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Abstract of the Dissertation

Non-recurrent dynamics in the exponential

family

by

Anna Benini

Doctor of Philosophy

in

Mathematics

Stony Brook University

2010

This dissertation deals with the dynamics of non-recurrent parameters in

the exponential family {ez + c}. One of the main open problems in one-

dimensional complex dynamics is whether hyperbolic parameters are dense;

this conjecture can be restated by saying that all fibers, i.e. classes of pa-

rameters with the same ray portrait, are single points unless they contain a

hyperbolic parameter. The main goal of this dissertation was to prove some
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statements in this direction, usually referred to as rigidity statements.

We prove that fibers are single points for post-singularly finite (Misi-

urewicz) parameters and for combinatorially non-recurrent parameters with

bounded post-singular set. We also prove some slightly different rigidity

statement for combinatorially non-recurrent parameters with unbounded postsin-

gular set.

We also add some understanding to the correspondence between com-

binatorics of polynomials and combinatorics of exponentials and we prove

hyperbolicity of the postsingular set for non-recurrent parameters, general-

izing a previous statement concerning only non-recurrent parameters with

bounded post-singular set.

We finally contribute to another open problem in transcendental dynam-

ics, i.e. understanding whether repelling periodic orbits are landing points

of dynamic rays, giving a positive answer to this question in the case on

non-recurrent parameters with bounded post-singular set.

The strategy used also gives a new, more elementary proof of the corre-

sponding statement for polynomials, dating back to work of Douady.
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Chapter 1

Introduction

This dissertation originated in the idea of extending the puzzle construction

and the renormalization techniques to the exponential family in order to

generalize some rigidity results obtained in the families of unicritical polyno-

mials.

The outcome were some rigidity statements concerning Misiurewicz (postsin-

gularly finite) and non-recurrent parameters, some topological statement for

non-recurrent parameters and some theorems about accessibility of repelling

periodic orbits for non-recurrent parameters with bounded postsingular set,

as well as accessibility of the postsingular set itself; this also gives a new

more elementary proof of Douady’s classical theorem stating that repelling

periodic points are landing points of dynamic rays.

We will now embed the questions above in their natural setting and explain

them in more detail, assuming the reader to be familiar with the iteration of

unicritical polynomials (see e.g. [DH], [Mi1]).

One of the main open problems in the dynamics of rational maps is the

so-called Density of Hyperbolicity Conjecture. A map is called hyperbolic if

all of its critical values converge to an attracting cycle under iteration; this

maps are particularly well understood in many ways.
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Conjecture 1.0.1 (Density of hyperbolicity). Hyperbolic maps are dense in

the space of unicritical polynomials zd + c.

This conjecture can be stated also for rational maps, however it has been

most actively worked on especially in the case of quadratic polynomials: one

of the breakthrough results has been density of hyperbolicity in the family

of real quadratic polynomials ([L1], [GS]).

There are many ways to restate Conjecture 1.0.1, the one we will be mostly

interested in is in terms of fibers and combinatorics. To explain their meaning

in a more precise way requires a more careful analysis of the role of periodic

and preperiodic dynamic rays. We will refer as a ray pair to two periodic or

preperiodic rays landing at the same point z, together with z. In this way, a

ray pair is a curve separating the plane in two regions.

The collection of all periodic rays landing together gives a partition of

the plane and encodes part of the topological dynamics: for example q rays

landing at a fixed point subdivide C into q sectors on which the dynamics

is determined by the dynamics of the rays. Using the fact that dynamic

rays are labeled by angles, it is possible to abstract this topological picture

into a combinatorial notion: for example, by considering the unit circle S1

and considering the equivalence classes of angles corresponding to rays which

land at the same point . This set of equivalence classes is often referred to as

combinatorics of the map, even though the word combinatorics is also used

with other meanings. It can be shown that this combinatorial notion is a

topological invariant and the natural question is whether this combinatorial

invariant is sufficient to determine a polynomial up to conformal conjugacy.

The fiber of a parameter should be thought of as the set of parameters

which have the same combinatorics (see Chapter 4). In terms of fibers the

conjecture of density of hyperbolicity can be restated as follows:

Conjecture 1.0.2 (Rigidity conjecture). Let fc(z) = zd + c. The fiber of
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any parameter is a single point, unless it contains hyperbolic parameters.

There has been a great amount of work on combinatorics and on the

rigidity conjecture, mostly for quadratic and unicritical polynomials.

As the critical point is the unique branching point, its dynamics influences

most of the dynamics of the map as a whole. In particular, some specific kinds

of recurrent behavior (i.e. when the critical orbit accumulates on the critical

point) is what prevents the whole conjecture to be solved.

The Rigidity conjecture for unicritical polynomials has been proven for

non-recurrent parameters, as well as many classes of recurrent ones, pa-

rameters on boundaries of hyperbolic components, and under some geomet-

ric/growth conditions. Still remain unknown some cases in which the critical

value is recurrent in a persistent way. We will be concerned with the ex-

ponential family ez + c, for which the natural parameter space is C. There

are no critical points, and only one asymptotic omitted value c, which has

in many ways the same role as the critical value for unicritical polynomials

(see Theorem 2.2.5), as the only branching point of an exponential function

can be considered to be −∞. This family has been studied, among others,

by Eremenko and Lyubich ([EL]), Baker and Rippon ([BR]), Devaney and

collaborators, and by Rempe, Schleicher and Zimmer more recently.

Dynamic and parameter rays have been defined in the exponential family

(see [BD1],[SZ1],[S0]; see also Section 3.1). For the moment, they can be

thought of an analog of the dynamic and parameter rays in the polynomial

families; the two main differences are that dynamic rays lie in the Julia set

instead of the Fatou set, and that there is no notion of equipotential curves.

Similarly, the postsingular set is defined as P := ∪
n>0

fn(c). The notion of

fibers generalizes to the exponential family (see [RS2]), and so do the Density

of hyperbolicity conjecture and the Rigidity conjecture. This thesis proves

the conjecture in the simplest non-recurrent cases, namely the case in which
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the postsingular set is finite (Misiurewicz case) and in a special non-recurrent

case called combinatorial non-recurrence, in which the singular value and the

postsingular set are required to be separated by a special collection of ray

pairs (see Section 6.2).

We now describe in more detail the results we obtained and an idea of

their proofs.

Misiurewicz parameters

We call a parameter Misiurewicz or postsingularly finite if the singular value

is strictly preperiodic. We show that fibers of Misiurewicz parameters are

single points in the exponential family.

Theorem 1.0.3 (Triviality of Misiurewicz fibers.). Let c0 be a Misiurewicz

parameter in the exponential family. Any parameter c can be separated from

c0 by a parameter ray pair, except for those parameters lying on the parameter

rays landing at c0.

We follow the outline of a proof of Schleicher ([S1]) for the corresponding

result in families of unicritical polynomials. The proof consists in showing

that any parameter can be separated from a Misiurewicz parameter using

curves formed by parameter rays landing together with their common end-

point.

First pairs of rays landing together are found in the dynamical plane

of the Misiurewicz parameter and shown to be persistent in a parameter

neighborhood, then they are transfered to the parameter plane using results

of Rempe and Schleicher ([RS2], [RS1]) on the structure of bifurcations in

the exponential family.

The main originality in the proof lies in tracing a combinatorial corre-

spondence between the space of angles and orbit portraits for unicritical

polynomials on one side and exponentials on the other side (see Chapter 3),
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and using it to transfer pairs of rays landing together from polynomial fami-

lies to exponential families. Combinatorial similarities between exponentials

and polynomials had been pointed out before by Devaney and Schleicher.

It was shown in [SZ2] that the singular value is the landing point of a

dynamic ray. The preimages of this dynamic ray give a dynamic partition

(see Section 3.1) allowing the explicit statement of the combinatorial corre-

spondence and working as a bridge to translate combinatorial notions into

topological notions. A key role is also played by expansivity near the post-

singular periodic orbit.

Non-recurrent parameters

We say that a parameter is non-recurrent if the post-singular set P does not

contain the singular value. In this case we can show that the postsingular

set is expansive with respect to the euclidean metric.

Theorem 1.0.4 (Hyperbolicity of the postsingular set.). Let fc(z) = ez + c

such that c is non-recurrent. Then the postsingular set P is expansive with

respect to the euclidean metric, in the sense that there are some integer k

and some η > 1 such that for any x ∈ P, |(fn)′(x)| > η for n > k.

This generalizes a result of Rempe and van Strien ([RvS])(which, however,

holds for a much larger class of transcendental functions) to non-recurrent ex-

ponential maps with unbounded postsingular set. The proof is similar to the

proof of Mañe’s Theorem for rational maps given by Shishikura and Tan Lei

([LS]), using the expansivity properties of the exponential map near infinity

to compensate for the fact that the postsingular set can be unbounded.

We then give a description of puzzle and parapuzzle construction for the

exponential family (see Section 6.2.1); one of the main differences with the

polynomial case is that puzzle/parapuzzle pieces are not bounded, as there

are no equipotential curves. However, the basic dynamic properties of puzzle
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pieces are preserved, as well as the fact that parapuzzle pieces of a given

level n identify the set of parameters which are combinatorial equivalent up

to level n, i.e. having the same puzzle pieces up to that level.

We will say that a parameter is combinatorially non-recurrent if some level

of the puzzle construction separates the singular value from the postsingular

set.

The persistence of puzzle pieces over parapuzzle pieces allows us to use

holomorphic motions to construct conjugacies on the rays of two functions

belonging to the same parapuzzle pieces. This conjugacy on a subset of the

rays can be extended to a quasiconformal map form C→ C using a version of

the Lambda Lemma due to Slodkowski ([Sl]), and pulled back to a conjugacy

using relatively standard techniques under the assumption of combinatorial

non-recurrence.

The final statement says that any two combinatorially non-recurrent ex-

ponential maps which belong to the same parapuzzle piece at all levels are

quasi-conformally conjugate.

Theorem 1.0.5. Let fc, fc′ be two maps belonging to the same parapuzzle

piece at all levels, such that c is combinatorially non-recurrent under fc and

neither c nor c′ are escaping. Then there is a quasiconformal conjugacy Ψ

between fc and fc′ .

For non-recurrent parameters with bounded postsingular set, a theorem

proven by Rempe and van Strien ([RvS]) states absence of invariant line

fields; together with Theorem 1.0.5 this shows that fibers are single points

for combinatorially non-recurrent parameters with bounded postsingular set.

The corresponding statement in the case of unbounded postsingular set,

as well as showing that combinatorial non-recurrence implies non-recurrence

at least in the bounded case, is still work in progress.

6



Accessibility

We will say that a point is accessible if there is a dynamic ray landing at it.

We show that repelling periodic points are landing points of dynamic rays

for non-recurrent parameters with bounded post-singular set.

Theorem 1.0.6 (Accessibility of periodic orbits for non-recurrent parame-

ters). Let fc(z) = ez + c be non-recurrent with bounded postsingular set; then

any periodic point is the landing point of some periodic ray.

In this case, we also show that each point in the postsingular set, and

hence the singular value itself, is accessible.

Theorem 1.0.7 (Accessibility of the postsingular set). Let fc(z) = ez + c be

non-recurrent with bounded postsingular set; then any point in the postsingu-

lar set is landing point of some ray.

This gives a dynamic partition (see Section 3.1), a tools which in the

past has been particularly useful in the study of hyperbolic, parabolic and

Misiurewicz parameters. To show this we first prove that there is a uniform

bound on the length of some appropriate ray pieces (fundamental domains),

which does not depend on the address for a specific set of addresses. We

translate it into a bound on the hyperbolic length and use the Schwarz lemma

and the boundary behavior of the hyperbolic metric to show that the length

of such fundamental domains shrinks to zero under appropriate pullbacks.

We then use a linearizing neighborhood in the case of repelling periodic

points, and the expansive neighborhood of the postsingular set to construct a

sequence of dynamic rays converging to a dynamic ray and show that it lands

at the desired point. The same strategy simplifies considerably in the case

of polynomials, giving a new proof of Douady’s theorem about accessibility

of repelling periodic orbits for polynomials with connected Julia set.
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Theorem 7.2.1 also gives a new proof of a theorem of Schleicher and Zim-

mer ([SZ2]) that the singular value is accessible for Misiurewicz parameters.
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Chapter 2

Preliminaries

We will assume the reader to be familiar with the Julia-Fatou dichotomy and

with the iteration of unicritical polynomials.

2.1 Notation

We will denote the unit disk by D, the right half plane by H, the complex

plane by C and by Ĉ the Riemann sphere. Given a set A ⊂ C, A, ∂A are its

closure and its boundary in C respectively.

We indicate with Br(z) the euclidean disk of radius r centered at z.

Given a non-constant, non-linear holomorphic entire function f , fn is its

n-th iterate,

F (f) = {z0, the family {fn(z)} is normal in a neighborhood of z0}

is its Fatou set and

J(f) = C− F (f)

is its Julia set.

The set of escaping points is

I(f) = {z ∈ C, lim
n→∞
|fn(z)| =∞}.
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Given a one parameter family {fc}, ΠP will be its parameter plane and

Πc will be the dynamical plane for the function fc.

2.2 Iteration of transcendental functions with

bounded set of singular values

We call a function transcendental if infinity is an essential singularity. One of

the other main differences with respect to rational dynamics is the presence

of asymptotic values: we call z0 an asymptotic value for a function f if there

is a curve γ : [0,∞) → C such that γ(t) → ∞ and f(γ(t)) → z0 as t → ∞.

An asymptotic value can be omitted, like in the case of c for the exponential

family, it is has no preimage in C.

A transcendental function is a local isomorphism outside its singular set

S(f) := {singularities for f−1}

Remark 1. The following facts are equivalent:

• S(f) is the singular set of f

• S(f) = {z ∈ C, z is a critical value or an asymptotic value}

• S(f) ={z, for any neighborhood U of z , there is a component V of

f−1(U) such that f : U → V is not univalent}

Remark: a transcendental entire functions might have infinitely many

asymptotic values accumulating on a finite point x ∈ C, so that it is necessary

to take the closure in the second item.

Points in S(f) are called singular values.

Let us denote by B the class of all transcendental functions for which the

singular set is bounded, and by S the class of all transcendental functions

for which the singular set is finite.
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It is proven in [EL] that class S there are no wandering components of the

Fatou set ([BR], [EL]).

Theorem 2.2.1 (Classification of Fatou components). For f ∈ S, there are

no wandering Fatou components. Every Fatou component is mapped to a

cycle of attracting components, parabolic components or Siegel disks.

Corollary 2.2.2. If there are no attracting or parabolic orbits, nor cycles of

Siegel disks, the Julia set is equal to C.

The Julia set is well known to be perfect, non-empty and completely

invariant, and that it is either nowhere dense or equal to C. There are other

equivalent ways to define the Julia set.

Theorem 2.2.3. Let J be the Julia set of ez + c. Then

J = {Repelling periodic points} (2.2.1)

= ∂I(f) (2.2.2)

= I(f) (2.2.3)

The first equality is due to Baker ([Ba1]) and the last equality follows

from the second one and the proposition below ([EL], Theorem 1).

Theorem 2.2.4. Let f ∈ B be a transcendental function. The set of escaping

points is contained in the Julia set.

We define the postsingular set as

P = ∪
n>0

fnS(f).

We will say that a singular value c is non-recurrent if P ∩ {c} = ∅, and that

a map f is non-recurrent if all x ∈ S(f) are non-recurrent.

From now on unless explicitly stated we will fix the one-parameter family

fc(z) := ez + c, c ∈ C .

11



The next theorem relates the behavior of the singular value to the presence

of non-repelling periodic orbits.

Theorem 2.2.5 (Behavior of the singular value). Let f = ez+c. If f has an

attracting or parabolic orbit {zi}, the singular value belongs to the immediate

attracting basin and its iterates converge to {zi}; if f has a cycle of Siegel

disks {Di}, the singular value is recurrent and its orbit accumulates on the

union of the boundaries ∂Di; if f has a cycle of Cremer points {wi}, the

singular value is recurrent and P 3 wi for each wi.

If P is finite, then z is strictly preperiodic to a repelling periodic orbit.

Proof. The first part is a combination of classical theorems, see e.g. [Mi].

The last statement about postsingularly finite maps follows by remarking

that c is an omitted value, hence cannot be periodic, and that none of its

iterates fn can belong to a non-repelling orbit by the previous part of the

theorem.

Definition 2.2.6 (Types of exponential maps). We will call a parameter c

escaping if |fnc (c)| → ∞ as n→∞.

We will say that a parameter c (and the corresponding map fc) is at-

tracting, parabolic, Siegel or Cremer if it has a non repelling orbit of the

corresponding type; we will say that is is Misiurewicz or postsingularly finite

if P is finite.

Attracting parameters or maps are also referred to as hyperbolic parame-

ters or maps.

We will define the set of escaping parameters

I := {c, fnc (c)→∞ as n→∞}.

12



2.3 Structural Stability

We call a parameter c structurally stable if for every c′ close to c the functions

fc and fc′ are topologically conjugate.

We call a parameter c J-stable if for every c′ close to c the function fc and

fc′ are topologically conjugate on their Julia set.

Let R be the set of structurally stable parameters.

There are many equivalent characterizations of structural stability ([EL],

[Ye]).

Theorem 2.3.1. Let c ∈ C. The following are equivalent:

• c is structurally stable.

• c is J-stable.

• Either J(fc′) = C for all c′ in a neighborhood of c, or J(fc′) 6= C for

all c′ in a neighborhood of c.

• There is a neighborhood of c which contains no indifferent parameters

• The family of functions {c 7→ fnc (c)} is normal in c.

• for every c′ close to c the functions fc and fc′ are quasiconformally

conjugate.

Also, structural stability is dense ([EL], Theorem 10).

Theorem 2.3.2. The set R of structurally stable parameters for the expo-

nential family is dense in C. The conjugating homeomorphism can be chosen

to be quasiconformal.

