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We use an analogue of Karoubi’s construction (7] in the motivic

situation to give some cohomology operations in motivic cohomol-
ogy. We prove many properties of these operations, and we show
that they coincide, up to some nonzero constants, with the reduced
power operations in motivic cohomology originally constructed by
Voevodsky [16]. The relation of our construction to Voevodsky's
is, roughly speaking, that of a fixed point set 10 its associated

homotopy fixed point set.
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Chapter 1

Introduction

The goal of this thesis is to use an analogue of Karoubi’s construction [7], which
is for the reduced power operations in singular cohomology, in the motivic sit-
uation to give another construction of Voevodsky's reduced power operations
in motivic cohomology [15].

We introduce the subject to study in this thesis, the reduced power opera-
tions in motivic cohomology, in Section 1.1. Along the way, we briefly review
the notion of cohomology operations and the reduced power operations in sin-
gular cohomology. We review the method to follow, Karoubi’s construction
[7] for the reduced power operations in singular cohomology, in Section 1.2.
We outline our analogous construction in the motivic situation and state our

main results in Main Theorem 1.3.1 in Section 1.3,

1.1 Reduced power operations

First we introduce the general notion of cohomology operations. Then we

review briefly the reduced power operations in singular cohomology [10] and




in motivic cohomology [15].

We regard a cohomology theory on a category C as a family of contravariant
functors from C to the category Ab of abelian groups. The prototype is the
singular cohomology theory on the category 7 op of topological spaces, and the
case of our interest is the motivic cohomology theory on the category Sm/k
of smooth schemes over a field k (see Definition 2.2.11). Speaking roughly,
cohomology operations are natural transformations between two cohomology
functors (in one cohomology theory}. Cohomology operations are not generally
assumed to be group homomorphisms, i.e. we only regard the cohomology
functors as functors to the category Sets of sets.

For example, we regard the n-th singular cohomology H"(—, A) with coef-

ficients in an abelian group A as a contravariant functor

H*(—, A): (Top)™® — Ab

from the category of topological spaces to the category of abelian groups. A

cohomology operation # of type (A, n; B,m) is a natural transformation

0. H(—, A — H"(—, B),

where we regard both cohomology functors as to the category of sets. In more

detail, # consists of a family of maps

Ox : H(X,A) — H™(X, B),

one for each space X, satisfying the naturality condition f*@y = 0x f* for any




continuous map f: X — Y. We denote the set of cohomology operations of
type (A,n; B, m) by Op(A,n; B, m).

Cup product powers and Bockstein homomorphisms are natural examples
of cohomology operations.

The reduced power operations consist a very important class of cchomology
operations in singular cohomology. Let [ be an arbitrary prime. For an integer
i > 0, the i-th reduced power operation P* is a family of cohomology operations
of type (Z/1, %, Z/l, % + 2¢(l — 1)) where * is an arbitrary dimension, i.e. we

have a family of natural transformations
Piy HY(—, ZJ1) — HD (- 7). (1.1.1)

These operations are constructed by Steenrod [10], and their constructions
use equivariant cohomology and the infinite dimensional lens space as the
classifying space BC| (actually Bpy where g = {eF|0 < ¢ <[~ 1} is the
group of {-th roots of unity in €). The reduced power operations satisfy the

following properties:
1. The P are group homomorphisms.
2. PP =id.
3. PMz) =« for x € H*™(X,Z/1). If 2k > dim(z), then P*(z) = 0.
4, {Cartan formula) Pi(zy) = 5., PP(x)P"*{y).

5. (Adem relations) See [10, pg. 77).

6. The P! are stable, i.e. they commute with the suspension isomorphisms.




The reduced power operations in singular cohomology form a fundamen-
tal tool in algebraic topology, leading to important progress both in general
homotopy theory and in specific geometric applications. We now describe one
very important application.

With composition as multiplication, the graded associative algebra gener-
ated by the reduced power operations P* of degree 2i(l — 1) and the Bockstein
homomorphism 3 : H*(—,Z/l) — H*T1(—~,Z/1), associated to the exact se-
quence of coefficients 0 — Z/! R Zj1? — 7./l — 0, of degree 1 is called the
mod ! Steenrod algebra A;. The singular cohomology ring H*(X,Z/l) of a
space X is a module over the Steenrod algebra A;, with elements in A; act-
ing on H*(X,Z/l) as cohomology operations. Through the Adams spectral
sequence (see J.F. Adams, Comment. Math. Helv. 32 (1958), 180-214), the
existence of such a structure on IH*(X, Z/1) as a module over 4; can be used to
draw information about the group of stable homotopy classes of maps between
spaces, in particular abouf the stable homotopy groups of spheres.

Now let’s start to introduce motivie cohomology and the reduced power
operations in motivic cohomology.

The motivic cohomology theory is a bigraded cohomology theory on the
category Sm/k of smooth schemes over a field k. The (g, p)-th motivic coho-
mology H%?(—, A) with coefficients in an abelian group A is a contravariant

functor

HP(— A) : (Sm/k)* — Ab.

Here ¢ is called the cohomology dimension, and p > 0 is called the algebraic

dimension.




Motivic cohomology for smooth schemes plays the role of singular coho-
mology for topological spaces. Actually the construction of algebraic singular
homology, a special case of motivic homology, by Suslin and Voevodsky [In-
vent. Math, 123 (1996}, no. 1, 61-94] is inspired by the following Dold-Thom
theorem in topology. Given a topological space X, consider the free abelian
group Z - X generated by X. Z - X has a natural topology to make it a topo-
logical abelian group. Then the Dold-Thom theorem [3] says that if X is a

CW-complex, one has an isomorphism
m(Z- X)) = H(X, 7). (1.1.2)

The definition of algebraic singular homology uses algebraic analogues of the
functor X — Z - X and the homotopy group ;. For the precise definition of
motivic cohomology, we refer the reader to Section 2.2, especié,lly Definition
2.2.11.

In view of our general notion of cohomology operations (see the beginning
of this section), motivic cohomology operations are, roughly speaking, natu-
ral transformations between motivic cohomology functors {regarded as to the
category of sets). One also has the reduced power operations in motivic coho-
. mology, which we describe below, as an important class of motivic cohomology
operations.

We fix a base field & and a prime ! different from char(k), the characteristic

of k. Voevodsky [15] constructed the reduced power operations

Pfé : H*’*(—',Z/l) _ H*+2i(£—1),*+i(3—1)(_: Z/ﬂ), i>0




in motivic cohomology. Note the similarity of these operations to the reduced
power operations in singular cohomology (1.1.1) if we concentrate on the co-
homology dimensions, Voevodsky’s construction of these P* (loc. cit.) follows
the classical construction of Steenrod [10] (see also [6]) for the roduced power
operations in singular cohomology.

The reduced power operations in motivic cohomology play an important
role in Voevodsky’s proofs of the Milnor conjecture [Publ. Math., IHES 98
(2003), 59--104] and the Bloch-Kato conjecture. The bigraded motivic Steen-
rod algebra A**(k, Z/1) generated by the reduced power operations P and
the Bockstein homomorphism £ is very important in the motivic homotopy

theory.

1.2 Karoubi’s construction

Besides Steenrod’s classical construction [10] of the reduced power operations
in singular cohomology, Karoubi [7] recently gives a different construction
of them, which is very geometric. We review Karoubi’s construction in this
section.

Recall that the Eilenb.erg—MacLa,ne space K (A, n) in topology is a "nice”
space (2 space having the homotopy type of a C'W-complex) which has only
ore nontrivial homotopy group, namely, 7, (K (A,n)) = A (A is a group when
n > 1 and abelian when n > 2).

It’s a standard fact that for a space X, there is a one-to-one correspondence

Homiorop) (X, K(A,n)) & H(X, A), (1.2.1)




where Ho(7 op) is the homotopy category of topological spaces (see Section
2.1), and the left hand side is a Hom set in this category. For a proof of (1.2.1), l
see for example Theorem 1.1 of Mosher and Tangora [Cohomology operations .
and applications in homotopy theory. Harper & Row, Publishers, 1968] when

X has the homotopy type of a CW-complex. The case when X is a general !

space then follows from this and the construction of Ho(7 op), since every
space is weakly equivalent to a C'W-complex.

One can therefore establish a one-to-one correspondence

Hompgorop (K (A, n), K(B,m)) « Op(A,n; B,m) (1.2.2)

between the set of morphisms in the homotopy category Ho(7 op) from K{A,n)

to K (B, m) and the set of singular cohomology operations of type (A,n; B, m)
as follows. For ¢ € Homporop(K(A,n), K(B,m)), we define its associated i
cohomology operation 84 of type (A,n; B, m} by the following. Given an ele-
ment 7 € HY( X, A), by (1.2.1) it corresponds to a morphism z : X — K{A,n)

in the homotopy category Ho{Top). The composition ¢ o ¢ as a morphism

from X to K(B,m) in the homotopy category Ho(T op) corresponds to a class
' € H™(X,B) by (1.2.1) again. We define 8y x(z) = 2’. It is easy to see
that 64 is a cohomology operation, i.e. it commutes with the homomorphism
f* induced by a continuous map f : X — Y, since for y ¢ H™(Y, A) which
: corresponds to y : ¥ — K(A,n) through (1.2.2), f*(y} € H"(X, A) is the

cohomology class which corresponds to the composition yo f: X — K (A, n).

Therefore the reduced power operation P* @ H™(—, Z /1) — H"3D(— Z/1)
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in {1.1.1) corresponds to a map
P K(Z/l,n) — K(ZJ1,n+ 2 -~ 1)). {1.2.3)

There is a nice model of K(Z/l,n), which we describe now. Denote by
(Z.]/1-8™) the Z/l module over the n-th sphere S™ with the base point co € 5™
identified to 0. (Z/l - S™)o has a naturally defined topology to make it a
topological abelian group (see [3]). By the Deold-Thom theorern (or rather an

obvicus variation of it, see loc. cit.), one has

B Zjl, fori=n,
(2] S™)0) = Hi(S™, L]1) =

0, for 7 # n.

N

(Z/1 - 5™} can be seen to have the homotopy type of a CW complex, and
therefore {7/l 5™)g is a model of the Eilenberg-MacLane space K(Z/l,n}, i.e.

K(ZJl,n) = (Z]L- S™)q. (1.2.4)
The cup product
H™X,Z/1) @ HX,Z/1) — H™™(X, Z/1),

in view of {1.2.1), is represented by the following map on Eilenberg-MacLane

spaces

K(ZJl,m) A K(L/1,n) — K(Z/l,m +n).




In terms of our model (1.2.4) of K(Z/l,n}, the above map is the following

(ZfL- 8™ A (ZJ1- 8™ — (Z]/1- S™T™)g;

(Z 524, Z myY;) — Z Tt Ty A Yy

In particular, the {-th cup product power P : K(Z/l.n) — K{Z/l,nl) is

represented by (abusing the notation P)

P (7t 8™ — (Z]1- S™)o; (1.2.5)

Tt Lq ( ?’L',-;ﬂ?f,;) — Mgy v My Ty FANCE Ty,
i 11,00 4

The symmetric group S; acts on §™ = S*AS™ A+ AS™ by permuting the
! copies of §7, and this induces an action of S; on (Z/1 - ™). In particular,
the cyclic group C; acts on S™ and (Z/I-S™)g. By its construction, the above

map P in (1.2.5) factorizes through
P (T8 — (Z/1- 5™, (1.2.6)

where the right hand side is the the fixed point set of (Z/1-S™}, under the Cj
action.

For { a prime, the C; action on S™ is semi-free. It has the diagonal S* =
{eAz A Azxlz e S C S as the fixed point set, and it is free outside
of the diagonal. Let S™/C; denote the quotient of S™ by the cyclic group Ci.

There is an inclusion S™ € S™/C; since S™ is fixed. Karoubi calls the quotient

(8™ /) /8™ of S™/C; with the diagonal S™ identified to the base point the




normalized I-th cyclic product of S™.
If ¢ : S™ — (S™/C))/S™ denotes the canonical map, it is clear that
d(P(z)) = (O, nsms)t) is the sum of { copies of Pi(z) (consider Z cocffi-

cients here), where the map
Py (TS — (Z)1-(S™/C) /S (1.2.7)
is defined by the following formula (which can be defined for Z/[ coeflicients)

Py(z) = Pl(z N4T;) = Z ThiyThig * - Ty (g A iy Ao A ),
i it igy i
< 4y,1, -, 1 > denoting the class of the sequence (4,4, -+ , %), with dy,4q, - - -
not all equal, modulo the action of the cyclic group C.

(Smt/ Cz) /5™ can be understood very geometrically. It is clear that S™/C; is
the {n-+1)-st suspension X"+1.S™~"=1/C of a lens space S™ "1 /C;. Therefore

the reduced homology with Z/I coefficients of S™/C; is
Hy{(S™/C, 2/1) = ZJ1, for n+ 2 < i < nl,

Since S™/C}, being an (n 4 1)-st suspension, is (rn + 1)-connected, the inclu-
sion " C S™/C; is homotopically trivial. Therefore the further contrac-
tion (S™/C})/8™ is homotopy equivalent to the ”wedge” S™/C, v ¥S* =
S™/Cv 8™+, Thus the reduced homology with Z/! coefficients of (S™/C})/S"
is

Hi((8™/C)/ 8™ ZJ1) = ZJ1, for n+ 1 <4 < nl.

10




By again the Dold-Thom theorem [3], one sees that

i (Z/1- (S™/C)/S™)o) = H(S™/C) /5™, 2f1)

= Z/l, forn+1<i<nl,

A theorem of J. Moore states that a topological abelian group is homotopy
equivalent to a product of Eilenberg-MacLane spaces corresponding to its ho-

matopy groups. Therefore one has a homotopy equivalence
nl
(Z)1- (S™/C)/S™)o == [ K(Z/1,5). (1.2.8)
i=n+1

Now define
P2/l 5 = AF(S™) = (B S™)o © (B/1- (SM/C)/SNe  (1.29)

by P{z) = (2, Pi(z)), where P; is defined in (1.2.7) and for = ¥ ny, T

is defined to be Y nlz;. There is clearly & homotopy equivalence

n(l—1)
AR ~ [T K(z/tn+1) (1.2.10)
i=0
by (1.2.4) and (1.2.8). Actually this homotopy equivalence can be made canon-
ical by using the canonical generators of f1,((S™/C;)/S™, Z/1) (see (7, Annexe
Cl).

