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Abstract of the Dissertation

The Thurston Boundary of Teichmiiller Space
and Complex of Curves

by
Young Deuk Kim
Doctor of Philosophy
in
Mathematics
Stony Brook University

2005

“Let .S be a closed orientable surface with genus g > 2. Let 7(5)
be the Teichmiiller space and C (5) the compiex of curves. We
write PAL(S) to denote the Thurston boundary of 7(S}, and
3xC(S) to denote the Gromoy boundary of C(S). Let UML(S)
be the quotient space of PML(S) by forgetting measure with the
quotient map u. Let L be a fixed Bers constant. For o € T(5), let
${o) be a pants decomposition whose total length is bounded by L,
where all pants curves are geodesics in o Suppose that o; € T(S)

converges to [A] € PAML(S). Consider the decomposition

w(A) =AUl U,
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as a linite disjoint union of minimal laminations. Suppose that o

is a pants curve in ®(0;). In this thesis we show:

L If $(ey) converges to a geodesic lamination v in Hausdorff

metric topology, then u([A)) C v.

2. Supposc that Ay is a simple closed curve. Consider an annular
covering ¥ of S in which a neighborhood of Ay lifts homeo-
morphically. Suppose that a; meets A, for all 3. ‘Then the
absolute value of algebraic intersection number lat - a;] ap-
proaches to oo, where a, is a lift of arp which connects the two

boundaries of Y, and so is a;.

3. Suppose that s is not a simple closed curve. Let # be the
essential subsurface of § which is filled by Ay, Let 5 be a
component of a; M F. We can define g simple closed curve 53
from f; in a canonical way. Then the geodesic representative
of §; converges to Ay in UML(F).

4. In particular, if ) is a filling lamination then o CONVerges
to u{[A]) in C(S) U 8,,C(S), where u([A]) is considered as an
element of 9,,C(9).
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Chapter 1

Introduction

Let S denote a closed orientable surface with genus ¢ > 2, and 7(S) the Te-

ichmiiller space of S. Although there exist some similaritics between 7~ (5} and

a complete negatively curved space (see [6, 31, 54, 66]), Masur ([65]) showed

that 77(S} is not negatively curved. In [36], Gromov introduced Cromov hy-

perbolic spaces which include complete negatively curved spaées and metric

trees, but Masur and Wolf ([70]) showed that 7 (S) is not Gromov hyperbolic,

either (see [72], for another proof by McCarthy and Papadopoulos).

In [57], Luo classified surface theories into geometric theory, i.e. T(S5), al-

gebraic theory, i.e. the mapping class group MCG(5), and topological theory,

i.e. the complex of curves C(S). The complex of curves, which was introduced

by Harvey in [39], is a finite dimensional simplicial complex whose vertices are

non-trivial homotopy classes of simple closed curves which are not boundary-

parallel, and k-simplices are £+1 distinct vertices with disjoint representatives.

Let Co(5) denote the set of vertices and C;(S) its I-skeleton. In [67], Masur

and Minsky defined a metric on C(S) by making each simplex regular Fu-

clidean with side length 1 and taking shortest-path metric, and showed that




C(S) is a non-proper Gromov hyperbolic space (see [16], for a shorter proof
by Bowditch). Every Gromov hyperbolic space has a natural boundary which
is called Gromov boundary (see [23, 36, 98]). We write 0:C(S) to denote the
Gromov boundary of C(S).

Since T (S} is not Gromov hyperbolic, we can not define its Gromov bound-
ary. Lor example, Kerckhoff{[47]) showed that the Teichmiiller boundary,
which is the set of endpoints of geodesic rays, depends on the choice of base
point. In [102], Thurston introduced a compactification of T(S) with the
boundary equal to the space of projective measured laminations PML(S), on

which the action of MCG(S) extends continuously. ‘Throughout this thesis,

~we will write 7(S) to denote this compactification of Thurston. Sec [7, 21] for

a similar but different compactification by Bers.

Thurston boundary PAML(S) is the space of projective classes of measured
laminations. We write AML(S) to denote the space of measured laminations,
and [A] the projective class of A € ML(S). A measured lamination consists of
a geodesic lamination and a transverse measure with full support on it. The
fopology on the space of geodesic laminations GL£(S) is the Hausdorff metric
topology on closed subsets. On ML(S), Thurston gave the weak-topology
induced by the measures on transverse arcs. Note that PML(S) has the
natural quotient topology. Let 4 ML(S) be the quotient space of PML(S)
by forgetting measure. Although UML(S) is a subset of GL(S), the quotient
topology on UML(S) is not equal to the subspace topology.

In [102] §5, Thurston wrote .. Intuitively, the interpretation is that a
sequence of hyperbolic structures on S can go to infinity by “pinching” o cerlain

geodesic lamination \; then it converges to A As a lamination is pinched




toward 0, lengths of paths crossing il are forced toward mfinity. The ratios of
these lengths determine the transverse invariant megsure | ” .
More clearly, a sequence o, & T(.5) converges to [\] € PML(S) in T(S)

if and only if for alj simple closed curves @ fonS,

é"'(ﬂ converges tol ier, )
bo: () i(8,A) 7

where ¢, (o) is the length of closed o;-geodesic which is homotopic to a, and
(e, A} is the intersection number of & and A which is a generalization of the
geometric intersection number of simple closed curves (see [11, 89, 90]).
The geometry of T(S) and complex of curves are well described by Minsky
“in [78]. They are related by the collar lemma (see (22, 46]). The collar lemma,
implies that_there is g, universal constant € > 0 such that for any distinet o,
f € Cy(S) and ¢ € T(9), if €,(a) < ¢ and £:(8) < ¢ then the two geodesic
representatives of o and 4 are disjoint, i.e. o and B are on a same simplex
in the complex of curves. Therefore C1(:5) could be considered as the nerve of

the family of regions
T{e) ={o € T(S) | lelo) < e}, @ eys).

Although T(S) is not Gromov hyperbolic, Masur and Minsky showed that
7(S} is Gromov hyperbolic modulo this family of regions (sce [67, 78, 79]).

A lamination y ¢ MUL(S) is called o filling lamination it 4y, 4"} = 0 then

support () = support(y'),




for any 1 € ML(S). Minsky wrote ££(5) to denote the image of filling lami-

nations in UML(S). In the celebrated proof of Thurston’s ending lamination
conjecture, by Brock, Canary and Minsky, the laminations in EL(S) are ap-
peared as ending laminations of Kleinian surface groups without accidental

L parabolics (sec [86, 88]).

Ending Lamination Conjecture. A hyperbolic 8-manifold with Jinitely gen-
erated fundaomental group is uniquely determined by its topological type and its

end mvariants.

The proof of the ending lamination conjecture and the recent, proof of Mar-
den’s tameness conjecture by Agol([2]) give us rough picture of hyperbolic

3-manifolds. See [60] for the original conjecture, and gee [24] for another proof

by Calegari-Gabaij,

Tameness Conjecture. A hyperbolic S-manifold with finitely generated fun-

damental group is homeomorphic to the wnterior of a compact manifold with

boundary.

