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Abstract of the Dissertation
Rigidity of Conformally Compact Manifolds
by
Satyaki Dutta
Doctor of Philosophy
in
Mathematics
Stony Brook University

2007

Rigidity problems for conformally compact manifoids have been
studied by several mathematicians over the past. We have proved
that a conformally compact manifold with a pole and With round
sphere as the conformal infinity, under a lower bound on the Ricci
curvature and a weak asymptotic bound on the scalar curvature has
to be isometric to the hyperbolic space. We have also sharpened a

result by Shi and Tian.
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Chapter 1

Introduction

The study of conformally compact manifolds has been a topic of great interest
to both physicists and mathematicians. From the point of view of physics,
conformally compact Einstein manifolds play a very important role in the
ADS/CFT correspondence, first proposed by Maldacena. It asserts the exis-
tence of a correspondence between string theory on an asymptotically locally
aﬁti—de Sitter spacetime and an appropriate conformal field theory on the
boundary at-infinity.

We will begin with the definition of Conformally Compact manifolds.
Definition 1.0.1. Let M be an oriented compact manifold with boundary, A
cme (m e Zt, o € (0,1)) function p : M — R is said to be a defining function
for 8M if p> 0 in M, plagy =0, and dp # 0 on OM.

Definition 1.0.2. A complete metric g on M is said to be O™ conformally
compact if there exists a Cm"‘ defining function p for 8M such that § = p?g

extends to a O™ metric on M.

We wish to point out here that defining functions are unique up to multipli-

cation by positive functions on M. In other words, if p is a defining function of




the boundary then so is fp, where f : M — R is any smooth positive bounded
function. Therefore, only the conformal class [g] is uniquely determined by
g, same goes with the conformal class [y] = [g|ssz] of the induced boundary
metric. The class [y] is called the Conformal Infinity. A formal definition is

provided below.

Definition 1.0.3. Let (M, g) be a complete conformally compact manifold,
The conformal class, [v] of boundary metrics determined uniquely by g is called

the conformal infinity of (M, g).

Example 1.0.1. As an example we consider the hyperbolic space H™ L apith
the Poincare metric gnyy and the unil ball B! with the flat Buclidean metric

Geue: 1t 15 a well known fact that,

1— |z|*\?
Geue = ( 5 ) Ghyp)y

where || is the Buclidean distance of a point z € B from the origin. Therefore,
(H", gy 18 conformally compact and a defining function is 1—“2‘,3'1 The com-~
pactification in this case is smooth and the conformal infinity is the conformal

class of the round metric [y] on S™.

Even though defining functions in general are not unique, one can still

prove uniqueness in the sense below.

Definition 1.0.4. A defining function p is called a geodesic defining function
if [Vplz = 1 in a neighborhood of M.

It has been proved that if the compactification is at least C?, then for a




given boundary metric, every such conformal compactification has a unique
geodesic defining function.
It is easy to see that conformally compact manifolds have the following

asymptotic curvature bounds:
Ky + 1] = O, (1.0.1)

for every sectional curvature K;; measured with respect to the complete metric

g. Therefore, such manifolds are asymptotically locally hyperbolic.

Definition 1.0.5. A metric g on an open manifold M is called asymptotically
hyperbolic if the sectional curvatures of 2-planes at p € M converge to -1 as

disty(p,pp) — oo, where py € M is a fixed point,

This raises the following question:

When is an asymptotically hyperbolic manifold isometric to the hyperbolic
spocef ‘

Rigidity of asymptotically Euclidean manifolds ties up with the positive mass
theorem for Riemannian manifolds. It says that an asymptotically Euclidean
manifold of dimension between 3 and 7 with everywhere non-negative scalar
curvature and zero mass is isometric to the Euclidean space. This result was
proved by Schoen and Yau ([16],[17]). Witten [20] showed that the conclu-
sion is true in any dimension under the extra assumption that the manifold is
spin. We recall here that a spin manifold (M™+!, ¢) is an oriented Riemannian
manifold together with a lift of the structure group SO(n + 1) of its principal

bundle SO(M™, g) of all oriented orthonormal frames to its simply connected

double cover Spin(n + 1). The hyperbolic analog of this result was proved by




Min O-0O in the following theorem.

Definition 1.0.6. A smooth Riemannian manifold (M™,g) is said to be
strongly asymptotically hyperbolic if there exists a compact subset B C M and
a diffeomorphism ¢ : M - B — H"*! — B,,(0) for some r¢ > 0, such that the

transformation A : T{M — B} — T(M — B) defined by the conditions,

g(Au, Av) = ¢*g(u,v) = g(dp(u),db(v)),  g(Au,v) = glu, Av)

for all u,v € T(M — B), satisfies the following properties: (a) Therc exists
a uniform Lipschitz constant ¢! > 1 such that for all v € T'(M — B), O~ <
il’l’]ll_I%lAUl < ﬁg}ﬂ/—lﬂ < € and (b} exp(¢ o r)(4A —id) € LY (T*{M — B) ®
T(M - B ),Q )

Theorem 1.0.1. (Min 0-0, [18]} A strongly asymptotic hyperbolic spin man-

ifold of dimension n > 3, whose scalar curvature sotisfies R > —n(n — 1)

everywhere, is isometric to the hyperbolic space.
This raises the next question:
Clan one prove rigidity without having the spin structure?
The following theorem due to M.C.Leung gives a partial answer.

Definition 1.0.7. A smooth conformally compact metric g on a manifold M
is said to be a generalized Poincaré metric if g is Einstein and h = o%g is an

even function of p, where p is a delining function of the boundary.

Theorem 1.0.2. (Léung, [11]) For any odd integer n 2> 2, let g be a general-

ized Poincare metric on B"™! = {z € R™ : [z| < 1}. Suppose the sectional




curvatures of (B"*, g) approach -1 in order O(p™) for v > 2, then (B**, g} 4s

isometric to the standard hyperbolic space.

The curvature constraints are stronger than eqn(1.0.1), As we know al-
ready, conformally compact manifolds are by definition asymptotically hyper-
bolic. They are the natural candidates for a generalization of Leung’s result.
More recently, J.Qing, cf [15] proved a rigidity result for conformally compact

Einstein manifold (M™*, g).