In view of (1.2.10), denote the following components of P {1.2.9) by

DY K(Z /L n) — K(Z/l,n + 24).

11




Then Karoubi [7, Theorem 2.6] proves that the D' are trivial if i is not a
multiple of (I — 1), and up to some nonzero constants in Z/1, Di% Y coincides

with the reduced power operations P? (1.2.3) of Steenrod.

1.3 Opr main results

We now outline our construction in the motivic situation following Karoubi’s

construction in the topological case (see Section 1.2}, The reader will find

clear analogy almost everywhere.

We work in the Al-homotopy category / ,Al (k) of Morel and Voevodsky (see
Section 2.3 and also [8, 12, 2]). HA' (k) for the category of smooth schemes over
a field & plays the role of the homotopy category Ho(7 op) for the category of
topological spaces. In HA (&), motivic cohomology is represented by motivic
Eilenberg-MacLane spaces (sec (2.3.1); compare to (1.2.1}), and so motivic co-
homology operations are represented by maps between corresponding motivic
Eilenberg-MacLane spaces (compare to (1.2.2)).

Let » > 1 be an integer. Choose our model of the motivic Eilenberg-
Macl.ane space K(Z/l,2n,n) as zfqﬁi(A”, 0) (see (2.3.2); compare to (1.2.4)).

The I-th cup product power operation
P K(Z/1,2n,n) — K(Z/1,2nl,ni) (1.3.1)
is represented by (abusing the notation P)

P (A 0) — 220 (A 0), (1.3.2)

egqud equi

12




which is the I-th fiber product power of cycles (see (3.1.1); compare to (1.2.5)).
The cyclic group C; acts on A™ by cyclically permuting the [ copies of

A" and so acts on 2 A™ 0) by functoriality, By its very construction, the

aqus (

image of P in (1.3.2) lies in the fixed point set 2 Z/1 (A™ )% of invariant cy-

equi

? /
eqm

cles. Call the factorization P : 2205 (A™ 0) —

equi

(A™, 0} our total reduced
power operation (see (3.1.3); compare to (1.2.6)). We have the following main

theorem.

Main Theorem 1.3.1 Suppose thot the field k satisfies some assumplions
(detailed at the beginning of Section 3.2).

1. We have an tsomorphism in Hf“l(k)

n(l—1) n(l—1)-1
A0 = T K@/l onv2invi)x [ K¢ Z/J Dn4-2i+1, A1),
1=0 i=0

2. Denote the components of P : z-0- (A" 0) — P (A™,0)%, in view of

eqm equi

the conclusion of part 1, by

Db K(Z/1,2n,n) — K(Z/L,2n 4 2i,n+4), 0 <i<n(l 1)
and

K(Z/l2n,n) — K(Z/L,2n+ 214+ 1,n+1), 0<i<n{l-1)~1

Then B = Bo D! for 0 <4 <n(l—1)—1, where 8 : K(Z/],%,%) —
K(ZJl,* + 1,%) represents the Bockstein homomorphism associated to

the exact sequence of coefficients 0 — Z/1 4, Z/1* — Z/l — 0.

13




8. DO K(Z/1,2n,n) — K(Z/l,2n,n) is the identily map, and D=1
K(Zjl,2n,n) — K(Z/[l,2nl,nl) is the l-th cup product power operation
P (1.3.1).

4. Fori not a multiple of (1 -1}, D* =0 and thus E* = 0 by the conclusion

of part 2. Up to nonzero constants in Z /I,
B} DIt = pi <4 <p,

where the P? are the reduced power operations of Voevodsky [15].

To be able to carry out the construction and make computations, we give
some preliminaries in Chapter 2. In particular, we describe the construc-
tions and basic properties of the triangulated category of motives and the
Al-homotopy category. In order to prove the comparison result‘, we review in
Section 4.1 Voevodsky's construction of the reduced power operations in [15].

The rest of the thesis is concerned with the proof of our main theorem,
The proof of part 1 is given in Sections 3.1, 3.2 and 3.3 (see Theorem 3.3.3},
part 2 in Section 3.4 (see Theorem 3.4.5), part 3 in Section 3.5 (see Theorems
3.5.1 and 3.5.2}, and part 4 in Section 4.2 (see Theorem 4.2.1).

As will be seen in Section 4.2, the relation of our construction to Voevod-
sky’s is, roughly speaking, that of a fixed point set to its associated homotopy

fixed point set,

14




Chapter 2

Some background

Throughout this thesis, we work in both Voevodsky’s triangulated category of
motives DM over our base field k [13] and the A'-homotopy category HY (k)
constructed by Morel and Voevodsky {8, 12]. We review these constructions

in some detail.

2.1 Some basic notions

Let’s start with the notions of presheaves and sheaves for a Grothendieck

topology. See [1] for more detail. Let C be a general category.

Definition 2.1.1 A presheaf of sets F on the category C is a contravariant
Junctor F' 1 CP — Sets, where the superscript stands for the opposite category
and the right hand side is the category of sets. Similarly a presheaf of pointed
sets or abelian groups is a contravariant functor from C to the category Sets,

of nointed sets or the category Ab of abelian groups,

Usually a presheaf of sefs is meant when we say "a presheaf” without

further qualification. Many notions we will talk about below hold parallelly

15




for presheaves of pointed sets and abelian groups.

Definition 2.1.1 is Grothendieck’s notion of a presheaf on a category, and
it generalizes the usual concept of a presheaf on a topological space X if we
take the category C to have as objects the open sets of X and as morphisms
the inclusions. In fact, there is also a general notion of sheaves with respect

to a Grothendieck topology as follows.

Definition 2.1.2 A Grothendieck topology T on a category C is a set Cov(T')

of families {U, KL Ubier of maps in C called coverings satisfying
1. If [ is an isomorphism then {f} € Cov(T).

2. If {U, 5 Ulier € Cou(T) and {Vi; 22 Uitjes, € Cov(T) for eachi & I

fiogi

then the family {Vi; "—=" Uljenier i in Cov(T).

3. If {U; LA Ubier € Cov(T) and h: V' — U is a map in C then U; xy V
exists and {U; xy V — V}ier is i Cov(T).

The pair (C, T} 1s called a site.

Abusing notation, we sometimes write T for {C,7T") when C is understood,

and we also call a Crothendieck topology a topology.

Definition 2.1.3 A presheaf F on C is called a sheaf for the topology T if for
any covering {U; ELA Ubier in Cou(T), the following sequence with the natural

maps

Fy - [[Fw) s 1RO xx Uy)

2%

is exact, 1.e. F(U) is the equalizer.

16




In the special case that the topology, on the category of the open sets of
a topological space X and the inclusions, has open coverings as coverings, the
above definition reduces to the usual sheaf axioms.

We denote the category of presheaves on a category C by Preshv(C), and
the category of sheaves on C for the Grothendieck topology T' by Shuvp{C).
Clearly, morphisms between presheaves and sheaves are defined to be natural
transformations of functors.

We now recall some basic notions of homological algebra. See [16] for more
detail. Recall that an abelian category is an additive category where each
morphism has a kernel and a cokernel which satisfy some basic properties (see
[16, Definition 122]) The category of abelian groups is a prototype of an

abelian category. Over an abelian category, we can do homological algebra.

Definition 2.1.4 Assume that A is an abelian cotegory. A cochain complex

C* = ({C*},d) in A has the following form

s d .d .
RNy l_>sz_>Cn+1%._.:

where 7 € A and d* = 0. Cochain maps between cochain complezes are maps
belween compleres that commaute with the differentials. Define Ch{A) to be the
category of cochain complezes in A and cochain maps. We also introduce the
following subcategories Ch™(A), Cht(A) and Ch*(A) of cochain complezes

bounded from above, bounded from below and bounded wn both directions.

We adopt the following convention to translate freely between chain com-

plexes and cochain complexes. Given a chain complex ({C;},d) where the
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We now want to recall some basics of the simplicial homotopy theory. See

[5] for more detail.

Definition 2.1.8 The ordinal category A has as objects n = {0,1,--- ,n}
form > 0 and as morphisms nondecreasing maps. A simplicial object in a
category C s a contravariant functor AP — C, and o cosimplicial object in C

is a covariant functor A — C.
Among the morphisms in A, the following ones are basic. For 0 < ¢ < n,
the i-th coface map is
din—1 — n;
7, for j <4

i+ 1, forj =1,

and the i-th codegeneracy map is

j, forj<i

3—1, forj>i.
These maps satisfy some obvious relations, called the cosimplicial relations.
All other morphisms in A are compositions of such coface and codegeneracy

maps. Therefore a simplicial object ¥ in € is a collection {V;, }n>0 of objects

in C, with the following face and degeneracy maps

di Yy — Yuo1, 8 Y, = Yo, for 0 <i<n,
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which are the images of the coface and codegeneracy maps under the func-
tor Y, and these face and degencracy maps satisty the simplicial relations
corresponding to the cosimplicial ones (see [5, pg. 4] for more detail).

We denote the categories of simplicial sets, simplicial pointed sets and
simplicial abelian groups respectively by sSets, sSets, and s.Ab.

Using simplicial sets, we can do abstract homotopy theory. Model category

is the language for this.

Definition 2.1.9 A model calegory is a category C equipped with three classes
of morphisms respectively called weak equivalences, cofibrations and fibrations
which satisfy some axioms (see [5, pg. 66]). The localization of the model cate-
gory C with respect to the class of weak equivalences is the associated homotopy

category, denoted by Ho(C).

The category 7op of compactly generated topological spaces is a model
category if we use the standard definitions of weak equivalences, cofibrations
and fibrations. We denote the associated homotopy category by Ho(7 op).

A basic result in the simplicial homotopy theory is that the category sSets
of simplicial sets is a model category if we make suitable definitions of the
classes of weak equivalences, cofibrations and fibrations. See [5, Theorem
11.3]. We denaote the associated homotopy category by Ho(sSets).

Actually there is an equivalence between Ho(Top) and Ho(sSets) by the
pair of adjo_int functors of total singular simplicial set and geometric realiza-
tion.

There is the following Dold-Kan correspondence between the category

s Ab of simplicial abelian groups and the category Chsg of chain complexes
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in positive dimensions. Namely the following pair of adjoint functors N :
sAb — Chso and K : Chso — sAb form an equivalence of categories.
For a simplicial abelian group A4, the corresponding chain complex N(A)
has N(A), = NP ker(d; : A, — A1) with dy as the differential. For
& chain complex C, the corresponding simplicial abelian group K(C) has
K(C)y = ®niCr with naturally defined face and degeneracy maps. For
a general chain complex, we have to apply the good truncation functor >g af

position 0.

2.2 Triangq]ated category of motives

In this section, we review the basic constructions of the triangulated category
of motivés DM by Voevodsky. The basic reference is [13].

Consider the category Sm/k of smooth schemes over k with morphisms
of schemries. On this category, there are three useful Grothendieck topologies,

namely the Zariski, Nisnevich and étale topologies, defined below.

Definition 2.2.1 A Zariski covering is a family {U; — U} where each U, is a
Zariski open set of U and U;U; = U. An étale covering is a family {U; % U}
where each f; 1 Uy — U is an étale morphism and U, fi(Us) = U. Recall that
an étale morphism is a finite, flat and unramified morphism, which resembles
an unramified covering in topology. A Nisnevich covering is an étale one such
that for each point u € U, there 1is an i and a point w; € Up such that fi{us) = u

and such that u; and u have tsomorphic residue fields.

From the above definition, we see the following relation between these
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topologies

Zar C Nis C ét,

where C means inclusion of sets of coverings.
The following notion of a presheal with transfers is crucial to the whele

development of the motiviec cohomology theory.

Definition 2.2.2 Given two smooth schemes X and Y, define c(X,Y) to be
the abelian group of algebraic cycles on X X Y which are finite over X and
surjective over a component of X. Define the calegory SmCor(k) of finite
correspondences over k to be the category whose objects are smooth schemes

over k, and whose morphisms from X to Y are elements of ¢(X,Y).

Notice that SmCor(k) is an additive category: the Hom sets are abelian
groups ¢(X,Y) and we can define X @Y := X ][Y. 'The graph I'y of a
morphism f: X — Y is an element in ¢(X,Y), and thus we have a functor
[': S8m/k — SmCor(k). Notice that if f: X — Y is a finite morphism which
surjects to a component of Y, then the transpose I'; of the graph of f is an

element in (Y] X).

Definition 2.2.3 A presheaf with transfers ' is an additive contravariani
functor F : (SmCor(k)® — Ab from SmCor(k) to the category of abelian
groups. We denote the category of presheaves with transfers by

Preshu(SmCor(k)).

Through I' : Sm/k — SmCor(k), we can regard a presheaf with transfers

as an abelian presheaf (i.e. presheaf of abelian groups) on Sm/k. For a finite
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map f: X — Y, the element ['y € (Y, X) gives a map F(X) — (Y}, and

this is the transfer structure in the name.

Definition 2.2.4 A presheaf with transfers which is elso o Nisnevich sheaf
when considered as a presheaf on Sm/k is called a Nisnevich sheaf with trans-
fers. We denote the category of Nisnevich sheaves with transfers by

Sh’UN.iS(SmOOT(k)) .

For a smooth scheme X, we define Z,,.(X) to be the presheaf with transfers

rcpresentable by X, i.e. for any smooth U
£ Zin(X)U) = (U, X)),

Actually-this definition can be generalized to any scheme X of finite type over
k {see Definition 2.2.9). As one can show, Z,(X) is always an étale sheaf with
transfers and therefore a Nisnevich and Zariski one.

The appearance of presheaves with transfers is by the analogy to the Dold-
Thom theorem (1.1.2) in topology. Indeed Z; (X) should be viewed as the
analogue of Z - X in algebraic geometry. Of course, by doing so we have to

leave the category of schemes and land in the enlarged category of sheaves.

Definition 2.2.5 A presheaf F on Sm/fk is homotopy tnvariant if F(X) —
F(X x AY) induced by the projection X X Al — X s an isomorphism. A
presheaf with transfers is homotopy invariant if it is so when viewed as a

presheaf.
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Definition 2.2.6 The cosimplicial scheme A* : A — Sm/k is defined by

A™ = Spec(k|zg, 21, ,:a:n]/Z:cz =1)

with the obviously defined coface and codegeneracy maps.
Note that the above definition mimics its topological analogue.

Definition 2.2.7 The total singular complez functor Cy takes an abelian presheaf

F on Smjk to a complex C.(F) of presheaves with C,(F)(U) = F(A" x U)

with the differential to be the alternating sum of the face maps induced from

the coface maps of A*.

