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Abstract of the Dissertation

Conformal dimension of Cantor sets and curve
families in the plane. Central sets of

Hausdorftf dimension 2.
by
Hrant Hakobyan
Doctor of Philosophy
in
| Mathematics
Stony Brook University

2006

The infimal Hausdorff dimension among all quasisymmetric images
of a metric space (X, dx) is known as conformal dimension. This is
an important quasisymmetric invariant which was used to distin-
guish certain Gromov hyperbolic groups. One usually finds lower
bounds for the conformal dimension by finding appropriate “thick”
families of curves in X. In this thesis we define a quasiconformally
invariant notion of “thickness” of a family of (not necessarily recti-
fiable) curves. This is done by introducing a notion of a “conformal
dimension of a curve family” which unlike the Hausdortf dimension

is a quasiconformal invariant. We investigate the general properties
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of these notions their connection to the conformal dimension and
apply these ideas to distinguish quasiconformal classes of certain

fractal spaces in the plane.

A subset of a line F is said to be quasisymmetrically thick if its ev-
ery image f(F) under a gs self map of a line has positive length, A
part of the thesis is related to the following question of Bishop and
Tyson. Is there a set on the line which is not quasisymmetrically
thick but has conformal dimension 1?7 We answer this affirmatively
by showing that uniformly perfect regular Cantor sets are minimal
for conformal dimension iff they have Hausdorff dimension one.
The corollaries are: 1) characterization of middle interval Can-
tor sets which are minimal for conformal dimension; 2) existence
of “rigid” subsets of a line whose every quasisymmetric image has
dimension 1 and 0 length; 3) existence of subsets of a line of confor-
mal dimension 0 which are minimal for quasisymmetric self maps

of the line. We also extend the main result to higher dimensions.

The third part of the dissertation answers the following question
of Fremlin: Is there a planar domain D s.t. the central set of D
has Hausdorff dimension greater than 17 Iere the central set is
the collection of centers of maximal discs included in D, We give
an example of a simply connected domain which has central set of

Hausdorff dimension 2.
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Introduction

A central problem of the classical complex analysis is uniformization: classi-
fication of simply connected Riemann surfaces up to conformal isomorphism,
The modern version of this is known as quasisymmetric uniformization prob-
lem: classification of metric spaces up to quasisymmetric isomorphisms. Qua-
sisymmetry is a notion introduced by Tukia and Vaisala which generalizes the
concept of quasiconformality in R?,n > 2 (see below for the definitions).
Roughly speaking this problem asks for geometric or rather metric condi-
tions on a usually nonsmooth or fractal metric space which imply its equiva-
lence to some nice model. This is a hard problem and only for very few cases an
explicit characterization is know. For instance in [38] Tukia and Vaisala give
a necessary and sufficient condition for a metric space to be quasisymmetric
to the unit circle. The important case of the 2 sphere has been considered by
Bonk and Kleiner in [8] where a necessary and sufficient condition was given
for an Ahlfors 2 regular metric sphere to be quasisyrmetric to the §% with

the standard metric. Recall that a metric space (X ,dx) is Ahlfors ¢} regular

if there is a constant 1 < C < oo s.t. for every ball B, of radius r < diamX




the following inequalities hold:

érQ < Ho(B,) < O, (1)
where Hg denotes the Hausdorff ¢ measure.

Given a metric space (X, dy) one can consider the “snowflake” metric on
X given by d%(,7), 0 < € < 1, which is quasisymmetric to the original metric
but the Hausdorff dimension of X with respect to d5 is strictly larger than with
respect to dx. On the other hand it is not always possible to “compress” - the
space to make the Hausdorff dimension go down. Indeed, since quasisymmetric
maps are homeomorphisms they cannot map R" onto a space of Hausdorff
dimension less than n. More interesting examples arise when one considers
“fractal” spaces for which the Hausdorff dimension is larger than topological
dimension, e.g. Cantor sets, Sierpinski carpets etc.

In order to find a “nice” model for a metric space it would be natural to
“minimize the Hausdorff dimension in an attempt to optimize the shape” (see

28], section 7).

Definition 0.0.1. Let (X,dx) be a metric space. Conformal dimension
of X s
Confdim X = inf dimg Y, (2)

where the infimum is taken over all spaces Y which are quasisymmetrically

equivalent to (X, dx).

This quantity was introduced by Pansu in [34] in the context of the bound-

aries at infinity of Gromov hyperbolic metric spaces (see also [27]) and since




then several other quasisymmetric invariants have been called conformal di-
mension.

Besides the fact that finding the conformal dimension of a space is an
attempt to find a nice metric on the space it could also be used to distinguish
“conformal gauges” - quasisymmetric classes of metric spaces (in [26] this
terminology is attributed to Dennis Sullivan).

Clearly one has

dimg,, X < Confdim X < dimy X.

Definition 0.0.2. X is minimal for conformal dimension if conformal

and Hausdorff dimensions of X coincide

Conf dim X = dimyg X.

For every e € [1,00] there are sets minimal for the conformal dimension
of dimension . These were constructed in [33], [41]. Moreover in [7] it was
shown that there are Cantor sets of conformal dimension «. It was conjec-
tured by Jeremy Tyson and proved recently by Leonid Kovalev [29] that if
dimg X < 1 then the conformal dimension of X is 0. The important example
of a space minimal for conformal dimension is X x (0, 1) with the product met-
ric. This means that if two spaces have different Hausdorff dimensions then
their product with an interval cannot represent the same conformal gauge.

Just like in the last example one usually proves that X is minimal by ex-

hibiting a “thick” family of paths in the space or its tangent spaces. This




means there is a family of rectifiable paths in X of nonzero modulus with re-
spect to a suitable measure on X, In chapter 2 we introduce a quasiconformally
invariant notion of dimension or “thickness” for path families. The idea is to
combine the notions of conformal modulus and Hausdorff measures to obtain
a one parameter family of conformally invariant measures m(-,£),0 < ¢ < 1,
on the space of path families of X. As a result one obtains a quasiconformal
invariant: “conformal dimension” of a curve family. This is analogous to the
fact that Lipshitz maps can distort the Hausdorff measure of a set but cannot
change its Hausdorff dimension (in this case Lipshitz maps correspond to qua-
siconformal maps while isometries correspond to conformal maps). The usual
modulus corresponds to ¢ = 1. The case of the plane is particularly interesting
since the definitions have geometric description in terms of conformal maps.
This allows one to guess the conformal dimension of certain subsets of the
plane.and show that certain sets are not quasi-conformally equivalent using
classical extremal length estimates. A

In chapter 1 we characterize a class of Cantor sets on a line which are mini-
mal for conformal dimension and therefore have conformal dimension 1 by the
above mentioned theorem of Kovalev. Unlike the usual proofs of minimality,
where one argues by contradiction, we construct a measure of dimension 1 on
any quasisymmetric image of the set. By doing this we answer a question of
Bishop and Tyson [7] and give the first examples of subsets of a line of zero
Lesbegue measure and conformal dimension 1. It is known that a set of the
form X x (0,1) is minimal. So it is natural to ask whether X X & is minimal

if £ is, Even though we are not able to show this we are able to show that

the products of these minimal Cantor sets with themselves are minimal.




In chapter 3 we investigate the following problem about domains in the

plane. Let D C C be a domain. A disc is said do be maximal for D if it
is not contained in a larger disc I’ in the domain. Consider the set of the
centers of maximal dises inscribed in D. In many cases this is also the non-
differentiability locus of the distance function to the boundary of D. Fremlin
proved in [22] that this set has zero Lesbegue measure for any domain of the
plain and asked whether it can have Hausdorff dimension strictly larger than
1. We show that this is possible and construct simply connected domains
with central sets of Hausdorff dimension 2 (also any number between 1 and
2). Moreover, given any gauge function ¢(t) s.t. ¢(t) /12 = 0o as t — 0 one
can take the central set so that it has positive Hy measure. This is done by
constructing a class of domains which we call disc trees for which the central
set is equal to the closure of a tree. The boundary of this domains can actually
be taken to be Lipschitz and given any € > 0 the new domain can be & close

to the unit disc in the Hausdorff topology. This shows how discontinuous the

dependence of the central set for the domain could be.




Chapter 1

Conformal dimension of Cantor sets

1.1 Introduction

Definition 1.1.1, Given M > 1, a homeomorphism f : R — R is said to
be M-quasisymmetric if for every pair of adjacent intervals I and J of the

same length

1 _ f

— < <M : 1.1

¥ = [70)] Y
(here and in sequel | - | stands for the 1-dimensional Lebesgue measure). A

map s quasisymmetric if it is M -quasisymmetric for some M > 1.

We denote by QS and QS(M) the set of all quasisymmetric and M-
quasisymmetric homeomorphisms of R, respectively. This class of maps was
introduced in [3], where it was shown that a homeomorphism of a line is
the boundary map of a quasiconformal mapping of the upper half plane if
and only if it satisfies (1.1). Recall, that a homeomorphism F' : C — C is

K-quasiconformal if:

(1) FF € ACL, ie. F is absolutely continuous with repsect to Hausdorff




1-measure on almost every horizontal and vertical line;

(2) |F3| < k|F,| almost everywhere in C, with & = £ < 1,

"This is one of the many definitions of quasiconformality (we will give other
definitions as we need them)., The Ahlfors’ M-condition (1.1) was then used
to show that sets of harmonic measure O are not preserved by quasiconformal
maps. Namely, there are quasisymmetric maps of a line which are totally
singular: they can map a set of full measure onto a set of zero measure. Even
though this seemed like a very rare phenomenon, later it became apparent that
singular quasisymmetric mapping arise naturally in Teichmuller theory and
Holomorphic dynamics (see e.g. [30], [L3]). On the other hand according the
work of Gehring, Vaisala and Reshetnyak, quasiconformal maps of R™,n > 2
are absolutely continuous in the sense that a set has zero n-measure if and
only if its image has zero n-measure (an important fact which was used for
instance in the proof of Mostow rigidity theoremt). Moreover gc maps (n > 2)
preserve sets of Hausdorfl dimension n.

For arbitrary metric spaces Tukia and Vaisala [38] introduced the following

notion of quasisymmetry which generalizes both, quasiconformality in R",n > -

2 and quasisymmetry in R,

Definition 1.1.2. A homeomorphism f between metric spaces (X,dx) and
(Y, dy) is called n-quasisymmetric for a self-homeomorphism 7 : [0,00) —

[0, 00} #f for all distinct triples z,y,2z € X andt >0

<n(t). (1.2)




Definition 1.1.3. A quasisymmetric map f is power quasisymmetric if
[ is n-quasisymmetric where v is such that there are constants C' > 0, o > 1

such that for every t >0
n(t) < C max{tV®, 1%}, (1.3)

It is a deep property of the Euclidean spaces (n > 2) that the spaces of
quasisymmetric and quasiconformal maps coinside. Therefore, below when we
refer to a quasiconformal map of R" we will mean (1.2).

