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Abstract of the Dissertation

Einstein Metrics on Non-Simply-Connected
4-Manifolds

i by

-[ Ioana Suvaina

Doctor of Philosophy

in
Mathematics i
Stony Brook University

2006

The main part of the thesis involves Einstein metrics on non-simply

connected 4-manifolds. In dimension four there is a strong inter- »
play between the Riemannian structure and symplectic or complex
structures. We construct infinitely many topological four spaces
: which support a differential structure which admits an Einstein
metric and infinitely many other structures without Einstein met-
rics. This result is known for simply connected manifolds, our con-
tribution is to exhibit a similar behavior on no-spin manifolds with

finite cyclic fundamental group. We complement this result with

theorems about non-existence of Einstein metrics on spin mani-
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folds with finite cyclic fundamental group and on non-spin mani-
folds with finitely presented fundamental group. The main tools
are Seiberg-Witten Theory, cyclic coverings of complex surfaces

and symplectic surgeries.

Finally, we conclude that certain connected sums of projective

planes and projective planes with orientation reversed do not admit

. Einstein metrics which are invariant under an exotic involution.

In the second part we are analyzing the following question: if we
start with a Kéhler manifold and we do a symplectic surgery (the

rational blow-down), when does the new manifold admit a complex

structure? We give a sufficient condition to have a positive answer.

, We discuss some significant examples.
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Chapter 1

Introduction

In 1958 René Thom posed the following question:

"Are there any best (or distinguished) Riemannian structures on a
G -differentiable manifold M of dimension n?”

For n = 2 or 3 there is a consensus that a metric of constant sectional
curvature should be considered the "best metric”. In the case n = 4 the prob-
lem becomes more complex. First, we analyze the geometry of four manifolds.
Let (M, g) be an oriented Riemannian 4-manifold. Using g, we can define the

Hodge star operator:

%1 AT — A2

This operator has the property that * = 4d, and so ylelds a decomposition:
A*=AT @A (1.1)

where A* is the (41)-eigenspace of *. Let’s assume that (M, g) is a compact
oriented Riemannian 4-manifold. The Hodge Theorem tells us that in each de

Rham class there is a unique harmonic representative, which can be written
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as a sum of a positive, respectively negative, eigen-vector with respect to *.

Therefore we have a direct sum decomposition of the second cohomology:
H*(M,R) = H} & H;

where H¥ = {3 € [I(A%)] d¢p = 0}. The intersection form on HA3 (M, R)
restricted to H; is positive definite, and negative definite when restricted to
H; . Let b5 (M) = dimHF. On an oriented 4-manifold (M, g) we can define an
invariant, the signature, 7(M) = bf — b;. From the definition of b. it might
seem that the signature is dependent on the metric, but b} is determined
as the the dimension of the largest linear subspace of H 2(M,R) where the
intersection form is positive, respectively negative, definite. Therefore (M)
is an oriented homotopy invariant.

A second homotopy invariant thé.t we need to consider is the Euler char-
acteristic x(M).

By raising an index, the Riemann curvature tensor may be viewed as a
linear map R : A? — A?, called the curvature operator. Then, with respect to

the decomposition (1.1) R splits into:

( )

W+ 35

~=o

=o

W™+ 5




Here s and T are the scalar curvature and trace-free Ricel, respectively. Wy
are called the self-dual and anti-self-dual Weyl curvatures.

One of the canonical metrics in dimension 4 is the Einstein metric. A
smooth Riemannian 4-manifold (M, g) is said to be Einstein if its Ricci cur-
vature, considered as a function on the unit tangent bundle of M, is constant.

This is equivalent {Bes87] to saying that g satisfies

s
r=49 (1.2)

The decomposition of the Ricci-curvature and the above equation implies that

7= 0.

M

On 4-manifolds there is a strong interplay between the topology of the
manifold and the geometric structures. Indeed both the Euler characteristic
x(X) and the signature 7( X} can be related to the L2-norms of the components
of the curvature for any metric g.

For the Euler characteristic we have a generalized Gauss-Bonnet-type for-

mula;

s +2 -2 |7(3|2
g TIWHE + WP == duy, (1.3)

x(X)=$/M 5

while for the signature 7 the Hirzebruch Signature Theorem tells us that:

") = 5 [ W= P, (140
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We can combine these to obtain:

g2 72 2
51+ AW — u} disg. (1.5)

x£300) = 73 [ |3 .

This gives us the classical obstruction to the existence of Einstein metrics on

a 4-manifold:

Theorem 1.0.1 (Hitchin-Thorpe Inequality). If the smooth compact ori-

ented 4-manifold M admits an Einstein metric g, then

with equality if (M, g) is finitely covered by a flat 4-torus T or by K3 with o

hyper-Kihler metric, Moreover, (M, g) must also satisfy

and this inequality is strict unless (M, g) is finitely covered by o flat 4-torus

T or by the orientation-reversed version of K3 with o hyper-Kéhler metric.

This obstruction to the existence of Einstein metrics is homotopy invariant.
Using curvature estimates which are deduced from Seiberg-Witten equations,
LeBrun [LeB96, LeB97, LeB01] and later, Ishida and LeBrun [IsLe02] were
able to find obstructions of the differential structures. A short description of
these results is presented in Sec.2. Using these obstructions, Kotschick and his
co-authors, and LeBrun were able to construct distinct differential structures

on given topological spaces, such that one structure admits an Einstein metric,

4




while the others don’t. Their results are on simply-connected manifolds. Qur
contribution is to prove them for manifolds with finite cyclic fundamental
group.

'The statements of the main theorems are presented in Section 7. In Sec-
tion 2 we introduce the main results on Seiberg-Witten theory, the induced
obstructions and an existence theorem of Kahler-Einstein metrics. The back-
ground statements about the topology of non-simply connected 4-manifolds
are given in Section 3. In the next sections 4, 5 and 6 we present the main
constructions,

While working on this problem, I came across some interesting results with
slightly different flavor. Joint with Rasdeaconu, we found a sufficient condition

when symplectic surgeries (rational blow downs) can be described as complex

operations,




Chapter 2

Einstein metrics: existence and obstructions

to existence

The work of Freedman, Donaldson and others on the topology of 4-manifolds
gives us a complete classification of simply connected topological 4-spaces.
The nexi brake-through in the study of 4-manifolds was done by the use of
Gauge theories, Donaldson’s polynomials and later Seiberg-Witten invariant,
They provided tools to distinguish the differential structures. Later on, they
were also used to obtain obstructions on the existence of certain canonical
Riemannian metrics or to the computation of metric invariants, for example

the Yamabe invariant,

2.1 Seiberg-Witten invariants and properties

In this section we introduce the Seiberg- Witten invariant of a smooth, closed,
oriented 4-manifold X. We briefly present the main ingredients, and outline the
most important results of the theory. We refer the reader to [LaMi89, Tau94,

Wit94] and others for more details and the proofs. We follow the exposition
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given by LeBrun in [LeB02].

Let L be a Hermitian line bundle Z — X such that ¢; (L) = w,(TX) mod
2. For any such L and Riemannian metric ¢ on X we can define a rank-2

Hermitian vector bundles V.. which formally satisfy

V:]:=S:;:®Ll/2—>X,

where S;. are the locally defined left- /right-handed spinor bundles of (X, g). |
V4 is completely determined, up to isomorphism, by ¢, (L) = ¢, (Vi) € H*(X,Z) |
if H1{X,Z) does not contain any elements of order 2. This is called the Spint- i
structure given by ¢ = ¢; (L) on X, '

If our manifold is endowed with an almost-complex structure, then there
is a can;mical way to define a Spin®-structure. Let J : TM = T'M, J? = —1 Jl
be an almost complex structure. This induces a natural decomposition of E
TM®C =TYWHTO as the (£2) eigen-spaces of J. Setting A% = APTLO the

bundles Vi are given by:

V+ — A0,0 @AO’Q, VH — AU,l‘

The group H*(X,Z) acts on the set of Spin°-structures by tensoring the spinor
bundles with the complex line bundle whose first Chern class is the given
clement in the cohomology. This action is free and transitive. Modulo this ‘
action, the Spin®-structures correspond [L.aMi89] one-to-one with elements of

HY(X,Zy). In the case when this cohomology is non-zero, we can fix a class |

and consider the Spin‘-structures corresponding to this class.




Every unitary connection A on L induces a connection:
Va: (V) = T(A' ® V),
which in its turn induces a Spin® Dirac operator LaMig9, Hit74]:
Dy:T(Vy) - TV,
We are now ready to introduce the Seiberg- Witten Lquations:

D@ = 0 (2.1)

Ff = io(®). (2.2)

where & € I'(Vy), Fif is the self-dual part of the curvature of A, and where

oV — A% is a natural real-quadratic map satisfying

|o(@)] =

1 2
57520

We are interested in the Spin® classes for which these equations have non-
P

trivial solution. We introduce a new definition to describe this property:

Deflnition 1. Let X be a smooth compact oriented 4-manifold with b > 1.
Let I be a Spin-structure for which the corresponding Setberg- Witten equa-
tions (2.1) and (2.2) have o solution for every Riemannian metric g on X

then the class

a € HYX,Z)/torsion, a = c;(L) mod torsion

8




is called a monopole class.

Curvature estimates, for example see [LeBO01], imply that the set of mono-
pole classes is finite. Using the monopole classes we can define a new invariant

of a smooth 4-manifold:

Definition 2. Let X be a smooth compact oriented 4-manifold with b3 > 1.
Let C ¢ H*(X,Z)/torsion be the set of monopole classes of X. If C contains

a non-zero element we define the bandwidth of X to be
BW(X)=mar{n€Zs |Ta,beC, a#b, st 2n|(a—b) ).

If C C {0}, we define the bandwidth BW{X) = 0.

Note that as both @ and b are monopole classes it follows that
a—b=0mod 2, so (a — b) is divisible by 2, hence the 2n in the definition.
To be able to define the moduli space of solutions we need to consider a

generic perturbation of these equations given by:

Ds® = 0 (2.3)

iFf +a(®) = ¢ (2.4)

where ¢ is a smooth self-dual 2-form.

For a given metric g on X, a Spin® class L and a perturbation ¢ we define
M?%(g) the moduli space of solutions of the perturbed equations. For a generic
metric and perturbation this moduli space [Wit94] is a closed, orientable man-

ifold of dimension dimM§$(g) = 3(L? — (2x(X) + 37(X))).

9




A menifold X is said to be of simple type if each monopole class satisfies
the equation I* = 2x(X) 4 3r(X). There is no known example of a simply
connected manifold with 65 > 1 which is not of simple type; for example the
existence of a symplectic structure implies that the manifold has simple type.

We can now introduce an invariant of the smooth oriented 4-manifold of

simple type with 6] > 1 and the Spin-structures L

Definition 3. The Seiberg-Witten invariant SWx(L) € Z is given by the

number of points of M%(g) counted with orientations.

An important feature of this invariant is that it is o diffeomorphism invari-
ant, i.e. SWx(L) does not depend on the chosen metric g or perturbation ¢.
Moreover, for an orientation preserving diffeomorphism f : X — X’ we have
SWix (L) = £{(SWx: (F*(L)).

In the rest of this section we state the main properties of this invariant,

Theorem 2.1.1 (Non-vanishing). [Tau94]

(1) If S is a simply connected complezx surface (hence b3 (S) is odd) and
by (S) > 1, then SWe(£e1(S)) # 0.

(ii) More generally, if (X,w) is a simply connected symplectic manifold and

by (X} > 1, then SWe(£e (X, w)) = £1,

However, for a large class of manifolds which decompose as connected surns

this invariant is trivial.

Theorem 2.1.2 (Vanishing). [GoSt99] Suppose that X is a smooth, closed,
oriented, simply connected 4-manifold with by > 1 and odd.

10




(1) IfX == Xl#Xg and bél—(Xg‘) >0 (Z = 1, 2), then SWX = (.
(i) If X admits a metric with positive scolar curvature, then S Wx =0.

It is important to note that in special cases we can have a nontrivial in-

variant:

Theorem 2.1.3 (Kotschick, Morgan, Taubes). [KMT95] Let Y be a man-

ifold with a non-trivial Seiberg-Witten invariant, e.g. a symplectic manifold
with b > 1, and let N be a manifold with by(N) = b} = 0 whose fundamen-
tal group has o nontrivial finite quotient. Then X = Y 4N has non-trivial

Seiberg- Witten invariant but does not admit any symplectic structure.

