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Abstract of the Dissertation

A Symplectic Isotopy of a Dehn Twist on a
Product of Projective Spaces

by
Emiko Anna Hayashi Dupont
Doctor of Philosophy
in
Mathematics
Stony Brook University

2007

The complex manifold CP" x CP™*! with symplectic form o, = ocpr +
poepnti, where ocpr and ocpn1 are normalized Fubini-Study forms, n € N and
> 1 a real number, contains a natural Lagrangian sphere L*. We prove that
the Dehn twist along L* is symplectically isotopic to the identity for all p > 1.
This isotopy can be chosen so that it pointwise fixes a complex hypersurface in

CP" x CP™*! and lifts to the blow-up of a complex n-dimensional submanifold

in CP" x CP™*!.
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Chapter 1

Introduction

Civen a symplectic manifold (M,w), the group Symp(M,w) of symplecto-
morphisms on (M,w), i.e., the diffeomorphisms that preserve the symplectic
structure, is an infinite-dimensional Lie subgroup of the group Diff " (M) of
orientation-preserving diffeomorphisms of M. We say that a symplectomor-
phism 7 is smoothly isotopic to the identity if there is a path in Diff* (M) from
the identity to 7, i.e., a smooth family (7s)o<s<1 such that 7o = id and 71 = 7.
It is symplectically isotopic to the identity if the path can be chosen inside

Symp(M,w). This dissertation is motivated by the following natural question:

The symplectic isotopy problem: Given a symplectic manifold (M,w),
does M admit essential symplectomorphisms, i.e., symplectomorphisms that
are smoothly isotopic to the identity but not symplectically so? In other words,

does the identity component of Diff ¥ (M) contain more than one component of

Symp(M,w)?

In this thesis we consider only compact symplectic manifolds. When the

dimension of M is 2, no essential symplectomorphisms exist. This follows




from Moser’s Theorem, since any smooth isotopy (7s)o<s<1 gives a loop 7jw of
cohomologous symplectic forms that contracts because the space of symplectic
forms on a 2-dimensional manifold is convex. In dimension 4, Gromov and
Abreu-McDuff (see [MS04, p.320-321]) show that the answer to the isotopy
problem is once again negative for CP?, CP* x CP"' and the one point blow-up
of CP?.

In 1997, however, Seidel [Sei97] exhibited a large class of 4-dimensional
symplectic manifolds (e.g., any complete intersection in some projective space
CP" except CP? and CP* x CP') for which the answer to the symplectic iso-
topy problem is yes. In fact, under fairly weak conditions on a 4-manifold, if 7,
is the generalized Dehn twist in a Lagrangian sphere L, then 72 is an essential
symplectomorphism. Generalized Dehn twists are higher-dimensional ana-
logues of the well-known Dehn twist along a circle in a 2-dimensional manifold
and is a symplectomorphism on M that can be defined whenever M contains
a Lagrangian sphere. The generalized Dehn twist (that we call a Dehn twist
for short) is compactly supported in a neighborhood of the Lagrangian and
restricts to this sphere as the antipodal map. Hence for homological reasons,
71, cannot be isotopic to the identity when the dimension of L is even. On the
other hand, Seidel showed that when M is 4-dimensional, the square of the
Dehn twist is always smoothly isotopic to the identity.

In dimensions 6 and above, very little is known. It is not even clear that
Dehn twists (or their squares) are smoothly isotopic to the identity. In this

dissertation we study a specific example in dimension 4n+2 for n € N. Hence

the Lagrangian sphere is odd-dimensional and there is no homological obstruc-
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tion for the Dehn twist to be isotopic to the identity. In fact, we show that
the Dehn twist is symplectically isotopic to the identity in this case. Although
this does not provide an answer to the symplectic isotopy problem, the con-
struction of the isotopy relies on certain symmetries specific to these examples
that suggests they may be higher-dimensional analogues of the special cases
CP? and CP' x CP' in dimension 4. Furthermore, by understanding how the
isotopy could be destroyed (e.g. by blowing up symplectic submanifolds), one
may be able to construct examples of essential symplectomorphisms in these

dimensions.

We now describe the main results of this dissertation. For n € N, let
ocpr and ogpnt1 be the Fubini-Study forms on CP" and CP™*!, respectively,
normalized to integrate to 7 on CP*. Consider CP™ x CP™™ with the product
symplectic form o, = ocpr + pocpn+r for > 1 a real number. As described ‘
in Lemma 2.1.6, the graph of the conjugate of the Hopf map S***! — CP"

embeds as the Lagrangian sphere

| = {(Z0: - Zal otz Va1 | 2P = 1) |

in (CP" x CP"™, 0u), so the Dehn twist 774 : CP™ x CP"*! — CP" x CP™*!

along L* is well-defined. Notice here that when p > 1, §?"*! embeds naturally

into CP"™" as {[z0: -+ 1 2n : v/ — 1] | |2]2 = 1}

Theorem 1.0.1. For all i > 1, the Dehn twist 7p» € Symp(CP" x CP" ou)

along the Lagrangian L* is symplectically isotopic to the identity by an isotopy




whose restriction to the complex hypersurface

S:{([Soi"'iSn]7[$01"'i$n+1])€@PnXCPn+ll80x0+---+snmn=0}

is the identity.

The isotopy of Theorem 1.0.1 was established in the case n =1 and p > 1
by Corti-Smith [CS05, Section 7]. Corti-Smith construct a certain singular
fibration with non-singular fibers isotopic to (CP* x CP?, 0,) and such that
the monodromy around the only singular fiber of this fibration is symplecti-
cally isotopic to the Dehn twist 77.. As the monodromy is also known to be
symplectically trivial, this proves the result. The proof of Theorem 1.0.1 uses
exactly the same fibration but by examining the construction in more detail,
we are able to establish an isotopy for all 4 > 1. Furthermore, we observe that
the construction generalizes to all n € N and that the complex hypersurface
S is pointwise-fixed under the isotopy.

The hypersurface S is a CP"-bundle over CP" in which the base coordinates
are [sg : -+ : 8y, and each fiber is a linearly embedded copy of CP" in cpt,
Write CP"*! as C* LU D where C" is the coordinate chart centered at the point
po=[0:---:0:1] and D = (zp41 = 0) = CP". Then S5 contains a section at

0 € C" given by Sy = CP" x {po} and a section at infinity, namely,

Soo={([s0: " 8n),[mo:@1:0:--:0]) | s0m0 + 8121 = 0} C CP" x D.

We show that Sy and Ss are not only pointwise-fixed under the isotopy but

in fact we have the following result.




Corollary 1.0.2. Let Sy and S, be the complex submanifolds in S, each
isomorphic to CP", defined by

Sy = CP" x {po},

Seo = {([s0::8n),[mo:my:0:---:0]) € CP" x CP"™ | sozo + 5121 = 0}

where po = [0:---:0:1]. The isotopy of Theorem 1.0.1 lifts to the blow-up of
CP" x CP™! along Sy and Se if the size of the blow-up is sufficiently small.

One should note that the Dehn twist 7z. is well-defined on the blow-up
since both Sy and S, are disjoint from L# and the Dehn twist is supported
near L*. In contrast, the proof of [CS05, Proposition 2] shows the following

result about Sy and a different n-dimensional submanifold S, at infinity.

Proposition 1.0.3. Consider the complex submanifolds in CP" x CP™*! given

by
Sy = CP" x {po} and S, =CP" x {peo},

wherepy = [0:---:0:1] and poo = [1:0: -+ : 0]. There is no smooth isotopy
between the Dehn twist Tru and the identity that simultaneously fizes So and

, L
S’ pointwise.

It therefore seems likely that blowing up the submanifolds Sy and S7, would

destroy the symplectic isotopy of Theorem 1.0.1. This does not preclude there
being no symplectic isotopies between the Dehn twist along L* and the identity
in the blow-up. If one could nevertheless exhibit a smooth isotopy between 77u
and the identity in the blow-up, then this example would provide a candidate

for an essential symplectomorphism in dimension 4n + 2.
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Theorem 1.0.1 is a consequence of Theorem 1.0.4. The proof of the latter
relies on the fact that Dehn twists are monodromy maps of certain singular
fibrations called Lefschetz fibrations. A Lefschetz fibration is the symplectic
analogue of a Morse function; it is a symplectic fibration over CP! in which
we allow for a finite number of well-behaved critical points. The monodromy
maps of non-singular symplectic fibrations are symplectomorphisms that are
symplectically isotopic to the identity. In the case of a Lefschetz fibration,
however, the monodromy may be non-trivial. Every critical point defines
a Lagrangian sphere in each of the non-singular fibers called the vanishing
cycle. The monodromy around a positively-oriented loop in CP! that circles a
critical value exactly once is symplectically isotopic to the Dehn twist in the
vanishing cycle. Since the monodromy of a Lefschetz fibration with exactly
one critical point is isotopic to the identity, our goal is to construct such a

Lefschetz fibration whose monodromy is also given by the Dehn twist 7.