Given a compact metric space X we are interested in the distortion of
the Hausdorff dimension of X under quasisymmetric maps. If X C R™ then
one can consider the distortion under quasiconformal selfmaps of the ambient
space. In this case if dimpy(X) = 0 then dimy(f(X)) = 0 since quasiconformal
maps of R™ are Hélder continuous (see [1] for n = 2, {23] for » > 2). In
[4] Bishop showed that if dimpz(X) > 0 then for any € > 0 one can find
a quasiconformal map of R™ such that dimgy(f(E)) > 1 — & As noted in
the introduction this could be done for a general metric space by considering
the “snowflake” metric on it, the point is that this map may not extend to
the ambient space. In the opposite direction Tukia [37] proved that for any
g > 0 there is a set £ C R and f € QS such that dimg(R \ £) < ¢ and
dimpy(f(E)) < e. To explain the results of this chapter we need the following
definition from [36].

Definition 1.1.4. Given a sequence ¢ = {¢;}32,, such that 0 < ¢; < 1, we will
denote by I(c) the corresponding {c;} middle-interval Cantor set, which

is constructed as follow. From [0,1], which we will denote by Ey 1, remove the




middle interval of length ¢; centered at 1/2. Call the removed interval Jy,

and the components of the remaining set Fy, and Ey 2. From the middle of

, i =1,2. Continue in the same

E,; remove the interval Jo; of length co|Fy 4
. n—1
fashwn. Let E = n;ozﬂ U?:l E'n,,j where En,j = En_|_1,gju1 U Jn+1,j U En-l—l,?j;

| Jns| = ol Bno1j] and |Enirg) = |Engrl for any j and §'.

The Lebesgue measure of E is |E| =T[5, (1 — ¢;) which is positive if and

only if Y0 ¢; < 0o.

Egn
B Ji,1 Erp
Ean  Jon By s Jia Eys  Jag By

' ]

Figure 1.1: A middle interval Cantor set

Theorem 1.1.5. If F is a middle interval Contor set, dimpg & =1 and [ is a

power quasisymmetric map then dimg f (E) > L.

The middle interval Cantor sets were considered in [36], where a suffi-
cient condition was given, in terms of the defining sequence ¢, for E(c) to be
quasisymmetrically thick: every image under a quasisymmetric homeomot-
phism of a line has positive length. In [14] quasisymmetrically thick middle

interval Cantor sets are characterized.

Theorem 1.1.6 (Buckley, Hanson, McManus.). Let E = FE(e) be o middle




snterval Cantor set. Then i

ce (<« |f(Ee))>0,Yf€Qs,
cg |J P & VM>1,3f€QS(M)si |f(E(c) =0,

I, pe € (0, Dst.ce P\ &  ¥VfeQSHn), f(E(e)| >0 and

3f € QS(My) s.t.|f(E(e)| = 0. j
|

So it is natural to ask whether there is a middle interval Cantor set of
positive measure or even Hausdorff dimension 1 which could be mapped by a
guasisymmetry of a line to a set of dimension < 1. The following corollary of

the theorem 1.1.5 answers this.

Corollary 1.1.7. If E € MIC and dimg E = 1 then dimy f(F) = 1,Vf €
Q5. |

The reason this follows from theorem 1.1.5 is that every quasisymmetric

map of the line is power quasisymmetric. This interesting fact is true for the
much more general elass of uniformly perfect spaces, which we define later. As
mentioned in the introduction Kovalev proved that for every set E of Hausdorff '\
dimension < 1 there is a quasisymmetric map of the ambient space such that
dimg f(E) < e for any ¢ > 0. To this end one can define the following L

quasisymmetric invariant of a subset of a Euclidean space. 1‘

QConfdim E = inf{ dimg(f(E))| f : R" — R*quasisymmetric}.

10 !




This is called quasiconformal dimension of E. Therefore combining the

previous corollary with the theorem of Kovalev we have

Corollary 1.1.8. A middle interval Cantor set E has quasiconformal dimen-

sion 1 if and only if dimpy B = 1.

Given £ C R” the following inequalities follow directly from the definitions
dimye, £ < ConfdimE < QConfdim E < dimg E.

Strict inequalities can occur for each of these cases. Let us comment on the
case of conformal and quasiconformal dimension. It is well known that there
are “wild” embeddings of the Cantor set into R® (e.g. Antoine’s necklace) such
that the complement of these sets are not simply connected. Since every set
of Hausdorff dimension < 1 has a simply connected complement this means
that the quagsiconformal dimension of these wild Cantor sets is > 1. On the
other hand it is not hard to construct a set like that which ig quasisymmetric
(throﬁgh a map which doesn’t extend to a quasiconformal map of R?*) to the
standard middle third Cantor set which has conformal dimension 0.

In the examples above ConfdimE < QConfdimE holds for topological
reasons. So it would be interesting to know wether there are geometric ob-
structions for lowering dimension by global quasiconformal maps. Namely,
suppose £ C R™ and there exists a homeomorphism f of R® s.t. dimy; f(E) =
Conf dim E is it then true that QConfdim F = Conf dimE? In particular is it
possible for Cantor subsets of the plane or a line to have different conformal

and quasiconformal dimensions?

11




Theorem 1.1.9. E(e) € MIC is minimal for conformal dimension if and

only if dimg F{c) = 1 and limsup,_,, ¢ < 1.

One of the directions of this theorem follows from the fact that the qua-
sisymmetric embeddings of uniformly perfect spaces are power quasisymmet-
ric, see section 1.3. The other direction is obtained from the fact that if a
space is not uniformly perfect then quasisymmetric maps of that space can be
very irregular, for instance they do not have to be Holder continuous, see [26].

Combining this with Corollary 1.1.8 we obtain

Corollary 1.1.10. There are middle interval Cantor sets of conformal dimen-

sion 0 and quasiconformal dimension 1.

These examples will have to be non-uniformly perfect. Which raises the

questions.

Question 1. Is there a connected set B C R™ s.4. Conf dim E < QConfdim E?

Is there a similar uniformly perfect example in the plane or on the line?

Bishop and Tyson constructed many examples of Cantor sets minimal for
conformal dimension and asked the following question in [7] (see page 370).
If £ C R is not a quasisymmetrically thick set, then is there a quasisymmetric
image of E of Hausdorfi dimension < 17 In other words: If a set is not
quasisymmetrically thick then does it necessarily have conformal dimension
< 17 Theorem 1.1.5 shows that every uniformly perfect middle interval Cantor
set of zero length and Hausdorff dimension one is an example of a set which
is not quasisymmetrically thick but has conformal dimension 1.

One could also ask: Is there a “rigid” set whose every (JS-image has di-

mension 1 and length 07 In [36] a set is called quasisymmetrically null if all its

12




QS-images have zero length. In [43] Wu had shown that ife=c¢g ¢, Vp=1

then E = F(c) is null. She noticed that in particular null sets can have Haus-

dorff dimension 1. Therefore combining Theorem 1.1.5 with Wu’s theorem

we get an affirmative answer to the question above.

Corollary 1.1.11. There are quasisymmetrically null sets which are minimal.

It’s enough to take the sequence

(1/)i ifi=2"
(173 ifi# 2™

and construct the corresponding Cantor set E(c). We leave it to the reader to
verify that the set has dimension 1 and that Wu’s condition is also satisfied.
Given a Borel set E in [41] it was shown that £ x (0,1) is minimal for
conformal dimension. Also there are some quasisymmetrically thick Cantor |
sets with the similar property. So a natural question is: If M is minimal for

the conformal dimension is it true that B x M is also minimal? Even though

we are not able to answer this question we can show the following.

Theorem 1.1.12. Let E C R be a middle interval Cantor set s.t. dimpg EF=1
and let E™ = E x ... % E be the m-fold product of E. Then dimy f(E™) = m |

for every power quasisymmetric map f. |
Corollary 1.1.13. If E is as above then

QConfdim E™ =m <4 dimyg E™ =m. ’

13
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Figure 1.2: E(c) and F*(c)

1.2 Background Material

Recall that the Hausdorff {-measure of a metric space (X, d x) is defined by

{7 e Vi . Nt BT .
HY(X) = iﬂ% inf z;:(dlamm) X C H U;, diamlU; < ¢ b,

14




where {U;}32; is an open cover of X. The Hausdorff dimension of X is

dll’l’l[f(X) == iﬂf{t . Ht(X) = U}

= sup{t: HY(X) = oo}
One usually gives an upper bound for the Hausdorff dimension of & set by
finding explicit covers for it. Lower bounds can be obtained from the following:

Lemma 1.2.1 (Mags distribution principle). If the metric space (X,dx) sup-
ports a positive Borel measure u satisfying p(U) < C(diamU)¢, for some fized
constant C' > 0 and every U C X then dimy(E) > d.

Proof. For every cover {U;}52, of X we have

3™ (diamUp)? > é >0 = éu(X).

1

Therefore H4(X) > % > 0. O
Let N(X,€) be the minimal number of £ balls needed to cover X.

Definition 1.2,2. Upper and lower Minkowski dimensions of X are

— . log N(X,¢)
d X) =1 _—
m(X) = s =7
. . Jog N(X )
dmyX) = Tt Tlog e

respectively. When this two numbers are the same the common value is called

the Minkowski dimension of X and is denoted by dimp X.

15




Generally one has

dimy (X) < dim,, (X) < dimg (X)

(see [19]). Therefore if X ¢ R and dimg(X) = 1 then the Minkowski dimen-

sion of X exists and is equal 1.

Lemma 1.2.3. If E = E(c) and dimpy(F) = 1 then

(L4)

(1.5)

Proof. I'tom the definition of Minkowski dimension we get

log 27
dimy(E) = lim 5
nee OB T, ey
= lim T
n—oo | — @ lOg kY

Therefore (1.4) holds. Now, from the usual inequality between geometric and
arithmetic means {/[ [, (1 —¢) < £ 300, (1—¢) < 1 we get that £ 37 (1-

i=1

¢;) = 1 or, equivalently, 2 37  ¢; — 0. O
Note that (1.5) implies the following.
Corollary 1.2.4. For a given a > 0 let S = Sy(c) = {i € N|¢ < a}, and

sp = #(Sa N {i < n}). If dimg(F(e)) = 1 then

8
= : 1.
" (1.6

16




1.3 Quasisymmetric maps and uniformly per-
fect spaces

Qur main tool for proving theorem 1.1.5 will be the following lemma from

[26].