The Gromoy boundary of C($ ) is homeomorphic to the Gromov boundary
of its 1-skeleton €, (S) because C(8) is quasi-isometric to C1(S). In [67], Masur
and Minsky showed that the relative hyperbolic space, which is roughly 7(S)
modulo the regions 7'(«), is quasi-isometric to C,(S). Therefore we can expect
some relation between Thurston boundary of 7($) and Gromov boundary
of C(S) (see [78] for the first question of Minsky on this relation). In fact,

Klarreich showed that 8,,¢ (S} is homeomorphic to EL(S) (see [37] for a new

proof by Hamenstiidt).




Theorem 1.1 (Klarreich [51]). There is a homeomorphism
k: 0uC(S) — EL(S)

such that for any sequence o in Co(S), e converges to o € 0sC(S) if and

orly if ¢y, considered as a subset of UML(S), converges to k(o).

In the following theorem of Bers, T(X) stands for the Teichmiiller space of

2. with geodesic boundaries (see 8, 9, 22]).

Theorem 1.2 (Bers [9]). Let X be a compact Riemann surface with genus
9 2 2 from which n. points and m disks have been removed, For any o € T(X),
Pihere exist 3¢ — 3+ n-tm disjoint geodesics, which are not boundary parallel,
whose lengths are bounded by a constant I which depends only on g,n,m, and

the largest length of the geodesics homotopic to the boundaries of %,

‘The constant 7, is called a Bers constant. Notice that for the closed surface
S, for any o € T(S ), S has a pants decomposition with total length bounded
by a constant . which depends only on the genus g. In fact, Buser and
Seppili([23]} showed that we can choose [, — 21g(3g — 3). Throughout this
thesis, we write L to denote a fixed Bers congtant.

Motivated by Theorem 1.2, we define a function @ on 7(S) as follows. For

o € T(S), let

®{o) = a pants decomposition whose total length is bounded by L,

where all pants curves are geodesics in o. Let 1 - PML(S) = UML(S) be




the quotient map by forgetting measure. Suppose that

oi € T(S) converges to [A] e PML(S) in T(5) (1.1}

and «; is a pants curve in ®(0;). From Theorem 1.1, the following question is

immediate,

Question 1.3. Suppose that \ is ¢ filling lamination. Is the geodesic repre-

sentative of oy converging to u([A]) in UML(S)?

This question is the motivation of all the work in this thesis. In Chapter 5,
we will solve this question positively. Notice that if we identify 8,,C(S) with

#£L{S) via the homeomorphism in Theorem L1, then we have

Theorem 1.4. if ) 45 ¢ Jilling lomination, then a, converges to u([A]) in

C(S) U 8,0 (S).

Suppose that X is not necessarily a filling lamination in eq. (1.1). Is there
any relation between the limit point of @; and u([A)? The following simple

example shows that a limit of a; and u([A]) could be disjoint,

Example 1.5. Consider a fixed 7 € Go(S). Suppose that o, e T (S) converges
to [v] € PML(S) and o:(7) = 0, where we consider Y as an element of
ML(S) via the counting measure. Since Ls(v) — 0, there exists a pants

decomposition $(0;) whose total length is bounded by T, and
7€ $(o;) for all large enough 1.

Then we can find 5 pants curve ¢, in ®(;) such that a limit point of «y i




disjoint from -y in UML(S).

A nonempty geodesic lamination # € GL(S) is called minimal if no proper
subset of x4 is a geodesic lamination. For exarple, any closed geodesic is a
minimal ifamination. The following theorem on the structure of a geodesic
lamination on S works for any hyperbolic surface of finite type (see [25] §4.2,

(28] §4 or [101] §8).

Theorem 1.6 (Structure of Geodesic Lamination). 4 geodesic lamina-

tion on S is the union of finitely many minimal sublaminalions and of finitely
many infinite isolated leaves whose ends spiral along the minimal subloming-

trona.

Furthermore, il [A] € PML(S) then we can decompose w([A]) as a finite

disjoint union of minimal laminations,

ul{[A) = M UX U U A, (1.2)

An essential subsurface F of S is a subsurface of S whose boundaries are all
homotopically non-trivial geodesics. Throughout this thesis, we assume that
all essential subsurfaces of S are open, ie. the boundaries are not included
(see Figure 1.1). Note that two distinct boundaries of 7 could be a same curve
in 8, where F is the completion of F with the path-metric in F.

Suppose that u € UML(S). An essential subsurface F ig called filled by p, if
for any simple closed curve « in F which is not parallel to a boundary of F,

« Intersects ji.

Suppose that a; € 7(S) converges to (Al € PML(S), and let u([)]) =




-

Figure 1.1: An essential subsurface

AMUMNU-Y Am be the decomposition into minimal sublaminationg, The

main theorem of this thesis ig

Theorem 1.7 (Main Theorem). If ®(oy) converges to a geodesic lamination

voin Hausdorff metric topology, then u([A]) € v

There is no minima] lamination which flls 4 pair of pants (see [91] §2.6),
therefore in eq. (1.2), if Aj is not a simple closed curve then the essential
subsurface filled by A; is at least g I-holed torus or 4-holed sphere, For closed
annulus ¥, Minsky defined the arc complex AY). In this complex vertices
are essential homotopy classes, rel endpoints, of properly embedded arcs, and
simplices are setg of vertices with representatives with digjoint interiors, Note
that the endpoints are not allowed to move in the boundary. Let 4, (¥Y) be
the set of vertices and Ai(Y) the 1-skeleton, and give shoriest-path metrics
to A(Y) and Ai(Y) as in C(S). For a,b As(Y), we write ¢+ § 10 denote the
algebraic intersection number.

Suppose that in eq. (1.2), A, is a simple closed cyrve, Consider an annular
covering YV of § in which a neighborhood of Ay lifts h-omeomorphically. The

fbllowingcorolla.ry follows from the main theorem.




Corollary 1.8. Suppose that «; meets A for all i. Then lay - a;| approaches

to co, where ay € Ag(Y') is a lift of oy in Y and so is a,.

Suppose that in eq. (1.2), A; is not a simple closed curve. Suppose that F
is an essential subsurface of S which is filled by As. Notice that there exists a
pants curve a; in ®{o0;) such that a; N F £ { for all 1. Let 5 be a component
of a; M F. We can define a simple closed curve B; from fi canonically (see
Chapter 5). We will prove the following theorem which is a generalization of

Thecrem 1.4,

Theorem 1.9. The geodesic representative of B; converges to Ay in UML(F).

" Plan of the Thesis. In Chapter 2 and Chapter 3, we study some prelimi-

naries. We prove the main theorem in Chapter 4, and we prove Corollary 1.8
and Theorem 1.9 in Chapter 5. In the last chapter, we prove a theorem on
discrete, torsion free subgroups of Isom H"™ which is published in Geometriae

Dedicata (see [50]).




Chapter 2

The Thurston Boundary of Teichmiiller Space

Let S be a closed oriented surface of genus g > 2. In this chapter we stud

and [105] as references.