Theorem 1.0.4. Let u > 1. There is a Lefschetz fibration (X, 7, J, Q") such

that:
1. 7 has ezactly one critical point zgyw € Xo = 7 1(0);

2. there is a holomorphic trivialization

: X\ Xy — (CP" x CP"™) x C

whose restriction to the fiber Xy over the point at infinity in CP* com-




posed with the projection to CP™ x CP™* is a symplectomorphism

Do : (Koo, W |x,) — (CP* x CP"*,5,);

3. the map P takes the vanishing cycle V¥ in X to L* in CP" X Cprt,

For n = 1, Theorem 1.0.4 is an extended version of [CS05, Proposition 1].
The Lefschetz fibration (X, 7, J, Q*) is an extension of the fibration constructed
in [CS05] from a disk A C C to CP' = C U {oo}. Note, however, that
unless x> 1, the full statement of Theorem 1.0.4 is necessary in order to
identify the vanishing cycle with the Lagrangian 3-sphere L in CP* x CP2
After deforming Q* to a form (Q2*)" which is standard in a small neighborhood
of the critical point 2.y, Corti-Smith compute the vanishing cycle (Vf')" in
the fibers close to the singular fiber Xy. For each t € A, wfite d, : X —
CP! x CP? for the restriction ® |y, of the map ® described in Theorem 1.0.4
followed by projection to CP* x CP?. The map ®; is biholomorphic and o} =
(®71)*((Q) |x,) is a symplectic form on CP' x CP? in the same cohomology
class as 0,. Hence by Moser’s Theorem, o is isotopic to o,. If u > 1, the
fiber X, intersects the neighborhood in which (2*)" is standard and Corti-
Smith show that the pull-back by ®; of the vanishing cycle (V{')" in X; equals
the Lagrangian L* = S3. Hence the isotopy from o} to o, can be made to fix
L*.

For general ;1 > 1, however, it is not clear what happens to the vanishing
cycle under the isotopy and, in particular, we cannot identify it with L#. On

the other hand, by extending the fibration over CP* as in Theorem 1.0.4, we




see that the form ay, = (P1)*(Q¥) is not only isotopic to o, but, in fact,
Qoo = 0, and O : Xy — CP! x CP? is a symplectomorphism. The key
step in our construction is the following. By symplectically embedding a large
part of the total space (X', Q) of the Lefschetz fibration into a toric manifold
(F,wﬁf’“ )), we obtain a Darboux chart on (X, 2*) that enables us to compute
the horizontal spaces of the symplectic connection coming from Q* in a large
neighborhood of the critical point zyy. In particular, we are able to compute
the vanishing cycle V¥ explicitly and to see that ®,, (V) is the Lagrangian L*.
Our construction generalizes easily from the case n = 1 to arbitrary n € N.
Furthermore, with S C CP™ x CP"™ as defined in Theorem 1.0.1, we see
that the corresponding hypersurface ®;*(S) in the fiber X; is held fixed under
symplectic parallel transport in (X, 7, J,Q*). This implies that the isotopy of
Theorem 1.0.1 fixes the complex hypersurface S in CP™ x CP™™.

We now describe the structure of this dissertation. In Chapter 2 we gather
some well-known results about Dehn twists and Lefschetz fibrations. The
main point here is to show that the monodromy maps of Lefschetz fibrations
are isotopic to Dehn twists. Chapter 3 provides the key ingredients for the
proofs of the main results. We construct the Lefschetz fibration (X, 7, J, Q)
described in Theorem 1.0.4, and compute explicitly the vanishing cycle V&
in X, from which we deduce that ®.,,(V#) is the Lagrangian L*. Finally,
in Chapter 4, we prove the main results, namely Theorems 1.0.1 and 1.0.4,
Corollary 1.0.2 and Proposition 1.0.3. We conclude with a discussion of future

directions related to the results of this dissertation.




Chapter 2

Dehn twists and Lefschetz fibrations

This chapter describes some well-known results about Dehn twists and Lef-
schetz fibrations. The main statement of this chapter is Proposition 2.2.3
which shows that the monodromy of a Lefschetz fibration around a loop that
circles a critical value once is symplectically isotopic to the Dehn twist along
the vanishing cycle coming from the critical value. The discussion in this
chapter is based on [Sei97] and [Sei03, Section 1]. Note that although [Sei03]
assumes exactness of Lefschetz fibrations, i.e., that each non-singular fiber is
a symplectic manifold with boundary and the symplectic form on these fibers
is exact, the proofs of the results that we use are easily adapted to ordinary

Lefschetz fibrations.

2.1 Generalized Dehn twists

Consider the cotangent bundle of SV

5™ = {(u,v) € RY* x RY*1 | (u,0) =0, [Jol] =1}




with standard symplectic form wpgy = y du; Adv;. The zero section Ly is a |

Lagrangian submanifold of (7*S™, wp.gn). The length function h : T*SY — R i
given by h(u,v) = ||u| generates a Hamiltonian circle action on T*S™ \ L, r
whose flow is given by y‘

oh(u,v) = (cos(@)u — sin(8)|[ul|v, cos(8)v + sinw)—u—) . (2.1)

[l

The time-m map ¢! extends over the zero section by the antipodal map
A(0,v) = (0,—v). Now let R : R — R be a smooth function such that
R(s) = 0 for s > sg for some sg > 0 and R(—s) = R(s) — s for all s. Let
H = Roh. The flow of H is ¢} (u,v) = @}y (1, v). Since R'(0) = 3, 3h
extends continuously to 7*S™ by the antipodal map. By [Sei03, Lemma 1.8]

this extension is smooth and hence is a symplectomorphis.

Definition 2.1.1. Let 7 be the time-27 flow of H = Ro h on T*SN \ L as
above, extended to Ly by the antipodal map. The symplectomorphism 7 is

called a model Dehn twist.

Figure 2.1 shows the image of a fiber F, = W;,}SN(O,U) of T*S™ under a

model Dehn twist. Here mpegn : T*S™ — Ly = SV is the natural projection.

We see that (u,v) € T*SY with |lu|| large are held fixed by 7, but as ||ul|
I
decreases we “turn on” the circle action ¢} of (2.1), with larger and larger .

6 € (0,7) until at ||u| = 0, we reach the antipodal map ¢". g

Remark 2.1.2. Although the definition of the model Dehn twist depends on
the choice of function R, the symplectic isotopy class of 7 is independent of R. g
Indeed, suppose 71 and 75 are model Dehn twists corresponding to R; and Ry

10
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F, =RV 7(Fy)

(07 _U)\

\-0-—/ Lo = s

T*SN T*SN

Figure 2.1: The model Dehn twist

respectively. By [Sei03, Proof of Lemma 1.8], K = (Ry— Ry)oh : T*SN\ Ly —
R extends smoothly by 0 to Ly and the 27-flow of this extension is (r1)"17s.
Hence the flow ¢f of K, 0 < § < 2r, is an isotopy from (1)1, to the
identity. Note that 7; equals the identity on the space T;SRi SN of cotangent
vectors with ||u|| > sg, for ¢ = 1,2 and the isotopy between 7, and 7 is

supported in TZ O

max{sp1,5p2}
Let wew = § 3. dz; Adz; denote the standard symplectic structure on CV.

Consider the singular fibration mgq : CV — C given by

Tstd(21, .., 2N) = 22]2

All fibers of 7gq, except for 75;(0), are symplectic submanifolds of (CV,wex).

For each r > 0,

maa(r) = {z € CV [ |R()|* — [S(2)|* = r, Z?R(Zj)%(zj) = 0}

11
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is symplectomorphic to (T*S" ™! wp«gn-1) by the map

834(2) = (—|m<z>n%<z>, Rlz) ) | (2.2)

The symplectic structure wen gives a connection on the non-singular fibers

of the fibration, where the horizontal space at z € CN \ m;4(0) is
Hor, = (Ker d(msta),)”cN = spang z.

Parallel transport maps with respect to this connection are symplectomor-
phisms, and the monodromy along a contractible loop in C* is Hamiltonian
isotopic to the identity (see [MS98, Theorem 6.21]). Each fiber m4(t) with

t # 0 contains a Lagrangian sphere
Y= {\/Fei%z eCV|3(2) =0, ||z =1}, wheret= ret. (2.3)

Note that for 7 > 0, ®*4(X,) is the zero section Lo. Since for any point
\/Fei% € %, I(z) = 0, parallel transport along any path in C* preserves 2
and hence takes the Y;’s to each other. The limit of parallel transport along

a path in C ending at 0 takes the ;s to 0 € CV. In fact, if
2 ={0}u| |, (2.4)
#£0

then parallel transport makes sense on C™\ ¥ and gives symplectomorphisms
between 74 (¢)\ Z; and 754(0)\ {0} for all £ # 0. The following result is based

on the proof of [Sei03, Lemma 1.10].