Lemma 1.3.1. If f : X — Y 45 n-quasisymmetric and if A C B C X are

such that 0 < diamA < diamB < oo, then diamf(B) ds finite and

1 diamf(A) 2diamA
- < : .
on (§2mB) = diamf(B) ~ T\ damB (L.7)

By distance between sets below we mean the following: if ¥, Z C X then
distx (Y, Z) = inf{dx(y,z)|y € Y,z € Z}.

We will need a different version of {1.7).

Lemma 1.3.2. Suppose X = X:1UXy, with X, Xo compact and dist(Xy, X3) >

0. Then
2 (e

Proof. Suppose z; € X3 and x5 € X are such that dist(Xy, Xp) = dx (1, z2).

This is possible since X; and X, are compact. Let 4 = {z1,z,} then right

17




hand inequality in (1.7) implies ]

dist(f(X1), f(X2)) dist(f{z1), f(z2)) 2dist(zy, x9)
diam f(X) = diam f(X) = ( diamX )

dist( X7, X2) . '
1 (2 diam X ) '
To obtain the other inequality of (1.8) take 1 € f(X1),y2 € f(X3) in [ '
such a way that dist(f(X1), f(Xs)) = dy(y1,%2). Let o} = f~' (). Now take

A = {z},z,}. Then again using 1.7 we get J’

dist(F(X0), S(X2) o1 !
i o (i) :

Since dx(z],z4) > dist(X;, X3) and since 9 is increasing we obtain

1 i i

> H

9 ( diamX ) =g ( diamX ) b
M\ Esela, T\ Ti(x1,X2) :

Combining this with the previous inequality gives (1.8). O 1

Definition 1.3.3. A metric space is uniformly perfect if there is a constant

C > 1 so that for each x € X end for allr >0 I

T

X\B(:c,r);é@ = B(J’E,T)\B(Cﬁ,a

) % 0. (1.9) I

This condition in a sense rules out “large gaps” in the space. Examples of
uniformly perfect sets are connected sets as well as many totally disconnected s
sets, like middle third Cantor set or many sets arising in conformal dynamics.

The following theorem is of importance for us (see [26] for the proof). |
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Theorem 1.3.4. A quasisymmetric embedding f of a uniformly perfect space

X 18 n-quasisymmetric with n of the form
n(t) = C'max{t*, ¢/}, (1.10)

where C' > 1 and o € (0,1] depend on f and X.

In particular, quasiconformal maps of R® are power quasisymmetric and
are Holder continuous. A middle interval Cantor set & (c) is uniformly perfect
if and only if there is no subsequence of ¢ converging to 1. In particular this
means that if [E(c)] > 0 then it is uniformly perfect and hence by Theorem

1.1.5 has conformal dimension 1. This in particular proves Theorem 1.1.9.

1.4 Proof of Theorem 1.1.5

Proof. Fix d < 1 and suppose f : I¥ — Y is a power-quasisymmetric homeo-

morphism, We will construct a measure toon Y satisfying
w(Bly,r)) < Crd

for some constant C' > 0 all » > 0 and all y € Y. It would follow from the
mass distribution principle that dimg(f(E)) > d. Since d is arbitrary we
would have shown that dimg(Y) > 1.

First note that £ (as well as Y) has a structure of a binary tree. Given an
interval F = F, ; as in Definition 1.1.4 there is a unique interval of generation

n — 1 containing 7, which we will call the parent of £ and will denote by
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E. Each interval has exactly two “children” the collection of which will be
denoted by C(E). All the above notations will also be used for ¥: for an
I CY of the form I = I, ; = f(Fn;) we will denote by [ its parent and by I’
its only “sibling”, i.e. the other interval with the same parent as /.

Now define u as follows. Let p(Y) = 1. For any I C Y of the form
I = f(En;) let:

diam?®7 ~
B diam®7 + diamdf’u(f)' (1.11)

(1)

Pirst we will show the growth condition for the subsets of the form [ = I, ;.

Given such an I there is a unique sequence of nested subsets
I=Inc_[n_1CIn_,‘ZC-..CIQCI].CIO:Y

containing it, so that [, = I.. By induction we have

p) )
diam?/  diam?I,
N 1 dia,mdfn_l
diam®l, + diam®l’ diam®Z,_; + diam®r,_,

diamdfl
C L.
diam®I; + diamdfi'u( 0)

(1.12)

Since diam(A U B) < diamA - dist(A, B) + diamB we have

p(I) < f[ (diaml; + dist(Z;, I]) + diamIé)d'

diam®I; + diam?1! (1.13)
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Figure 1.3: Image of the Cantor set.

Let

diam/; + dist(Z;, I!) + diamI{)}®
b = i % (1.14)
diam®I; + diamdfg'

To prove the theorem it is sufficient to show that [[_.p; — 0 as n — oco. ;
Indeed, if this is the case then 3C < oo st. [[i,;p; < C,¥n € N and p
satisfies the mass distribution principle. Now, to prove [, p; — 0 we will

need the following estimates.
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Lemma 1.4.1 {Small gaps). da > 0,0y <1 st <a=p; <Cy <1
Lemma 1.4.2 {(Large gaps). 3Cs > 1 s.t. p; < ﬁ—_%m,w.
Let us prove the theorem assuming these two lemmas. First of all

n Cy i
gpi < H Cy H W (by the two lemmas) ;f

{ignlai<a)  {i<nlo,za}

cyen
[T (L = el

<

(where s, is like in Corollary 1.2.4).

Now, if (1 < 1 and s, /n — 1 then for every number Cy < oo thereis a C5 < 1 i
and N € Nst. forn> N i
CinCy ™ < (.

Hence

ﬁ pi < ( Cs )” ;
i A\ VI —e)te

Since {/11._;(1 —¢;) — 1 and C3 < 1 it follows that [[._; pi — 0. And hence H
the growth condition of the mass distribution principle for g holds for the

intervals I,.

Next we prove the Lemmas (1.4.1) and {1.4.2).

1.4.1 Proof of lemma 1.4.1. Small gaps.

|

\

Recall that for a given a > 0 we had ]
\

1

S@:{iEN'C@<CL},Sn=Saﬂ{'iSn},snzcard(sn). 'J‘

Without loss of generality we can assume a < 1/2.
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Suppose now ¢ € S,. We find it easier to estimate p;* from below.

1 _ diam®l; + diam®I} (diam; -+ diam )¢
B = (diam[; + diamI)) ~ (diaml; + dist(1;, I) + diamI{)d
diam®I; + diam®1! 1 dist(%;, I\
= (diam/; + diamI))¢ (  diaml;_, )

diam®l; 4 diam?I}
2 [T, - diampd (112 (by (1.8))

: d
diami!
+ et
1 ( diam’f; )

: d
diam{
(1 + dia.mfi)

We will show that the the first term in this product is bounded below by a

(1 —n{2))".

constant strictly greater than 1. To do that, first note that there is a constant

1 < D{n) < o0 so that D™ < diam/;/diamI! < D. Indeed,

diami; diamld;
diam.J! — diamlZ;_,
1
> — (by(1.8))
2?7 (dxa,mEFl)

diamE;

1 > 1 _ >Dls 0.

EICREIEES

The second inequality follows by symmetry.

Considering the function z — (%%;“)dd for d < 1 one can eagily see that on

an interval [D~1, D] its smallest value is attained at D and is strictly larger

than 1. We will denote this value by Cy = Cy(n,d) > 1. Therefore

pit 2 Cu(1 - n(26:))* = Cu(1 — n(2a))?. (1.15)

23




Since 7 is increasing and ¢; < a. Now, n(t) — 0 as t — 0. Therefore we
can always choose @ small enough so that Cy(1 — 7(2a))* > 1. So finally we
conclude that there is an a so that for i € S, one has p; > Cy > 1. Equivalently

pi is bounded from above by a constant strictly less than 1.

Remark 1.4.3. Note we haven’t yet used the fact that f is power quasisym-

metric,

1.4.2 Proof of lemma 1.4.2. Large gaps.

Suppose i ¢ S,. Since diaml;, diaml}, dist(I;, I}) < diamZ;_;, we have
~__ (diam; + dist(Z;, 1}) + diamI})*
T diam®I; + diamdfj
3%diam®l;_,

~ diam®Z; + diam?r,

. d . ] d -1
_ g diaml; 4 diamI;
diamIi_l dia,mfiml
dismF;_, )

d

i ( diam B
< gd_ N TR/
- 2

2
= Cnd (—1 _Cz').

Now, since () < C'max{t'/%, 1%}, the last inequality gives

(by(1.8))

OZ(da O‘f)
. S R
pz — (1 _ C@)d/a

As shown before, it follows that
u(I,) < Cdiam®I,
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for every I,.

To complete the proof of the theorem we need to show that a similar esti-
mate holds for any ball B = B(y,r) with y € Y. For that let [; = |F; |, V4, 5.
Clearly [; ™, 0 so there is an ¢ such that l;; < |f~H(B)| < 4. 1t follows then
that there are at most 2 intervals of generation ¢ which intersect |f~1(B)| and
therefore at most 4 such intervals of generation i+ 1. Denoting the latter ones

by Ei,..., B4 (some of these may be empty) we get

#(B) < p(f(B) + ...+ u(f(B0) < CUFE) + .+ F(E)]D.

Now since |E;| < |f~1(B)| it follows that By U...U By C 3f71(B), where
3f71(B) is just the dilation of f~1(8)) and hence

B+ .+ (Bl < 4l f BB

From the definition of quasisymmetry it follows that

[SBFHINI < L+ 20 (U = C(M, Q) 11

and hence combining the last three inequalities we conclude the desired growth

wlIy < C|r

for some constant C' and any ball B(y,r). As we noted in the beginning if
follows that dimg(f(E)) = 1 since d could be chosen as close to 1 as one would

like, O
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1.5 Proof of Theorem 1.1.12.

Proof. The proof is similar to that of theorem 1.1.5 so we skip over the identical

details.

Fix d < 1. We will construct a measure y on Y satisfying
w(B(y,r)) < Crme

for some constant C' > 0 all r>0and all y € Y. This implies dimY" > m.

