4.6 one obtain that

c‖f‖L2 ≤ ‖β‖L2 ‖df‖L2 ≤ ‖β‖L2 .
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Finally, we want to show∫
M

fdµg = 0, ∆g
Hf = −d∗β.

By the Cauchy inequality, given a compact set K, we have

0 ≤
∫
M\K

|f |dµg ≤ V olg(M \K)
1
2

{∫
M\K

|f |2dµg
} 1

2 ≤ V olg(M \K)
1
2 ‖f‖L2

therefore given ε > 0 we can always find a compact set Kε such that∫
M\Kε

|f |dµg ≤ ε. (4.7)

At the same time we can arrange Kε to satisfy, for j big enough, the following

sequence of inequalities ∫
M\Kε

|fj |dµgj ≤ ε. (4.8)

By the compactness of the embedding L2
1(K, g) ↪→ L2(K, g), we have that fj →

f strongly in L2(K, g). We therefore obtain that∫
K

fdµg = lim
j→∞

∫
K

fjdµj = − lim
j→∞

∫
M\K

fjdµgj

and

∣∣ ∫
M

fdµg
∣∣ ≤ ∣∣ ∫

K

fdµg
∣∣+
∣∣ ∫
M\K

fdµg
∣∣ ≤ ∣∣ lim

j→∞

∫
M\K

fjdµgj
∣∣+
∣∣ ∫
M\K

fdµg
∣∣

which combined with the estimates in 4.7 and 4.8 allows us to conclude that∫
M
fdµg = 0. A standard bootstrapping argument now shows that fj → f in

the C∞ topology on compact sets and therefore ∆g
Hf = −d∗β. In conclusion

{αj} converges to a L2 harmonic 1-form for (M, g).

It is now possible to refine Proposition 4.4.6 and analyze the convergence in

more details. Notice that β can be chosen as follows

β = βc + γ
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where βc is a smooth closed 1-form with support not intersecting the cusp points

{p1, ..., pl} and γ ∈ H1(Σg;R). The metric g is C2 asymptotic to a standard

model, as a result

lim
t→∞

d∗gγ = 0

since γ can be chosen to be harmonic with respect to the metric g2. Furthermore,

given ε > 0 we can find T big enough such that limj→∞ ‖d∗jγ‖L2
gj

(t≥T ) ≤ ε. In

other words we proved

Lemma 4.4.7 Given ε > 0, there exists T big enough such that

∫
t≥T
|d∗β|2dµg ≤ ε,

∫
t≥T
|d∗jβ|2dµgj ≤ ε.

We can now prove

Lemma 4.4.8 Given ε > 0, there exists T big enough such that

∫
t≥T
|α|2dµg ≤ ε,

∫
t≥T
|αj |2dµgj ≤ ε.

Recall that by construction αj = β + dfj , thus

∫
t≥T
|dfj |2dµgj =

∫
t≥T

dfj ∧ ∗dfj =

∫
t≥T

d(fj ∧ ∗dfj)−
∫
t≥T

fj ∧ d ∗ dfj

=

∫
t=T

fj ∧ ∗dfj −
∫
t≥T

(∗d ∗ dfj , fj)dµgj

=

∫
t=T

fj ∧ ∗dfj −
∫
t≥T

(d∗dfj , fj)dµgj .

But now

d∗jαj = d∗jβ + d∗jdfj = 0 =⇒ d∗jdfj = −d∗jβ,

thus

∫
t≥T
|dfj |2dµgj =

∫
t=T

fj ∧ ∗dfj +

∫
t≥T

(d∗β, fj)dµgj .
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By the Cauchy inequality

∫
t≥T

(d∗β, fj)dµgj ≤ ‖fj‖L2
gj
‖d∗jβ‖L2

gj
(t≥T ) (4.9)

and then this term can be made arbitrarily small. It remains to study the term∫
t=T

fj ∧ ∗dfj . Recall that fj → f in the C∞ topology on compact sets. Thus,

for a fixed T

∫
t=T

fj ∧ ∗dfj →
∫
t=T

f ∧ ∗df.