Theorem 1.0.3. (Qing, [15]) Suppose that (X", g) is a conformally compact
Einstein manifold with the round sphere as its conformal infinity, and 3 <n <

6. Then (X,g) is the hyperbolic space.

One limitation of this theorem is the restriction on the dimension of the
manifold, Anderson, cf [4] generalized this result and showed that it is true in

any dimension,

Theorem 1.0.4. (Anderson, [4]) A C? conformally compact Einstein metric
with conformal infinity given by the class of the round meiric gy on the sphere

S™ is necessarily isometric to the Poincaré metric on the ball Bl
A very recent theorem of Shi and Tian [18] proves the following.

Definition 1,0.8. A manifold (M, g) is said to have a pole p ¢ M if
exp, : TypM — M

is a diffeomorphism,




)

Definition 1.0.9. A complete non-compact Riemannian manifold (M™", g)
is called asymptotically locally hyperbolic(ALH) of order o if |Kj; + 1| =

O(e—ﬂﬂp(m‘)), where p(;{,’) = d'[,.stg(;[:,q), where ¢ is some point in M.

Theorem 1.0.5. (Shi-Tian, [18]) Suppose that (X", g}, n > 2 andn # 3
is an ALH manifold of order o with a pole and there is o p > 1 such that the
geodesic sphere with radius p and center at the pole is convexr. If we further

have a > 2 and Ric(g) > —ng, then (X", g) is isometric to H*™,

As a remark, we wish to point out that the condition on « in the above
theorem, is much stronger than equation(1.0.1). We now present the main

theorem;:

Theorem 1.0.6. Let (M™,g), n > 2 be a complete smoothly conformally

compact manifold with o pole p with conformal infinity (S™, [v]} end Ric >

—ng, where [y is the conformal class of the round metric. Let t{z) =

disty(p,z} and Vﬁ%ﬁﬁgm +n{n + 1)| = 0(6*2*)., where Y¢'s are level sets
¢

of t and R is the scalar curvature of (M™, g). Then (M™', g) ds isomelric

to (B‘M—l:gﬁl)'

It assumes a weak asymptotic bound on the scalar curvature and only a
lower bound on the Ricci curvature. We make no additional assumption on
the sectional curvatures other than what is inherited through conformally com-
pactness, The scalar curvature of any conformally compact manifold satisfies
|R + n{n + 1}} = O(e”*), by virtue of equation(1.0.1}. We require a slightly
stronger decay rate. During the course of the proof we have also shown that
Shi-Tian's result in ([18]) holds under a slightly weaker assumption on the

sectional curvature bound.




Chapter 2

Background Material

Before getting into the proof of our main result, we will gather here some

essential definitions and results that will be used in the subsequent chapter,

2.1 Definitions of Various Curvatures

Curvature Tensor

The curvature tensor R is a (1,3)-tensor defined as
R(X,Y)Z =VxVyvZ —-VyVxZ —Vixy 7, (2.1.1)
for any three vector fields X,Y, Z e TM

Next we define three important eurvature quantities:

Sectional Curvature
For any p € M and any v,w € T, M, the sectional curvature K, ,, is defined

&8s

_ g(R(w, v)v,w)
Koo = 0, 0) g, w) — (glw, w))?




In terms of an orthonormal basis {e;} of T,M:

Kij = Koo = g(Rlejr ei)es, ¢5) (2.1.2)

Ricei Curvature
For any point p € M, let {e;} be an orthonormal basis of T, M, then for

any v,w € TyM, the Ricci curvature,
ko)

Ric(v,w) = Z g{R(v, e)e;, w) (2.1.3)
i=1

Scalar Curvature

" The scalar curvature at any point p € M is trace of the Ricci curvature,

ie.,

R = Z Ric(ei, e;)
i=1

tj=1

Let (M™! g) be a Riemannian manifold, under & conformal change of the

metric g by a conformal factor €%/, that is § = ¢?/g, one can relate the new

curvatures of M with respect to g to those with respect to g. Here we will list




the formulag without proof:

l

Ric = Ric— (n— 1)(Ddf —df odf) + (Af — (n— D|df*)g, (2.1.5)

R = ¥(R+2nAf —n(n—1)|dt?), (2.1.6)

VxY = Vx¥V+g(X, VY +g(Y, VX - g(X,Y)V/, (2.1.7)

A convenient way to express the scalar curvature equation (2.1.6) is:

7 ntad . 4n
R=u n(n(n-l—l)u——m

Agu), (2.1.8)
where § = W g. We have chosen the Laplacian as the trace of the second
fundamental form.

For any distance function f : U < (M™,¢) — R, (for our purpose wo
would assume f to be smooth) the level sets, f~!(r) = U, are smooth hy-
persurfaces in U, with induced metrics 4, = gly,. Clearly N = V[ is a unit
normal vector field to U,. The Hessian of f denoted by 8 = V2 [ also called the
shape operator or second fundamental form measures how the induced metric
on U, changes.

The following formula relates the curvature tensor, R, of (U,,7,) to the cur-

vature tensor R of the ambient manifold A, and the shape operator § = V2.

Gauss-Codazzi FEquations:




For any three vector fields X,Y, Z tangent to U,, we have

(1) tanRX,Y)Z = R(X,Y)Z - g(S(Y), )X + 9(S(X), Z)Y, :

|
%
%
(2.1.9) !