First note that E™ also has a tree structure where each parent (which in
this case is an m dimensional cube) has exactly 2™ children and the same is
true for Y. For any I C Y, with I being an image of a generating cube of E™,
we will denote by 7 its parent and by C(I) the set of children of 7. Now define
f+ as follows. Let u(Y) =1 and for any 7 C Y of the form 7 = f(Q) let:

diam?®7 "ol
I) = I,
ey (ZJEG@ Lo J) ey

Similarly to the previous proof for every T we have a sequence I = I, C

IL.C...chcly=Y and

JU’(I) - )
Ha]ﬂmd.lr p ( )

i=1

where now p; is defined as follows

. diamdfih 1
. . ¥
> JECiy diam?.J

Dy
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here C; is the collection of children of I;. Let S,, S,, and s, be as before.
Small gaps. Suppose ¢ € S,. Let J;, J{ be the cylinders where the points
realizing diaml;_; lie. In other words 3z; € J;,z; € J! st. dist(z;,z]) =

diaml;, ;. Then

d
(EJEGi—l dla'mj) diamdfz-wl
b = . d : d
ZJEOiul diam®J (EJEC¢_1 diamJ)
d
< (ZJEC;@l dla'mJ) diamdfé_l

T e, diam®T (diamd; -+ diamJ! + dist(J;, J) — dist(J;, J)°

d
3 (ZJEoH dlamJ) (1 _ dist(J;, J;)) -

—_ . d . .
> sec,, diam®J diami;_;

(1.17)

where the last inequality holds because diaml;, ; = dist(x;, z}) < diamJ; +

diamJ] + dist(J;, J}). Furthermore, since

dist(J;, J) <y (2dist(f—1(J¢),f—1(J;))

) < '
diamfi_l diamf—l(fiul) ) - 7’](20@),

we have

. d
(ZJecg-_l dlamJ)
ZJEOi_l diam?.J

pi < (1= n(2a))™.

Now, note that there is a constant 1 < D = D(n,m) < oc so that whenever
J, J' are siblings D! < diamJ/diamJ’ < D. Indeed, we show one of these

inequalities and the other one follows by symmetry. Since ¢; < 1/2 and 7 is
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increasing, we have

diamJ S diamJ S 1
diamJ’ — diaﬂrn}ri_l_%7 (dia.mf—l{f-_l))
diemf-1(J) [
> L > DL

M (1_2.:,-) ~ 2n(4)

Next, congider the function

(1430, =)
T+ o

T = (Z1, e, Tp) ¥

for d < 1 and note that its largest value is strictly smaller than 1 provided 0 <
1/D < z; < D < 00,Yi. We will denote this value by C5 = Ci{n,d,m) < 1.

Therefore (1.17) gives us the following estimate
pi < C3(1 —n(2a))™ = Cy(n, d, a). (1.18)

Since Cf > 1 and 5(t) — 0 as £ — 0 we can always choose a small enough so
that C% > 1. So finally we conclude that there is an « so that for i € S, one
has p; > C% > 1.

Large gaps. For ¢ ¢ S, we use the first inequality of (1.7) to get

pi = diam®7;_, .
f  diam®J amJ_\°
EJEG"* ZJEGH (dgmliﬁl) (1.19)
diam f~1(J) ¢ a2
< |2 = .
- ( JIEn(%}fl " (diamf—l(fi_l) 0477 1—g
The rest of the proof is the same as for theorem 1.1.5. a
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Chapter 2

Dimension type quasiconformal invariants for

curve families and sets in the plane

2.1 Modulus of a curve family and conformal
dimension

Usually one obtains a lower bound for the conformal dimension of a metric
space by showing that the space has sufficiently many curves. Recall from the
introduction that (X,dx)} is an Ahlfors Q-regular metric space if there is a
Borel measure ¢ on X and a constant C' > 1 s.t. for every ball B, of radius

r < diam(X) the following holds

% @ < u(B,) < Cr9,

Let (X, p) be a metric measure space, p 2 1, [' a collection of paths in X.
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A Borel measurable function p: X — [0, oc] is ['-admissible if

i
/ pds > 1, |

v

for every rectifiable v € I', where integration is with respect to arclength.

Now, define the p-modulus of I I
j

mod,(I') = inf /ppd,u, (2.1)

pEA(T)

where A(T") is the collection of I" admissible functions.

The following two fact will be important for us: '
I. mod, is an outer measure on the space of curve families of X )

II. quasisymmetric maps between locally compact, connected Ahlfors Q- 3

regular spaces can change the Q)-modulus only by a beunded factor

see [26], [40] for details. The importance of the modulus for the conformal

dimension comes from the following fact.

Theorem 2.1.1 (Bonk-Tyson, [26] Thm. 15.10). Suppose X is Ahlfors Q-
regular and T' 4s a path family in X s.t. modg(T") > 0. Then Confdim X = Q.

So a “thick” curve family is an obstruction to making the dimension of a H
space smaller by a quasisymmetry. The problem is that given a curve family j
1
|
|

it is hard to guess in general what is the right measure 1 on the space, or in

other words, “how thick” I' is. Moreover, if X doesn’t have any rectifiable

curves then one cannot apply Theorem 2.1.1. On the other hand if I' ¢ X
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where X is Ahlfors ¢)-regular one can define a “dimension of a curve family”

just using the conformal modulus, i.e. modg(-). This is done below in the case

of a plane but can be generalized to spaces where II holds (e.g. R™,n > 3). |

2.2 Extremal length and modulus of a curve

family.

In this section we give the definitions and summarize some of the properties
of extremal length and modulus {or extremal width) of a family of curves in

the plane (see [1] and [2] for further details). i

2.2.1 Definitions

Let €2 be a domain in the plane and T' be a family of rectifiable curves in £2. To b
obtain a conformally invariant version of length one considers the collection

of all conformal Riemannian metrics ds = p|dzl. Here p is a positive Borel-

measurable function on ). Each p allows one to measure the p-length of a

curve v € I' and the p-area of {1

p

A, p) = //,o daxdy.

0

i
\
L{v,p) = /pdzI,
|
\
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The p-length of the family I is

LT, p) = imf L(y, p).

Definition 2.2.1. The extremal length of I’ is

sup, (T, )
o0 i

where sup is over the family of all functions p chosen so that 0 < A(R, p) < oo.

Definition 2.2.2. Modulus or extremal width of I' is

mod(I', Q) = peiﬁfF)A(Q,p), (2.2)

where A(I') 4s the collection of all p-s for which p-length of every curve of T

is at least 1,

Modulus is usually defined as mod(T') = A~1(T"), but this is equivalent to

the definition given above.

2.2.2 Composition laws and other properties.

The following properties of the modulus are easily verified.
e mod(T) > 0 and mod@® = 0
e modlY <modl'if [V ¢ I

We say I'; and ['; are disjoint if no curve of I'; intersects a curve of T's.
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Theorem 2.2.3 (Subadditivity or parallel law.). For every two curve families
'y and I'y _
mod(l'y UTy) < modl; 4 modTs.

If Ty and Iy are disjoint then

mod(TI"; UT's) = modl'; + modl,.

The properties above imply that mod is an outer measure on the set of
all curves in € (this is true in more generality, see [26]). The importance of

this observation for us is that this allows the definitions in the next section. |

One can think of the mod being analogous to the Lebesgue measure on the
line and wonder if there are analogues of Hausdorff measures and dimension i
in this context.

We list some more results of the classical modulus and the extremal length.
We say [' overflows Ty if for every v € T there is a curve ’yl‘ el st v Co
(terminology is from [31]). So roughly speaking I' overflows I'; if there are

fewer curves in [' and they are longer than curves of [';.

Theorem 2.2.4. (Series law) Let Ty and Ty be disjoint disjoint curve families. i

If T overflows Ty and Ty then i

AT) 2 A(TY) + ATz),  or
modleong
modl’; + modly’

modI’ <

In particular if " overflows I'y then AMT") > A(T'y) or equivalently mod(T") <
mod(I'y).
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Examples.

1. If @ = [0,a] x [0,b] then the extremal length of curves connecting the
vertical sides is b/a. Euclidean metric is the extremal in this case.

2. If A= A(r,R) = {r < |2| < R} then the extremal length of the curves
connecting the boundary components of A is 5= log £.

3. An important example is the exlremal distance of two subsets Fy, Fy C
0Q denoted by do(F1, Ey). This is the extremal length of the family of curves
connecting £y and Fy in 2. The extremal length of this family can be calcu-
lated explicitly. Let v = ug, g, be the harmonic function in {2 which is equal

to 0 and 1 on Ey and Ej respectively, and the normal derivative of u vanishes

on 80\ Ey U E}. Then

do(En, Ey) =/ |Vu|*dzdy.
0

According to the geometric definition of quasiconformality, f : C — C is
K-qc if
1
Kmod(l") < mod(f(I')) < Kmod(T") (2.3)
for a fixed constant K > 1 and every curve family I' C C (see [1]). In

particular modulus is a conformal invariant. It is known that in the plane

(2.3) is equivalent to the quasisymmetry condition.
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2.3 Conformal dimension of a curve family.

2.3.1 Definitions

Let @ C C be a Jordan domain. A quadrilateral Q(E, F) in  is a Jordan
domain @ C € with two distinguished disjoint arcs £ and F' on the boundary
of . Let Q(£2) denote the collection of the quadrilaterals in €. The collection
of all curves in a quadrilateral @ connecting ¥ and £ will be denoted (Q; £, F).

Next, given a domain Q let I' be a curve family such that that (0}, v(1) €
00, ¥y € I'. Wesay I is a disjoint curve family if all curves in T" are pairwise

disjoint.

Definition 2.3.1. An e-covering of a disjoint curve family U is o col-

lection of quadrilaterals {Qi(E;, F3) 2, such that:
1. Qi(l, Fy) € Q(Q),
2. T < U@ Bi, 1),
3. mod(Q;; By, ;) < g,Vi.

Definition 2.3.2 (Disjoint curve families). Let ' be a disjoint family of curves
with endpoints in 3Q and S.(I', Q) denote the collection of e-coverings of T'.
Define

== i t .
ma(l,te) = inf { ;mod (@)} (2.4)
and
ma(l',t) = lirrémg(I‘,t, £). (2.5)
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= Bl

The limit above exists since ma(l', t, £) is increasing in e. Now we can extend

this definition and define mq(T,t) in general.

.—-—-""I-—-—-] EimOd(Q‘i)

-
AN

=N
N
&

oVAr-Ia%

Iy B > mod®(¢}; )

A~

Figure 2.1: Covering of a curve family.