It is standard that the cohomology presheaves of C.F are homotopy in-

variant.

Theorem 2.2.1 One has the Nisnevich sheafification functor apis such that

for a presheaf F on Sm/k, ani(F) is a Nisnevich sheaf.

1. [18, Lemma 3.1.6] If F' is a presheaf with transfers then anis(F) has a

canonical structure of Nisnevich sheaf with transfers.

2. [4, Theorem §.1] If F is homotopy invariant presheaf with transfers then

anis(F) is also homolopy invariant.

In the above theorem, part 1 doesn’t hold for the Zariski topology and
part 2 doesn’t hold for the étale topology, and this in part explains why the

Nignevich topology is used in the construction.
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Clearly Preshv(SmCor(k)) is an abelian category. By Theorem 2.2.1.1,
one sees that Shvy,(SmCor(k)) is also an abelian category (the kernel and
the cokernel of a morphism are now defined to be the sheafifications of the
kernel and the cokernel of the morphism between presheaves). Thercfore we

can consider its derived category.

Definition 2.2.8 Denote by D™ (Shuyi,(SmCor(k))) the derived category of
bounded fmm above complexes of Nisnevich sheaves of abelian groups wilh
transfers over Sm/jk. Define the triangulated category of motives DM to be
the full subcategory of D™ (Shvyis(SmCor(k))) which consists of all complezes

with homotopy invariant cohomology sheaves.

Recall that the cohomology sheaves of a complex of sheaves are the sheafi-
fications of the cohomology presheaves. By Theorem 2.2.1.2, we see that the
cohomology sheaves of C,F' when F' is a Nisnevich sheaf with transfers are

homotopy invariant.

Definition 2.2.9 For a scheme X of finite type over k, we define its motive

as

M(X) = CZu(X),

where Zur (X} is the Nisnevich sheaf with transfers whose value on a smooth
scheme U is the free abelian group generated by closed integral subschemes
Z of X x U such that Z is finite over U and dominant over an irreducible

component of U. It is clear that M(X) € DM.

Definition 2.2.10 For a scheme X of finite type over k, we define its motive
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with compact support as
MC(X) ey C*zequi(X, 0),

Where Zegus( X, 0) is the Nisnevich sheaf with transfers whose value on a smooth
scheme U 1is the free abelian group generaled by closed integral subschemes Z
of X x U such that Z is quasi-finite over U and dominant over an irreducible

component of U. It is clear that M¢(X)} e DM.

As presheaves on Sm/k, both Zg (X) and 2z.q.:(X,0) have well defined
pullbacks for any map f : U’ — U, and we denote the pulibacks by Cycl{f).
The presheaves Z, (X) are covariantly functorial with respect to X. The
presheaves 2eqw: (X, 0) are covariantly functorial with respect to proper mor-
phisms X — X’ and contravariantly functorial with respect to flat morphisms
X — X’ of relative dimension 0. For simplicity of notation, we very often write
2(X) for Zegi(X,0). Given an abelian group A, z,,(X,0) = Zegui(X,0)® A is
the sheaf of equidimensional cycles with coefficients in A, and again we write
z4(X) for short.

There are several equivalent definitions [14] of the motivic complexes Z{n)

forn > 0:

Z(n} = Cil(GoM)[-n]
= Cu(Zur(P7) /2y (P™ 1)) [—27]
= CAZu(A™)/Zor (A" — {0}))[-2
= C.z(A™)]-2n] = M°(A™)[—2n]. (2.2.1)
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Obviously the Z{n) are in DM, and they are called the Taie motives when
viewed this way.
I would like to say that all the above definitions of the motivic complexes

are inspired by the following statement in topology that

(Z- 5o = K(Z,n),

where (—)o stands for the degree zero component. This statement follows from
the Dold-Thom theorem (1.1.2). (Compare to (1.2.4).) As we said before, Zy,

is an analogue of Z-. Obviously there are analogies between P™ /Pt and %7,

_and between G and 8™ where Gy, is A! — {0} pointed at 1.

We have the following definition of motivic cohomology.

Definition 2.2.11 For a smooth scheme X , its motivic cohomnology is defined
to be

HQ»P(X, Z) = H?st (X: Z(p))’

where the motivic complex Z(p) 45 considered as a complex of Nisnevich sheaves,
and the hypercohomology is compuled on the small Nisnevich site Nis/X of
X.

It is a theorem[4, Theorem 5.1] that in the above definition, one can use
as well the Zariski topology.

By [13, Proposition 3.1.9], the right hand side of the above definition for a
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smooth X is

His (X Z(p)) = Homp—(shuys,(Smcorey (M (X)), Zi{p)|4])

= Hompu(M(X), Z{p)[a}).

Thus we can define the motivic cohomology of a general scheme X to be

represented by the Tate motives in DM as
HE(X) = Hompyu (M(X), Z(p)[a]). (2.2.2)

By definition, there is no motivic cohomology of negative weights (the
second index), Motivic cohomology of low weights is known. For a smooth

connected schemes X, one has

’

Z g=0
HY(X 7)) =
0 otherwise;

\
;

O*(X) ¢=1

HYNX,Z) =  Pie(X) q=2

0 otherwise.

N

For a fleld k, its motivic cohomology H**(k,Z) := H**(Spec(k),Z) has
the following properties: H%?(k,Z) = 0 when g > p and HPP(k,Z) = kM (k)
is the Miln;r K-theory of k.

To state further results about DM, we need the following definition of

resolution of singularities.
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Definition 2.2.12 Let k be o field. We say that k admits resolution of sin-

gularities if the following two conditions hold:

1. For any scheme of finite type X over k there is a proper surjective mor-

phism Y — X such that Y is a smooth scheme cver k.

2. For any smooth scheme X over k and an abstract blow-up ¢+ X' — X
there exists a sequence of blow-ups p: X, — -+ — X; = X with smooth

centers such that p factors through q.

The condition that k& admits resolution of singularities at the moment
means that char(k) = 0 by Hironaka’s result.

DM is a tensor triangulated category. If & is a field which admits resolution
of singularities, then motives with compact support have the following tensor

structure for product of schemes (see [13, Proposition 4.1.7}):
MYUX xY)=M(X)® M(Y). (2.2.3)

The following localization distinguished triangle (see [13, Proposition 4.1.5])
is of particular importance to our computations in Section 3.4. Suppose that
k is a fleld which admits resolution of singularities, X is a scheme of {inite
type over k and Z is a closed subscheme of X. Then we have a canonical

distinguished triangle of the form

| MS(Z) — ME(X) — M°(X — Z) — M(Z)[1]. (2.2.4)

29




2.3 A'-homotopy category

In this section, we review the basic constructions of the A'-homotopy category
HM (k). The basic references are [8, 12, 2].

Start with the category sShuy(Sm/k) of simplicial Nisnevich sheaves of
pointed sets on Sm/k. A Nisnevich sheaf is always regarded in this category
as the constant simplicial sheaf, i.e. all the terms of the simplicial sheaf are
the given sheaf and all the face and degeneracy maps are the identities.

The Al-homotopy category HA (k) is the successive localization of
sShuyis(Sm/k) with respect to the classes of simplicial weak equivalences and
Al-weak equivalences, which we now describe.

Recall that a point of a site (C,T) is a functor «* : Shur(C) — Sets which
commutes with finite limits and all colimits. In our case of the site (Sm/k)nis,
for any U € Sm/k and any point « € U, the functor I — F(Spec(Of,,)) from

a sheaf to its section on the Henselization of I/ at u is a point of the site.

Definition 2.3.1 A morphism of simplicial sheaves f © X — Y is called
a simplicial weak equivalence if for any point x of the site {Sm/k)yis the

morphism of simplicial sets z*(f) : z*(X) — z*(YV) is a weak equivalence.

Let Ho,((Sm/k)nis) denote the category obtained from sShuyi (Sm/k)

by formally inverting the class of simplicial weak equivalences.

Definition 2.3.2 A simplicial sheaf X on (Sm/k) s s called Al-local if for

any simplicial sheaf Y the map

HOMpto,((5m/kyen)( Vs XY = Homgo ((smywe) (Y X AL X)
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induced by the projection ) x A' — Y is a bijection.
A morphism of simplicial sheaves f : X — Y 15 called an A'-weak equiva-

lence if for any A'-local simplicial sheaf Z the map

H oMo, ((5m/k)es) (Vs £) = HOMtoy((5m/k) i) (X5 Z)

is @ bijection.

The Al-homotopy category HA (k) is obtaired from Ho,((Sm/k)wis} by
formally inverting the class of Al-weak equivalences.

For an abelian group A, let K (A4, j,7) be the simplicial abelian sheaf cor-
responding to the complex A(4)[j] = Z(%)[j] ® A under the Dold-Kan corre-
spondence. Considered as simplicial sheaf of pointed sets, it defines an object

of Hf“‘l (k). Tt is a motivic Eilenberg-MacLane space, since it represents the

corresponding motivic cohomology (2, Theorem 2.3.1] as
Homyg (X1, K (A, 4,9)) = H(X, A), (2.3.1)

where X is a smooth scheme and X, is regarded in H2' (k) as the constant

simplicial representable sheaf associated to X with a disjoint base point.
Actually we could define motivic cohomelogy for any element in A Ak

by the representability (2.3.1). Given an element F, € H} (k), we define its

motivic cohomology by

HI (B, A) = Hompg )(Fs, K(4, ,4).
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We can choose a model of the motivic Eilenberg-MacLane space K(A, 2n, n)
as K{A(n)[2n]) = K(C,z?(A™)) in view of (2.2.1). In addition, by [2, Lemma,
2.5.2], we have an A'-weak equivalence between K (z*(A™)) and K (C,z(A™),
where 2#(A™) is considered to be a complex concentrated at dimension (. It is
easy to see by the construction of X that K{z*(A™)) is the constant simplicial
sheaf at z*(A"). Therefore we have the following nice model for K (4, 2n,n)

K(A,2n,n) = z*(A"). (2.3.2)

The case of our interest is when A = Z or Z/l. Similarly, another natural

choice {2.2.1) of the Eilenberg-MacLane space K (A, 2n,n) is
K(A,2n,n) = ZAAYZEG" — {0)). (233)

Again we can see clearly the analogy of these models to their topological
counterpart (Z - §%),.

Because of the representability (2.3.1) of motivic cohomology by motivic
Eilenberg-MacLane spaces in the Al-homotopy category H, fkl (k), motivic coho-
mology operations are the same as morphisms between corresponding motivic
Eilenberg-MacLane spaces in this category.

Actually our construction will map the above model 22/4(A"™) of K(Z/1, 2n,n)
(2.3.2) to various Eilenberg-MacLane spaces of other dimensions by performing

some geometric constructions on it.
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Chapter 3

Construction and properties of our operations

In Section 3.1, we carry out our construction outlined in the introduction {see
Section 1.3). In Sections 3.2 and 3.3, we do computations in the triangulated
category of motives DM, and the interpretation of these computations in the
Al—homo’popy category gives part 1 of Main Theorem 1.3.1. We also prove
some properties of our operations. In particular, we prove part 2 and part 3

of Main Theorem 1.3.1 in respectively Section 3.4 and Section 3.5,

3.1 The total reduced power operation

In this section, we work with an arbitrary coefficient ring R, although the ones
of interest to us are Z/! and Z. We omit the coefficient ring from our notation.
Let’s start with our model of the motivic Eilenberg-MacLane space K ({2n,n)

as z(A™). Consider the [-th cup product power operation

P K(2n,n) — K{2nl nl),

33




N / :
. Aﬂ ,'I |
An/ HES A
U

Figure 3.1: The power opcration P

which is represented by the [-th fiber product power of cycles
P z(A™) — 2(A™), (3.1.1)

In more detail, for a smooth scheme U and a cycle Z & z(A™){U), write
Z =3 n;-Z.t-, where n; € R and the Z; are closed and irreducible subschemes
of U x A", which are equidimensional of relative dimension 0 over /. Then
P(Z) = 3 mi o nyZyy Xy -+ Xy Zyy, where Z;, Xy« Xy Z;, is the fiber
product of Z; -+, Z; over U. It is easy to see that P(Z) € 2(A™)(U). Note
that the map P is not linear. Figure 3.1 illustrates the map P (3.1.1) When
{ =2 and Z is an irreducible subscheme.

The symmetric group S; acts on A™ by permuting the [ copies of A™, and
in particular the cyclic group C; acts on A™ by cyclically permuting the !
copies. This naturally induces an action of 5, and in particular of Cj, on
z(A™) by functoriality. The important thing for us to notice is that the above

map (3.1.1) factorizes as
Poa(A™) 2o 2(A™% L 2(A™), (3.1.2)
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where ()% stands for the fixed point set under the C; action on the sheaf level,
and j§ is the natural inclusion map. More precisely z(A™)% is the Nisnevich
sheaf whose value on a smooth scheme U is the subgroup of cycles in 2{A™}(U)
which are invariant under the C action on U x A™ as the product of the trivial
action on U/ and the cyclic permutation on A™. More concretely, an algebraic
cycle Z € z(A™)(U) is invariant if and only if all its fibers over points of U,
as linear combinations of points in A™, are invariant under the C) action on
A™. From this we see that z(A™)% is still a presheaf (pullbacks of invariant
cycles are invariant). Actually it is a Nisnevich sheaf of abelian groups with
transfers as one can easily check. Furthermore the image of P lies in the
similarly defined fixed point set z{A™)% by the whole symmetric group.

The map
P z(A™) - 2(A™) (3.1.3)

is our total reduced power operation. QOur task is to analyze the homotopy
type of (A" in the Al-homotopy category HA' (k).

One important feature of the C; permutation action on A™ when { is a
prime is its semi-freeness. The diagonal of A™, denoted by A™, is the fixed
point set, and on the complement, A™ — A", the action is free.

Recall that the functor z(—) = Zequi(—, 0} is contravariantly functorial for
flat morphisms of relative dimension 0, e.g. open erbeddings, and covariantly

functorial for proper morphisms, e.g. closed embeddings {see [11]). It is easy
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Figure 3.2: The exact sequence (3.1.4)

to see that we have the following exact sequence of sheaves
0 — 2(A") -2 2(A™HG -1 Z(A™ — AW, (3.1.4)

where the inclusion A is induced by the closed embedding of the diagonal A™ in
A™ and the restriction r is induced by the open embedding of the complement

A™ — A™ in A™, as illustrated in Figure 3.2.

