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Abstract of the Dissertation

Neighborly Properties of Simple Convex
Polytopes

by

Je-Wei Chen

Doctor of Philosophy

in

Mathematics

Stony Brook University

2007

We are interested in simple polytopes with all facets being pervasive and

powerful, which will be defined in the first chapter. It is easy to see that sim-

plexes and product of simplexes have these properties. In the paper ”Polytopes

with Mass Linear Functions” [1], Dusa McDuff and Susan Tolman proved

that in dimension 4 the only simple convex polytopes with all facets pervasive

and powerful are the 4-simplex and ∆2×∆2. In this thesis we prove that there

are no such pervasive and powerful polytopes with 8 or 9 facets in dimension

5, there is one in dimension 6 but still being a product of simplexes, and there

is a non product one in dimension 7.
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Chapter 1

Introduction

1.1 Definitions and Examples

We begin with the definitions of the two properties we are interested in. We

shall consider compact polytopes in Rn that are convex and simple, that is,

each vertex is the intersection of n facets. The facets are co dimension one

faces. The standard n simplex is denoted as ∆n.

Definition 1.1.1. A facet F of a polytope ∆ is said to be pervasive if it

has nonempty intersection with every other facet of ∆. A polytope is called

pervasive if all its facets are pervasive.

Definition 1.1.2. A facet F of a polytope ∆ is said to be powerful if it is

connected by an edge to each vertex which does not belong to F .

Similarly, a vertex is said to be powerful if it is connected by an edge to each

facet to which it does not belong.

We call a polytope powerful if all its facets are powerful, which is equivalent

to a polytope with all vertices being powerful.
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One can easily see that simplexes are both pervasive and powerful. Prod-

ucts of simplexes like ∆m×∆n where m, n ≥ 2 are non trivial examples of

polytopes that are both pervasive and powerful. If one tries to form products

with ∆1, which is a line segment, that will destroy the pervasive property

since the two facets at both ends of the line segment do not intersect with

each other.

These two properties do not always come together. In particular a 2-

dimensional square is powerful but not pervasive. Later on we will see a

lot of ways to create pervasive polytopes which are not powerful by cutting

products of simplexes with a hyperplane. There is also an interesting example

from cyclic polytopes, which will be discussed in chapter 2.

The interest in pervasive and powerful polytopes arose from Dusa McDuff

and Susan Tolman [1]. In order to use the strongest results in their paper,

when we find pervasive and powerful polytopes we will examine them further

to see if they are smooth.

Definition 1.1.3. Let ` be a lattice. A polytope ∆ is rational if we can choose

the outward conormals ηi to lie in `; in this case, we always choose ηi to be

primitive, that is, not a positive integer multiple of any other lattice element.

A rational polytope is smooth if the primitive outward conormals ηi to the

facets which meet at each vertex form a basis for `.

1.2 Main Results

In [1], Dusa McDuff and Susan Tolman proved that in dimension 4 there are

no pervasive and powerful polytopes except for the 4-simplex and the product
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∆2×∆2. In this thesis we discuss mainly the pervasive and powerful polytopes

in dimension 5, 6, and 7, and we have the following results.

Theorem 1.2.1. There are no pervasive and powerful polytopes with 8 or 9

facets in dimension 5.

This will be proved in chapter 4 and 7.

In order to have a powerful polytope in dimension 5, the most facets a

polytope can have is 10. That is because each vertex is the intersection of 5

facets, and it only has 5 edges to connect to other facets. We have not ruled

out the possibility of a 10-facet pervasive and powerful polytope in dimension

5 yet, but we have some partial results in chapter 8.

Theorem 1.2.2. In dimension 6, there is only one 9-facet pervasive and pow-

erful polytope, which is combinatorially equivalent to ∆2×∆2×∆2.

This will be proved in chapter 5.

Theorem 1.2.3. In dimension 7, there exists a 10-facet pervasive and pow-

erful polytope, which is not a product of simplexes.

This will be proved in chapter 6. We have some partial results regarding

to the smoothness of this polytope in the same chapter.
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Chapter 2

Cyclic Polytopes

2.1 Definition and Dual properties

Recall that an n-dimensional cyclic polytope is the convex hull of vertices of

the form,

(ti, t
2
i , t

3
i , · · · , tni )

where ti ∈ R, i = 1, 2, · · · , k, and k ≥ n, and we always assume t1 < · · · < tk

when we list them in this way. Cyclic polytopes are simplicial, so the dual

polytopes are simple. It has been proved very early that when dimension ≥ 4,

cyclic polytopes have the property called 2-neighborly, which means that there

exists an edge connecting any 2 randomly chosen vertices. Consider the dual

polytopes of cyclic polytopes. The dual property of 2-neighborly now becomes

”Given 2 randomly chosen facets, there exists an (n− 2)-face that connects

them.”, which is equivalent to our definition of pervasive polytopes. So the

duals of cyclic polytopes are pervasive.

If these dual polytopes are also powerful, then the cyclic polytopes should

have the dual property of being powerful, which is ”Given any facet F0 and
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any vertex v outside of F0, there exists another facet F1 containing v such that

the intersection of F0 and F1 is nonempty.” The next proposition shows that

the duals of 4-dimensional cyclic polytopes with 7 vertices are not powerful.

We need some terminologies before actually proving it.

2.2 Duals of Cyclic Polytopes Are Not Pow-

erful

In dimension 5, let P be the cyclic polytope with 8 vertices. Let x(ti), i =

1, 2, · · · , 8 denote the vertices of P . Let X be a non-empty subset of the

vertices of P . By a component of X we shall mean a non-empty subset Y of

X such that Y contains vertices x(ti) with consecutive indices. By a proper

component of X we shall mean a component Y of X such that neither x(t1)

nor x(t8) is in Y. A component containing an even number of points is called

an even component.

Lemma 2.2.1. (Gale’s Evenness Condition)

A component X is the set of vertices of a facet of P if and only if all its

proper components are even.

The readers can find the proof on p.87 of Arne Brondsted’s book [2].

Proposition 2.2.2. Let ∆ be a 5-dimensional cyclic polytope with 8 vertices

spanned by t1 < t2 < · · · < t8. Let v be the vertex (t2, t
2
2, t

3
2, t

4
2, t

5
2) and let F0 be

the facet spanned by the vertices of t1, t4, t5, t6 and t7. Then none of the facets

that contain v intersect with F0 as a 3-face.
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Proof. Assume there is one such facet F . Since F contains v and intersects

with F0 as a 3-face, F is spanned by v and 4 other vertices from the set t1,

t4, t5, t6 and t7. If we omit t1, then v is itself is a proper component which

is not even. If we omit t4 or t7, then the rest three in 4 to 7 form a proper

component which is not even. If we omit t5 or t6, then either t4 or t7 end up

as a proper component which is not even. Hence there is no such facet.

Although the proposition above is stated in the case of 8 vertices in dimen-

sion 5, we can extend the proof easily to 5-dimensional cyclic polytopes with

9 or more vertices similarly, or even to higher dimensions, because all we need

is one single vertex that is not dually powerful.
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Chapter 3

Known Results and Some New Tools

3.1 Quoted Lemmas

In Proposition 2.2.2 we proved that the duals of cyclic polytopes are pervasive

but not powerful, now we want to see these properties in general polytopes.