Definition 2.3.3 (General curve families). For a curve family T' such that

7(0),v(1) € Q,Vg € T let D(T) denote the collection of disjoint subfamilies of
I' and define

ma(T,t) = sup mq(l,t). (2.6)
I'eD(G)
As a function of ¢, mq(-,t) behaves like the usual Hausdorff measures.
Lemma 2.3.4. Let T' be a curve family. Then
a. If mq(I',t) > 0 then mq(T,s) = 00,VY0 < s < £,

b. If ma(T',t) < oo then mq(T,s) =0,V < s < 1.

Proof. Suppose s < t. From the definitions we have mq(T', ) < e~ *mq(T, 5, €).

Taking ¢ — 0 we obtain (a). (b) is proved similarly. O
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So it is natural to consider the following definition.

Definition 2.3.5 (Conformal dimension of a curve family). For every
I' C Q with endpoints in 9 let
dimpyea (L, Q) = inf{{| ma(l, t) = 0}
(2.7)
= sup{t|mq(T,t) = co}.
Remark 2.3.6. Note that the above definitions do not require I' to contain

any rectifiable curves. We will see below that m(-,t), dimyeq give interesting

information even in these cases.

Remark 2.3.7. One may also define a local version of Diea(X) by considering
the tangent spaces of X in the Gromov-Hausdorff sense. Then one may talk

about Dyoda(X) even for Cantor sets i.e. when X doesn’t contain any curves.

Remark 2.3.8. In many cases it would be more useful to consider only closed
curves. For ezample if I' is the collection of all simple closed curves in a
(round) Sierpinski carpet. In that case it would be more appropriate to start

with the collection of all annuli instead of quadrilaterals.
Let us consider the dependence of mq(I',t) on the Jordan domain 2.

Lemma 2.3.9. Suppose I' ¢ Q@ C ', where 3, Y are Jordon domains and
¥(0),v(1) € 2N O, ¥y € T. Then

mg(I‘, t) 2 mﬂr(F, t). (2.8)

Proof. Suppose Q(E, F') € Q(Q). Consider a quadrilateral Q'{F', F") € ()
obtained by connecting the endpoints of F, F € 8 to endpoints of two disjoint
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arcs £/, F' € 9€Y by nonintersecting curves in such a way that I'M(Q; B, F) C
I'n{Q; £, ). Then mod(Q; £, F) > mod(Q'; ', ') since the second family
overflows the first one.

Now, suppose {Q;}2, is an e-covering of I' with ; € Q(2). Then there is
an & covering {Q;}32, of I' by quadrilaterals ¢ € Q(€') such that mod@; >

modQ, ¥i. Hence mq(T,t} > me (', 1). O

So we introduce the following quantities associated to mod. First let
m(Pa t) = sup mQ(F: t)a (2.9)
1)

where the supremum is taken over all Jordan domains §2 in the plane which

contain the endpoints of all the curves in I,

Definition 2.3.10 (Dimension type quasiconformal invariant of a set).
Let X C C. Define

Dimod(X) = 1+ sup dimypyeq I, (2.10)
rcx

where the supremum is taken over all non-degenerate curve families in X, i.e

those which do not contain constant curves,

Another version of an invariant of a set X C C may be defined as follows.
Suppose F and F are compact disjoint subsets of X. Let I'x(£, F) be the

collection of all curves in X connecting F and F. Define

Dmod(X) =1+ sup dimyq FK(E, F) (2.11)
B.FCK
ENF=0

The reason for adding 1 in the definitions above is that dim,,,q measures mainly
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the “transverse direction of a curve family” while if we want a quantity which
is related to the Hausdorff dimension of the set we have to consider “both
directions”.

Since I' can also be thought of as a subset of the plane Dy,,q(I") makes

sense and is a number > 1. From definitions it then follows that
Diyoa(T) 2 1+ dimpmeq T (2.12)
Example of “Cantor curtains” below shows that strict inequality can occur.

2.3.2 Properties

Theorem 2.3.11. If f is a K-quasiconformal map of the plane then for every
te0,1]
1

zma(l6) < myey(f(T),8) < K'ma(T, 1), (2.13)

Proof. Clearly it’s enough to consider I' to be a digjoint family. First, note

that if {Q;}; is an e-cover of I" then {f(Q;)}: is a Ke-cover of f(T'). Therefore

_ : o). . t _
mf(ﬂ)(f(r)ataKE) - Gxg(lfl%‘f,‘f(ﬂ)) ZmOd (Qw) < Gsl(rilf,‘ﬂ) ;mOd (f(Qz))

i

< K* inf HO,) = Klma(T
< El(r%,mzi:mod (Q1) ma(l,t,€)

For ¢ — 0 we obtain

mye)(fT, 1) < K'mq(T,¢) (2.14)

The other inequality follows from the fact that if f is A-quasiconformal then
so is fh O
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Corollary 2.3.12. If f is conformal then myqy(f(I),t) = mqa(l',t) for all
te|0,1].

So mgq(+,t) can be thought of as a conformally invariant transverse measure
on I'. From (2.13) and the definitions of the previous section we obtain the

following,

Theorem 2.3.13 (Invariance of dimension). If f is a quasiconformal map

of £ then

dimpeq(L, ) = dimp,q(f(T), ),
(2.15)
Dmod(X, Q) = Dmod(f(X):f(Q))

Just like for Hausdorff dimension the upper bounds for dim,,.q are obtained
by using explicit coverings, in this case by quadrilaterals. The lower bounds
one can obtain by using the following analogue of mass distribution principle.

In the next lemma g is a nonnegative, countably subadditive function on
the set of curve families in the plane. If 4(I') > 0 we say u is a positive measure

on I°,

Lemma 2.3.14 (Conformal mass distribution principle). Let ' be a disjoint

curve family. If there is a positive measure p on T' and a constant C' < 0o s.t.
M@ NT) < Cmod*(Q)

for any quadrilateral Q then dimpea(I') > o and hence Dya(I') > 1 + o by
(2.12).
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f: mod*(@;) > é— > u(@ur) > @ (2.16)

Since thig is true for every covering of T it follows that m(I", o) > f@ >0. 0O

From the properties of mod one obtains the following analogues of the

composition laws:

Lemma 2.3.15. If I overflows IV then m(T, 1} < m(I",t) for every t € [0,1].

In particular dimpeq I" < dimpy,oq IV,

Lemma 2.3.16. For every I'y and I'y
m(F1 U Pg, t) S m(Fl, t) -+ m(Fz, t)

and if the families are disjoint one actually has an equality.

2.4 Comparing Confdim and dimge.q. Exam-
ples.

In general we suspect the following inequality to hold for every compact subset
of the plane:
Dioa(X) < Conf dim X. (2.17)

Moreover, even though we show below that strict inequality can occur here,
we expect (2.17) to hold with an equality for the local version of dim,,,q as

explained in Remark 2.3.7,
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We are not able to prove (2.17) but in this section we calculate dimyeq
for several examples for which (2.17) holds with equality as well as some for
which there is a strict inequality. Main techniques used for calculating dimypeq
in these cases are Lemma 2.3.14 and estimates for the extremal length in the

plane. Conf dim can be computed in these examples using Theorem 2.1.1.
Example 2.4.1, If I" is a countable collection of curves then dimyeq I' = 0.

Proof. It is enough to consider digjoint families. For each curve «y in the plane
there is a quadrilateral of arbitrary small modulus for which « is a “horizontal
curve”, Hence given ¢ and [' = {7}, we can find quadrilaterals @, s.t.
mod(Q;) < &/2'. Therefore m(T',t) < &3.,27% — 0 as ¢ — 0, for every
t>0. O

In {7] Bishop and Tyson construct Cantor sets of conformal dimension > 1.
Consider such a Cantor set and let v be a curve which contains it. By the
Lemma above dimmeqy = 0 and hence Dy,oq7 = 1 < Conf dim+y. So there are

examples of sets s.t. (2.17) holds with a strict inequality.

Lemma 2.4.2. LetI' =T'g = E x (0,1), with E C [0,1]. Then

dimyeq(T, [0,1]*) = dimg(E), (2.18)

Dupoa(1,[0,1]%) = dimg F+ 1 = ConfdimT, (2.19)

Proof. The upper bound on dimy,,q is easily obtained by considering rectangles
with bases covering F. So dim,,(I'g) < dimy E.
To obtain the lower bound we use Lemma 2.3.14. First recall that if the set

E has positive Hausdorfl t-measure then there is a positive measure vz on F
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called Frostmann measure which satisfies vy (7 N E) < C|{|* for some constant

C' < oo and every interval / C R. Suppose F C R, dimg(F) = « and
P ={7|7(0) € £,7(t) = 4(0) +it,0 <t < 1},

Take t < . Then H(E) = oo and let vg be the corresponding Frostmann

measure, For an interval 7 < R let
[.L(FI) = VE(F] M R)

Hence p{I'1) < C[I)' = Cmod*(I';). Now for an arbitrary quadrilateral Q

define y by

(@) = sup u(Qn N TYy),
ICR

where @y, is the collection of horizontal curves in the quadrilateral ). Then
Q) < Cmod*(Q)) as well. From the Lemma 2.3.14 it follows that m{'g, t) >
0, for every t < a. Therefore dimyeq(I's) > dimy E. Hence, dimpq g =
dimy F.

The equality ConfdimE x (0,1} = dimg E x (0,1) was shown for Ahlfors
regular £ in [41] and for general metric spaces in [7] (the proof is similar to

the proof of the Theorem 2.1.1). O

A similar example can be constructed as follows. Take two middle interval
Cantor sets constructed so that the ratio of the lengths of the removed interval
to the interval from which it is being removed doesn’t change from step to step.
So for every number 0 < r < 1 there is a corresponding middle interval Cantor

set E,. It’s easy to see that dimpy B, = log, J(1-r) 2. Now consider the curve
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ry T

Figure 2.2: T'g, g,

family which connects {0} x E,, to {1} x E,, by straight lines. Denote this

curve family by I's, g,

Lemma 2.4.3. LetT'=1g n

11 'r2 *

Then
dimpyq [' = max{dimy E, , dimg E,,}.

Proof. We suppose r; < ry and show that dim,,. = dimpg, . We consider
the covering of T' by the quadrilaterals the vertical sides of which are the
generating intervals of same generation for the two Cantor sets. So there are
2% quadrilaterals, each with vertical sides of length (1_%)z and (1“—2"2)2 We
can clearly write I" as follows I' = (22, Uff__l I';;, where [';; is the curve family
connecting the vertical sides of the corresponding quadrilaterals (i;. Let us
estimate the modulus of I'y;. Since for ¢ large enough the ratio of the lengths
of the vertical sides tends to infinity we will compare modl';; to the modulus
of truncated annuli (see the figure below). In this case the modulus can be

explicitly calculated as o log +, where « is the corresponding central angle and
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r and R are the inner and outer radii of the annulus. In our case

(55’

223

Figure 2.3: Truncated annuli |

a5 > sin oy < (1_2”"1)%', and the ratio of the small and the large radii is of

the order (ﬂ)% So ;

1—m
1-— (a1 : 1— T ’
modl’; < ( 5 ) log(l_r1 .