If

(2) norR(X,¥)Z = g((V¥S)(X) — (VxS)(Y), Z).N. (2.1.10) i
where tan(W) = W — g(W, N)N and nor(W) = g(W, N).N

Let us now choose coordinates in U/ such that {81, ..8,} define coordinates
on the level set U, and 9, = Vf is the unit normal, Let us introduce the

following notations il

g; = 9(8:,04), (2.1.11)

Ry (8)) = M(8,, 0,0 = Y _ RIG;, (2.1.12) 51
S(B) = Vabh =3 800, (2.1.13)

m = () = Af. (2.1.14) "

i

We will now write out the following set of equations that we are going to

use extensively in the next chapter. Proofs and further discussions can be

10
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i
i
£
i
8

found in [14]

8:(S7) + (SE)S]) = —(&)), (2.1.15)
O (gi5) = 20SF)-(grs)s (2.1.16)
arm+3:§ < —Ric(8,,8,), (2.1.17)

Opafdet(gi;) = m.y/det{g; ;). (2.1.18)

Notice that taking the trace of equation (2.1.15), gives:
B + tr(SFNS]) = — Ric(6,, ;). (2.1.19)

To get equation (2.1.17) from equation (2.1.19) one simply needs to apply
Cauchy-Schwartz inequality for matrices. Having set the notations, we would
now state the following comparison theorem, the proof of which can also be
found in [14]. Let us suppose that (M1, g) is a Riemannian manifold. Let

(r,6) be polar coordinates around & point p € M, Then the following holds:

Theorem 2.1.1. Assume that (M™', g) satisfies k < Sec < K. If (gi)

represents the metric in the polar coordinaies and (Sf) the Hessian of f, then

we have

snd(r) < (gi(r, 0))a<ijgnsr < sni(r), (2.1.20)

sny(r) i sy, (r)

———r) < (81 0)acijgny < \/Esn:(r)’ (2.1.21)
11




where, !
sin(Vkt) k>0

sng(r) = ¢ ¢ k=0

Lsinh(Vikt) if k<0

In particular, if Ajee, Amin are the maximum and minimum eigenvalues of

.S’,f respectively, then

sny ()
sng(r)’

VEEE) oy .8) din(r, 0) < VE (2.1.22)

2.2 Comparison Theorems

We will use Bishop-Gromov volume comparison thecrem on several occasions.

Therefore, we will record the theorem here,

Theorem 2.2.1. (Relative Volume Comparison, Bishop-Cheeger-Gromouv) Sup-
pose (M™ ) is a complete Riemennian manifold with Ric > nk, k € R,

Then
1B
_volB(p,r) (2.2.1)
v(n+ 1, k,r)
is a nondecreasing function whose limit asr — 0 is 1.

Here v(n+1, k, ) is the volume of an (n+1)-ball of radius r in a space-form

of constant sectional curvature k € R and p € M. The other useful result is

the Laplacian comparison lemma (9.1.1 }in {14].

Lemma 2.2.2. Suppose (M™1, g) has Ric > nk for some k €R. Then

sny (T

S

m(r,d) <n (2.2.2)

sng(r)




We will now discuss the function spaces briefly. We are going to use an
embedding lemma towards the end of our proof, as a step towards boosting
up the regularity of & limit function, Here we will state the lemma without

proof.

2.3 Function Spaces

Definition 2.3.1 (Hélder Spaces). The (m,a) Hblder norm of a function
f 1 CR* = R, is defined as:

flma = Y sup|0°f]+ > { 1) = aif(qﬂ} (2.3.1)

|‘L|<m l,bl p,qEQ |p - qla

The C™=((}) Holder space is the space of functions on {2, that have bounded

™ norm,

Definition 2.3.2. Let w : € C R* — R be locally integrable and o =
{ev, ..., 05} any multi-index. Then a locally integrable function v is called

the ot weak derivative of w if it satisfies
f pude = (—1)l / uD®¢dz  forall ¢ € CF ().

Definition 2.3.3 (Sobolev Spaces). The (k,p) Sobolev norm if a function
f:QCR® - R is defined as:

1A llpe = f e ppav)” (23.2)

x| <fe

13

e ———




where D* is the o weak derivative of the function f and dV is the volume
form. The Sobolev space W*?(Q) is the space of all functions f on € with

bounded (k, p) Sobolev norm.

Under certain conditions on the exponents W*? spaces embed into €™«

Holder spaces. The following embedding lemma is of particular interest to us.

Definition 2.3.4. Let v : © C R* — R and let e; be the unit coordinate

vector in the z; direction. We define the difference quotient in the direction e;
by

u(@ + he;) — ufz)
5 ;

Aby(z) = AMz) = h#£0.

Now, we will state the lemma. The proof can be found in {8](lemma 7.24)

Lemma 2.3.1. Let v ¢ LP(Q), 1 < p < oo, and suppose there ewists o
constant K such that Ahu € LP(Q) and ||AMulipe@y < K for all b > 0 and
O CC Q satisfying h < dist(, Q). Then the weak derivative Dju exists and
satisfies |{Dsul|reqy < K.

In particular if € is bounded and w has a uniform C%' bound on Q then
uwe WhP(Q) for all p > 1.
We will state Arzela-Ascoll theorem, that we will use to prove convergence of

a sequence of functions.

Theorem 2.3.2 (Arzela-Ascoli). Let X be a compact Hausdorff space and
C(X) the Banach space of the continuous functions on X with the norm of
uniform convergence. A subset S C C(X) is precompact, i.e. S is compact, if

and only if it is bounded and equicontinuous. -

14




2.4 Yamabe Quotient

Let us assume that (M" g) is a compact Riemannian manifold. Under =
conformal change of metric § = ¢¥®2g, the scalar curvature R with respect
to metric g satisfies the following P.D.E. (as in equation (2.1.8))

A(n — 1)

o) dAP, (2.4.1)

quZn/('n.#E) — R¢?2 =

where R is the scalar curvature with respect to the metric g.

The volume forms dn and d7 satisfy the following equation:
dij = ¢*™/ Ay (2.4.2)

Yamabe Quotient Q(g) is defined as follows:

[ R [ (n(n— 1)¢? + 22|V, %) dn.

= n—2 = M o n—2 (2-4..3)
(fdn) (fg=sdn) =
M M

Qg)

Yamabe Invariant, p, is the defined as the infimum of Q{g} over the con-
formal class of g, i.e.

pg = inf{Q(7) 17 € [g]}

From the definition it is trivial to see that p; is a conformal invariant. It is
also known due to Aubin that for any compact Riemannian manifold (M?",v),

fhy < ag (8™), Where 7o is the standard round metric on S™. In particular, if

15




(M™, [7]) = (5™, [70]), then
oy = (= D(wn)", (2.4.4)

where w,, is the volume of (S™, v).
We will use the following Proposition of Obata [13] to argue that a certain

limit metric is isometric to the round metric v on S™.

2.5 Obata’s Theorem

Proposition 2.5.1 (Obata [13]). Let (S™, g) be a Buclidean n-sphere of radius
1, and g* another Riemannian metric on 5™ conformal to g. Then g* is of
constant scalar curvature n(n — 1) if and only if it 4s of constant sectional

curvature 1.