Moreover if by(N) = 0 the Spin‘-structure ¢ on X for which the Seiberg-
Witten equations have non-trivial solution is given by c = (V). If
bo(IN) # 0, let ey, ..., e, € H2(N,Z) descending to a basis of H2(N, Z) /torsion
with respect to which the cup product form is diagonal. Let ¢y = 2e; such
that ¢ = wy mod 2. For any b monopole class of V then ¢ = b + oy is a

monopole class of X.

2.2 Obstructions to the existence of Einstein
metrics

If we require that our manifold supports a symplectic structure, or that it
has non-trivial Seiberg-Witten invariant, then we have new restrictions on the

curvature. For the operator Dy, defined in the previous section,we have an

11




associated Weitzenbdck formula:
(B, DEDAD) = AL + V407 + 2|0P +2-iFf,0(@)  (25)
In conjunction with the Seiberg-Witten equations this implies:
0=2A|8) +4|VA4®|* + 5|D)* + |} (2.6)

We can immediately conclude that if a manifold has non-trivial Seiberg-Witten
invariant, then it admits no metric g with s > 0.

It was LeBrun’s clever use of Seiberg-Witten equations that save better
estimates for the different components of the curvature operator which led
to new obstructions. The novelty of these obstructions is that they impose
restrictions on the differential structure of the manifold. The results developed

in a sequence of papers. We refer to [LeB01] for the proof of the theorem

presented in here and also for additional references.

Theorem 2.2.1. [LeBO01] Let X be a compact oriented 4-manifold with a non-
trivial Seiberg- Witlen invariant and with (2x + 37)(X) > 0. Then

M = X#kCP2#1(5* x §%)
does mot admit Einstein metrics if k + 41 > 1(2x + 37)(X).

By Theorem 2.1.1 the Seiberg-Witten invariant vanishes for manifolds
which decompose as connected sums of manifolds with positive 63, so this

theorem does not apply. Independently of one another Bauer and Furuta were

12




able to define a refinement of this invariant which behaves nicely under the

connected sum. Using similar estimates and this new invariant Ishida and

LeBrun were able to prove:

Theorem 2.2.2, [IsLe02] Let X, 7 = 1,...,4 be smooth, compact almost-

complex 4-manifolds for which the mod-2 Seiberg- Witten invariant is nom-2ero,

and suppose that

bh(X;) = 0, (2.7)
by (X;) = 3mod4, (2.8)
Soib5(X;) = 4mods8. (2.9)

Let N be any oriented 4-manifold with bf = 0. Then, for any m = 2,3 or 4,

the smooth 4-manifold M = #72 \ X;#N does not admit Einstein metrics if

dm — (2x + 37)(N) > Z d(x,).

L3 =

2.3 Examples of Einstein metrics

The simplest examples of Einstein metrics are the metrics of constant sectional
curvature. A much larger family of Einstein metrics is given by metrics which
are compatible with an extra structure, such as a complex structure. For more
details about this topic we refer the interested reader to [Bes87].

Let (M, J) be a complex manifold. A metric g is compatible to the complex

13




structure J if and only if J is an orthogonal transformation with respect to g

g(') ) = g(J,J)

We say that a complex n-manifold (M, ¢, J) is Kéhlerif g is J -compatible,
and the associated 2-form w(-, ) = g(., J-) is d-closed.

In a similar way, we can define the Ricci form oly) =7r(, I,

Definition 4. A Kdhler manifold (M, g,.J) is called Khler-Einstein if:

p= Aw.

It is immediate from our definitions that a K&hler-Einstein metric is in
particular Kinstein.
An important fact about the complex manifolds is the relation between

their first Chern class and the Ricei form:

Proposition 2.3.1. Let (M, g,J) o Kdhler manifold then.:

e (M) = [%p} € I(M, 7).

The case that it i interesting from our point of view is that of a Kihler-
Einstein 4-manifolds with b5 > 1. In this case we must have by (2.6) ) < 0.
Then the existence of a Kahler-Einstein metric implies that Ky is a positive
line bundle, and the Kodaira embedding theorem tells us that X w18 ample
meaning sections of a sufficiently large power of the canonical bundle give a

holomorphic embedding of the manifold.

14




The amazing fact is that this condition is also sufficient:

Theorem 2.3.2 (Aubin/Yau). [Yau77] A compact complex manifold (M, J)

admits a compatible Kdihler-Einstein metric with s < 0 if and only if its canon-
ical line bundle Ky is ample. When such metric exists, it 1 unique, up to

homotheties.

15




Chapter 3

Background on the topology of 4-manifolds

In this section we introduce some extra topological tools. First, we give a
homeomorphism criteria for non-simply connected 4-manifolds, then we in-
troduce some results about the decomposition of manifolds. We finish by

exhibiting a certain class of compact non-simply connected manifolds whose

rational homology is that of a sphere.

3.1 Homeomorphism criteria

A remarkable result of Freedman [Fre82] in conjunction with results of Donald-
son tells us that smooth compact, simply connected, oriented 4-manifolds are
classified by their numerical invariants: Euler characteristic X, signature 7 and
Stiefel-Whitney class wy. Maybe not as well-known are the results involving

the classification of non-simply connected 4-manifolds ([HaKr93], Theorem

Cy:

Theorem 3.1.1 (Hambleton, Kreck). Let M be a smooth, closed, ori-

ented, 4-manifold with finite cyclic fundamental group. Then M is classified

16




up to homeomorphism by the fundamental group, the intersection form on
Hy(M,Z)/Tors, and the wo-type. Moreover, any isometry of the intersection

form can be realized by a homeomorphism.

In contrast with simply connected manifolds, there are three wo-types that
can be exhibit: (I) wy(M) # 0, (IT) we(M) = 0, and (IIL) wy(3F) - 0, but
wa(M) # 0.

Using Donaldson’s and Minkowski-Hasse’s classification of the intersection
form we can reformulate this theorem on an easier form:

Equivalently: A smooth, closed, oriented 4-manifold with finite cyclic
fundamental group and indefinite intersection form is classified up to homeo-
morphism by the fundamental group, the numbers b, the parity of the inter-
section form and the wy-type.

However, knowing the Euler characteristic X and signature 7 of a 4-manifold

with finite fundamental group, is equivalent to knowing the invariants bah.

3.2  Almost complete decomposability

Ireedman’s results tell us that any non-spin simply connected 4-manifold is
homeomorphic to aCP?#bCP?, for appropriate positive integers ¢, b. In Sec-
tion 2.1 we introduced techniques which distinguish between the differential
structures. The next question that we have to ask is when two homeomorphic
manifolds are diffeomorphic. Spaces which decompose as connected sums of
manifolds with positive b have trivial Seiberg-Witten invariants, by the Van-

ishing Theorem 2.1.2. On the other hand the Non-Vanishing Theorem tells us

that symplectic 4-manifolds and complex surfaces have non-trivial invariants.

17
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Hence symplectic 4-manifolds and complex surfaces are not diffeornorphic to

manifolds of type aCP2#bCP2. So, it is reasonable to introduce the following

definitions:

Definition 5. We say a smooth non-spin 4-manifold M is completely decom-

posable if it 1s diffeomorphic to a connected sum of CIP? ‘s and CP2%s.

Definition 6. We say M is almost completely decomposable if M4CPF? s

completely decomposable.

To see the relevance of the last definition we want to point out that if M is a
symplectic 4-manifold then M#CP? has trivial Seiberg-Witten invariants, so it
is not meaningless to ask if it decomposes completely. It has been conjectured
by Mandelbaum [Ma80] that simply connected analytic surfaces are almost

completely decomposable. In support of this conjecture he gives the following

arguments:

Proposition 3.2.1. [Ma80] Every simply connected complex surface which
is diffeomorphic to a complete intersection of hypersurfaces in some CPV g

almost completely decomposable.

Proposition 3.2.2. [Ma80] Let X C CPPN be a compact complex surface and
suppose M — X is an r-fold cyclic branched cover manifold of X whose
branch locus is homeomorphic to X N H,, for some hypersurface H, of degree

r of CPY. Then if X is almost completely decomposable so is M,

For a definition of a r-fold cyclic cover see the next section.

18
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3.3 Rational homology spheres

In the following we give a construction of compact oriented 4-manifolds whose

il
rational homologies are those of a sphere and their fundamental group is a Igi|

finite cyclic group. We learned this construction from [Ue986].
Let 5% C C* be the unit sphere , then there is a free Zy-action on S°

generated by (z,w) — (e¥/4z, e74/%y), The quotient space is denoted L(d, q)

and it’s called a lens space.

Let S = (L{d,q) \ D*) x 8 Uyq 5% x D?, where D' is a small ball of

corresponding dimension. Then we have: !

Lemma 3.3.1. [Ue96] The diffeomorphism type of S does not depend on q it
depends only on d. S is a rational homology 4-sphere with fundamental group

71(S) = Zq, and its universal covering is diffeomorphic to (d-1)5? x 82,

We denote by Sy the manifold constructed from L(d, q).

19 |




Chapter 4

Finite covers of complex manifolds

One technique which yields a large family of examples of complex manifolds
is the construction of finite covers. The work of Catanese on complex surfaces
[Cat92, Cat84] exhibits the abundance of these varieties in the geography of
compler:c surfaces and also gives a rich class of exarples for which the properties
of complex surfaces and their moduli spaces can be studied. For a background
exposifion of the constructions presented in this chapter we refer the reader
to [BPV84] for an algebraic geometric point of view, or to [GoSt99] for a more

topological description.

Definition 7. A (non-singular) d-fold branched cover consists of a triplet
(X,Y,m), denoted by w : X — 'Y, where X,Y are connected compact smooth
complex: manifold and 7 o finite, generically d : 1, surjective proper holomor-

phic map.

The critical set, R C X, is called the ramification divisor of 7 and its
image D = w(R) is called the branch locus. For any point y € Y\ D there

is a connected neighborhood V,, with the property that 7#1(V,) consists of d

20




disjoint subsets of X, each of which is mapped isomorphically onto Vy by .
For each p € R there are appropriate local coordinate charts such that the
map 7 is {z,%) — (2™, ), where R = (z = 0) and m is called the local degree.

One special class of covers are the eyclic covers,

4.1 Cyclic covers

A cyclic branched cover is a d-fold cover such that mx\g: X\R— Y\ Disa
(regular) cyclic covering. So, it is determined by a epimorphism (Y \ D) —
Zg, and Y = X/Z4. Moreover, a cyclic d-cover is a Galois covering, meaning
that the function field embedding C(Y) € C(X) induced by 7 is a Galois
extensiQH.

We have the following construction:

Construction 1. : LetY be a connected complez manifold and D an effective
dwisor on'Y, O(D) the associated line bundle and let sp € I'(Y, Oy (D)) the
section vanishing exactly along D. Suppose we have a line bundle £ on'Y such
that Oy (D) = LB, We denote by L the total space of £ and we letp: I, — Y
be the bundle projection. If z € I'(L,p*L) is the tautological section, then
the zero divisor of p*sp — 2% defines an anolytical subspace X in L. If D is
a smooth divisor then X is smooth connected manifold and © = p|x exhibits
X as a d-fold ramified cover of Y with branch locus D. We call (X,Y, ) the
d-cyclic cover of Y branch along D, determined by L.

Given D and Y, X is uniquely determined by a choice of £. Hence X is

unique if Pic(Y") has no torsion.

21
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‘T'he following lemmas give us the main relations between the two manifolds:

Lemma 4.1.1. [BPV84] Let 7 : X —» Y be a d-cyclic cover of Y branched
along a smooth divisor D and determined by L, where L84 = Oy (D). Let R
be the reduced divisor n7 (D) on X. Then:

(i) Ox(R) =wn*L;
(ii) 7*[D] = d[R], in particular d is the branching order along R;
(iil) Kx = 7*(Ky ® £371),

Lemma 4.1.2. [BPV84] Let w: X — Y be as in Lemma 4.1.1. Then

d—1
1 Ox =~ @E‘”.
i=0
As an immediate consequence, we are able to compute the relations between

the topological invariants of X and Y in the case of complex surfaces:

Lemma 4.1.3. Let X,Y complexr surfaces and 7 : X — Y be as in Lemma

4.1.1. Then:
(1) ea(X) = dex(Y) — (d — L)x(D);
(if) ei{X) = d(es(Y) — (d ~ 1)es(£))”
Moreover, since 6(X) = 3(3(X) — 2x(X)), we have o(X) = do(¥) — &=L D2,

In a more general set-up, we can define a d-cyclic branch cover 7 : X —

Y Dbranched along a divisor with simple normal crossing singularities and Y
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smooth manifold. In this case, X will be a normal complex space ([BPV84]
[.17.) with singularities over singular points of D.