It remains to show that
∫
t=T

f ∧ ∗df can be made arbitrarily small by taking

T big enough. Define the function F (s) =
∫
t=s

f ∗ df , since f ∈ L2
1 we have

F (s) ∈ L1(R+) and then we can find a sequence {sk} → ∞ such that F (sk)→ 0.

Proposition 4.4.9 There exists c > 0 independent of j such that

∫
M

|dα|2 + |d∗gjα|2dµgj ≥ c
∫
M

|α|2dµgj

for any α ⊥ H1
gj .

Let us proceed by contradiction. Assume the existence of a sequence {αj} ∈

(H1
gj )
⊥ such that ‖αj‖L2(gj) = 1 and for which

∫
M

|dαj |2 + |d∗gjαj |2dµgj −→ 0

as j →∞. By eventually passing to a subsequence, a diagonal argument shows

that {αj} converges, with respect to the C∞ topology on compact sets, to a

1-form α ∈ L2Ω1
g(M). By construction α ∈ H1

g(M). On the other hand, Lemma

4.4.8 combined with the isomorphism H1
2 (M) ' H1(M) gives that α ∈ (H1

gj )
⊥.

We conclude that α = 0. Lemma 4.4.5 can now be easily applied to derive a

contradiction.
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4.5 Convergence of two-forms

In this section we have to study the convergence of 2-forms. The first result

is completely analogous to the case of 1-forms.

Proposition 4.5.1 Let [a] ∈ H2
dR(M) and {αj} be the sequence of harmonic

representatives with respect the sequence of metrics {gj}. Then {αj} converges,

with respect to the C∞ topology on compact sets, to a harmonic 2-forms α ∈

L2Ω2
g(M).

Given an element a ∈ H2
dR(M), take a smooth representative of the form

β = βc + γ where βc is a closed 2-form with support not intersecting the cusp

points and γ ∈ H2(Σg;R). Given gj , let αj be the harmonic representative of

the cohomology class determined by a. By the Hodge decomposition theorem

we can write αj = β + dσj with σj ∈ (H1
gj )
⊥ such that d∗jσj = 0. Thus

0 = d∗jβ + d∗jdσj =⇒ d∗dσj = −d∗jβ.

Taking the global L2 inner product of d∗dσj with σj we obtain the estimate

(d∗dσj , σj)L2(gj) = ‖dσj‖2L2 = −
∫
M

(σj , d
∗β)dµgj (4.10)

≤ ‖σj‖L2(gj)‖d
∗β‖L2(gj).

By Proposition 4.4.9, we conclude that

‖σj‖2L2(gj)
≤ c‖dσj‖2L2(gj)

. (4.11)

Combining 4.10 and 4.11 we then obtain

‖σj‖2L2(gj)
≤ c‖dσj‖2L2(gj)

≤ c‖σj‖L2(gj)‖d
∗jβ‖L2(gj).

Since ‖d∗jβ‖L2(gj) is bounded independently of j, we conclude that the same is

true for ‖σj‖L2(gj) and ‖dσj‖L2(gj). By the elliptic regularity, we conclude that
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‖σj‖L2
1(gj) is uniformly bounded. Now a standard diagonal argument allows us

to conclude that, up to a subsequence, {σj} weakly converges to an element

σ ∈ L2
1. Using the elliptic equation

∆
gj
Hσj = −d∗jβ

and a bootstrapping argument it is possible to show that σj → σ in the C∞

topology on compact sets. This proves the proposition.

We know want to obtain a refinement of Proposition 4.5.1. We begin with

the following simple lemma.

Lemma 4.5.2 Given ε > 0, there exists T big enough such that

∫
t≥T
|d∗gβ|2dµg ≤ ε,

∫
t≥T
|d∗jβ|2dµgj ≤ ε.