12




Lemma 2.1.3. Consider the singular symplectic fibration Tsa : cN - C
given by Tsa(21; - - - LZN) = Zi\;l 23, where CN has the standard symplectic
form wen. Forr >0, let pr: noi(r) — mey(r) denote the monodromy around

the loop v(0) = re?, 0 < 0 < 2w, and let st mrl(r) — T*SNTH be defined
as in (2.2). Then for allr >0,

F =0 o p o (8L TSN - TSN

is symplectically isotopic to @ model Dehn twist.

Proof.
Claim 1. For each r > 0, the restriction of 7. to T*SN=1\ Ly is the time-27 flow
of a Hamiltonian H, = R, oh, where h : T *GN-1 _, R is the length function

and R, : R — R is given by

Ro(s) =3 — /T +6% (2.5)

Since R.(—s) = R.(s) — s, by Definition 2.1.1, 7. would be a model Dehn
twist, if R, had compact support. We see, however, that 7, is isotopic to a
model Dehn twist as follows. Let 8 : R — [0,1] be an even smooth bump

function with compact support such that B=1lina neighborhood of 0 and let
R.(s) = R.gs)(s) for s €R.

Then R,(—s) = R.(s) —s and R, has compact support and hence the time-27

flow of the Hamiltonian H, = R, o h: T*SN-1\ Ly — R extends to a model

13




Dehn twist 7, : T*SN=! — T*SN~1. Moreover, R, = R, in a neighborhood of

0. Hence if ¢, " and gofr denote the flow of H, and H, respectively,
oy =@ o (), 0<g <o

extends to T*SN~1 as the identity map on Ly and is an isotopy from 7, to 7.
It remains to prove Claim 1. Recall that parallel transport is well-defined
on CN'\ ¥ with ¥ defined as in (2.4). We now trivialize CV \ ¥ using parallel

transport in the radial directions by a map
5 CN\ U — C x (T*SN1\ L)

that is a symplectomorphism on each fiber and whose restriction ®st¢ =1 (r\2,

extends to the symplectomorphism @4 : 7k (r) — T*SN=1 for all » > 0. In

particular, 7, |psgn-1\r, is the monodromy of C x (T*SN~!\ L,) along the

loop re?, 0 < § < 27, where the symplectic connection is induced by the form
<((I)Std)_1)*w(cN.

We use the following explicit expression for ®std:

PH(2) = (mwal2), (0 o B3)(e7'%2))

= (rene (s tamestan, 2ia)) B

IR(e™*2 )]

where Tga(2) = e and " is the flow on T7*SN~1\ Ly described in (2.1). Be-
cause of the use of polar coordinates, it requires an argument to see that ¢
is smooth at 735(0) \ Zo. Details of this can be found in [Sei03]. By construc-

tion, ®std [ﬂé(mw)\g ., 1s a symplectomorphism for all 7,6 and Pstd |7T_t(1i(7‘)\2r

14




extends to the symplectomorphism @4 : 7 3(r) — T*SV~! for all r > 0.

Note that

wen = dagn, where acy = 7> _;(2dzZ; — z;dz;),

_ _1
wregn-1 = dorpegn-1, Where apegn-1 = 5 ). (u;dv; — v;du;).

Claim 2.

(&%) ) agn = apegy-1 — Hdf

where I:TT = R. oh and r > 0. Hence
(&%) ) wen = wpegn-1 — dH, A d6. (2.7)

Assuming we have proved Claim 2, consider C X (T*SN-1\ Ly) with sym-
plectic connection induced by the form (@51 *wen. We see that for each

t € C*, the horizontal lift of a vector £ € T;C is of the form
(€, X) € Tioum)(C x (T*SN71\ Lo)), with §(X)wpsgn-1 = —db(¢)dH,.

Hence for each (u,v) € T*SV~1\ Lo, the path (re®, gofr (u,v)) is a horizontal lift
of the loop re®. It follows that the monodromy along the loop re?, 0<60<2r
is the 27-flow of fIT. This proves Claim 1.

Finally, we prove Claim 2. The inverse of ostd,

(@)1 Cx TSN\ Ly —» CV\ T

15




is given by

(@)~ (re”, (u,v)) = &3 ((@5) () ™ (w,v) 28)
= (cos(%))«? +sin(4)%) + (sin(g))\f) —cos($)%)
where
(1,) = (h)(u,0) = <cos(g>u +sin(8)v]|ul], cos(§)v - sin(g)l—gﬂ) ,

A2 =L/ 4 ul2, A>0.

In vector notation we have that

(2.9)

acny = 2(2dZ — Zdz) and ap«gn-1 = 5 (udv — vdu).

It follows from (2.8) that if z = (®%*4)~!(re®, (u,v)), then 2 = ¢'2% where

I

Z = A0 — i with (%, 9) and A defined by (2.9). Note that X is chosen precisely

such that mgq(2) = r, i.e., such that )\? satisfies the equation

~ ~ =112
NGl = 1§17 = 32 - 15 =

We see that

6

(2a(e43) - e H2a(e)

(@) acy =

NS

PN

(eigé(e_i%dz + Ed(e'i%)) — e‘w—é_(ei%dé + Zd(ei%))>
— i(2d7 - Fd2) + 12|26

= 3 (309) - () + FE” + 1§17)de.

16




Since |3 = [lv]| = 1, [[ll = ||u]l and (u,v) = (3, 3) =0,

(3% Vaey = b (3(MdD+ 5d)) — A(Lda + ad(1))) + 10 + 15 ao

(adv — vdii) + (N2 + L%y dg.

N

A similar computation shows that @d# — 9di = udv — vdu — ||ul|df. Using the

fact that \2 — ”/\%” — r and the definition of \?, we see that

|2

Ul - 202+ 48) = Lul - I¥ +50° - 5)

= Lull - 31/ + llull.

Hence Claim 2 holds. O

Definition 2.1.4. Let (M?N,w) be a symplectic manifold and L C M a La-
grangian sphere with a chosen identification ¢ : SN — L. By the Lagrangian
Neighborhood Theorem, for some small A > 0, we can extend ¢ to a sym-
plectic embedding of the space T%,S™ of cotangent vectors with llul] < A to
a neighborhood N'(L) of L. Choose a model Dehn twist 7 whose support is
in T; %SN . The generalized Dehn twist (or simply Dehn twist) along L is the
map

vorou™h if z € N(L);
T1(2) =
z otherwise.

Remark 2.1.5. The Dehn twist is a symplectomorphism of M that depends
on the choice of identification ¢ : SN — L. We say that two identifications ¢,

and ¢ are equivalent if 1; 01y : SV — S N can be deformed inside the group of
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diffeomorphisms of SV to an element of O(N + 1). An equivalence class [1] is
called a framing of the Lagrangian sphere. If t; and ¢, give the same framing of
L, then the corresponding Dehn twists 7,1 and 77, o are symplectically isotopic
and 7 = T[] is well-defined as an isotopy class. If N =1, then there is
only one choice of framing since Diff(S?) = O(3). However, in general it is
not known how a change of framing affects the isotopy class of the Dehn twist
and we have to specify a framing in order to define the Dehn twist. We omit
the choice of framing in our notation as there is often a natural choice in the

situations we describe below. O

Now consider CP" x CP"™ as a 4n + 2-dimensional real manifold with the
product symplectic form o, = o¢pr+pogpr+1, where p > 1 and ocpr, ogpr+1 are
the normalized Fubini-Study forms on CP" and CP™™, respectively. As shown
in [CS05, Lemma 1], this manifold contains a natural Lagrangian sphere L#,
namely the graph of the complex conjugate of the Hopf map Hcpn : S*** —
CP".

Lemma 2.1.6. If u > 1, then

L“::{[‘z‘oz---:En][zo:---:zn:\/,u——T]EC]P’nX(CIP’”H[IzP:l}

is a Lagrangian sphere in (CP™ x CP"*! q,).

Proof. For A > 0, let B(\) = {z € C"*! | |2|> < A*}. Then the map 4 :
B(y/fi) — CP™** given by

it (200 s %) = 200t 2t/ = |20 = — |2n]?]
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is a symplectic embedding (B(\/1t), wer+1) < (CP™™, pogpn+1). This follows

from the fact that i factors through the Hopf map Hepn+1 : S2n+3 _, CP Y

1{ G2n+3
| / lHWH
! i
| B(y/p) —cp"+!
| where
z<ZO7 azn) - (z_(;“ '7%7 1_.ﬁ|2>
Hence,

i* (/.LUCIPn+1) = %*((HCPTL+1)*(/,LO'CP11+1)) = :L:*(ILLCUCH-%—ZlSZn-FB) = wcn+1|3(\/ﬁ).