2.6 Notations

Starting with a complete, conformally compact manifold (M, g) with other
assumptions as in the theorem 1.0.6, we consider two compactifications namely,
F=e%¥gand § = e 2g. Recall, the function r is defined as e™™® = p(z),
where p is the defining function of the boundary, and ¢(z) = dist,(z,p) is the
distance from the pole.

e The barred and primed, barred and unbarred, unprimed quantites are
computed with respect to the metrics g, § and g respectively.

o ¥, =3, are the level sets of r, &y = 5, are the level sets of £,

16




Fo)

¢ The function c(z) = t(x) — r(z} and ¢ (or ¢,} is the restriction of ¢ on
¥ {or %)

e 7, (or #¥,) are the restrictions of the metric g (or §) to the level sets ¥}
(or 3,). Same goes with ;.

e The barred and primed quantities with subscript t are computed on the
level sets ¥ with respect to #,. Similar notations hold for barred with subscript

r or unbarred, unprimed with subscript r.

17




Chapter 3

Main Result

We start off with a geodesic defining function p : M - R of the boundary that
is \ﬁpb = 1 in a neighborhood of the boundary of M. Lel us sct p = 2e™",
Tt is easy to show that |Vr|, = 1 if and only if [Vpl; = 1. Therefore, outside
of a compact set K C M, |Vr|, = 1, and therefore r is a distance function.
Choose rg, such that M,, = {x € M|p(z) > pp == 27"} contains the cut locus
of p, the set K and the pole p. Let z be any point in M and outside of My,
and let t(z) = disty(p, ). Recall, p is the pole and therefore ¢ is a smooth
distance function on M. Clearly the function c(z) = t(z) — r(x) is a smooth
bounded function in M — M,,. We will show that assuming (M, g) is a smooth
compactification, the function ¢ extends to a %! function on the boundary.
If we agsume that the conformal infinity is the round sphere as in the theorem,
then ¢ extends to a smooth function on the boundary.

—2r

We begin with the two compactifications § = 4e™%"g and §' = 4e™%g. By

our assumption, (M, g) is the smooth compactification of (44, g), with the

round sphere as its boundary.

18 4




3.1 Asymptotic Bounds on the Shape Opera-

tors

Here we will find asymptotic bounds on the shape operators V2 and V2t with

respect to the complete metric g.

Lemma 3.1.1. Let (M, g) be a complete conformally compact manifold. Let v
and t be smooth distance functions as defined earlier. For allr andt sufficiently
large, the eigenvalues {\i(r)} and {p:(r)} of the shape operators Vv and V1,

respectively are non-negative and bounded from above.

Proof. Since (M, g) is conformally compact, we have |Ky; + 1| = O{e™*). So
outside of a compact set K, we can assume that —o? < Kj; < —ali:, fora>1
but close to 1. Without loss of generality, we can assume X to be the same
compact set as above. Choose rj, such that X lies inside M. For any 7 > r{
we .have the following differential inequality for the each eigenvalue, A;{r) of

the shape operator V?r, (cf equation(2.1.21)).

1
o < X(r) + M (ry <%
From the second inequality, we get,

()
e NV
=X~

Integrating from rj to r, we get,

In (a + X(r) 1

VT %)) < 2a(r —rg),

19

il
it
|
;z
W
|




where Cp(rf) = In(St2r0)y

a—Ai(r))

or,

Co(rp)e*™ — 1
w0 < o(GrhaTe)

where Cp(rl) = C‘o riYe~200 The first inequality,
0 i

L < Xir) + M)

o?
gives,
1 /C(rh)es" — 1
M) = = (_Q(%)’
@ \Cy(rples” + 1
Ly, , .
where C{(ry) = ln(ﬁ_j__}‘_((—i%l)e"%rﬂ Without loss of generality, we can assume
@ o

rh = ro. Thercfore, we see that 0 < A(r) < Ci(rg) for all » > ry. Since for
any point z € M, |t(z) — r(z)]| is bounded, we also have, |Ki; + 1] = O(e™%),
Therefore, a similar analysis for the eigenvalues p,(t) of V2, would give us the

following inequality

0 < w(t) < Ei{to)

for every p;(t) and for all ¢ > ¢.
O

The next lemma shows that the shape operators actually tend to 1 at a
certain rate, Under a stronger assumption on the Ricci curvature, we will

show that the Laplacian of ¢ satisfies certain asymptotic bound. We wish to

20




emphasize here that this extra Ricei curvature assumption is not necessary to

prove our result and is not used anywhere in the proof.

Lemma 3.1.2. Under the above assumptions, forr > rg and t >, we have:

Vir(ei,e5) = 6 + o(e_%ﬁr) (3.1.1)
V(e ) = 8] + o(e~3%) (3.1.2)

where B < 1, {e;}"., are tangent to the level sets 3, and {c;}, are tangent
to the level sets X, If, in addition —(n — ¥(t)e *)g < Ric < —ng, where
»{t) > 0 and (t) € LL(RY), then

At =1 + O(e™2) (3.1.3)

Proof. Yor r > rg, we have the following inequality for {X;(#)}%, from the

proof of lemma 3.1.1:

0 S )\3(?") S 01(1"0).

We also have:

—1-Ce™ <Ky <-—1+4+Ce™,

This gives us the following differential inequality:

1 Ce ™ < XN(r)+ M(r) <1+ Ce™™. (3.1.4)
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Let w;(r) = M{r) — 1, therefore —1 < u;(r) < Cy(rg). Thus,

(W)Y +263(r) < @)Y + (4 + 2ufr)d(r)

< 2Cu{r)e™.

That is,

(u2(r)) + 2ud(r) < 2Cu;(r)e ™.

Choosge 0 < ' < 1, and write the above inequality in the following manner,

(i (r)) + 2u(r)

< QCui(r)e_zﬁ’Te_Q(l"ﬁl)’".