Proposition 3.1.1 Let k be o field which admits resolution of singularities.

We have a distinguished triangle in DM

CLz(A™) — Coz(AH% = Coz(A™ — AW S Coz(AM[1). (3.1.5)

Proof. The proof is an analogue of {4, Theorem 5.11], except that we have

to take care of the group action here. We write out all the detail for the

convenience of the reader. The exact sequence (3.1.4) clearly induces the




following diagram with the row as a distinguished triangle in DM

Coz(A™) -2 O 2(AM)C —= O, (2(A™)C 2(A7)) — C2(A™)[1].

lO*r

O*z(A"‘I _ An)q

‘To prove the proposition, we only need to prove that C.,r is a quasi-isomorphism,
or equivalently C,(z(A™ — A™)%/z(A™)%) is acyclic, i.e. quasi-isomorphic to

zero. First let’s recall the following criterion for acyclicity.

Proposition 3.1.2 [13, Theorem 4.1.2] Let k be a field which admits resolu-
tion of singularities, and F be a presheaf with transfers on Sm/k such that
Jor any smooth scheme U over k and a section ¢ € F(U) there is o proper
birattonal morphism p : U' — U with U’ smooth and F(p){(¢) = 0. Then the

compler C\.(F) is acyclic.

In view of this criterion, it suffices to show that for any smooth scheme 7
over k and a closed integral subscheme Z in z{A™ — A™)%(U) that there is a
blow-up p: U" — U with U’ smooth such that Cyel(p)(Z), the pullback cycle
of Z by p, lies in the image of z{A™)% (1),

By the platification theorem (see [11, Theorem 2.2.3] and [9]), there is a
blow-up p : U’ — U such that the closure of Cycl(p)(Z)} € z(A™ — A™)(U")
lies in the image of z(A™)(U'). Tt is clear that the closure Cycl(p)(Z) €
2(A™)C(UY since Cycl(p)(Z) € z(A™ — A™)?(U’) and the fibers added when
taking the closure are all supported in the diagonal A™, which is the fixed

point set under the Cy action.
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Figure 3.3: The isomorphism (3.1.6)

Due to the freeness of the action of €y on A™ — A™ we have canonical
mutually inverse isomorphisms

(AT — AMOT (AT AN /C) T (A — AN, (3.1.6)

where 7* is the flat pullback whose image is obviously invariant, and 7, is the
reduced pushforward, i.e. for Z € 2(A™ — A™)C(U), 7.(Z) is the unique cycle
in z{(A™ — A™)/C})(U) whose flat pullback is Z, as illustrated in Figure 3.3
when [ = 2.

Following the language of Karoubi [7], we call {A™ — A™}/C; the I-th nor-
malized cyclic product of A®, and sometimes denote it by CF(A").

In the next section, we will compute the motive type of M((A™—A™) /() =
CLz({A™ — A™/C)) for Z and Z/! coefficients. Together with (3.1.6) and
(3.1.5), we are able to analyze the motive type of C,2(A™)% which deter-
mines the homotopy type of 2(A™)“. We will see that z%/{(A™)%" has the

desired homotopy type to be the target of the total reduced power operation
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(3.1.3). }[ﬁ“

3.2 Lens spaces

From now on we assume that % admits resolution of singularities to be able
to use some distinguished triangles such as (2.2.4) and (3.1.5). This condition
at the moment means that char(k) = 0. We furthermore assume that & has
a primitive I-th root of unity ¢ to simplify our exposition. Note that under
the condition that [ # char(k), this assumption doesn’t constitute a real =|1f
restriction, and can always be achieved by passing to a separable extension
of k of degree prime to {. Transfer arguments show that this doesn’t affect

considerations for motivic cohomology with Z/[ coefficients, which is the main
subject in this paper. Under this assumption we have an isomorphism between
the cyclic group €} and g, the group of {-th roots of unity in ?{:, which sends
1 € Z/l = Cyto ¢ € . Note that  has a standard representation on Al
denoted by p, where { € yy acts as z — (- z for z € AL,

It is clear that if we choose a suitable basis of A™. the action of C; on

A™ by cyclically permuting the { copies of A™ can be written as a direct sum
dSp®p*®- @~ Hereid is the trivial action, the action p is interpreted
through the isomorphism of C) to py, ¢ is the ¢-th tensor product of p where

¢ €y acts as z — (* - 2z, and for notational simplicity we have written p* for

—_————
0t @ @ g, which acts on a copy of A"

The detail of this process is as follows. Assume that A™ = AL @ @A} |,

where AT is the 4-th copy of A" in A™ for 4 € Z/I. T is a generator of C; which

cyclically permutes the A, and so T'(A7) = AT ;. Let {e},- - , e} be a basis
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of A}. Let el = T%(el). Then {¢ "1 form a basis of A, and T(e]) = ¢, .
Now we define b = Y01 ¢(~*el . Then the {&] 7, are linearly independent
because the transformation matrix is a nondegenerate Vandermonde matrix,
and so they form a basis of a new copy of A®, denoted by A?. Now T{¥!) =
T(EiroC*e) = ThooC el = ¢ ey, — b, and so the
action of Cj on A? is p*, through its isomorphism to ;.

Therefore under this new basis, we can rewrite our normalized cyclic prod-

uct as

CPH(A™) = (A™ — A")/C = A™ x (A9 — {0} /c,

where C; acts freely on A1 — {0},

By the tensor structure of motives with compact support (2.2.3), we have

ME((A™ — AM)/Cr) — M(A® x (A" — {0})/C)
= ME(AD — {01)/C) © Mo(A7)

= M((A™Y —{0}1)/C) ® Z(n)[2n]. (3.2.1)

Now we want to decide the motive type of M°((A™-D — {01)/C)). This
is a gpecial case of the following general consideration. Suppose that u; acts
on A™ as a direct sum of nontrivial irreducible representations p® @ - - & oo
with 1 <a; </ —1for 1 <¢ < m, where m > 1is a general dimension. Then

{(A™ —{0})/ i is called a lens space. One has the following result,

Proposition 3.2.1 The motive with compact support of the lens space (A™ —

{0})/ w1, where yy acts on A™ as a direct sum of nontrivial irreducible repre-




sentations, is tsomorphic to
ME(A™ — {0))/, 2) = Z(O(1) © € 2/15124] & ) 2]

We first give the following lemma, which will be used in the proof of Propo-

sition 3.2,1.

Lemma 3.2.2 For an integer m > 1, one has an isomorphism
Me(A™ — {0}) = Z(0}[1] ® Z(m)[2m).
& Proof. Consider the following embeddings
{0} L= Am P Am 1oy,

Its localization distinguished triangle (2.2.4) is

M*({0}) — M*(A™) — M°(A™ - {0}) — M°({0})[1],

which in view of (2.2.1) is

Z(O)0] — Z(m){2m] — M(A™ — {0}) — Z{0){1].

It is easily seen that the first arrow is zero (by {2.2.2) it represents a cohomol-
ogy class of the field &, which is zero by dimensional considerations), which

implies our lemma. i
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Proof of Proposition 3.2.1. We prove this by induction on m. When m = 1,
it is clear that there is an isomorphism (A! — {0})/i; = Al — {0}, Lemma
3.2.2 shows M°((A" — {0})/m) = Me(A' — {0}) = Z(0)[1] @ Z(1)[2]. We very
often write A* for A' — {0}.

Now assume m > 2 and the result holds for m — 1. Consider the following

diagram of embeddings

open

Amfl o {0} closed A™ — {O} Amkl % A (322)

1 | l

cpe

(A1 = {0)) 2 (A = {O]) /<2 (A7 A7)

Here A™* ~{0} is embedded in A™—{0} as (A™ ' —{0}) x {0} and A™ ! x A*
Is its open complement. Since both embeddings are equivariant with respect
to the py éction, which is diagonal, they induce the corresponding embeddings
on the quotients. The vertical arrows are the quotient maps.

By (2.2.4), the diagram (3.2.2) gives a diagram of localization distinguished

triangles:

Me(A™ 1 — {0}) —— Mé(A™ — {0}) —2—> Me(A™=! x A (3.2.3)

l l l

ME((A™Y = {0})/ ) —— ME((A™ — {0}) /) —— ME((A™ x A%/ ),

whose boundary maps are

Me(A™ 1 % A —2 = pre(Am™ — {0))]1] (3.2.4)

14 [

ME((A™1 5 A%) /) —> ME((A™1 = {0}) /) 1],
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In light of Lemma 3.2.2, the first row of distinguished triangle in (3.2.3) is

Z(0)[11 & Z(mn — 1)[2m — 2] 5 Z(0)1] B Z(m)[2m] (3.2.5)

= Zm— D2m — 1] @ Z(m)[2m] 5 7(0)[2] ® Z(m ~ 1)2m — 1),

and by obvious considerations we understand that 1 : Z(0)[1] — Z{0)[1] is the
identity, 1: Z{m —~1)[2m — 2] — Z(m)[2m)] is zero, 2 : Z(m)[2m] — Z(m)[2m]
is the identity, and 3 : Z(m — 1)[2m — 1] — Z(m — 1){2m — 1] is the identity.
Now we want to study the second row of distinguished triangle in (3.2.3).
The action of p; on A* is free, and therefore (A™ ' x A*)/y; is a rank m — 1
vector bundle over A*/i; = A*. By the projective bundle formula (see [13,

! Corollary 4.1.11]), we have

ME((A™ X A" /i) = MEA Jp)(m = D2(m — 1)) (3.2.6)

= M(A*)(m —1)[2m — 2] = Z{m — 1)[2m — 1] & Z(m)[2m)].
Therefore under the induction hypothesis, the second row in (3.2.3) is

7(0)[1] ® @ 7/1(5)[24) @ Z(m — 1)[2m — 2] (3.2.7)
= ME((A™ —{0h)/m) — Z(m — 1)[2m — 1] & Z(m)[2m]

S 7o) e wé_; Z/(D)[2 + 1) @ Z(m — 1)[2m — 1].

By the general theory of Tate motives, there are no nontrivial morphisms
lowering algebraic dimensions {dimensions in the parentheses). Therefore the

map 6 in (3.2.7) is zero on the factor Z(m)[2m] and only possibly raps the
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factor Z{m — 1)[2m — 1] on the left nontrivially to the Z{m — 1}[2m — 1] factor
on the right. 1o study it, let’s observe the relevant parts of the boundary

maps (3.2.4) involving Z(m ~ 1)[2m — 1], which are

Z(m — 1)[2m — 1] —>>Z(m — 1)|2m — 1] (3.2.8)
] )
Z(m — 1)[2m — 1] =2 Z(m — 1)[2m — 1].

Recall that we understand that the map 3 : Z(m — 1)[2m — 1] — Z{m —
1)[2m — 1] in the above diagram is the identity (see the paragraph containing
(3.2.5)). In Lemma 3.2.6 below, we show that the map 4 : Z{m —1)[2m—1] —
Z(m — 1)[2m — 1] is the identity, and the map 5 : Z(m — 1)[2m — 1] —
Z{m — 1}|2m — 1] is the multiplication by I, then by the commutativity of the
diagram, we conclude that the map 6 : Z(rm — 1)[2m — 1] — Z{m — 1)[2m — 1]
is the multiplication by I.

Now we have a complete knowledge of the map 6, which enables us to
understand the whole distinguished triangle (3.2.7). Recall that we have a

distinguished triangle

Z(m — D)[2m — 2] — Z/i(m — 1)[2m — 2]

B m — Dzm — 1] 5 Zm - D]2m — 1), (3.2.9)

where § is the Bockstein homomorphism associated to the exact sequence of
coefficients 0 —» Z -5 7 — 7t — 0.

We conclude that the distinguished triangle (3.2.7) is the direct sum of the
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Bockstein distinguished triangle (3.2.9) and the split distinguished triangle

0 — Z(O)1]e m@ ZJ1(2)[24] (3.2.10) [
— 1]6}@2/5 [2i] @ Z(m)[2m] — Z{m)[2m] — 0.

Therefore Me((A™ — {0}) /) = Z{0)[1] ® @, 2/1()) 21 © Z(m)[2m). |

To prove Lemma 3.2.6 below, let’s first prove three preliminary 1emmas.

Lemma 3.2.3 Let f : X — Y be a morphism of schemes, and V — Y «
s vector bundle over Y of rankr. Let f*(V) be the pullbock vector bundle on X,

i.e. we have the following Cartesian diagram

F(V) 2

L,

——

If f is proper, then so is g and we have the following commutative diagram

m DM
V)) —Ts MO(V)
}_ 2 <Y)l(;)[zr1,

where the vertical isomorphisms are induced by the projective bundle formula,

gx and fy are the induced maps on motives with compact support by the proper- |

ness of g and f.

Proof. This is easily seen by the naturality of the construction of the pro-
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jective bundle formula (using the tautological line bundle on the projective

bundle) (see [13, Proposition 3.5.1]). i

Lemma 3.2.4 The quotient map 7 : A* — A*/py = A*, being proper and flot

of relative dimension 0, induces on the motives with compact support
w s MO(A") = Z(0)1] @ Z(1)[2] — Z(0)[1] © Z(1)[2] = M°(A* /),
and
s MAAY ) = Z(0)[1] @ Z(1)[2] — Z(0)[1] & Z(1)[2] = M*(A"),

One has 7 = id ® -l and 7* = [ D id, where -l stands for the map of multipli-

cation by l.

S’
Proof. Notice that @ : A* — A*/y; = A* is the same as A* =% A*. The
conclusion for . holds because of the following diagram {see the proof of

Lemma 3.2.2)

0 — M°(A") —= M°(A*) — M*({0})[1]] — 0

lz—:z’l \J/ZHZJ loﬁ"o

0> Me(AY) —= Me(A%) — Me({0})[1] — O,

together with the facts that the first vertical arrow is Z{1)[2] - 7(1)[2] and
the last vertical arrow is Z(0)[1] — Z(0)[1]. The conclusion for 7* holds since

T, o =& -l |
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Lemma 3.2.5 For an integer § > 1, consider the following pullback diagram

AU A (AT x A

| |

A* “ A*/,EL;.