McDuff and Tolman [1] proved the only non-simplex pervasive and powerful

polytopes in dimension 4 are products of simplexes. We are going to use some

of their tools together with new ones on polytopes in dimension 5.

In dimension 5, the polytopes with 6 facets are combinatorially equivalent

to ∆5. By Prop 1.1.1 in V. Timorin’s paper[3], the polytopes with 7 facets

are combinatorially equivalent to ∆3×∆2. We are going to create polytopes

with 8 or more facets by cutting the 7 facet ∆3×∆2 with hyperplanes, while

making sure the newly created facets are pervasive to the old facets, and the

intersections of old facets are not cut out completely.

Before doing that, we shall list all the vertices of ∆3×∆2 in the following

3 × 4 grid.
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O O O O

O O O O

O O O O

We will label these vertices by their positions in the matrix, so the top left

one will be v1,1 while the bottom right one will be v3,4.

The facet spanned by

v2,1 v2,2 v2,3 v2,4

v3,1 v3,2 v3,3 and v3,4

will be denoted by F1, because we get these 8 vertices by ”omitting” the first

row of vertices. Similarly, the facets spanned by omitting the second and third

row of vertices will be denote as F2 and F3.

The facet spanned by

v1,2 v1,3 v1,4

v2,2 v2,3 v2,4

v3,2 v3,3 and v3,4

will be denoted as F
′
1, because we get these 9 vertices by omitting the first

column of vertices. Similarly, we’ll have F
′
2, F

′
3 and F

′
4 as well.

Now, let H` be the hyperplane that cuts through ∆3×∆2 and creates the

`-th facet. Let V +
` be the set of vertices of ∆3×∆2 that are being kept in

the newly created polytope after the cut H`. V +
` 6= ∅. Let V −

` be the set of

vertices of ∆3×∆2 that are being discarded after the cut H`. Let F` denote

the new facet created in this way. On the matrix grid, we’ll use O to denote

the vertices that are in V +
` (being kept), and X to denote the vertices that are

in V −
` (being cut out). Since ∆3×∆2 has 7 facets, we’ll start our cut by H8.

8



Here’s an example of a typical cut.

O O O X

O O O X

O O X X

We use Q` to denote the resulting polytope after the single cut H`, and let

P` =
⋂`

k=8 Qk.

Definition 3.1.1. We say a cut by H` is a valid cut if P` is pervasive and

powerful.

The following facts were used in McDuff and Tolman [1], but they did not

discuss them in detail. Since they are very useful when we do the cuts later,

we shall list them as lemmas and give them proofs.

By local grid we mean the four vertices of a 2-face spanned by the 2 by 2

sub grid. For example the 4 O below,

O . O .

. . . .

O . O .

Lemma 3.1.2. In any cut, V +
` cannot just have a diagonal pair of vertices in

any local 2× 2 grid. That is,
O X

X O
is not allowed.

Proof. This is a result of the convex property. For the 2-face spanned by
O O

O O
,
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there is no way to cut the diagonal pair of vertices with a hyperplane.

Lemma 3.1.3. The old facets intersect with each other in Q` if and only if

V +
` contains at least one vertex in each row, and at least one vertex in each

pair of columns.

Proof. If V +
` contains no vertex in the first row, then the 3-face spanned by

those 4 vertices is completely cut off. Since that 3-face is the intersection of F2

and F3, these two facets will no longer be pervasive in ∆. So V +
` must contain

at least one vertex in the first row, and similarly, second and third row as well.

If V +
` contains no vertex in the first two columns, then the 3-face spanned

by those 6 vertices is completely cut off. Since that 3-face is the intersection

of F
′
3 and F

′
4, these two facets will no longer be pervasive in ∆. So V +

` must

contain at least one vertex in these two columns, and similarly, in each pair of

columns.

On the other hand, if V +
` contains at least one vertex in each row, and at

least one vertex in each pair of columns, then all the intersections of old facets

have something survived after the cut, so the facets will still intersect with

each other.

For example,

O O X X

O O X X

O O X X

is not a valid cut, since the intersection of F
′
1 and F

′
2 is cut out completely.
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Lemma 3.1.4. The new facet F` meets all the original facets if and only if

the cut contains a 2× 2 grid like
X

X X
locally, where the top left vertex can be

either O or X.

Proof. Suppose that the newly created facet F` intersects all the old facets.

Then H` must cut out at least one vertex from Fj for all j, and H` must cut

out at least one vertex from F
′

k for all k. Together with the convex property

above, V −
` must contain at least 2 vertices in the same column for F` to meet

all Fj. Similarly, for F` to intersect with all F
′

k, V −
` must contain at least 2

vertices in the same row. Without losing generality, we can relabel the vertices

and get the desired grid stated in the lemma.

On the other hand, if the cut contains a 2× 2 grid like
X

X X
locally, then

H` cut through each old facet without missing a single one. That is, the new

facet F` will meet all the old facets, hence pervasive.

Lemma 3.1.5. Old vertices are still connected to old facets if and only if P`

does not contain exactly one vertex in any row or column.

Proof. Suppose that after the cut, vi,j is the only vertex left on the grid in the

i-th row. Then vi,j is not powerful, since there is no edge connecting vi,j to F
′
j .

Similarly, vi,j cannot be the only vertex left on the grid in the j-th column.

On the other hand, if P` does not contain exactly one vertex in any row

or column, then if vi,j is in P`, we must have vi,k and vm,j are also in P` for

some k 6=j and some m 6=i. Hence there will be edges connecting vi,j to Fi and

F
′
j .
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For example,

O O O X

O O X X

O O X X

is not a valid cut, since v1,3 will not be connected to any vertex in F1.

Lemma 3.1.6. For the new facet F` to connect to old vertices, if vi,j is in

Q`, V −
` must contain some vertex which either lies in the same row or same

column as vi,j. This condition is also sufficient.

Proof. If not, all vertices on i-th row and j-th column are in Q`. All 5 edges

connecting to vi,j are also in Q` without being touched by H`, so none of them

will connect vi,j to the new facet F`.

On the other hand, if vi,j is in Q`, and there is at least 1 vertex q on the

i-th row or the j-th column lies in V −
` , that means H` cuts through the edge

connecting vi,j and q, hence F` is connected to vi,j.

3.2 New Tools

The above lemmas were enough to rule out all possible cuts in dimension

4. However in dimension 5 and higher, we will need one new lemma which

examines the new vertices created by the hyperplane H`.

When we have to record the newly created vertices from H` into the grid,

we use small dots next to a cut off vertex X to indicate the newly created

12



vertices caused by cutting that X off. For example,

O O O O

.

O O O ...X

: .

O O . .X ..X

p q

records all the new vertices created by the cut H8. Let p denote the vertex

created between v3,1 and v3,3.

Let q denote the vertex created between v3,2 and v3,3.

These two are newly created by H8. We get p because H8 cut through the edge

connecting v3,1 and v3,3. We get q because H8 cut through the edge connecting

v3,2 and v3,3. Similar idea applies to the dots above v3,3, and other vertices as

well.