Next, we analyze the double cover m : X -» Y branched along a divisor
D with simple normal crogsing singularities. Let I/ C Ya neighborhood of a
singular point of D and (z,y) local coordinates such that D is defined by the
equation zy = 0. Then X is a normal surface with isolated singularities over
the singularities of D, and an open neighborhood of each of the singularities
in local coordinates is modeled by 22 = zy C C®. There are two techniques to
associate a smooth manifold to X. One is given by resolving the singularities,
the other is smoothing.

Given a normal surface X there is always a bi-meromorphic map 7 : X’ —
X, Wi’gh X' smooth. Even more, if we require that X’ is a minimal surface,
then X’ is uniquely determined by X (see for instance [BPV&4] Theorems 6.1,

6.2), 7 X' — X is called the minirmnal resolution of singularities of X.

Definition 8. A smoothing of o normal surface X is o proper flat map
[ X — A smooth over A* = A\ 0 where: X is a three dimensional complex

manifold, A is a small open disk in C centered at 0 and f~1(0) is isomorphic

to X.

If t, ¢ € A* then f~!(¢) is diffeomorphic to f~1(#'). An even stronger result

is true;

Proposition 4.1.4, If m : X — Y is a double cover branched along a divi-
sor L with simple normal crossing singularities, such that the linear system

P(H®(Y,O(D))) is base point free. Then, there is a smoothing w: X — A of
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X such that the generic Xy = w™'(t) is diffeomorphic to the minimal resolu-

tion X' of X.

Proof. First, we remark that X has a finite number of singular points, corre-
sponding to the singular points of D. Resolving these singularities is a local
process. ‘The singularity, modeled by (2% = zy) C €2, is a quotient singularity.
It is isomorphic to C?/Z,, where the Zy action is just multiplication by (—1).

The isomorphism is given by the map:
C*/Zy — U, (”7;) — (U2, 0% w) = (r,y,2).

Hence, it is enough to resolve the singularities of type €?/Z,. A resolution
of this singularity is given by blowing-up the origin of C?, then extending
the Zy action trivially on the exceptional divisor. The total space of the
blow-up of €? is, in fact, the line bundle Ogp1(—1), and factoring by the Z,
action corresponds to squaring (tensor product) the line bundle. The resulting
manifold after taking the quotient is Ocp (—2). So, we resolved the singularities
of X by introducing exceptional divisors of self-intersection (~2).

Next, we construct explicitly a smoothing of X. The idea is smoothing the
branch locus in a family of smooth curves, and to construct the corresponding
double-covers. Because the linear system P(H (Y, O(D))) is base point free,
there exists a hdlomorphic path of sections of O(D) and & parametrization of
this path given by ¢ : A — T(Y, O(D)) such that (0} = w5, and ADly, sinyn # 0.
The last condition just says that the parametrization is "nice”, i.e. the section
p(t),t # 0, doesn’t contain any of the singularities of D and we can also

assume that (t) = ;¢ # 0 corresponds to a smooth divisor, maybe after
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restricting A.

Then w : & — A, where X C £ x A given locally by the equation

2* — p(t)(z,y) = 0 is a smoothing of X. First, let’s notice that X is a smooth

manifold as:

A = l0) ) = 22z (o), — (S )+ 22, ) 0

The reason for which this is never zero is that for ¢ # 0 the section ¢, is smooth,
hence the last parenthesis is non-zero and for ¢ = 0 we have %% lo.singp# 0 and
(% + 2) |o,p\singn#. 0.

An immediate consequence of Theorem 9.11 in [Har77] implies that the
morphism w is flat.

'The fact that the two constructions yield diffeomorphic maﬁifolds is a local
statement about the differential structures of the manifolds in a neighborhood
of the singularities. So, our proof is in local coordinates. Because the morphism
w is a submersion away from the central fiber it is enough to show that one
of the fibers is isomorphic to X'.

In local coordinates the singularity is given by the equation
(2> — 2y =0) C C2.

Because the linear system associated to O(D) is base point free, then the zero
locus of a generic section is smooth, and all the divisors are diffeomorphic to
each another. We can consider a preferred smoothing given in local coordinates

by (22 — zy = 1) C C3. If we change the local coordinates (9, 2) = (4,9, 2),
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such that # = fu—v, y = 4u-tv. Then the smoothing is written in the canonical
form (#° 4 w® -+ v® = 1). Let £ = Re(u,v,2), n = Im(u,v,2), &n € R® the
real, respectively imaginary part, of (w,v, z). Then:
Xi={{uv,2)eC|22+u?+v?=1}
={EmMeR xR | [P - lInl’=L<&n>=0}

The map f : Xy — T*8% C R® x R® defined by f(€,7) = (5.1l & [|.7)
is & diffeomorphism. It is a well known fact that 7*S? is in fact Ogp:(—2),
where CPs identified to the sphere S2. Moreover, we consider the standard

symplectic structures on Xy, T*5?, then the map f is a symplectomorphism.

O

A similar statement is true if the divisor D has simple singularities. A sin-
gularity of a curve is called simple if it is a double or triple point with two, three
different tangents or a simple triple point with one tangent. Then the double
cover branched along such a divisor has A — D — F singularities, respectively,
We call these singularities rational double points. It can be proved [HKKS6]
that for these singularities, and only for these singularities the resolution and
deformation manifold coincide.

If we allow other types of singularities then it is easy to construct manifolds

for which the two techniques yield manifolds of different Kodaira dimensions,

4.2 Fundamental group

The results presented in this subsection are due to Catanese ([Cat84], Sec.2).

We are interested in the case when the branch locus is smooth, but because the
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results are true for a branch locus with simple normal crossing and manifolds
of arbitrary dimension greater than two, we are going to state them in the

most general form. We will need to introduce a definition:

Definition 9, A smooth divisor D is said to be flezible if there exisis a divisor

D' = D such that DD’ # § and D' intersects D transversally in codimen-

ston 2.

We remark that if D is a flexible divisor then it must be connected.
From now on all the branch loci that we will consider are smooth and

flexible, unless otherwise specified.

First, let’s analyze the complement of the branch locus on the bagse mani-
fold.

Theorem 4.2.1. [Cat84] Let Y be a simply connected algebraic variety and
D =Dy U -U Dy a divisor smooth in codimension 1, with normal Crossing

in codimension 2. If the D;’s are flexible, then m (X \ D) is abelian.

Moreover, w1 (X \ D) is generated by the loops defined by the boundary of
a fiber of the tubular neighborhood fibration over D,

Theorem 4.2.2. [Cat84] Let w : X — Y a d-cyclic cover branched along a

smooth flexible divisor D, then if Y is simply connected so is X.
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Chapter 5

Main constructions

In this section we introduce a new construction, called the simple bi-cyclic
cover of CP! x CIP'. Then, we study the analytical and topological properties
of this class of manifolds. Finally, we give a coustruction of complex surfaces

of general type with infinite fundamental group.

5.1 Bi-cyclic covers

"The manifolds that we want to consider are bi-simple-cyclic covers of CP! x CP?,

They are inspired by the manifolds studied by Catanese. In his papers [Cat84],
[Cat92], ete, he extensively studies the bi-double covers. For our purposes we

need to consider cyclic covers of arbitrary degrees. We have the following:

Construction 2. : Given fwo smooth curves C,D in CP' x CP!, first we
consider the d-cyclic cover, X, branched along C, and then we construct our
manifold N as the p-cyclic cover of X branched along the proper transform of
D. The line bundles O(C), O(D) are d, p-tensor powers of some line bundles

on CP' x CP*, respectively. It can easily be checked that if C, D are smooth and
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intersect transversally, then both X and N are smooth. We call the manifold

N a (simple) bi-cyclic cover of CP* x CP' of type (d, p) branched along (C, Dy,

Let my, my + CP' x CP' — CP* be the projections on the first, second factor,
respectively. The line bundles on CP! x CP* are of the form 71 {(Ocpi{a)) ®
m3(Ocp1 (b)), which we denote by Ocpicpr(a,b) or simply O(q, b). With this
notations, O(C) = O(da,db) and O(D) = O(pm,pn) where a,b,m,n are
positive integers, and there are sections ¢ € T'(O(C)) and ¢p € T(O(D))
such that C = {p¢ = 0} and D = {pp = 0}. Then, our manifold N is a
smooth compact submanifold of Ogpr xep (a, b) © Ocpr xepr (m,n). If (z,y) are
local coordinates on a chart, of CP! x CP! and z, w are coordinates on the fiber
in a local trivialization of O(C) @ O(D) on the (z,y)-chart, then N is defined
locally by the equations {z% = po(z,y), w? = p(z,y)}.

Let 7 be the projection from N to CIP! x CP! induced by the fibration pro-

jection. Using Lemma 4.1.3, we can ecasily compute the topological invariants

of N.

Lemma 5.1.1. Let 7 : N — CP! x CP! be a bi-simple-cover as above. Then:
(i) Ky = w*(o( (d~Va+(p—-1m—2, (d=1b+(p—1)n— 2));

(i) fd-Da+(p—-1)m>3and (d— )b+ (p—1)n > 3 then Ky is an

ample line bundle;
(i) H(N) = 2pd((d — V)a+ (p— m - 2) ((d= 1+ (- 1)n - 2);

(iv) ca(N) = pd[4 — 2(d — 1)(a + b~ dab) — 2(p - 1)(m + n — pmn) +
(» — 1)(d — 1)(an + bm)].
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Proof. 'The proof of (i,iii,iv) is an immediate consequence of Lemmas 4.1.1,
4.1.3. The extra ingredients that need to be computed are the Euler char-
acteristics of the branch loci: x(C) = 2d((a + b) - dab), X(D) = 2p((m +
n) — pmn). The proper transform of D, D', is a d—cover of I branched on
card(C'N D) = dp(an + bm) points. Then: x(D') = dx(D) - (d—1)(C- D) =
pd(2(m +n — pmn) — (d - 1)(an + bm)).

The fact that that Ky is ample follows [Har77] from the fact that a pull-

back of an ample line bundle through a finite map is ample.

W

Lemma 5.1.2. If 7 : N — CP' x CP! pe g bi-simple-cover as above and

a, bym, n strictly positive integers, then N is simply connected.

Proof. If a,b,m,n are strictly positive integers, then the divisors C, D are

flexible divisors, and then by applying Theorem 4.2.2 twice the manifold N is

simply connected. O

If X is a complex surface, we denote by Ox the structure sheaf of X, and by
- xu(X) = x(X, Ox) its holomorphic Euler characteristic. By Todd-Hirzebruch
formula, this is the same as the Todd genus of our manifold X. Tt can be easily
computed [BPV84] in terms of the Chern invariants as yy, (X) = C%—()Q:F;ﬂ)-
On manifolds with finite fundamental group any two numerical invariants
completely determine the others. Because the holomorphic Euler characteristic

is constant under the blow-up process we prefer to use thig invariant instead

of the FKuler characteristic.

Proposition 5.1.3. Letw : N — CP! x CP! be g bi-simple-cover of type (d,2)
branched along the curves (C, D) such that O(C) = O(da,db) and O(D) =
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O(2m, 2n), where a,b,m,n are positive integers then N is almost completely

decomposable.

Proof. We prove this proposition in two steps, First we show that the d-cover
7y : X — CP! x CP! branched along C' is almost completely decomposable.
Let @) : CP' x CP* — CPV, where N = (a+1)(b+1) — 1, be the Segre-type
embedding, and [p;;] be homogeneous coordinates on CPY corresponding to
(@, b)-bi-homogeneous monomials. Then if ¢p is the bi-degree (da,db) poly-
nomial whose zero locus is D, then ¢p = o) ([ (0i5)), where [ is a degree d
polynomial. Hence, by Proposition, 3.2.2 X is almost completely decompos-
able.

We need one more ingredient to be able to finish our proof. The following

lemma is proved in [MaMo80):

Lemma 5.1.4. ([MaMo80], 3.4) Suppose W is a compact complex 3-manifold
and V, X1, X, are closed simply-connected complex submanifolds with normal
crossing in W. Let S = X1 Xy and C = V(N S. Suppose as divisors V is
linearly equivalent to X1 + X, and that C # 0. Set n = cardC and g be the
genus of S. Then we have the diffeomorphism.:

V # CP* = X, # X 29 CP? 4 (29 +n — 1)CP2.