The bifurcation locus B := C \ R is the set of parameters at which the

dynamics changes, and is the equivalent of the boundary of the Mandelbrot

set. It follows from [MSS] (see for example [R0], Theorem 5.1.5) that B = ∂I.
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Figure 2.1: Parameter plane for the family ez + c. The period one hyperbolic

component can be seen in white on the left, as well as the period two com-

ponents bifurcating from it. The dynamic rays are the darker curves on the

right side. The white regions between hyperbolic components are due to the

algorithm.
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Very little of its topological properties are known, however we have the

following results ([RS2], Theorem 2 and Theorem 5).

Theorem 2.3.3. B is a connected subset of C.

We will say that a set S ⊂ C is locally connected at x ∈ S if for each

neighborhood U of x there is a smaller neighborhood V ⊂ U of x such that

V ∩ S is connected.

Failure of local connectivity for the bifurcation locus of exponentials is

due to the fact that B contains the set of escaping parameters, and that

escaping parameters themselves are organized in curves going to infinity and

accumulating on each other creating a topological picture similar to the non-

locally connected comb space (see Theorem 3.1.5).

In the exponential family the bifurcation locus consists of non-escaping

parameters, escaping parameters which are on parameter rays and escaping

parameters which are endpoints of such parameter rays (see Section 3.1).

We will state the theorem about non local connectivity of the bifurcation

locus in terms of parameter rays (see Section 3.1).

Theorem 2.3.4. B is not locally connected at any escaping parameter which

is not the endpoint of a parameter ray.

This theorem follows from the fact that any escaping parameter which is

not an endpoint of a parameter ray is in the accumulation set of infinitely

many other parameter rays. The construction in [RS2], following ideas from

[De], perturbs a small piece L of parameter ray into a countable set of curves

approximating L and belonging to hyperbolic components, hence disconnect-

ing L from the other escaping parameters contained in any neighborhood of

L.

Like for many other one-parameter families, One of the main open prob-

lems is the so called density of hyperbolicity conjecture.
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Conjecture 2.3.5. Hyperbolic maps are dense in the exponential family.

By Theorem 2.3.2, it is enough to show that hyperbolic maps are dense in

R. Having an attracting orbit is a topological invariant, and in any connected

component ofR all maps are topologically conjugated, so any such connected

component can be either hyperbolic- in which cases all parameters in the

component are hyperbolic- or non-hyperbolic, if at least one parameter and

hence all parameters in the component do not have attracting orbits.

Non-hyperbolic components are often called queer components.

Conjecture 2.3.5 can be restated as follows.

Conjecture 2.3.6. All connected components in R are hyperbolic.

For the Mandelbrot set, the density of hyperbolicity conjecture is equiv-

alent to say that the bifurcation locus is locally connected; luckily for the

exponential family this is not the case, as the bifurcation locus is known to

be non locally connected.

Discussion on density of hyperbolicity can be restated in terms of rigidity

and fibers (see Section 4).

In analogy with [RS2] we will introduce the reduced bifurcation locus B∗ :=

B−{parameter rays}. It is then plausible, and would not contradict theorem

2.3.4, that B is locally connected exactly at points in B∗, or at parameters

in B∗ which are non-escaping.

As a final statement, let us mention that, while hyperbolic components

are unbounded and always contain a curve to infinity, non-hyperbolic compo-

nents do not have access to infinity as a consequence of the Squeezing Lemma

([R0], Theorem 5.3.5).

Theorem 2.3.7 (Squeezing Lemma). Let γ : [0, 1) → C be a curve in pa-

rameter space with |γ(t)| → ∞ which does not contain any indifferent pa-

rameters. Then either γ is contained in a parameter ray, or γ is contained

in a hyperbolic component.
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Chapter 3

Combinatorics

3.1 Dynamic and parameter rays

This section has the purpose of recollecting some of the relevant results about

rays and their landing properties. We assume the reader to be familiar with

construction and properties of dynamic and parameter rays for polynomials,

see for example [McM].

The construction of external rays for the exponential family has been

started by Devaney and coauthors ([BD1], [DK]) and completed by Schleicher

and Zimmer ([SZ1]).

We will use throughout the paper the concept of itinerary with respect to

a partition.

Definition 3.1.1. Let M = {Ma}a∈A be a countable collection of pairwise

disconnected regions of the plane such that each regions is labeled uniquely

by a letter in some countable alphabet A. Then whenever the iterates f j(z)

are contained in ∪
a∈A

Ma for each j we will say that the itinerary of z is the

sequence a = a1...an... of symbols of A such that f j(z) ∈ Maj
. In case that

M is a partition of a forward invariant set X, itineraries are well defined for

all points in X.
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Rays for the exponential family have been introduced in analogy with

the polynomial case in order to construct symbolic dynamics on the set of

escaping points

I(f) := {z ∈ C, |fn(z)| → ∞ as n→∞} ⊂ Πc.

Given an exponential map fc(z), the preimages of the semiaxis

L := {z ∈ C,Re z < Re c, Im z = Im c}

give a partition the plane (called static partition) into strips Sj

Sj := {z, Im z ∈ ((2j − 1)π, (2j + 1)π)}.

For points whose iterates never belong to L, we can consider itineraries with

respect to this partition, i.e.

itin(z) = s1s2 . . . if and only if f j(z) ∈ Ssj
.

For points whose jth iterate belongs to the boundary separating two strips

Ssj
and Ssj+1

the corresponding entry in the itinerary will be defined as the

boundary symbol
(
sj

sj+1

)
.

For a point z whose itinerary with respect to this partition contains no

boundary symbols we will refer to the itinerary as the external address of z.

By construction external addresses are sequences in ZN.

We will use the function F : R 7→ R, F : t 7→ et − 1 to model real

exponential growth.

Using the described construction itineraries of points cannot have entries

growing faster than iterates of the exponential function. This leads to the

following notion.

Definition 3.1.2. A sequence s = s1s2 . . . is called exponentially bounded if

∃ x ∈ R, |2πsj| < F j(x) ∀j ∈ N.
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This growth condition turns out to be not only necessary but also sufficient

[SZ1], so that all sequences s contained in the set

S := {s ∈ ZN such that s is exponentially bounded}

are realized as itineraries of some point z.

We will say that an address is periodic if it is a periodic sequence, prepe-

riodic if it is a strictly preperiodic sequence and (pre)periodic if it is either

periodic or strictly preperiodic.

The set S has a natural order induced by the usual order relation on the

space of sequences over an ordered set.

If s = s1s2 . . . , we will say that |s| = sup
i
|si|. We will say that s is bounded

if |s| <∞.

Also, given a an external address s we will define its minimal potential

ts := inf{t > 0, lim sup
k≥1

|sk|
F k(t)

= 0}.

Definition, existence and properties of dynamic rays for the exponential

family are summarized in the following theorem ([SZ1], Proposition 3.2 and

Theorem 4.2).

Theorem 3.1.3 (Existence of dynamic rays). Let c be a parameter such that

|fnc (c)| does not tend to infinity as n → ∞; then for any s ∈ S there exists

a unique injective curve gcs : (ts,∞) → C consisting of escaping points such

that

• gcs(t) has external address s for sufficiently large t;

• fc(gcs(t)) = gcσs(F (t));

• We have the asymptotics gcs(t) = 2πis1 + t+ Ce−t as t→∞.

If s = s1s2... and |sk| < AF (k−1)(x), and |c| < K then C ≤ 2(K+2+2π|s2|+
2πAC ′) where C’ is a universal constant
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The next remark follows from Proposition 3.4 and Remark 3.5 in [SZ1] .

Remark 2. Given fc with |c| < K, and s a bounded address, the points on

gs have itinerary s.

Given s ∈ S, we will call the unique curve gcs given by Theorem 3.1.3 the

dynamic ray of address s. As for polynomials, a dynamic ray is (pre)periodic

if and only if its address is (pre)periodic.

We will say that a dynamic ray gs lands at a parameter z if gs(t)→ z as

t→ ts.

The question whether periodic dynamic rays land for the exponential fam-

ily remained open for some time, and was finally solved by Rempe using the

previously known fact that periodic rays land for hyperbolic parameters and

an argument about persistence of landing inside wakes. This led to the fol-

lowing Theorem ([R1], Theorem 1).

Theorem 3.1.4 (Landing theorem for periodic dynamic rays). Let c be such

that the singular value c of fc does not escape to infinity. Then every periodic

dynamic ray gcs lands at a repelling or parabolic periodic point.

Note that as preperiodic points are preimages of periodic points, by con-

tinuity of the inverse map in a neighborhood of any periodic point Theorem

3.1.4 implies that preperiodic rays also land unless they are preimages of a

ray containing the singular value c.

The construction of parameter rays is also done keeping in mind the funda-

mental property of parameter rays that we have for polynomials: a point c be-

longs to some parameter ray Gs in ΠP if and only if it belongs to the dynamic

ray gcs in Πc. It is carried out by Forster and Schleicher and is summarized in

the following theorem about existence of parameter rays ([FS],Theorem 3.7).

Theorem 3.1.5 ( Existence of parameter rays). Let s ∈ S, ts its minimal

potential. Then there is a unique injective curve Gs : (ts,∞) → C, called a

parameter ray, such that, for all t > ts , c = Gs(t) if and only if c = gcs(t).
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The map Gs : (ts,∞) → C is continuous, and |Gs(t) − (t + 2πis1)| → 0

as t→∞.

Given an external address s ∈ S, we will call the unique curve Gs given

by Theorem 3.1.5 the parameter ray of address s.

Not much is known about the landing properties of parameter rays. Land-

ing of (pre)periodic parameter rays it was shown in [S0] and [SZ2].

Theorem 3.1.6. Each parameter rays of periodic address lands at a parabolic

parameter; each parameter ray with preperiodic address lands at a Misi-

urewicz parameter.

We will say that a parameter or dynamic ray is periodic if its address is

periodic, preperiodic if its address is strictly preperiodic and (pre)periodic if

it is either periodic or strictly preperiodic.

About parametrization of rays and asymptotics

Having dynamic rays parametrized with potential starting at ts instead of 0

makes this following continuity lemma true ([R2], Lemma 4.7).

Proposition 3.1.7 (Convergence of rays). Let fc be an exponential map, sn

a sequence of external addresses converging to an external address s0 such

that also tsn converges to ts0 , and let t0 > 0 such that gs0 (t) is defined for

all t > t0. Then gsn converges uniformly to gs0 on [t0,∞).

Corollary 3.1.8. Lemma 3.1.7 holds if {sn} is a sequence of addresses all

of which are (not necessarily uniformly) bounded, as in this case tsn = 0 for

all n.

This difference with respect to polynomials reflects the fact that in the

polynomial case rays only accumulate on a compact set (the Julia set) while
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for exponentials rays can accumulate on points with arbitrarily large modu-

lus. Observe that when restricted to bounded addresses, ts = 0, and Lemma

3.1.7 becomes more similar to the analogous property for polynomial rays.

Also the asymptotics in Theorem 3.1.3 depend on the bound on the ad-

dress.

Proposition 3.1.9 (Convergence of parameter rays). Let sn be a sequence

of external addresses converging to an external address s0 such that also tsn

converges to ts0 , and let t0 > 0 such that Gs0 (t) is defined for all t > t0.

Then Gsn converges uniformly to Gs0 on [t0,∞).

The regions Sj can be labeled so that S0 is either the region containing the

singular value or the region containing asymptotically the positive real axis.

In fact, whenever studying the family ez + c by vertical periodicity we could

restrict to singular values with imaginary part between −π and π. Choosing

S0 to be the region containing asymptotically the real positive axis has the

advantage of being consistent with the parametrization of parameter rays,

while choosing S0 to contain c has the advantage of labeling in the same way

dynamic rays for two parameters differing by 2πi.

Dynamic partition

We will say that we have a dynamic partition for an exponential map fc

whenever there is a curve starting at the singular value contained in the

Fatou set, or a dynamic ray landing at c. The preimages of such a curve

or ray partition the Julia set into countably many strips Lj such that each

dynamic ray is fully contained in one of the Lj.
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3.2 Combinatorial spaces and cyclic order

Theorems 3.1.3 and 3.1.5 establish a correspondence between the set of dy-

namic/parameter rays and the set of exponentially bounded addresses S for

the exponential family. Moreover, the equation fc(g
c
s(t)) = gcσs(F (t)) in The-

orem 3.1.3 tells that the dynamics of an exponential function fc on its set of

escaping points I is conjugate to the dynamics of the left-sided shift map σ

on S. The asymptotic estimates in Theorems 3.1.3, 3.1.5 show that dynamic

and parameter rays have a well defined vertical order at infinity and that this

order coincides with the order of their addresses in S. For all this reasons we

will refer to S as the combinatorial space for the family ez + c.

For the family of unicritical polynomials PD, the dynamic/parameter rays

are in correspondence with the sequences over D symbols (angles in D-adic

expansion), that we can represent as

SD = {−D + 1
2

, . . . , 0, . . . ,
D − 1

2
}N for D odd

SD = {−D + 2
2

, . . . , 0, . . . ,
D

2
}N for D even

As for the exponential family, the dynamics of a unicritical polynomial of

degree D on the set of dynamic rays is conjugate to the the dynamics of the

shift map σ on SD; also, dynamic and parameter rays have a cyclic order

at infinity which corresponds to the cyclic order on SD if we identify the

sequences modulo D.

If l, s ∈ ZN are two sequences, l = l1l2 . . . and s = s1s2 . . . , we define the

following distance:

dist(l, s) =
∑
sk 6=lk

1

2k
.

This turns S, SD into metric spaces.

The space SD embeds naturally in S via the identity map; similarly, if

A ⊂ S is such that |s| < N for each s ∈ A, A embeds in SD via the identity
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map for each D > 2N + 2. We will refer to SD as the combinatorial space

for the family PD.

We will refer to this description as combinatorial correspondence between

the exponential family and polynomials of sufficiently high degree D.

The following proposition is certainly well known to people working in the

field, but we prefer to state it and prove it explicitly.

Proposition 3.2.1 (Inverse of the shift map). Let gs1 , gs2 be two dynamic

rays landing together with s1 < s2, and Γ be the curve formed by gs1 and gs2

together with their common landing point w. Γ separates the plane into two

regions, one that we will call V1 and which is vertically bounded (in the sense

that it contains only points with bounded imaginary parts) and one that we

will call V2 and which is vertically unbounded. Then either c ∈ V1 and the

rays g(a+1)s1 , gas2 land together for any a ∈ Z, or c ∈ V2 and gas1 , gas2 land

together for any a ∈ Z.

Proof. As all the dynamic rays of addresses gas are curves congruent to g0s

translated by 2πai, it is enough to prove the statement for a = 0. Give an

orientation to Γ so that V1 is to the left of Γ. The preimage of Γ clearly

consists of a preimage of gs1 , a preimage of gs2 and a preimage of w, oriented

so as to start with the preimage of gs2 , then the preimage of w and eventually

the preimage of gs2 . As rays cannot intersect, g0s2 can only be connected to

g0s1 or g1s1 . In the first case, as 0s1 < 0s2, the preimage of V1 is the vertically

bounded region enclosed by g0s1 ,g0s2 and their common landing point, and it

is mapped univalently to V1, hence V1 did not contain the singular value.

In the second case, as 1s1 > 0s2, the preimage of V1 contains a left half

plane, hence V1 contains c.
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3.3 Orbit portraits and ray portraits

This section introduces orbit portraits for the exponential family (in anal-

ogy with [Mi1, RS1]) and presents some theorems about the correspondence

between (pre)periodic parameter rays for polynomials and (pre)periodic pa-

rameter rays for exponentials.

Definition 3.3.1. Let gs0 , gs1 be two dynamic or parameter rays with (pre)periodic

addresses, landing together at some point z. We call the ray pair formed by

gs0 , gs1 the curve Γ formed by gs0 ∪ gs1 ∪ {z}. We will denote as the region

enclosed by the ray pair the connected component of C − Γ containing the

rays of addresses s, s0 < s < s1.

Definition 3.3.2. Let {zi}i=1···n be a repelling or parabolic periodic orbit

of period n in Πc, and Ai := {r ∈ S, r is periodic and gcr lands at zi}. Then

P = {A1, · · · ,An} is said to be the combinatorial orbit portrait for {zi}.

Similarly,

Definition 3.3.3. Let {zi}i=1···n be a repelling or parabolic periodic orbit of

period n in Πc, and Ai := {gcr, gcr lands at zi}. Then P = {A1, · · · An} is said

to be the orbit portrait for {zi}.

Theorem 3.3.4 (Basic properties of combinatorial orbit portraits [RS1]).

Given a combinatorial orbit portrait P, every Ai ∈ P consists of a finite

number of periodic addresses, and the shift map sends Ai bijectively onto

Ai+1. All addresses share the same period qn.

Theorem 3.3.5 (Basic properties of orbit portraits [RS1]). Given an orbit

portrait P , every Ai ∈ P consists of a finite number of dynamic rays, and f

maps Ai bijectively onto Ai+1. All dynamic rays in the portrait are periodic

with the same period qn.
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Remark: in a more abstract way, we will speak of a combinatorial orbit

portrait without specifying a periodic orbit {z1}; such a combinatorial object

is not necessarily realized (i.e occurs for some parameter) as an actual orbit

portrait for some polynomial or exponential map.

Definition 3.3.6. The combinatorial ray portrait of a function f is the col-

lection of combinatorial orbit portraits realized by f .

The following theorems will show the relation between the combinatorial

orbit portraits which are realized for exponential maps and the ones which

are realized for unicritical polynomials. As there are necessary and sufficient

conditions for a combinatorial orbit portrait to be realized for polynomials,

this gives unique and sufficient conditions for a combinatorial portrait to be

realized for exponentials.

The following proofs refer to properties of Misiurewicz parameters proven

in Chapter 5.1. We chose to do so in order to collect all properties related

to orbit portraits in the same chapter. Of course, the proofs in Chapter 5.1

do not rely on the following results.