In the grid above, the vertices p and q are not in F
′
3, because they are not

in the span of the 1st, 2nd and 4th columns of vertices. Similarly, the two

newly created vertices above v3,3 are not in F3, and so on.

Lemma 3.2.1. In order to have the newly created vertices be powerful, if H`

cuts through the edge joining vi,j and vi,j+1, then H` must cut through the edge

joining vk,j and vk,j+1 for some k 6= i as well. Similarly, if H` cut through

the edge joining vi,j and vi+1,j, then H` must cut through the edge joining vi,m

and vi+1,m for some m 6= j as well. Moreover, if H` is the first cut, these

13



conditions are also sufficient.

It’s easier to understand this lemma if we look at the grid. The lemma

states that if we have a cut on the grid looking like

O X,

then we must have

O X

O X

Similar situation for the vertical case.

Proof. It’s easier for the readers to understand this lemma by looking at the

example provided after the proof. Without losing generality, assume vi,j is in

V −
` in the i-th row, with i 6= 1. The edge between vi,j and vi−1,j is being cut

in half and creating a new vertex q in F`. If the edge between vi,j and vi−1,j is

the only edge being cut through by H` between the i-th row and the row above

it, on F` there is no other newly created vertex that also lies on F
′
j . Since q is

not connected to any old vertices on F
′
j either, q is not powerful.

If H` is the first cut and P` contains a grid listed in the lemma, the newly

created vertices will have edges connecting to the newly created vertices at the

parallel positions, hence they are powerful.

14



For example,

O O O . X

p

O O O . X

r

O O . X X

q

is not a valid cut, since the new vertex q created between v3,2 and v3,3 is not

connected to F3. However, the new vertices p and r connect each other, so

these 2 vertices are powerful.

With the help of these lemmas, we can now actually do the cuts, and see

if the resulting polytopes can be both pervasive and powerful.
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Chapter 4

Making One Cut in Dimension 5

4.1 8-facet Polytopes in Dimension 5

In dimension 5, the polytopes with 6 facets are combinatorially equivalent to

∆5. The polytopes with 7 facets are combinatorially equivalent to ∆3×∆2.

We are going to create polytopes with 8 or more facets by cutting the 7 facet

∆3×∆2 with hyperplanes, while making sure the newly created facets are

pervasive to the old facets, and the intersections of old facets are not cut out

completely.

The polytope ∆3×∆2 is being cut by H8 to create the 8th facet. We will

be doing a lot of re-labellings if possible, to consolidate the vertices in V −
8 to

the lower right corner of the grid. According to Lemma 3.1.4, we’ll need at

least 3 vertices in V −
8 to make sure F8 is pervasive, so we’ll start from there.

Proposition 4.1.1. If V −
8 contains exactly 3 vertices, then H8 is not a valid

cut.

Proof. By Lemma 3.1.4, the grid after the cut must be like this:

16



O O O O

O O O X

O O X X

But then v1,4 is the only vertex in the 4th column, a contradiction to

Lemma 3.1.5.

Proposition 4.1.2. If V −
8 contains exactly 4 vertices, then H8 is not a valid

cut.

Proof. V −
8 must contain the 3 vertices shown as in the proof of the proposition

above for the same reason of Lemma 3.1.4. After relabelling, we’ll have 3 cases

to discuss.

1. v3,2 cut out as well:

O O O O

O O O X

O X X X

Then v3,1 is the only vertex in the 3rd row, a contradiction to Lemma

3.1.5.

2. v2,3 cut out as well:

O O O O

O O X X

O O X X

Then both v1,3 and v1,4 are the only vertices left in their columns, a

contradiction to Lemma 3.1.5.
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3. v1,4 cut out as well:

O O O X

O O O X

O O X X

At the first glance this seems fine, satisfying all the first 5 rules. However,

Lemma 3.2.1 is not satisfied at v3,3.

Proposition 4.1.3. If V −
8 contains exactly 5 vertices, then H8 is not a valid

cut.

Proof. As before, we’ll still have to start from the 3 vertices cut

O O O O

O O O X

O O X X

to make sure F8 is pervasive. With the experience from the previous proposi-

tion, we know that v1,4 must be cut as well, otherwise it will not be powerful

when left in P8. According to the convex property of Lemma 3.1.2, we can-

not cut the 5th vertex arbitrarily. For example, v2,2 cannot be cut because of

Lemma 3.1.2. That leaves us with the following cases,

1. v3,2 cut out as well:

O O O X

O O O X

O X X X

Then v3,1 is the only vertex left in the 3rd row, a contradiction to Lemma

3.1.5.
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2. v2,3 cut out as well:

O O O X

O O X X

O O X X

Then v1,3 is the only vertex left in the 3rd column, a contradiction to

Lemma 3.1.5.

Since there are no other possible ways, this completes the proof.

Proposition 4.1.4. If V −
8 contains 6 or more vertices, then H8 is not a valid

cut.

Proof. When cutting out 6 vertices, similar to the proofs above, we’ll either

end up with a single uncut vertex in its own row or column, or we’ll end up

with the following two grids:

O O X X

O O X X

O O X X

O O O X

O O O X

X X X X

In the first case we cut off the 3rd and 4th columns completely, a contradiction

to Lemma 3.1.3. In the later case we cut off the 3rd row completely, a contra-

diction to Lemma 3.1.3 as well. One can see easily that there are not enough

vertices left for us to cut without violating any of the rules. This completes

the proof.
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Combining all the propositions above, we have proven

Theorem 4.1.5. There is no 8-facet polytope with all facets being pervasive

and powerful in dimension 5.

As the reader may have noticed, the invalid cuts discussed above may have

contradicted more than one lemma mentioned in the previous chapter. How-

ever since our purpose is to prove there are no valid cuts, a single contradiction

is sufficient.

The reason we failed to find a valid cut after H8 in dimension 5 is simply

because we don’t have enough vertices to work with. We need to cut out

more to have new vertices being powerful. But in the meantime, we are left

with single vertex on the grid, or even no vertex left in the intersections of old

facets. If we had more vertices to work with, this would have worked.
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Chapter 5

Making One Cut in Dimension 6

In dimension 6, the polytopes with 7 facets are combinatorially equivalent

to ∆6. The polytopes with 8 facets are combinatorially equivalent to either

∆4×∆2 or ∆3×∆3. Let’s discuss the case of ∆3×∆3 first.

5.1 Cutting ∆3×∆3

We can apply all the lemmas we used before to dimension 6, with some mod-

ifications. First of all, in the case of ∆3×∆3, the vertex grid now becomes

O O O O

O O O O

O O O O

O O O O

The 8 facets will be labelled as F1 through F4, and F
′
1 through F

′
4 as the same

way we did in dimension 5. Since the intersections of Fis are now pairs of

rows, Lemma 3.1.3 will be modified to

Lemma 5.1.1. The old facets intersect with each other in P` if and only if
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V +
` contains at least one vertex in each pair of rows, and at least one vertex

in each pair of columns.

The proof is similar to the proof of Lemma 3.1.3.