Let o : N — X be the double cover branched along D’ = 77'(D). Then
O(D") = 73(Ocprxcm (2m, 2n)) and let L = 73(Ogp: cp1 (m, n)). Assuming the
notations from Section 4.1, there exists a tautological section z € I'(L, p*(£))

such that N ¢ L is the zero locus of 2* — p*(p) € T'(L,p*(£%2)). We can
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compactify L as W = P(L @ Op) by adding a divisor W, = W \ L. Then
P W — X is a CP-bundle and we can try to extend the section z to a
section in (W, p/*(L)). As p(L) restricts trivially on the fiber and 7 has a
zero at the origin of L — X then this section will have a pole of multiplicity one
along Wo,. To adjust to this problem we consider the section 2/ € LW, p*(L)®
OWw))s 2 = 2+ pw,,. Let ow, = voo. Then 2 has no zero along W, and
rescales the values of 2z outside W,,. Hence, our manifold N is the zero locus
(2% = p"(pp) 0% =0).

Let Dy, Dy be two smooth curves on CP' x CP', such that O(D;) =
O(Dy) = O(m,n) and which are transversal to each other and to D and
C. Then p""1(D;) = D!, i = 1,2 are smooth curves on X transversal to each

other and Df -+ Dj is linearly equivalent to D', Let
Xi=(z' = p"(pp,) " oo = 0),4 = 1,2.

We remark that X; is a cover of X of degree one, hence it is diffeormorphic to

X. Then N, Xy, X, verify the requirements in the lemma so:
N # CP* = X # X# rCP? # sCP2, for suitable r,s.

I R = (¢p, —pp, = 0) C CP* x CP. Then S is a d-cover of R branched
along it C' = dam + dbn points, So: x(S) = d x(R) — (d — 1)d{am + bn) < 0.
Hence genus of S is strictly greater than zero, ie. r > 1.

But X is almost completely decomposable and so is V. O

Using the same ideas we can prove a more general statement:
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Theorem 5.1.5. Iterated cyclic covers of CP* x CIP! branched along smooth,

flezible, transversal curves are almost completely decomposable.

Proof. In the proof of the previous proposition we have never used the fact
that IV was obtained by taking two cyclic covers. The same argument is true
for iterated covers. So, all we need to prove is that the same reasoning works
for covers of arbitrary degree. We show this by induction on the degree k of the
cyclic cover, branched along D with @(D) = O(km, kn). The first step, & = 2,
is proved by the proposition. For the induction step we need a small change in
our decomposition, namely: O(D1) = O(m, n), O(D,) = O((k—1)m, (k—1)n)
and X; = (2' = p"(pp,) - Poo = 0), Xy = (*1 — p"(ipp,) - @) = 0. The rest
follows. O

9.2 Surfaces of general type with finite cyclic
fundamental group

In this subsection we give a recipe for a construction of complex surfaces of
general type with fundamental group isomorphic to Z4. They are quotients by
a free Zy action of bi-cyclic covers 7 : N — CP' x CIP! of type (2,d). We
construct explicitly an action of Zg.

We denote by @ = [zq : 1],y = [g : ¥1] the homogeneous local coordinates

on CP* x CP'. We want to consider the action of Zy =< ¢ > generated by:

2mi 2mi 27i

e @ * ([zo 1), [yo : 1n]) = ([€°8 o @], [e Ty : 411)).




This action has four fixed points:

([0 20,0 11), ([0= 1, [1: 0, ([L = 0], [0+ 1]), ([1: 0}, [1 - 0]).

If we require that a smooth flexible divisor D € CP! x CIP! be invariant ¢

under the above Zg action, i.e. ¢p is Zg invariant, then ¢, is a bi-nomogeneous

polynomial of bi-degrees divisible by d. So, there are natural numbers (a,b)

such that O(D) = O(da, db) and "

: i vrd(a—i)y djd(b—  yrda—ivr iy dibf) i

op = Z ainngl (a %)Y[)Jyl( 1) + E : Z binSXrlia iy %Yl( Fi4 i

2 ?Z=Ta_ i=0,da {1 <df <db+i "
j=0.5 f

for some complex coeflicients a,j, b;;. The linear system of Zy—invariant sec- !

tions of O(da,db) is base point free, hence by Bertini’s Theorem the generic h
section. is smooth, and we can choose D such that none of the four points are
on D), Hence Z; acts freely on D. .i

Let Uy = {[1: z]|x € C} and U; = {[z : 1]|z € C} be charts of CP!, Then !‘
the charts Uy x Uy, Uy x Uy, Uy x Uy, Uy x U, form an atlas for CP! x CP!,

The line bundle O(a, b) restricted to these charts admits a trivialization. Let

200, 201, 210, 211 e the corresponding coordinates on each trivialization.

On the chart Uy x Uy x C we let the Zg =< ¢*T* > action be generated by:

2w 2a4 27t 27 |

ed *([zo: @), [yo: val, 2n) = ([€74 mo 2], [€°T o 1 9], €7@ 243) g

Using the change of coordinates, the above action is generated in the other

charts by: i
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2ai{d—1) 2 27ifl-+a)
onUp X Urt (T1,00,2m) = (€7 ¢ &1, € dyg, € ¢ 2p);

2wd 2wifd—1) 2o (145)
on Uy x Up: (To,y1,210) = (€T @0, € a1, €T 210);

Zori(d—-1) 2mi{d—1) 2wi(l4atb
on Uy X Uyt (#1,91,200) = (€7 Ty, € @ y1, e 4 ).

Hence, we have the following lemma:

Lemma 5.2.1. The Zg action given explicitly above acts freely on
(O(a, b) \ 0-section) if and only if each of integers {a+1, b-+1, a+ b+ 1} is

relatively prime to d.

We also need to consider a weighted action of Z, which is defined on Uy x I/ 1

as follows: €@ * (29,0, 211) — ('€ 29, €* T yg, "¢ 21;). This action extends

on the other coordinate charts as:

2mi{d—1 03ni 2mif{la)
on Ug x Ut (z1,90,2;) = (&7 @ 2y, ¥y, e 7 2);

2wt 27i(d—2) 2ri{142b)
on Uy xUp: (@o,41,210) = (€74 20, € @ y1, € 7 z1p);

2mi(d—1) 2rd(d—12) 2wi(1+a+2h)
on Uy xUp: (Z1,%,2%0) = (&7 & a1, e 4 gy, e d 2m0).

We have a similar lemma.:

Lemma 5.2.2. The weighted Z4 action defined above acts freely on
(Ofa, by \ O—séctz’on) if and only if each of integers {a+1, 2b+ 1, a+2b+1}

is relatively prime to d.

A d—cyclic cover N’ — CP' x CP' branched along D with O(D) =
O(da, db) is a submanifold of O(a,d). If the branch locus D is invariant under
this action, or equivalently ¢p is Zy—invariant, then the action Z; on O(a, b)

restricts to an action on N'. Moreover, if D does not contain any of the fixed
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four points and the conditions in the Lemma 5.2.1 are satisfied, then Zg acts
freely on NV

Now we are ready to construct our examples:

Proposition 5.2.3. Let C,D smooth, flezible, transversal divisors on
CP' xCP! such that both are invariant under the above Zy action. Let a,b,m,n
be positive integers such that O(D) = O(da,db) and O(C) = O(2dm, 2dn),
and d is relatively prime to any of the numbers o + 1,0+ 1,a +b+ 1. Then,
the bi-cyclic cover w : N — CP' x CP* of iype (d,2) branched along (D, C)
admits a free Zq action. The quotient M = N/Zy has the following properties:

(1) M is a smooth complex surface, with fundamental group m (M) = Zg;
(i) Kwr is an ample line bundle if (d— Va+dm > 2 and (d— b+dn > 2;
(i) (M) = 4((d - Va + dm - 2)((d = 1)b+dn - 2);

(iv) ca(M) = 8—4(d—1)(a+b~dab)—4d(m-+n—2dmn)+2(d—1)d(an-+bm);

(iv") xp(M) = L—-—_d"l)?d_l) ab -+ —(d;l) (dan+dbm —a—b) + d*mn — dm — dn + 2.

Proof. First, we need to define the Zy action on N. The action .th.a,t we want
to consider is the trivial extension of the action on O(a,b) to an action on
O(a, b) ® O(dm,dn). The conditions from the theorem imply that the action
restricts to IV as a free holomorphic action. Its quotient is a smooth complex
surface, with fundamental group =, (M) = Z;. The numerical invariants of N

are described by Lemma. 5.1.1. The invariants of M are related to those of N by
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the following relations: ca(M) = ea(N), F(M) = 1c3(N). The computation
from (iii-iv’) are immediate.

The conditions that d and a+1,b+1,a-+b-+1 are relatively prime integers
imply that x; (M) is an integer number, as expected.

By Lemma 5.1.1, Ky is ample which shows [Har77] that so is K.

5.3 Surfaces of general type with infinite fun-
damental group

In this subsection we use the same techniques to construct complex surfaces
with an;ple canonical line bundle and infinite fundamental group, whose uni-
versal covers are nontrivial, more precisely have infinite second homology
group.

Let 33,3, be two Riemann surfaces of genus g1, go greater than one, And
let p1,...,pen a collection of 2n distinct points on ¥, and g¢i,...,qom & col-
lection of 2m distinct points on Yg. Let pry 1 31 X £y — 5y, 4 = 1,2 the

-

projection on the corresponding factors. We denote by D the effective divisor
given by pri ({p1,...,pea ) Upry " {q1, . > Gam}). D has dnm normal cross-
ing singularities, and we can compute the important numerical invariants:
Ksxm, - D= 4n(l — gy) + 4m(1 — go);

D? = 8nm;

gp = 2mg1+2nga+(2n—1)(2m—1), x(D) = ~4 (gl(m—l)—l—gz(n—l)-l—an);
X3 % B2,0(D)) = (2n— g1 + 1)(2m — g2 + 1).
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So, for large enough values of n, m the line bundle O(D) @ K glxzz is positive,
and by Kodaira Vanishing Theorem H7(3; x 35, O(D)) = 0,7 = 1,2, So its
Euler characteristic gives us the number of sections.

Let f':+ N' — ¥; x %5 be a double cover branched along 1. To resolve
the singularities of N', we have to introduce 4nm exceptional spheres of self-

intersection (—2). Let f: N — N’ be the resolution of N'.

Proposition 5.3.1. The surfoce N has infinite fundamental group and it is

diffeormorphic to o complex surface with ample canonical line bundle.

Proof. To show that it has infinite fundamental group it is enough to find a
loop and a l—form which evaluated on that loop is nonzero.  Let
[v] € m(¥1) a nontrivial class, and [of € HY(%,Z) such that f a # 0.
Because ¥y x ¢ is a component of the branch locus then we can embed 73
in N as the proper transform of f'~1(¥; x ¢1). We have a corresponding class
[v] € m{N) and [, (pri0 f' o f)*(a) # 0. Moreover, the above reasoning
implies that the homomorphism {f' o fu : 71(N) — (%) X £3) is onto.
For the second part of the statement, according to Proposition 4.1.4, we
have to show that the linear system associated to O(D) is base point free.
This is obvious since our divisor is a union of vertical and horizontal fibers.
Hence, our manifold is diffeomorphic to a manifold obtained as a double cover
with smooth branch locus. Its canonical bundle is the pull-back of an ample

line bundle through a finite morphism, hence is ample. (|

A second description of the manifold IV can be given as follows: Let ¥, 2

be the Riemann surface obtained by taking the double cover of 3,5, respec-

tively, branched along {p,...,pan}, {q1,. ., Gam}. Then on 3 x &} we have a
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natural Z, @ Zs action interchanging the sheets on each factor. The diagonal
subgroup 7 acts on X x 2 with 2 - 2rn fixed points, and N' = 5| x 5, /%,
If we first blow-up the fixed points then the Z, action extends {rivially on the

exceptional divisor and the quotient ((33{ x 33)4#t4nmCP?) /Z, is the smooth
manifold N.
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Chapter 6

Symplectic 4-manifolds

A symplectic strueture on a oriented, smooth, real 2n-manifold M is a non-
degenerate closed 2-form w € Q*(M) compatible with orientation. The com-
patibility condition means that the n-fold wedge product is a positive multiple
of the volume form everywhere. Any Kéhler manifold is also symplectic, but
there are large families of symplectic manifolds which are not Kahler, for
example all manifolds With by odd. Most of the examples are obtained via
surgeries.

In some cases these surgeries yield Kéhler manifolds. We analyze this

situation in the last part of the thesis.