Let us first state a correspondence between Misiurewicz parameters for

exponential maps and for unicritical polynomials.

Theorem 3.3.7 (Misiurewicz addresses for exponentials and polynomials).

The parameter rays Gs1 , . . . , Gsq land together at some exponential Misi-

urewicz parameter in the exponential parameter plane if and only if for each

family of unicritical polynomials of sufficiently high degree D the parameter

rays with the same addresses land together at some polynomial Misiurewicz

parameter.

Proof. Let Gs1 , . . . , Gsq be the parameter rays landing together at some Mi-

siurewicz parameter c0 in exponential parameter plane. Then the dynamic

rays with the corresponding addresses gs1 , . . . , gsq all have the same itineraries
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with respect to the dynamical partition induced by gs1 in Πc0 (see Section

5.1), because together with c0 they form a connected set whose orbit cannot

intersect the boundaries of the dynamical partition. The address s1 is prepe-

riodic, so it is a sequence over finitely many values, so for polynomials of

sufficiently high degree D it represents the D-adic expansion of the angle of

some parameter ray. As (pre)periodic parameter rays are well known to land

for unicritical polynomials, there is a Misiurewicz parameter c1 depending

on D which is the landing point of the corresponding parameter ray.

By 5.1.1, the dynamic ray gs1 lands at c1 in the polynomial dynamical

plane for fc1 .

All the polynomial dynamic rays gs2 , . . . , gsq also have the same itinerary

with respect to the partition induced by gs1 so by Theorem 5.1.4 they all land

together in the dynamical plane for fc1 . Then by 5.1.1 the corresponding

parameter rays land together at c1 in the polynomial parameter plane.

We will now define characteristic rays. We will state the definitions for

exponentials, the corresponding definitions for polynomials are analogous

(see [Mi1]).

Definition 3.3.8. Given an orbit portrait, the characteristic rays are the

rays gs1 , gs2 which, together with their common endpoint, separate the sin-

gular value from all other rays in the portrait; compare with Lemma 3.3 in

[RS1] for existence and uniqueness.

The characteristic sector of an orbit portrait is given by the set of points

enclosed between gs1 and gs2 .

Definition 3.3.9. A characteristic ray pair is a pair of parameter rays

Gs1 , Gs2 with periodic addresses landing together in parameter plane. We

will say that the region enclosed by the ray pair formed by Gs1 and Gs2 is

the parabolic wake defined by Gs1 , Gs2 .
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Definition 3.3.10. Let s < 1... < sq be preperiodic addresses such that Gsi

lands at a Misiurewicz parameter c0 for i = 1...q. The region enclosed by the

ray pair formed by Gs1 and Gs2 is called the Misiurewicz wake defined by

Gs1 , Gsq .

Theorem 3.3.11 (Correspondence of bifurcations). A parameter c belongs to

the parabolic wake defined by two parameter rays Gs1 , Gs2 together with their

common landing point if and only if the dynamic rays gs1 , gs2 land together in

the dynamical plane Πc and are the characteristic rays for some orbit portrait

in Πc. We will call s1, s2 a pair of characteristic addresses.

Corollary 3.3.12. Gs1 , Gs2 is a characteristic ray pair, landing together at

some parameter c, if and only if the dynamic rays gs1 , gs2 are the character-

istic rays of some orbit portrait.

Remark: Theorem 3.3.11 is not explicitly stated in this way. It follows

from Proposition 5.4 in [RS1] when c is hyperbolic or parabolic, and can

be extended by holomorphic motions to all other parameters similarly as in

[R1].

Corollary 3.3.13 (Persistence of orbit portraits). An orbit portrait persists

in the wake defined in parameter plane by the parameter rays identified by its

characteristic addresses.

Theorem 3.3.14 (Misiurewicz wakes). Let s1 < ... < sq be preperiodic

addresses such that Gsi
lands at a Misiurewicz parameter c0 for i = 1...q.

Then the dynamic rays gcs1 ...g
c
sq

land together in the dynamical plane for fc

if and only if c belongs to the Misiurewicz wake defined by Gs1 , Gsq .

Proof. The dynamic rays gc0s1 ...g
c0
sq

land together in the dynamical plane for

fc0 by Theorem 5.1.1. As the addresses si are preperiodic, the image of the

dynamic rays gc0s1 ...g
c0
sq

under finitely many iterates defines an orbit portrait
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P , and c0 belongs to some parabolic wake W identified by the characteristic

addresses of P , in which the orbit portrait P is defined.

Let s̃1..s̃q be the addresses of the rays in P . The pullback of P is well

defined for all all parameters c such that fk(c) never belongs to P , i.e. for

all parameters c which do not belong to the parameter rays of address s such

that σx(s) belongs to the set {s̃i} and which are not the landing point of one

of those rays.

If m is the period of the dynamic rays in P , the first m pullbacks of P

are always well defined. The m + 1th pullback depends on whether fm(c)

belongs to the region enclosed by P or not. In the the first case, c is inside the

Misiurewicz wake defined by f−m(c), while in the second case c is outside.

Theorem 3.3.15 (Correspondence of characteristic rays). A pair of ad-

dresses is characteristic for exponentials if and only if it is characteristic

for some unicritical polynomial of some degree D.

Remark: by the definitions and Theorem 3.3.11 this will show that if the

parameter rays with periodic address Gs1 , Gs2 land together in the param-

eter space ΠD
P for some D then the parameter rays with the corresponding

addresses land together in the parameter space of exponential maps ΠP ; on

the other side, if the parameter rays Gs1 , Gs2 land together in ΠP , they land

together in ΠD
P for all sufficiently high D.

Proof. Let P = {Ai} be a combinatorial orbit portrait. The inverse of the

shift map brings each non-characteristic sector to a sector bounded by rays

whose addresses have the same first entry, and the characteristic sector to a

sector bounded by rays for whose addresses the first entry differs by one.

So, being a characteristic sector is encoded in the topological orbit por-

trait, and the claim will follow if we can show that every combinatorial por-

trait is realized in the exponential family if and only if it is realized for PD

of sufficiently high degree D.
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If P is realized for some polynomial in {PD
c }, it persists in the whole wake

bounded by its characteristic addresses so in particular it is realized for some

polynomial Misiurewicz parameter c as well.

This Misiurewicz parameter is the landing point of a dynamic ray of angle

s, inducing a dynamical partition as described in the section 5.1. The rays

whose angles belong to the same Ai land together, so they have the same

itinerary with respect to this partition by 5.1.4; in particular, their angles

have the same itineraries under the shift map with respect to the partition

induced by s.

By the combinatorial correspondence between polynomials and exponen-

tials the angle s in D-adic expansion can be seen as an address s which

identifies a Misiurewicz parameter c̃ in the exponential family by 5.1.2. All

the dynamic rays whose addresses belong to P exist in the dynamical plane

of c̃, and by Lemma 5.1.4 they land together as they have the same itinerary

with respect to the partition induced by the ray landing at the Misiurewicz

parameter.

If P is realized for an exponential parameter, it persists in a wake by

Theorem 3.3.11, so it is realized for some Misiurewicz parameter and can be

transfered to a polynomial Misiurewicz parameter whose degree is sufficiently

high to ensure the existence of the dynamic rays whose addresses belong to

P and of the dynamic ray landing at the Misiurewicz parameter.

3.4 Combinatorial tuning

The description of combinatorial tuning in this section follows the ideas from

[Do] and [R0]. We will describe the tuning procedure for unicritical poly-

nomial of degree D. For simplicity we will label angles as sequences over

SD = {1, ..., D}N; the combinatorial space obtained is clearly isomorphic to
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the combinatorial space described is Section 3.2. This discussion can be gen-

eralized to the exponential family with a little extra care for the fact that the

space of addresses does not have a cyclic order, resulting in a discontinuity

of the tuning map.

Lets us consider the family PD = {fc(z) = zD + c}. The parabolic wake of

a period m component Wm is bounded by two characteristic addresses, and

contains in its interior D − 2 other parameter rays of period m landing at

cusps of ∂Wm. This gives a total of D parameter rays of angles s1 < ... < sD

of period m subdividing the wake of Wm into D − 1 sectors S1, ..., SD−1,

labeled such that Si is the sector enclosed by Gsi
and Gsi+1

. Observe that

Gs1 and GsD
are the characteristic rays of the wake. Also each si is a sequence

of period m, which we can write as si = ui, where ui are finite sequences of

m symbols.

Proposition 3.4.1 (Combinatorial width). Given a hyperbolic component

Wm, if s1 and sD are its characteristic angles, dist(s1, s2) < 1/m

Proof. The addresses of the parameter rays defining a parabolic wake are the

same as the addresses of the characteristic dynamic rays in the corresponding

orbit portrait, which contains at least m dynamic rays. As the characteristic

sector is the one with smallest width among the sectors in the portrait, its

combinatorial width is less than 1/m.

Given an angle ` = a1a2..., and a hyperbolic component Wm, we will define

the tuning of ` with respect to Wm as

τ(`) = ua1ua2 ...,

i.e. a new angle where each symbol in the dyadic expansion is replaced by a

string of m symbols u1, ...uD defined by Wm. This map is well defined for any

angle `, is injective, its range is contained in the wake of Wm and preserves

cyclic order.
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We say that an angle ` is an angle tuned by a hyperbolic component Wm if

` = ua1ua2 ... where ui are the angles defined by the wake of Wm. We call the

sequence ρ(`) = a1a2... ∈ {1, ..., D}N the renormalization of ` (with respect

to Wn).

Definition 3.4.2. Let σ be the shift map. We say that an angle s is non

recurrent if s /∈ O(s) := {σn(s)}.

Proposition 3.4.3 (Recurrence and tuning). If s is tuned by a hyperbolic

component of period m, dist(σmk1s, σmk2s) < Cm → 0 as m → ∞, for any

integers k1, k2. In particular, if s is non recurrent, it cannot be an angle

tuned by infinitely many hyperbolic components.

Proof. If s is tuned by a hyperbolic component of period m, s = ua1ua2 ...

where uai
are sequences of m symbols and dist(uai

, uaj
) < Cm by Proposition

3.4.1. The first claim follows. The second claim follows from the fact that if

s is tuned by infinitely many components, there exists ni →∞, and ki →∞,

such that

dist(s, σnikis) < Cm,

hence s is recurrent.

3.5 Properties of conjugacies between expo-

nential maps

For completeness and further reference let us collect some properties of con-

jugacies between non-escaping exponential maps. They can be seen as addi-

tions to the work of Rempe in [R2].

Suppose we have a topological conjugacy between two exponential maps

f and g, whose singular values are cf and cg respectively. We have that

h(cf ) = cg because it is the unique omitted value.
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On both planes, label the strips of the static partition so that the strip

containing the singular value is called S0. Note that if we label the rays in

this way we do not have the usual correspondence between parameter and

dynamical plane.

Our goal will be to show that dynamic rays are mapped to dynamic rays,

and that the labeling above is preserved by h. The next two theorems are

Theorem 1.1 and Theorem 8.2 in [R2].

Theorem 3.5.1 (Existence of conjugacy). Let fc1 and fc2 be two exponential

maps, R be large enough and

AR := {z ∈ C, |fnc1(z)| ≥ R ∀ n ∈ N}

. Then there exists a quasiconformal map φ: C → C conjugating fc1 to fc2

on A.

|fnc1(z)− fnc2(φ(z))| → 0 on A ∩ I(fc1).

If neither c1 nor c2 are escaping, we can extend φ|AR∩I(fc1 ) to a bijection

(not necessarily continuous) between escaping sets satisfying the properties

above.

Theorem 3.5.2 (Uniqueness of conjugacy). Suppose f1 and f2 are exponen-

tial maps with non escaping singular value, which are conjugate on their set

of escaping points by a conjugacy h which sends each dynamic ray of f to

the corresponding dynamic ray of f 2. Then h is the standard conjugacy.

Theorem 3.5.3 (Correspondence of rays). Let f1, f2 be two exponential maps

conjugate by a homeomorphism h. Let g1
s be the dynamic ray of address s in

the f1 plane and g2
s be the dynamic ray of address s in the f2 plane. Then

h(g1
s) = g2

s .

Proof. Escaping points are mapped to escaping points, because h maps com-

pact sets to compact sets, so if a point escapes any compact set in the f1
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plane, its image under h escapes all compact sets in the f2 plane. Analo-

gously, rays are mapped to rays, because path connected sets are mapped

to path connected sets under a continuous map and rays are the only path

connected components of the escaping set. So the only question is whether

a ray of a given address is mapped to a ray of the same address.

Let us start showing that h(z + 2πi) = h(z) + 2πi. By the functional

equation h(f1(z)) = f2(h(z)) we have that

h(f1(z + 2πi)) = f2(h(z + 2πi)) (3.5.1)

LHS = h(f1(z)) = f2(h(z)) by the functional equation, so

(3.5.2)

f2(h(z)) = f2(h(z + 2πi)); (3.5.3)

by injectivity of the exponential map f2 on horizontal strips of width 2πi we

have

h(z + 2πi) = h(z) + 2nπi. (3.5.4)

Note that n, being integer, is constant by continuity of h.

Suppose that n 6= 1, and consider the set F (z) given by any point z

together with all its 2πi translates; the image of this set would only consist

of h(z) and all translates which are multiples of n, so their image under h−1

is surjective in F (z). On the other side, by 3.5.4, the image of any point of

the form h(z) + kπi is also contained in F (z), contradicting injectivity of h

unless n = 1.

This proves that if the ray of address 0 is mapped to the ray of address

s0, any ray of address s is mapped to the ray of address s + s0, so we only

have to show that s0 = 0 and it is enough to show that the ray of address 0

goes to the ray of address 0.

The ray g1
0

for large potentials has to belong to the strip S0 in the f1

plane, as it is the strip of the singular value, g2
s+s0

also has to belong to the
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singular strip S0 in the f2-plane (otherwise connect the tail of the first ray

to c1 by a curve contained in S0, by 2πi periodicity it has to go to a curve

connecting c2 to g2
s+s0

which only intersects one strip ), so the first entry of

s0 has to be zero. Repeating the same argument for preimages of g1
0

gives

that s0 is identically zero.

Note that the labeling we use is not the same as the labeling in [R2], but

Theorem 3.5.2 still holds up to pre-post composition by a translation from

the model space into itself (i.e. by redefining the canonical conjugacy with a

different labeling)

Lemma 3.5.4. Suppose that h is a topological conjugacy between two holo-

morphic functions f and g which is K-quasiconformal on some set E ⊂ C.

Then h is K-quasiconformal on f−1
1 (E).

Proof. Draw a picture of the commutative diagram. We obtain that h|f−1(E) =

g−1 ◦ h|E ◦ f . By holomorphicity of f and g the quasiconformality constant

of h|E is preserved on f−1(E).
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Chapter 4

Fibers and Rigidity

4.1 Fibers and Rigidity

One of the main problems in one-dimensional complex dynamics is to show

that the set of structurally stable parameters R consists only of hyperbolic

components. The statement for the exponential family is

Conjecture 4.1.1. Hyperbolic maps are dense in the family fc(z) = ez + c.

One way for studying non-hyperbolic components is to concentrate on

topological invariants. For example, repelling periodic orbits are stable under

perturbations, as well as the set of dynamic rays landing at them (not only

topologically but also combinatorially- as rays are labeled by sequences over

the integers).

In any connected component of R, all the maps are topologically con-

jugate, hence all have the same combinatorial ray portraits (see Definition

3.3.6). By Corollary 3.3.13, two maps which are topologically conjugate are

also contained in the same set of wakes, which implies that they cannot be

separated by any pair of periodic rays landing together (and hence forming

a wake). The collection of all orbit portraits of an exponential maps is often
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referred to as combinatorics of the map, hence all maps in the same struc-

turally stable component have the same combinatorics. This leads to the

following definitions.

Definition 4.1.2. The parameter fiber of a parameter c0 is the set of pa-

rameters which cannot be separated from c0 by some pair of (pre)periodic

parameter rays landing together at a parabolic or Misiurewicz parameter.By

analogy, the dynamical fiber of a point c0 is the set of points which cannot

be separated from c0 by some pair of (pre)periodic rays landing together at

some (pre)periodic point.

Remark: in [RS2], this definition corresponds to the definition of extended

fibers.

Definition 4.1.3. We will say that the fiber of a point c0 in dynamical/parameter

space is trivial, if any point c 6= c0 can be separated from c0 via a pair of

(pre)periodic dynamic/parameter rays landing together (a ray pair), except

for the points belonging to the dynamic/parameter rays which might land at

the point c0 itself.

The following conjecture in terms of fibers implies the Density of Hyper-

bolicity Conjecture.

Conjecture 4.1.4 (Rigidity conjecture). Fibers of non-hyperbolic parame-

ters are trivial.

Note that the definitions of fiber in dynamical and in parameter space are

analogous by replacing dynamic rays with parameter rays. We will call any

result about triviality of fibers a rigidity result. This comes from the fact

that any map whose singular value does not escape and whose fiber is trivial

cannot be conjugate to any other map in a neighborhood because two maps

with different ray portrait cannot be topologically conjugate.
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We will call reduced fiber a fiber intersected with the reduced bifurcation

locus B∗ := B − {parameter rays}.
Some properties of fibers, coming from Theorem 7 in [RS2] are summarized

in the next theorem.

Theorem 4.1.5. Every fiber is a closed connected subset of parameter space.

Moreover, if the fiber does not contain hyperbolic parameters, than it inter-

sects B∗. A reduced fiber, and hence a fiber, is either trivial or uncountable.

The next result follows immediately from the previous definitions. (See

again [RS2] for a slightly different formulation of this discussion.)

Theorem 4.1.6. If the fiber of every non hyperbolic parameter with non-

escaping singular value is trivial, then every components in the set of struc-

turally stable parameters is hyperbolic.