The polytope ∆3×∆3 is being cut by H9 to create the 9th facet. As before,

we will be doing a lot of re-labellings if possible, to consolidate the vertices

in V −
9 to the lower right corner of the grid. According to Lemma 3.1.4, we’ll

need at least 3 vertices in V −
9 to make sure F9 is pervasive, so we’ll start from

there.

Proposition 5.1.2. If V −
9 contains exactly 3 vertices, then H9 is not a valid

cut.

Proof. By Lemma 3.1.4, the grid after the cut must be like this:

O O O O

O O O O

O O O X

O O X X

But then at v1,1, there is no vertex from the first column or first row in V −
9 , a

contradiction to Lemma 3.1.6.

Proposition 5.1.3. If V −
9 contains exactly 4 vertices, then H9 is not a valid

cut.

Proof. V −
9 must contain the 3 vertices shown as in the proof of the proposition

above for the same reason of Lemma 3.1.4. After relabelling, we’ll have 3 cases

to discuss.
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1. v4,2 cut out as well:

O O O O

O O O O

O O O X

O X X X

Then v4,1 is the only vertex in the 4th row, a contradiction to Lemma

3.1.5.

2. v2,4 cut out as well:

O O O O

O O O X

O O O X

O O X X

Then v1,4 is the only vertices left in the first row, a contradiction to

Lemma 3.1.5.

3. v3,3 cut out as well:

O O O O

O O O O

O O X X

O O X X

But then at v1,1, there is no vertex from the first column or first row in

V −
9 , a contradiction to Lemma 3.1.6.

Proposition 5.1.4. If V −
9 contains exactly 5 vertices, then H9 is not a valid
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cut.

Proof. As before, we still have to start from the 3 vertices cut

O O O O

O O O O

O O O X

O O X X

to make sure F9 is pervasive. That gives us with the following cases,

1. v4,1 and v4,2 cut out as well:

O O O O

O O O O

O O O X

X X X X

Then Lemma 3.2.1 is not satisfied at v3,4.

2. v3,3 and v4,2 cut out as well:

O O O O

O O O O

O O X X

O X X X

Then v4,1 is the only vertex left in the 4th row, a contradiction to Lemma

3.1.5.

3. v2,4 and v4,2 cut out as well:
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O O O O

O O O X

O O O X

O X X X

Then v4,1 is the only vertex left in the 4th row, a contradiction to Lemma

3.1.5.

4. v2,4 and v3,3 cut out as well:

O O O O

O O O X

O O X X

O O X X

Then v1,4 is the only vertex left in the 4th column, a contradiction to

Lemma 3.1.5.

5. v1,4 and v2,4 cut out as well:

O O O X

O O O X

O O O X

O O X X

Then Lemma 3.2.1 is not satisfied at v4,3.

Since there are no other possible ways, this completes the proof.

Proposition 5.1.5. If V −
9 contains exactly 6 vertices, then H9 is not a valid

cut.

Proof. As before, we still have to start from the 3 vertices cut
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O O O O

O O O O

O O O X

O O X X

to make sure F9 is pervasive. That gives us with the following cases,

1. v4,1, v4,2 and v3,3 cut out as well:

O O O O

O O O O

O O X X

X X X X

Then Lemma 3.2.1 is not satisfied at v3,3, when viewed horizontally.

2. v4,2, v3,2 and v3,3 cut out as well:

O O O O

O O O O

O X X X

O X X X

Then v3,1 is the only vertex left in the 3rd row, a contradiction to Lemma

3.1.5.

3. v4,1, v4,2 and v2,4 cut out as well:

O O O O

O O O X

O O O X

X X X X
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Then v1,4 is the only vertex left in the 4th column, a contradiction to

Lemma 3.1.5.

4. v4,2, v3,3 and v2,4 cut out as well:

O O O O

O O O X

O O X X

O X X X

Then v1,4 is the only vertex left in the 4th column, a contradiction to

Lemma 3.1.5.

5. v2,3, v3,3 and v2,4 cut out as well:

O O O O

O O X X

O O X X

O O X X

Then v1,4 is the only vertex left in the 4th column, a contradiction to

Lemma 3.1.5.

6. v4,2, v1,4 and v2,4 cut out as well:

O O O X

O O O X

O O O X

O X X X

Then v4,1 is the only vertex left in the 4th row, a contradiction to Lemma

3.1.5.
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7. v3,3, v1,4 and v2,4 cut out as well:

O O O X

O O O X

O O X X

O O X X

Then Lemma 3.2.1 is not satisfied at v3,3, when viewed vertically.

Since there are no other possibilities, this completes the proof.

Unlike dimension 5, it is possible to have a valid cut when we cut out 7

vertices in dimension 6 in a certain way.

Proposition 5.1.6. The following cut by H9 is a valid cut.

O O O X

O O O X

O O O X

X X X X

Proof. Since no pairs of 2 rows or 2 columns are cut out, part of the intersec-

tions of the original facets still remain in P9. By Lemma 3.1.4 F9 intersects

with all the original facets. Hence P9 is pervasive. To see P9 is powerful, we

start with original vertices that are not cut by H9. Since none of them are the

only vertex in their rows or columns, they connect to all the original facets

that do not contain them. Since H9 cuts out one vertex in the first three rows,

all the old vertices will also connect to the new facet F9. Hence all the old

vertices are powerful.
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The last issue is to see if all the new vertices are powerful. We will examine

the following two new vertices, the one created between v1,3 and v1,4, and the

one created between v2,3 and v2,4. They are marked as vertices p and q in the

grid below.

O O O .. .X

p

O O O .. .X

q

O O O ...X

X X X X

By Lemma 3.2.1, p and q connect each other. The only concern about p was

the connection to F1, but obviously q is on F1. Hence p is powerful. Since

all other new vertices created by cutting out the 4th column and 4th row can

be proved to be powerful in the similar way, all the new vertices are powerful.

Hence P9 is powerful, and H9 shown in the grid is a valid cut.

We can see from the above cut, 9 old vertices left after the cut, 9 new

vertices are created by cutting out the 4th column, and 9 other new vertices

are created by cutting out the 4th row. The cut is parallel to F4 ∩ F
′
4, which

is equivalent to ∆2×∆2. One can easily see the resulting polytope is combi-

natorially equivalent to the product of simplexes ∆2×∆2×∆2.

Proposition 5.1.7. If V −
9 contains exactly 7 vertices, then H9 is not a valid

cut except the one in the last proposition.

Proof. To distribute 7 vertices into 4 rows, we have the following ways.
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(0, 0, 3, 4), (0, 1, 2, 4), (0, 1, 3, 3), (0, 2, 2, 3), (1, 1, 1, 4), (1, 1, 2, 3), and (1, 2, 2, 2).

(1, 1, 1, 4) is the valid cut in the previous proposition. We know that we cannot

have exactly 3 vertices cut out in a row because that will end up with a single

vertex left in the row, so we only have the following two cases left to discuss.

1. (0, 1, 2, 4):

O O O O

O O O X

O O X X

X X X X

Then v1,4 is the only vertex left in the 4th column, a contradiction to

Lemma 3.1.5.