Thus, $?*! := 0B(1) C B(,/) embeds symplectically into (CP™, pogpn+1).
Therefore, the graph of the conjugate of the Hopf map Hcpr : S+l CP"
embeds symplectically into (CP" x cpt, o) as L. Since (Hcpr)*(ocpn) =
—Wen+t | gant,

O-,M‘LV' = w(cn+llszn+1 + (FCP")*(JC}P’") = O,

i.e., L* is Lagrangian. O

2.2 Lefschetz fibrations

Definition 2.2.1. A Lefschetz fibration is a smooth fibration 7 : £ — CP*

such that

e the set . of critical points of 7 is finite and no two critical points lie
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in the same fiber;

e F is compact and has a closed 2-form 2 that restricts to a symplectic

form on the non-singular fibers;

e there is a complex structure J defined in a neighborhood of each critical

point such that 2 is J-Kahler;

e if j is the complex structure on CP!, then 7 is (J, j)-holomorphic and at

each critical point the Hessian of 7 is non-degenerate.

Note that by the Morse Lemma, the fourth condition is equivalent to the
condition that for each zyit € Egqix we can find a J-holomorphic coordinate
chart ¥ in a neighborhood of 2z and a chart ¢ on CP! centered at 7(zes) in

CP! such that
N

YomoUT(z) :sz

i=1
Such a pair of charts (¥,) will be called a Morse chart. In the following we
often suppress the choice of 9 in our notation.

Away from the critical points, (E, 7, ) is a symplectic fiber bundle. Hence
it admits a symplectic connection, i.e., the connection with the horizontal space

at 2 € E\ Eqgit given by
(T,E)" = {X € T,E | (X,Y) =0for all Y € ker D, }.
Therefore, we can define parallel transport maps

Pyt Ery@) = Eq)

20




along embedded paths v : [a,b] — CP' \ 7(Eqy).
Each critical point 2y € Eeyy gives rise to a Lagrangian sphere in the non-
singular fibers called the vanishing cycle. Let « : [a,b] — CP' be an embedded

path which avoids m(Ei;) except at the endpoint v(b) = m(2qit). Define

By = {Zait} U U {z € Ey | sl/l_r_I)lb [ (2) = Zerit }-

a<s<b

By [Sei03, Lemma 1.13 and 1.14], B, is an embedded closed N-ball in E with

Q|p, = 0 whose boundary
Vy=0By = ByN Eyq

is a Lagrangian sphere in (E,(,),Q|g, ) that comes with a natural framing
(see Remark 2.1.5). We call V,, the vanishing cycle associated to 7. (See
Figure 2.2). If 9/ is path-homotopic to v in CP' \ 7(Ees), then V., with its
natural framing is symplectically isotopic to V,. Hence, for each zeit € Eqrit
and t € CP' \ m(Eqit), the symplectic isotopy class of V, with its natural

framing depends only on the path-homotopy class.

Definition 2.2.2. Let (E,7,J,2) be a Lefschetz fibration. Let v : [a,b] —
CP' be an embedded path that avoids 7(Eqj;) except at the endpoint v(b) =
T(2ait) € m(EBoi). We say that a loop £ : [c,d] — CP' \ 7(Eqy) doubles
if 4(c) = £(d) = ~(a), £ is positively oriented with respect to the standard
orientation of CP! and ¢ circles the point 7(2qi5) exactly once and circles no

other critical values of 7.

The following result is the main result of this chapter and is described in
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Figure 2.2: The vanishing cycle

[Sei03, Proposition 1.15].

Proposition 2.2.3. Let (E,w,J,Q) be a Lefschetz fibration and Vy C Ey, the
vanishing cycle of a path 7y : [a,b] — CP* with y(a) = to and y(b) = T(zait) €
Euit. Let £ be a loop that doubles y. The monodromy pg : Ey, — Ei, around £

is isotopic to the Dehn twist Ty, along the vanishing cycle V.

Proof. For simplicity assume that the Lefschetz fibration has a single critical
point Zes and m(ze) = 0. Let (z1,. ..,zn) denote the coordinates of the
Morse chart around zei with respect to which 7 has the form Zj zjz By

[Sei03, Lemma 1.6], there is a smooth family O*, 0 < X <1, such that
o V=0,
e for all \, Q" = Q outside a small neighborhood of Zerit,
e cach (E,n, J,Q*) is a Lefschetz fibration,

o Q! equals cwen = %Z i dz;j N\ dZ; near ze for some constant ¢ > 0.
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The monodromy py : By, — By, in (E, 7, J,Q) along £ is isotopic to the mon-
odromy p} : Ey, — Ey, in (E,m, J,Q') under an isotopy taking the vanishing
cycle V,, with its natural framing to the vanishing cycle V} for Q. Thus, by
Definition 2.1.4, it suffices to show that p} is isotopic to the Dehn twist along
V).

In fibers close to the singular fiber, the monodromy of (BE,m,J,Q) can
be computed using the standard local model (CN, mgta, Jo, wen) described in
Section 2.1. Take a small € > 0. We claim that the monodromy pl around
the loop 1(f) = €, 0 < 0 < 2, is isotopic to the Dehn twist 7y E. — E,
where V! is the vanishing cycle in the fiber E. Let D(g) denote the closed
disk of radius ¢ in CP* and Ep,y = 7' (D(e)). Let ¥: W — E, W C CV, be
a Morse chart on E in a neighborhood of zgi. For each t € D(e), let F be
the Lagrangian sphere in E, defined by (2.3) in the Morse coordinates. Note

that ©F is the vanishing cycle an for the path n(r) =¢ —r, 0 <r <e. Let

= zadU | EF
1€D()\{0}

As in the proof of Lemma 2.1.3, we use parallel transport in the radial
direction to construct a trivialization ® : Ep, \2F — D(e) x (E. \ X¢) that

is the identity on the fiber E,. Hence for fixed r > 0,
(@)™ (QY) = Q" [pan. =B A db), (2.10)

where £, is a closed 1-form on E. \ ¥.. We claim that 3. is exact. If not, there
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exists a 1-cycle 0 such that

/ @J\d@z—Qm‘/ﬁr#O.
oD (r)x6 5

On the other hand, by (2.10), 5, A df extends to a closed form n on D(r) x §

and hence by Stokes’ Theorem,

/ @/\dez/ dn = 0.
dD(r)x$ D(r)xé

This is a contradiction. Thus, for each r > 0 there exists a function ﬁf such
that G, = diIf . The restriction p; |g.\x. of the monodromy around [ is the i
time 27-flow of the function HE. |
The map ®5* defined in (2.2) gives a natural embedding ¢ : T2 Wl B
where A > 0 is chosen so that Im(v) C U(W). With ¢ as defined in (2.6),
the diagram
CNV\ 8 ——25C x (T*SV-1\ Ly)

W 2 D(e) x (TE,SN1\ Lo) B
\MW\El lidXL|T;)\SN_1\LO :

Eﬁ(a) \ % e -D—(E) X (E&: \ Zs)

where @ is the trivialization (2.6). By Claim 2 in Lemma 2.1.3, it follows
that
(id x ¢

Tz/\SN_l\Lo O((bE)_l)*Ql = WpxgN-1 — d.ﬁ A d@,
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where H = Roh is as in the proof of Lemma 2.1.3. Hence
HE(0,1(u,v)) = H.(u,v) for 0 <6 <2m, (u,v) € TESV ™ Lo.

Let f: R — R be a smooth bump function such that F' = foh has support in
W. Let H? = F - HE, By the proof of Lemma 2.1.3, the flow of H¥ induces
an isotopy between the monodromy p; : E. — E,. along the loop [ and the
Dehn twist 7y1.

to

e 0
CP!

Figure 2.3: Deforming the loop ¢

The original loop ¢ can be deformed to a loop of the form ¢ = Cx1lx*
(™1, where ( is a path from the basepoint o of £ to e (see Figure 2.3). The
monodromy along this loop is p; = pgl o pt o p¢, where p. denotes parallel
transport along ¢. Since we have just seen that p; is isotopic to the Dehn
twist 72 and pc maps Vi, to V. Definition 2.1.4 shows that pz is isotopic to

the Dehn twist 7. O
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Chapter 3

The Lefschetz fibration 7 : X — CP!