(i () + 28"} (r)

A

—283'r

Therefore, bringing e over to the other side,

(u3(r)eP Y < 20w (r)e LAY,

T

Integrating from rg to r,

uf (r)e" < Cf(ro),

or,

|us ()] < Calro)e™@". (3.1.5)
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This estimate is far weaker than what we had set out to show. To improve

this we use the following differential inequality,

(Wi (r) + (4 = 2u(r))ui(r) < () + A+ 2u(r))ui(r)

IA

A

20 |us (ri|e . (3.1.6)

Putting back the estimate on |u;(r)| obtained from equation( 3.1.5) to equa-

tion( 3.1.6)

(w(r)Y + 46d(r) < 2C.Calro)e 17 4 2GH (rp)e 2",

Choose 0 < < ' <« Qjéi), and split the right hand side of the inequality in

the following way,

(u2(r)) + dul(r) < e ¥20.Corg)e” P =387 L 903 (rg)e 307 —F)r)

or,

(W) +3pui(r) < (ui(r)) +4ui(r)

euaﬁ’[QO.C‘g (’rg)e’(z*ﬂ,ﬁsmr + 2023(?’0)6“3(’6’ ‘ﬁ)’"]

A

or,
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(u(r)eY < [2C.Cpfro)e™ @+ 4 908 ()~

Integrating from ry to r,

ui (r)e™” < Cy(ro)

or,

A(r) =1+ ofe™3%), (3.1.7)

Similar analysis with the eigenvalues y;(t) proves the other claim.

Here we prove our last claim, As before, let y;(¢) 's be the eigenvalues of the
Hessian of t, therefore, At = 5%, 1i;(¢). Let us assume ;(¢) = 14+T}(t)e™%, we
would show that |57, T:(#)] = O(1). From equation (3.1.2) we already know
that for each ¢, |T3(¢)| < O(e-2A%), Taking the trace of equation (2.1.18), we

get,

n—p(t)e ™ < (Zam(t)) + Ziui ) < n.
Replacing p;(t) by 1+ T;(t)e %, we get,

—P(t) < (BT + (E?=1T¢2)é_2t < 0.

Now, the second inequality, that is (N0, T3) + (N2, TF)e™* < 0 implies,

(B2, T3) <0, that is X, Ti(t) is non-increasing. Therefore it can only go
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to —o0. Whereas the first inequality stops that from happening,

—p(t) < (BT + (B, THe, (3.1.8)

i=1

(1) — (L THe™ < (LT

Since we already know that, for each 4, [T3(t)] < O(e %), and 234 < 1,
for some € > 0. We have the left hand side in L1{R*), and therefore L, 7;(%)
is greater than some finite number. Hence we conclude that | X, T5(¢)| = O(1).

o

Remark 3.1.1. Since the compactification by the function r is smooth, all
curvature quantities, in particular Ric, are bounded. A stronger asymptotic
condition holds for V2r, i.e. Vir(e,e;) = & + Ole™®). A straightforward

calculation using equation (2.1.5) proves it.

The following corollary is a direct consequence of lemma, 3.1.2.

Corollary 3.1.3. The second fundamental form of the level-sets (T, %)),

V2i{e, e}) = 5'(e}, €} — 0 as t — co, where {g}].; are unit tangent vec-

tors to (B¢, 7).

Proof. Since we are considering the metric §' = e~#g, where t(z) = dist,(z, ),

the unit normal N to the level set(3;,4]), in g metric can be written as,

N =Ve™ =Vt (3.1.9)

Therefore, the second fundamental form of the level set (3}, %) is as follows,
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S'e.g) = g(VuNg
= Q(VL;N”GS')

= (VN €}y — g(Vt, ef}g(N', €}) — g(Vt, € )g( V', l)

+9(Vt, N')g(ef, ¢5).

. We used equation (2.1.7) to get the last equality. Since, {e{}7, are tangent

=1
to the level-sets and Vi is normal, the second and the third terms above are

zero, Hence we have,

S'(e,e) = g(VegN’,e;)-l—g(Vt,N’)f&j
(Ve €) + e toy9(VE )

= e (g(V't, Vee;)) — ei(ale Ve, e)) + ¢'di;9(VE, Vi),
The second term, g(V't,¢;) = 0, since V't is normal to the level-sets. To

simplify the first term we use the following,

gVt X) = &*§(V't, X)

= e*g(Vt, X). (3.1.10)

Thus we have,
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e'(9(Vt, Vaey)) +€'659(Vt, VE) = e (ei{g(Vt, )} — 9(Vu Vi, €}) + Giy)
= —e(g(VaN, e — &)

= —Gt(vzt(eg, G;) — 57;3').
Hence, replacing V*t(¢}, €}) by &; —+—O(e"%ﬁt) proved in lemma (3.1.2), we get,

3'(g), &) = O((e~2F14, (3.1.11)

i
O

We now prove the following lemma, which is one of the key estimates for
the result in [18]. We show here in this lemma that the main theorem in [18]
stays valid even under a weaker agsumption on the asymptotic behavior of the
sectional curvatures. One readily finds that assuming the following lemma is

true, the theorem of [18] follows immediately.

Lemma 3.1.4. Let (M™1 ¢), n > 2 be a complete manifold with o pole, p.

If the sectional curvatures, K;; satisfy
—1—p(t)e ™ <Ky < -1+ ¢(t)e (3.1,12)

where, H{z) = disty(z,p) ¢ € LY(RT) and ¢ > 0. and Ric(g) > —ng, then, for

t > t, we have:
VH(el, ) = g(S(El), ) = by + O(e™), (3.0.13)
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Proof. Our goal here is to improve the estimates derived in lemma (3.1.2), by

using the extra agsumption on the sectional curvatures. We begin with equa-

tion (3.1.4) and under the stronger assumption on the sectional curvatures, we

have:

L—¢(t)e™ < p(t) + (1) <1+ g(t)e™™, (3.1.14)

Let,

wilt) = (ult) - 1),

In terms of v(t), equation (3.1.14) becomes:

v (1) < () — vi(t))e™.
Which implies that ¢(¢) > vj(t). Integrating this from #o to ¢ and using the
fact that ¢ € L*(RT), we get v{t) < €y, and hence
pi(t) <14 Che™ (3.1.15)

To get a lower bound, we write

pult) = 1+ Tit)e™

We already know from equation (3.1.14) and the last part of lemma (3.1.2)

with extra Ricci curvature assumption that obviously holds here, that for each

iandtztg,




—Cael® 3 < TY(H) < G, ()

Taking the trace of equation (2.1.15), we get:

(Bpa(t)) + B (t) = ~Ric(N, N).