Since β = βc + γ with γ a fixed element in H2(Σg;R), the lemma follows

from the definition of the metrics {gj}.

An analogous result holds for the 2-forms {dσj}.

Lemma 4.5.3 Given ε > 0, there exists T big enough such that

∫
t≥T
|dσ|2dµg ≤ ε,

∫
t≥T
|dσj |2dµgj ≤ ε.

The first inequality follows easily from the fact that α ∈ L2Ω2
g(M). By

Lemma 4.5.2, given ε > 0 we can find T such that

‖σj‖L2(gj)

{∫
t≥T
|d∗β|2dµgj

} 1
2 ≤ ε

2
(4.12)
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independently of the index j. Now

∫
t≥T
|dσj |2dµgj =

∫
t≥T

dσj ∧ ∗jdσj =

∫
t≥T

d(σj ∧ ∗jdσj) +

∫
t≥T

σj ∧ d ∗j dσj

=

∫
t=T

σj ∧ ∗jdσj −
∫
t≥T

d ∗j dσj ∧ σj

=

∫
t=T

σj ∧ ∗jdσj −
∫
t≥T

(∗jd ∗j dσj , σj)dµj

=

∫
t=T

σj ∧ ∗jdσj −
∫
t≥T

(d∗jdσj , σj)dµgj

but d∗jdσj = −d∗jβ, thus

∫
t≥T
|dσj |2dµgj ≤

∣∣∣ ∫
t=T

σj ∧ ∗jdσj
∣∣∣+
∣∣∣ ∫
t≥T

(d∗jβ, σj)dµgj

∣∣∣
≤
∣∣∣ ∫
t=T

σj ∧ ∗jdσj
∣∣∣+ ‖σj‖L2(gj)

{∫
t≥T
|d∗jβ|2dµgj

} 1
2

≤ ε

2
+
∣∣∣ ∫
t=T

σj ∧ ∗jdσj
∣∣∣.

Since σj → σ in the C∞ topology on compact sets, we have that
∫
t=T

σj ∧

∗jdσj →
∫
t=T

σ ∧ ∗gdσ. But now σ ∈ L2
1(g) and therefore we can conclude the

proof of the proposition.

Lemma 4.5.4 σ is orthogonal to the harmonic 1-forms on (M, g).

By construction we have σj ∈ (H1
gj )
⊥. Recall that fixed a cohomology

element [a] ∈ H1
dR(M), denoted by {γj} the sequence of the harmonic rep-

resentatives with respect to the {gj}, given ε > 0 we can chose T such that∫
t≥T |γj |

2dµgj ≤ ε. Now, given γ ∈ H1
g we want to show that (σ, γ)L2(g) = 0.

Since H1
dR(M) = H1

g(M), we can find a sequence of harmonic 1-forms {γj} such

that γj → γ in the C∞ topology on compact sets. Let K be a compact set in

M , then

∣∣∣ ∫
M\K

(σj , γj)dµj

∣∣∣ ≤ ‖σj‖L2
gj
‖γj‖L2

gj
(M\K) (4.13)
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can be made arbitrarily small by choosing the compact K big enough. Since

(σj , γj)L2(M,gj)
= 0, we have

∫
K

(σj , γj)dµgj = −
∫
M\K

(σj , γj)dµgj (4.14)

and then the integral
∫
K

(σj , γj)dµgj can be made arbitrarily small. On the

other hand

∣∣∣ ∫
M

(σ, γ)dµg

∣∣∣ ≤ ∣∣∣ ∫
K

(σ, γ)dµg

∣∣∣+
∣∣∣ ∫
M\K

(σ, γ)dµg

∣∣∣
≤
∣∣∣ ∫
K

(σ, γ)dµg

∣∣∣+ ‖σ‖L2(M,g)‖γ‖L2
g(M\K).

Since γ ∈ L2Ω1
g(M) we conclude that σ ∈ (H1

g)
⊥.