2. (1, 2, 2, 2):

O O O X

O O X X

O O X X

O O X X

Then v1,3 is the only vertex left in the 3rd column, a contradiction to

Lemma 3.1.5.

Proposition 5.1.8. If V −
9 contains 8 or more vertices, then H9 is not a valid

cut.

Proof. To distribute 8 vertices into 4 rows, we have the following ways.

(0, 0, 4, 4), (0, 1, 3, 4), (0, 2, 2, 4), (0, 2, 3, 3), (1, 1, 2, 4), (1, 1, 3, 3), (1, 2, 2, 3),
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and (2, 2, 2, 2).

As before, we cannot have exactly 3 vertices cut out in a single row, that leaves

us with the following cases to discuss.

1. (0, 0, 4, 4):

O O O O

O O O O

X X X X

X X X X

The 3rd and 4th rows are cut out, a contradiction to Lemma 5.1.1.

2. (0, 2, 2, 4):

O O O O

O O X X

O O X X

X X X X

Then v1,3 is the only vertex left in the 3rd column, a contradiction to

Lemma 3.1.5.

3. (1, 1, 2, 4):

O O O X

O O O X

O O X X

X X X X

Then Lemma 3.2.1 is not satisfied at v3,3.

4. (2, 2, 2, 2):
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O O X X

O O X X

O O X X

O O X X

The 3rd and 4th columns are cut out, a contradiction to Lemma 5.1.1.

It is easy for the reader to see that if we cut out 9 or more vertices, we

will end up with either a single vertex left in its row or column, or a pair of

two rows or columns being cut out completely. Either way, H9 is not a valid

cut.

5.2 Cutting ∆4×∆2

We can apply all the lemmas we used before as well, again with some modifi-

cations. The vertex grid now becomes

O O O O O

O O O O O

O O O O O

The 8 facets will be labelled as F1 through F3, and F
′
1 through F

′
5 as the same

way we did in dimension 5. Since the intersections of F
′
i s are now groups of 3

columns instead of just pairs of two, Lemma 3.1.3 will be modified to

Lemma 5.2.1. The old facets intersect with each other in P` if and only if

V +
` contains at least one vertex in each row, and at least one vertex in each

group of three columns.

The proof is similar to the original proof to Lemma 3.1.3.
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The polytope ∆4×∆2 is being cut by H9 to create the 9th facet. As before,

we will be doing a lot of re-labellings if possible, to consolidate the vertices

in V −
9 to the lower right corner of the grid. According to Lemma 3.1.4, we’ll

need at least 3 vertices in V −
9 to make sure F9 is pervasive, so we’ll start from

there.

Proposition 5.2.2. If V −
9 contains exactly 3 vertices, then H9 is not a valid

cut.

Proof. By Lemma 3.1.4, the grid after the cut must be like this:

O O O O O

O O O O X

O O O X X

But then v1,5 is the only vertex in the 5th column, a contradiction to Lemma

3.1.5.

Proposition 5.2.3. If V −
9 contains exactly 4 vertices, then H9 is not a valid

cut.

Proof. V −
9 must contain the 3 vertices shown as in the proof of the proposition

above for the same reason of Lemma 3.1.4. After relabelling, we’ll have 3 cases

to discuss.

1. v3,3 cut out as well:

O O O O O

O O O O X

O O X X X

Then v1,5 is the only vertex in the 5th column, a contradiction to Lemma

3.1.5.
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2. v2,4 cut out as well:

O O O O O

O O O X X

O O O X X

Then both v1,4 and v1,5 are the only vertices left in their columns, a

contradiction to Lemma 3.1.5.

3. v1,5 cut out as well:

O O O O X

O O O O X

O O O X X

Lemma 3.2.1 is not satisfied at v3,4.

Proposition 5.2.4. If V −
9 contains exactly 5 vertices, then H9 is not a valid

cut.

Proof. As before, we’ll still have to start from the 3 vertices cut

O O O O O

O O O O X

O O O X X

to make sure F9 is pervasive. With the experience from the previous proposi-

tion, we know that v1,5 must be cut as well, otherwise it will not be powerful

when left in P9. That leaves us with the following cases,

1. v3,3 cut out as well:
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O O O O X

O O O O X

O O X X X

Then Lemma 3.2.1 is not satisfied at v3,3 when viewed horizontally.

2. v2,4 cut out as well:

O O O O X

O O O X X

O O O X X

Then v1,4 is the only vertex left in the 4th column, a contradiction to

Lemma 3.1.5.

Since there are no other possible ways, this completes the proof.

Proposition 5.2.5. The following cut by H9is a valid cut.

O O O ...X ...X

O O O ...X ...X

O O O ...X ...X

Proof. The intersections of original facets are not cut out completely, and by

Lemma 3.1.4 F9 intersects with all other facets, hence P9 is pervasive. By

cutting out the 4th and 5th columns, the old vertices are connected to F9, and

hence powerful since they still connect to all other facets that don’t contain

them. By Lemma 3.2.1 the new vertices are also powerful. Hence H9 is a valid

cut.

As we can see from the grid in the above proposition, we have 9 old vertices

left in P9, 9 new vertices created by cutting the 4th column, and another 9
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vertices created by cutting the 5th column. It is easy to see the that the

resulting polytope P9 is again combinatorially equivalent to ∆2×∆2×∆2.

Proposition 5.2.6. If V −
9 contains exactly 6 vertices, then H9 is not a valid

cut except the one in the above proposition.

Proof. When we try to divide 6 vertices into 3 rows, we have the following

options, (5, 1, 0), (4, 2, 0), (3, 3, 0), (4, 1, 1), (3, 2, 1) and (2, 2, 2), where the

last one (2, 2, 2) is the valid cut in the previous proposition. For the first 3

cases, based on the experience we had before, we know that we cannot leave

the first row uncut since that will end up with v1,5 being a single vertex left

in the 5th column, a contradiction to Lemma 3.1.5, so we rule out the cases

(5, 1, 0), (4, 2, 0), and (3, 3, 0). For (4, 1, 1), v3,1 will be the single vertex left in

the 3rd row. For (3, 2, 1), v1,4 will be the single vertex left in the 4th column.

Since both are also contradictions to Lemma 3.1.5 as well, this completes the

proof.

Proposition 5.2.7. If V −
9 contains exactly 7 vertices, then H9 is not a valid

cut.

Proof. When we try to divide 7 vertices into 3 rows, we have the following

options, (5, 2, 0), (4, 3, 0), (5, 1, 1), (4, 2, 1), (3, 3, 1) and (3, 2, 2). Similarly,

we cannot leave the first row uncut, that rules out the first two cases. Case

(5, 1, 1) cuts out the 3rd row completely, a contradiction to Lemma 3.1.3. For

the rest 3 cases:

1. Case (4, 2, 1)
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O O O O X

O O O X X

O X X X X

Then v1,4 is the only vertex left in the 4th column, a contradiction to

Lemma 3.1.5.

2. Case (3, 3, 1)

O O O O X

O O X X X

O O X X X

Again v1,4 is the only vertex left in the 4th column, a contradiction to

Lemma 3.1.5.