6.1 Symplectic surgeries

In this section we briefly recall two important techniques of constructing sym-
plectic 4—manifolds. One is the normal connected sum procedure of Gompf

[Gom95] and the other is Fintushel and Stern’s [FiSt97] rational blow-down.
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6.1.1 The normal connected sum

Let (Mj,w;), ¢ = 1,2 be two symplectic 4—manifolds. Suppose there exist
2; C M, 1= 1,2 two closed, smooth 2—dimensional symplectic submanifolds

of the same genus, and satisfying the compatibility condition:
N21|M1 = Nglez'

Let N1(3;), No(XE;) be two tubular neighborhoods of ¥, such that M) C
N,(X;). We denote by W; the tubular shell neighborhood Np(%;) — Np(%;) of
Z; in M;. Suppose we have an orientation preserving diffeomorphism

® . W, — W, taking the inside boundary of W, to the outside boundary of
Wa. We define the normal connected sum of My and M, along ¥; and Yip via
® to be the smooth oriented manifold obtained by gluing M; — ml_) and

My — N1(Z2) along the tubular shell neighborhoods W) and W, using ®. Let
M = Mi#45M> be the resulting 4—manifold.

Theorem 6.1.1 (Gompf). Possibly after rescaling wi or wy, there exists o
symplectomorphism ® of the tubular shell neighborhoods of Ty and Xy such

that the d—manifold M = Mi#eM, admits o symplectic form which agrees

with the rescaled symplectic forms on M; — N1(%;).

Since the disjoint union M; U M, and M are oriented-cobordant to each

other, the signature of the two manifolds are equal:

T(M) =7(M)) +7(M>).
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The Euler characteristic can be easily computed, too:
X(M) = x(M1) + x(Mz) — 2x(Ty)
So, we immediately have:
(M) = (ML) + (M) — 4x(3).

A particular case is the fiber sum operation. This construction gives a sym-
plectic description of the elliptical surfaces without multiple fibers. Let E(l) =
CP?#9CIP?, where the nine points that we blow-up are the intersection of two
generic cubics. Then £(1) admits a fibration over CP*, with the generic fiber
T=1T? ‘a real two dimensional torus, induced by the pencil determined by the
two cubics. We can form the fiber sum by taking two copies of (1) and iden-
tifying the two corresponding fibers via the identity map. We denote this new
manifold by £(2). Notice that E(2) is simply connected, as the complement
of a fiber in £(1) is simply connected. Also, F(2) has the same topological
invariants as a K3 surface. It can be easily proved that in fact is diffeomorphic
[GoSt99] to a K3 surface. [terating this construction for n copies of F(1) we
obtain the other elliptic surfaces F(n).

Using these surgeries, Gompf was able to show that the symplectic four
manifolds are better behaved than complex surfaces with respect to groups

that can be obtained as fundamental groups:

Theorem 6.1.2 (Gompf). [Gom95] Let G any finitely presenied group. Then

there is a closed , symplectic 4-manifold X with m(X) = G, Furthermore, X
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may be chosen to be spin or non-spin.

Proof. We give a sketch of the proof as we need this construction later.

Let G = {¢1,...,9x | 71,...,m ) be a finite representation of G with k
generators g; and relators r;. Let F be a Riemannian surface with genus & and
fix a collection of circles «, B; C F representing a basis of H 1(F,Z) such that
o B =&, oy Nay = NG =0 Let vy, 7=1,...,1 be immersed curves
in F' representing the relators r; in the free group mi(F)/(81,..., 8k}, where
i are identified with e;. Let vy =8, i=1,..., k.

On the torus 7% = S' x 5%, let o, B be the circles generating it. Now
consider the collection of tori T} = 33 x @« € F x T2, ¢ =1,,..,k + [ and
Ty =pt xT? C F x T2 In [Gom95], Gompf shows that for a good choice of
these tori the product symplectic form can be perturbed in such a way that
the tori forming the family {7}},_gzx are disjoint symplectic submanifolds of
(FxT%w.

Let Xy be a A3 surface of Kummer type. We can form the fiber sums of
F' x T% and k + [ copies of Xo, along the tori T and generic fibers F' C X,.
We denote by X the resulting symplectic 4-manifold. The complement of a
generic fiber in Xy is simply connected, then by Seifert-Van Kampen Theorem
the manifold X has fundamental group m;(X) = G. Moreover, X is a spin
manifold as all the manifolds involved in surgeries are spin.

If we replace the K3 surface by a rational elliptic surface CP24£9CP? then

the resulting manifolds are non-spin, and the numerical invariants are smaller,
O
We remark that for both spin and non-spin manifolds ¢3(X) = 0. If X
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is the spin, respectively non-spin, manifold constructed above, then it has

co(X) = 24k, respectively cy(X) = 12k.

6.1.2 The rational blow-down

Let Cp4 be an open smooth 4-manifold obtained by plumbing disk bundles

over a chain configuration of 2-sphere prescribed by the following diagram:
by br—1 b1

Here p > ¢ > 0 are two relatively prime integers and E;iLl = [br, br1, -0, By
is the unique continued fraction with all b; > 2. Each vertex represents a disk
bundle over the 2-sphere of self-intersection —b;. Then Ch,q I8 a negative definite
simply connected 4—manifold whose boundary is the lens space L(p?, 1 ~ pg).
The lens space L(p®, 1 — pg) bounds a rational ball B, , with 7(B,,) = Z,.

Suppose X is a smooth 4-manifold containing a configuration C,,. Then
we may construct a new smooth 4-manifold X, 4, called the (generalized) ra-
tional blow-down of X, by replacing Cj, , with the rational ball B,,. X, is
uniquely determined (up to diffeomorphism) by X, as each diffeomorphism
of 8By, extends over the rational ball B, It is proved in [Sym01] that if

Chpq is symplectically embedded in X, then the rational blow-down carries a

symplectic structure.

6.2 Geography of symplectic 4-manifolds

Using iterated cyclic-covers of CP? and symplectic surgeries introduced by

Gompf in [Gom95], Braungardt and Kotschick [BrKo05] were able to show:
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Theorem 6.2.1. [BrKo05] For every € > 0, there is a constant c(c) > 0 such

that every lattice point (z,vy) in the first quadrant satisfying
y <(9—e)z —cle)

is realized by the Chern invariants (xu, c2) of infinitely many pairwise non-
diffeomorphic simply connected minimal symplectic manifolds, oll of which are

almost completely decomposable.
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Chapter 7

Main results

Kotschick and his collaborators [Kot98], and LeBrun constructed pairs of
homeomorphic simply connected manifolds such that one of them admits an
Einstein metric, while the other one does not admit any Einstein metric. In
this thesis we show that a similar statement holds for manifolds with non-

trivial fundamental group.

7.1 Einstein metrics on compact non-simply-
connected manifolds

For any finite cyclic fundamental group we construct infinitely many classes of
manifolds such that each class supports a differential structure that admits an
Einstein metric and infinitely many other differential structures that do not

admit any Finstein metrics:

Theorem 7.1.1. For any finite cyclic group Z./d7. there exist infinitely many

pairs of compact oriented smooth 4-manifolds (Z;, M, ;),1,7 € N satisfying:
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1. The fundamental group of Z; and My; is Z/dZ for any i,j € N;

£ For i fized and any 7, Z; and M;; are homeomorphic, but no two are

diffeomorphic to each other;
8. Z; admits an Einstein metric, while no M, ; admits any Einstein metrics.

Moreover their universal covers Z; and M, respectively satisfy:

—~

4. AZ:, s diffeomorphic fo nCPZ#mC—Pz, where n = b(Z;) and
m =

—~

b2_ (Zi);

o~

5. Z; and IT/I:; are not diffeomorphic, but become diffeomorphic after con~

nected sum with one copy of CP?.

Proof. First we construct the manifolds Z;. They are complexéurfaces of gen-
eral type with ample canonical line bundle. Hence, by Aubin-Yau’s Theorem
2.3.2 these manifolds admit Kahler-Einstein metrics.

We need two consider two cases, determined by the parity of d.

For d odd we have the following construction: Let M(d;a,b,m,n) the
manifold constructed in Proposition 5.2.3 as a Zg-quotient of a bi-cyclic cover
of CP* x CP" of type (d, 2), branched along (D, C) with O(D) = O(da, db),
O(C) = (2dm, 2dn). Let Z; = M(d;d,d,4,1). d+ 1,2d + 1 are relatively prime
to d so the conditions in Proposition 5.2.3 are satisfied. An easy computation

of the numerical invariants of Z; yields:
o ci(Z)=4(dd— 1)+ di — 2)%

o xn(Z;) = 3d*(d — 1)(2d — 1)+ d(d — 1)(di — 1) + d%2 - 2ds + 2.
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We can compute the signature in terms of these invarianis as
7{Z;) = (—8xn + ¢1)(Z;). If we consider just the intersection forms, then we
know that the signature associated to an even intersection satisfies
7 = 0 mod 8, and Rohlin’s Theorem states that on a spin manifold we have
the following relation: 7 = 0mod 16. For 7 odd, ¢#(Z;) # 0mod 8, hence
m(Z) # 0mod 8. Its universal cover Z; hasg signature T(Z,,) = dr{Z;), so

for d,i odd numbers 7(Z;) # 0 mod 16. Hence Z; is of wy-type (I) and odd

intersection form,

As 7 increases then %(ZZ) approaches 45%2 =4,

In the case d even we need a different construction. The idea is, though,
the same. Let 7 : N(d;a,b,m,m) — CP! x CP! be a bi-cyclic cover of type
(d,3) branched along (D, C) with O(D) = (da, db), O(C) = (3dm, 3dm) and
such that D intersects C transversally. To simplify the notation we use N =
N{d;a,b,m, m) whenever we want to prove a general statement about the
whole class of manifolds. Proposition 5.1.1 tells us that the canonical line
bundle is Ky = 7*(O((d—1)a+2m—2, (d—1)b+2m—2)), hence [Har77] N is a
surface of general type, with ample canonical line bundle if (d— a+2m—2 > 0,
(d —1)b+2m — 2 > 0. Using Proposition 5.1.2, we can also conclude that N
is simply connected.

We want N to be non-spin. We show that this is true if d even and b odd.
The method which we want to implement is by finding a class [A] € Hy(N, Z)
such that [A] - we(N) # 0 mod 2. We construct N in two steps:

N2 x 4L P! x CP!
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where first we consider a 3-cyclic cover of CP! x CP! branched along C, and
then a d-cyclic cover branched along #71(D), the proper transform of D.

We construct a 1-parameter family of deformation of N in the following
way. Let " = AU B C CP' x CP! such that A = {pt} x CP!, B a smooth
curve of bi-degree (da — 1,db), and such that A, B, C intersect fransversally
at all points, Then D, D" are linearly equivalent, and the pencil associated
to D and D” determines a l-parameter family of deformation of D" with at
most a finite number of singular members. Pulling this back to X we have
a l-parameter family associated to D' = 7y '(D”) = 77 A) U7} (B) and
m H{(D). Let X, be the d-cyclic cover of X branched along I'. As in the proof
of Proposition 4.1.4, we have a 1-parameter smoothing of X5, w : X - A c C
such that X = w~1(0) and w~1(1) = N. The branch locus- D’ has normal
crossing singularities at 77" (A U B) locally given by z -y = 0. This implies
that Xy has isolated singularities above these points, and locally they look
like z% = x -y, where (2,z,y) are local coordinates on 71 (Ogprxcpr (D)}, This
singularity is classified as of Ag_; type. We obtain a resolution, N' 22 X by
introducing Ag-strings of exceptional divisors. We denote these divisors by
E;. Let A" be the proper transform of A’. Proposition 4.1.2 tells us that:

O(A”) = 5 0 p)*(O(1,0)) + S B, @ < 0

Ky = (m op)"(O((d—1)a+2m —2,{d — 1)b+ 2m — 2))

Ky A = cl((wl o p)*(O((d - Da+2m — 2, (d — 1)b + 2m — 2)))u

cl(é(m o p2)*(O(1,0)) + Sa: )
_ é3dcl (O((d = 1)a+2m — 2, (d— 1)+ 2m — 2))) U, (0(1,0))
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= 3((d ~ 1)b + 2m — 2)

= 1mod 2 if b odd, d even

For these singularities we know [HKK86] that the resolution and the smooth- o

ing are diffeomorphic. Hence, N’ and N are diffeomorphic non-spin manifolds.

The number d decomposes as d = 2*d’ such that ¢’ € N is odd.