Since |Kj; 4 1] < ¢(t)e™, we have a bound on Ric(N, N)
|Ric(N,N) +n| < ng{t)e .

Therefore,

n—nge® < (Sp) +Suf <n+nge .

Replacing p;(t)’s by 1+ Ti(t)e™*’s, we get:
(e < (BT * 4 (STPE)e < ng(6e,

or,

-n(t) < (CT(8) + (ETH(E)e ™ < ng(t).

Now, since T2(t) < maz{CZ, C2c“~301}, We have
TE(t)e ™ < maz{Cre %, C3*~%),

And since 2 — 38 < 0. That implies that (ET2(t)e %) € L' (R*).
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By assumption ¢(t) ¢ L'(RY) that forces (NTi(¢)) € LY(RY). Which
means LT;(t) is bounded. Again since each T;(¢) is bounded from above {equa-
tion (*)), we conclude that the |T;(t)| ’s are uniformly bounded for all ¢ large.

We have therefore established the inequalities for 7,

3.2 Scalar Curvature and Volume Bounds on

Level Sets

Next, we prove the following lemma,

Lemma 3.2.1. Let (M™! g), n > 3 be a complete conformally compact man-
ifold with a pole p and Ric > —ng. Let t(x) = dist,(p, z) and m fEa R+
n{n+1)| = o(e %), where for each t, Ty is the level set of t, and R, the scalar
cuv;‘vature of (M™1,g). The scalar curvatures and volumes of (34,7]) of t,

satisfy the following inequalities,

/_ R < n(n — DVol(Z) + o(1) (3.2.1)
5

Vol(¥)) < wy (3.2,2)

where wy, is the volume of (S™ 7).

In particular, if |R+n(n+1)| = ofe %) then one has R, < n(n—1)+o(L).

Proof. We will show that for the compactification § = e %g,
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f R < dn(n — DVol(EL) + o(1).
5y

We refer to equations (2.1.5) and (2.1.6), namely,

Hid = Ric— (n—1){Ddt — dtodt) + (At — (n— 1)|dt[")g, (3.2.3)

R = *(R+2nAt —ni{n— 1)|dt*). (3.2.4)

From corollary (3.1.3}, we know that the second fundamental form |S!| — 0

as t — co. By Gauss - Codazzi equation and corollary (3.1.3), we get:

B, ~ R = 263 (W', §') + o{1). (3.2.5)

Our assumption on the lower bound of the Ricel curvature gives the following
upper bound on the Laplacian of ¢, At < ncoth(t) (lemma (2.2.2)). Since
¢ is the distance function, we also have the following g(V¢, Vi) = |di|* = 1

equation (3.2.4} becomes,
R = e®(R+ 2nAt — n{n — 1)). (3.2.6)

Let N’ be the unit normal to the level set X} in § metric. Then from equa~

tion (3.2.3) we get:
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Rid(N',N') = Rie(N',N') — (n— 1)(Ddt — dt o dt)(N', N")
+(At - (n — 1))g(N', N')
= Ric(e!N,e"'N) — (n— 1)(Ddt — dt o dt}(e' N, ' N)
+(AL = (n— D)g(e'N, ' N)
= e*[Rie(N,N) — (n — 1)(Ddt — dt o dt)(N, N
+HAL— (n— 1))]

Since DAt(N,N) = g(V%t,N) =0 and dt o dt(N, N) = |dt|? = 1, we get:

Ric (N, N) = e®(Ric(N, N) + At) (3.2.7)

Substituting equation (3.2.6} and equation {3.2.7) in equation (3.2.5), we get:

Ry = e [R + 2(n — DAL —n{n — 1) — 2Ric(N, N)] + o(1).

Replacing At by n{coth(t) — 1) +n on the right hand side, we get the following

inequality:

_ 2 -2t
R, < e*[R+2(n— 1)(-1—?%-_2; +n) —n(n — 1} — 2Ric(N, N)} + o(1)
)2
< e®R+ % + n{n — 1) — 2Ric(N, N)] + o{1)
dn(n — 1)~

< e*R+nn+ 1)+ — 2(Ric(N, N) +n)] + o{1)

{—eg2
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Since Ric{N,N) +n > 0, we have,

dn{n — 1}e~

R <R+n(n+1)+ -

] +o(1) (3.2.8)

Let di; and dr; be the volume elements on (3, 7'|x,) and (Z;, gy, ) respectively.

So,
dif, = e~y (3.2.9)
Then,
_ -1 &t
| Ridi, < e%f [R+n{n+1)+ M]dﬁi +o(1)
=, %, l1—ce
e n(n —1 =
< g-(n-21 ( /Bt IR+ n(n+ 1)|dm) + 1(_—6_221/01(22) +o{1)
{3.2.10)
By our assumption on the integral of the scalar curvature, we have:
e | [Rtnfntldn) = ¢ @ PVol(T)o(e™)
By
= e ™Vol(Z;).0(l)
= Vol(5).0()
= o(l). (3.2.11)

Substituting equation (3.2,11) in equation (3.2,10) we get:
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th < ( )Voz(z’)+o()

Expanding the denominator in Taylor series, we see that:

Rydn, < n(n— 1)Vol(5) + o{L}. (3.2.12)
Y

In particular, if |R -+ n(n + 1)| = o(e™*), from equation (3.2.8) we have:

R, < 4n{n— 1)+ o(1)

-2t

For the compactification § = 4e~%yg, we have:

Ry <n{n—1)+o0(1) (3.2.13)

Proof of the volume bound

From Gromov's relative volume comparison theorem ( 2.2.1) we have,

PR Vol(B(p,t)
Vol(By(0,t))

is a non-increasing function of ¢, where By(0, ¢) is the ball of radius ¢ centered
at the origin of the hyperbolic space, (H™*!, g.1). It also gives an upper bound

on the ratio namely,

Vol(B(p,t)

VollBo(0,8)) =

The volume elements of (M, g) and (H, g_.) in polar coordinates are A(r, ) drdd

and A_i(r, 8)drdf, respectively. Therefore
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:
| Vol(B{p,t)) / / Xr, 8)drdd, |
| Vol(Bo(0, 1)) f / A, 0)drdd. o

So,

Vol(B(p,t) _ _fy fgns A(r,8)drds
Vol(Bo(0,)) ~ [* [+ Ar(r, O)drd

Since this is a non-increasing function, its derivative is non-positive, so the

following inequality must hold

fsn—l A, 0)dd < fotfsﬂﬁ )\(7‘, 8)drdd |
Jsn s Ac1(6,0)d8 = [E [ Ay (r,0)drdd’ 1

Therefore, 5 i

Vol(%) < Vol(B(p,t)

Vol(Sy) = Vol(Ba(0,8) = b

|
i
i
r
|
where S; is the level set of the distance function from the origin at ¢ in the ‘
hyperbolic space. So, ‘

Vol(3y) < Vol(S,).