2.1 Teichmiiller space and its boundaries

A conformal structure ¢ on S is determined by an atlas of coordinate neigh-
borhoods (U, z,), where {U,} is an open cover of M, and z, : U/, — C has
the property that z, o zﬂ—l is analytic whenever defined. Teichmiiller space
T(S) is the space of conformal structures on , where two structures are con-
sidered to be equivalent if there is 2 conformal map between them isotopic to
the identity. Recall that two diffeomorphisms £ and g on S are called isotopic
if there exists a diffeomorphism Hz,t) = (hy(x),8) : S x [0,1] = 5 x [, 1]
such that hy(z) = f(z) and h(z) = g(z) forall z € S,

By the uniformization theorem, T(S) can be considered as the space of

complete hyperbolic metrics on $ with finite area. The area of hyperbolic

Y
the Teichmiiller space 7(S) and its Thurston boundary PAML(S). See [43]
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surface (S, o) is equal to —2nx(S), where x(S) = 2(1 — g} is the Euler char-

acteristic of 5 (see [4] for details).

As usual, two closed curves o, 8 : [0,1] — S are called free homotopic if

there exists a continuous mapping 7 : [0, 1] x [0,1] — S such that

£(t,0) = aft), F(t,1)= () and F(0,s) = F(1,s)

for all 2, s € [0,1]. The following well-known lemma will be used frequently in

this thesis (see [4] §B.4 for a proof).

Lemma 2.1. Suppose that (S,0) is a hyperbolic surface. Then each Jfree ho-

e

motopy class of closed curves contains a unique geodesic representotive.

Two closed curves «, f: [0,1] — S are called isotopic if there exists a diffeo-

morphism G : § x [0, 1] = S x [0, 1] such that for all z € S and t,s € [0,1],

Gla,8) = (0(),8),  golz) =2z and  gi(als)) = Bls).

Free homotopic simple curves on a connected surface are isotopic, too.
There is well-known classification of Tsom H" into elliptic, parabolic and

hyperbolic isometries. We write H to denote the compactification of H? by

the circle at infinity. The following two lemmas will be useful in Section 3.2

(see [4] §B.4 for a proof).
Lemma 2.2. Every non-trivial elements of m(S) are hyperbolic isometry.

Lemma 2.3. Suppose that « is a non-trivial simple closed geodesic in S. Then

any two lifts of o into H? can not meet in the whole i 31"1";

11




The following lemma will be useful in Chapter 4 (see [4] §B.4 for a proof).

Lemma 2.4. Suppose that o and B are non-intersecting, non-isotopic and
non-trivial simple closed curves in hyperbolic surface (S,0). Then the geodesic
representatives of o and B are non-intersecting. In particular, if o is in a sub-

surface F' of S, then the geodesic representative of a is in I, too,

The standard boundary S™~1 of H" is defined by the equivalence clagses of
geodesic rays (see [4] §A.5). The Teichmiiller boundary of 7(9) is defined in
the sanie way. But there are distinct geodesic rays from a point in 77(S) that
always remain within a bounded distance of each other (see [66]).

The mapping class group MCG(S) is the group of orientation preserving

“diffeomorphisms of .S modulo those which are isotopic to identity, i.e.

MCG(S) = Diff*(S) /Dift%( ).

The mapping class group acts by isometries on T(S) and its quotient space
is called moduli space of S. See [63] for a picture of moduli space. Kerckhoff
proved in his thesis that the action of MCG(S) does not in general extend to
Teichmiiller boundary.

Let V(S) be the set of representations of m1(,S) into PSL(2,C) up to conju-
gacy with compact-open topology. The product 7(S) x 7(S) can be identified
with an open subset of V(S), consisting of faithful representations whose im-
ages are quasi-Fuchsian groups, by Bers simultanecus uniformization. If we
fix the first factor, then we get a, holomorphic embedding of 7(3) into V(S)
which is called a Bers slices. Although this embedding depends on the fixed

first factor, there is a biholomorphic mapping between any two slices. The clo-

12




sure of this slice is compact, and is called o Bers compactification (see [7, 74)).
But Kerckhoff and Thurston showed that (sce Theorem 1 and Theorem 2 of

[491)

L. For each genus g > 2, there are Bers slices for which the canonical

homeomorphisms do not extend to homeomorphisms on their compact-

ifications.

2. For g = 2, there is a Bers slice for which the action of the mapping class

group does not extend continuously to its compactification.

In the famous 1976 preprint, which is published in [105] later, Thurston
#introduced the space of projective measured laminations on S, which will be
denoted by PML(S), and a compactification of 7(.S) whose boundary is equal
to ’PMﬁ(Sj. Thurston boundary PAML(S) is a natural boundary of 7(3), in
the sense that the action of mapping class group extends continuously to the
Thurston compactification 7(S) = T(S)UPML(S). Masur([66]) showed that
Teichmiiller boundary and Thurston boundary are same almost everywhere,
but not everywhere.
With this compactifcation, Thurston classified surface diffeomorphisms as
periodic, reducible or pseudo-Anosov, which is a generalization of the weli-
known classification of elements of SL{2,Z). Thurston boundary was also

used by Kerckhoff to solve the Nielsen realization problem, i.e. every finite

subgroup of MCG(S) can be realized as a group of isometries of some hyperbolic

structure on S (see [48] for the proof).




2.2 Measured laminations

In this section we study measured laminations. See [14, 25, 48, 40, 56] and [101]
as references, Consider a fixed hyperbolic structure o on S. A geodesic lami-
nation 1 is a closed subset of S, which is a disjoint union of simple geodesics
which are called leaves of #t- The leaves of a geodesic lamination are complete,
L.e. each leaf is either clogsed or has infinite length in both of its ends, and a
geodesic lamination is determined by its support, i.e. a geodesic lamination ig

a unjon of geodesics in just one way. Using 8%, a geodesic lamination on (S, o)

o0
can be naturally related to a geodesic lamination on (S, ') for any o' € T(S).
We write GL(S) to denote the space of geodesic laminations on S, which is

f“equipped with the Hausdorff metric on closed subsets. Note that GL(S) is
compact and therefore, in particular, every infinite sequence of nontrivial sim-
ple closed geodesics has a convergent subsequence. |

For an arbitrary topological space X, the Chabauty topology on the set of

closed subsets of X has the following sub-bases.
() OK)={A| AN K = B} where K is compact.
(i) Oy(U) ={4| ANU # B} where U is open.

If X is compact and metrizable, in particular for S, the Chabauty topology
agrees with the topology induced by the HausdorfT metric. The following

lemma will turn out to be useful (see [25] §3.1).

Lemma 2.5 (Geometric Convergence). Suppose that X is g locally com-
pact metric space. A sequence A, of closed subsets of X converges to a closed

subset A in Chabauty topology if and only if

14




(1) If &, € A, converges to z € X then T € A,
(i) If z € A, then there exists @ sequence Ty, € A, which converges to .

In H?, a geodesic is determined by an element of the open Mdbius band
M = (S5, x SL — A)/Z,,

where A = {(z,z)} is the diagonal and Z3 acts by interchanging coordinates.
A geodesic in H? projects to a simple geodesic on S if and only if the covering
translates of its pairs of end points never strictly separate each other. No-
tice that a geodesic lamination could be considered as a closed subset of M.
The Chabauty topology on GL(S) as closed subsets of M is equivalent to the

Chabauty topology on GL(S) as closed subsets of HZ?. Therefore

Lemma 2.6. Jf 4, converges to o in GL(S) with Hausdorff metric topology,

then for any geodesic ¢ ¢ H, there exist geodesics ¢; ;. which converge to £.