3. Case (3, 2, 2)

O O O X X

O O O X X

O O X X X

Then Lemma 3.2.1 is not satisfied at v3,3 when viewed horizontally.

Proposition 5.2.8. If V −
9 contains 8 or more vertices, then H9 is not a valid

cut.

Proof. As before, we have to distribute 8 vertices into 3 rows.

1. Case (5, 2, 1)
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O O O O X

O O O X X

X X X X X

Then the 3rd row is cut out completely, a contradiction to Lemma 3.1.3.

2. Case (4, 2, 2)

O O O X X

O O O X X

O X X X X

Then v3,1 is the only vertex left in the 3rd row, a contradiction to Lemma

3.1.5.

3. Case (4, 3, 1)

O O O O X

O O X X X

O X X X X

Again v3,1 is the only vertex left in the 3rd row, a contradiction to Lemma

3.1.5.

4. Case (3, 3, 2)

O O O X X

O O X X X

O O X X X

Then v1,3 is the only vertex left in the 3rd column, a contradiction to

Lemma 3.1.5.

It is easy for the reader to see that if we cut out 9 or more vertices, we will
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end up with either a single vertex left in its row or column, or a group of three

columns being cut out completely. Either way, H9 is not a valid cut.

Combine both sections, we have proved

Theorem 5.2.9. In dimension 6, there is only one 9-facet pervasive and pow-

erful polytope which is combinatorially equivalent to ∆2×∆2×∆2.
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Chapter 6

A Valid Cut in Dimension 7

6.1 Cutting from ∆4×∆3

In this chapter we show that in dimension 7 there exists a non-trivial valid

cut, which means the resulting polytope is not combinatorially equivalent to

products of simplexes. We cut the 9 facet polytope ∆4×∆3, so the vertex grid

is the 4 × 5 matrix.

Proposition 6.1.1. In dimension 7, consider the grid of vertices of ∆4×∆3.

O O O O X

O O O O X

O O X X X

O O X X X

The cut by H10 shown in the grid is a valid cut.

Proof. Being pervasive is easy to check. None of the intersections of old facets

are completely cut out, and obviously F10 is pervasive as well. All the old
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vertices left are powerful, because they are not the only ones in their rows

or columns, and they all have at least an edge connecting them to the new

facet F10. For the new vertices, they all have another newly created vertex

at the parallel position, like we mentioned in Lemma 3.2.1, to make them

powerful. For example, the vertex q created between v4,2 and v4,3, our concern

is connecting it to F4. But there is an edge from q to the vertex created

between v3,2 and v3,3, which is on F4. One can easily check all the new vertices

with similar method.

Proposition 6.1.2. The valid cut above is not combinatorially equivalent to

product of simplexes.

Proof. In dimension 7, since we cannot have ∆1 in the product, the only

10 facet pervasive and powerful product of simplexes is ∆2×∆2×∆3, up to

equivalence. The polytope ∆2×∆2×∆3 has 36 vertices, while the valid cut

in the previous proposition has 40 vertices. So the two polytopes are not

combinatorially equivalent.

6.2 Smoothness

Now we’ve found a pervasive and powerful polytope which is not a product

of simplexes. It will be interesting to see if it is also smooth. Let P be the

polytope ∆4×∆3.

Proposition 6.2.1. The polytope in Proposition 6.1.1 is not smooth when P

is viewed as a ∆3 bundle over ∆4.
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Proof. We write out the conormals of each facet in the following way:

η1 = (−1, 0, 0, 0, 0, 0, 0)

η2 = (0,−1, 0, 0, 0, 0, 0)

η3 = (0, 0,−1, 0, 0, 0, 0)

η4 = (1, 1, 1, 0, 0, 0, 0)

η
′
1 = (a1,1, a1,2, a1,3,−1, 0, 0, 0)

η
′
2 = (a2,1, a2,2, a2,3, 0,−1, 0, 0)

η
′
3 = (a3,1, a3,2, a3,3, 0, 0,−1, 0)

η
′
4 = (a4,1, a4,2, a4,3, 0, 0, 0,−1)

η
′
5 = (a5,1, a5,2, a5,3, 1, 1, 1, 1)

Assume the conormal of the new facet F10 is η10 = (w1, w2, w3, w4, w5, w6, w7),

we will try to solve these variables by looking at the new vertices. Consider

the following grid with all new vertices shown:

O O O O ....X

O O O O ....X

: :

O O ..X ..X ..X

: :

O O ..X ..X ..X

Let p be the vertex created between v3,2 and v3,3. Then p is on F1, F2, F4,

F
′
1,F

′
4, F

′
5, and F10. That is, det(η1, η2, η4, η

′
1, η

′
4, η

′
5, η10) = ±1. After simplify-

ing the matrix we get the equation w5 − w6 = ±1.

Let q be the vertex created between v1,2 and v1,5. Then q is on F2, F3, F4,
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F
′
1,F

′
3, F

′
4, and F10. That is, det(η2, η3, η4, η

′
1, η

′
3, η

′
4, η10) = ±1. After simplify-

ing the matrix we get the equation w5 = ±1.

Let r be the vertex created between v1,3 and v1,5. Then q is on F2, F3, F4,

F
′
1,F

′
2, F

′
4, and F10. That is, det(η2, η3, η4, η

′
1, η

′
2, η

′
4, η10) = ±1. After simplify-

ing the matrix we get the equation w6 = ±1.

Now since both w5 and w6 are ±1, we got a contradiction from the first equa-

tion w5 − w6 = ±1. Hence the cut cannot be smooth.

On the other hand, when P is viewed as a ∆4 bundle over ∆3, we split the

9 facets of P into fiber facets and base facets as before. For fiber facets F
′
1 to

F
′
5, we put the first four in the standard position and the fifth one as the slant

facet:

η
′
1 = (0, 0, 0,−1, 0, 0, 0)

η
′
2 = (0, 0, 0, 0,−1, 0, 0)

η
′
3 = (0, 0, 0, 0, 0,−1, 0)

η
′
4 = (0, 0, 0, 0, 0, 0,−1)

η
′
5 = (0, 0, 0, 1, 1, 1, 1)

For base facets F1 to F4, we put the first three in the standard position and the

fourth one as the tilted one with 4 coordinates listed as linear combinations of

fiber facet conormals:

η1 = (−1, 0, 0, 0, 0, 0, 0)

η2 = (0,−1, 0, 0, 0, 0, 0)

η3 = (0, 0,−1, 0, 0, 0, 0)

η4 = (1, 1, 1, b4,1, b4,2, b4,3, b4,4).

We have the following result.
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Proposition 6.2.2. If the polytope in Proposition 6.1.1 can be made smooth

with the conormals listed above, then

η10 = (−1,−1, 0,−1,−1, 0, 0)

b4,1 = 0, b4,2 = 0, and b4,3 = −1.

Proof. Assume η10 = (w1, w2, w3, w4, w5, w6, w7). We get these equations by

checking all 40 new vertices and see the determinants. For example the vertex

created between v1,3 and v3,3 is the intersection of facets F2, F4, F
′
1, F

′
2, F

′
4,

F
′
5, and F10. We assign the value +1 to det(η2, η4, η

′
1, η

′
2, η

′
4, η

′
5, η10). Then

with the same orientation, the vertex created between v2,3 and v3,3 will have

determinant value −1. After solving the 40 equations we have the solution

listed in the proposition.