Or, equivalently

VoletEt) < V.OE(E*) < ‘/'Ol(fg) o (3.2.14)
o sinh” ¢ sinh™ ¢ 'y

Vol(5) =
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3.3 Lipschitz Bound on Function ¢

On one hand, per our assumption (M, §) is a smooth compact manifold with
g extending to a smooth metric up to the boundary M. While on the other,
(M, g) is another compactification with g’ smooth in M. We do not know yet,
whether g’ has a smooth extension on 8M. In the next fow lemmas we show
that in general the extension can only be ™!, But, if the conformal infinity is
{(S™ o) as in the theorem, then the extension is C°°, As a first step we choose
local coordinates in a neighborhood of the boundary as follows.

Since OM is compact,it can be covered by finitely many coordinate n-balls
Sk(2R), such that Sk(R) also cover M. Each Sx(2R) can be extended to
Uk(2R) = Sk(2R) x [0,60) C M, such that UU(2R) and UU(R) both cover
8 ﬁubular neighborhood of 8M and there exist smooth coordinates in U, (2R),
{01, ..., 0n, 0ny1} such that at any point © ¢ M N Ux(2R), § = ds® + gj;d0*d?
where s(z) = e7*) and, g = dt? + €¥g},df'd6? = dt? + g;;df*d6?. Let us define:
Si(2R) = Up(2R)N S, and ¢; = c|x,, and [V'ig|? = §90,c8;¢
Lemma 3.3.1. We have the following asymptotic bound on the C®' norm of
the function c:

(1) |Ve(@)? = 0(e2)

(9) | () = ¥ |Ve(a)? = O(1)

Therefore, |V < Ay fér constant Ay and on every Sp+(2R) for t large.
Proof. We first observe that g(Ve, Ve) = |Vr|? + |Vt[* — 2¢(Vt, Vr) = 2(1 -
g{(Vr, VE)).
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Define ¢1(t) = et(1 — g(Vr, Vt)). Clearly ¢ (t) > 0.

Bpi(t) = (1 g(Vr,VE)) — 'Bg(Vr, Vi)
= ¢ (t) — '[9(Va, V7, Vi) + (V5 Vt, V7))
= ¢ {t) — €'g(V5, V7, Vi)
= ¢u(t) — &V3r(Vt, Vi).

Let us write Vi = g(Vr, Vi)Vr + /1 — ¢*(Vr, Vi)Vu, where Vu is a
unit vector orthogonal to Vr . Making this substifution above, and using the

asymptotic estimate of |V2r| from lemma (3.1.2), we get,

Bipr(t) = ¢u(t) — (1 — g*(Vr, V)V (Vu, Vu)
= ¢1(t) — €'(1 — g(Vr, V(1 + g(Vr, VE))(L + O(e™2#%))
= $1(t) — )1+ g(Vr, VI))(1 + O™,

Since, 1+ g(Vr, Vt) > 1, we get the following inequality,

B () < a(t) — dr()(1+ Ol 17%)),

or,

By (£) < du(£)(O(e™ ™).
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Integrating this,
1—g(Vr,Vt) = O(e™). (3.3.1)

Next, we define another function ¢2(t) = e*{1 — g(Vr, Vt)). Following the

same procedure, we get,
e (t) = 2¢ho(t) — 62‘*‘(1 — g(Vr, V) (1 + g(Vr, V) (1 + O(e*%m)). (3.3.2)

As before, we replace e*(1 — g(Vr, V}) by ¢2(f) and use the above estimate,

equation (3.3.2) to get,

Bepa(t) = 22 (t) — a(t)(2 + O(e™)(1 + Ole 3,

or,

Bypa(t) = pa(t)O(e™).

Therefore, we get

5Vl = 1 - g(Vr, Vi) = O(=™)

That proves both (1) and (2). To prove the last claim we work with local

coordinates,

V'e(@)[* = (8ue(x))* + 57 8ic0;(c) (x),




Vie(@)]* = (Bue(z))” + [V ()]

Therefore, for some constant A;

[V"e[* < As. (3.3.3)
O

Under the additional assumption on the Ricei curvature in lemma (3.1.2),
we can prove the following lemma. This result is not necessary for the proof

of the main result.

Lemma 3.3.2. There exists o € (0,1) and a constant Ay such that for all i
and t,

||Ct||ol'“(5i;t(R)) < Ag ‘ (3.3.4)

Proof. We claim that, the scalar curvature R is bounded from both above and
below. This is true because, R = e*(R+2nAt—n(n—1)} and we have already
shown in lemma (3.1.2) that At = n+ O(e™*), and |R + n(n + 1)| = o(e~ %),
Therefore, we see that || is bounded. Now we will show, |A'c| = O(1). We
consider the two metrics § and § = ¢*§’. Therefore the scalar curvature of

(M, g) is given as,

R=e" (R +2ni'c — nin— 1)|V'c[})

Observe that all except A’c are bounded, and hence |A’c| = O(1). Next we
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show |A”c,| = O(1). In local coordinates, in eack U;(2R) N M,

Alc = O/ det(3")g™ 8, det (g
Ao= \/dc—( eHa)a ) + \/d—fﬁ ‘
= Al 4+ By(Bhc) 4 2V 3G
det(g )

Therefore,

85(0sc) = €*((g(Vr, Vt) — 1) + 8,9(Vr, V)
= e*({g(Vr, Vt) — 1) + V*r(Vt, V1)) = O(L).