We now want to study the intersection form of (M, gj) and eventually show

the convergence to the L2 intersection form of (M, g). Recall the isomorphism

H2
dR(M) ' H2(M), moreover given [a] ∈ H2

dR(M) we can generate {αj} ∈

H2
gj (M) that converges in the C∞ topology on compact sets to a α ∈ H2

g(M).

We also have that, fixed a compact set K, then ∗j = ∗g for j big enough. As a

result

H+gj ⊕H−gj → H+g ⊕H−g . (4.15)

Indeed

αj = α
+j
j + α

−j
j =

αj + ∗jαj
2

+
αj − ∗jαj

2
→ α+g + α−g = αg. (4.16)

4.6 Biquard’s construction

In this section we show how to construct an irreducible solution of the

Seiberg-Witten equations on (M, g), for any metric g asymptotic to a standard

model g̃.

63



Fix a Spinc structure on M , with determinant line bundle L, and let g be

a cuspidal metric on M\Σ that is assumed to be C2 asymptotic to a stan-

dard model. Let {gj} be the sequence of metrics on M approximating (M, g)

constructed in Section 4.2. Let (Aj , ψj) be a solution of the perturbed Seiberg-

Witten equations on (M, gj)
DAjψj = 0

F+
Aj

+ i2πω+
j = q(ψj)

where ωj = i
2πFBj and Bj is the connection 1-form on the line bundle OM (Σ)

given by

Bj = d− iχj(∂tϕj)dθ.

The idea is to show that, up to gauge transformations, the (Aj , ψj) converge

in the C∞ topology on compact sets to a solution of the unperturbed Seiberg-

Witten equations 
DAψ = 0

F+
A = q(ψ)

on (M, g), where A = C+a with C is a fixed smooth connection on L⊗O(−Σ),

and a ∈ L2
1(Ω1

g(M)) with d∗a = 0.

Lemma 4.6.1 We have the decomposition

sgj = sbgj − 2χj
∂2
t ϕj
ϕj

FBj = −iχj
∂2
t ϕj
ϕj

dt ∧ ϕjdθ + F bj

with sbgj and F bj bounded independently of j

See Proposition 4.2.2.
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Since i2πωj = −FBj , we can rewrite the perturbed Seiberg-Witten equations

as follows 
DAjψj = 0

F+
Aj
− F+

Bj
= q(ψj).

Recall that in the case under consideration, the twisted Licherowicz formula [6]

reads as follows

D2
Ajψj = ∇∗Aj∇Ajψj +

sgj
4
ψj +

1

2
F+
Aj
· ψj .

By using the SW equations we have

0 = ∇∗Aj∇Ajψj +
sgj
4
ψj +

|ψj |2

4
ψj +

1

2
F+
Bj
· ψj .

Keeping into account the decomposition given in Lemma 4.6.1 we obtain

0 = ∇∗Aj∇Ajψj + Pjψj + P bj ψj +
|ψj |2

4
ψj

where

Pjψj = −1

2
χj
∂2
t ϕj
ϕj

ψj −
i

2
χj
∂2
t ϕj
ϕj

(dt ∧ ϕjdθ)+ · ψj

with P bj uniformly bounded in j. Now, it can be explicitly checked that for

a metric of the form dt2 + ϕ2
jdθ

2 + g2 the self-dual form (dt ∧ ϕjdθ)+ acts by

Clifford multiplication with eigenvalues ±i. The eigenvalues of the operator Pj

are then given by 0 and −χj ∂
2
tϕj
ϕj

.

Lemma 4.6.2 There exists a constant K > 0 such that

|ψj(x)|2 ≤ K

for every j and x ∈M .
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Given a point x ∈ M choose an orthonormal frame {ei} centered at x such

that ∇ejei|x = 0. We then compute

−
∑
i

ei(ei〈ψj , ψj〉)x = −
∑
i

ei{〈∇eiψj , ψj〉+ 〈ψj ,∇eiψj〉}

= −
∑
i

{〈∇ei∇eiψj , ψj〉+ 2〈∇eiψj ,∇eiψj〉+ 〈ψj ,∇ei∇eiψj〉}.