Consider (7;), : M(AT71 x A*) = Z(5 — 1)[27 — 1] @ Z(})[27] —
Z(j— )27 — 1D Z(7)(27] = M((A7 x A*)/ ) induced by the properness of
i, Then (). = ()., @ (7)Y, and

)y =dd + 20— 1[2) ~ 1} = Z(5 — 1)[25 1]

*

(m)e =1+ Z()[25] — Z(5)[2]. 3.2.10

Consider (m;)* « MY((A7™1 x A /w) = Z(5 — D[25 — 1] © Z(5)[2§] —
Z(j — 1)[2f — 1) @ Z(5)[27] = M°(A7"! x A*) induced by the flatness of m; of

wf!

relative dimension 0. Then (m;)* = (m;)*" & (7,)*", and

(m)* =1 ¢ Z(j—1)[25 — 1] — Z{j — 1)[2] — 1]

(m)" =id (2] — BG)2. (3.2.12)

Proof. (3.2.11) follows easily from Lemmas 3.2.3 and 3.2.4. (3.2.12) follows
from (3.2.11) and that (). o (1;)* = I & -l. |

Now we are ready for Lemma 3.2.6.
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Lemma 3.2.6 In digram (3.2.8), the map 4 : Z(m — 1)[2m — 1] — Z{m —
1}[2m—1] is the identity, and the map b : Zi(m—1)[2m—1] — Z{m—1)[2m— 1]

ts the multiplication by |

Proof. It is observed that the map 4 : Z{m — 1)[2m — 1] — Z{m — 1)[2m — 1]
ig (), in (3.2.11), and therefore it is the identity by Lemma 3.2.5.

Meanwhile in the case of the map 5, the factors Z(m — 1)[2m — 1] are
represented by the fundamental classes of the varieties in question shifted by
[1]. The quotient map A™'—{0} — (A™ - {0}}/u; has degree I and so maps
the fundamental class of A™ — {0} to the {-th multiple of the fundamental
class of (A™ ' — {0})/p;. Therefore the map 5 is the multiplication by { on
the factors Z(m — 1)[2m — 1].

A more precise reasoning is as follows. Consider the following diagram

Me(A™ 1 [0}) ME(A™2 x A% (3.2.13)

l |

ME((A™E — {0})/ ) — MO((A™2 x A%) /),

which is the second square in (3.2.3) for dimension m — 1. Tt is observed that
two horizontal maps induce the identities on the factors Z{m —1)[2m -2, For
the upper one, this is because of the fact about the map 2 stated after (3.2.5)
(applied to dimension m — 1). For the lower one, this is because of the split
distinguished triangte (3.2.10) (applied to dimension m — 1), which in turn is
basically because the map 6 in (3.2.7) is zero on the top dimension. Now the
right vertical arrow in (3.2.13) on the factors Z{m — 1){2m — 2] is just (m,, )"

in (3.2.11), and therefore is the multiplication by [ by Lemma 3.2.5. By the
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commutativity, so is the left vertical arrow of (3.2.13). Shifting by 1, we get

our conclusion about the map 5 on the factor Z{m — 1)[2m — 1]. |

Remark 3.2.7 In view of Proposition 3.2.1, for m > 2 the natural map

ME((A™ — {0})/p, Z) — ME((A™ — {0})/m, Z),

induced by the natural inclusion (A™ — {0})/u — (A™ — {0})/u; with the

last coordinate zero, has the form
@Z/z V24 Z{m—1)[2m—2] — Z(0)[1] @ 7./1(3) [24) SZ(m) [2m).

We can choose the isomorphisms in Proposition 3.2.1 in such a way that the
above map is the direct sum of the natural inclusions of the first m — 1 factors

and the natural map Z(m — 1)[2m — 2] — Z/l(m — 1){2m — 2].
Now let’s consider Z/[ coefficients.

Proposition 3.2.8 The motive with compact support with ./l coefficients of
the lens space (A™ —{0}}/ i, where py acts on A™ as a direct sum of nontrivial

irreductble representations, is isomorphic to

ME((A™ — {0V)/ pu, 1) = @Z/z [2%+1]@@Z/l (1)[24].

i=0

Proof. When m = 1, one has

Me((AT = {0}) /1, Z/1) = M(A", /1) = Z/1(0}[1] © Z/1{1)[2].
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We now use induction on m. Observe that the projective bundle formula

(3.2.6) also holds for Z/{ coefficients, and we have
ME((A™ " % A%/, ZJ1) = 71 (m — D)[2m — 1] & Z/1(m)[2m).

Utilize the same localization distinguished triangles (3.2.3) as before but with
7]l coeflicients, The same reasoning as in the proof of Proposition 3.2.1 shows
that under the induction hypothesis, the boundary map 6 in the distinguished
triangle {3.2.4) is the multiplication by [ on Z/i(m — 1)[2m — 1], and hence

zero for Z /1 coeflicients. The conclusion follows easily. i

Remark 3.2.9 The isomorphisms in Proposition 3.2.8 can be chosen in such a
way that the natural map M°((A™ 1 {0})/p, Z/1) — M((A™—{0})/u, Z/1),

in view of Proposition 3.2.8, is the natural inclusion.

Propositions 3.2.1 and 3.2.8 combined with (3.2.1) give the following two
corollaries concerning the motives with compact support of the normalized

cyclic product (A™ — A™)/C; with Z and Z/! coefficients.

Corollary 3.2.10 In the triangulated category of motives DM, we have an

isomorphism
ni—1
Me((A™ — A™/C),Z) = Z(n)[2n + 1] & @ Z/1(1)[21] & Z{nl)[2nl}3.2.14)

Corollary 3.2.11 In the triangulated category of motives DM, we have an
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isomnorphism
nl—1 7l

ME((A™ — A™/Cy, Z/1) = @m 2+ 1@ @ Z/iE)[i) (3.2.15)

i=n+1

3.3 The total fixed point set

In this section, we use the distinguished triangle (3.1.5) in Proposition 3.1.1
Coz{A™) — C,2(A™)% — O z(A™ — AM)© 2 Coz(A™M)[1]

together with our computations in the last section to analyze the type of
C.z{(A™)%, We will study the boundary map &, which will determine the
whole distinguished triangle. Again we will work with Z coefficients first, and

then take up the situation for Z/{ coefficients.

Proposition 3.3.1 With Z coefficients, we have an isomorphism in DM

Cz(A™)E n@lZ/z (1)[24] @ Z{nl)[2n). (3.3.1)

i=n

Proof. {3.1.6) and Corollary 3.2.10 tells us that

Coz(A™ — AMY = Clz((A™ — AM/C)) = Me((A™ — A™)/CY)
= Z{n)[2n+1 T@ Z/1(1)[24] @ Z(nl)[2nl].

i=n+1

It is well known (2.2.1) that Ciz(A™)[1] = Z(n)[2n + 1]. Again by weight

considerations, the only possible nontrivial part of § in (3.1.5} is between the
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factors Z{n){2n + 1].

We put the distinguished triangle (3.1.5) in the following diagram

Coz(A") —> O\ 2( A0 — O, 2(A™ — AM)T = Cz(A™)[1]  (3.3.2)

l l o i

Co2(A™) ——> Oy A™) ——> Cz(A™ — A™) 2> C2{A™)[1].

Here the second row is a natural localization distinguished triangle (2.2.4), and
the vertical arrows are induced by the inclusions of the fixed point set sheaves
into the whole sheaves. Now let’s try to understand the relevant parts of the

third square in (3.3.2) concerning the factors Z(n)[2n + 1}, which are

Z(n)[2n + 1] —=Z(n)[2n + 1] (3.3.3)

b

Z(n)[2n + 1] —2= Z(n)[2n + 1],

It is easy to see that &g (see (3.2.5)) and jy are the identities. Let’s analyze
1. Through the isomorphism (3.1.6) between z(A™ — A™)% and z((A™ —

A™/CY), C.j in (3.3.2) is isomorphic to the following pullback map
™ Coz((A™ — A™)/C)) — Chz(A™ — A™).

Roughly speaking, the factors Z(n)[2n+ 1] on both sides are represented by the
motives with compact support of A™ multiplied by the motive of the missing

origin. 7* maps a point to [ points. Therefore j; is the multiplication by ,

and so is § by the commutativity of (3.3.3).




To be more precise about j;, consider the following diagram

Me((AY = {01/ ) —— Mo((A0D — {0}) /)

| |

Me(AL - {0}) Me(A™D — {0})

where the horizontal arrows are induced by the inclusion of A'—{0} in A1 —
{0} with all coordinates but the first one zero, and the vertical arrows are the
pullbacks. Then one observes that both the horizontal arrows induce the
identities on the factors Z(0)[1], and the left vertical arrow is 7* : Me((A® —~
{0})/ ) — M°(A'—{0}) in Lemma 3.2.4 and therefore it is the multipieation
by  on the factor Z(0)[1]. These imply that the same holds for the right vertical
arrow. lensoring this with M°(A™) = Z{n)[2n], we get our claim.

Again we have the Bockstein distinguished triangle
Z(n)[2n) — Z/i(n)[2n] D> Z(n)(2n + 1] 5 Z(n)[2n + 1] (3.3.4)

coming into play. An analysis similar to that at the end of Proposition 3.2.1

finishes the proof. |

If we are working with Z /! coefficients, similar reasonings show that § = 0

in a similar diagram to (3.3.2) for Z/I coeflicients. Thus one has

Proposition 3.3.2 With Z/1 coefficients, we have an isomorphism in DM

ni—1

ni
O A% = B 7/1(5)[24) & P Z/1(3) (20 + 1) (3.3.5)
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Now we give an interpretation of the above proposition in the A'-homotopy
category HA (k). Recall that in the Dold-Kan correspondence, we have a pair
of adjoint equivalence functors N and K between the category of simplicial
abelian sheaves and the category of chain complexes of abelian sheaves con-
centrated in positive dimensions. For a general complex, we need to first, apply
the good truncation functor at position 0. Let K(Z/1, 4,4} = K(Z/l(i){7}) be
the simplicial abelian sheaf corresponding to the motivic complex Z/I{i)|7].
Then considered as a simplicial sheaf of pointed sets, it serves as the motivic
Eilenberg-MacLane space in H2 (k) (see (2.3.1)).

The functor K respects finite direct sums, i.e. it takes finite direct sums
of chain complexes to finite direct sums of simplicial abelian sheaves. The
forgetful functor from the category of simplicial abelian sheaves to the category
of sheaves of pointed sets takes finite direct sums fo products. Therefore using

Proposition 3.3.2, we have

nli—1
K(C A G = @2/5 )[2i] @@Z/ﬂ )2 + 1))
ni—1
HK (Z./1,2,1) x HK(Z/Z 2 + 1,1).

By [2, Lemma. 2.5.2], we have an Al-weak equivalence from K (2%/4{(A™)%)
to K(C,2%A™%), where 2%/{(A™)% is comsidered to be a complex con-
centrated at dimension 0. It is easy to see by the construction of K that
K {22/ A™)) is the constant simplicial sheaf at z%/'(A™)%. Thus we arrive

at the following theorem.
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Theorem 3.3.3 In HY (k), we have an isomorphism

ni ni—1
PIAN G = T K (2, 2,1) x [[ K (271,20 +1,3). (3.3.6)

This implies that z2/{(A™)¢ has the desired homotopy type to be the target
for the total reduced power operation (3.1.3). The above theorem is part 1 of
our main theorem 1.3.1,

Similarly, using Proposition 3.3.1 we also have the following proposition.

Proposition 3.3.4 In H¥ (k), we have an isomorphism

nl—1
(A ~ H K(ZJ1,2i,1) x K{Z,2nl,nl). {(3.3.7)

i=n

3.4 DBockstein homomorphisms

We have constructed the following total reduced power operation (3.1.3)
D - ZZ/E(An) N zZ/l(Ant)C’;,

which in the homotopy category by Theorem 3.3.3 is

ni ni—1
P K(Z/L,om,n) — || K(@/1,2,6) x [ &(Z/,2 + 1,4)
i—=n 1=n :
n{l—1) nll—1)—1
= [ k@/ton+2i,n+5) % || K@/M2n+2+1,n+ ).
7=0 4=0
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We introduce the following notation; let
D' K(Z/1,2n,n) — K(Z/4,2n + 2%n+4), 0<i<n( 1) (3.41)

and
E' K7/, 2n,m) — K(Z/L 20+ 2+ 1,n+1), 0<i<n{l—1)— 1(3.4.2)

denote the components of our total reduced power operation P.

The goal of this section is to prove Theorem 3.4.5, which is part 2 of our
main theorem 1.3.1.

Consider a general dimension m > 1 and a lens space (A™ —{0}) /1, where
t acts on A™ as a direct sum of nontrivial irreducible representations. The
natural cgeﬂicient reduction map 7 : M°({A™ — {0})/w, Z) — M((A™ —
{0})/ i, Z./1}, by Propositions 3.2.1 and 3.2.8, is

T ZOYU D Z/HL) 2] @ @ Z/Um — 1)[2m — 2] & Z{m)[2m]
— Z/0)[1 e Z/I(D)2) @ Z/I(1)3] & - - & Z/l(m — 1)[2m — 2]

DL/ (m — 1)[2m — 1] @ Z/I{m)[2m].

Proposition 3.4.1 The map 7 is the direct sum ®T.47; of the following maps.
The maps 7o : Z(0)[1] — Z/H0)[1] and 7, : Z{m)2m] — Z/{m)[2m] are
coefficient reductions by {. The map 7 : Z/1(2)[24] — Z/1(2)[2¢| © Z./1(1)[21 + 1]
for 1 <4 <m—1 is the direct sum (id, ) of the identity to the first component

and the Bockstein homomorphism 3 to the second one.
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Proof. We proceed by induction onm. Whenm = 1,7 : M°(A'—{0}/u, Z) —
Me(AY — {0}/, Z./1), which is

20)1] & Z)[2 — ZO)1] & Z/1{L)[2),

is easily scen to consist of coefficient reductions.

Now assume that the conclusion holds for m — 1. For simplicity of no-

tation, we write L™ for (A™ — {0})/w. Recall from before (see the proofs a
| of Propositions 3.2.1 and 3.2.8) that M¢(L™,7Z) (M<(I/,7/1)) has the same s
Tate motives of algebraic dimensions < m — 2 (resp. m — 1) as M°(L™ 1, Z)

(resp. Me(L™1,Z/1)). This means that the conclusion about 7; holds for 7

0 < ¢ < m — 2 by the induction hypothesis. The conclusion that =, : i
Z(m)[2m] — Z/l(m)[2m] is the cocfficient reduction is easy to see. There- |

fore we only need to consider 7,,-y. Observe the following diagram i

Mc(Lm—l) 3! Mc(Lm) . MC(U'm) & MC(Lm—l)[l} (343)

l,i_.h' l'." \l{'rf l’r”[l]

MLm=, 21 -2 s Me(Lm B0 - Me(U™, 1) 5 ML 20 !

where for simplicity we write U™ for (A™ 1 x A*)/u, which is the open com- i
plement of L™t = (A™ ! — {0})/p in L™. Here the horizontal distinguished l
triangles are the localization ones we had before (see the second row of {3.2.3)),

and the vertical arrows are coeflicient reduction maps. \

The conclusion we want to draw is about the second column of (3.4.3),

and in particular we want to see that 7,1 = (id,3) : Z/I(m — 1)[2m — 2} — !