A geodesic lamination is called mazimal il each complementary region is
isometric to an ideal triangle. A nonempty geodesic lamination is called min-
imal if no proper subset ig a geodesic lamination. For example, any simple
closed geodesic is a minimal lamination. The following lemma is about the

structure of minimal laminations (see [25] §4.2 for a proot).

Lemma 2.7 (Structure of minimal lamination). If i is ¢ minimal lami-

nation then either p is o single geodesic or consists of uncountable leaves.

The following theorem is about the structure of geodesic laminations.

15




Theorem 1.6 (Structure of Geodesic Lamination). A geodesic lamina-
tion on S is the union of finitely many minimal sublaminations and of finitely
many infinile isolated leaves whose ends spiral along the minimal sublamina-

t1oms.

Figure 2.1: o and £ have same measure

A transversc measure on a geodesic lamination p is a rule, which assigns to
each transverse arc o a measure that is supported on ¢ M e, which is invariant
under a map from « to another arc B if it takes each point of intersection of
o with a leaf of 4 to a point of intersection B with the same leaf (see Figure
2.1). A measured lamination on S is a geodesic lamination  with a transverse
measure of full support, i.e. if o N # # @ then « has nonzero measure for any
transverse arc cv. For example, a simple closed geodesic equipped with counting
measure is a measured lamination. We write ML(S) to denote the space of
measured laminations on S. There is a natural action of R* on ML(S).
Suppose that # > 0. The measured lamination ru has the same geodesic
lamination as y with the transverse measure scaled by . We write PML(S)
to denote the set of equivalence classes of projective measured laminations.

The support of a measured lamination has no infinite isolated leaves, there-




fore by Theorem 1.6, it is a finite disjoint union of minima) sublaminations.

For a ¢

ransverse arc « to a measured lamination u, let ¢ pe the angle

between leaves of 14 and @, measured counterclockwise from o (o . The fotal

angle of v is defined by

Olex, 1) = /Hd,u.

Thurston gave ML(S) a topology with following basis,

B(M,Ch,"' ,(}n,ﬁ) - {1/ c ME(S) :

,(M(ak’)?g(ak} !U’)) - (‘T’J(Qk‘)ig(ak?'v)) ' <€ k= Lo ,7?,},

avhere {ay} is a finite set of transverse arcs to 4, and ¢ > 0, ‘The following

theorem was proved by Thurston.

Theorem 2.8 (Thurston), (1) ML(S)

s homeomorphic to the open ball
B0 and PML(

S} is homeomorphic to the sphere %97,

(2) R x Cyp(S) is dense in ML(S), and Co(S) is dense in PMLLS).

Suppose that «, 8 Cof

S). The geomeltric intersection number i{c, §) is

the minimal number of intersections of any two their representatives.

For a transverse arc « to #E€ ML(S), we write [, du to denote integration

of the transverse measure over . For a simple closed curve v, let

7y

it y) = inf / d,
,},f

where the infimum is t

aken over all the simple closed curves 7" which is homo-




bopic to . For a general transverse arc o, we define

i(f1, v) :inff/ dp,

L

where the infimum is taken over all the arcs o which ig homotopic to o with
endpoints fixed. Note that, in both cases, the infimum is realized by the unique
geodesic in the corresponding homotopy class.

Suppose that y ¢ ML(S), v € Co(S} and r € RY, let g, ry) = Ti{4s, 7).

"The following theorem of T hurston is useful in Chapter 5 (see [104] for a proof).

Theorem 2.9 ( Continuity of the intersection number). The intersection

number i extends to a continuons symmetric function on ML{S) x ML(S).

2.3 Topology of T(S)

In this section we study the topology of the Thurston compactification T(S ).
References are [31, 90] and [104). The topology on T(S) = 7(9) UPML(S)

is determined by the following two properties.
(P1) 7(S) is open in T(9).

(P2) 0; € 7(8) converge to [A] € PML(S) if and only if, for all simple closed
curves a, 5 on S with (5, A) £ 0,

GO Y
fcr,‘(ﬁ) converges to 2'(6,)\)’

where £, {@) is the length of closed di-geodesic which is homotopic to a.

The following trivial lemma wil] turn out to be useful (see [71] for a proof).
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Lemma 2.10. For any infinite sequenc

e of distinct simple closed curves in S,

there is a subsequence oy and ¢ > 0 such that

¢ =0 and co; - t for some u € ML(S) — {0}.

Suppose that p,; € ML(S)
a € Co(5) such that i(a, i)

- We write 1; — oo to denote that there exists

converges to co. The following theorem is the

i
most useful theorem in this thesis. :

Theorem 2.11 (Theorem 2.2 of [104]
to [\l € PMLS)

). A sequence o, € T(S) converges |
if and only if there is g sequence ; € ML(S)
projectively to X such that Lhi

COnverging

= o0 and ly (i) - oo but Lo, (i) remains |

bounded, and for all v ¢ MUL(S), there exists a constant C > such that

i(‘u? Ju"i) < 'etfvz (V) < i(]j? I'-Li) + C'ga'l (V)'

In particular, for each 7 € Co(S), there exists a constant T > 0, which does

not depend on ¢ such that

iy, 1) < oy (v) < iy, 1) + T (2.1)

The measured laminations u; were constructed in [31], [90] and [103] §9. In
these constructions, the associated measured foliations are constructed first,

and the measured laminations #i are induced later. In the following para-

graphs, we study measured foliations and the construction of y; following

Papadopoulos :"(see [90] for details). Another good French reference for this

19




construction is [31],
A measured foliation I* on S is a foliation with finite number of singularities
equipped with a invariant transverse meagsure, Le. /7 is determined by a finite

number of points py € .5 and an atlas of coordinate neighborhoods
(s, 11) : Uy —» R

on the complement of {p;} such that zj = fij(zi, ) and y; = Fy 4 O for
any overlapping coordinate neighborhoods (%1, v5), where C is a constant and
the transverse measure is dy. The singularities have p-pronged saddles with

p 2 3. Suppose that /' is a measured foliation on S and a € Co(5). Let

i(F o) = in,f/ |y,

where the infimum is taken over all the representatives o' in the class a.. Two
measured foliations F' and G are called equivalent if i(F,0) = i(G,a) for
all & € Cy(S). We write MF(S) to denote the set of equivalence classes of
measured foliations. Measured foliations and measured laminations are related

by the following theorem (see [56] for the proof).

Theorem 2.12. There is a homeomorphism b : MIF(S) — ML(S) which is

identity on R x Co(S) and preserves the intersection number.

Suppose that 4 is a maximal geodesic lamination on § and ¢ € 7(S).
Thurston constructed a measured foliation Fu(o), which is called horocyclic
foliation as follows. Since u is maximal, the complementary components of

# are all isometric to ideal triangles. In each of these components, define a
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partial foliation, i.e. a foliation whose support is subsurface, whose leaves are
intersections of the triangle and horocycle centered at vertices of the triangle

(see Figure 2.2).