Since ∇2
ei,eiψj = ∇ei∇eiψj and ∇∗Aj∇Aj = −

∑
i∇2

ei,ei we have

∆|ψj |2 + 2|∇Ajψj |2 = 〈∇∗Aj∇Ajψj , ψj〉+ 〈ψj ,∇∗Aj∇Ajψj〉

= 2Re〈∇∗Aj∇Ajψj , ψj〉.

Thus, if xj is a maximum point for |ψj |2 we have ∆|ψj |2xj ≥ 0 and therefore

Re〈∇∗Aj∇Ajψj , ψj〉 ≥ 0. In conclusion

0 = Re〈∇∗Aj∇Ajψj , ψj〉xj +Re〈{Pj + P bj }ψj , ψj〉xj +
|ψj |4xj

4

≥ Re〈{Pj + P bj }ψj , ψj〉xj +
|ψj |4xj

4
.

By construction the operator Pj + P bj is uniformly bounded from below, the

proof is then complete.

Since F+
Aj
− F+

Bj
= q(ψj) and by Lemma 4.6.2 the norms of the ψj are

uniformly bounded, a similar estimate holds for F+
Aj
− F+

Bj
.

Lemma 4.6.3 There exists a constant K > 0 such that

‖∇Ajψj‖L2(M,gj)
≤ K

for any j.
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We have

0 =

∫
M

Re〈∇∗Aj∇Ajψj , ψj〉dµgj +

∫
M

Re〈{P bj + Pj}ψj , ψj〉dµgj

+
1

2

∫
M

Re〈q(ψj)ψj , ψj〉dµgj

= ‖∇Ajψj‖2L2(M,gj)
+

∫
M

Re〈{P bj + Pj}ψj , ψj〉dµgj +
1

4

∫
M

|ψj |4dµgj

but now

∫
M

Re〈{P bj + Pj}ψj , ψj〉dµgj ≥ −k‖ψj‖2L2(M,gj)

which then implies

‖∇Ajψj‖2L2(M,gj)
≤ k‖ψj‖2L2(M,gj)

− 1

4
‖ψj‖4L2(M,gj)

≤ k‖ψj‖2L2(M,gj)
.

Since by Proposition 4.2.3 the volumes of the Riemannian manifolds (M, gj) are

uniformly bounded, the lemma follows from Lemma 4.6.2.

Define Cj = Aj − Bj and let C be a fixed smooth connection on the line

bundle L⊗O(−Σ). By the Hodge decomposition theorem we can write

Cj = C + ηj + βj

where ηj is gj-harmonic and βj ∈ (H1
gj )
⊥. Thus

F+
Cj

= q(ψj) = F+
C + d+βj .

Since C is a fixed connection 1-form, ‖FC‖L2(M,gj)
is uniformly bounded in the

index j. As a result, there exists K > 0 such that

‖d+βj‖L2(M,gj)
≤ K
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for any j. By the Stokes’ theorem

‖d+βj‖2L2(M,gj)
=

∫
M

dβj ∧ dβjdµgj + ‖d−βj‖2L2(M,gj)

=

∫
M

d(βj ∧ dβj)dµgj + ‖d−βj‖2L2(M,gj)

= ‖d−βj‖2L2(M,gj)

and we then obtain an uniform upper bound on ‖dβj‖L2(M,gj)
. By Gauge fixing

we can always assume d∗βj = 0. The Poincaré inequality given in Proposition

4.4.9 can then be used to conclude that

c‖βj‖2L2(M,gj)
≤ ‖dβj‖2L2(M,gj)

≤ 2K.

By a diagonal argument we can now extract a weak limit

βj ⇀ β

with β ∈ L2
1(M, g). Similarly we extract a weak limit

ηj ⇀ η

with η ∈ L2(M, g) and harmonic with respect to g, see Proposition 4.4.6.