We want to consider the manifolds:

Ny = N(d;2d, d',i,1) C Ocprxem (2d, d') © Opprxep: (di, i) if d # 1,

° - and N; = N(d;6,3,4,4) if d=2F

On these manifolds, we can define a Z; actior ag in Lemma 5.2.2, where i

we extend the aétion trivially on the second factor. For this action to be

well-defined we need D and C to be invariant under the induced action on |

CP! x CP*, Such curves always exist, moreover we can choose D, C' such that
Zg4 acts freely on them. The conditions in the lemma 5.2.2 are automatically
satisfied by our choice of degrees. -J;

Let Z; = N;/Zy. Z; is complex surface of general type, with ample canonical

line bundle, finite fundamental group n(Z;} = Zg and of wy-type (I).

Its numerical invariants can be computed using Lemma 5.1.1 to be:

o (Z)=6(2(d - 1)d +2i ~ 2)((d ~ 1)d' -+ 2i — 2);

o cy(Z;) = 3[4 — 2(d — 1)(3d' — 2d"d) — 4(2i — 3i?) + 3(d — 1)d'4]; i

o 7(Z;) = }(c? — 265)(Z;) = —6(d — 1)d'i mod 4.

50




From the last relation we see that if ¢ is odd, then 7(Z;) # 0 mod 8 hence
the intersection form is odd.
For the special case d = 2F the numerical invariants are computed by the

sarne formulas, for d = 3. We take Z; to be the subsequence indexed by odd

coefficients.
b3 2 -2
.. 4 Y e 12¢ ) 12-6d44 24
As 1 increases H(Z;) e (Z;} approaches grzriiins = 5 = 4.8

Hence considering both cases, d odd or even, there is a constant ng > 0
such that for any i > ng we have ¢2(Z;) < 5xn(Z;).

By Theorem 6.2.1 there exist a constant n; > 0 such that for any lattice
point (z,%) in the first quadrant verifying = > n;, y < 8.0z there exists a
infinite family of homeomorphic, non-diffeomorphic simply connected minima‘l
symplectic manifolds M; such that y = (M), = = xn(M;) = (—C%

Eventually after truncating and relabeling the sequence Z;, we can construct

M!

15 5,7 € N, a family of simply connected symplectic manifolds satistying:

e for fixed i, M]; are homeomorphic, but no two are diffeomorphic;
o xn{Mi;) =xn(Z;) for any j € N;

hd C%(JM{J) b 8Xh(M£,j)i

o ci(Z) < Bxn(Z).

Let Sy be the rational homology sphere with fundamental group m;(Sy) = Zg

described in 3.3. The manifolds M;; are constructed as:
Mi,j = M{?j#Sd#kW, where k = C%(M{jj) — C%(Zl)

We remark that by Theorem 2.1.3 the manifolds M;; are not symplectic, but

they have non-trivial Seiberg-Witten invariant.
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For fixed ¢ the manifolds Z; and M;; are all of wy-type (I}, with odd
intersection form, fundamental group n; = Z; and have the same numerical
invariants: Todd-genus and Fuler characteristic. Hence by Theorem 3.1.1,
these manifolds are homeomorphic.

In the construction theorem for M; ; the differential structures were distin-
guished by different bandwidths, after connected sums with CP%’s and Sa, and
using Theorem 2.1.3 we sce that the bandwidths remain different for most of
M; ;. We can eventually select a new subsequence to get the desired sequence
of manifolds.

An estimate for the number k of copies of CTP? is given by:
k= ci(My;) — 3(Z) > 8xu(Z4) — 5xu(Zi) = 3xnlZ) = 3xn{M; ;) We also
know that the manifolds are under the Bogomolov—Miyaoka—Yau line, which
implies: X (M) > 3A3(M;;).

Hence k > 36(Miy) = $(2x + 37)(M,).

Then Theorem 2.2.1 implies that M;; does not admit any Einstein metric.
As a consequence we also get that Z; and M; ; are not diffeomorphic.

For the results from the second part of the theorem we have to look at
the universal covers Z—, and AZ; respectively. From our comstruction, the
universal cover of Z; is a simply connected minimal complex surface of general
type. 1t can not be diffeomorphic to connected sums of CP? ’s and CP?'s as
it has non-trivial Seiberg;Witten invariants, but Theorem 5.1.3 tells us that
after connected sum with one copy of CP? it decomposes completely.

'The universal cover of Sy is diffeomorphic to (d — 1)52? x 2, hence the

o——

manifold M;; & dM] #dkCP2(d — 1)S? x S2. But §% x S24CTF? is the
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complex surface CP! x CP! blown-up at one point, which can also be presented

as CP?#2CP2. So:
My 2 dM] #dkCPH(d — 1)S? x 52 = dM] ;#(d — 1)CP*#(dk + d — 1)CP.

But the manifolds Mi”j are almost completely decomposable, hence m is

diffeomorphic to the connected sums of a number of CP?'s and CP%'s. 0

'The manifolds used in Theorem 7.1.1 are necessarily non-spin. However,
using obstructions implied by a non-trivial Bauer-Furuta invariant one can
also find examples of spin manifolds M; each of which support infinitely many

smooth structures which don't admit any Einstein metric.

Theorem 7.1.2. For any finile cyclic fundamental group, Ly, there is an
infinite family of spin topological spaces M; with fundamental group m1(M;) =
Zg such that each space supports infinitely many differential structures which

do not admit an Finstein metric. All these manifolds satisfy the Hitchin-

Thorpe Ineguality.

Proof. The manifolds M; are constructed as connected sums and fiber sums
of different blocks.

The first block is given by the spin elliptic surfaces E(2n). With this nota-
tion J(2) is a K3 surfaces. Their numerical invariants [(G0St99] are given by
¢a(E(2n)) = 24n, 7(E(2n)) = ~16n and b = 4n — 1 (= 3 mod 4).

The second block is obtained from F(2) after performing a logarithmic
transformation of order 2n + 1 on one non-singular elliptic fiber. We denote

the new manifolds by ;. All ¥, are simply connected spin manifolds with
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by = 3 and b; = 19, hence they are all homeomorphic. Moreover, ¥, are
Kébler manifolds and ¢;(Y,) == 2nf, where f is the multiple fiber introduced
by the logarithmic transformation (see [BPV84]). SW(xe (Yy)) = +£1, by
Theorem 2.1.1, and then the bandwidth BW(Y,) = n.

"The third block is the one used by Gornpf [Gom95] in the proof of Theorem
6.1. Let F}, F be two Riemann surfaces of genera k -+ L,k > 1 and 2, respec-
tively. Let Cj, ¢ =1,...,2k + 2 be homologically nontrivial embedded circles
in K generating H,(F},Z) and the circles CiCFy, i=1,...,4 be the gener
ators of Hy(Fy,7Z), as in the proof of Theorem 6.1.2. Let 7} be the collection
of tori given by Cy x €, 0y x C4, C3 x €%, Cy x 4, C; X Cli=5,...,2k+2.
We can perturb this collection to a new collection of disjoint tori {7} }, where
T/ is homologous to T;. Because T, C F, X Fj is a Lagrangian torus we may
choose T} C Fy x F; to be Lagrangian, too. These tori are also homologically
non-trivial. Then the product symplectic form on F x F can be perturbed
[Gom95] such that these tori become symplectic submanifolds. Let X, be the
manifold obtained by performing symplectic connected sum of Fy X Fy and
2k + 2 copies of £(2) along the family {77 }itam7s and generic fibers of E(2).
Then the manifold X}, is a spin, symplectic 4-manifold, and by Seifert-Van
Kampen Theorem it is also simply connected.

The numerical invariants of X}, are:

ca(Xp) = 52k + 48, 7(Xp) = ~32(k -+ 1).
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The first manifold in this family is X, with invariants:

ca(X1) = 1582, 7(X1) = —96, ¢} = 16, and b = 27 (= 3 mod 4).

The last block is given by rational homology spheres of up-type (I1)(i.e.w, = 0).

"Their existence is proved in [HaKr93] Proposition 4.1. We denote them by S,

We may now define our manifolds:

For fixed 4, the manifolds M;; are all homeomorphic as we take fiber sums
of homeomorphic manifolds. We denote this homeomorphism type by M;.

If we look at the basic classes of the Bauer-Furuta invariant, then both
a = cy(X1) + e (B(28)) + 1 (V) and b = ¢1(X1) + 1 (B(21)) — 1 (Y;) are basic
classes. Then 27 | (a—b), so BW (M;;} > j. But BW(M,;) is a finite number,
so we can always choosc a subsequence {f} — oo such that the manifolds M, ;,
have different bandwidths, hence they are not diffeomorphic.

By Theorem 2.2.2 these manifolds do not support any Einstein metrics. [

In some cases, for a small fundamental group Z;, some of the manifolds
constructed in the proposition support a differential structure which admits
an Einstein metric.

If we are not interested to construct pairs of manifolds, but only homo-
topy types which do not admit Einstein metrics then we can prove a similar

statement-for manifolds with arbitrary finitely generated fundamental group:

Theorem 7.1.3. Let G be any finitely presented group. There exists an in-
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finite sequence of manifolds Myy, 4,5 € N, all non-spin, which satisfies the

Jollowing:

1. The fundamental group (M ;) = G

2. For fized i, {M;;}; are all homeomorphic, but no two are diffeomorphic.
Let M; be the homeomorphism class of M;; fori fized.

3. No two M, are homeomorphic.

4. No M ; admits an Einstein metric, but they all satisfy Hitchin-Thorpe

Inequality.

Proof. The proof is similar in concept to the other proofs in this section. We
are going to use the second and third block constructed in the pfoof of Theorem
7.1.2.

We also need to consider F(4). This manifold has an important feature
[Gom95, proof of Theorem 6.2]: it contains a torus and a genus 2 surface as
disjoint symplectic submanifolds. We denote them by T and F' respectively.
Both T and F' have self-intersection zero and their complement F(4) \(FUT)
is simply connected.

The extra ingredient is given by Theorem 6.1.2. For an arbitrary finitely
presented group G this theorem says there exists a symplectic manifold Xa
with fundamental group m(X¢) = G, and the numerical invariants given by:
2(Xeo) = 0, ca(Xg) = 12k where k is the number of generators of a given
representation of G. X¢ also containg an embedded symplectic torus 72 of

self-intersection 0.
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We are now ready to construct our manifolds. Let:

M; = Xg #r2 E(4) #r X; #72 E{2)#pCIP?2,

where the first fiber sum is done along a torus of self-intersection zero, the

second surgery is along the surface F in £(4) and one generic {pt} x F, C X,
the next surgery is done along another symplectic representative of 7' in E{4)
and a generic fiber of F(2), and p is a constant satisfying:

1
C%(Xt) > p o> gC%(X-‘.,) > (.

The fundamental group of M; can be easily computed by Seifert-Van Kam-
pen Théorem to be G.

T'o obtain different differential structures on M;, we take logarithmic trang-
formations of different multiplicities along a generic fiber of FE(2). Then by
the gluing formula for the Seiberg-Witten invariants the manifolds have differ-
et bandwidths hence we have constructed infinitely many non-diffeomorphic
manifolds. We denote them by M,; For fixed i, these manifolds are all
homeomorphic. To show this, we can first do the logarithmic transformations
on F(2), this yields homeomorphic manifolds. Then, we take the fiber sum
along a generic fiber with Xg #m E(4) #r X;#0CP?. We obtain a new
homeomorphism by extending the one we had before.

Theorem 2.2.1 implies that no M;; admits an Einstein metric, |

There are no known obstructions to the existence of Einstein metrics on

nCPX#mCP, except for the topological Hitchin-Thorpe Inequality. But in
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some cases, corresponding to the constructions in Theorem 7.1.1 there are
no Einstein metrics which are invariant under the action of Z/dZ. To be more

precise, one of the examples with the smallest topology would be the following:

Proposition 7.1.4. On 5CP?#25CP?, there exists an exolic involution o,

such that 5CP*#25CP? does not admit any Einstein metric invariant under

the involution o.

Proof. Let N be the double cover of CP! x CP' branched along a smooth
divisor D, such that O(D) = O(6,6). Then N is a simply connected, almost

completely decomposable surface of general type and by 4.1.3 its numerical

invariants are:

co(N) =14, c}(N) = 4, 7(N) = -8,

Hence b = 2 and b7 = 10. By Theorem 2.2.1 the manifold M = N#ICP24S,

does not admit any Einstein metric.