There are two main advantages in considering fibers to study density of

hyperbolicity: for the exponential case, periodic parameter rays for expo-

nentials are closely related to parameter rays for unicritical polynomials (see

Theorem 3.3.15), so that it is possible to infer results about exponentials us-

ing known results about polynomials; the second one, and more general one,

is that fibers are a way to localize the global conjecture, and select specific

classes of parameters which are easier to study.

Our main results will concern triviality of fibers for Misiurewicz and non-

recurrent parameters with bounded postsingular set.
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Chapter 5

Misiurewicz parameters

5.1 Misiurewicz parameters

Given the exponential family fc = ez + c, or a family of degree D unicritical

polynomials fc = zD+c, we call a parameter c0 Misiurewicz (or postsingularly

finite) if the orbit of the singular value is preperiodic.

Note that the singular value is an omitted value and hence for the ex-

ponential family the postsingular orbit cannot be periodic; note also that

such an orbit has to be repelling, otherwise the unique singular/critical value

would belong to the immediate attracting basin by an old theorem of Fatou

contradicting the fact that it is preperiodic.

So being postsingularly finite is equivalent to say that the singular value

c0 lands at some repelling orbit {zi} of period m after k iterations, for some

integers k,m.

From the definition above and the discreteness of solutions of the equation

fk+m
c (c) = fkc (c), it follows immediately that Misiurewicz parameters belong

to the bifurcation locus. There cannot be hyperbolic or parabolic Fatou

components because c belongs to the Julia set, nor Siegel disks because the

orbit of c accumulates on a finite set, so for an exponential Misiurewicz map
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the Julia set is equal to C.

We will say that an exponential or polynomial map fc0 is Misiurewicz (or

postsingularly finite) if c0 is a Misiurewicz parameter.

There are a few reasons why proving triviality of fibers (see section 4 for

definition of fibers and a discussion on rigidity) for Misiurewicz parameters

is easier than the other cases. Among them, there is a theorem proven by

Schleicher and Zimmer in [SZ1].

Theorem 5.1.1 (Correspondence between dynamical and parameter plane

at Misiurewicz points). A Misiurewicz parameter c0 is the landing point

of finitely many parameter rays Gs1 , .., Gsq whose addresses s1 < ... < sq

are preperiodic of period mq and preperiod k; moreover, the dynamic rays

gs1 , ..., gsq with the corresponding addresses land at c0 in Πc0.

This theorem, well known for unicritical polynomials, expresses a form

of combinatorial similarity between parameter and dynamical plane at Mi-

siurewicz points. Together with the generalization of Thurston’s rigidity

theorem for exponentials ([HSS]) and a subsequent work ([LSV]), it gives a

combinatorial classification of postsingularly finite exponential maps in the

following Theorem ( [LSV], Theorem 2.6):

Theorem 5.1.2 (Classification of Misiurewicz exponential maps). For ev-

ery preperiodic address s, there is a unique postsingularly finite exponential

map such that the dynamic ray of address s lands at the singular value. Ev-

ery postsingularly finite exponential map is associated in this way to a finite

number of preperiodic addresses.

For unicritical polynomials it is well known that preperiodic parameter

rays land at Misiurewicz parameters and that Misiurewicz parameters are

landing points of preperiodic parameter rays, so the previous theorem offers

a natural correspondence between exponential Misiurewicz parameters and
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polynomial Misiurewicz parameters through the addresses of the parameter

rays landing at them.

Before exploring further the consequences of the combinatorial classifica-

tion of Misiurewicz exponential maps, let us mention that the second main

ingredient in proving triviality of fibers is offered by the linearizing coordi-

nates which give contraction under the inverse map in a neighborhood of the

postsingular periodic orbit.

Figure 5.1: Parameter (on the left) and dynamical plane near the Misiurewicz

parameter 1.81507+4.70945i; the spiralling of the two rays landing at it can

be inferred from the picture.

A combinatorial property of Misiurewicz parameters One of the

features of Misiurewicz parameters that we are going to use in the proof of

our main theorem is a lemma connecting topology to combinatorics. It is

proved in [SZ1] for exponentials and seems to be well known for unicritical
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poynomials of degree D; for completeness we will include a proof following

the outline of [SZ2].

Dynamical partition Let f(z) = ez + c0 or f(z) = zD + c0 where c0 is

a Misiurewicz parameter, and choose one of the finitely many dynamic rays

landing at c0 given by Theorem 5.1.1, say gs1 , where s1 is the address/angle

respectively. The preimage of gs1 under f is a set of countably many curves

going to −∞ in the case of exponentials, and a set of D curves connecting at

0 for a polynomial of degree D. In both cases, the preimages of gs1 partition

the plane into open regions Wj.

Similarly, the preimages of s1 under the shift map partition into the same

number of sectors the combinatorial spaces S and SD. Label with the entry 0

the dynamical and the combinatorial sector containing c0 and s1 respectively,

and label all other sectors using consecutive integers respecting cyclic order

at infinity.

Any non-escaping point and any ray gs which is not a preimage of gs1

has a well defined itinerary whose entries keep track of the sectors visited by

iterates of s under the shift map. We call this partition of the plane into the

open regions Wi a dynamical partition for fc0 .

Remark : depending on the choice of the dynamic ray landing at c0 we will

obtain different dynamical partitions. However, this choice will not matter

to us.

In order to use a hyperbolic contraction argument we need a picture which

is forward invariant, so we also need to remove from C the finitely many

forward images of gs1 . We obtain a new partition of the plane into domains

Ŵi,j where for each fixed i Ŵi,j denotes a connected component of ⊂ Wi.

For convenience of the reader, let us recall that any hyperbolic surface

S, and in particular any region of C whose complement contains at least

two points, has for universal covering the unit disk; by pushing forward the
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hyperbolic metric on the unit disk via the covering map, we obtain a well

defined hyperbolic metric ρS on S.

We will use the following basic theorem about hyperbolic contraction

([Mi], Theorem 2.11):

Theorem 5.1.3 (Schwarz-Pick Lemma). If f : S → S ′ is a holomorphic

map between Riemann surfaces, either f is a local isometry, or f strictly

decreases all nonzero distances in the hyperbolic metrics of S, S ′ respectively.

We are now ready to prove the following lemma:

Lemma 5.1.4 (Significance of dynamical partition for Misiurewicz param-

eters). Two (pre)periodic rays which are not preimages of the dynamic rays

landing at the singular value land together if and only if they have the same

itinerary with respect to the dynamical partition described above.

Proof. Endow each of the regions Wi and of the domains Ŵi,j with the cor-

responding hyperbolic metric. Given a region Wi, we can choose a branch of

f−1
i mapping C− gs1 into Wi, so that the same branch restricted to any Wj′

contracts the hyperbolic metric from Wj′ to Wi. Similarly each Ŵi,j carries

its own hyperbolic metric which is bigger than the metric of Wi, and the

restriction of f−1
i to any Ŵi,j contracts the hyperbolic metric of that Ŵi,j.

Let us start by considering any two periodic rays which have the same

itinerary; they land at two points w1 and w2 which are periodic, so that up

to selecting branches they are both fixed under some M -th iterate f−M of

the inverse of f .

The periodic points w1 and w2 have the same itinerary under fk, k = 1...m

so at each step we can select the same branch of f−1 and get hyperbolic con-

traction along the backward orbits until we get back to w1 and w2 decreasing

hyperbolic distance, which is a contradiction unless w1 = w2 to start with.

43



This proves the theorem for periodic rays unless the iterates of w1 and

w2 always belong to different connected components of Wj − ∪nfn(gs1) (i.e

to different Ŵi,j). So suppose that w1 and w2 belong to the same Wi but

to different Ŵi,j; then at least one of them, say w1, belongs to one of the

internal sectors defined in the section about orbit portraits and originating

at some point z of the postsingular periodic orbit: the dynamics permutes

those sectors transitively, so each image fn(w1) belongs to the same Wi as

fn(z), hence w1 has the same itinerary as z and, as w2 has the same itinerary

as w1, it also has the same itinerary as z.

Remains to prove that no periodic point wi can have the same itinerary as

some postsingular periodic point z. The family of inverse iterates is normal

in a neighborhood of z, and is defined in a connected set containing wi

because the two points have the same itinerary. As the iterates converge to

the constant map contracting everything to z in a linearizing neighborhood

for z, they converge to the same map in the entire domain where they are

defined, contradicting the fact that wi is fixed under some appropriate iterate

of the inverse function.

If the rays are preperiodic and have the same itinerary their periodic

images also have the same itineray, hence land together by previous part;

and since our preperiodic rays are not preimages of the rays landing at the

singular value, and they have the same itinerary, we can take pullbacks using

the same branch for both, so that they keep landing together.

On the other side if two rays land together they form a connected set,

which never intersects the original partition under iterates of f , so they

always belong to the same region of the partition.
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5.2 Triviality of Misiurewicz fibers

In this section we prove Theorem 5.2.4; for the remaining of the section, let

c0 be a Misiurewicz parameter.

The proof follows the outline of the corresponding result for polynomials

(Lemma 7.1 and Theorem 7.3 in [S1]), using Theorem 3.3.7 to establish a

bridge between the combinatorics for polynomials and the combinatorics for

exponentials.

In particular, we will prove the exponential version of Lemma 7.1 in [S1],

whose statement is exactly the same except for replacing polynomial maps

with exponential maps:

Proposition 5.2.1 (Combinatorial approximation of parameter rays). Let

c0 be a Misiurewicz parameter for the exponential family or for a family of

unicritical polynomials, and let Gs1 , ..., Gsq be the parameter rays landing

at c0. Then for any ε > 0 there exist parameter ray pairs Pi of angles

(αi, α
′
i) such that si < αi < α′i < si+1 for i = 1...q − 1 and dist(αi, si) < ε,

dist (α′i, si+1) < ε; moreover there is a parameter ray pair P0 of angles (α0, α
′
0)

such that α0 < s1 < sq < α′0 and dist(α0, s1) < ε, dist (α′0, sq) < ε.

This is Lemma 7.1 in [S1] for polynomials and will be proven below for

exponentials. There is a crucial point here: at first sight it might seem that

this proposition would solve our problem, but the relation between the ”com-

binatorial topology” and the topology on C are far from clear, so we still have

to show that those rays which approximate the Misiurewicz rays combinato-

rially actually converge to them with respect to the standard topology on C

in a neighborhood of c0. We will derive this from the following propositions:

Proposition 5.2.2 (Triviality in dynamical plane). Let c0 be a Misiurewicz

parameter for the exponential family . Then dynamical fibers of the postsin-

gular periodic orbit {zi} are trivial.

45



Proposition 5.2.3 (Persistence of dynamical triviality). Let c0 be as above.

The postsingular periodic orbit has a well defined analytic continuation {zi(c)}
for c in a neighborhood of c0, and the dynamical fibers of points in this analytic

continuation are trivial up to restricting to a smaller parameter neighborhood.

At this point we will be able to prove our final theorem.

Theorem 5.2.4 (Triviality of Misiurewicz fibers). Any parameter c can be

separated from c0 by a parameter ray pair, except for those parameters lying

on the rays Gsi
landing at c0.

Proof of Proposition 5.2.1: Combinatorial approximation of parameter rays.

The core of the proof relies on the correspondence between combinatorial

spaces for polynomials and for exponential parameters described in the end

of Section 3.1; when the angles labeling rays for polynomials of degree D are

written in D-adic expansion as sequences with D symbols, they can be seen as

a subset of the exponentially bounded sequences encoding the combinatorics

for exponential maps.

Consider the dynamic rays of addresses s1, . . . , sq landing at the Misi-

urewicz parameter c0. As noted in Lemma 5.1.4, each gsi
defines a partition

with respect to which dynamic rays which are never mapped to gsi
have the

same itinerary if and only if they land together in the dynamical plane.

Also, c0 is the landing point of the parameter raysGs1 , ..., Gsq . As s1, . . . , sq

include only finitely many symbols because they are finitely many preperi-

odic addresses, by taking a sufficiently high degree the parameter rays of

angles s1, ..., sq exist. If we choose one of them, say s1, Gs1 lands at some

polynomial Misiurewicz parameter cD.

For cD the dynamic ray at angle s1 also lands at the singular value. All

other angles s2, . . . , sq have the same itinerary as s1 with respect to the

partition induced by s1 because they land together in Πc0 , so by Lemma 5.1.4
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the dynamic rays gs1 , ..., gsq all land together at cP0 . No other dynamic ray can

land together with them, otherwise its angle would be an admissible sequence

for exponentials and would have the same itinerary, so the corresponding ray

would land together with gs1 , . . . , gsq in the exponential dynamical plane as

well.

In the dynamical plane ΠD
cD

by Lemma 7.1 in [S1] we have characteristic

dynamic ray pairs approximating each sector arbitrarily close, and the two

rays in each ray pair have the same itinerary again by Lemma 5.1.4; this is a

purely combinatorial notion, so that it carries over to exponentials and the

ray pairs with the same addresses keep landing together in the dynamical

plane for ez + c0, giving the wanted approximating couples of rays in the

dynamical plane.

Let us transfer those approximating ray pairs to the parameter plane for

exponential maps. By Proposition 3.3.11 as the approximating rays are char-

acteristic the parameter rays with the corresponding addresses land together

in the exponential parameter plane giving the wanted approximation for the

sector defined by Gs1 and Gsq . To approximate the other parameter sectors

as well, fix a sector, say the sector between Gs1 and Gs2 , call it ŝ1s2.

Let V ⊂ ΠP be a neighborhood of c0 such that there is an analytic contin-

uation z̃(c) of c0 which keeps all the rays landing at c0, and pick a Misiurewicz

parameter c in V ∩ ŝ1s2. In Πc we will have the same relative position be-

tween z̃ and c as we have in parameter plane between c0 and c, in the sense

that c in Πc belongs to the sector defined by the rays of addresses s1 and

s2: this follows from the fact that rays respect the vertical order induced by

their addresses both in dynamical and in parameter plane.

Lemma 7.1 in [S1] gives us characteristic dynamic ray pairs approximating

gcs1 and gcs2 for polynomials (now gcs1 and gcs2 are landing at the repelling point

z̃(c), not at the singular value c); the corresponding rays can be obtained in
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the exponential dynamical plane by the same technique described above, and

they can be transfered in parameter plane by Proposition 3.3.11.

Note that this proposition proves that we can separate a Misiurewicz

parameter from all other Misiurewicz parameters, and from any parame-

ter which is described combinatorially, for example parabolic and escaping

parameters and landing points of parameter rays.

Remark 3. By the correspondence of characteristic ray pairs between polyno-

mials and exponentials as stated in Theorem 3.3.15, we could have obtained

the combinatorial approximation directly in the parameter plane, but we

need it also in dynamical plane in order to prove that dynamical fibers of the

postsingular orbit are trivial and to proceed with the topological part of the

proof.

Proof of Proposition 5.2.2: Triviality in dynamical plane. Let z be the first

periodic point in the postsingular orbit, and L be a linearizing neighborhood.

Recall that k was the preperiod of the singular orbit, so taking the kth image

of the approximating dynamic ray pairs found in the proof of Proposition

5.2.1 we obtain dynamic ray pairs which approximate combinatorially the q

rays gσk(s1), . . . , gσk(sq) landing at z. We want to show that this combinatorial

separation corresponds to an actual separation of all points in L from z.

So for each sector defined by the gs′i consider an approximating ray pair

which enters L. Note that such a ray pair must exist: as J = I and J = C,

any open set contains escaping points, so at least one ray must enter each

sector, and once we have a ray inside we can surround it by one of the

combinatorially approximating ray pairs.

So each sector contains a ray pair, and the region between that ray pair

and the boundaries of the sector is uniformly contracted under f−m, where m
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was the period of the orbit, so that the region left out by the approximating

ray pairs shrinks to {z} under iterates of f−m.

Proof of Proposition 5.2.3: Persistence of dynamical triviality. Let {pi}i=1...q

be the landing points of the ray pairs which enter the linearizing neighbor-

hood in the proof of Propositon 5.2.2; then we can find a parameter neigh-

borhood V of c0 in which we can continue analytically both c0, the pi’s and

the postsingular periodic orbit {zi} with the same rays landing at them.

Up to shrinking V , we can also assume that the rays enter the new lin-

earizing neighborhood, and by contraction under the inverse map the neigh-

borhoods between the approximating rays and the actual rays landing at the

analytic continuation of the zi shrink to points. By carrying the approx-

imating rays forward we obtain that the dynamical fiber of every zi(c) is

trivial.

Proof of Theorem 5.2.4: Triviality of Misiurewicz fibers. We want to find a

parameter neighborhood V of c0 so that every c ∈ V can be separated from

c0 by some parameter ray pair.

Note that it is enough to separate from c0 any parameter c in the bifur-

cation locus, as rays cannot cross non-hyperbolic components.

We use Propositions 5.2.2 and 5.2.3 to show that the combinatorially

approximating ray pairs found in Proposition 5.2.1 converge on the rays

landing at c0 in the complex plane, so that the regions which we can separate

combinatorially actually fill V − ∪Gsi
.

Like we did before in dynamical plane, let us distinguish the cases in which

the parameter c that we want to separate from c0 is in the external sector

which contains −∞ (the one bounded by Gs1 and Gsq) and the case in which

c belongs to some of the other internal sector.
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If c belongs to the external sector, consider the dynamical plane for c0, and

separate c from c0 there by a preperiodic dynamic ray pair as from Propo-

sition 5.2.2 follows directly that the dynamical fiber of c0 is trivial. Now

separate this preperiodic ray pair by by one of the approximating character-

istic ray pairs found in Proposition 5.2.1 and then transfer this characteristic

ray pair into parameter plane by remark 3.3.11. Note that c in general does

not have a ray landing at it. However the parameter ray pair and c keep the

same relative position in parameter plane that had c and the corresponding

dynamic rays in Πc0 by Proposition 3.3.11

If c belongs to one of the internal sectors, say ŝ1s2, and also belongs to the

neighborhood V as in Proposition 5.2.3 then consider the dynamical plane Πc.