This chapter contains the essential steps in the proofs of the main results of
this dissertation. In the first three sections we construct the Lefschetz fibration
(X, m,J, Q) of Theorem 1.0.4. Its total space X is a complex hypersurface
in F x CP!, where F is a toric manifold of complex dimension 2n + 2. The
manifold X fibers over CP' as a subbundle of the bundle F x CP* — CP'.
For each p > 1, the closed two-form Q* on X comes from a toric symplectic
structure on F, and the symplectic isotopy class of the non-singular fibers of
(X, 7, J, ) depends on the cohomology class of this toric structure. For each
© > 1, it is possible to choose a toric structure on [F such that the non-singular
fibers of (X, J, Q") are isotopic to (CP™ x CP",0,).

Section 3.1 defines the toric manifold F. We then construct the Lefschetz
fibration in two steps. In Section 3.2 we define the part of the fibration that
fibers over C. Then, in Section 3.3 we extend the fibration over the point at
infinity in CP'. By symplectically embedding a large part of (X', 2#) into the
toric manifold (T, wl(Fl’” )), and using a Darboux chart on F, we show in Section

3.4 that the vanishing cycle V., in the fiber at infinity is the Lagrangian L*.
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3.1 The toric manifold F

In this section we apply the theory of toric manifolds in both the algebro-
geometric and symplectic categories. Elementary introductions can be found
in [Cox95], [Tha94], [Aud04, Chapter VII], and [MS04, Section 11.3.1].

Let €27+ have coordinates (s, ¢, Z, Znt1) = (05 - -, Sn, @, T0, -+ * > Tnt1) a0d

consider the (C*)? action on C*"** with weights

n+1 n+2
Y N e N

1 .- 110 .-+ 0
. . (3.1)

O --- 0 1 1 --- 1
The effective cone C.g of the action is the cone in R? generated by the columns
of the matrix (3.1), i.e., Cog is the positive quadrant. This cone decomposes
naturally into a union of 2-dimensional cones, each generated by a pair of
column vectors. The interior of these cones are the chambers C; and Cy for

the action depicted in Figure 3.1.

RZ

Figure 3.1: The effective cone
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We define the complex manifold F to be the GIT quotient
F = (C2n—|—4//m((c*>2,

where  is an integral point of C;. As a complex manifold, the GIT quotient
is the same for different choices of & in the same chamber [Tha94, Theorem

3.9]. In this case,
F = (C*\ {0} x €2\ {0})/(C")".

Since the action of (C*)? on C"*2\ {0} x C***\ {0} is free and proper,
this quotient is a smooth complex manifold. We denote the points of F by

H§7 q,Z, xn-i-lﬂa where (§7 q,Z, mn+1) € (Cn+2 \ {O} X Cn+2 \ {0} and

([, ¢, 2, Tnsa]] = [[as, aBq, Bz, BTns1]] for (a, ) € (C*)?

We now describe a Kéhler structure on F by constructing it as a symplectic
quotient. Let C2"™* have the standard symplectic form wean+s and suppose T 2
acts on C2+4 with weights (3.1). The moment map ¥ : C**™ — (£)* = R?

of the action is given by
n n+1
(s, q, 2, Tnt1) = (Z 1517+ lal?, 1l + D |$j\2> -
=0 =0

Its image is the effective cone Ceg illustrated in Figure 3.1 and the regu-
lar values are the elements of the chambers C; and Cs. By the standard

symplectic quotient construction [MS98, Section 5.4], for each k € C1, the
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form ween+s |w-1(s) descends to a symplectic form on the quotient mani-
fold U~1(k)/T2. The elements of ¥~*(k)/T? are denoted [, ¢, T, Tn41] Where

(§> q,Z, wn—l—l) € \D-l(lﬁl) and
(8,4, &, Tns1] = 675,00 q, e g, e, 4] for (e, e%) e T?,

By [Aud04, Theorem VII.2.1], as a complex manifold, the quotient UY(k)/T?
equals C2" /,,(C*)?, where &' is any integral point in the chamber of £. In

fact, the map U~1(k)/T? — C**+1/,,(C*)? given by

(8,4, 2, Tni1] — (8, ¢ T, Tnya]]

is biholomorphic and the quotient symplectic form is a Kahler structure wg on

F = (C2"+4//K/(C*)2.

Remark 3.1.1. Points of F are denoted [s, ¢, Z, Tn+1], when F is thought of as
a symplectic quotient ¥~1(x)/T? and by [[s, ¢, Z, Tn11]], when we are interested

in the complex structure on [F. O

The manifold (F,w?) admits an action by the quotient torus T%**/T? =
T27+2 Hence it can be represented by a Delzant polytope A® of dimension

on + 2. If p : R2+4 — R? is the linear map given by the matrix (3.1), then

AF = RIMNp (k)

= (@) € B v T = v+ T = o)
(3.2)

where £ = (£, ,6n)y 1 = (no,---,mm) and k& = (K1, k2). Let A C¥tt —
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R?"*+4 be the map

A(§.7 q,Z, xn-l—l) = (ISO|27 sy I8n|27 IQ|27 ‘%0‘2, cery |.’1§'n+1|2>-

Then U1 (k) = A"'(A*). Suppose we have a d-dimensional face of A*. Then
it is given by the vanishing of 2n + 4 — d coordinates in R2"*+4, The vanishing
of the corresponding coordinates in C?>*** is a T?-invariant complex subman-
ifold of U~1(k) and corresponds to a d-dimensional complex submanifold of
F = U~(k)/T2. Two faces of A" intersect precisely when the corresponding

submanifolds intersect in F.

Lemma 3.1.2. The manifold F is a CP™! bundle over CP™*' with fiber co-
ordinates [so : -+ : S : q] and base coordinates [z : -+t Tni1]. The form
wg integrates to k1 on a line in the fiber and to ke on a line in the section
So == 8p_1 =q=0. Moreover, the submanifold F N (q = 0) is isomorphic
to the product CP™ X CP™"*! and for each k = (K1, k2) € C1, the restriction

wE |Fn(g=0) 18 the product form kiocpr + KaOgpr+i.

For n = 1 the polytope representing (F,wf) is illustrated in Figure 3.2.
The polytope that represents (F N (zo = 0),w§ |o=0) can be illustrated in a
3-dimensional subspace of RS as seen on the left hand side of Figure 3.2. This
is a CP2-bundle over CP* with base coordinates [x; : z2] and fiber coordinates
[s0 : 81 : q]. We get the polytope associated to (F,wk) by replacing each section
CP' by a CP? as shown in the right hand side of the figure.

Proof of Lemma 3.1.2. First we prove the statement about FN(g = 0). We can
think of FN(g = 0) as (¥ |(g=0)) ~*(x)/T? which is by construction CP" x cptt
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80=51=0

(0,0, k1, K2 — K1,0,0)

(0701’51107”2 - ":170)

(0,0,%1,0,0, k2 — K1)
(0,0,k1,0,62 — k1,0)  (0,0,K1,0,0, K2 —21_)/

#1,0,0,0,0, k2)
&

8120

(%1,0,0,0, k2,0)

. . T = 0
(0751107075210) ) 1!07.0107N2)e—\
To = O (0:N1707’€270:0)
so=0
q=0 °
(0,.1,0,0, K2,0) (0,%1,0,0,0, k2)
30 — q =
FN (330 = ) I

Figure 3.2: Polytope A* representing (F,wf) for n =1
with symplectic form kjocpr + koocpn+1. More precisely, the map
(FN (g =0),w§ |g=0)) — (CP" x CP™™, kyocpr + KoOgpn+1)

given by

8,0, 2, Tni1] — ([so: -+ 8n, [0 @t Tng))

f is a biholomorphic symplectomorphism.
The map F — CP"* given by [[s,q, 2, Tn41]] — [%0 : -+ : Tnta] is clearly

well-defined and makes F a CP""! bundle over CP"**,

I

Thelineq282=---=sn:x0=---:xn:Ointheﬁberx():-
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zn, = 0 lies in (FN (¢ =0),wr |(4=0)) and corresponds to
{([so:81:0:+--:0],[0:---:0:1]) € CP" x CP™*'},

Similarly, the line ¢ = sp = +++ = Sp1 = To = *** = Tn-1 in the section

qg=8yp="++= 8Sp—1 = 0 corresponds to
([0 -:0:1,[0:-:0: @y : Tpy1]) € CP* x CP™1

It follows that wf integrates to kym on g =8z =+ =8, =To ="+ = Tn = 0

and t0 Ko ON =80 = ++* = 8p_1 =To =+ = Tp-1 = 0. O

3.2 The singular fibration 7: X — C_

Let
X = {<H§7Q)£7 mn—}—l]],t) eF x C l SoZo 4+ ST, = tq}

The holomorphic equation sz + -+ - + SpTp = tq is invariant under the (C*)2-
action on C2"+4 and X is a complex submanifold of F x C. Let

Xt = {H§7 q,Z, mn—{—l]] elF | Soxg + + + Sppn = tq}

and X, = X; X {t}. Let 7 : X — C be the natural projection map. Figure 3.3
shows how the submanifolds X; lie inside the polytope representing (FN (xo =

0), Wf |zo=0) When n = 1.
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X[) th 'XtZ

v =(0,0,k1,0,0, k2 — K1) v v

XoN(g=0)=S$ Xy, N(g=0)=S8 X, N(g=0)=S8

Figure 3.3: X; in FN (zo=0)
Consider the submanifold
S = {[[s,¢, 2, Tns1)] € F | s0z0 + +* + spn2n =0 and ¢ =0}  (3.3)

in F. Clearly,
X;N(g=0)=S forallteC.