From the definitions it is easy to see that

21
dimpea I' < inf{t : lim Y " mod‘Ty; < oo},
i=1

100 £

Hence dimpmoq T’ < inf{# : lim; o0 274° (152)" < 00} = logy_yy) 2 = dimy By,
The opposite inequality is proved similarly to the previous Lemma by using i

Lemma, 2,3.14, O

Remark 2.4.4. Let T'; be the intersection of I' with the vertical line which

passes through the point = of the real azis and let §(x) = dimg Ty, It is easy :
to see that for every x € [0,1) we have §(x) = max{dimgy E,, ,dimy E,,}. So :

wn a sense dimyq i determined by the dimension of the transverse sets. As {]
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the next example shows dimyeq 5 more related to the “thin” parts of the curve

family. !

2.4.1 Cantor curtains I

We consider the set I' s.t. the intersection of I' with every vertical line passing ||

|
through (r,0) is the middle interval Cantor set B, corresponding to r € (0,1)
of Hausdorfl' dimension logy(;_,y 2. Unlike the previous example in this case

ér(z) = dimy I'; is not constant. Civen a and b in (0,1) s.t. a < b we can

consider the part of I' above (a,b) and we denote the corresponding curve
family by I'sp. In this case the Hausdorff dimension decrease from log, /(1-a) 2

to 10g,/(1..4y 2. These type of sets were called Cantor curtains in [32].

Figure 2.4: Cantor curtain.

Lemma 2.4.5 (Cantor curtains). Suppose ' =T;. Then

dil’l’lmod I' = lelH Eb = [il’lljf.i (SF(IE), (220)

Duodl'’ = dimg B, + 1 =supd{z) -+ 1,
[a,b] A
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Proof. First let us note that the second equality follows from the first one.

Indeed, by definition, for every z € (a, b) we have

2.20)

Dinoal’ 2 dityoq Dap + 1 2 dimp B, + 1 — dimy B, + 1.

The opposite inequality holds since every nondegenerate curve family of I’
overflows I';, or a subfamily of the latter with the same dimension.

We have I' = .2, Uj;l I';;. Since modl’;; is less than or equal to the area
of the corresponding quadrilateral @;; we have that modl'y; < (%ﬁ)% (b—a).

Hence we have

it
dimyeq Uay < inf{t : lim 2° (1 5 a,) < oo} < dimg .

=00

Now since [y, overflows I'y for every z € (e, b} we obtain
dimmoed ['gp < dimyeq ey < dimpy By — dimy F,.

And therefore dimyeq [yp < dimg By, Using Lemma 2.3.14 it is easy to see

that the opposite inequality also holds. (|

From the proof one can see that this property is true in a much more

general setting.
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Chapter 3

Central set of Hausdorff dimension 2

3.1 Introduction

Let D be a domain in R% A ball B = B(a,r) C D is called mazimal in D if ‘
it is not contained in any other ball B’ C D. The central set of D is defined !

|
as |

C(D)={z €D : B(z,d(z,0D)} is mazimol in D}

and the skeleton or medial azis as

M(D) = {z € D : 3 distinct y,y' € 8D s.t%. d(z,y) = d(z,v") = d(z,0D)},

where d(A, B) denotes the Euclidean distance between subsets A, B C R
Clearly M(D) C C(D). On the other hand C{D)\ M (D) is not always empty.
For example for the domain bounded by an ellipse 2—2 + %; =1, (a > b),
C(D)\ M(D) consists of the two centers of osculating circles which touch
the ellipse at the points (—a,0) and (a,0) (see [21]). In the case when 8D

is piecewise C° the central set C'(D) can also be characterized as the non-
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differentiability locus of the function dp : D 3 2 s d(x,0D). More precisely,

in this case
C(D) = {z € D|gpis not C'! in any neighborhood of z}

(see [18] for the proof, actually there C'(D) is called the ridge of a domain).
Another interpretation of the central set is given in [40].

In this article we are interested in the measure theoretic aspects of medial
axes and central sets of planar domains (actually most of the results will be
valid in higher dimensions as well). One of the earliest papers dealing with
these kind of problems is [16], where Erdos proved that A7(D) has Hausdorff
dimension 1 for planar domains. In [22] Fremlin proved, among other things,
the following results about the geometry of medial axes and central sets of

planar domains:
(7) Any medial axis is F, and has Hausdorff dimension at most 1;
(2) Any central set is G4 and has 2-dimensional measure 0.

His paper concludes with the following questions: Can a central set have
Hausdorff dimension strictly bigger than 17 Generally what can be said to
narrow the gap between (f) and (2)7 The goal of this paper is to prove the

following result.

Theorem 3.1.1. There is a domain D C R? with dimg(C(D)) = 2. More-
over, given any Hausdorff measure function ¢ such that ¢p(t}/t> — 0 ast — 0

there is a domain D such that Hy(C(D)) > 0.
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Here and in what follows, given a subset F of R?* dimy(F) will always
denote the Hausdorff dimension of F (see below for the definitions). In fact,
from the proof of the theorem it would be clear that one can take D to be

“almost” the unit disc. More precisely, one has the following corollary.

Corollary 3.1.2. For any e > 0 there is a domain Dy such that dimp(C'(D,)) =
2 and D(0,1) C D, C D(0,1+¢).

Here D(a,r) stands for a dise of radius r centered at a.
Now we give the definitions of Hausdorff measures and Hausdorflf dimen-
sion. Given any metric space (X,dx) and a continuous increasing function

@ [0,00) — [0,00) one defines Hausdorff ¢p-measure of X as follows
H,(E) = li_r%inf{ Zcp(n-) ' EC UD(:ci,n), i < 5} :
i=1 i=1

where D(a,r) = {z € X : dx(a,x) < r}. When ¢{t) = ¢*, for some s > 0,
the corresponding Hausdorff measure is called s-dimensional and is denoted

by H,. The Hausdorft dimension of X is defined as
dimpg(X) = inf{s : Hy(X) = 0} = sup{s : Hy(X) = oco}.

Given a subset I of a Euclidean space it inherits the metric form the ambient
space. This is the metric used to define the Hausdorff dimension of E. Since
we will be interested in obtaining lower bounds for the dimension we describe

here the general method of doing this.

The mass distribution principle. If £ C R? supports a positive mea-
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sure u such that

1(B(z,r)) < Cp(r),

for a fixed constant €' > 0 and for all z € R? and » > 0 then Hy(E) > 0 (see

[19]).

Remark 3.1.3. If ¢ can be chosen so that %fl —0ast—0forall0<p<d
then dimy(E) > d. Indeed, it is easy to see that in this case one would have

Hy(E) > 0 for every p < d therefore £ cannot have Hausdorff dimension less
than d.

In Section 3.2 we define a particular type of domains called “disc trees” for
which the medial axes are trees. In Section 3.3 we show that in some cases the
central set of a disc tree is the closure of the medial axis. In Section 3.4 we
define certain trees which are medial axes of disc trees satisfying conditions of

Section 3.3 and the closures of which contain 2 dimensional Cantor setg

3.2 Disc Trees

Omne might naively think that for a general domain the central set is the closure
of its skeleton. This is not the case. Indeed, in [22] Fremlin gives an example
of a domain with a skeleton which is dense in some disk. But according to (2)
in the introduction the central set cannot have positive measure, so cannot
contain a disc. In this section we define & family of domains for which the
structure of the central set is easily understood. In the next section we will

provide a sufficient condition for the central set to be the closure of the medial

axis.
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We start by considering the so called finitely bent domains (see [11], [12] for
a detailed discussion and some pictures). These are domains which are finite
unions of round discs in the plane. The reason for the terminology comes from
hyperbolic geometry, Consider the plane as the boundary at infinity of the
hyperbolic 3-space H?, modeled on the upper half space R3. Then for every
closed subset £ C R? let CH(E) C H® be the corresponding hyperbolic convex
hull of E. 'This is the smallest convex subset of H® which contains all the
infinite hyperbolic geodesics with both endpoints in . If 7 is a Jordan curve
which bounds a domain Q then the complement of the hyperbolic convex hull
of F in H® has two components, One of these meets R? along  and the other
one along int (). We will call the boundary in H® of the former one the
dome of Q and will denote it by Sq. In the case when {2 is a union of finitely
many round discs, Sq is a piecewise smooth surface consisting of finitely many
totally geodesic“faces”. When two such faces meet they do so along an infinite
hyperbolic geodesic. Each face is contained in a unique hypérbolic plane and
the angle between two adjacent faces is defined as the angle between the two
hyperbolic planes containing them. It is also equal to the angle formed by the
two circles at infinity corresponding to these hyperbolic planes. This angle
is called the bending angle corresponding to the common geodesic, Such a
surface is called finitely bent surface. Using this terminology we can say that
a domain is called finitely bent if its dome is a finitely bent surface in H?, For
a finitely bent domain the skeleton is a finite graph and it coincides with the
central set,

Let us call a domain in the plane a crescent if it is a region bounded

by exactly two circular arcs which meet at two distinct points a,b at some
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(interior) angle #. These points and the angle are called vertices and the angle
of the crescent, respectively. Now for every crescent there is a one parameter
family of elliptic Mobius transformations of the plane fixing the two vertices
and such that the images of one of the edges foliate the crescent by circular

arcs. Namely
(be® — a)z + ab{l — e*)
(et — Dz + (b— aett) '

Tupalz) =

with 0 < ¢ < #. This can be checked by conjugating this family to the family
Tooo(2) = € by the map w = (2 — a)/(z — b), in which case the foliation
of the crescent by the arcs corresponds to the foliation of the angular region
{z € C:0 < argz < 0} by rays starting at 0.

Start from the unit dise Dy. The skeleton M, in this case is the center of
Do.