There, c belongs to the corresponding dynamical sector ŝ1s2 defined at the

analytic continuation z̃(c). The dynamical fiber of z̃ is trivial by Proposition

5.2.3, so we can separate c and z̃(c) by some periodic ray pair (α, α′). This ray

pair is persistent over a parameter neighborhood U of c. This means that, for

the parameters in this neighborhood, in dynamical plane the singular value

will be inside the sector bounded by the dynamical rays (α, α′). In particular,

by vertical order, escaping parameters in this neighborhood lie on a dynamic

ray of address between α and α′ in dynamical plane, so they lie on a parameter

ray of address between α and α′. By the combinatorial approximation given

by Proposition 5.2.1, such a parameter is separated from c0 by any of the ray

pairs whose addresses are closer to s1 and s2 than α and α′. This means that

we can separate all those escaping parameters simultaneously from c0 using

the same ray pair (β, β′). By density of escaping points in the bifurcation

locus, we can approximate c by escaping parameters, so the ray pair (β, β′)

also separates c0 from c unless c lies on β or β′ in which case it has a well

defined address and can be separated from c0 by any ray pair closer than β

or β′.
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Remark 4. It was observed by Schleicher and then proven by Devaney and

Jarque that there are rays which do not land and form indecomposable con-

tinua.
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Chapter 6

Non-recurrent parameters

In this section we will restrict ourselves to parameters with modulus of the

imaginary part bounded by π. As any two functions with singular value c

and c+ 2πi are conformally conjugate, this will be enough.

Two exponential maps are called combinatorially equivalent whenever they

have the same ray portrait in the sense of definition 3.3.6, i.e. the same

set of periodic and preperiodic rays landing together as identified by their

addresses.

Then the rigidity conjecture can be restated as

Conjecture 6.0.5. Two non-escaping non-hyperbolic exponential maps can

not be combinatorially equivalent.

We will study non-recurrent parameters, that is those parameters c for

which the postsingular set

P = ∪
n>0
{fn(c)}

does not intersect a sufficiently small neighborhood of c itself. In this case we

will first show expansivity of the postsingular set P generalizing a theorem

of Mañe (see e.g [MS] for rational functions and [RvS] in the transcendental

setting).
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We will say that a forward invariant set K is hyperbolic (with respect

to the Euclidean metric) if there exists k, η > 1 such that for any k > k,

|(fk)′(z)| > η for any z ∈ K.

The first main theorem, which will be proven in Section 6.1, states that

Theorem 6.0.6 (Hyperbolicity of the postsingular set). Let fc(z) = ez + c

such that c is non-recurrent. Then the postsingular set P is hyperbolic.

The second main theorem holds for the smaller class of combinatorially

non-recurrent parameters(see Section 6.2.1): we say that a parameter c is

combinatorially non-recurrent if there is a suitable collection (see Definition

6.2.10) of periodic or preperiodic rays landing together in dynamical plane

and which, together with their common endpoint, separate the singular value

from the postsingular set.

A map fc : z → ez + c is called (combinatorially) non-recurrent if its

singular value c is (combinatorially) non-recurrent.

Theorem 6.0.7. Let fc be such that c is combinatorially non-recurrent and

non-escaping. Assume also that fc is neither parabolic, nor hyperbolic, nor

Siegel. If c′ is non-escaping and fc′ is combinatorially equivalent to fc, then

fc = fc′.

In the first part (Section 6.1) we take a topological approach, proving

a theorem (see Theorem 6.1.7) about the expansivity of the postsingular

set under the assumption that the singular value is non-recurrent. This

generalizes a theorem by Rempe and van Strien ([RvS]) for the exponential

family to the case in which the postsingular set is not bounded.

The second part deals with rigidity results. We will start by defining

Yoccoz puzzle and combinatorial non-recurrence in the exponential setting.

We will then restrict to the class of parameters for which the singular value

is combinatorially non-recurrent, and show that in this case the combinatorics
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is unique by constructing a quasiconformal conjugacy between any two maps

which are combinatorially equivalent and one of which is combinatorially

non-recurrent.

Together with a theorem in [RvS] about absence of invariant line fields,

this shows that there is a unique combinatorially non-recurrent exponential

map with a given combinatorics.

6.1 Expansivity of the postsingular set

Expansivity is a crucial property in relating the dynamics on a small neigh-

borhood with the dynamics of its preimages at smaller and smaller scale, and,

as the contraction happens around the preimages of the singular value, it is

usually related to the accumulating behavior around the singular value itself.

In particular, expansivity of the postsingular set is related to non-recurrence

of the singular value.

The case in which the postsingular set is compact has been studied ex-

tensively by various authors in the context of rational and transcendental

functions ([RvS], [MS]).

This section is devoted to prove that the postsingular set is expansive in

a more general setting in which the postsingular set is not bounded. When

the postsingular set is bounded, the problem of expansivity has been solved

for a very general class of functions in [RvS], Theorem 1.2.

Theorem 6.1.1 (Hyperbolic sets). Let f be a nonlinear non-constant mero-

morphic function with compact postsingular set. Let K be a forward invariant

compact subset of the Julia set J which contains no parabolic points, no crit-

ical points and no accumulation points for any recurrent critical point, nor a

singular value contained in wandering domains ; then K is hyperbolic.

One of our first tasks will be to prove an unbounded version for the expo-
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nential family (See Theorem 6.1.7).

Let us setup some notation and results following [RvS]. Many of the results

proven in [RvS] hold for more general classes of functions; for simplicity

we will reformulate them in terms of exponential maps with non-recurrent

singular value.

Definition 6.1.2. A point x is called regular if there is a δ > 0 such that

any connected component U of f−n(Bδ(x)) intersecting the postsingular set

is simply connected, and fn : U → Bδ(x) is univalent.

The following is Theorem 2.7 in [RvS].

Theorem 6.1.3. Let fc(z) = ez + c. Suppose that z ∈ J is not a parabolic

point, and that the singular value c is non-recurrent. Then z is a regular

point.

Remark: The additional hypothesis in the original theorem in [RvS] are

satisfied for a non-recurrent exponential map.

Definition 6.1.4. A forward invariant set Λ ⊃ P is locally expansive if for

all z ∈ Λ and for all ε > 0, there exists U(z) such that for all n ≥ 0 and

V ′ connected component of f−n(U(z)) which intersects P we have the two

following properties:

1. diam(V ′)≤ ε, and fn : V ′ → U is univalent;

2. ∀ε′ > 0 ∃ n0 > 0, if n ≥ n0, diam(V ′) ≤ ε′.

The proof of the next theorem follows ideas from [LS].

Theorem 6.1.5 (Local to global). Let Λ be a forward invariant closed set

such that Re (z) > −M ∀z ∈ Λ, for some M > 0. If Λ is locally expansive,

then Λ is hyperbolic.
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Proof. Suppose not. Then ∃ nk →∞, and zk ∈ Λ, such that |(fnk)′(zk)| ≤ 1.

As Λ is closed any finite accumulation point of {fnk(z)} belongs to Λ.

• Case 1: {fnk(zk)} has a finite accumulation point x.

• Case 2: fnk(zk)→∞.

Case 1: As x ∈ Λ by local expansivity there is a neighborhood Uε = Uε(x)

satisfying the two conditions in definition 6.1.4. So diam(V ′) < ε for any V ′

connected component of f−n(Uε), and fn is a univalent map from V ′ to Uε.

As fnk(zk) → x, for large k fnk(zk) ∈ Uε. Let Vk be the component

of f−nk(U) containing zk. By local expansivity, diam(f j(Vk)) ≤ ε for j =

0 . . . nk, and since f j(zk) ∈ Λ for all j’s we have that f j(Vk) does not contain

c, so fnk : Vk → U is bijective and we can define its local inverse φk : U → Vk.

Then the family {φk} is normal, and any limit function φ has to be constant

because diam(Vk) → 0 as k → ∞. This contradicts the initial assumption

that

|φ′(x)| = lim
k→∞
|φ′k(fnk(zk))| = lim

k→∞

∣∣∣∣ 1

(fnk(zk))

∣∣∣∣ ≥ 1.

Case 2: fnk(zk)→∞. To treat this case we will find another subsequence

f jk(zk) such that jk → ∞, |f jk(zk)
′| ≤ 1, and Re f jk(zk) < 0, so that

{f jk(zk)} is bounded and we can reduce ourselves to case 1.

Note that as Λ is forward invariant f jk(zk) ∈ Λ∀j, and that the jk’s are

not a subsequence of the nk; however for any nk we will find jk ≤ nk, jk →∞
with the properties above.

Let wjk = f jk(zk), j = 0...nk. If fnk(zk) → ∞ in a right half plane,

Re f−1(fnk(zk))→∞, so without loss of generality we can assume Re fnk(zk)→
∞.
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1 ≥ |fnk(zk)
′| =

= |f ′(zk) · f ′(f(zk)) · ... · f ′(fnk(zk))| =

= eRezk · eRef(zk) · ... · eRefnk (zk) ⇒

⇒
nk−1∏
i=0

eRewi
k ≤ 1

eRew
nk
k

.

Also,

eRewi
k ≥ e−M∀wik

⇒ if N is the cardinality of the set {wik,Rewik < 0},
nk−1∏
i=0

eRewi
k ≥ e−MN ⇒

⇒ e−MN ≤ e−Rew
nk
k → 0 because Rewnk

k →∞

⇒ N →∞

So, up to selecting a subsequence of the zk’s, we can always find arbitrarily

large iterates

f jk(zk) = wjkk such that Re wjkk < 0.

To check that |f jk(zk)
′| ≤ 1 as required, note that this is always true up to

selecting a bigger jk < nk, as |fnk(zk)| ≤ 1 and the derivative of f(wik) is

bigger than 1 as soon as Re wik > 0.

Theorem 6.1.6 (Local expansivity of P). The set P is locally expansive in

the sense of definition 6.1.4

Proof. Claim 1: For any z ∈ P , ε > 0 there exists U = U(z) such that

for each n ∈ N and any V ′ connected component of f−n(U) intersecting P ,

diamV ′ < ε.
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The family of inverse iterates {f−n} is normal in a neighborhood U of z,

and as z is a regular point by 6.1.3 fn : V ′ → U is univalent. By normality of

{f−n} and Ascoli-Arzela’s Theorem, |(f−n)′| ≤ B in U for some constant B >

0 independent of n. By Koebe 1/4-Theorem and univalency of fn : V ′ → U ,

diam(V ′) ≤ 4B diam(U) ≤ ε if diam(U) ≤ ε/(4B).

Now let us prove that the diameters of the pullbacks tend to zero when the

number of backward iterates tends to infinity, if we only consider pullbacks

intersecting the postsingular set.

Claim 2: For any ε′ > 0 there exists n0 > 0 such that diam(V ′) ≤ ε′ if

n ≥ n0.

Fix ε > 0 and let U be the neighborhood that we obtain from the first

property in definition 6.1.4, and suppose by contradiction that Vk := Vnk
is

a subsequence of preimages of U(z) such that diam(Vk)≥ ε for some ε > 0.

If |f−nk(z)| does not tend to ∞ we can find a finite accumulation point ζ for

f−nk(z). As the diameter of the Vk does not go to zero, and fnk : Vk → U is

univalent, there is a definite neighborhood which is mapped univalently into

U under the infinitely many iterates fnk , contradicting the fact that ζ ∈ J .

If |f−nk(z)| → ∞, let us find another subsequence of pullbacks Vnj
=

f−nj (U) such that |f−nj (z)| is bounded and diam(Vj) > ε′′ for some ε′′ > 0,

in order to reduce the proof to the previous case.

Let us first note that if |f−nk(z)| → ∞ then Re f−nk−1(z) → ∞. Also,

diamVnk−1 > ε′e−M+2ε because f−nk(z) > −M − ε on all branches of the

function intersecting the postsingular set (as Re x > −M for all x ∈ P , and

diamVnk
< ε).

Note that whenever Re z > 0 diamVnk+1
≤diamVnk

, so if diamVk > ε1 for

znk
→ ∞ we must have a sequence Vnj

, diamVnj
≥ ε1e

−2M+2ε contained in

the vertical strip {−M − 2ε < Re (z) < 2ε}.
The Vnj−1

are a countable family of congruent disks shifted vertically by
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2mπ over m ∈ N, with diameter bigger or equal to ε′e−3M+3ε. For each nj

we can choose branches so as to get disks of imaginary part between −2π

and 2π; as we already have a bound on the real part, this gives us a family

of bounded disks with diameter > ε′ hence we can reduce ourselves to the

previous case.

Note that the preimages of imaginary part between −2π and 2π do not

need to intersect the postsingular set in order to deduce a contradiction: the

intersection property was used only when assuming that the contraction in

the diameter could not be bigger than e−M+ε.

Theorem 6.1.7 (Hyperbolicity of the postsingular set). Let fc(z) = ez + c

such that c is non-recurrent. Then the postsingular set P is hyperbolic.

Proof of Theorem 6.1.7. P is locally expansive by Theorem 6.1.6, hence it is

hyperbolic by Theorem 6.1.5.

6.2 Using puzzles to construct conjugacies

Let c be a parameter contained in one of the parabolic wakes attached to

the period one component, and α = α(c) be the analytic continuation of the

attracting fixed point; then α is the landing point of at least two periodic

dynamic rays.

We will say that the singular value c is combinatorially non-recurrent if

under finitely many pullbacks the singular value and the postsingular set are

separated by preimages of the rays landing at α together with their endpoint.

We will show that two combinatorially non-recurrent maps fc, fc′ with the

same combinatorics and non-escaping singular value are quasiconformally

conjugate.
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We will start by constructing a quasiconformal conjugacy on the postsin-

gular set and then use pullback arguments to extend the conjugacy on the

whole plane.

Once we have a quasiconformal conjugacy on the whole plane, if the

postsingular set is bounded we can use a theorem in [RvS] on absence of

invariant line fields to conclude that the two maps are conformally conju-

gate, hence the two parameters either coincide or differ by 2πi.

The strategy for constructing a quasiconformal conjugacy between two

combinatorially non-recurrent maps consists in using holomorphic motions

of rays and puzzle pieces to construct a quasiconformal map between the

dynamical planes of f1 and f2, and pull it back using non-recurrence so as

to get a sequence of quasiconformal maps converging to a conjugacy.

6.2.1 Holomorphic motions, puzzles and conjugacies

This section will describe holomorphic motions and construction of Yoccoz’s

puzzle in the exponential family.

Holomorphic motions. Holomorphic motions are widely used in 1-

dimensional complex dynamics. For a reference see e.g. [L], Chapter 3.

Definition 6.2.1. Let (Λ, ∗) be a topological open disk in C with a marked

point ∗, and let X be an arbitrary subset of the Riemann sphere.

A holomorphic motion. h of X over Λ is a family of injections hλ : C→ C,

λ ∈ Λ, depending holomorphically on λ for each fixed x ∈ X, and such that

h∗ is the identity. We will use the notation Xλ := hλ(X∗). We will say that

a set X∗ moves holomorphically on Λ if such a holomorphic motion exists.

The following theorem, due to [MSS] and [Sl] collects the most relevant

results about holomorphic motions.

60



Theorem 6.2.2 (Advanced Lambda Lemma). A holomorphic motion h of

any set X extends to a continuous holomorphic motion of C.

The maps hλ are K-quasiconformal with dilatation K depending only on

the hyperbolic distance between λ and ∗. However, K tends to infinity as

λ→ δΛ.

Yoccoz’s puzzle. Given a parameter c which belongs to a parabolic wake

attached to the period one hyperbolic component, there is a repelling fixed

point α = α(c), defined as the analytic continuation of the attracting fixed

point, which is the landing point of q periodic rays permuted transitively

by the dynamics (see for example Section 3 in [RS1]). Let s1...sq be the

addresses of the rays landing at α.

We will show in Chapter 7 (Corollary 7.2.12) that a non-recurrent param-

eter with bounded postsingular set and which is not on the boundary of the

period one hyperbolic component belongs to such a wake.

Roughly speaking, a puzzle is a collection of subsequently finer partitions

of the plane (whose elements are the puzzle pieces) for which we have a good

knowledge of the dynamics restricted to puzzle pieces.

We will describe the construction of puzzles for the exponential family,

in analogy to the construction described for polynomials e.g. in [H], [L1]

and [Mi]. Various versions of Yoccoz puzzle have been constructed for other

maps, for example rational maps.

Consider the set G formed by α and the dynamic rays landing at α: G

is forward invariant and separates the plane into finitely many connected

components. Then the collection of connected components of C − f−nG is

called the puzzle of level n and is denoted by V (n); the connected components

themselves are called puzzle pieces of level n and are denoted by Y
(n)
j , where

j is some labeling to be defined later.

The next lemma follows directly from the definition of puzzle pieces.
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Lemma 6.2.3. For each n ∈ N, Y
(n)
i ∈ V (n) and Y

(n+1)
j ∈ V (n+1), either

Y
(n+1)
j is contained in Y

(n)
i or the two puzzle pieces are disjoint.

For any fixed n, Y
(n)
i is mapped to some Y

(n−1)
j , either univalently or as

an infinite degree covering with only one branching point.

We will now describe a way of labeling puzzle pieces respecting the dy-

namics, providing a tool which will be useful later to relate how two take

inverse branches for two functions having the same puzzle.

Labeling of puzzle pieces. Consider the puzzle pieces of level 0.Let us

call Y
(0)
∗ , or branching puzzle piece of level 0, the region containing −∞, and

Y
(0)
i the other sectors defined by the rays landing at α, with the convention

that Y
(0)

0 is the puzzle piece containing the singular value and the other pieces

are labeled respecting the vertical order.

Let us introduce a labeling for puzzle pieces of level n which keeps track of

the dynamics; to do so we need to introduce some kind of partition in order

to keep track of the branches under which we take the preimages. Let s1 be

the address of the lowermost ray landing at α, and let us define combinatorial

sectors

Si := {s ∈ S, s1 + i < s < s1 + i+ 1}.