When ¢ # 0, all the X;’s are disjoint in F and

Q7'é0) UXt\S

teC

More precisely, if 7 : F x C — F denotes projection to the first factor, then

7 |avsxoy: X \ (S x C) = FN(g#0) (3.4)

has inverse (1r |x\sxc)) " FN (g # 0) — &\ (S x C) given by

SoTo + + + SpTn
(5, 4,2, Bnsa]] ([[_s_,q,@, o], 22 ) .
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In particular, mr |x\(sxc) is biholomorphic.

Lemma 3.2.1. The singular fibration = : X — C is holomorphic and has

exactly one critical point at
Zerit = ([[.Q) 1793 1]]7 O) € XO-

In a neighborhood of zeiw we obtain holomorphic coordinates (z1,. .., 2an+2)
such that m is the map (21, ..., Zant2) 2?1“;2 22,

The non-singular fibers X;, t # 0, are biholomorphic to CP" x CP™,

Proof. Clearly, 7 : X — C is a holomorphic fibration with exactly one critical
point Zeit.
For q # 0 and .41 # 0,
g = Sttt g Y fr0<ij<n

[ )

J
q Tn41

are holomorphic and invariant under the (C*)*-action. The map
FN(g#0,Tns #0) — C7

given by

[[ﬁa q,Z, xn—i—l]] = (507 R §na j‘O: v )xn)

defines a holomorphic coordinate chart on F. Thus, (3o,. .., S, Zo, - - - y T, t)
define holomorphic coordinates on IF x C in which X’ is given by S0Zo + -+

§,%n, = t. Therefore (3o,..., 8y, Lo, ..., Zn) define holomorphic coordinates on
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X. Let

21 =%(80+ &), -0y Znp1 = 3(8n + Zn), (3.5)

Znt2 = %(go - 5%0)7 ceey 2n42 = %(gn - xn)

Then (21, ..., 2an+2) define holomorphic coordinates on X in which 7 has the

form (z1,. .., zont2) — Z?SZ 7

Let X, be a non-singular fiber of 7 : X — C, i.e., fix t # 0. Then X} is a
complex submanifold of F in which ¢ is determined by the other coordinates of
F as g = S2ot=tsntn  Gince F = (C™+2\ {0} x C**\ {0})/(C*)?, an element
[[s,q, 2, Tny1]] € X; cannot have s = 0 or £ = Tn11 = 0. It follows that the

map ®; : X, — CP" x CP"*! given by

Dy ([8, 4 2, Trga]]s 1) — (S0 2 Snly [To v v+ ¢ Tna]) (3.6)

is well-defined. In fact, it is holomorphic. O

Remark 3.2.2. In the notation of Remark 3.1.1,
Zerit = (Z, O) = ([Q’ ﬁl;Qa R — Hl]a 0)

In the polytope A* C R?"** representing (F,wf), z € F corresponds to the

vertex v = (0, k1,0, kg — K1). (See Figure 3.3 for the case n = 1). O

3.3 The extension 7 : X — CP!

Regard CP' as C U {co}.

Lemma 3.3.1. 7: X — C extends to a fibration © : X — CP' by adding the
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fiber Xoo = Xoo % {00}, where

Moreover, when the singular fiber Xy is removed, T : X — CP' is trivialized

by a biholomorphic map @ : X\ X — (CP" x cpP™th) x C.

Proof. Let
y = {([[_‘iacbz, xn-{—l]],t/) elF x C ‘ t/(SOxO 4o+ Snwn) — q}

This is a complex manifold that fibers over C as a subbundle of the trivial
bundle F x C — C. The fibers are Yy = Yy x {t'} where
Yy = X, for all t' e C.

t

Let ®, be defined as in (3.6) and let @, : Yy — CP" x CP"** be the map
oo ([, 0, 2, Tnpa )], 0) = ([s0: 2 sl [0 2 -+ 2 T ])-
The bundle Y — C is then trivialized by the biholomorphic map
$:Y — (CP" x CP") x C
given by

o([[s, ¢, 2, Tnsall, ) = (@3, ([[8, ¢, 2, ), 1), ) fort' € C (3.7)
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By identifying the fiber Yy with A’ E for all t' # 0, we get the desired fibration
7+ X — CP" which is a subbundle of the fibration F x CP* — CP'. Note that
the trivialization ® : Y — (CP" x CP"**) x C is a trivialization of X’ with the

singular fiber X removed. O

Remark 3.3.2. The submanifold S defined in (3.3) lies in X and

F\S=(Xo\SU| | X:\S;

teC

see Figures 3.3 and 3.4. Furthermore, just as in (3.4), we see that

is biholomorphic. Here we have extended 7y to mean projection to the first
factor F x CP* — TF. O

v =(0,0,k1,0,0, K2 — K1)
2

Xoo

Figure 3.4: X, in FN (2o = 0)

For each p > 1 we now introduce a 2-form O on X that makes (X, 7, J)
into a Lefschetz fibration. Here J is the complex structure on X coming from
F x CP'. Recall that if k = (k1, ko) lies in the cone Cy, then we have a toric

Kihler structure wg on F. If 4 > 1, then (1, 1) € C; and we define

Q= (mr |)" (Wi ™). (3.8)
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Proposition 3.3.3. Foranyp > 1, (X, 7, J,Q") is a Lefschetz fibration whose
non-singular fibers are symplectically isotopic to (CP™ x CP™™',0,). Moreover,

the map
Bog : (Xoo, W |2,) — (CP™ x CP"* 0,

described by (3.7) is a symplectomorphism.

Proof. Let 1 > 1. First we prove that (X,m,J, Q) is a Lefschetz fibration.

Clearly, Q* is closed. Its restriction to each non-singular fiber Vy is
1,
OH Iyt/:wé* 1) v,

which is symplectic since all the Yy’s are complex submanifolds of F. We
have already shown in Lemma 3.2.1 that 7 has the form (z,.. .y Zopta)
232’2 ij in a neighborhood of the critical point zei. By Remark 3.3.2 and
(3.8), TF |7\ (sxcpt) is @ biholomorphic map that identifies (X \ (S x CPY), Q¥)
and (F \ S,w](Fl’” )). Hence Q* is J-Kahler in a neighborhood of the critical
point. We conclude that (X, , J, *) is a Lefschetz fibration.

It remains to show that the non-singular fibers of (X, m,J, Q") are sym-

plectically isotopic to (CP™ x CP™™ ¢,), i.e., that the forms

oy = (®31)" (W™ |y,) fort' €C

t

are symplectically isotopic to o, for all #. Since all the o are symplectically
isotopic, it suffices to prove it for ¢ = 0. But we have already seen in Lemma

3.1.2 that op = 0, by construction. a
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3.4 The vanishing cycle of (X, ,J, Q")

In order to compute the vanishing cycle of (X, J, ), we need to understand
the connection coming from the two-form Q* in a neighborhood of the node
Zerit. By Remark 3.3.2 and (3.8), 7 |z (sxcp) identifies the neighborhood
(X\ (Sx CP"), Q*) with (F\S, wi). Hence Q* is symplectic on X'\ (S CP")

and we can use the toric structure of F to describe the following Darboux chart:

Lemma 3.4.1. Let
W = {(s,z) € C*"*2 | |s? <1, —=[s]* + |z|* < p— 1},

where (8,2) = (S0, - +» Sny Lo - - - Tn), |8I* = 225 1851* and |z|? = 3, l=5l*

The map

Y W — X0 (g #0) N (Tngr #0)

given by

(8,2) = <[§, VI-lsPoa V=14 sl — [zl SOQEOHJ%S”I”>

defines a Darbouz chart on (X \ (S x CP"), Q") such that 94:(0,0) = Zait-

Proof. As noted in the Remark 3.2.2, Zeri¢ = (2,0) € F x C where

z = [[Q?la_o_a 1]] = [Q,l,Q, VI 1]

By the comments preceding this lemma, it suffices to see that the map ¥f :
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W+ — TF, where

Wh(s,z) = [s,v/1— [sP,z, Viu— 1+ s — |2],

is a Darboux chart on (F N (g # 0) N (Tny1 # 0),w]§«1’“)) centered at z.