Figure 2.2: The partial foliation

Notice that the horocycle meets the triangle with right angles, and the non-
foliated region is equal to a little triangle whose edges are subarcs; of horocyeles
which meet tangentially at their endpoints. These partial foliations in the ideal
triangles fit together on the surface and define a partial foliation on S. The
transverse measure on this partial foliation is uniquely determined by the fact
that on the leaves of 4 this transverse measure is equal to the hyperbolic
distance.

Suppose that g is a maximal geodesic lamination on S. Let MF(u) be the

subset of MF(S) consisting of equivalence classes which has representative

transverse to p. In [103] §9, Thurston showed

Theorem 2.13. The map ¢, : T(S) = MF (i) such that ¢,{c) = F,(c) isa

homeomorphism.




3 Suppose that o; € 7(S) converges to [A] € PML(S) in T(S). Then the mea-
.' sured lamination gy, obtained from Fy,(o;) by Theorem 2.12, is the lamination

in Theorem 2.11.
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Chapter 3

Complex of Curves

In this chapter we study the complex of curves and its Gromov boundary.
All theories in this chapter work for any orientable surface of finite type, i.e.
surface with gonus ¢ and n punctures. Throughout this chapter, we write
2 = 2gn to denote an orientable surface with genus g and 7 punctures. Ag
before, we write MCG () to denote the mapping class group of &, and T(%)

the Teichmiiller space of 3.

3.1 Complex of curves

In [39], Harvey introduced the complex of curve C(X) to study the action of
MCG(3) at the infinity of T(X). This complex encodes the asymptotic geom-
etry of Teichmiiller space, similarly as the Titg buildings for symmetric spaces.
Let S(Z) be the set of isotopy classes of essential, unoriented, non-boundary
parallel simple closed curves in £. The vertices of C(2) are elements of S(37),
Le. Go(3) = S(7), and the k-simplices of C(%) are subsets {ag, o411}

of S(¥) with mutually disjoint representatives. Notice that C(Z) is empty if
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g=0and n < 3. The maximal dimen

sion of simplices is called the dimension
of C(%), and it is equal to 3¢+ n — 4. Masur and Minsky defined a metric on
C{3) by making each simplex regular Euclidean with side length 1 and taking
shortest-path metric. Let de denote this metric on ¢ ().

The mapping class EIoup acts on C(L) and Ivanov proved that, if g > 2
then all automorphisms of ¢ (X) are given by elements of MCG(E) (sce [44]
for the proof, and [52] for the related work of Korkmaz). Luo( (59]) generalized
this result by showing that, if 3g + p - 4 = 1 and (g,n) # (1,2), then all
automorphisms of C(52) are given by elements of MCG(X). In [38], Harer
showed that € (Xg,n) is homotopic to a wedge of spheres of dimension r, where

204+n—3 if g>0andn >0
=9 29—-2 if n=0

n- 4 if g0

If ¥ is a torus, once-punctured torys or 4-times punctured sphere, then
any two essential simple cloged curves intersects, i.e. there ig no edge in c(x).

Masur and Minsky introduced g new definition for these cases 80 that it has

edges. In this definition, {o, 8} is an edge if & # 8, and o and 8 have the
lowest possible intersection number, For the tori this ig 1, and for 4-holed
sphere this is 2 (see [41] for Hatcher-Thurston complex which is related to this

definition),
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3.2  Relative twist number in annulus complex

In this section we study the relative twist number in annulus complex, which
was introduced by Minsky in [30], of two simple closed curves around a, fixed
simple closed curve. See [30] §2.1, [69] §2.4 and [86] §4 as references. An
annular domain in ¥ is an annulus with incornpressible boundary. A complex,
which is called an annulus complez, is defined for such annuli to keep track of
Dehn twisting around their cores,

Consider an oriented annulus ¥V = §' x [0,1]. We write Ag(Y) to denote
the set of arcs joining S' x {0} to S' x {1}, up to homotopy with endpoints
fixed. As in C(Z), we put an edge between any two clements of Ay(Y) which
have representatives with disjoint interiors, and define the annular complex
A(Y'} as for the complex of curves. We also make A(Y) a metric space with

edge length 1 as in the curve complex. Let dy denote the path—metric.

Figure 3.1: |a- b = 2

Suppose that a,b € 4y(Y) and they do not share any endpoints. Notice
that @ and b inherit orientations from the orientation of [0, 1]. Therefore we can
define the algebraic intersection number a- b (for example, see Figure 3.1). Let
a-¢ = 0. Consider alift of a € Ay(Y) to the covering space ¥ = Rx [0, 1] which

has endpoints (ag,0) and (ay, 1). Notice that these endpoints are determined
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by a, up to Z, and

a b= —a| ~ by — ao,

where [z] denotes the largest integer less than or equal to z. Tt follows that
a-c=a-b+b.-c4 A with A € {0,1, ~1} (3.1)

for all a, b, ¢ € Ag(Y) such that the intersection numbers are defined. With

an inductive argument, we can also check
dy(a,b) =1+ |a-b| for all distinct a,b € Ag(Y). (3.2)

Fix a € Ay(Y). From eq. (3.1) and eq. (3.2), we can show that the map
S AY) = Z with f(b) =a-bis a quasi-isometry. Thus A(Y) is quasi-
isometric to Z.

For a fixed finite generating set of MCG (2), let |- || be the minimal word
length with respect to these generators. Masur and Minsky introduced the
relative twist number, and Farb, Lubotzky and Minsky proved that every

Dehn twist has linear growth in MCGC ).

Theorem 3.1 (Theorem 1.1 of [30]). For all Dehn twist ¢, there exists a

constant ¢ > 0 such that |[t™|| > c|m| for all m.

‘[he relative twist number is defined as follows. For a fixed essential simple
closed curve «v in ¥, let g be an isometry of H2 representing the conjugacy

class of «. Let

Y =Ya= (B \ Fix(g)) / < g >,
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Figure 3.2: Yy

.. where H is the closed-disk compactification of hyperbolic plane H? See

Figurc 3.2, where {a,b} = Fix(g,). Notice that ¥ is a closed annulus and
a neighborhood of « lifts homcomorphically into ¥. Suppose.that § is an
essential simple closed curve in % such that i(c, B) # 0. Notice that any lift
of a into ¥ does not share endpoints with a lift of £. Therefore any lift of
£ extends to a properly embedded arc in V. We write lift,(#) to denote the
set of lifts of A into Y which connect the two boundaries of ¥ as elements in
Ao(Y). Let v be another essential simple closed curve in ¥ with i(a, v) # 0.
If 5 and v are different, then b and ¢ do not share endpoints for all b € lift,, (3)

and c € lift, (). The relative twist number is defined by

To{B,7) = {b- ¢ | b € Lift,(8) and ¢ € lifty (7))} .

From eq. (3.1), we have diam(7,(f,)) < 2. In [30], Farb, Lubotzky and

Minsky used the following equations to prove Theorem 3.1.




| (i) If ¢ =T, is the leftward Dehn twist on @, then 7,(8,t(8)) C {n,n+1}.