This defines a partition of the combinatorial space S into strips.

In C, this partition only has a meaning near infinity, so it can be only used

to encode the position of objects which tend to infinity to the right like other

dynamic rays or puzzle pieces. Consider a vertical line L := {z,Re z = L}
sufficiently far to the right so that the q rays landing at α all intersect only

once every vertical line to the right of L. Given a point z such that Re z > L,

let tz such that Re gs1(tz) = Re z and Φ(z) = Im gs1(tz). Φ(z) is well defined

because gs1 intersects only once any vertical line wit real part bigger than L.

Let S̃ be the semi-strips

S̃j = {z,Re (z) > L, Im z between gs1 + 2πij and gs1 + 2πi(j + 1)}.
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As the puzzle pieces of level n + 1 are defined as pullbacks under fc of the

puzzle pieces of level n, we can label them by a string of increasing length by

adding to the left the symbol corresponding to the combinatorial sector they

belong to, where we say that a puzzle piece belongs to a combinatorial sector

if the uppermost ray on its boundary belongs to that combinatorial sector.

This is well defined unless we have a branching puzzle piece, in which case

we will add to the left the symbol ∗.
This construction labels every puzzle piece of level N by a string in {Z ∪

{∗}}N.

Example 6.2.4. At the first level, the puzzle pieces are given by sectors based

at preimages of α and by a branching puzzle piece; we will call this last one

Y
(1)
∗0 because it is mapped to the singular piece of level 0, which was labeled

as Y
(0)

0 , and we will call each one of the other sectors Y
(1)
nm , where n is the

combinatorial sector they belong to and m is the label of the piece of level 0

they are mapped to. Note that n ∈ Z, but m = 0, ..., q − 1.

By construction, the piece of level N labeled by a string ` is mapped

univalently to the piece of level N − 1 labeled by the string σ`, unless it is

the branching puzzle piece (i.e. the first symbol in ` is ∗) in which case it is

mapped ∞-to-1 to the singular puzzle piece of level N − 1.

6.2.2 Parapuzzles and combinatorial equivalence

Parapuzzle pieces. The topology of the puzzle at the level N+1 is determined

only by the piece on level N which contains the singular value, which is the

same as saying the piece of level 1 which contains fN(c). In particular, the

topology of the puzzle is allowed to change every q iterates, when the orbit

of c comes back to the singular sector of level 0.

As the rays landing at the α fixed point move holomorphically inside

their characteristic wake, puzzle pieces at any finite level move holomorphi-
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cally inside the regions delimited by the Misiurewicz wakes corresponding to

preimages of the rays landing at α and contained in the characteristic wake;

note that by vertical order, Misiurewicz wakes contained in the characteris-

tic sector in dynamical plane- which is when the singular value comes back

to the singular puzzle piece of level 0 and changes the topology of the next

level- correspond to Misiurewicz wakes contained in the characteristic wake

in parameter plane.

The discussion about puzzles in dynamical plane leads to the following

definition and lemmas in analogy with polynomials (see for example [L1]).

Definition 6.2.5. A parapuzzle piece of level N is a region in parameter

space over which the boundaries of puzzle pieces of level N move holomor-

phically.

Proposition 6.2.6 (Parapuzzle pieces). The boundary of a parapuzzle piece

consists of infinitely many parameter ray pairs landing at Misiurewicz pa-

rameters and possibly the wake in which the parapuzzle piece is contained;

the addresses of the parameter rays delimiting a parapuzzle are preimages

under the shift map of the addresses of the dynamic rays landing at α.

Parapuzzle pieces of different levels are either disjoint or contained one

inside the other.

Proof. A periodic ray pair belongs to an orbit portrait and moves holomor-

phically on the wake defined by the characteristic sector of the orbit portrait.

A preperiodic ray pair moves holomorphically on the wake defined by the pa-

rameter rays with the same addresses.

Definition 6.2.7. We say that two maps f1, f2 are combinatorially equivalent

or have the same combinatorics if two periodic or preperiodic dynamic rays

land together in the dynamical plane for f1 if and only if the rays with the

same address land together in the dynamical plane for f2.
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Proposition 6.2.8 (Combinatorial equivalence). If two exponential maps

f1, f2 are combinatorially equivalent, they belong to the same parapuzzle pieces

at all levels, hence have the same puzzle pieces at all levels, in the sense that

each puzzle piece moves holomorphically.

Also, at each level the singular values have the same itinerary with respect

to the partition induced in the two dynamical plane by puzzle pieces of that

level. (actually, it is enough to say by puzzle pieces of level 1.)

In particular, being combinatorially equivalent implies that each puzzle

piece of level N for f1 labeled by a string ` moves holomorphically to the

puzzle piece for f2 labeled by the same string ` over the parapuzzle piece of

level N .

Proof. Topology of puzzle pieces is determined uniquely by the vertical order

of dynamic rays at infinity and by the pattern in which the rays forming the

boundaries of puzzle pieces land together. The vertical order at infinity is

independent of the specific parameter under consideration, so two maps which

are combinatorially equivalent, having the same pattern for the landing of

(pre)periodic rays, have the same puzzle pieces at all levels.

To see that this is uniquely determined by the itinerary of the singular

value, note again that each puzzle piece is completely determined by its

boundary, which consists of countably many ray pairs each of which is the

preimage of one of the ray pairs in the puzzle pieces of level 0. Each ray in a

ray pair has countably many preimages, and how they land together depends

on whether the initial ray pair was surrounding or not the singular value.

This means that the puzzle of level N + 1 is topologically determined by

which puzzle piece of level N contains the singular value, and at the same

time it is determined by the pattern in which the rays land together. This

shows that the pattern in which rays land together determines the itinerary

of the singular value with respect to the puzzle.
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Correspondence of labeling and homeomorphism between puzzle pieces

can be checked by induction. It is true at level 0. Now suppose the labeling

between the puzzle pieces for f1, f2 corresponds at level N . Fix a puzzle

piece Y` of level N for f1 and let Y ′` be the corresponding puzzle piece for f2.

By the previous part, c1 ∈ Y` if and only if c2 ∈ Y ′` , so the countably many

preimages of Y`, Y
′
` are all homeomorphic. Also, the label on each preimage

only depends on vertical order near infinity, which does not depend on the

parameter under consideration.

According to this construction, if two maps are in the same fiber, hence

cannot be separated by a rational ray pair in parameter plane, holomorphi-

cally they have the same puzzle pieces at all levels; so to show that the fiber

of a parameter c0 is trivial it is enough to show that the nest of parapuzzle

pieces containing c0 intersected with the non-escape locus shrinks to a single

point.

We will pursue this results by showing that any two combinatorially non-

recurrent maps which are also combinatorially equivalent need to be qua-

siconformally conjugate hence, by absence of invariant line fields (Theorem

6.3.2), conformally conjugate if we assume P to be bounded.

6.2.3 Initial quasiconformal map

In this section we will construct a quasiconformal map between the dynamical

planes of two parameters belonging to the same parapuzzle piece up to some

level n.

Proposition 6.2.9 (Initial quasiconformal map). Let fc, fc′ be two exponen-

tial maps who belong to the same parapuzzle piece of level n for some n > 1.

Then there exists a quasiconformal map ψ0 : Πc → Πc′ such that

• ψ0(c) = c′
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• For each dynamic ray gs ∈ f−nc ({gs1 , ..., gsq}), i.e. the boundaries of

puzzle pieces of level n, ψ0(gs(t)) = g′s(t), where g′s is the dynamic ray

for fc′ of address s. By the functional equation in Theorem 3.1.3, this

implies that ψ0 is a conjugacy on f−nc ({gs1 , ..., gsq}).

Proof. The parapuzzle piece of level n containing c is open and connected,

so we can find a path γ joining c to c′ for any c′ which belongs to the same

parapuzzle piece of level n. By Theorem 3.1.3 we have that the map

g : C× S × (0,∞)→ Πc

g : (c, s, t) 7→ gcs(t)

is holomorphic in c for any fixed (s, t). In particular, given a dynamic ray

gc̃s which is defined for all c̃ ∈ γ, we have that for any z ∈ gc(s, t) the map

gc
′
s ◦ (gcs)

−1 is holomorphic in c′, injective in (s, t) and the identity for c′ = c,

hence it is a holomorphic motion of the ray gcs. Also, if s is periodic and lands

at a periodic point z with a given ray portrait A, the holomorphic motion

can be extended to z over the whole wake defined by the characteristic rays

of A; and the singular value c′ itself also moves holomorphically on the whole

plane.

As fc, fc′ belong to the same parapuzzle piece of level n, they have the

same topological puzzle pieces up to level n, so the rays defining those puzzle

pieces can be moved holomorphically from one dynamical plane to the other

along the path connecting c to c′ inside the parapuzzle piece.

By noticing that the singular value c itself also moves holomorphically, we

get a holomorphic motion H defined on the boundaries of the puzzle pieces

of level n and on the singular value.

By the lambda lemma (6.2.2), the holomorphic motion H of the rays of

level n and the singular value can be extended to a quasiconformal map ψ0 :
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Πc → Πc′ ; ψ0 is equivariant on the rays, i.e. fc′ ◦ψ0 = ψ0 ◦fc restricted to the

dynamic rays f−nc ({gs1 , ..., gsq}), because by definition of the rays themselves

fi(g
i
s(t)) = giσs(F (t)) for i = c, c′ and gcs(t) is mapped to gc

′
s (t) by ψ0.

Moreover, ψ0 maps c to c′.

6.2.4 Quasiconformal Pullback and Conjugacy on P

In this section we will pullback the map ψ0 obtained in the previous sec-

tion in order to obtain a quasiconformal map which is a conjugacy on the

postsingular set.

Definition 6.2.10. We will say that a parameter c or the corresponding

map fc is combinatorially non-recurrent if there exists a level N in the puzzle

construction such that P (N) := {Y ∈ V (N), Y ∩ P 6= ∅} does not contain c.

Corollary 6.2.11 (Corollary of Theorem 6.2.8). If two maps fc, fc′ are com-

binatorially equivalent and fc is combinatorially non-recurrent, then fc′ is

also combinatorially non-recurrent.

Proposition 6.2.12 (Conjugacy on P). Let fc, fc′ be two combinatorially

equivalent maps, such that c is combinatorially non-recurrent under fc and

neither c nor c′ are escaping. Then there exists a quasiconformal map ψ

which conjugates fc to fc′ on the postsingular set P.

Proof. Let Y` be a puzzle piece for fc; as fc, fc′ are combinatorially equivalent,

there is a corresponding puzzle piece Y ′` for fc′ , in the sense that each bound-

ary ray of Y` can be moved holomorphically to a corresponding boundary ray

of Y ′` (see Proposition 6.2.8).

For each level n, denote by P (n) and P ′(n) the union of the puzzle pieces

of level n containing the postsingular set for fc and fc′ respectively.

As fc is combinatorially non-recurrent, there is some level N such that nei-

ther the singular puzzle piece nor the branching puzzle piece of level N belong
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to P (N) (recall that the branching puzzle piece of level N is the pullback of

the singular puzzle piece of level N − 1 and that P is forward invariant).

Let ψN be the map obtained in Proposition 6.2.9 on the puzzle pieces of

level N , and define inductively ψn+1 on the puzzle pieces of level n+ 1 as

ψn+1 = f−1
c′ ◦ ψn ◦ fc (6.2.1)

= f−nc′ ◦ ψn ◦ f
n
c whenever V

(n+1)
` ⊂ P (n) (6.2.2)

ψn+1 = ψn whenever V
(n+1)
` ⊂ V (n) − P (n) (6.2.3)

ψn+1 = ψn on ∂P (n) (6.2.4)

Choose the branch of f−1
c′ that brings (ψn ◦ fc)V (n+1)

` to Y ′` ; this can be done

by Proposition 6.2.8.

Observe that for each n we are redefining the quasiconformal map on all

puzzle pieces of level n + 1 which are contained in P (n), not only on those

which are contained in P (n+1) ⊂ P (n). In this way, by the functional equation

in Theorem 3.1.3, we obtain that ψn+1 is a conjugacy on the boundary of all

puzzle pieces of level n+1 which are contained in PN ; this ensures continuity

of Ψn+2.

The map ψn+1 is well defined because f(V
(n+1)
` ), hence (ψn ◦ fc)(V (n+1)

` ),

does not contain the singular value.

The map ψn+1 is continuous on ∂P (n), hence on C, by continuity of ψn

and the functional equation in 3.1.3.

As the maps ψn are given by pre-post composition of the same quasicon-

formal map with univalent functions, they are all uniformly quasiconformal;

they can be extended as to fix infinity and they all coincide on the boundaries

of P (N), hence they converge in the spherical metric to some quasiconformal

function ψ : Ĉ→ Ĉ fixing infinity (see for example [L]).

By the functional equation in 6.2.1, the limit map ψ is a conjugacy between

fc and fc′ on ∩
n≥N

P (n) ⊃ P .
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6.2.5 Spreading the Conjugacy

In this section we want to subsequently lift ψ to a conjugacy on the preimages

of the postsingular set, and use the fact that this last one is dense to obtain

by continuity a conjugacy on the entire plane.

Lemma 6.2.13 (Alexander’s trick). Let D,D′ be a topological disks. Two

functions f, f ′ : D → D′ which are homotopic on ∂D are homotopic on D.

Theorem 6.2.14 (Quasiconformal conjugacy). Let fc, fc′ , ψ be as in 6.2.12;

then we can subsequently lift ψ in order to obtain a limit map Ψ to be a

quasiconformal conjugacy Ψ between fc and fc′ .

Proof. Let Ψ0 be ψ as given by Proposition 6.2.12. We want to show that

given Ψn which is a conjugacy on f−n(P) and sends c to c′ it can be lifted

to Ψn+1 which is a conjugacy on f−n−1P .

Consider the lifting diagram below :

Ψn+1

(C, c) −→ (C, c′)

fc ↓ ↓ fc′

(C− c, fc(c)) −→ (C− c′, fc′(c′))
Ψn

Both fc: C− {c} → C and f c
′
: C− {c′} → C are covering maps, and all

lifts of ΨN are defined up to a translation by 2πi.

To show existence of the lift at each stage, it is enough to show that ΨN

is homotopic to the identity relatively P . This follows from Lemma 6.2.13

and from the fact that ΨN is homotopic to the identity on the boundaries of

puzzles pieces at the level N given by combinatorial non-recurrence (compare

the definition of ψn in 6.2.9).
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To check that this condition is preserved by the induction step recall that

Ψ0 = ψ is a conjugacy on those rays hence is never modified by the lifting

procedure on those rays themselves.

To choose the lift Ψn+1 so that it maps c to c′, consider each time a base

point wn in the same puzzle piece of level n as c. Ψn+1 is uniquely defined

up to translation by 2πik, and the puzzle pieces containing c have width less

than 2π, there is a unique choice of Ψn+1 sending wn to a w′n in the same

puzzle piece as c′. By continuity, c will be mapped to c′ as well.

By definition of Ψn+1,

Ψn+1|Pn = f−1
c′ ◦Ψn ◦ fc|Pn = f−1

c′ ◦ fc′ ◦Ψn|Pn = Ψn|Pn

, so that Ψn+1 is still a conjugacy on f−nP .

To show that the new map Ψn+1 is a conjugacy on f−n−1(P), note that

by definition

fc′ ◦Ψn+1 = Ψn ◦ fc

hence

fc′ ◦Ψn+1|Pn+1 = Ψn ◦ fc|Pn+1 = Ψn|Pn = Ψn+1|Pn = Ψn+1 ◦ fc|Pn+1 .

As we are lifting via holomorphic maps, all Ψn are uniformly quasiconformal

and they all coincide on the postsingular set. Extending the ψn to fix infinity

we get a limit map Ψ which is a conjugacy on the union of the preimages

of the postsingular set. As the latter ones are dense, by continuity Ψ is a

conjugacy on all of C.

6.3 Uniqueness of combinatorics for non-recurrent

parameters

Theorem 6.3.1 (Uniqueness of combinatorics). If fc, fc′ are two combi-

natorially non-recurrent, non-escaping exponential maps with the singular
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value in the Julia set, bounded postsingular set and the same combinatorics,

c = c′ + 2πin for some n ∈ N.

The following theorem is Theorem 1.1 in [RvS].

Theorem 6.3.2 (Absence of line fields). Let fc(z) = ez + c such that c is

non recurrent-and the postsingular set is bounded. Then the Julia set of f

supports no invariant line fields.

Proof of Theorem 6.3.1. The quasiconformal conjugacy obtained in Theorem

6.2.14 allows us to pushforward the standard conformal structure σ0 in the

dynamical plane for fc to an invariant quasiconformal structure σ′ in the dy-

namical plane for fc′ . The new quasiconformal structure defines an invariant

line field, which has to be the constant line field by Theorem 6.3.2. So the

quasiconformal conjugacy is conformal by Weyl’s Lemma, and c = c′ + 2πin

for some n ∈ N.

Corollary 6.3.3. If fc is combinatorially non recurrent with bounded postsin-

gular set, c non escaping, then the parameter fiber of c does not contain any

non-escaping parameters, hence its reduced fiber is trivial.

Proof. Let fc′ be such that c′ is in the same parameter fiber as c. By Corollary

7.2.12, parapuzzles are well defined for c. As c′ is in the same fiber as c, c and

c′ are in the same parapuzzle piece for all levels, hence they are conformally

conjugate by Theorem 6.3.1. Two parameters whose height differs by 2πi

cannot belong to the same fiber because they are separated by one of the

parameter rays with constant address, hence c = c′.

Open-closed argument for triviality of fibers

An alternative proof, using an open-closed argument, shows that fibers of

combinatorially non-recurrent parameters are trivial also when P is not

bounded.
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Lemma 6.3.4 (Quasiconformal classes are open). Let Q(c) be the connected

component containing c of the set of parameters c′ such that fc′ is quasicon-

formally conjugate to fc. If Q(c) 6= {c}, Q(c) is open.