Zil{m—1)[2m—2|®Z/I(m~—1)[2m~—1]. Toseethat 7,1 : Z/l(m~1){2m—2] —
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Z/l(m — 1)[2m — 2] is the identity, we need to observe the relevant parts of

the first square in (3.4.3), which are

Z(m — 1)[2m — 2] — 2= Z/l(m — 1)[2m — 2]

I y

Z/(m — 1}[2m — 2]—>Z/l( — 1)[2m — 2],

where we understand, from the proofs of Propositions 3.2.1 and 3.2.8, that
i o Z{im — D[2m — 2] — Z/l(m — 1)[2m — 2] is the coefficient reduction,
7" Zlm — 1Y[2m — 2] — Z/l(m — 1)[2m — 2] is also the coeflicient reduction,
and iy @ Z/l(m — 1)[2m — 2] — Z/l(m — 1)[2m — 2] is the identity. Then the
cornmutativity of the diagram gives the conclusion.

Now we want to prove that 7,1 = 8 : Z/l{m — 1)[2m — 2] — Z/l{m —
1){2m — 1] is the Bockstein homomorphism associated to the exact sequence
0 — Z/! 4 Z./1* — 7/l — 0. This follows from the following relevant parts of

the second square in (3.4.3),

ZJi(m — 1)[2m — 2} —" s Zim — 1)[2m ~1]

2/l(m — 1)[2m — 1} 2= Z/1{m — 1)[2m — 1],
where we understand, from the proofs of Propositions 3.2.1 and 3.2.8, that
r 0 Zfl(m — 1)[2m — 2] — Z{m — 1)[2m — 1] is the Bockstein homomorphism
associated to 0 — Z -5 7 — Zjl —+ 0 (see (3.2.9)}, 7" : Z{im — 1)[2m — 1] —
Z/l{m —1)[2m — 1] is the coefficient reduction, and ry : Z/I(m — 1)[2m — 1] —
Z/1(m — 1)[2m — 1] is the identity.

58




£

Proposition 3.4.1 gives the following proposition.
Proposition 3.4.2 The coefficient reduction map 7 : C,z{A™)% — C, 251 AnHC
which by Propositions 3.8.1 and 8.8.2 has the following form

ni—1 ni—1
7 @ z/1() (24 @ Z(nl)[20d] — @Z/z @Z/z 24 + 1],

‘z,_

is the direct sum @PL,7; of the following maps. The map 7oy @ Z(nl)[2nl) —
Z/U(nl){2nl] is the coefficient reduction. The map

71 ZJUD)(24] — Z/16)[2] & Z/1(3)[24 + 1]

forn <i < nl—1 is the direct sum (id, B) of the identity to the first component

and the Bockstein homomorphism (3 to the second one.

Proof. The statement about =; for n + 1 < 4 < nl follows from the tensor
structure (3.2.1), the proof of Proposition 3.3.1 and Proposition 3.4.1. We

only need to consider
Tn + ZJUn)[2n] — Z/l(n)[2n] © Z/l(n)[2n + 1].
Utilize the following diagram
CLz(A™) s O, 2(APYO — 2o (AT — ATYC: C.z{A™)[1]3.4.4)

. ; |

C*zZ/E(An) ia C*ze/I(AnE)C_, 2 O*zzﬂ(AM _ An)C’; N O*zZ'/l(An)[l])
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where the horizontal distinguished triangles are those from (3.1.5), and the
vertical arrows are coefficient reductions. To see that 7, : Z/i(n)[2n] —
Z/U(n)[2n + 1] is the Bockstein g associated to 0 — Z/1 2 Z/12 — Z/1 — 0,

consider the relevant parts of the second square in (3.4.4), which are

Z/U{n}2n] ——=Z(n)[2n + 1]

Z/l(n)2n + 1] —2=Z/1(n)[2n + 1].

Here 71 : Z/i(n)[2n] — 7./1(n)[2n 4 1] is the Bockstein associated to 0 — Z —5
Z — Z[l — 0 in light of (3.3.4), 7" : Z{n)[2n + 1] — Z/l{(n)[2n + 1] is the
coeflicient reduction by (3.2.1) and Proposition 3.4.1, and 75 : Z/I(n)[2n + k

1} Z/l(n)[2n + 1] is the identity by the proof of Proposition 3.2.8. By the 1

commutativity, 7, : Z/I(n}[2n] — Z/i(n)[2n + 1] is the Bockstein associated
00— Z/1 52/ 5 7/ — 0,

That 7, © Z/l(n)[2n] — Z/l(n)[2n] is the identity can be seen similarly

using the first square in (3.4.4). i

Consider the following map

leo : 2(A™) — Z(Anﬂ)q

defined as follows. Given a smooth scheme U and a cycle 7 € z(A™)(U/), define

lw(Z) =13 ,cc,0(%), where a(Z) is the image of Z under the element o € C. i

l
It is clear that lw(Z) is invariant under the C) action by its construction E[
and thus is in z(A™)(U). Denote by z(A™)?/Im(lw) the Nisnevich sheaf [
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whose value on a smooth scheme U is z(A™)(U)/Im(lw @ 2(A™){U) —

(A" (1)), where the quotient is in the category of abelian groups.

Lemma 3.4.3 In the Al-homotopy category HE (k), one has an isomorphism

2(A™  Imy(ler) = nﬁl K{(ZJ1,2,4) x K(Z/I*, 20, nl). (3.4.5)

4=

The natural projection
p i 2 A — 2(AM)  Im(lw),

in view of (3.3.7) and (3.4.5), is isomorphic to the product H:inpz of the
following maps. p, + K(Z/1,2i,4) — K(Z/1,2i,3) for n < i < nl -1 is
the identity map, and py @ K(Z,2nl,nl) — K(Z/1%,2nl,nl) is the natural

coefficient reduction map.

Proof. Apply the singular complex functor C, and consider the corresponding

statements on the motive level. One has the following distinguished triangle

C(lw)

Coz(A™) T8 0 (™G S O (A T (le)) — CLz(A™)[1]. (3.4.6)

The map C,(lw) : Coz(A™) = Z(nl)[2nl] — BT 7,/1(3)|2i|®Z(nl)[2nl] =
C,z(A™)% induces the zero maps to the factors Z/1{i)[2i] for n <4 <nl—1 of
lower algebraic dimensions on the right by weight considerations. It induces

the multiplication by 12, Z{nl)[2ni) R Z{nl)[2nl], to the last factor. This

knowledge about the map C.(lw) in (3.4.6) enables us to understand the
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distinguished triangle. In particular,

CLa((A™)% ) Im(l)) = @7 /1)) @ Z/7(nl) 20,

and C.(p) : Coz(A™)% — C,z(A™) /Im{lw) induces the identities on the
factors Z/1{i){2i] for n < ¢ < wml — 1 and the natural coefficient reduction
Z{nl)[2nl) — Z/1*(nl)[2ni] on the last factors. An analysis similar to the
proof of Theorem 3.3.3, using the functor K in the Dold-Kan correspondence

and [2, Lemma 2.5.2], gives our statements on the homotopy category level. |

We now want to prove that our total reduced power operation P (3.1.3) for
7./l coeflicients factors through z(A™)“/I'm(lw) with Z coefficients. Namely

we will show the existence of the following commutative diagram

2(AM)C Tn{lw) £ 2(A™)% (3.4.7)

e

ZZ/Z(An) P ZZ/E(AM)G’.

where 7 is the coefficient reduction by {, 7/ is defined because Im(lw) is reduced

to Zero.

The proof of the following proposition is similar to that of [15, Proposition

8.1].

Proposition 3.4.4 The lift p in (3.4.7) exists.

Proof. Recall first that our total reduced power operation P (3.1.3) is also

defined for 7 coeflicients, and we have P : 2(A™) — z(A™)? A cycle in
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22 AM{(U) 1ifts to an integral cycle in z(A™)(U) unique up to a multiple of .
To prove the existence of p, we only need to show that for 2, Z, € z(A™)(U)
such that Zy — Zy = [W for some W & z(A™)(I/}, we have P(Z,) — P(Z) €
Im(lw), Le.

Zi — 7t = lw(T)

for some 7' € z(A™)(U). Observe that any invariant cycle in 2(A™)%(IJ} di-
visible by %, say (*V with V invariant, is equal to lw (V). Because 7! — Z} is
invariant, we only need to take care of the terms in Z! — 7% = (Z, + W)l — Z}
that are not divisible by {2. Such terms are {Y, Zo X -+ x W X+ X Zy,

i—th slot
and it can be written as lw(W x Zy x -+ x Zy). i

Now we can prove our result concerning the Bockstein homomorphism.

Theorem 3.4.5 £ — BolD for0<i<mnl-1.
Proof. We have a natural factorization (see (3.4.7))
71 2(A) B S (AN Im(lw) T AT

of the coefiicient reduction map. Lemma 3.4.3 says that p induces the identities
on the factors K(Z/l,24,1) for n <i < nl—1, and thus 7 i the same as 7 on
these factors. Interpreting Proposition 3.4.2 in the homotopy category, we see
that for 0 < i <nl—1, 7 K(Z/1,2,%) — K(Z/l,2,1) x K(Z/1,2i + 1,7) is

(id, 3), and therefore this also holds for 7. Lemma 3.4.4 gives the following

63




factorization

P o A B (A Imiar) T 22 A<

This proves our proposition. |

3.5 DBasic properties

In this section, we prove some very basic properties of our operations D
(3.4.1) and E* (3.4.2). By the representability of motivic cohomology (2.3.1),

our operations represent the following cohomology operations:
D' HPMM— ZJL) — HA PR 7D, 0<d <l 1)

gL (g fl) — B g 0 <s <n{l - 1) — 1.

Sinee our construction of the D® and E* is through maps between the cor-
responding motivic Eilenberg-MacLane spaces in the A'-homotopy category,

these operations are natural with respect to morphisms between schemes.

Theorem 3.5.1 D°: K(Z/l,2n,n) — K(Z/l,2n,n) is the identity.

Proof. By our construction (see the proof of Proposition 3.3.2), the K(Z/1, 2n, n)

factor of 22/'(A™)% is represented by z%/{(A™), the sheaf of equidimensional cy-
cles supported on the diagonal A™ of A™. Suppose Z = Y n;Z; € 22/{A™(U),

where I/ is a smooth scheme and the Z; are distinct irreducible subschemes.
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Then i
’P(Z) - Znh o 'nz’,:Zn Xy -+ Xy Ziz = zZ/l(Anl)Cl(U)' .’

For 4y, -+ 4 not all equal, Z;, Xy - - Xy Z;, must have non-empty intersection
with U x (A™ — A™) (we assume that the Z; arc all distinet). For each i,
the fiber product Z; xy -« Xy Z; may be reducible. The following subvariety,
denoted by W;, of Z; xy -+ Xy Z; defined by i = -+ - = y;, where the y; are
i - the coordinates to the j-th A™ component of A™, is obviously isomorphic to

Z, under the identification of the diagonal of A™ to A™, and so irreducible. By

definition all other irreducible subschemes of Z; %y - -+ Xy Z; have non-empty
intersections with U x (A™ — A™). The coefficient of the irreducible subva-
riety W, is the same as the coefficient of Z; xy -+ Xy Z;, which is ni It is

well known that nt = n; in Z/1. Therefore the cycle supported on the diago-

nal of A™ is the same as the cycle we started with. This completes the proof. |

Theorem 3.5.2 D™D = P K(2n,n,Z/1) — K(2nl,nl, Z/1), where P is

the I-th cup product power operation (3.1.1).

Proof. By definition (3.1.2), P = jo P 1 22/ A"} — 22/H{AMC —, 2/ AR,
Here j : 22/{(A™)C — 22/Y(A™) ig the natural inclusion of the fixed point set
sheaf into the whole sheaf, which in the Al-homotopy category by Proposition
3.3.3 is

nd nl—1
i |1 B@/, %6 x [ K(Z/1, 2+ 1,8) — K(Z/1, 20, nl).

i==n t=n

We will prove that § is isomorphic to the projection to the factor K'(Z/1, 2nl, nl).
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Actually we will prove the following integral version. The natural inclusion

J+ 2(A™)¢t — z(A™), which in the A'-homotopy category by Theorem 3.3.4

|

|
is g H?;l K(Z/1,2i,1) x K(Z,2nl,nl) — K(Z,2nl, nl), is isomorphic to the l
projection to the K(Z,2nl,nl) factor. To prove it, let’s consider the corre- !
sponding map on the motive level C,j : Ciz(A™)% — C,z(A™). In view of
Proposition 3.3.1, the map C,j has the following form C,j : &% 17/1()[24] &
Z(nl)2nl] - Z(nd)[2nl]. Clearly C,j is zero on the factors Z/1(:)[24] for

n <t < nl—1 for obvious dimensional reasons, and we only have to concen-

trate on the top dimensional factor Z(nl)[2n{]. Consider the following diagram

Coz(Am)C - (A A (A — A™) /)

| | |

Coz{AM) — "> O\ (A A™) —=

C.z(A™ — A =

d@r

Coz(A") @ Coz((A™D — {0}/ ) = Cuz(A™) @ Cuz (A 571 5 A% /)

| |

wd@r

Choz(A™) @ Con(AD) — {0}) ——— CLz2(A™) ® CLz(AME D1 x A%,

where all the arrows are the obvious ones: the s are induced by open embed-
dings. Observe that all the horizontal arrows induce the identifies on the factor
Z{nl)[2nl]. Now we consider the effect of the last vertical arrow. The Z(nl)[2ni]
factor of C,z(A") @ Cyz((A™D71 x A*) /1) is represented by Z(n)[2n] ten-
sored with the Z(n(l — 1))[2n(l — 1)] factor of C.z{(A™!=D=1 x A*)/p). By
Lemma 3.2.5, we see that the last vertical arrow on this factor is just (Trn(z_l))*”
and go it is the identity. Thus the last vertical arrow is the identity on the

factor Z{nl}[2nl]. Therefore so is the first vertical one.