The solution in the above proposition is a necessary condition. In fact, we

do not know if this polytope can be made smooth yet.
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Chapter 7

Making Two Cuts in Dimension 5

7.1 9-facet Polytopes in Dimension 5

When we try to make the cut by H8, even if we make sure that all facets

including F8 are pervasive, we proved in chapter 4 that the powerful condi-

tion cannot be fulfilled at the same time, so we will have some non-powerful

vertices left. If we try to have a powerful and pervasive 9-facet polytope after

two cuts, H9 must cut out all the non-powerful vertices left in the previous

cut H8 without creating any new problems, while still keeping the pervasive

properties.

We are going to discuss this topic case by case like before, sorted by how

many vertices were cut out by H8. Luckily for us there are not too many cases

to worry about. Again, we need at least 3 vertices in V −
8 to make sure F8 is

pervasive, so we’ll start from there.

Proposition 7.1.1. If V −
8 contains exactly 3 vertices, then there is no way

for H9 to make a valid cut.

Proof. By Lemma 3.1.4, this must be the grid after the first cut.
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O O O O

O O O X

O O X X

The non-powerful old vertices are

v1,4, because it is the only vertex left in the 4th column by Lemma 3.1.5.

v1,1 and v1,2, because they are not connected to F8 by Lemma 3.1.6.

As a result, we’ll have to cut out these 3 vertices by H9, but then v1,3 will

be the only vertex left in the first row, so it has to be cut by Lemma 3.1.5

again. Then H9 has to cut out the entire first row, a contradiction to Lemma

3.1.3.

Proposition 7.1.2. If V −
8 contains exactly 4 vertices, then there is no way

for H9 to make a valid cut.

Proof. As in proposition 2.2, we’ll divide this into 3 cases.

1. v2,3 cut out as well:

O O O O

O O X X

O O X X

Both v1,3 and v1,4 are the only vertices left in their columns, so they

have to be cut by H9 according to Lemma 3.1.5. Both v1,1 and v1,2 are

not connected to F8, so they must be cut as well by Lemma 3.1.6. As a

result, H9 has to cut our the entire first row, a contradiction to Lemma

3.1.3.
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2. v3,2 cut out as well:

O O O O

O O O X

O X X X

Although H9 has to cut out v3,1 by Lemma 3.1.5, it does not mean the

3-face spanned by the 3rd row, which is the intersection of F1 and F2,

has to be cut out completely. It’s possible to cut out all 4 vertices of

that 3-face with 2 cuts, which is the case here, but still have something

from it left. We need to examine it more closely here. H8 cuts out v3,2,

v3,3, and v3,4, and also creates new vertices on the 3rd row.

Let q1 denote the vertex created between v3,1 and v3,2.

Let q2 denote the vertex created between v3,1 and v3,3.

Let q3 denote the vertex created between v3,1 and v3,4.

See the grid below.

O O O O

.

O O O ...X

: : .

O .X .X .X

q1 q2 q3

For q1 and q2, there is no edge to connect them to F3, so they must be

cut out by H9. Since v3,1 has to be cut out by Lemma 3.1.5 as well,

there is no vertices left for q3 to connect to F
′
4, so q3 has to be cut by

H9 too. As a result, since H9 has to cut out all the old and new vertices
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on the 3rd row, it has to cut out the 3-face spanned by the 3rd row, a

contradiction to Lemma 3.1.3.

3. v1,4 cut out as well:

O O O X

O O O X

O O X X

This is the most complicated case, since only the vertices created by H8

are non powerful. We mark those vertices out in the following grid.

O O O . . .X

p q r

O O O . . .X

: s1s2s3

O O ..X . .X

t1 t2

In the grid,

let p denote the vertex created between v1,1 and v1,4.

let q denote the vertex created between v1,2 and v1,4.

let r denote the vertex created between v1,3 and v1,4.

let s1 denote the vertex created between v2,1 and v2,4.

let s2 denote the vertex created between v2,2 and v2,4.

let s3 denote the vertex created between v2,3 and v2,4.

let t1 denote the vertex created between v3,1 and v3,4.
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let t2 denote the vertex created between v3,2 and v3,4.

By Lemma 3.2.1, the newly created vertices to the left of v3,3 and above

v3,3 in the grid are not powerful, so H9 has to cut them out no matter

what.

(a) Step 1: H9 must keep v3,1, v3,2, t1 and t2:

On the 3rd row, H9 cannot just cut v3,1 but keep v3,2, because v3,1

is the only vertex that connects v3,2 to F
′
2. Similarly, we cannot

just cut v3,2 but keep v3,1. If we try to let H9 cut out both v3,1

and v3,2, the vertices t1 and t2 will not be powerful to F
′
4, so they

have to go as well. As a result, H9 will have to cut out the en-

tire 3rd row, a contradiction to Lemma 3.1.3. In short, H9 has

to keep both v3,1 and v3,2. Then vertices t1 and t2 cannot be cut

either, because they are the only connection from v3,1 and v3,2 to F8.

(b) Step 2: H9 cannot just cut one of v1,3 and v2,3.

On the 3rd column, H9 cannot just cut v1,3 but keep v2,3, because

v1,3 is the only vertex that connects v2,3 to F2. Similarly, we cannot

just cut v2,3 but keep v1,3.

(c) Step 3: H9 is not a valid cut if it keeps both v1,3 and v2,3.

H9 has to cut something from F
′
3 to make sure F9 is pervasive. But

49



H9 cannot cut v2,2, due to the convex property in the 2 × 2 grid

spanned by v2,2, v2,3, v3,2 and v3,3. Hence H9 cannot cut any of v1,1,

v1,2, or v2,1, because we can always re-labelling and make it be v2,2.

If we try to let H9 to cut s2 to make F9 intersect with F
′
3, v2,2 will

lose its connection to F8, a contradiction. Similar contradiction if

we try to cut v2,1 instead. In short, if H9 keeps both v1,3 and v2,3,

F9 will not intersect with F
′
3.

(d) Step 4: H9 is not a valid cut if it cuts both v1,3 and v2,3.

It is possible that H9 cuts both v1,3 and v2,3 out to avoid the con-

tradiction in step 3. Then vertex r has to be cut too because it

loses the connection to F
′
4. However H9 has to cut more to make

sure F9 is intersected with F
′
3. With relabelling, H9 has to cut out

at least one of the following 3 vertices: v1,2, p or q, because these

are the vertices in F
′
3.

If H9 cuts out v1,2, then v1,1 is the only vertex left in the first row,

so it has to be cut as well. Then p and q will lose their connections

to F
′
4, so they have to be cut as well. Then H9 has to cut out the

first row completely, a contradiction to Lemma 3.1.3.

If H9 cuts out p instead, then v1,1 will lose its connection to F8 and

has to be cut. As a result, v1,2 will be the only old vertex left in the

first row and has to be cut as well by Lemma 3.1.5. Then vertex q

will lose its connection to F
′
4 and has to be cut too. Then H9 has to

cut out the entire first row again, a contradiction to Lemma 3.1.3.
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If H9 cuts out q instead, the similar argument as cutting p above

can be applied.