Tet M be the universal cover of M. Then we have the following diffeomor-

phisms:
M 22 2N JpaTPI#(S® x %) =2 2N JACP?#5TPE o 5CP2425CP-.

The fact that M does not admit any Einstein metrics implies that M does

not admit any Einstein metrics invariant under the covering involution o. [
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7.2 Complete Einstein metrics on non-compact

4-manifolds

The problem of the existence of Einstein metrics can also be addressed for
non compact manifolds. In [AKL89] Anderson, Kronheimer and LeBrun were
able to construct an infinite family of complete Ricci-flat sitnply connected
K&hler manifolds, with infinitely generated second homology. Their metrics
are explicit and admit a semi-free isometric S!'—action. Recently there has
been a lot of interest manifested in this subject both by mathematicians and
physicists. For example Calderbank and Singer studied the same problem for
Einstein metrics of negative scalar curvature; their construction uses a free
T?—action on a dense open set of the manifold and some intricate analysis.
However, it seems that manifolds of infinite topological type which admit
Eingtein metrics of negative scalar curvature are quite common. One can
use the existence of Kéhler-Einstein metrics on complex surfaces with ample

canonical line bundle and infinite fundamental group.

Theorem 7.2.1. There are infinitely many non-compact 4-manifolds with in-
finitely generated second homology which admit complete Finstein metrics of

negative scalar curvature.

Proof. Our proof consists in showing that for any natural number k there is a
sequence {Zi,..., 2} of non-homeomorphic non-compact complete Einstein
manifolds with infinitely generated second homology.

Let f: N — X; x ¥y be the minimal resolution of the double cover of

3l; X By branched along a divisor D with normal crossing singularities, as in
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the construction from Proposition 5.3.1. £, ¥, are Riemann surfaces of genus

k, 2 respectively, and:

n 2m
D= U{pq;} X Yo U U 21 % {¢;}, n,m € N sufficiently large
i=1 j=1
Let oy, 8i,% = 1,... N be generators of (1, o), (zo ¢ Sing(D)) such that
oy - 3 = ﬁf and oy Ny = BiNG; = B, ¢ # j. Then a4, 3 give rise to &
basis for H,(X1,Z). Let v € HY(£1,Z), i = 1,..., N be the dual of o;.

We denote by of € mi(N, f~ (g, q1)) the preimage of oy C (T; x {ql}),‘ and -

v € H'(N,Z), ~ = (prio £)*(7). Then &} and +/ are related by fa; v = &,
Let Gy =< of >,Gy =< of, 0 >,..., Gy =< a,..., o} > subgroups
of m(N). To check that G; is not equal to any of the previous subgroups
G1,..., Gy, it is enough to integrate 4] on the generators, The integral is
zero on any element of a lower subindex group, and non-trivial on of € G.

The classification theorems for covering spaces tell us that there is a
1 — 1 correspondence between isomorphism classes of coverings of N and
the conjugacy classes of subgroups of m;(/V). The correspondence is given by
X  pami(X). Let Zy,..., Z; the coverings corresponding corresponding to
G-, Gy Cm(N).

To show that Z; admits an Einstein metric, let’s remember from Proposi-
tion 5.3.1 that the manifold N is diffeomorphic to complex surface with ample
canonical line bundle. Hence, by Theorem 2.3.2, it admits a K&hler-Einstein
metric of negative scalar curvature, and so do the covering spaces Z;.

Notice that it is enough to show that the manifold Z; has infinitely gen-

erated second homology, the others will follow analogously. N is constructed
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as the minimal resolution of N', introducing exceptional rational divisors with i

self-intersection —2 at the singular points.

Without loss of generality we can assume that the loop 3; passes through p;

and avoids all the other branch points p;,4 > 1. Let Bi= B\ {m}) ¥ {a1}), |

and Py = 81\ f7H(6: \ {n1}) x {ql}). Then P is a point on an exceptional ‘i)

sphere, which we denote by E. \"

Let f': Z1 — N the covering map satisfying fam(Z) = Gy Then 'I

81 ¢ Gy implies that f'~'(8]) is a line. Hence, /' }(P) = {P{|5 e Z} and
FHE) = {F|j € Z}, with P! € k7.

By the uniqueness of the lifting property the spheres £/ are all disjoint,

They all have self-intersection -2, so they generate different classes in Hy(Z,).

Hence Z; has infinitely generated second homology, and implicitly the same

result is true for any Z;. ‘ O

We remark that these manifolds can not be obtained as the complement

of a divisor in a complex surface, as they have infinite homology.




Chapter 8

The rational blow-down

We saw in the previous sections that the methods to construct symplectic
manifolds are via surgeries: normal connected sums or rationsl blow-downs, It
is a interesting problem to decide the existence or the non-existence of complex
structures on symplectic 4-manifolds constructed by these two ‘tec:hniques. The
question we would like to address here is the following: if the initial manifold
admits an integrable complex structure, when does the resulting manifold

admit a integrable complex structure? We provide a suflicient condition:

Theorem 8.0.2. Let G be a finite group acting with only isolated fived potnts
on a smooth, compact, complex surface S with H*(S,@g) = 0. If the sin-
gularities of S/G are of class T, then the full rational blow down S of the
minimal resolution of S/G admits complex structures. -Moreover, as a smooth
4—manifold, S is oriented diffeomorphic to the generic fiber of o I-parameter

Q— Gorenstein smoothing of S/G.

'To explain our result, we should recall that the singularities of type 7'

are either rational double points or quotient singularities of a particular type.

62




'The exceptional divisor of the minimal resolution of this last type of quotient
singularities is a linear chain of rational curves on which the rational blow
down can be performed. What we mean by the full rational blow down is
rationally blowing down all of the exceptional divisors which appear resolving
the singularities which are not ordinary double points.

As an application we study a series of examples obtained by letting 7,
the multiplicative group of roots of order 4 of unity, act on a product of
two appropriated Riemann surfaces. As a particular case, we find a complex
structure on an example constructed by Gompf, on which the existence of
complex structures was still an open problem.

To briefly recall Gompf’s example, we start with a simply connected, rel-
atively minimal, elliptic surface, with no multiple fibers, and with Euler char-
acteristic c; = 48, Up to diffeomorphisms {FrtMo94], there is only one such
elliptic surface, which we call F(4). It is known that £(4) admits at most nine
rational {—4)—curves as disjoint sections. We can form the normal connected
sum of it with n copies of CP,, the complex projective plane, identifying a
conic in each CP, with one (—4)—curve of E(4). This operation is the same
as rationally blowing-down n (—4)—curves, and we obtain Gompf’s examples
[Gom95, page 564] denoted by Wy, where n = 1,...,9. The manifold Wy
is does not admit any complex structure, as it violates the Noether Inequal-
ity, but the existence of complex structures is topologically unobstructed in
the other cases. In Gompf’s paper, he shows that the 4—manifolds Wy p, for
n = 2,3,4, and 9 are diffeomorphic to complex surfaces. We find a complex

structure on Wyg.




In this thesis we discuss the above examples from the point of view of

deformation theory. We prove:

Theorem 8.0.3. The 4—manifolds Win,n = 2,3,4,8,9 admit a complex

structure.

The emphasis is on the methods we employ. One technique comes from
Manetti’s interpretation of the rational blow down in algebraic setting as the
l-parameter Q—Gorenstein smoothing of a certain class of rormal surface
singularities. The second method is a natural approach towards the normal
connected sum construction and it consists in viewing it as the smoothing of

a simple normal crossing algebraic variety.

8.1 An algebraic description of the rational
blow-down

The point of view we adopt in this paper is that the generalized rational blow
down procedure and the smoothing of isolated complex surface singularities
are essentially the same in the algebraic setting. Here we consider only the
case of some quotient singularities, a case well documented in the literature.
Following Manetti’s presentation [Man01] of the results of [KoS-B88], we

begin by recalling the terminology and some general results.

Definition 10. A normal variety X is Q— Gorenstein if it is Cohen- Macaulay

and a mulliple of the canonical divisor is Cartier.

In this context we need a generalization of the definition of a smoothing;
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Definition 11. A flat map 7w : X — C is called an one-parameter Q— Gorenstein
smoothing of a normal singularity (X, z) if 771(0) = X and there emists U ¢ C

an open neighborhood of O such that the following conditions are satisfied:

i) X is Q— Gorenstein,
i) The induced map X — U is surjective,
i1) Xy =7(t) is smooth for every t € U — {0}.

Definition 12. A normal surface singularity is of class T' if it 1s a quotient

singularity and admits a Q— Gorenstein one-parameter smoothing.

The following result of Kolldr and Shepherd-Barron [KoS-B88| gives a com-

plete description of the singularities of class 7.

Proposition 8.1.1 (Kollar, Shepherd-Barron). The singularities of class
T are the following:

1) Rational double points;

2) Cyclic singularities of type #(l,dna — 1), ford > 0, n > 2 and
(a,n) =1,

Remember in Section 4.1 we introduced the rational double point singulari-
ties as the singularities for which the deformation and the resolution manifolds
are diffeomorphic,

Next, we introduce the above cyclic singularities, Let a,d,n > 0 be integers

with (a,n} =1, and ¥ < €3 x C? be the hypersurface of equation

uv —y® =Y 4yt




3

where u,v,1/, 1o, ..., t4-1 are linear coordinates on C* x C%. Z, acts on ), the

action being generated by:

214
n

('U,, U)y;to'n v }td—l) = (C'LL, C_IU: Cay: tO: v ?td—l))Where C =€

Let X = Y/7, and ¢ : X — C? the quotient of the projection Y — C¢,

Proposition 8.1.2. ¢ : X — C% is a Q- Gorenstein deformation of the cyclic

1
singularity (X, z) of type a-—(l,dna —1).

2
Moreover, every Q— Gorenstein deformation X — C of g singularity (X, )
1 . .
of type E@(l?dna — 1) is isomorphic to the pullback of ¢ for some germ of

holomorphic map (C,0) — (C4,0).

If a global Q— Gorenstein smoothing exists then the foilowing; proposi-
tion due to Manetti [Ma80] gives an algebraic interpretation of the algebraic

rational blow-down.

Proposition 8.1.3. Let X be a compact complex surface with singularities of
class T, X be its minimal resolution and 7 : X — U a Q— Gorenstein smooth-
ing of X. Then the full rational blow-down of X is oriented diffeomorphic to
Xy =n"1(t), for any t#0. |

Manetti’s algebraic description of the rational blow-down procedure gets
more substance by providing a global criterior for smoothing of singularities.
Let X be a compact, reduced analytic space with Sing(X) = {z,, ... Tt
By restriction, for each ¢ = 1,...,n, any deformation of X defines a deforma-

tion of the singularity (X, z;) with the same base space. Thus, if Def X and
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Def(X, z;) denote the base space of the versal deformation of X and (X, z;),

respectively, there exists a natural morphism:

n
B : Def X — H Def(X, z;)
i=1
If all of the singularities (X,z;) are of class T for each ¢ we can choose
in Def(X,x;) the (smooth) component corresponding the Q—Gorenstein de-
formations. What we are interested in here is when these deformations of
singularities lift to a deformation of the total space. The answer is given by a

general criterion of Wahl:

Proposition 8.1.4. Let ©x be the tangent sheaf of X. If H(X,0x) = 0, then
the morphism ®© is smooth. In particular, every deformation of the singularities

(X,2), i=1,...,n may be globalized.

For the proof of this proposition we refer the interested reader to either
[Wah81, page 242] or to [Man91, page 93].

We will use this criterion in the following situation.

Suppose we start with a smooth compact complex surface X, Let G be
a finite group acting on X with isolated fixed points. Let ¥ = X/G be the
quotient, {#1,...,y} = Sing(Y) the singular locus of ¥, and f: X — Y the
quotient map. We denote by ©x the holomorphic tangent bundle of X, and
by Oy = (QL)", the tangent sheaf of Y.

Lemma 8.1.5. In the above notations, H*(X,0x) =0 == H*(Y,8Oy) = 0.

Proof. To prove the vanishing of H2(Y, ©y) = 0, we need to have a convenient
description of the tangent sheaf Oy of Y. In our case, this is provided by
87




i

Schlessinger [Sch71]:
Oy = (fBx)°.