Our statement about the Z/! coefficient case now follows easily from the
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above by the following commutative diagram i

z(A\”*)Cf ] E(A"E)

F

zZ/z(Anz)q i LAY, P

where the j's are the natural inclusions and the 7's are coefficient reductions, i

together with Proposition 3.4.2. i |
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Chapter 4

Comparison with Voevodsky’s operations

In this chapter, we prove that up to nonzero constants, our operations coincide
with Voevodsky's reduced power operations, which is part 4 of Main Theorem
1.3.1. The proof is carried out in Section 4.2. In Section 4.1, we review Vo-

evodsky’s construction and computations in {15] to facilitate the comparison.

4.1 Voevodsky’s operations

In this section, we review Voevodsky’s construction of the reduced power op-

erations
P HY (=, Zf1) — HrrREDeD g (4.1.1)

where [ is a prime different from char(k). The reference for this section is [15].

Recall that in the A'-homotopy category there are two circles: the simpli-
clal circle S; = A'/{0,1} and the geometric circle S} = A' — {0} pointed at
1, where each scheme is considered in HA (k) as the representable sheaf and

the quotient is taken in the category of sheaves. Fach circle has a tautological
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motivic cohomology class: o, € HM(SY) and o, € HL(SY), Multiplications

with these tautological classes induce two suspension isomorphisms (see [15

H

Theorem 2.4]).

Voevodsky restricts himself to constructing bistable operations, i.e. c¢oho-
mology operations that commute with the above mentioned two suspension
isomorphisms. He [15, Proposition 2.6] shows that constructing a bistable op-
eration of the form P*in (4.1.1) is equivalent to constructing a family {P},

of operations of the form
P Tl I?n+2i(l—1),n~’%i(lfl)(_,Z/E)’
such. that
Pl (z Aor) = Piz) Aoy, ‘ (4.1.2)

where z € H*™(X,Z/l) is a class, T = A'/(A! — {0}) ~ 51 A S} is the Tate
circle, oy = o, A oy € 24T, Z./1) is the tautological class of T, and — A oy
is the multiplication by op. Therefore the task now is to construct a family
{P{}n which satisfies the stability condition (4.1.2),

Assume that X is a smooth scheme, and that © € H?*™(X, Z /1) is a motivic
cohomology class. In view of (2.3.1) and (2.3.3) (and by the Yoneda lemma),
such a class is represented by an element in (Z.(A™) /Z;, (A" —{0})){X), which
is the equivalence class of a cycle Z € Zy, (A™){X).

Consider the {-th fiber product power Z' of the cycle Z over X. It is

an element in Zg, (A™)(X), and its equivalence class in (Z, (A™)/Z, (A™ —
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{0}))(X) represents the I-th cup product power z' of .

The symmetric group S; on | elements acts on A by permuting the [
copies of A", Let G < S; be a subgroup of .5; (the ones of interest to us are
the cyclic group Cy and the whole group S;). Assume that U is a smooth
scheme with a free G action. Let pr : U x X — X be the projeqtion, and
Cycl(pr)(Z2Y) € Zu (A™)(U x X) the pullback,

The action of G on U is free, so is the product action of G on A™ x 7 x X.
By its construction, Cycl{(pr)(Z) as a cycle on A™ x U/ x X is invariant under
this action. Therefore it comes from (i.e. is the flat pullback of) a cycle Z’ on
the quotient (A™ x U x X)/G = A™ xq U x X, which is a vector bundle of
rank nl under the projection p : A™ xq U x X — U/G x X. We denote this
vector bundle by .

Now we have constructed a cycle Z’ on the rank nl vector bundle £ over
U/Gx X. Z'is finite over the base by its construction from 7' € Zy, (A™){X).
We now show that such a cycle Z’ gives a cohomology class in H¥™™ (/G x
X, Z[0).

To do this, assume that there is a vector bundle L over U/G x X such that
the sum B L = AV x (U/G x X) is trivial. This is always possible when
the base is affine, and for a general quasi-projective base we use the Jouanolou
trick to introduce an affine torsor.

We first construct a cycle 27 € Z,(AV)(L) from Z'. With the obvious

70




notation, consider the following pullbacks of vector bundles

ky E Ly——1L

N

L—U/Gx X, L—=U/GxX.

The cycle Z" on E pulls back to a cycle Z” on Ey, which is finite over L. The
bundle Ly, has a natural cycle, the diagonal cycle A, which is obviously finite
over L., The fiber product Z} 1= Z"x A is a cycle on the direct sum E; @1, =
AN x L, the trivial vector bundle of rank N on L. Zy is finite over L, i.c.
7}, € Lo (AMY(L). 1t is easy to see that the restriction of Z, to the complement
of the zero section, L — (U/G x X), is in Z, (A" — {01 (L — (U/G x X)) since
the diagonal cycle is non-zero there. Therefore Z} defines a morphism in the

homotopy category
ThL) = L)(L = (U/G x X)) = Zoy (A") /T2 (AY — {0O}),

and thus by {2.3.1) and (2.3.3) it defines a class 24, € H*N(Th(L),Z/1).
We have Thom isomorphism in motivic cohomology [15, Proposition 4.3].

In our case (note that L has rank N —nl, and use the Z/{ coefficient version),

it. says that there is the Thom class ¢, € H*N =N -rl(Th(1) 7/1) such that

the following map of multiplication by £,
ty s HUJG x X, LJ1) — FH2N -t Nenlipy 1y 771

is an isomorphism. Therefore there exist a unique element zt, € H2n([ /G %
q U
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X, 71} whose product with the Thom class t;, is z}. The above construction
is carried out in the general situation in [15, Section 3.

Now consider the case that G = i, and take U to be EC; and thus U/
is BCY (see the paragraphs before Definition 4.2.1). Strictly speaking this is
not legitimate since f2C}) is not a smooth scheme but an inductive scheme.
Voevodsky [15, Corollary 6.2] proves that nothing goes wrong in the limit
procedure. To be able to do further computations, Voevodsky uses standard
transfer arguments and the condition that ! s char(k) to assume the existence
of & primitive I-th root of unity ¢ in %k to have an isomorphism ) = x4, and
thus a weak equivalence BC; ~ By,. After all these steps, we now have a class
T, © H™m( By x X, Z[1).

Voevodsky [15, Section 6] goes ahead to compute the motivic cobomology
ring H *'*-‘(B/_q x X,Z/l). First of all we have a very geometric picture of By

using the standard representation p of y; as
By = O(~1)pe — P,

where IP* is the zero section of O(—{}p=. Therefore we have the following

cofibration sequence

which leads to a long exact sequence in motivic cohomology. Using Thom
isomorphism and the basic knowledge that [7**(IP*°) = H**(k)[v] is the poly-

nomial ring, over the motivic cohomology ring of the base field, on the gener-
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ator ¥ which corresponds to the hyperplane line bundle on **°, one is able to
compute the motivic cohomology of By, Abusing notation, we also write v
for its pullback in H*(Bgy, Z/1). 1t can be seen that v corresponds to the line
bundle on By associated to the standard representation p, i.e. the quotient of
Euy x Al with g4 acting on the component A! by p. It is clear that (v = 0, and
it can be shown that there is a unique v € HY(Bpu;, Z/1) such that f(u) = v

and the restriction of u to a rational point of Ey is zero. Then ag a ring
HY(Bjuy /1) — H** (b, B/ [, o]}/ (0 = ),

where e is zero when { is odd and when [ = 2, ® is a linear combination of u
and v with coefficients in H**(k,Z/l). Actually with a little extra care one
shows that the Kiinneth type formula holds for H**(Bu, x X,Z/1) and one

has (see [15, Theorem 6.10]) as a ring
H** (B x X, Zfl) = H"(X, Z/)][w, v]]/ (u* = ). (4.1.3)

In spite of the complication of e when { = 2, H**(Bu, x X,Z/l) as an
H**(X,Z/1) module always has {u®}.—01 s>0 as a basis.

Thus the element z%, € H*™™ (B x X,Z/l), which we have obtained,

can be written uniquely as a direct sum

mlEM: Z D s(@)use’, {4.1.4)

e=0,1, 50

where the D, s(z) € [2-2-ani~0~¢(X 7/1), determined by (4.1.3), are to be
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i
i
i
H
P

defined as the operations of z.

Using furthermore the full invariance of the construction under the whole
symmetric group Sy, Voevodsky [15, Theorem 6.16] is able to show that in
(4.1.4) only indices of the form (¢, §) = (0,i({ - 1)) and (¢, §) = (Lil—-1)-1)

can appear. He fixes the notation to be
P} = Dy gy 1y, BL = Dy yq-1y-1-
Then the operations P} and Bi have the following forms:
Pl [P0 (e B 1) — HPEE Dm0 gy,

B; : Hzn’ﬂ(—-,Z/l) s HZRJF%U“I)"‘L”‘H(‘!*1.)(m) Z/IZ)

On the side, Voevodsky [15, Section 3] proves that there are no nontrivial
cohomology operations lowering algebraic weights, and so in our situation
Py = 0and Bf = 0 for i < 0. He also proves {15, Lemma 9.2] that the
stability condition (4.1.2) holds for the families {P:},, and { B!}, of operations
and therefore they can be extended to bistable operations. In particular, the
family {F}}, gives the bistable operation P* in (4.1.1). By a formality 15,
Corollary 2.10], bistable operations are group homomorphisms,

Voevodsky proves the following further properties of these operations.

1. [15, Lemma 9.6] B* = o P' where g : H**(—, Z/I} —» H**'»*(— Z/I)
is the Bockstein homomorphism associated to the exact sequence 0 —

LIS TR 2 0,
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2. [15, Lemma 9.5) P = id.
3. (15, Lemma 9.8] For z € H*"™(— Z/1), P*(z) = 2,

4. (Cartan formula, [15, Proposition 9.7]) Pi(zy) = 3., ,_, P/ (x) P*(y) for
an odd prime {. When ! = 2, the formula is more complicated since it

involves coeflicients from the base field.

5. (Adem relations) These relations deal with the multiplication structure
of the algebra of operations. It is complicated, and when { = 2 it involves
coefficients from the base fleld. I will spare you the exact formulas, but

see [15, Theorem 10.2).

[ would also like to mention that one of the purposes that Voevodsky con-
structed these operations is to use them in his proofs of the Milnor conjecture
and the Bloch-Kato conjecture. In those proofs, these operations have beauti-

ful relations with some special varieties through certain characteristic classes.

4.2 Comparison of the two operations

We start by explaining the following commutative diagram

2(A") —Es (A C (4.21)

b

z(A’ni)hC; )

where P : z(A™) — 2(A™)“ is our total reduced power operation (3.1.3).
Z(A™) in (4.2.1) is an analogue of the homotopy fixed point set in topol-

ogy. To define it, first note that for any linear algebraic group &, Voevodsky
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has defined its classifying space B@ in the homotopy category A (k) (see [15,
Section 6] and {8]). For the reader’s convenience, let’s recall its definition.

Suppose that G — GL(V) is a faithful representation of G. Denote by
Vi the open subset in A(V)* where G acts freely. We have a sequence of
closed embeddings f; : V; — Vjy; given by (v, ) = (U1, , 0, 0). Set
EG = co.’,imiﬁ and BG = coéimif/;- /G, where 17; /G is the quotient scheme, and
the colimits are taken in the category of sheaves. It is known that the homotopy
type of BG doesn’t depend on the choice of G — GL(V). In particular, we
have the classifying space BC) for the cyclic group. Under our assumption
of the existence of a primitive {-th root of unity ¢, we have an isomorphism
between C; and py, the group of I-th roots of unity in k. Therefore we have a
weak equivalence BC) ~ Buy.

Now let’s define z(A™)"'. Fix a representation C; — GL(V'}, and use the

same notation as above.

Definition 4.2.1 Given a smooth scheme Y and a scheme X, define (Y, X)
to be the sheaf whose value on a smooth scheme U is (Y, X}(U) := 2(X)(Y x
Uy.

Define 2(V;, A™)% to be the sheaf whose value z(V;, A")C(U) on a smooth
scheme U is the group of cycles in z(A”’)(ﬁ; x U which ore invariant under the
C) action on A™ x ‘[7; x U as the product of its natural actions on A™ and V; and
the trivial action on U. Coneretely, a cycle Z belongs to z(Vy, A™O{UY if for
anyge CLveV; andu e U, the fiber of Z over the point (g(v),u) € Vi x U,
as o linear combination of points in A™, is the image of the fiber of 7 over

(v,u) under g.
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The natural inclusion f; IZ - f/;:l nduces o natural pullbock map
Cyel(f,) + 2(Vi, A™) « 2z(Vir1, A™), and it can be seen fo induce ¢ map on
the fized point set 2(Vi, AMCt — 2(Viy1, AP)C, since Vi x 0 C Vi is invars-
ant under the C; action.

We define z(A™M)'C = limz(V;, A"Y%, where the limit is taken in the
category of sheaves.

Furthermore define 22/ A™)PC to be 2( A" @ /1.

Since the action of C) on Vi is free, 50 is its action on the product A™ x Vix U
for any scheme U. Then the projection p : A™ x¢, V;x U 1= (A" V; xU}/C —
(Vi x U)/Cy = V;/C, x U is a vector bundle of rank nl. Furthermore any cycle
7 € z(V;, AMYO(U), being invariant under the free action of C; on A™ x V; x U,
comes from a cycle Z’ on the quotient (i.e., the flat pullback of Z’ is Z, see
(3.1.6)). As a cycle on the vector bundle A™ x¢ V; x U 5 V,/C, x U, Z'
is equidimensional of relative dimension 0 over the base ‘572 /C; x U under the
projection p, since originally Z is equidimensional over ffi x U,

A Given a

This gives the following imprecise interpretation of z{A™)
smooth scheme U, z(A™)" () can be thought of as the free abelian group on
the closed irreducible subschemes on A™ X, ECy x U, which are equidimen-
sional of relative dimension 0 over BC; x U under the vector bundle projection
o A X ¢, BCy x U — BC; x U. This is imprecise because EC; and BCj are
not schemes, but rather sheaves.

v 2(A™)C — Z(AMYRC in (4.2.1) is an analogue of the inclusion of a fixed

point set into its associated homotopy fixed point set in topology, and is de-

fined as follows. For a cycle Z € 2(A™)C(U), Cycl{pr)(Z) & 2(A™)(V; x U)
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is the pullback of Z by the projection pr; : Vix U - U. It is easily seen
that Cycl(pri)(2) € 2(Vi, A")O(U), since Z € z(A™)%(U/). Furthermore
Cycl( f;){(Cycl{pria)(2)) = Cycl(pri){(Z), where Cycl(f;) z(ﬁ,A\”‘)cﬂ —
2(Vi;, A% s the pullback map by the natural inclusion f; : V; — Vi,
since clearly prigi o (fi X idy) = pry : f/; x U — U. Therefore the system
{Cycl{pr:)(Z)}; defines a cycle in the limit z(A™)* (U7}, and this is defined
to be 4(Z).