Sketch of proof. Let c, c′ ∈ Q(c), c 6= c′, ψ the conformal conjugacy between

fc and fc′ . Let µ be the Beltrami differential for standard conformal structure

on Πc (i.e. µ = 0), µ′ := ψ∗µ the Beltrami differential obtained on Πc′ , and

µλ over λ ∈ D, D the unit disk, be an analytical interpolation between µ and

µ′, for example µλ = λµ′. By the Measurable Riemann Mapping Theorem,

to each µλ corresponds an exponential map fλ which is conjugate to fc via a

quasiconformal map ψλ. As µλ depends holomorphically on λ, the ψλ, and

hence fλ, depend holomorphically on λ (see e.g. Theorem 2.41, [L]), hence

there is an open neighborhood of c on which all maps are quasiconformally

conjugate to fc.

Lemma 6.3.5 (Boundaries of non-hyperbolic components). Consider the

exponential family or any family of unicritical polynomials. The boundary if

a non-hyperbolic component Q in parameter space cannot contain escaping

parameters which are accessible from the inside of Q. In particular, ∂Q
contains at least a non-escaping parameter in its boundary.

Proof. Let c0 be an escaping parameter which is accessible from the inside

of Q, i.e. for which there exists a curve γ : [0, 1) → Q such that γ(t) → c0

as t→ 1. Then c0 = Gs0(t0) for some parameter ray Gs0 . Consider a piece Γ

of Gs0 , Γ := Gs0(t0− e, t0 + e) oriented following increasing t. As γ is a local

transversal to Γ at c0, we can determine whether γ is to the right or to the

left of Γ. If γ is to the right (resp. left) of Γ consider a sequence of addresses

sn converging to s0 from below (resp. above). Then the parameter rays of

addresses Gsn converge to Gs0 on compact sets by Lemma ??, obtaining a

contradiction from the fact that no parameter rays can intersect Q.
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Theorem 6.3.6 (Triviality of fibers for combinatorially non-recurrent pa-

rameters). Reduced fibers of combinatorially non-recurrent parameters are

trivial.

Proof. Let FR(c) denote the reduced fiber of a combinatorial non-recurrent

parameter c. By definition of reduced fibers any two parameters in FR(c) have

the same combinatorics, hence by Theorem 6.2.14 they are quasiconformally

conjugate. As FR(c) is connected, FR(c) = Q(c) hence, if Q(c) 6= {c}, it is

open by Lemma 6.3.4. However, by Lemma 6.3.5, FR(c) contains at least

one of its boundary points hence cannot be open, giving a contradiction.

6.4 Recurrence and combinatorial non-recurrence

The goal of this section is to use the results about accessibility from Chapter

7 to show that, for parameters with bounded postsingular set, non-recurrence

implies combinatorial non-recurrence, in order to prove the following theo-

rem.

Theorem 6.4.1 (Combinatorial non-recurrence for bounded P). Let fc be

an exponential map such that c is non-recurrent and P is bounded. Then c

is combinatorially non-recurrent.

Definition 6.4.2. We will say that an address or angle s is non-recurrent if

s /∈ O(s) := {σn(s)}n∈N.

Proposition 6.4.3. If fc(z) = ez + c or fc(z) = zD + c where c is non-

recurrent and the postsingular set is bounded, then s is non-recurrent.

Proof. If s ∈ O(s), there is sk := σk(s) → s; let ck := fk(c) be the landing

point of gsk
. By expansivity of the postsingular set, `(gsk

(0, t)) < εt → 0

uniformly in k as t→ 0.
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By Lemma 3.1.7, given ε and t∗ there is δ such that |gs(t)− gsk
(t)| < ε, if

dist(s, sk) < δ and t > t∗.
By non-recurrence there is a disk B of radius R centered at c such that

B ∩ P = ∅. Let ε = R/3, t such that `(gsk
(0, t)) < R/3 for all k and sn

any address such that dist(s, sn) < δ; then |cn − c| < R/3 contradicting

B ∩ P = ∅.

The next theorem is one of the cornerstones in the theory of rigidity for

quadratic and unicritical polynomials (see.. for the definition of renormal-

ization and for a statement of Yoccoz Theorem).

Theorem 6.4.4 (Yoccoz Theorem). Fibers of parameters which are finitely

renormalizable are trivial. Also, the Julia set of such parameters is locally

connected.

Proposition 6.4.5 (Landing of non-recurrent rays). If GD
s is a parame-

ter ray of angle s in the parameter plane for the family PD, and s is non-

recurrent, then GD
s lands at c̃ for some non-recurrent parameter c̃.

Proof. By Proposition ??, GD
s is contained in finitely many wakes, hence any

non-escaping parameter in the extended fiber of GD
s (and, in particular, any

parameter in the accumulation set of GD
s ) is at most finitely renormalizable.

By Yoccoz Theorem, there is only such parameter c and GD
s lands at it.

While proving Theorem 6.4.1, we are using the following lemma.

Lemma 6.4.6. Let fc be a polynomial or exponential map. If Gs lands at

c and c belongs to its Julia set, then gcs belongs to the dynamic fiber of c.

Viceversa, if gcs lands at c, the parameter ray Gs belongs to the parameter

fiber of c.

Proof. It is enough to say that for any ε there is tn, |gs(tn) − c| < ε. Let

Gs(tn) =: cn → c. For any n, gcks converges uniformly to gcs on [tn,∞] as

k →∞. ( We can probably not use continuity bc the rays are broken.)
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Proof of Theorem 6.4.1. By Corollary 7.2.12, c belongs to a parabolic wake

bounded by two parameter rays of addresses s1, s2 and hence the definition

of combinatorial non-recurrence is meaningful. Let gs be the dynamic ray

landing at c given by Theorem 7.2.3 and let D > 2 max(|s|, |s1|, |s2|.
By Proposition 6.4.3, s is non-recurrent, so by Proposition 6.4.5 the pa-

rameter ray GD
s lands at a non-recurrent polynomial parameter c̃. Also, c̃

belongs to the parabolic wake bounded by the parameter rays with addresses

s1, s2 in the polynomials parameter plane.

In Πc̃, c̃ is in the same dynamical fiber of the corresponding dynamic

ray gc̃s. As c̃ is non-recurrent, by Yoccoz Theorem its Julia set is locally

connected and puzzle pieces shrink to points, hence there is some level of

the puzzle construction for which the singular value and the postsingular

set are separated. This means that there are finitely many preperiodic ray

pairs (preimages of rays landing at the α(c̃) fixed point) separating c from

the postsingular set. By Theorem 3.3.14 c is contained into the Misiurewicz

wakes defined by the ray pairs.

By Theorem 3.3.14, the same Misiurewicz wakes exist in the exponential

parameter plane, and by vertical order of parameter rays Gs, and hence c,

is contained in all of them. By Theorem 3.3.14 again, the same preperiodic

ray pairs land together in Πc. By vertical order of dynamical rays, as they

separate c̃ from its forward orbit in the polynomial dynamical plane (and

each point on the orbit is the landing point of a dynamic ray gc̃
σks

), they also

separate c from its forward orbit in the exponential plane. By continuity, they

also separate c from the closure of its forward orbit i.e. from the postsingular

set.
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Chapter 7

Accessibility

7.1 Accessibility of repelling periodic orbits

for polynomials with connected Julia set

We will give a new proof of a classical theorem by Douady for polynomials

with connected Julia set, showing that any repelling periodic orbit is the

landing point of finitely many periodic ray. While the original proof uses in

an essential way the structure of the basin of infinity near the repelling cycle,

we will only use the structure of rays near infinity and the uniform contraction

given by linearizing coordinates, opening this result to be generalized to other

families of functions (see [H], Theorem IA).

Theorem 7.1.1. Let f be a polynomial of degree D with connected Julia set,

{zi} one of its repelling periodic orbits. Then there is at least one and at

most finitely many periodic rays landing at each of the {zi}.

7.1.1 Setting

For all of this section, let f be a polynomial of degree D with connected Julia

set. Let K be the filled Julia set for f and let ρ be the hyperbolic density
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on C −K. As K is full and contains more than three points C −K is also

connected and admits a hyperbolic metric ρ.

Without loss of generality, up to considering iterates of f we can assume

{zi} to be a repelling fixed point α with modulus of the multiplier µ > 1 and

we can fix a linearizing neighborhood L for α with linearizing coordinates

ψL.

We will denote by `(γ) the euclidean length of a curve γ and by `ρ its

hyperbolic length in C−K. We will denote by |a−b| the distance of two points

in C and by d(X, Y ) := inf
x∈X

inf
y∈Y
|x−y| the distance between two compact sets

or between a compact set and a point. The Böttcher function B conjugates

the dynamics of f on C−K to the dynamics of zD on C−D. The preimage

under B of the straight ray of angle s is called the dynamic ray of angle s

and is denoted by gs; if we parametrize gs as gs(t) = B−1(s, et) (where (s, et)

indicate the polar coordinates of a point) and we define the radial growth

function F : t 7→ Dt we have

f(gs(t)) = gσs(F (t)), (7.1.1)

where s is written in D-adic expansion and σ is the shift map.

We will call a fundamental domain starting at t for a ray gs the piece of

curve gs([t, F (t))), and we will denote it by It(gs). We will call the equipo-

tential of level t the curve {gs(t), s ∈ S1}.
We will need the following lemma about convergence of angles and rays,

following directly by uniform continuity of the Boettcher map on any compact

set:

Lemma 7.1.2. Let f be a polynomial of degree D. For each ε, t∗, t
∗ > 0

there exists δ, if dist(s̃ − s) < δ then |gs̃(t) − gs(t)| < ε for any t∗ < t < t∗.

In particular if sn → s, there exists N such that |gsn(t)− gs(t)| < ε for any

n > N .
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7.1.2 Proof of Theorem 7.1.1

The first part of the proof studies the length of fundamental domains starting

at a fixed potential.

Proposition 7.1.3 (Bounded fundamental domains). For each t the eu-

clidean length `(It(gs)) is bounded uniformly in s. By equivalence of euclidean

and hyperbolic metric on any compact subset of C−K, the hyperbolic length

`ρ(It(gs)) is also bounded uniformly in s.

Proof. The derivative of B−1 is bounded by some constant Ct on the annulus

At := {z, t + 1 ≤ |z| ≤ (t + 1)d}, hence the euclidean length of It(gs) is

bounded by Ct(F (t)− t).

The following is a standard fact that follows from the boundary behavior

of the hyperbolic metric (see Appendix).

Lemma 7.1.4. Let Ω ⊂ C be an open hyperbolic region. Let γn : [0, 1]→ C

be a family of curves with uniformly bounded hyperbolic length and such that

γn(0)→ ∂Ω. Then `(γn)→ 0.

Proposition 7.1.5 (Fundamental domains shrinking). The euclidean length

`(It(gs)) tends to 0 uniformly in s as t→ 0.

Proof. The family of curves {It∗(gs)} has uniformly bounded hyperbolic

length for any fixed t∗, hence by the Schwarz Lemma the family of curves

{It(gs)} has uniformly bounded hyperbolic length for t < t∗.

If we can show that the distance d(gs(t), J)→ 0 uniformly in s as t→ 0,

the estimate follows from Lemma 7.1.4.

Suppose d(gs(t), J) does not tend to 0 uniformly. Then there is a sequence

of points zn whose potential tn going to 0 who stay a definite distance away

from J . As B is proper, any of their limit points has potential 0 hence has

to belong to the Julia set giving a contradiction.
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Theorem 7.1.6. Let f be a polynomial with connected Julia set, α be a

repelling fixed point for P . Then there is at least one dynamic ray gs landing

at α.

Proof. Let U ′ be an ε neighborhood of α which is fully contained in the lin-

earizing neighborhood L, and let U be its preimage under the inverse branch

ψ of f fixing α. Let µ,C given by the uniform contraction in linearizing

coordinates, such that |α − ψn(x)| ≤ C|α−x|
µn for all x ∈ U ′. Let ε be the

distance d(∂U, ∂U ′).

By Proposition 7.1.5, find tε such that

`(It(gs)) < ε for all s, t < tε. (7.1.2)

As α is in the Julia set, α belongs to the boundary of the basin of infinity,

hence is approximated by escaping points with arbitrary small potential t,

hence there exists a dynamic ray g0 such that g0(t0) belongs to U for some

t0 < tε. Then `(It0(g0)) ≤ ε, hence It0(g0) ⊂ U ′.

Let gn := ψn(g0) be the pullbacks of g0 along the branches fixing α. Let

us define inductively a sequence of curves γn as

γ0 := It0(g0)

γn := ψγn−1 ∪ It0(gn)

Claim: properties of γn.

1. γn = gn(tn, F (t0)) where tn := F−n(t0);

2. γn ⊂ U ′ for all n;

3. |x− α| ≤ C diamU ′

µn for x ∈ Itn(gm), m ≥ n. (*)

Proof of the Claim: All claims are true for γ0, so let us suppose they hold

for γn−1 and show that they also hold for γn. We have that ψγn−1 =
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ψ(gn−1(tn−1, F (t0))) = gn(tn, t0) by the functional equation 7.1.1 and by the

definition of gn. Also γn is contained in U because γn−1 ⊂ U ′ and ψ(U ′) = U ;

as `(It0(gn)) ≤ ε, γn ⊂ U ′.

Also if x ∈ Itn(gm), m ≥ n, x = ψn for some y ∈ It0(gm−n) ⊂ U ′, hence

|x− α| ≤ |y − α|
µn

≤ C diamU ′

µn
,

proving the third part of the Claim.

Let {sn} be the sequence of angles of the rays gn; as the space of angles for

polynomials is homeomorphic to S1 which is compact, there is a subsequence

converging to some angle s. As the Julia set is connected no singular value

is escaping, hence the ray gs of angle s is well defined for all potentials t > 0.

Landing of gs at α. It is enough to show that for each n, and x ∈ Itn(gs),

|x− α| ≤ C diamU ′

µn
+

1

2n
. (7.1.3)

So fix n and a subsequence of angles sm converging to s. Let εn := 1
2n ,

t∗ := tn
2

,and N as given by Lemma 7.1.2 such that |gs(t) − gmt| ≤ 1
2n for

t > t∗ = tn
2

and m > N . Then if gs(t) ∈ Itn(gs),

|gs(t)− α| ≤ |gs(t)− gm(t)|+ |gm(t)− α| ≤ 1

2n
+
C diamU ′

µn

for m > N . Observe that the estimates depend on n because we consider

t ∈ [tn, tn−1], but they hold for all sufficiently big m.

Proposition 7.1.7 (Periodicity of landing ray). A dynamic ray gs landing

at a repelling periodic point is periodic.

This proposition follows from a well known lemma about rotation sets

([Mi])

Lemma 7.1.8 (Rotation sets). Let A ⊂ S1 be closed and forward invariant

under the shift map σ : θ 7→ Dθ. If σ|A is a homeomorphism, then A is

finite.
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Proof. If not, σ−1|A is a locally contracting homeomorphism, which cannot

happen since A is compact.

Proof of Proposition 7.1.7. Without loss of generality, the repelling periodic

orbit is a fixed point α with some linearizing neighborhood L.

Let A := {σn(s)} be the orbit of s under the shift map σ : θ 7→ Dθ,

where D is the degree of the polynomial under consideration. The map σA

is a homeomorphism by injectivity of f near α, so if we can prove that A is

closed, Lemma 7.1.8 implies the claim.

Let s̃m := σm(s). If we can show a uniform estimate like the ones in

equation 7.1.3 for all dynamic rays gs̃m , it will follow that any of the limiting

rays also lands at α using the same estimates used to show that gs lands at

α. Note that |(fn)′(x)| = |(ψ−1
L ◦ µn ◦ ψL)′(x)| ≤ C ′µn for some constant

C ′ depending only on ψL for any x ∈ L such that fn(x) ∈ L. Also, if

x ∈ Itn(gs̃m), ψm(x) ∈ Itn+m(gs), hence

|x− α| ≤ µmC ′|ψm(x)− α| ≤

≤ µmC ′(
C diamU ′

µn+m
+

1

µn+m
)→ 0 uniformly in m.

The fact that for any s̃ ∈ A the dynamic ray gs̃ lands at α follows from the

same estimates as in Theorem 7.1.6.

We say that a set Λ is hyperbolic (with respect to the euclidean metric) if

it is forward invariant set such that |(fk)′x| > η > 1 for all x ∈ Λ, k > k. In

a similar way we can prove the following.

Theorem 7.1.9 (Accessibility of hyperbolic sets). Let f be a polynomial

with connected Julia set. Let Λ ⊂ J be a hyperbolic set. Then for each x ∈ Λ

there is a dynamic ray landing at x.
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This theorem was originally stated as accessibility of the postsingular set

for exponential maps with bounded post-singular set. It has been observed

by Lasse Rempe that the proof applies to general hyperbolic sets.

Proof. Let U be a δ-neighborhood of Λ such that |(fk)′x| > η′ > 1 for x ∈ U ,

k > k. Up to considering fkΛ we can assume k = 0. Observe that U will in

general not be connected. Let B be a finite covering of Λ formed by balls of

radius δ/3 centered at points in Λ.

Fix x in Λ, and let us construct a dynamic ray landing at x. Let B ∈ B
be a disk containing infinitely many xn. Observe that Bδ(xn) ⊃ B for any

xn ∈ B, and that f−1(Bδ(xn)) ⊂ Bδ/η′(xn−1) for any inverse branch of f

mapping xn to xn−1.

Let ε := min(δ/3, δ− δ/η′), tε as in Lemma 7.1.5 and g0(t0) ∈ B for some

t0 < tε. Let tn = F−n(t0). Like in the case of a repelling periodic orbit we will

construct a sequence of pieces of rays gn(tn, F (t0)) for which we have uniform

control on each fundamental domain Itm(gn), n > m. We will construct one

such curve for each xn ∈ B, hence not for all integers, but we will still get

infinitely many curves.