Proposition 7.1.3. If V −
8 contains exactly 5 vertices, then there is no way

for H9 to make a valid cut.

Proof. Again we have 3 cases to discuss, since H8 cannot cut out 4 vertices in

one row.

1. If V −
8 contains 5 vertices like the following grid:

O O O O

O O X X

O X X X

We can see that both v1,3 and v1,4 have to be cut by H9 by Lemma 3.1.5,

since they are both the only vertices in their columns. v1,1 has to be cut

as well by Lemma 3.1.6. As a result, v1,2 will be the only vertex left in

the first row and has to be cut too. Then H9 has to cut out the entire

first row, a contradiction to Lemma 3.1.3.

2. If V −
8 contains 5 vertices like the following grid:
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O O O ...X

O O O ...X

: :

O .X .X .X

p q r

Let p denote the vertex created by H8 between v3,1 and v3,2.

Let q denote the vertex created by H8 between v3,1 and v3,3.

Let r denote the vertex created by H8 between v3,1 and v3,4.

v3,1 is not powerful and has to be cut by H9 by Lemma 3.1.5. Vertices p

and q are not powerful and have to be cut by H9 by Lemma 3.2.1. Then

vertex r will lose its connection to F
′
4 and has to be cut as well. As a

result, H9 has to cut out the entire 3rd row, a contradiction to Lemma

3.1.3.

3. If V −
8 contains 5 vertices like the following grid:

O O O .. .X

p.
r

O O ..X ..X

q.

O O ..X ..X

Let p denote the vertex created by H8 between v1,3 and v2,3.

Let q denote the vertex created by H8 between v1,3 and v3,3.
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Let r denote the vertex created by H8 between v1,3 and v1,4.

After the cut by H8 the 3-face spanned by the 3rd and 4th columns, which

is the intersection of F
′
1 and F

′
2, has only the small portion spanned by

v1,3, p, q, and r left. When we do the cut of H9, v1,3 has to be cut because

of not powerful by Lemma 3.1.5. Both vertices p and q have to be cut

because of not powerful by Lemma 3.2.1. Then the vertex r will lost its

connection to F
′
4 and has to be cut as well. As a result, H9 has to cut

out all these 4 vertices, hence the 3-face spanned by these 4 vertices is

gone, the intersection of F
′
1 and F

′
2 is gone too.

Proposition 7.1.4. If V −
8 contains exactly 6 vertices, then there is no way

for H9 to make a valid cut.

Proof. There are only two cases left to discuss.

1. If V −
8 contains 6 vertices like the following grid:

O O O O

O X X X

O X X X

Then H9 has to cut out v1,2, v1,3 and v1,4 by Lemma 3.1.5, and v1,1 as

well by Lemma 3.1.6. As a result, H9 has to cut out the entire first row,

a contradiction to Lemma 3.1.3.

2. If V −
8 contains 6 vertices like the following grid:
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O O O ...X

p.
r

O O ..X ..X

q.

O .X .X .X

Let p denote the vertex created by H8 between v1,3 and v2,3.

Let q denote the vertex created by H8 between v1,3 and v3,3.

Let r denote the vertex created by H8 between v1,3 and v1,4.

After the cut by H8 the 3-face spanned by the 3rd and 4th columns, which

is the intersection of F
′
1 and F

′
2, has only the small portion spanned by

v1,3, p, q, and r left. When we do the cut of H9, v1,3 has to be cut because

of not powerful by Lemma 3.1.5. The vertices p and r have to be cut

because of not powerful by Lemma 3.2.1. Then the vertex q will lost its

connection to F3 and has to be cut as well. As a result, H9 has to cut

out all these 4 vertices, hence the 3-face spanned by these 4 vertices is

gone, the intersection of F
′
1 and F

′
2 is gone too.

Proposition 7.1.5. If V −
8 contains exactly 7 vertices, then there is no way

for H9 to make a valid cut.

Proof. There is only 1 case this time.

54



O O O . . .X

. . p q r

O .X .X .X

. .

O .X .X .X

Let p denote the vertex created by H8 between v1,1 and v1,4.

Let q denote the vertex created by H8 between v1,2 and v1,4.

Let r denote the vertex created by H8 between v1,3 and v1,4.

The vertices v1,2 and v1,3 have to be cut by H9, since they are not powerful by

Lemma 3.1.5. Then v1,1 has to be cut by Lemma 3.1.5 as well. The vertices q

and r have to be cut by H9, since they are not powerful by Lemma 3.2.1. Then

the vertex p will lost its connection to F
′
4 and has to be cut too. As a result,

H9 has to cut out the entire first row, a contradiction to Lemma 3.1.3.

One can easily verify that if H8 cut out 8 or more vertices, it must cut

out either a row, or 2 columns completely, so the cut will not be pervasive.

Combining with all the above propositions, we have proven

Theorem 7.1.6. There is no 9-facet polytope with all facets being pervasive

and powerful in dimension 5.
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Chapter 8

Making Three Cuts in Dimension 5

8.1 10-facet Polytopes in Dimension 5

In dimension 5, since the polytopes with 11 facets or more will not be pow-

erful, the 10-facet polytopes is our last chance to find powerful and pervasive

polytopes. We have the following partial results.

Proposition 8.1.1. If P10 is a valid cut after H8, H9, and H10, then P10 can

contain at most 4 original vertices from ∆3×∆2.

Proof. Assume v1,1 survived after the three cuts. By Lemma 3.1.5, the possible

grid of P10 that contains the fewest original vertices from ∆3×∆2 is

O O X X

O O X X

X X X X

If v1,3 is also in P10, then v1,1 will have three edges connecting to old facets,

leaving only two edges to connect to three new facets, hence it will not be

powerful. Similarly, no other vertex can be in P10 except the four in the grid

above.
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It is possible that the three cuts H8, H9, and H10 cut out the entire set

of original vertices, as long as Lemma 3.1.3 holds. When the original vertices

are cut out, most of our lemmas in chapter 3 become not so useful here, since

they are mostly about the original vertices. The newly created vertices by

those 3 cuts can be quite complicated, and currently we do not have enough

information about them yet. However, we do have the following proposition.

Proposition 8.1.2. If P10 is a valid cut after H8, H9, and H10, then P10 does

not contain any triangular 2-face.

Proof. Assume P10 contains a triangular 2-face spanned by vertices p, q, and

r. Then the line segment pq is an edge and the intersection of 4 facets. That

is, vertices p and q will be in the exactly same 4 facets. So will p, r and q, r.

Assume

p is in facets A, B, C, D, and E.

q is in facets A, B, C, D, and F.

The vertex r cannot be in facets A, B, C, and D, since the intersection of those

4 facets is a 1-face not a 2-face. So r must be in E and F. Assume

r is in facets A, B, C, E, and F.

Then both the edge pq and pr give the vertex p the connection to the same

facet F. However, in the 10-facet polytope, all 5 edges from the vertex p must

connect to 5 different facets in order to be powerful. Hence P10 is not a valid

cut.
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