Now, by averaging, we get a map f,0x — Oy = (£,0x)°. But this means
Oy is a direct summand of f,@x. To finish the proof, since f is a finite map,

the Leray spectral sequence provides an isomorphism:
H*(X,0x) ~ H*(Y, [.8x),

and the conclusion of the lemma follows. O

Proof of Theorem 8.0.2, Assume now & acts on a smooth complex surface S
with fixed points only. If the singularities of S/G are of class T only, we can
look at the components of each versal deformation space of aﬁy such singular
point, and pick the one corresponding to Q—Corenstein deformations. The-
orem 8.0.2 follows immediately from the algebraic description of the rational

blow down, the globalization criterion 81.4 and Lemma 8.1.5, ]

Remark : We should point out that the smoothing of rational double points
are diffeomorphic to their minimal resolution. Thus, for the singularities of
class 1" the full rational blow down, essentially performed only on the minimal
resolution of the quotient singularities which are not rational double points,

coincides with the simultaneous smoothing of all the singular points. O
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8.1.1 A family of examples

In this section, by adopting the above viewpoint, we will exhibit a complex

structure on Gompf’s example Wy .

Let C C CP! x CP! be the smooth curve of genus 3 given by the equation
F(z,w) = 25(wg + w}) -+ 21 (w§ — wi) = 0,

where (z,w) = ([ : 21], [wo : wi]) are the standard bi-homogeneous coordi-
nates on CP! x CPL.
An easy calculation shows that the action of the cyclic group Z4 on

CP! x CP! generated by
(20 : 21), [wo : wn]) = ([izo : 21], [wo : wy])

fixes two lines [0 : 1] x CPY,[L : 0] x CP'. Its restriction to C' is well-defined
and has four fixed points: two points P; = ([0 : 1],[1 : (=1)}1)), j = 1,2
where in local coordinates Z4 acts by multiplication with t, and two other
points Q; = ([1: 0],[1 : (—1)7*14]), j.= 1,2 where in local coordinates our
group acts by multiplication with —i.

We will be interested in the manifold obtained hy taking the quotient of
C' x € under the diagonal action of Zy. Let X = (C x C)/Z,. This action has
16 fixed points. At eight of them, (P, F;), and (Q, Q;), k,7 =1,2 the group

Zy acts (in local coordinates) as

(21, 22) > (121, 129),
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while at the other eight (P, Q;) and (Qk, ), k,5 = 1,2 it acts as
(21, 23) > (iz1, —i2y).

Thus, the singular complex 2-dimensional variety X has 8 singular points of
type Az and 8 quotient singularities of type i(l_, 1}. The minimal resolution
of the last type of singularities consists in replacing each such singular point
by & smooth rational curve of self-intersection (—4). Let X be the minimal

resolution of X,

Proposition 8.1.6. X is a simply connected, minimal, elliptic complex sur-

face with no multiple fibers and with the Buler characteristic ¢y = 48,

Proof. The quotient C/Zy is a rational curve, and we denote by P, Py, () and

@5 the image of P, P, @y and @4, respectively, under the projection map.
Let:

7T1:)?“**O/Z42CP1

the projection on the first factor. This fibration has four singular fibers above
Fjand @}, 7 =1,2. The generic fiber is a Riemann surface of genus 3, while
each of the singular fibers consist of a chain of nine spheres, one of which is the
quotient C/Z4 and the other eight are exceptional spheres introduced by the
resolution of singularities. It follows that our manifold is simply connected.

To see the elliptic fibration, we consider first the covering:

m Xyt X — (O X C)/(Ta ® L) = C/ Ty x C/Zy = CP* x CP.
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As the construction is symmetric in the two factors, we will use freely the
identification of C/Z, with CIP; with four marked points ij, o J=1,2. Let
B, D C CP*' x CP! be the following divisors:

B = {P[} x CP* U{P}} x CP' UCP" x {Q}} UCP" x {Q}}

D ={Q} x CPTU{Q5} x CP' UCP! x {P} UCP" x {F}}.

X can be presented as a bi-double cover of CIP! x CP!, first branched over the
union of B and D, then branched over the union of the total transforms of B
and D,

Remark that Ogpixcpt (B) & Ogpryep (D) = Ogpryep (2,2) and the generic
element of the associated linear system is a smooth elliptic curve. Let L be
the pencil generated by B and D. The base locus of this pencil, BND =
{(F, P, (@, Q). 1,5 = 1,2}, is a subset of the set of singular points of the
branch locus of the first double cover, hence the linear system (m; x m5)*(L)
will be base point free, with smooth elliptic curve as generic section, This
gives us an elliptic fibration. The exceptional divisors introduced above BN D
are the eight sections of the elliptic fibration, all of self-intersection —4.

Next, we need to know two topological invariants, the FEuler characteristic
X()? ) and signature a(}? ), for example. Both computations are immediate.
We obtain y(X) = 48 and 7(X) = —32, which imply 3(X) = 0. Because of
the existence of the elliptic fibration we know that the manifold can not be of
general type. Hence the classification of complex surfaces and the topological

invariants imply that X is minimal.
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In particular, by [FrMo94], X is diffeomorphic to E(4). Applying Theorem

8.0.2, we can conclude now the existence of complex structures on Was.

Our example can be easily generalized in the following way. Consider the

smooth curves Cy, C; C CP! x CP! given by the equations

23 fi{wo, w1) + 21 g (wo, wy) =0

and
25 fi(wo, w1) + 2gi(wo, wy) = 0,
respectively. Here (fx, g») and (f;, g;) are generic pairs of homogeneous poly-

nomials of degree k, and [, respectively. The above discussion can be now

easily repeated for Cj x ) and the induced Z4 action.

8.2 The algebraic normal connected sum

In this section we approach the normal connected sum procedure from the
algebraic point of view. We will test this technique on Gompf’s examples

Wi, for n=2,3,4 and 9.

Mimicking the symplectic normal sum, we start with two pairs of complex
varieties (X1,71), (Xa,Ys), where X;, ¢ = 1,2 are smooth and Y; C X, i=1,2

are smooth subvarieties satisfying the following conditions:
o Y Yy,

— ki
M NYI‘XI - NY2|X2'
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Using, the condition on the normal bundles, we can glue X; and Xy to form
a normal crossing complex variety Z. Then the symplectic normal sum, in
particular the rational blow-down of a (—4) sphere, can be interpreted as a
smoothing of Z, in the sense of Friedman [Fri83], as long as the smoothing is of
Kihler type. Before we proceed, we recall some basic facts on the deformation

theory of singular spaces.

8.2.1 Deformation theory of normal crossing varieties

If Z is a compact, singular, reduced complex space, the deformation theory
of normal crossing varieties [Fri83] is given in terms of the global Ext groups
Ty = Ext'(Q5,0z). T} will describe the infinitesimal deformations of the
comple:s; structure of Z, and the obstructions lie in 7%. These groups are usually
computed from their "local” versions, the sheaves £xt'(Qz, Oz) =: 7%, using
the "local to global” spectral sequence E}? = HP(r}) = 151,

Suppose Z is a simple normal crossing variety, i.e. Z locally looks like &
union of hyperplanes, whose irreducible components are smooth, In this case,

the local to global spectral sequence gives:
0— HY(rp) = Ty — H(13) — H*(13) — T2 — 0. (8.1)

The space H{7} classifies all "locally trivial” deformations of Z, i.e. for which
the singularities remain locally a product. Their obstructions lie in H2(72).
In the cases treated below, Z is chosen to be d—semistable, that is 7% —

Op, where D = Sing(Z) is the singular locus of Z,
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Definition 13. We say that a proper flat map 7 : 2 — A from a smooth
(n+ 1j—fold Z to A = {|z] < 1} C C is a smoothing of a reduced, not
necessarily irreducible, complexr analytic variety Z, if m1(0) = Z and 7 1(t)

s smooth fort € A sufficiently small.

Remark Before we proceed with our examples, we should point out that of
H*(75) = HY(Op) =0, then T = 0, and so the deformation problem is unob-
structed. If Z is d— semistable, it will admit [Fri83] o versal {one-parameter)
deformation with smooth total space, and smooth generic fiber. In this case,

we say we have a one-parameter smoothing of Z. (]

8.2.2 Gompf’s examples

In what follows we are going to treat a very particular situation, and give a

simple cohomological criterion suitable to the study of Gornpf’s examples.

Let S be a complex surface, containing n smooth, disioint, rational curves of
self-intersection —4, which we are going to denote by Dy,.. ., Dy. As discussed,
for each of these curves, we can glue in a copy of CP? to form a simple normal
crossing complex variety denoted by Z with n + 1 irreducible components,
and Sing(Z) = D; + -+ + D,,. Since each copy of CP? is glued along a conic,
it follows that Z satisfies the d—semistability condition. An easy, but useful

criterion is;

Proposition 8.2.1. Z admits a one-parameter smoothing if

H*(8,05® Og(=Dy — -+ = D)) = 0.
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Proof. From the ending remark of previous section, it suffices to check whether
H*(r9) = HY(D,Op) = 0, where D = Dy +4 - + D,.
Since the Dj's are smooth, disjoint, rational curves, it follows that

HY(D,0p) = 0. The sheaf 72, naturally sits in the exact sequence:

0 — @S ® Os(—D) oD @ @C]P2 & OCPZ(“O.;) — Tgv —r @D — O, (82)

i=1
where by C; we denoted the smooth conic in CP2 corresponding to D;. But,
for any smooth conic ' C CP? we have H2(CP?, O¢pz @ Ogp(—CY)) = 0. A
simple inspection of the eohomology sequence associated to (8.2) concludes

the proof. O

We take now a look from our perspective at Gompf’s examples Wy, for
n = 2,3,4 or 9. In these cases, he found complex structures as appropriate
multiple covers of CIP?, Guided by his complex structures, what we do here is
merely to reprove this in an algebraic, more conceptual way, using the method
described above. We will discuss only the Wy, case, the rest of the cases follow

analogously.

We start with the Hirzebruch surface $4. We denote by Cy the negative
section and by f the class of a fiber. Let f: X — %, be the double cover of 24,
branched along a smooth member of the linear system D € [4(Co +4£)]. Such
& smooth member exists, as a consequence of the standard results on linear
systems on Hirzebruch surfaces [Har77]. X is a smooth, simply connected
elliptic surface, diffeomorphic to E(4). Moreover, since D and Cy are disjoint,

X contains exactly two smooth rational curves of self-intersection —4, the two
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irreducible components of the preimage of C,. We denoted these two curves
by Dy and Ds.

We perform now the algebraic normal connected sum along these two
curves gluing in two copies of CPP?, each along a smooth conic, and denote
the newly formed singular variety by Z. From Proposition 8.2.1 we know that
if H*(X,0x ® Ox(—D; — Dy)) = 0, there is no obstruction to the smoothing

of Z . Using the structure of X as a double covering of ¥4, and the Leray

spectral sequence, we get:

HY(X,0x ® Ox(—D; — Dy))
= H*(X,0x ® f*O05,(—Cy))
= H2(24, f*®X @ 024 (H"OU))

= H2(24, @)34 & 024(—00)) a2) H2(24, 924 & 034(—300 — Sf))

To prove the vanishing of the last two cohomology groups, we use the Serre

duality:
H?(Z4, 05, ® Ox,(—Cy))
= H(2,, 0}, ® Og,(Co) ® Og, (Kx,))
= H(%4,Q}, ® O5,(—=Cy — 6)).
Here Ky, = —2Cy — 6f denotes the canonical divisor of ¥4. Since the divisor

Co + 6f is effective and is linearly equivalent to a smooth curve [(Har77], we
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have the exact sequence of sheaves:
0= Qy, ® Os,(—Co — 6f)) — O, — Oyrsr — 0.

Passing to the cohomology sequence and since H (%4, 04 ) = 0, we get the
vanishing of H*(X4, Ox, ® O, (—Ch)).

For the vanishing of the second term we proceed in the same fashion:

H2()34,®g4 ® Oz, (—3C — 8))
= HO(E*’-i% Qih & 024(300 + Sf) & 0334 (Kﬂtx))

= H(S,, 0}, ® O, (Co -+ 2f)).

Arguing by contradiction, if there exists a global non-zero section of 0% , @

Oy, (Cy + 2f), then it must exist global non-zero section of

/\(Q ® Oz, (Co + 2f)} = Og,(Kz,) ® O5,(2C) + 4f) = Oy, (-2).

But this is impossible.

The computations for the other examples go along the same lines, with
minor modifications. For W, 3 we end up with the complex structure of the
3 : 1 covering of CP? branched along a smooth sextic curve, Wy 4 is the simple
bi-double cover of CP? branched along a transverse pair of conics, and W, g is
a &3 & Zs cover of CP? branched along 3 transverse conics, With the results

obtained in the previous section, the proof of Theorem 8.0.3 is now complete.
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