We have the following commutative diagram

e 2 wL((1, ) C OO

Ve
F=9"Y((1,m)/T

where ¥ is given by (s,z) — (s,4/1—Is/%z z,\/p—1+|s/?— |z[?). Hence
it suffices to see that W‘ pulls back wezn+e t0 weznt2. But this is clear since

q,Tn+1 € Ron Im(&“), and therefore dq A dg and dz,11 A dZyq1 pull back to

0 under J‘* .
O

Remark 3.4.2. Each vertex of the polytope ALK gives a natural Darboux
chart on (F,wS), and the chart described in Lemma 3.4.1 is the one corre-
sponding to v = (0,1,0,# — 1). By (3.2), an element (&, v,m,Mnt1) of AR

satisfies the equations

I/Zl"Z£ja Mn+1 ZN_1+2(§J_
§=0 J=0

Hence the projection (§,7,1,Mn+1) F (§,m) maps ALK jsomorphically to a
polytope Ad#) in R?"+2. Here the vertex v is mapped to 0. Let Fa@n+1

denote the union of the facets v = 0 and 7,41 = 0 in AW and let Foentt
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be the corresponding facets in AL, If A C2t2 — R?2 is the map
(5,2) = (507, - [8n[% [Z0[2, ..., [zal?), then WH = A7H(AMH \ F2@n+1) and

we have the following commutative diagram:

w

(C2n+2 ) WH A—l(A(l,u) \ Fq,mn+1) C C2n+4

A |

R20+2 ALH) \ Fa@nt1 = AW \ Foentt C R2H

where @Z" is the map described in the proof of Lemma 3.4.1. O

By Lemma 3.4.1, we have a commutative diagram of singular fibrations:

V%

(WH, weans2) X (XN (g #0)N (Tng1 #0),9)
\ . /

where
Soxo + ** + SpTn

Toc (é) g:_) = \/—1—_—‘5‘5

The fiber W} = 7+ (t) in W# is given by

W = {(s,z) € W | fi(s,z) = fa(s,z) = 0},

where

fils,z) = Z@R(Sj)m(%’) — (s5)S(z;)) = R(OV1— sl
fals,z) = Z(%(Sj)m(%') + R(55)S(z;)) — ()1 —[s]*
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Lemma 3.4.3. Consider the fibration mec = WO¢% - W# — C with connection (i
coming from the standard symplectic form wean+2 on WH. Lett > 0. If (s,z) € 1

7=L(t), then (Z,3) lies in horizontal space (T(sqzW{)wint. i

Proof. The horizontal space at (s,z) € W/ is the symplectic complement of i

Tiso)WE in (C*"2, weanta) & (R¥"+4 wran+a). We have that i
T Wt = (span V fi(s,z))* N (span V fo(s, )"

which has symplectic complement M;
(Tap W)t = span{/oVfi(s,z), JoV fals, 2)}-

Hence the horizontal space is spanned by the vectors

S(eo) - RO | [ —R(eo) = SO 2
R(ao) + R(t) A2 S(wo) + S(t) 2
S(an) — ROF2L | | ~Rem) = SO 2
Rian) + RO FEL | | S() + SO 7
S(s0) —R(s0)
R(s0) S(s0)
|
! S(sn) —R(sn)
1 R(sn) S(sn)
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O

Using this, we are able to compute the vanishing cycle of (X, 7, J,QH).

Proposition 3.4.4. Let t > 0. The vanishing cycle of (X, 7, J,Q") in the

fiber X, is isotopic to

vi={(lz V1= 90,z Vi— 1) € X |12 = 90}

where T = (To, ..., Tn) and

—12 4+ /t4 + 4t2

The vanishing cycle in Xo 1 is0topic to
Vi, = {([E,O,L Vi—1,00e Y| |z]*= 1} : |
Proof. For each t > 0, define
L ={(@e) e W" ||z = g()} -

The condition on |z|? ensures that L} C W/'. We claim that parallel transport
along the path v(r) = r for 0 < r < ¢ takes all of L} to the node (0,0) € W¢'.

‘Since LY is diffeomorphic to S*"*! and
V(L) = Vi,

this shows that V}' is the vanishing cycle in AXj.
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Fix t > 0 and let v(r) = r for 0 < r < t. Given (z,z) € LY, define the

path
Fi(r) = hy(r)(@,z), 0<r <t
where
_ [9)
hy(r) = o0

This is a lift of 7; with endpoints (Z, z) and (0,0) and tangents

45 = )@ ).

For all r, 4;(r) € L*, and by Lemma 3.4.3, the horizonal space at ¥:(r) con-

tains d%%(r). Hence parallel transport along 7 takes LY to the node. Since

limy o0 g(t) = 1,

Ve =Vy, = lim VY, = {([E,O,& V=100 €Y ||zl = 1}-
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Chapter 4

Main results and concluding remarks

4.1 Proofs of the main results

We are now in a position to prove the main results described in Chapter 1.

Proof of Theorem 1.0.4. Given u > 1, Proposition 3.3.3 shows that (X, 7, J, Q)

is a Lefschetz fibration with one critical point

Zerit = ([Qv 1797 V= 1]a0) € Xo.

The biholomorphic trivialization ® : X \ Xy :— (CP™ x CP"!) x C defined by

(3.7) induces a symplectomorphism
Doo t (Koo, W |2,) = (CP” x CP™,0,,)
and by Proposition 3.4.4, the vanishing cycle in X, is isotopic to

v = {202 vi—1,0 €Y |laf =1}.
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Under the symplectomorphism @, this corresponds to

Boo(V) ={([To: -+ Tnl, [m0 -+ : @ 1 /= 1]) € CP" X CP" | [z]* = 1},

which is exactly the Lagrangian L* in CP™ x CP™*!, O

Proof of Theorem 1.0.1. Given pu > 1, we consider the Lefschetz fibration
(X, w,J, Q") from Theorem 1.0.4. By Proposition 2.2.3, the monodromy p; :
X, — X, along a positively oriented loop £ in CP' based at co € CP*
and circling 0 exactly once is symplectically isotopic to the Dehn twist me
along the vanishing cycle V% . Since the fibration has only one singular fiber,
by Proposition 2.2.3 p; is symplectically isotopic to the identity through an
isotopy that arises from deforming the loop ¢ to the constant loop based at
infinity in CP'. Hence we have an isotopy (¢x)o<a<i Of Xo such that ¢
equals 7y and (g is the identity. Recall that each fiber of X contains the
hypersurface S x {t}, with S defined in (3.3). Parallel transport in (X, 7, J, Q*)
along a path in CP* from ¢, to t, takes any point (z,t,) € S x {t1} C X, to
(z,t2) € S x {tz} C X4,. Hence () restricts to the identity on S x {co} for all

A. Observe that S = @, (S x {oo}) and that by property 3 of Theorem 1.0.4
Tre = P O Tyu O q)gol.

Hence @, 0 0y 0 @}, 0 < X < 1, is the desired isotopy of 7. O
Under the projection to the first factor, the complex hypersurface S in

CP™ x CP™"! is a CP"-bundle over CP". The fibers are linearly embedded
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copies of CP" in CP""!. As before, let

So = CP"x{[0:---:0:1]}

Soo = {<[80:".:87’L]7[x0:x1:O:"‘:O])|80$0+81:L'1:O};

these are sections of S. If n = 1, S is a Hirzebruch surface, Sy is the small
section (with negative self-intersection), and S, is the large section (with
positive self-intersection). As stated in Corollary 1.0.2, if we symplectically
blow up CP" x CP"** along Sy and S, then as long as the blow-ups are small,
the isotopy of the Dehn twist 7. remains. On the other hand, Proposition
1.0.3 (which is a consequence of the proof of [CS05, Proposition 2]) shows
that an isotopy cannot fix the submanifolds Sy and S._. Figure 4.1 illustrates
how the submanifolds Sy, S, and S/, lie inside the polytope representing
(CP' x CP?,0,).

Figure 4.1: Polytope representing (CP' x CP?,4,,)

Before proving Corollary 1.0.2 and Proposition 1.0.3, we review the sym-
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plectic blow-up construction as described in [MS98, Chapter 7]. First we con-
sider the blow-up at the origin in CV. Roughly speaking, a symplectic blow-up
CY is obtained by removing the interior of a (real) 2N-dimensional ball B and
then collapsing the boundary B 22 S?N~! by the Hopf map S?V-! — CPN 1,
The resulting copy of CPY~! in CV is called the exceptional divisor and the
size of the blow-up is the radius of the ball B. Let £ be the tautological line

bundle over CPV 71 i.e., the total space of £ is given by
L={{(z,...,2x5),[w1,...,wy]) € CY x CP"™! | w;z, = wyz; for all j,k}.