(ii) If 8 and vy intersect a, then their geometric intersection number bounds

their relative twisting, i.e.

max |7, (B, 7)| <i(B,v) + 1.

(iii) If B, v and § intersect «, then

max (4, §) < max 7o(8,7) + max 7, (v, d) + 2

min7,(f,6) > min,(8,v) + minr, (v, §) — 2.

i
o5
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3.3 The theorem of Masur and Minsky, and
of Klarreich

In this section we study a theorem of Masur and Minsky, and of Klarreich.

References are [16, 37, 51, 67] and [78]. If 5 is a torus, once-punctured torus

or 4-times punctured sphere, then the complex of curves is the Farey graph

(see Figure 3.3}, Minsky showed that (C(2), de) is 2-hyperbolic space for these

cases (see [78] §3 for the proof). For £(X) = 3g + n > 4, the following lemma

gives an upper bound of d.

Lemma 3.2 (Lemma 1.1 of [16]). If £() > 4 then de(o, 8) < i, 8) + 1.

Recall the classifications of elements of the mapping class group into periodic,

reducible and pseudo Anosov elements. An element 4 € MCG (X) is called

28



Figure 3.3: Complex of curves of torus

. bseudo Anosov il there exist 7 > 1 and a pair of measured foliations F° and
JF* such that

1
BF?) = ~F' and WF) =rF

If (C(¥), dc) is a bounded metric space with upper bound K, then it is trivially
, a K-hyperbolic space. But from the following proposition, it is clear that

diam(C{3})) = co.

Proposition 3.3 (Proposition 4.6 of [68]). If £(X) > 4 then there exists

¢ > 0 such that, for any pseudo-Anosov h € MCG(E), v € S(%) and n € Z,

we have

de(l(7),7) = eln. i

In [68], Masur and Minsky proved that (C(X),de) is é-hyperbolic for the

case £(X) = 3g +n > 4, too.

Theorem 3.4 (Theorem 1.1 of [67]). C(2,,,) is a S-hyperbolic space, where
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¢ depends only on g and n.

Masur and Minsky used Teichmiiller theory in the proof of Theorem 3.4. In
their proof, the constant ¢ is not constructive because it confains a compact-
ness arguments on the spaces of quadratic differentials. In 2002, Bowditch
proved Theorem 3.4 in a more combinatorial way, and showed that the num-
ber ¢ is bounded by a logarithmic function of 3g+n—4.

Since C(%) is &-hyperbolic, we can consider its Gromoy boundary. For
the case of torus, the boundary can be identified with the set, of irrational
numbers. For general cases, it is clear that a sequence of curves a,, whose
distance from a fixed curve is going to infinity, must converge to a maximal
lamination. In fact, Klarreich showed that the Gromov boundary of complex
of curves is homeomorphic to the space of topological equivalence classes of

filling lamination.

Theorem 1.1 (Klarreich [51]). There is a homeomorphism

ko 0uC(D) — EL(5)

such that for any sequence o, in S(X), an converges to o © O0cC(X) if and

only if o, considered as a subset of UML(Y), converges to k(w).

Klarreich used Teichmiiller theory and the results of Masur and Minsky in
[67], to prove Theorem 1.1. Tt is clear that 8., (X) is homeomorphic to the
Gromov boundary of its I-skeleton ¢, (%) because they are quasi-isometric.

Suppose that € > 0 satisfies the collar lemma. For each a € Cy(N), let

Ta)={oceT(Z)| L (x) < e}
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Then a collection of sets Tla),--- , T(ev,) has nonempty intersection if and
only if ey, - -+, v, form a simplex in C(5). The set T.,(%) is defined from 733,
by adding a new point P, for each set I'(a) and an interval of length £ from
P to each point in T(a). Ta(X) equipped with the minimal path-metric is
called the relafive Teichmiller space following the terminology of Fa,rb([29]).
In [67], Masur and Minsky showed that Ta(2) is quasi-isometric to Ci(¥), and
Klarreich showed that the Gromov boundary of Tau(X) is homeomorphic to
the space of topological equivalence classes of minimal singular foliations on

25, which is homeomorphic to EL().
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Chapter 4

Proof of Main Theorem (Theorem 1.7)

Suppose that o; € 7(S) converges to [A] € PML(S) in T(S). Recall the map
®(0,) = a pants decomposition whose total length is bounded by I,

where 1 is a fixed Bers constant and all pants curves are geodesics'in o,. Recall
also the quotient map u : PAML(S) — UML(S) by forgetting measure. Notice
that ®(o;) can be considered as a sequence in GL{S). Since GL(S) is compact,

it has a convergent subsequence. In this chapter we prove our main theorem.,

Main Theorem. If ®(o;) converge to v € GL(S) in Housdorff metric topol-

09y, then u([A]) C v.

Consider the decomposition u([A]) = MU MU A, as a finite disjoint union
of minimal laminations. To prove Aj Cwforalll <4< m, it i3 enough to
show that Ay C v and Ay C », assuming that A, is a simple closed curve and

Az is not a simple closed curve,




4.1 Proof of \{ Cv

Recall that A is a simple closed curve. If A, C ®(g;) for infinitely many 4,
then it is clear that Ay C v, If A} ®{0;) for only finitely many i, then there
exists N1 > 0 such that A, ¢ ®(gy) for all i > Ny. Since ®(a;) is a pants
decomposition, therc exists a pants curve oy in ®(o;) such that oz N A; £ 0
for all i > Ni. Choose z; € a5 " A, and a limit point z of z;. By Lemma 2.5,
there exists a leaf £ of v such that z € £. If £ = A;, we are done.

To get a contradiction, suppose that £ # \;. Choose an open neighborhood

U of & which is isometric to an open subset of H? (see Figure 4.1).

Figure 4.1: The open neighborhood U/

Since S is compact, by Lemma 2.6, there exists a pants curve oy in $(o;) such
that an arc f; € oy approaches to £ N U/, Therefore there exists Ny > 0 such
that

(o, A) > /ﬁ dA\y=7r>0 foralli> N,

where 7 > 0 is the transverse measure on Al

Choose ju; € ML(S) which converges to A in PAML(S) as in Theorem
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2.11. Since p; — oo, there exists a sequence ¢; > 0 such that c,u; converges

to A in ML(S) with lim;_,,¢; = 0. Notice that there exists N3 > 0 which

does not depend on 4 such that

(e, cjui) > for all 4,7 > Ns.

SR

Therefore 4(ay, pt;) approaches to co as 4, 7 — co. But from eq. (2.1), we have

{0y, pti) < g, (cy) < L for all 4. This is a contradiction.

4.2 Proof of \y C v

Recall that Ay is not a simple closed curve. Let F' be the essential subsurface
of § which is filled by A, Since ®(o03) is a pants decomposition for all i, we
have v I" £ B. To get contradictions, suppose that Xy ¢ v in the next two
paragraphs.