We showed in lemma (3.3.1) that, g(Vr, Vi}—1 = O(e~*) and by remark (3.1.1),
V2(Vt, Vi) = Ole ¥} = O(e™). By equation (2.1.14) and equation (2.1.18)

and the estimate, At = n -+ O(e™*) we have, ﬁ% =As =e*(At—n) =

O(1). Furthermore, |8,c| < |V'c| is uniformly bounded. Therefore, we get,
|Afe] = O(1).

Finally, we apply Schauder estimates to show that for some constant A4 and

for all 7, t and @ € (0,1)

lledlovas,my < As(llA%elloos, ry + llallcasnery) < A
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3.4 Regularity of the Boundary Metric

Thus we conclude that ||c||o1(s,,@r)y < Az, for some constant Az and for all
k and ¢. In other words, we found a Lipschitz bournd on ¢;. Let ¢, : Sp(E) —
Sk, (R) be diffeornorphisms and let {8}, be coordinates on Si{R}. Let us set
(F)ig) = %0, 0;) and g;; = g(8;,0;). Here we identify 7, with its pull-back
¢;(71). Then,

10 (¥is] < 203l Vil + e 0174

The right hand side has a uniform upper bound. Hence, by Arzela-Ascoli’s
theorem, we conclude that given a sequence (i};i,»ﬁ,f = g |)j;t_), there is a
subsequence that converges to (X,), where v is C% WP conformeal to 7y,
for any p > 1.

So far we have not used the structure of the boundary explicitly, that is all
our results hold under the assumption that boundary (8M, [7|am|) is smooth,
not necessarily (S, [yo]) . Now for the first time we will use the assumption
that the boundary is (5™, [y}) to show that -y is in fact smooth. Now that we
have 7, a C% N W® metrie, for any p > 1, we can define scalar curvature of
{¥,), in the sense of distributions. We choose a representative element from
the conformal class [yo]. Without any loss of generality we pick the round

metric . To simplify our computations below, we define y = un—iifyg, where

wis OOt NWLP for all p > 1.

Lemma 3.4.1. If (OM,[v]) = (5", [%]), where v = uwy for some u €
We(8n), for any p > 1, then « is smooth.

Proof. The scalar curvature of (X, ), in the weak sense is given by,
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nt2 _4(71—1)

R =u"v%(n(n—1)u Au), (3.4.1}

n— 2
where A u is in WP, since A, : W? — WP, Therclore we can integrate

R'. Let dnp and dr be the volume elements of (3,+) and (32,7 respectively.

Therefore, dn = ws dng. Integrating the scalar curvature over 1 = S,

4n—1
oo uam  (342)

Rundng = / (n(n— Du? +
gn & n

Recall, we showed earlier in lemma (3.2.1) that the scalar curvatures of level

sets of £,

AN

|
b3

’
13

Vol(33)

n{n — DVol(%}) + (1),

A

W
Therefore, at the boundary we have

Rudg < nin—1) / W,

TR
=
i
2.
>
A

W

So,
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v

1Y.,2 din - 1)
./';m (n{n — L)u* + —
S (n(n — 1o + 2050 19 )i

n—2

( Jon “%dﬁﬂ) "

an_
n(n — 1)f un=E g |Vl ?) o,

n{n — 1)(/91 u"ﬁz‘%dng)%

Replacing f gn u%dno by w,, we get

Jon (nn — 1)u? 4 %)W'm”mdnﬂ
2n n=2 '

( Jgn wi=2dio)
The right-hand side is the Yamabo quotient, () on S™. So, inf{Q{v}|y €

n(n — {wn) >

(3.4.3)

[v0]} = n(n — 1}(w,)%. This can be easily shown by taking the stereographic

projection 7 : S* — R™! and writting out the right-hand side ir R™ with

respect to the pulled-back metric, 7*v,, and comparing the integral with the
Sobolev constant.

Therefore, we conclude that the above inequality is an equality, that is
R' =n{n—1) (ae) on S". But that would imply that &' € W»(5") for
all p > 1. This implies, by Sobolev embedding, that R’ is continuous on S™.
Clearly, the subset U of the boundary S™ where R’ = n{n — 1) is a set of full
measure. Therefore for any z € S — U, we can find a sequence of points in I/
converging to z. Thus, by continuity of R/, z is in ¢/, and therefore I = S*.

Thus,

R =n(n—1) (3.4.4)

Finally, a standard boot-strapping argument applied to the semi-linear
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clliptic P.D.E,,

R = n{n—1) = u R (n(n —Du— E:__ UA ) (3.4.5)

gshows that « is in fact smooth. O

Hence we have shown that the two metrics v and 4, on ¥ are smoothly
conformal to one another and hence « is smoothly conformal to the round
metric. Applying Obata’s theorem [13] we conclude that (3, ) is isometric to
(5™, %)

3.5 Proof of the Main Theorem

Proof. We proved the following inequality earlier, equation (3.2.14)

Vollz) _ Vol(Dy) _ Vol(S))
1) = < < = Wp.
Vol(Z) = F ~ sinh™t — ginh™¢ W

Furthermore, we have just shown, that the level sets (3 t,fyt) converge to
(S0} at the boundary, therefore Vol(Z!) — w, as ¢ — co. So, combin-
ing the two and the fact that volume ratio is strictly non increasing, we see

that,

Vol(B(pt) _
VO;’{BO(’S 5 = =1 for all ¢.

This implies that At = n coth(t). Therefore,

—n > O (AL) + | VP > 6(AL) + (A?‘f)z = -n. (3.5.1)
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The first inequality comes from the Ricatti equation and Rie > —ng. This

implies that:

(AL)? = n|Vt%. (3.5.2)

So, if {A1,...A,} are the eigenvalues of A%f then the above equality implies:
(M o+ A =003 - AR, (3.5.3)
This can happen if and only if A\; = A; = ... = A, = A\, Which means that
At = nA = ncoth(t),

or,

A = coth(t).

This, in turn, implies that the metric g on M is a space form and is precisely
the hyperbolic metric, g = dt? + sinh®(t)y,. That completes the proof of the

main theoremmn.
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