Define aj = ηj + βj that by construction satisfies d∗aj = 0. If we fix a

compact set K ⊂ M , there exists j0 such that for any j ≥ j0 the connection

1-form Bj restricted to K is zero. Thus, for any j ≥ j0 we have Aj = Cj and

then C = Aj−aj . We know that aj is uniformly bounded in L2(M, gj), by using

Lemma 4.6.3 we conclude that ‖∇Cψj‖2L2(K,gj)
is bounded independently of j.

On this compact set K we can therefore extract a weak limit of the sequence

{ψj}⇀ ψ. By using a diagonal argument and recalling that in a Hilbert space

the norm is lower semicontinuous with respect the weak convergence, we obtain

a weak limit ψ ∈ L2
1(M, g).
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Recall that on any compact set K, for j big enough we have F+
Aj

= q(ψj).

Since

∇F+
Aj

= ∇Ajψj ⊗ ψ∗j + ψj ⊗∇Ajψ∗j −Re〈∇Ajψj , ψj〉Id

we conclude that ‖∇F+
Aj
‖L2(K,gj) is uniformly bounded. In summary we have

an L2
1 bound on F+

Aj
. Consider now the first order elliptic operator d+⊕d∗. By

the Garding’s inequality we obtain

c‖aj‖L2
2(K,gj) ≤ ‖aj‖L2(K,gj) + ‖(d+ ⊕ d∗)aj‖L2

1(K,gj)

≤ ‖aj‖L2(K,gj) + ‖d+βj‖L2
1(K,gj)

which gives us an uniform L2
2(K, gj) bound on aj . Since C = Aj − aj on K, we

can write

0 = DAjψj = DC+ajψj = DCψj +
1

2
aj · ψj ,

in other words

DCψj = −1

2
aj · ψj . (4.17)

Combining the L2
2 bound on aj and the L∞ bound on ψj with the Sobolev

multiplication L2
2(K, gj)⊗Lp(K, gj)→ L4(K, gj), for p big enough, we obtain a

L4(K, gj) bound on − 1
2aj ·ψj , that is exactly the forcing term in the first order

elliptic equation given in 4.17. By the elliptic Lp estimates we then obtain

c‖ψj‖L4
1
≤ ‖ψj‖L4 + ‖f‖4

where we define f = − 1
2aj · ψj . This shows ψj ∈ L4

1 that combined with the

Sobolev multiplication L2
2⊗L4

1 → L3
1 can be used to obtain a L3

1 estimate on f .

By applying again the elliptic Lp estimate we obtain

c‖ψj‖L3
2
≤ ‖ψj‖L2 + ‖f‖L3

1
.
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Now the Sobolev multiplication L2
2 ⊗ L3

2 → L2
2 combined with the fact that

ψj ∈ L3
2, we obtain a L2

2 bound on f . Once more the Lp elliptic estimates gives

us

c‖ψj‖L2
3
≤ ‖ψj‖L2 + ‖f‖L2

2
.

By using the Sobolev multiplication L2
3 ⊗ L2

3 → L2
3 we then obtain a L2

3 bound

on q(ψj) and therefore by the Seiberg-Witten equations on F+
Aj

. But now a

L2
3 estimate on F+

Aj
gives us a analogous estimate on d+aj . Consider the first

order elliptic operator d+⊕d∗, remembering that d∗aj = 0 and applying the Lp

elliptic estimate we obtain

c‖aj‖L2
4
≤ ‖aj‖L2 + ‖d+aj‖L2

3
.

The uniform L2
3 bound on d+aj gives us a L2

4 bound. By using the Sobolev

multiplication L2
3 ⊗ L2

3 → L2
3 we obtain a L2

3 bound on f . By applying the

elliptic Lp estimates to the equation 4.17 we obtain

c‖ψj‖L2
4
≤ ‖ψj‖L2 + ‖f‖L2

3
.