Suppose that » N A; = B. Notice that ¥ U Ay is a geodesic lamination, too.
By Theorem 1.6, we can decompose U\, as a finite disjoint union of minimal
lamination, including A5, and finite number of infinite isolated leaves. Since
Az 1s a filling lamination in F, any isolated infinite leaf can not intersect F'.
Thus v N F = @. This is a contradiction,

Suppose that ¥ N Ay # B, There exists a leaf ¢ of v which intersects Ay
transversely. Choose an open neighborhood V which is isometric to an open
subset of H?, and in which £ intersects Ay transversely (see Figure 4.2}, As in

Section 4.1, there exists a pants curve oy in ®(o;) and arc 8; C o such that
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Figure 4.2; The open neighborhood V

P converges to NV Therefore there exist r > 0 and N > 0 such that
ilag, A) > / dra =7r >0 foralli> N
B ,

Asin Section 4.1, using Theorem 2.11, we can show thai this is a contradiction.
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Chapter 5

Proof of Corollary 1.8 and Theorem 1.9

In this chapter we prove Corollary 1.8 and Theorem 1.9, and show that The-
orem 1.4 comes from Theorem 1.9,

5.1  Proof of Corollary 1.8

Suppose that o; € T(S) converges to [A] € PML(S) in T(3), and let u([A])
AUA U U,

be the decomposition as a finite disjoint union of minima)
laminations.

Figure 5.1: The annular cover vV




Suppose that A is a simple closed curve, Suppose also that «; is a pants curve
I ®(oy) and a; N Ay # 0 for all 5. Construct an annular covering ¥ of S in
which a neighborhood U7 of A, lifts homeomorphically (see Figure 5.1). We
may assume that U is a closed collar around A, and U does not, intersect A,

for all § £ 1. Let g; € lift(ay). In this section we prove Corollary 1.8,
Corollary 1.8. |a; - a;| approaches to infinity as 1 increases.

Proof. To get a contradiction, suppose that lay - a;] does not approach to oo.
Then therc exists a subsequence of ai, which we will call a; again for the sake
of simplicity, such that [a, - a;| = k& for all ¢ for some k£ ¢ NU {0}. We may

assume that a) - a; = k& without loss of generality.

Figure 5.2: A lift of ; in K

Suppose that ¢ > 3. From eq. (3.1), we have a; - g, = a; - ag + ag - a; + A,




e et el

i

where A € {~1,0,1}. Therefore

lag < a;| <1 foralli> 3.

This equation implies that «; = p(e;) does not change so much in U for § > 2.
Let B; be a component of a; N U (see Figure 5.2). We can find a compact set
K < H? such that there exists a lift of 3; in K for all i. A geodesic arc in H?
1s determined by its two endpoints. Thercfore there exists a subsequence of B,
which we will call §; again, which converges to a geodesic arc 8 in Hausdorff

metric topology with (8, A1) # 0. For this subsequence

,Bi Co; C (I)(O'i),

P(oy) still converges to v in Hausdorfl metric topology. Notice that A, ¢ v,

This is a contradiction to Theorem 1.7. |

5.2 Proof of Theorem 1.9

In this section we prove Theorem 1.9. Suppose that Mg is not a simple cloged
curve and let I be the subsurface of S which is filled by A, (see Figure 5.3).
Notice that there exists a pants curve ¢ in ®(o;) with oy N F # @ for all 4.

Let Z; be a component of oy N F. As in Lemma 2.2 of [69], let

B; be a non-peripheral essential component of boundary

of regular neighborhood of 8; U AF,
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Figure 5.3: g

where F is the completion of F with path-metric. Note that two different,
compouents of 81" could be a same curve in S.
Notice that if §; is a closed curve, then B} is homotopic to ;. Notice also

that if /; is an arc, then there are two cases as in Figure 5.4.

By

Case I Case II
Figure 5.4: Two Cases

Recall that Az is not a closed curve. Since F is filled by g, it can not be a disk,
an annulus or a pants. ‘Therefore for both cases, the regular neighborhood of

B; UGF has a boundary component which is non-peripheral and essential in




F'. Suppose that 8F = {v,--- e} and let

&,1.(81?) = gtﬁ' (71) + - 'Eﬂ’i (’Yk)‘

Let £, (Bt) be the length of geodesic representative of B in v;.  From the

definition of E,-, we have
lo; (BL) < 2y, () + ngi('aF). (5.1)

We now prove Theorem 1.9.
Theorem 1.9. The geodesic representative of f; converges to Ay in UML(F).

To prove Theorem 1.9, it is enough to show that the geodesic representative
of f; converges to Ay in UML(S). For any limit point [5] of [3] in PML(S),
we will show that i(f, A;) = 0. Then Theorem 1.9 follows from the fact that
Aq fills F.

Lemma 5.1. If [8] is a limit point of [f;] in PML(S), then i(8, o) = 0.

Proof. Suppose that [#] is a limit point of [f;]. After possibly restricting to
a subsequence, we may assume that [3;] converges to 18] in PAML(S). There
exist a constant X > 0 and a sequence &; > 0 such that ;5 converges to J in
ML(S) with b; < K for all 4.

Choose y; € ML(S) as in Theorem 2.11. Since y; converges to [A] €
PML(S) with u; — oo, there exists a sequenca ¢; > 0 such that C; [bi CONVErges

to A in ML(S) with ¢; = 0. By eq. (2.1), there exists I' > 0 which does not




depend on % such that i(8F, ;) < lo,(OF) <i(3F, p) + T Therefore

z(BF, C,',uz') < Cigag- ((‘)F) < z(&_ﬁ, C,;,U,Z‘) + Cir\.
Since i(6F, A) = 0, from the continuity of the intersection number, we have

lim ¢4, (0F) = 0. (5.2)

i—rco *

Irom eq. (2.1) and eq. (5.1), we have
Z(Bﬁ) /J'?a) S 'Ecr,- (5&) _<_ 2&?,‘ (051) + EU:‘ (8F)

Therefore

i(b;3;, cits) < K (26, + ¢4, (OF)).

i

Hence from eq. (5.2) and the continuity of the intersection number, we have

(8, A) = 0. Thus i(8, As) = 0, O

5.3 Theorem 1.4 follows from Theorem 1.9

Suppose that o; € 7(S) converges to [Al € PML(S) in T(S), and o is a
pants curve in $(a;). If A is a filling lamination, from Theorem 1.9, then v
converges to u([A]) in UML(S). Therefore if we identify 0,,C(9) with ££(9)

via the homeomorphism & in Theorem 1.1, we have

Theorem 1.4. If X is a filling lamination, then o converges to u{[A]) in

C(S) U 8, C(S).
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Chapter 6

A theorem on discrete, torsion free subgroups

of lsomH"

In this chapter we prove a theorem on discrete, torsion frec subgroups of
Isom H"™ which is published in Geometriae Dedicata 109(2004), 51-57, with
kind periission of Springer Science and Business Media. Let H® be the hy-
perbolic n-space with n > 2. Suppose that T' < Isom H" is a discrete, torsion
free subgroup and a is a point in the domain of discontinuity Q{I'). Let p be
the projection map from H"™ to the quotient manifold M = H"/T'. In this
paper we prove that there exists an open neighborhood U of & in H* U Q)

such that p is an isometry on U N H",

6.1 Introduction for Chapter 6

Let n > 2. Let H® be the hyperbolic n-space and Isom H” its group of
isometries. Suppose that I' < Isern H" is a discrete, torsion free subgroup.
The action of I' on H™ extends to a continuous action on the compactification

of H™ by the sphere at infinity S%'. The limit set A(T}) is the set of all
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accumulation points of the orbit of a point in H”. A(T) does not depend on
the choice of the point and is a subset of St (see [94], or [64] for the case
n = 3). The domain of discontinuity Q(T') is the complement of A(I") in S71,

The quotient space M = H"/I' is a manifold because I° g torsion free
and hence acts without fixed points on H" (see [5, 9]). Let p: H™ —» M
be the projection map. Let dg be the topological metric on H" induced by
its Riemannian metric and d be the topological metric on M induced by its

Riemannian metric. In this paper we prove the following theorem,

Theorem 6.1. Suppose that T’ < Isom H" is g discrete, torsion free subgroup
and a ¢ SUT). Then there exists an open neighborhood U of a in H™ U Q(r)
such that

dlp(z), p(y)) = dulz,y)  for all 3,4 € U N H™.