Given xn ∈ B, let us construct a sequence of curves γn,j = gn,j(tj, F (t0)), j =

0, ..., n in the following way: γn,0 := It0(g0); the pullback of γ0 under the

branch of h−1 mapping xn to xn−1 (which is well defined on all of Bδ(xn) as

Bδ(xn) ∩ P = ∅) coincides with some piece of dynamic ray gn,1(t1, t0).

As gn,1(t0) ∈ Bδ/η′(xn−1), by Lemma 7.1.5 we can extend it to gn,1(t1, F (t0)) ⊂
Bδ(xn−1). By induction we can define γn,j = gn,j(tj, F (t0)) ⊂ Bδ(xn−j), up

to γn,n = gn(tn, F (t0)) ⊂ Bδ(x).

Like in the case of a repelling orbit we can extract a subsequence of angles

converging to an angle s. Landing of gs at x follows from the same esti-

mates as in 7.1.6 together with the remark that d(Itm(gn) − x) ≤ δ
(η′)m as

fm(Itm(gn)) = It0(gn−m) ⊂ Bδ(xn−m).

83



7.2 Accessibility for exponential parameters

with bounded postsingular set

Let us define a family of inverse branches for f(z) = ez + c on C−R, where

R := {z ∈ C, Im z = Im c,Re z ≤ Re c}

Ln(w) := log |w − c|+ arg(w − c) + 2πin+ c,

where arg(z) takes values in [0, 2π).

7.2.1 Statement of theorems and some basic facts

The strategy used for the new proof of Theorem 7.1.1 can be extended to

the exponential family to prove the following theorems.

Recall that a point z is accessible if there exists a ray gs landing at z.

Theorem 7.2.1 (Accessibility for Misiurewicz parameter). Let f(z) = fc(z) =

ez + c be postsingularly finite; then any periodic point is accessible, including

points in the postsingular orbit.

Theorem 7.2.2 (Accessibility of periodic orbits for non-recurrent parame-

ters). Let fc(z) = ez+c be non-recurrent with bounded postsingular set ; then

any repelling periodic point is accessible.

Theorem 7.2.3 (Accessibility of the postsingular set). Let fc(z) = ez + c,

c ∈ J be non-recurrent with bounded postsingular set; then any point in the

postsingular set is accessible.

Theorem 7.2.1 has been originally proved by Schleicher and Zimmer in

[SZ1] using different techniques involving contraction on the space of topo-

logical objects called spiders.

As for polynomials, our strategy will be to first prove a uniform bound

on the length of fundamental domains IT (gα) for some fixed T and some
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specific family of addresses gα, then translate this into a uniform shrinking

for fundamental domains starting at small t, and eventually study the local

dynamics near a repelling periodic orbit.

From now on we will always consider an exponential function f non-

recurrent with bounded postsingular set.

The main difficulties with respect to the polynomial case are that Propo-

sitions 7.1.3 and 7.1.5 are not valid in such generality, and that a priori

the sequence of ray pullbacks near the repelling fixed point might have un-

bounded addresses and hence no convergent subsequence.

In the following, let α be a fixed point, and Ω = C \ ({c} ∪ P ∪ {α}),
where P denotes the postsingular set P = ∪

n≥1
fn(c). As f(P) ⊂ P , for any

simply connected region U ⊂ Ω on which a branch ϕ of f−1 is defined we

have ϕ(U) ⊂ Ω.

Proposition 7.2.4. The set C \ P, and hence Ω, is connected.

Proof. As P is compact, C−P has only one unbounded component, and each

one of its connected component Vi is open. By density of escaping points,

each Vi contains escaping points; as dynamic rays are connected sets, each

Vi has to be unbounded, hence there is a unique connected component.

As Ω is connected, and omits at least three points because c cannot be a

fixed point, it admits a well defined hyperbolic metric ρΩ.

We will start by proving Theorem 7.2.2 which clearly implies Theorem 7.2.1.

7.2.2 Bounds on fundamental domains for exponen-

tials

The first step is to prove an analog of Proposition 7.1.3 for appropriate

families of dynamic rays in the exponential setting.
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Theorem 7.2.5 (Bounded fundamental domains for exponentials). Let gs

be a periodic dynamic ray ,

A := {s ∈ S such that σn(s) = s0 for some n ≥ 0}

and {gα}α∈A be the collection of pullbacks of gs0. Then there exists T such

that:

• If α = am...a2a1s0, then gα(t) = Lam ◦ · · · ◦ La1gs0(F
m(t)) for all t >

T, α ∈ A. (*)

• For t ≥ T , Re (gα(t)) > C for some constant C depending only on gs0

(**)

• For t ≥ T , `(It(gα)) ≤ B where B depends on gs0 and on t, but not on

α. (***)

Theorem 7.2.5 is a consequence of the following proposition.

Proposition 7.2.6 (Branches of the logarithm). Let f(z) = ez + c; there

is M > 0 such that for any z with Re f j(z) > M for all j > 0, and for all

m ∈ N,

1. Re (Lam ◦ . . . La1)(f
m(z)) ≥ Re (Lm0 f

m(z))

2. |(Lam ◦ . . . La1)(f
m(z))− c| ≥ |Lm0 fm(z)− c|

Proof. The proof works by induction on m.

Let M > Re c. For m = 1, equality holds in 1. because all preimages of a

point are 2πi translate of each other. Also, 2. holds because

|(La1)(f(z))− c| = | log |f(z)− c|+ i arg(z − c) + 2πin|

> | log |f(z)− c|+ i arg(z − c)| = |L0f(z)| if Re z > M
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(recall we defined the argument as a function taking values from −π to π).

For m > 1, let us assume 1.,2. hold for m and let us show they also hold for

m+ 1.

To show 2. it is enough to show 1., because

| Im(Lam ◦ . . . La1)(f
m(z))− c)| > | ImLm0 f

m(z)− c|.

To show 1. observe that

Re (Lam+1 ◦ Lam ◦ · · · ◦ La1)f
m+1(z) = log |(Lam ◦ · · · ◦ La1)(f

m+1(z))− c| >

> log |Lm0 (fm+1(z))− c| = Re Lm+1
0 (fm+1(z))

where the inequality follows by property 2. in the induction hypothesis and

monotonicity of the real logarithm (we are using the induction hypothesis

for w = f(z), using Re f j(z) > M for all j).

Proof of Theorem 7.2.5. Property (*) is equivalent to Remark 2.

Let T be such that (*) holds and such that the dynamic ray gs0 and all

its pullbacks Lm0 (gs0) are approximately straight, i.e. estimates in Theorem

3.1.3 hold up to some small ε for each Lm0 (gs0), m ≥ 0. Property (**) follows

from property 1 in Proposition 7.2.6 and from the fact that Re Lm0 (gs0)(t) ≥
T − ε+ Re c for all t > T by asymptotic estimates in Theorem 3.1.3.

Property (***) follows from the fact that `(It(L
m
0 (gs0))) ≤ Ct ∼ e−t, and

`(It(gα)) ≤ `(It(L
m
0 (gs0))) for all α by estimate 2 in Proposition 7.2.6 and

the fact that |L′a|(z) = 1
|z−c| , hence contraction of length is minimal along

branches of L0.

Theorem 7.2.5 gives us the equivalent of Lemma 7.1.3 for polynomials;

now we will state and prove an equivalent to Proposition 7.1.5.

The next proposition is a general fact following from normality of inverse

branches; its equivalent for rational functions can be found in [L0], Proposi-

tion 3.
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Proposition 7.2.7 (Shrinking under inverse iterates). Let L be a compact

set such that L ∩ J 6= ∅ and L ∩ P = ∅. Then

diam(f−mλ (L))→ 0

uniformly in f−mλ for any branch f−mλ of f−m such that f−mλ (xm) ∩ K 6= ∅
for some compact set K and some sequence xm ∈ L ∩ J .

Proof. As L∩P = ∅, inverse branches are well defined and univalent. Suppose

by contradiction that there is ε > 0, mk →∞, and λk branches of f−mk such

that diam(f−mk
λk

)(L) > ε for any mk, λk.

By normality of inverse branches, we can extract a subsequence converging

uniformly to a function ϕ . As f−mk
λk

(xk) ∈ K for some xk ∈ L ∩ J , there

is a finite accumulation point y ∈ J for the sequence {xk ∈ L ∩ J}. By

Hurwitz theorem and by convergence to ϕ, if ϕ is not constant, there is a

neighborhood V of ϕ(y) such that (f−mk
λk

)(L) ⊃ V for all k. This implies

that f m̃k(V ) ⊂ L for some sequence m̃k → ∞, contradicting the fact that

y ∈ J .

So φ must be equal to a constant and diam(f−mk
λk

)(L)→ 0.

Theorem 7.2.8 (Fundamental domains shrinking for exponentials). Let g0

be a periodic dynamic ray, {gα}A its family of pullbacks as defined in Theorem

7.2.5. Given an ε > 0 and a compact set K there exists tε = tε(K) such that

`(It(gα)) < ε whenever t < tε and gα(t) ∈ K.

Lemma 7.2.9. (Bound on bounded pullbacks) Let {gα} be the collection of

pullbacks of some periodic ray g0, α ∈ A as defined in Theorem 7.2.5.

Given any ε > 0 there exists M , if |α| > M then `(IT (gα)) < ε ≤ B
M

where T,B are given by Proposition 7.2.5. Moreover for all M there exists a

compact set KM such that {It(gα)} ⊂ KM for all α such that |α| < M .

The proof of Lemma 7.2.9 follows from estimates similar to the estimates

in Proposition 7.2.6.
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Lemma 7.2.10. Let Ω be as in Proposition 7.2.4, and

HC = {z ∈ C,Re z > C}

where C is given by Theorem 7.2.5. Then there exists a disk BR centered at

c such that ρΩ < 1 on HC −BR.

Proof. As the postsingular set is bounded, we have that Ω ⊃ C − Br for

some disk Br of radius r, hence ρΩ < ρC−Br . On the other side, ρC−Br < 1

on C−BR for some R > r, as ρC−Br(z) ∼ −1
|z| log |z| for |z| → ∞.

Proof of Theorem 7.2.8. Fix a compact set K and ε > 0. As for any compact

set K there is a constant CK such that 1 = ρeucl < CKρhyp on K, we can

find ε′ such that a curve γ intersecting K has euclidean length smaller than

ε whenever it has hyperbolic length smaller than ε′.

By Lemma 7.2.9 we can find M such that `(IT (gα)) < ε′ if |α| > M , and

KM ⊂ HC such that {IT (gα) ⊂ KM} for each α with |α| < M.

For pullbacks of rays whose fundamental domains are in KM ∪ BR, the

claim follows from Proposition 7.2.7. For pullbacks of rays gα with |α| > M ,

the claim follows by the fact that `Ω(IT (gα)) < ε′, hence `Ω(ψnIT (gα)) < ε′

for all n ∈ N and `(ψnIT (gα)) < ε whenever ψnIT (gα) intersects K.

7.2.3 Proof of Accessibility Theorems

Proof of Theorem 7.2.2. The same inductive construction from the proof of

Theorem 7.1.6 can be used to obtain a ray landing at the fixed point α, to

show that it lands and that it is periodic, once we show that the sequence of

external addresses sn obtained by the construction is bounded. However this

is now easy to show: by construction gn(t0) ∈ U for large n and FN(t0) > T

for some N . As fN(U) is a compact set, Im fN(gn(t0)) is bounded, hence

|sn| is bounded by claim (*) in Proposition 7.2.5.
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A theorem by Rempe relates accessibility of repelling periodic orbits for a

map fc to the fact that c belongs to a parabolic wake ([R0], Lemma 5.14.1).

Lemma 7.2.11. Suppose that an exponential map fc with nonescaping sin-

gular value has some periodic orbit of period n which is not accessible. Then

there exists a period n hyperbolic component W such that c belongs to the

wake of W , but does not belong to any of the parabolic wakes attached to

parabolic parameters on ∂W .

Together with Theorem 7.2.2, Lemma 7.2.11 implies that non-recurrent

parameters with bounded post-singular set belong to parabolic wakes at-

tached to the period one component.

Corollary 7.2.12 (Corollary of Theorem 7.2.2). If c is a non-recurrent pa-

rameter with bounded postsingular set, it is contained in a parabolic wake

attached to the boundary of the period one hyperbolic component W0.

Proof. We can find a curve γ joining c to W0 such that all fixed points can be

continued analytically. Call α is the analytic continuation of the attracting

fixed point. If c does not belong to any parabolic wake attached to W0, α

would be the landing point of only one periodic ray, which would then need to

be fixed. But all fixed rays already have landing points, because all dynamic

rays land at different points for parameters in W0.

To prove Theorem 7.2.3, let us recall that the postsingular set is hyperbolic

by Theorem 6.1.7.

Proof of Theorem 7.2.3. The construction is the same as in the proof of The-

orem 7.1.9 using the fact that P is bounded together with Proposition 7.2.7

to show shrinking of fundamental domains.
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Chapter 8

Hyperbolic metric

Here we will recollect some notions about the hyperbolic metric, with a

special attention in including those standard facts often used in dynamics

but rarely written in expository accounts about the hyperbolic metric. For

references see [Al], [McM],[L].

We will say that a Riemann Surface S is hyperbolic if its universal covering

is the unit disk D.

By the Uniformization Theorem (see e.g. [Mi] ), any open subset of C

whose complement contains at least two points has D as universal covering.

On the unit disk D there is a unique metric of constant curvature -1 called

the hyperbolic metric on D, which can be written explicitly as

ds =
2|dz|

1− |z|2
=: ρD|dz|,

where dz is the euclidean metric and ρD is the hyperbolic density in D.

It can be checked by direct computation that the hyperbolic metric is

invariant under Möbius transformations, i.e. automorphisms of the disk.

If Ω is a hyperbolic Riemann surface, which means if we have a covering

map π : D → Ω, the hyperbolic metric on Ω is defined as the pushforward

under π of the hyperbolic metric on D (recall that π is open and locally
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invertible).

If we denote by ρΩ, |dw| the hyperbolic density and the euclidean metric

on Ω respectively, this means that the hyperbolic metric ds on Ω is given by

ds = ρΩ(w)|dw| = 2|dw|
|π′(z)|(1− |z|2)

, (8.0.1)

where z ∈ {π−1(w)}.
Apart from D, the two most important cases for which the hyperbolic

density can be written up explicitly are given by the upper half plane H and

the punctured disk D∗:

ρH(w) =
1

Imw

ρD∗(w) =
1

|w|| log |w||

Given a curve γ contained in a hyperbolic Riemann surface Ω, we can define

its hyperbolic length

lhypγ :=

∫
γ

ρΩ.

The two elementary main results needed about the hyperbolic metric are the

following ([L], Scharz Lemma):

Theorem 8.0.13. Schwarz-Pick Lemma If f : S → S ′ is a holomorphic

map between Riemann surfaces, either f is a local isometry for the hyperbolic

metric, or f strictly decreases all nonzero distances in the hyperbolic metrics

of S, S ′ respectively.

Proposition 8.0.14. Inverse monotonicity If Ω ⊂ Ω′ ⊂ C are regions

admitting a hyperbolic metric, then ρΩ′ ≤ ρΩ. If equality holds at some z ∈ Ω,

then Ω = Ω′.

Proof. Apply the Schwarz Lemma to the identity map from Ω to Ω′.
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Corollary 8.0.15. If f : S → S ′ is a conformal map between Riemann

surfaces, and it is surjective, then the hyperbolic length of a curve γ ⊂ S

equals the hyperbolic length of its image f(γ) ⊂ S ′.

8.0.4 Boundary behavior of the hyperbolic metric

The hyperbolic density ρΩ at some point z tends to infinity when z approaches

the boundary of Ω. However, it is easy to obtain an elementary upper bound

in term of the euclidean distance of z from the boundary, d(z, ∂Ω) =: d(z)(

[L], Lemma 1.86)

Theorem 8.0.16. Estimates on simply connected domains If Ω ⊂ C

is a simply connected region omitting at least two points, and d(z) is the

distance of a point z from ∂Ω, 1
2d(z)

≤ ρΩ(z) ≤ 2/d(z).

Proof. The second inequality follows from the fact that the diskD := Bd(z)(z) ⊂
Ω, hence by 8.0.14 ρΩ(z) ≤ ρD ≤ 2/d(z).

For the first inequality consider the Riemann map Φ from D to Ω mapping

0 to z, and noting that |Φ′(0)| ≥ 4d(z) by Koebe 1/4-Theorem. The claim

follows from 8.0.1 and the expression of ρD.

The most general theorem that can be obtained for an upper bound is the

following (keep in mind the expression of the hyperbolic metric on D∗), ([L],

Theorem 1.67):

Theorem 8.0.17. For any hyperbolic domain Ω ⊂ C, there exists some

constant k such that

ρΩ(z ≥)
k

d(z)| log d(z)|
,

where d(z) is the distance of z from ∂Ω.

Remark: As this is a local property, the theorem above also holds if we

let d(z) be the spherical distance between z and ∂Ω.
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It requires a little bit more work to compare euclidean and hyperbolic

length of curves approaching the boundary of a hyperbolic domain. An

example of a theorem in this spirit is the following:

Theorem 8.0.18. Curves going to the boundary Let Ω ⊂ C be an open

region admitting a hyperbolic metric.

Let {γn} be a family of curves γn : [0, 1] → Ω which have uniformly

bounded hyperbolic length and such that γn(0) → ∂Ω. Then the euclidean

length `(γn)→ 0, in fact `γ ≤ C dist(γ, ∂Ω).

Sketch of the proof. By Proposition 8.0.14, we can assume Ω = D and γn(0)→
0, or Ω = H and Im γn(0) → 0. In this cases the proof follows by straight-

forward calculations.
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