By induction we can assume to have a L2
k bound on ψj and aj , then combining

the Sobolev multiplication L2
k ⊗ L2

k → L2
k and the first order elliptic equation

given in 4.17 we obtain

c‖ψj‖L2
k+1
≤ ‖ψj‖L2 + ‖f‖L2

k

and we therefore obtain a uniform estimate on ‖ψj‖L2
k+1

. Now by the Sobolev

embedding L2
k ↪→ Ck−3 we can then conclude that the ψj are indeed smooth. A

completely analogous argument can now be used to show the C∞ on compact

sets of the {ψj}.

Let us summarize the discussion above into a theorem.
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Theorem D Fix a Spinc structure on M with determinant line bundle L. Let

g be a metric on M asymptotic to a standard model in the C2 topology, and let

{gj} the sequence of metrics on M that approximate g. Let {(Aj , gj)} be the se-

quence of solutions of the SW equations with perturbations {F+
Bj
} on {(M, gj)}.

Then, up to gauge transformations, the solutions {(Aj , ψj)} converge, in the C∞

topology on compact sets, to a solution (A,ψ) of the unperturbed SW equations

on (M, g) such that

- A=C+a where C is a fixed smooth connection on L⊗O(−Σ), d∗a = 0 and

a ∈ L2
1(Ω1

g(M));

- ψ ∈ L2
1(M, g) and there exists K > 0 such that supx∈M |ψ(x)| ≤ K.

4.7 Geometric applications

For a compact oriented 4-manifold N , the Gauss-Bonnet and Hirzebruch

theorems state that

χ(N) =

∫
N

E(g)dµg, σ(N) =

∫
N

L(g)dµg

where E(g) and L(g) are respectively the Euler and signature forms associated

to the metric g.

For noncompact manifolds the above curvature integrals might be not de-

fined or dependent on the choice of the metric. Nevertheless, if the manifold

has finite volume and bounded curvature these curvature integrals are defined.

In this case it remains to study their metric dependence. Here, we want to

compute

χ(M, g) =

∫
M

E(g)dµg, σ(M, g) =

∫
M

L(g)dµg
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when g is a metric C2 asymptotic to a standard model for M . The idea is to

approximate the metric g with the sequence of metrics {gj} on M . We then

have

χ(M, g) = lim
j→∞

∫
t≤j+1

E(gj)dµgj , σ(M, g) =

∫
t≤j+1

L(gj)dµgj .

Thus

χ(M, g) = χ(M)− lim
j→∞

∫
t≥j+1

E(g̃j)dµg̃j

and

σ(M, g) = σ(M)− lim
j→∞

∫
t≥j+1

L(g̃j)dµg̃j .

In other words, the characteristic numbers of (M, g) are computed in terms of

χ(M) and σ(M) plus a contribution coming from the cusps. More precisely we

have the following proposition.

Proposition 4.7.1 Let M be equipped with a metric g asymptotic in the C2

topology to a standard model. Then, we have the equalities

χ(M, g) = χ(M)− lχ(Σg), σ(M, g) = σ(M) = 0,

where l is the number of cusp ends of M .

See Proposition 3.4. in [24].

A simple Mayer-Vietoris argument can now be used to show that χ(M) =

χ(M) − lχ(Σg). We then conclude that χ(M, g) = χ(M). This discussion can

then be summarized into the following proposition.

Proposition 4.7.2 The Gauss-Bonnet theorem is valid on (M, g) for any met-

ric g asymptotic in the C2 topology to a standard model.
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We can now study the Riemannian functional
∫
M
s2
gdµg restricted to the

space of metrics asymptotic to a standard model.

Theorem E Let M be equipped with a metric g asymptotic to a standard model

in the C2 topology. Then

1

32π2

∫
M

s2
gdµg ≥ 2χ(Σ) · χ(Σg)

with equality if and only if g is, up to scaling, the product of two -1 hyperbolic

metrics on Σ and Σg.