Let G1 = {Dh;}i2, (first generation) be a collection of finitely many discs
with centers in Dy such that the corresponding crescents Cy; = Dy, \ Do
are mutually digjoint. Tet Dy = Do|J2, D1;. The skeleton M) of D is
obtained from My by adding (radial) segments connecting My to the centers
of the discs Dy ;. Indeed, for every ¢ the corresponding family Tb;r‘b; +» defines a
one parameter family of disks interpolating between Dy and D, ; and passing
through the bending points {b},b; } = 8DqN Dy, Each of these disks is
contained in Dy U D;; and therefore is maximal in Dy U Dy ;. Their centers
sweep out the interval between the centers of Dy and D;;. Now, since the
crescents C; are mutually disjoint the maximal circles of Dy U Dy, are still

maximal in ;. Hence M, is a tree with one vertex of degree ny and ny vertices
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of degree one. Lot
By = {z € Dy|dist(z,0Dy) = dist(x, 0Dp)}.

Then D \ B; can be written as a disjoint union of circular sectors Sy ; of Dy
corresponding to the crescents Cy; (see white regions in figure 1). By \ M;
consists of two type of points: those for which the closest points on 0D, are
bending points (the dark grey triangular regions in fig. 1) and the rest (light
grey circular sectors, which could possibly degenerate to a line segment if two
successive sectors have a common bending point, and white sectors).

Let Go = {Dq;}2, (second generation) be a collection of discs with centers
in UM, Sy ;. Denote by Dy; € Gy the (first generation) disc which contains the
center of Dy ;. We will assume that these second generation discs satisfy the

following;:
(i) Coyi= Dy;\ Dy = Dy;\ Dy
(i) Ca;N Cay = B whenever i # j.

Let D2 = Dl U"?v2

=1

Ds,;. The skeleton My of Ds is obtained from A, by adding
edges connecting the centers of second generation discs to the corresponding
degree one vertices of My, i.e. two centers are connected if one of them is

contained in the disc corresponding to the other. Let
By = int{z € D,|dist(x,0D;) = dist(z,0D4)}.

Again Dy \ By = U2,5;;, ( Sa; is a sector of Dy ; with the arc 8D;; \ Dy)

where these sectors are mutually disjoint and By \ M. can be written as a

54




union of triangles corresponding to bending points and circular sectors.

D(] D]_ D2

Figure 3.1: Construction of the domain D. Shown are Dy, Dy and Dy 2 !
Thick point and the graphs represent My, M; and M. The union of the grey »
regions in D1 is By. Dark grey triangles in D; correspond to the first generation
bending points. In the third picture the dark triangles correspond to the first
and second generation bending points. Bj is the union of the grey parts in
Dy,

In general suppose D has been constructed from Djy_q by adding discs
Diiy @ = 1,...,n or, which is the same, circular sectors Si;. Let Gy =

{Dry1: 15t be a collection of discs with centers in Uj*; Sy;. Denote by

f=

Dy.1; € Gi the (k-th generation) disc which contains the center of Dy.1; !
(the “parent” of Dgyq,;). Assume that k - 1 generation discs satisfy the fol-

lowing conditions:

(1) Cryrs = Drr13 \ Dk = Diy1s \ Dirasg
(11) Ok+1,.,‘; M C{k+1,j = w whenever 1 7'5 j

Let Dyy1 = Dy U*T* Dyy1,4. The skeleton Myiq of Dy is obtained from

M, by adding edges connecting the centers of discs of Gy..y to the corresponding i:, !
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degree one vertices of M. Let
B]c-l—l = ’c.’n,t{ﬁ’,‘ € Dk+1| d’iSt(:U, 8Dk+1) = dist(cc, 8Dk)}

Just as before Dy, \ Byi1 = Upr" Sge1,i, these sectors are mutually disjoint
and By \ Mgy is a union of “bending” triangles and circular sectors., So for
every edge e of My there are two triangles 77 and T~ which have e as a
common edge and the corresponding bending points % and &~ as vertices,
respectively.

Finally we obtain an increasing sequence of finitely bent domains Dy C
DyCc...CcDyC.... Let D ={J2, D;. We will call a domain e disc tree if
it can be constructed as above. Let us call the vertices of the k-th generation

crescents k-th generation bending points.

3.3 Decomposition of disc trees

Let D be a disc tree and let B =J,-, B; and L = D\ B. Then for every point
x € L there is a positive integer k(z) and an infinite sequence of (open) sectors
Sk(x) 1= Sk, k& > k(x), each of which contains z. By taking k(z) to be the
smallest integer with this property we obtain the mazimal sequence of sectors
containing . This means that every such sequence will be a subsequence of
the maximal one. Let ag(z) be the central angle of Sk(z) and let ex(z) be
the edge connecting the centers of Si(z) and Sky:(z). To proceed we need
the following definition: for a domain W C R? let fi denote the set valued

function which associates to a point £ € W the subset of closest points on the
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. boundary,

fw(z) ={y € OW : |y — z| = dist(z,OW)}. (3.1)

By definition M(D) = {z € D} card{f(x)} > 1}. It is clear from the con-

struction that fp|p, = fp,,. |8, for any k,m € N,

Lemma 3.3.1. If D is as above and x € M\ M ND thenz € L.

Proof. Suppose € D and z ¢ L. Then x € B and there is a k € N s.t. ﬁ
2 € By. By the description of By given above it follows then that either &
x € My C M or there is a neighborhood V' C By of  such that #{fplv(z)} = i
#{ fo.lv(z}} = 1 and therefore VN M = . In any case ¢ ¢ M \ M. O I‘

M has a tree structure and each vertex  of M is a vertex of some sector 4
Sij- So x has a parent & and a number of children C(z) = {¢:1(x), ..., co@m ()} | '
If ©,y are vertices we will write y¥ < z, and say that y is a descendant of z, R
if there are vertices & = z,...,2, = ¥ such that z., € C(z). We will call a
sequence of vertices {z;} admissible if z;41 < z;. Let M be the collection of )
limit points of admissible sequences of M. This set in the plane is a realization 3 B

of the space of ends of M. il

Theorem 3.3.2. If D is a disc tree such that every sector has a central angle

| less than w then

M(D)n D c C(D). i

Proof. 'To prove the theorem we will need the following statements.

Lemma 3.3.3. Ifz € (M\ M)YN D then ay(z) — 0.
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Lemma 3.3.4. Ifz € (M \ CYN D then liminfy_,o, ay(z) > .

The theorem will follow since the assumption about central angles at the
vertices of the sectors implies that there are no points in 2 which satisfy the

condition of Lemma 3.3.4. Equivalently M \ M c C(D). (|

Proof of Lemma 3.3.3. Since x ¢ M there is a unique closest point b to x in
oD, Also, since M C M, by lemma 3.3.1 z € L and therefore there is a

unique maximal sequence S;(x),7 > jo such that € (1,5, S;. Denote by

VE i
by, bj‘ and ¢; the corresponding (distinct) bending points and the vertex of
S;, respectively, and let lji = (¢, b;':) We have that z is a limit point of ¢,
ie. z = limgoocj,. Consider the triangular regions 2};,1}: adjacent to the
edges e;, . We know that fD(’l‘}j;) = b;-l;. Clearly there is a sequence of points
:Bj'; € Tﬁ: such that mjfﬂ — 2 (just pick two points in, say 1/k, neighborhoods of
ej, in T, Ue;, UTH), Therefore fp(x} ) = b5, — bsince flina is a continuous
function (see [21], 3.3). It follows that a;, — 0 or 2, since z € D and
the radii of the sectors Sj, are bounded from below and tend to |z — &| > 0.
From our construction it follows that oy, - 27, Indeed, since ¢;, — x, for

every ¢ there is an integer ko such that |c;,_ | < efor all m > 0. By

- Cjk0+m

£

. +
construction ljko @l Thgbm

= @ for m > 0. Now, it is easy to see that there is
an upper bound a(e} < 27 such that every circular sector with a center in the
¢ neighborhood of ¢;, and vertices outside of Sy, will have a central angle
< a;(e) < 27 (see fig. 2 (a)). Therefore oy, — 0. A similar argument implies

that the complete sequence oy — 0. Indeed, if a sector with a center in Sj,

contains x and has vertices outside of S;, then there is an upper bound on its
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(a) ()

Figure 3.2:

central angle which goes to 0 if a;, — 0 (seo fig.3.3 (b)). O

Proof of Lemma 3.8.4. Since z ¢ C(D) there is a unique point y closest to
on 8D and a point 2’ € D such that |2 —y| > |z — y| and the disc D' =
B(2', |x' — y|) contains Bz, |z — y|) and is contained in D, Note that «’ € L
since otherwise we would have had y € f(B) and hence z € B contradicting
Lemma 3.3.1. Take a point ¥ = (1 — &)z + ty with ¢ € {0,1). For kg large
enough [y, 2] C (yzp, Sk Since ¢x — « it follows that g > 7 for k large

enough. a

Remark 3.3.5. It is not true that M N D C C(D) even for domains as nice
as we described. But it is not hard to give conditions such that M = M U M.
Next we give such a condition.

Let Iy, be the length of the longest k-th generation edge of M.
Lemma 3.3.6. If I, — 0 then M = MUM.

Proof. We only need to show that M\ M C M. Suppose ¢ = lim;_.o 2;, where

r; € M and z ¢ M. By lemma 3.3.1 z € L and z € [ Si{z). Then for every
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i € N large enough, there is a k; such that z; € S, (z) \ Sk,41(z) and k; — o0
as 1 — oo, This means that x; € Mp41 \ Mg, and hence |, (2) — 2] < I,

(here ¢x(z) is the center of Si(x)). So,
lex (@) — 2| < |og(7) — @il + |25 — 2] = 0

since {y, — 0. O

3.4 Proof of theorem 3.1.1

We first construct a particular type of trees which can be realized as medial
axes of domains constructed as above and satisfy the condition of Lemma
3.3.6. Then we show that the closure of such a tree can have positive measure
with respect to the Hausdorff measure H,, for the needed type of . The result
then follows from Lemma 3.3.6 and Theorem 3.3.2.

The construction of the trees is by induction. Fix two sequences p = {p;}

and n = {n;} of integers such that n; is divisible by p;. Let ¢; = p; + 1 and

k k k
Ne=[]n» Pe=]]pe Q=[] e
i=1 =1

t=1

Step 1. Let 0 be the root of the tree. Divide the plane into n; congruent
infinite sectors by n; rays emanating from 0 such that angles between adjacent

rays are all equal to ay := 27 /n;. On the bisectors of the angular regions lay
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segments of lengths

1 2 1
Qlinﬁ"'?Qlﬁ
1 2 Pt
Q' Q1T

say in the counterclockwise direction. These are the first generation edges. The
new endpoints of the intervals are the first generation vertices {(we will denote
the collection of these by V1). Note that V; can be thought of as consisting of
p “rows”, the vertices which are equidistant from 0, each of which containing
ny/py vertices.