¥ = o P is the composition. It is understood that ¥ is the same as
Voevodsky’s construction [15, Section 5.

Now let’s concentrate on Z/{ coefficients. It is a computation of Voevodsky

[15, Sections 5 and 6] that

nl ni—1

PIAMO ~ [T K@, 2,0) x [ [ K (Z/1,20+ 1,4), (4.2.2)

=0 =0

To be more precise, he (loc. cit.) first proves that for a smooth scheme X
Hompu (X, 22/ (4™ = H*™M(X x BC), Z/1). (4.2.3)

This can be informally understood as follows. As we said 2%/Y{A™) (X)) ig
roughly the group of cycles on A™ x g, EC; x X, which are equidimensional of
relative dimension 0 over BC; x X under the projection p : A™ x ¢, EC; x X —
BC; x X of a vector bundle of rank nl. Therefore a cycle Z € z%/{(A™)"(X)
"should” define a motivic cohomology class of dimension (2nl,n!) of the base
BC; x X, since if the vector bundle were trivial, i.e. it were A™ x BC) x

X, such a cycle does define such a class by definition. Actually much of
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Voevodsky's proof of (4.2.3) is to add another bundle to make the direct sum
trivial, and then use the Thom isomorphism to "pull” the dimension of the
motivic cohomology class back.

Under our assumption of the existence of a primitive -th root of unity ¢,
we have a weak equivalence BC| «~ By, (as we explained at the beginning
of Section 3.4, this can be assured by just the assumption [ # char(k) using
transfer arguments). Then Voevodsky computed the motivic cohomology of

X x By with Z/1 coeflicients. His result (loc. cit.) is

HOX % B, 2/ > @) HY(X, e, (4.2.4)

e=0,1, 0<6<nl
as an H**(X, Z/1) module. Here v € H?'(Bu,, 7/} corresponds to the
line bundle on By, associated to the standard representation p, and w €
H"Y (B, Z/1) is the unique class such that its Bockstein ﬁ(u) = v and its
restriction to a rational point * of By, which lifts to a rational point of some
V, is zero. In the following table, we count the possible dimensions of ufv?

for e = 0,1, 0 £ ¢ < nl and calculate the corresponding dimensions of
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H»*(X,Z /1) such that the sum of the dimensions is (2nl, nl):

§ 0 0 1

¢ 0 1 0

dimu‘e’ (0,0) (1,1) (2,1)
dimH5*(X) | (2nd,nl) | (20l ~ Lnl —1) | (20l — 2,00 — 1)

Ll il )

L. 0 €

(3,2) | -+« | (2nd,ni) dimu‘v?

(2nl —3,nl —2) | --- (0,0} | dimH**{X)

Combining (4.2.3), (4.2.4) and the above table of possible dimensions of
H**(X,7,/1), we arrive at the conclusion (4.2.2).

Recall our Theorem 3.3.3 about the homotopy type of 2Z/{{A™)%, To
compare the two operations, we need to study the map v : Z2/4{A)%

2 AMYAC in (4.2.1). Our result is

Theorem 4.2.1 The map v in (4.2.1), which in view of Theorem 8.5.8 and
(4.2.2) has the form of

ni

ni—1

v [1 B @20 x ] K(Z/1,2+1,5)

i=n
nl

=7

ni-1

— [[&@/n2,5) < [] K@/1,2 + 1,4),

i=0

i=0

80

induces isomorphisms on the factors K(Z/1,21,7) for n < i < nl. In light of

the diagram (4.2.1), we see that our operations D' (3.4.1) coincide with the




corresponding ones of Voevodsky for cohomology classes of dimension (2n,n),

up to nonzero constants in 7/l

Remark 4.2.2 In view of Theorem 3.4.5 and [15, Lemma 9.6], we see that
our £ (3.4.2) are also the same, up to nonzero constants, as the corresponding

ones of Voevodsky for cohomology classes of dimension (2r,n).

Actually the above theorem will be a special case of the following general
situation. We will adopt the following notational convention in the rest of this
chapter. We assume that A™ always has a trivial 1 action, A™ has a u; action
which is a direct sum of nontrivial irreducible representations, and A™t™ is
the direct sum of them.

Our previous computations in Section 3.4, which correspond to the situa-
tion that m = n(l — 1), generalize to this general situation. An analogue of

Theorem 3.3.3 gives us a weak equivalence

-t . n+m—1 4‘
YAy o T K(Z/L 2,0 x [ K(Z/L,2+1,4). (4.2.5) |

Denote by z2/{AM™)M: the similarly defined homotopy fixed point set ;
as in Definition 4.2.1. The following general versions of (4.2.3), {4.2.4) and
(4.2.2):

Homw (X, 22 AMmhY o raindmdntm 5 oo By 771, (4.2.6)

HEmmTX < B, B % D HUXL e, (42.7)

e=0,1, 0<5<n+m
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and
) n+m n-lm—1
ety o [T K@/ 2,0 < ] K(Z/L20+1,4)  (4.2.8)
i=0 §==0
still hold.

Similar to diagram (4.2.1), we can define a natural map y : 22//{Anm)m
ZEH AP We now prove the following theorem, which in particular gives

Theorem 4.2.1.

Theorem 4.2.3 In view of (4.2.5) and (4.2.8), v : 22/ (Amtmym —, JB/H gratmyhia

induces isomorphisms on the factors K(Z/1,24,1) forn <i < m+n.
First a lemma.

Lemma 4.2.4 For arbitrary dimensions n and m, the map v induces the iden-

tity on the top dimensional factor K(Z/1,2(n +m),n +m).
Proof. Consider the following diagram

ZZ/E(AmLm)m "'"_> zZﬂ(An+m) (4.2.9)

P

zZﬂ(An-{-m)hm ;

where j is the inclusion of the fixed point set sheaf into the whole sheaf. §' is
defined as follows. Regard z%/YAmt™hit ag 22/Y Fyy, A™™)# (see Definition
4.2.1). Let incl : + — Ep be a rational point of Ep; which lifts to a rational
point of some V;. Then define §' = Cycl(incl) : 22/H Epy, AvH™) — 22/ AR+
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to be the pullback map by incl. Note that ;' doesn’t depend on the choice of
the rational point * since Eyy is contractible.

The diagram (4.2.9) can be seen to commute as follows. Ohserve that
v = Cycl{pr) is the pullback map by pr : Eu; — % Therefore §/ o v o=
Cycllinel) o Cycl(pr) = Cycl(proincl) = Cycl(id,) is the identity map, except
that now we forget the fixed point set structure, which is exactly 7.

Exactly the same arguments as in the proof of Proposition 3.5.2 show that
J induces the identity on the factor K(Z/l,2(n +m),n + m). We now want
to prove that j' also induces the identity on this top dimensional factor. For

a scheme X, we have the following commutative diagram:

Hompu (X, ZA Aty 2 HArtmhindm (X5 By, Z/1)

lj’o J'fq

Hompu (X, 22/ (Am+m)) = HAmm)ntm( x 7 1)

where the first isomorphism is (4.2.6), and the second isomorphism is the
obvious one (see (2.3.1) and (2.3.2)). The left vertical map j'c is composition
by j', and the right vertical map 7% is induced by the inclusion * — Eu —
Biy. The diagram commutes by the naturality of (4.2.6) (see [15, Lemma
5.12]). (4.2.7) says that j; has the form

Jig + HATAT(X ¢ By, Z/1)

I

@ HY (X, 2/ )uf?

e=0,1, 0<d<n+m

N H2(71+m),n+m(X: Z/l)

Actually jj; only records the summand HAndmynim( 3 7 /1Y which corre-
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sponds to € = 8 = 0, In Py, gesen H (X, Z/l)u’, since both v (by
dimension reasons) and v {by definition) are restricted to zero in the motivic
cohomology of the rational point . This means that j' : Z2/H{ AT )lun _,
22 AM™) s actually the projection to the K (Z/1, 2(n +m),n 4 m) factor.
By the commutativity of the diagram (4.2.9), we see that «y is the identity
on the factor K(Z/,2(n -+ m),n +m). |

Now let’s prove our theorem.

Proof of Theorem 4.2.3. We run induction on m. When m = 0 we are

done by Lemma 4.2.4. Now assume that the assertion holds for m — 1, i.e,

(with obvious notation)
st 1 AT S gy

induces isomorphisms on the factors K(Z/1,24,4) forn <i <n+m— 1,

Consider the following diagram

ZZ/J(Anerq)M i ZZ/J(Aner)p;

l/'?”n{—ml l’yn+n1

ZBAAm YR b PN

where 7 and 75, are induced by the closed embedding A"T™~1 — A"™ with the
last coordinate zero. The diagram is clearly commutative by our construction
of .

‘We have proved that vy,,,, induces the identity on the factor K (Z/1, 2{n +

m),n +m) by Lemma 4.2.4, so by the induction hypothesis we only have
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to show that ¢ and 4, induce isomorphisms on the factors K(7Z/l,2i,4) for
n<i<n+m-— L
This is clearly true for ¢ by how we compute the type of 22/1(A™+m)m,
Now consider i, : 22/ Antm- Db _, JZA AP R4 Bor o scheme X, we

have the following commutative diagram

Home,l (X o, 22 Artm—Lyhay 2, [Amtm—Dindm—lox o By, 7,/1§4.2.10)

HO'me,l (X, ZZﬂ(An_}_m)hM) =2 HZ(n—I—m),n-llm(X x Bu, 21,

where the two isomorphisms are by (4.2.6), the left vertical map inc is com-

position by 4. 'T'he right vertical map iy is defined as the follow composition:

dy 0 HAEmUAImolx o By, 71)

o o~
= fAntmnm A Th(Ly — B, Z/1)
L getmntmox o By 70,

where Th{Ly,, — Byy) is the Thom space of the line bundle L,, on By as-
sociated to the last Al component of A™, the isomorphism is the Thom iso-
morphism via the multiplication by the Thom class ¢;,_, and the last arrow
is induced by inclusion ¢ : By — Th(L,, — Bpu;) as the zero section. The
commutativity of the diagram (4.2.10) is seen from the proof of (4.2.6) (see
[15, Section 5]), where one adds a vector bundle to make the direct sum trivial
and apply the Thom isomorphism theorem to pull back the dimension of the

cohomology class.
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Therefore

it = 0 Ly) - HATHRDRm (0 o By  FAIIXC 0 By

is the multiplication by e(L.,), the Euler class of the line bundle Ly,. Since
the 1 action on A™ is a direct sum of nontrivial irreducible representations,
we have e{Ly,) = amw, where 1 < a,, <1 —1is an integer invertible in Z/l
and v is the Buler class of the line bundle on By, associated to the standard
representation p, which by definition is the v in (4.2.7).

Therefore in view of (4.2.7), i has the form

e H2(n+m—1),n+mfl(X % BM) e @ o (X)u5v5
e=0,1, 0<é<n-t+m—1
oy @ am HY* (X )ur®H — JAntmhntm o Buy),

e=0,1, 0<d<n+m—1

which on the components of HP*(X) for p < 2(n-+m — 1) are multiplications

by o and thus isomorphisms. This proves our theorem. 1

Finally let’s add some remarks about our operations.

Remark 4.2.5 Our construction doesn’t produce any cohomology operations
lowering algebraic weights. Meanwhile Voevodsky’s approach a priori pro-
duces such operations (see (4.2.2)). It takes some effort for Voevodsky (see

115, Section 3]) to prove that all such operations lowering algebraic weights

are zZero.

Remark 4.2.6 Voevodsky’s operations H2™(X,Z/1) — H*'¥" (X, L[1)
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are nonzero only if 7 = j(I — 1) is a multiple of [ — 1. The proof uses the

full symmetry of the construction under the whole symmetric group S;. By
our cornparison theorem 4.2.1, we see that this also holds for our operations,
f.e. D* =0 and thus B = 0 by Theorem 3.4.5 unless i = 5(I — 1). 1t would
be satisfying to give a direct proof of this fact for our operations. But this
cludes my effort so far mainly because in our construction we are dealing with
finite dimensional lens spaces, and the homotopy classes of maps between such
lens spaces are more complicated than those for the infinite dimensional lens

spaces, which were employed in Voevodsky’s approach.

Remark 4.2.7 Using a trick of considering only bistable operations, Voevod-
sky can extend his operations to motivic cohomology H**(X,Z/1) of all di-
mensions instead of just H*»™*(X,7Z/1), and furthermore by a formality (see
[15, Corollary 2.10]) all bistable operations are group homomorphisms. To

follow his approach, we need to verify that for us
Pn_I_l(ﬂf A O’T) = PH(CU) N op, (4211)

where z € H*"(X,7Z/1) is a cohomology class of dimension (2n,n), or €
H>(T, 7./1) is the tautological motivic cohomology class of T — Al J(AT—{0}),
i.e. or is represented by the diagonal cycle, and z A o € HX0HIMHL( X, A
T,Z/1) is the product. Here we write P, to note 7 on dimension {2n,n), This
"should” be obtained by the Cartan formula, which says that P,.1(z Aor) =
Pplz) A'Pi(or), together with the fact that

Pi(or) = or. (4.2.12)
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(4.2.12) holds since all the fiber product of the diagonal eycle (being a one-to-

one cycle) is in the diagonal A' of Ab and is restricted to zero off the diagonal to
Al—AY, and so Py(o7) = D% or) = or by Theorem 3.5.1. But the full powered
Cartan formula surely is out of our reach, since it involves some coefficients
coming from the base field when [ = 2 (see [15, Proposition 9.7]). I have a
primitive version of the Cartan formula, but it is not clear to me if it is enough

for the stability condition (4.2.11).

Remark 4.2.8 [ want to say, as my last words, that although our construction
can be said to be conceptionally simpler, we lose much control of the actual
o classcs.  In particular, our computational ability is very limited using this
approach, and for instance, we don't dare to touch the Adem relations at all

(see [15, Section 10]).
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