Let us consider the standard Spinc structure associated to the complex struc-

ture of M . Theorem D can be used to construct an irreducible solution of the

SW equations on (M, g). Furthermore, by applying Theorem 3.3.2 we conclude

that

1

32π2

∫
M

s2
gdµg ≥ (c1(K−1

M
− Σ)+)2.

By the adjunction formula we have

(c1(K−1

M
− Σ)+)2 ≥ (c1(K−1

M
− Σ))2 = 2(χ(M) + 2(g − 1)l)

where l is the number of cusp ends. By Propositions 4.7.1 and 4.7.2

χ(M) = χ(M) + 2l(g − 1),

and we conclude that

1

32π2

∫
M

s2
gdµg ≥ 2χ(Σ) · χ(Σg)

with equality if and only if g is Kähler with constant negative scalar curvature

and the harmonic representative of c1(L) is self dual. The latter condition

implies that g is Kähler Einstein. We can now apply Theorem D for a Spinc
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structure of complex type compatible the reversed oriented M . This implies that

g must be Kähler Einstein with respect to the commuting complex structures J

and J on M . This implies that g is, up to scaling, the product of two hyperbolic

-1 metrics on Σ and Σg.

Finally, we present an obstruction for Einstein metrics on blow-ups.

Theorem F Let (M, g) as above. Let M
′
be obtained from M by blowing up k

points. If k ≥ 4
3χ(Σ)χ(Σg), then M

′
does not admit a cuspidal Einstein metric.

By a result of Morgan-Friedman [17], we know that the manifold M]kCP 2

admits at least 2k different Spinc structures with determinant line bundles

L = K−1

M
± E1 ± ...± Ek

for which the SW equations have irreducible solutions for each metric. Since

(c1(L)+)2 = (c1(M)+ ± E+
1 ± ...± E

+
k )2

= (c1(M)+)2 + 2
∑
i

ci(M)+ · ±E+
i + (

∑
i

±E+
i )2

we can chose a Spinc structure whose determinant line bundle satisfies

(c1(L)+)2 ≥ (c1(M)+)2 ≥ c1(M)2 = c21(M).

We can now apply Theorem D for any of the Spinc structure above and with

respect to the metric g on M
′
. We then construct 2k irreducible solutions

(A,ψ) ∈ L2
1(M

′
, g), where A = C + a with C a fixed smooth connection on

L⊗O(−Σ) and a ∈ L2
1(Ω1

g(M
′
)). By appropriately choosing the Spinc structure
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and using Theorem 3.3.2 we compute

1

32π2

∫
M ′

s2dµg ≥ (c1(L⊗O(−Σ))+)2

≥ (c1(L)+)2 + Σ2 + 2KM · Σ

≥ c21(M) + 2KM · Σ

where in the last inequality we used the fact that Σ has trivial self intersection.

By the adjunction formula we have∫
M ′

s2dµg ≥ c21(M) + 4l(g − 1)

= 2χ(M) + 4l(g − 1),

where k is the number of distinct components of the divisor Σ. By an obvious

modification of Proposition 4.7.1 one has

χ(M
′
, g) = χ(M) + k + 2l(g − 1)

σ(M
′
, g) = −k

Thus, if we assume g to be Einstein

c21(M) + 4l(g − 1)− k = 2χ(M
′
) + 3σ(M

′
)

=
1

4π2

∫
M ′

2|W+|2 +
s2

24
dµg

≥ 1

96π2

∫
M ′

s2dµg

≥ 1

3
(c21(M) + 4l(g − 1))

so that

2

3
(c21(M) + 4l(g − 1)) ≥ k.

In other words if

k >
4

3
(χ(Σ) · χ(Σg))

75



we cannot have a cuspidal Einstein metric on M]kCP 2. The equality case can

also be included and the proof goes as in the compact case. For more details,

see [29]. The proof is then complete.
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