Let prey : £ — CN and prepy—1 : £ — CPY™! be the natural projections. For

each A > 0 the 2-form
wp = prn (wen) + A?pripy—1 (ocpn-1)

is symplectic. For all § > 0, let £(6) = prgy (B(6)), where B(6) is the ball of
radius § in CV. Note that £(0) is the zero section in £. By [MS98, Lemma
7.11], for all A\, > 0 (£(d) — £(0),w?) is symplectomorphic to the spherical
shell (B(v/A2 + 62) — B(\),wen). The blow-up CV of 0 in CV of size X is ob-
tained by replacing the interior of the ball B(v/A2 4 62) in CY with £(6). Thus,
we have replaced the ball B(\) in CN with the zero section £(0) & CPN™!,
the exceptional divisor in CVN. The manifold CV has a natural symplectic
structure that is independent of the choice of § > 0.

If (M?N,w) is a symplectic manifold and we have a symplectic embedding

of the ball B(\) C C¥ into M, then we can blow up M by extending the
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embedding to a ball B(A + ¢) for some ¢ > 0 and then doing the above

construction for some § > 0 with v/ A2+ 62 — A < &. One can show that the
symplectomorphism class of the resulting manifold only depends on the choice
of A.

If @) is a compact symplectic submanifold in a symplectic manifold (M, w),
then w can be written in a standard form in a neighborhood of @). Details
can be found in [MS98, p. 249-251]. Suppose @ has codimension 2N and let
vgm be the normal bundle of @ in M. Then vgy has the structure of a 2N-
dimensional symplectic vector bundle with a compatible complex structure J.
It is associated to a principal U(N)-bundle P, i.e., vgn = P Xy CV. This

bundle has a symplectic form
W' =a+mHwle), (4.1)

where g @ vg — @ is the natural projection and « is a closed 2-form
on vgu that restricts to the standard symplectic form on the fibers CV. A
small neighborhood of @) in (M,w) is symplectomorphic to the disk bundle
yng = P xy) B(e) with symplectic form ' for some € > 0. Using the
standard form of the symplectic structure near @, we can define small blow-
ups of Q in M. If X < ¢, then the size A blow-up of @ in M is simply the result
of blowing up the origin in the fiber B(e), i.e. if B (¢) is the size A blow-up of
the origin in B(e), then the size A blow-up of Q) in M is obtained by removing
a neighborhood of ) and glueing in the manifold P xy ) B (¢) in the obvious

way.

Proof of Corollary 1.0.2. Under the trivialization ® of (X, , J, 2*) defined in
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(3.7), the section Sy in CP™ x CP™™ corresponds to

So={[s,¢,2,2n11] €F | ¢ =0, z =0}

Let Q =S, x CP.
For all t € CP', the fiber X; of 7 : X — CP! contains Sy x {t} as a

symplectic submanifold and the diagram

X X CP*

So X {t} — Q — CP!

commutes. It follows that the normal bundle of @ in X' can be obtained by
glueing the normal bundles of Sg & Sy x {t} in X; & X, for all t € CP'. Now
let % denote a small symplectic blow-up of @ in X in the neighborhood of Q
on which (©2*)" has the standard form (4.1). Then each fiber in X is of the
form X’t x {t}, where )?t is the blow-up of Sy in X;. Hence the isotopy of 77
lifts to the blow-up of Sy in CP™ x CP™*!.

To see that we can blow up Sy, in CP" x CP" !, we repeat this construction

with Sy replaced by
Seo = {[8,0,2,0] € F | z; =0 for j € {2,...,n}, sozo + 8171 = 0}

and @ by the complex submanifold S, x CP! in X. O

Proof of Proposition 1.0.8. Assume we have an isotopy (¢ )o<a<: such that

¢1 = e and ) restricts to the identity on Sp U S/, for all \. We can then
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deform (¢a)o<r<1 to a homotopy (@x)o<a<1 from 7z to the identity such that

each ¢, fixes the neighborhoods

N(SO) = (CIPm X B(Eap0> ) SO)
N(SL) = CP"x B(e,ps) D S,

where B(e,p) denotes an embedded size € (real) (2n+2)-ball in CP™* centered
at p = Po, Poo- We show that this leads a to a contradiction as follows. Follow-
ing [Gom95, p. 534-535], we create a new smooth manifold M by performing a
smooth surgery on CP™ x CP™™ that takes place in the neighborhoods N (S)
and N (Sx). In the manifold M, the Dehn twist corresponds to a diffeo-
morphism that acts non-trivially on homology but is also homotopic to the
identity. This is a contradiction.

Choose a diffeomorphism ¢ : B(§) \ {0} — B(5) \ {0} of the punctured

(2n 4 2)-ball that turns it smoothly inside out, e.g.,

QS:ZHz\/Hj—z——l.

Let @RH be the manifold obtained by removing the points py and p., from
CP™! and identifying the open sets B(Z,po) \ {po} and B(5,pe0) \ {Poo} via
the map ¢. Let

M=CP"x CP"".

Since the surgery took place on neighborhoods on which the Dehn twist 77, and
the homotopy (©x)o<a<1 restrict to the identity, 77, induces a diffeomorphism

71, of M homotopic to the identity. The manifold M contains a (2n + 1)-cycle
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C with non-trivial intersection with L. Indeed, let

D= {[wo:0:-+:0:+n—xo) € CP"™ | 25 € [0, u]}

be the image of a path from py to pe in CP"™. Then CP" x I gives rise to
a (2n + 1)-cycle C in M that intersects the Lagrangian (2n + 1)-sphere L*

exactly once, namely at the point
(1:0---:0],[1:0:-+-:0:4/u—1]) € M,

and the intersection is transverse. In particular, L represents a non-trivial
element in the homology of M. By [STO01, (1.5)], the Dehn twist 7;, acts on
the homology class of C by adding the homology class of L to it. See also
Figure 2.1. O

4.2 Concluding remarks

We end this dissertation, by returning once again to the Symplectic Isotopy
Problem described in Chapter 1, with a view to finding symplectic manifolds
admitting essential symplectomorphisms in dimension 6 and above.

Based on the results of this dissertation, one might hope to construct ex-
amples in which an isotopy similar to that of Theorem 1.0.1 does not exist. Of
course, even if this is the case, one cannot deduce that no symplectic isotopy
exists; for this, one would need to use other techniques such as computing Floer

homology. Nevertheless, such examples do provide good candidates for con-
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structions of symplectic manifolds admitting essential symplectomorphisms.

Note first that the construction of Theorem 1.0.4 does not immediately
generalize to other examples. One natural attempt is to construct a fibration
where the non-singular fiber is a non-trivial CP"-bundle over CP"*!. Here the
natural toric manifold to consider is ' = C?"*4//,(C*)2, where the action of

(C*)% on C?* has weights

m n+l—m n+2
7\ o\ N

(1---11.--110---())
1 .- 10 011 -+ 1

and the linearization « is in the same chamber (see Figure 3.1) as that used

to construct F (this makes sense since the effective cone and its chambers
are unchanged). The complex submanifold ¢ = 0 in F’ (where once again
(8,9, %, Tns1) are the coordinates on C*"**) is the projectivization of the com-
plex (n + 1)-bundle

m n+l—m
7\

oMe 001 e0a---®&0

over CP"*!, i.e., it is a CP"-bundle over CP"**. But now there is no longer an
obvious way to get a Lefschetz fibration X' — CP' with exactly one singular
fiber. For example, consider the complex submanifold X’ in F' x C given by

the (C*)*-invariant equation

m—1 n
s; + E ST = 1q,
7=0 l=m




where ¢ denotes the coordinate on C as before. Then the holomorphic fibration

X' — C does not have an ordinary double point since the equation cutting
out X’ has linear terms.

For non-trivial CP"*!-bundles over CP", the construction of Theorem 1.0.4
also seems unlikely to work. If we consider the (C*)2-action on C*"** with
weights

n+l m n+2—m
7\ 7\ I N

(1...111...10...0>
O -+~ 011 - 11 - 1

then in order to ensure that the submanifold ¢ = 0 of the resulting toric

manifold F” is a CP""-bundle over CP", we have to pick the linearization in
the chamber C; of Figure 3.1. Once again there is no natural way to cut out
a hypersurface of " x C that fibers over C in the desired way.

Based on Proposition 1.0.3 it seems likely that the isotopy of 77+ in CP" x
CP™™ does not lift to the blow-up of Sy and S/, in CP* x CP™!. This
does not imply that the Dehn twist 7. is essential, as it may not even be
smoothly isotopic to the identity, and as mentioned earlier one would also
have to prove that no symplectic isotopies exist. An alternative approach to
destroying the isotopy of Theorem 1.0.1 would be to perform a large blow-up
of the submanifolds Sy and S of Corollary 1.0.2. It would be interesting
to estimate the bounds of the size of the blow-ups allowed for the isotopy to

persist and to see what happens when we exceed the bounds.
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