Step 2. (part I). For each first generation vertex v € V| construct its ng
?hildren in a similar fashion, this time having p, rows with ng/ps vertices in
e;/ery row. Namely, consider the ray r(v) = {(1 —¢)0 + tv : £ > 1}, where ¥
denotes the parent of v (in this case 0), and let r+{v) and r~{v) be the rays
emanating from v for which the angle between each of these and r(v) is oy /2.
In particular, r*(v) are parallel to the rays starting at 9 and separating v from
its “siblings”. Denote by C(v) the cone with vertex v, sides r*(v) and angle
at v equal to a;. Now repeat the step 1 with C(v) instead of the plane.

Step 2 (part II). In other words, divide C{v) by rays into ne congruent

cones of angle ag = @ /ng = 2a/Ny. Lay edges of lengths

1 2 Pa
Q2 Q2" Q2
1 2 D2
Qa' Q" T Q2"

(in the same direction) along the bisectors of these cones. The new endpoints
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are the second generation vertices V5.

Step k + 1 (part I). Suppose the generation k edges and vertices Vj, have
been constructed. For each v € Vi let r{v) be the ray starting at ¥ and
passing through v, as before. Also let 7*(v) make an angle ay,/2 with r(v),
where ap = op_1/ng = 27/Ni. Let C{v) be the cone with sides r*(v) and
angle ay at v.

Step k + 1 (part IT}. Divide C(v) into ng41 congruent cones of opening
py1 = 2m/Niyp1. On the bisectors of these cones lay the edges of generation

k -+ 1 of lengths

1 2 Pyt
Q1 Qrir’ Qrar’
1 2 Pr+1 |

Qk-}—l ’ Qk+1 T Qk+1’

counterclockwise. Thus the new endpoints, children of v, can be written as a
union of pe1 “rows” of cardinality ng+1/pr+1. The collection of the children
of all vertices of generation k gives Vi41. Continue by induction.

Denote the resulting tree by I' = T'(p, n).

Remark 3.4.1. We will see that T has diameter no more than 2 (see 3.4.2
for the proof) and therefore to construct a domain for which it is the medial
axis one needs to start with a disc Dy of radius larger than 1. For each first
generation vertex v € Vy consider the disc D(v) centered at v such that 0D N
Dy = (r™(v)Ur=(v))NODy. Define D1 = Doy, D(v). For av € V3 denote
by D(v) the disc centered at v such that 8D(v)NOD; = (r*(v)Ur~(v))NOD,.
Then Dy = Dy Uyey, D(v). Continuing by induction we get a sequence of

domains Dy C Dy C ... C Dy C ... and get D = |Jpo o Dr. According to the
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previous section T is the medial azis of D and C(D) =T.

To estimate the dimension of T' we consider a special covering of r by
circular sectors. To do that first note that if v is a vertex of generation &
then all its descendants are contained in a subsector of the cone C(v). We
are interested in the smallest such subsector. To find the radius of the latter
we note that the children of v are at most pgp1/Qr+1 away from v, the grand
children are at most g,’“’; + Eﬂ’l away and so on. Hence, we see that any
descendant of v is at most Zi=k 11 P:/Q;i away. Let us denote by C(v) the

circular sector centered at v of angle o and radius > oy pi/ @i Then

r=MyUcw

i=1veV;

Indeed, if V; is the collection of i-th generation vertices then T'c User, Cv)
for all 4. Furthermore, if v/ is a descendant of v then C(v') C O(’Uj. Therefore
T ¢ N2 Usey, C(v). On the other hand N2 Uey, Cv) C T\I'=T by
construction.

Before we continue let us calculate the radius of C(v).

Lemma 3.4.2. Let v € V,, and [ denote the diameter (radius) of C{v). Then
Iy = —. (3.2)

Proof. First, note that

Iy = lim Z LHI (3.3)
e S @
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where Ly 1= limg, oo [pk“ .+ —L] We claim Ly = 1, for every k.

qh+1 Qi1+

Indeed, the general term of the sequence can be rewritten using the fact that

g = p; + 1 as follows

1 1 1 1 n
&+—1ﬂ+...+(———... >p—
G dk Q41 Gk Q41 gn-1/ 9n

Pr D pk+1
z — 1= (1 — —) —
Gx ( Q'k) qk+1 H

Now, given a sequence of numbers ¢; < 1, the following can be seen from

(3.4)

geometric considerations

n—1

et (1= e + oo+ 101 ciden

. i=k (3.5)
i=1
Applying this in our case we get
. 1
Ly = lim [1 — ] =1, (3.6)
TL—00 qk e q,n
since ¢; = p; + 1 > 2, Vi. i

Now we are ready to calculate the Hausdorff dimension of T'. We will use
the mass distribution principle. Define the probability measure p on r by
distributing it evenly among all the sectors of the same generation:

”w@n:%w Vo € Vi

i

To have an estimate on y it will be important to have an estimate on the
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Figure 3.3: The covering of T by circular sectors.

number of sectors intersecting a ball B. For that reason we use the following
notation. For a ball B € R? and i € N let v;(B) be the number of i-th

generation sectors which have positive yi-mass when intersected with B, or

vi(B) = #{C(v) : p(C(v)NB) > 0,v € V;}. (3.7)

Lemma 3.4.3. With the notations as above

Vm(B)gzg—mum_l(B), if  \B| <l (3.8)
i(B) < Puna(B), i |Bl S nsscos(om/2) - (39)
e
N |B] .
v (BY<2——Fmo] ) o < | Bl <ty 3.10
By <2 Bl < 7 (3.10)

where |B| denotes the diameter of B and T, = I[N (i.e. up to a constant

it’s the length of the “base” of the sector C(v) forv € Vi),

Let us first prove our main theorem using this lemma.

(t t—0
= tz

Theorem 3.4.4. If ¢ is a measure function s.t. ¢(t) — oo then there

are sequences p = {p;} and n= {n;} such that H,(T'(p, n)) > 0.
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Proof. Let h(t) = min{t%, \Slqﬁ(tl—i&)} where « € (0,1). Pick p; € N and

define for k > 1

e[

where [] denotes the integer part. Note that from (3.11) it follows that g1 <
Q% and therefore

Qe < Q'
Now, choose k and m so that
ree1 < |Bl <7
Itz < |B] < lmtr
Then by applying (3.8) once and m — k — 3 times (3.9) we obtain

Nm/NkJrl
vm(B) <2 H — - vpr1(B QWWH(B)-

Now, by (3.10)

N/Ng+1 | B ”ﬁc+1=4Nm/Nk @q
P/ Pett  T/Qr41 Pri Pu/Pe 7k b

vm(B) <4

Therefore

vm(B) o 1 Nu/Ny|B|

B) < —
-u’( )— Nm ~ N Pm/Pk; e de+1
P,
= lBIN P QuNkGrt1
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(here and below A < B stands for A < C'+ B where C' < oo is an absolute

constant).

Multiplying and dividing the right hand side by | B| we get

Iy Q
u(B) < |BPEEEdmi BB Qg 2L
B, P

since [B|™' <1} 3 = Qmua. Hence from (3.11) we obtain

1 1
W(B) < |BP Qi (QT) h (@) ,

and since h is decreasing

1
u(B) S 181Gt ().
Qm+1
By the remark in the beginning Qmy1 < @5, ¢ Hence we obtain the

following

1

E

u(B) < |BPQREQush ( ) < |BPQQun (R(IBI))?

since |B| < @}, Now choose Ny, so that QiQrt1 < A (ﬁ) < h(}B|). Then
uw(B) S |BPR(BNA(IBIT) < |BPRY(BI™) < |BI*6(1B]);

according to our choice of h. This means there is a constant C' < oo s.t. u(B) <

Ci¢(|B) for every ball B C R2. By mass distribution principle H,(I') > 0. O

Proof of Lemma 8.4.8. Suppose v € Vi,_y. First, recall that C(v) can be
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decomposed into “strips” of the form C(v) N {z : 7= < o —v| < 5§},
(0 < 4 < pgya), and thickness I, each of which contains exactly T/ P
sectors of generation 7.

Proof of (8.8). There are two possibilities (see fig. 3.4(a)) depending on

¥ v v

n—1
Im

Figure 3.4: Estimating the dimension.
wether there is an i € {1,...,pp,} for which
Bn{z:|z—v|=1-ln}

is empty or not (B is completely contained in some strip). Since |B| < I, it

can intersect at most two such "strips”. This means

Tem
U (B) < 22220 (B).
Pma
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Proof of (8.9). Again there are two cases. If BN{z : |z —v| =1 l,} =0

for every i € {1,...,Pm+1} then the inequality is clear.
Now, suppose Ji such that BN {z : |z —v| = iln} # 0. Then B doesn’t
intersect any m - 1 generation sector which is contained in C'(v) \ B(v,iln).

Indeed, for every such sector C" we have by construction

dist(C' {x : |z —v]| =1 ln}) > lnp1 COS Q> | B,

(see fig.3.4{b)). In particular u(BNC") = 0. Hence B can get positive measure
only from the sectors in the é-th “row”. This means that for every v € Vi,
there are at most 1, /pm subsectors of C(v) of generation m which have posi-

tive 4 measure when intersected with B. Therefore

Nn

vm(B) < V-1(B).

Pm
Proof of (8.10)  Start from v € Vy,_1. For m large we may assume without

loss of generality 7m-; << ln41. First consider B such that

Tm—1
Gm

< |B| £ rme1 < bt cos{cum /2).

- Then by (3.9}

vm(B) < 20 1(B) < 15!

= < — v, 1{B).
Pm mem~1/q'm " 1( )
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On the other hand, if 7, < |B| < rm—1lm then

since distance between any two adjacent children of C(v) which are in a strip
{z:il, < |z —v| < (i + 1)y} is the same and there are at most 2z of them
(see fig.3.4(c), where the lines crossing the grey ball are in fact generation m
sectors with very small angle ayy,). It follows easily from our construction that

Vm-1(B) < 1 for |B| < ry—1. Hence we obtain the desired inequality. 0

Remark 3.4.5. It is not hard to see that the constructed domain has a Lips-
chitz boundary provided the bending angles are decaying fast enough. So it 15

~ natural to ask the following question.

Question 1. Is there a domain with smooth (C*, C¥, or C°) boundary
and central set of Hausdorff dimension 27

For the disc trees we considered C(D)\ M(D) is totally disconnected.

Question 2. Is there a domain D C C such that C(D)\M(D) is connected
and dimg{C(D)) = 27
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