The author would like to thank the referee for many valuable suggestions,

in particular, those which simplified the proof of Lemma. 6.7.

6.2 Proof of Theorem 6.1

Suppose that n > 2 and I' < Tsom H" is a discrete, torsion {ree subgroup. Let
B ={{z1, - m) € R* 2+ 422 <1)

be the compactification of Poincaré ball model of H? by the sphere at infinity
Set Let O = (0,--+,0) € H* ¢ B and IO) = {vO | v € T'}. We write
¢ to denote the topological Euclidean metric on B*. We will make use of the

following equation (see [94]).
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i-:‘ i b aine s B e R 4 R

d(p(z), p(y)) = Inf dur(z, 7y) (6.1)

Since 1" is torsion free, we have the following useful theorem (see [94],

§12.1).

Theorem 6.2. Suppose that a C SUT). Then there exists open netghborhood
Viofa in H* UQ(T) such that VNV =0 for all v £ 1.

For o € Q(I"), let B(a,r) be the open ball in (B™ dy;) with center a and

radius 7. We will need the following trivial lemma.

Lemma 6.3. Suppose that a € Q') and C > 1 is any constant. Then there

 erists open neighborhood U of a in H™ U Q) suck that

de(z,vy) > Cdg(z,y) forallz,y € U and v£ 1

Proof. Suppose that « € Q(T'). Due to Theorem 6.2, we can choose an open
neighborhood V' of a in H*UQ(T) such that VN~V = § for all v # 1. Choose
r > 0 such that B{a,r) C V. Let U = B (a, %) Suppose that z,y € U and
v 7 1. Notice that dg(a,z) < ic and dg(a,y) < L. Since vy ¢ V, we have

dg(a,vy) > r. Therefore

r 4Cr —r
dE(fE,f}’y) 2 dE(CL,'Y'{J) — dE(CL, {j;‘) o — ZE — e -~
4Cr — Cr 9
> e > 1> Cdu(n, @) + Cdala,y) 2 Cdla ).

Hence

dg(az,fyy) 2 CdE(may)'
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A Mobius transformation of R™ U {00} is a finite composition of reflections
of R™ U {oo} in spheres or planes. A Mébius transformation of B™ is a Mébius
transformation of R* U {oo} that leaves B" invariant. We will also make use

of the following theorem (see [94], §4.4, §4.5).

Theorem 6.4. Suppose that v € T' and v # 1. Then v extends to Ayoiy, a
unique Mobius transformation of B™ (which we also refer to as «y), where A,
is an orthogonal transformation of R® and i, is a reflection in o sphere which

is orthogonal to 571,

Let 5{¢,7) be the sphere in R™ with center ¢ and radius . We have the

following explicit formulae for reflections in spheres (see [94] for a proof).

Theorem 6.5. Suppose that i is the reflection in the sphere S(c,r). Then for

all z,y # ¢, we have

, 2 ,
ilz) = ¢+ (dE(::,c)) (z—¢) and de(i(z),i(y)) = dEéff;(;j;, )’

Since I is torsion free and A(T) € S™!, we can prove the following propo-

sition.

Proposition 6.6. Suppose that yeland vy #£ 1. Let v = Ay 0y be as
in Theorem 6.4, where i, is the reflection in the sphere S{cy,r,) which is

orthogonal to S™1. Then

Sup r, << 00.
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Proof. To get a contradiction, suppose that A = {’Y el y#1, Ty 2 %} is
an infinite set. Recall that T does not contain any element which has a fixed
point in H" except the identity. Therefore if v # ', then v(0) £ ¥(0),
Hence

{70 |y € A} s an infinite sct. (6.2)

Let v € A. Since S(¢y,7y) is orthogonal to Sty we have (see [94], §4.4)
dE(O,C.-Y)E =1 + ?“,?,.

Therefore from Theorem 6.5, we have

i(0) = ¢, + (M)Q(Cry)

Hence
1
Ap(0,i,(0)) = ———
L( f"}"( )) dE(O,Cr}/)

Any orthogonal transformation is an Fuclidean isometry which fixes O.

"Therefore, for all v € A, from Theorem 6.4 we haye




SRNaEd

450, 7(0)) = du(0, (A, 0i,)(0))

Therefore if v € A, then

ﬂmeA:{zem|@m@ha%}.

Thus, by eq. (6.2), I'(O) has an accumulation point in A. This is a con-
tradiction to the fact A(T) ¢ S%'. Therefore A is a finite set. Hence

SUD 2 Ty < OO ([l
We will need the following lemma.
Lemma 6.7. Suppose that a € SYT"). Then there exist an open neighborhood

of U of a in H* UQ(T) and o constant C > 1 such that

EO) o o alle e UNH, be UrQT) andy e T
dg(x, b)
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Proof. Suppose that o e (T). By Theorem 6.2, we can chooge ap open

neighborhood V of ¢ in H*UQ(T) such that V NyV = ) for 4l v # 1. Choose
U <7 <1such that Bla,r) C V. Let I/ — Bla, §).
To get a contradiction, suppose that for all k € N, there exist xp € UNH",

b € UNSUTY and 4, € T such that,

dg (v b
k=oo dp(y, by)
We may assume that Ve # 1forall & € N. For each j €N, let v, = A, 04,
be ag in Theorem 6.4, where i, is the reflection in the sphere S{eg, ).
By Proposition 6.6, we can choose a constant ¢’ > 1 such that v, < C7 for

all & € N. Therefore from Theorem 6.5, we have

du( ety Yibg) _ I {(Ak o) (), (Ar 0 i) (By))
dp{wy, by) de(zg, by)

dp(ipey, teby)
i

Ap(y, cx) di(by, cx)
O.’Z

Ag(zk, cx) dp(be, c)

A

Therefore from eq. (6.3), we have

O.Q
lm — >~ 0.
koo d(xy, c) dp(by, ci)
Thus limy . dp(zg, i) dp(by,cx) = 0. Hence there exists a limit point ¢ of
{ck} such that

ceTNQT) C Q). (6.4)
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Choose a subsequence ci(;y of ¢ such that lim; ., dg(c, xey) = 0. Since
b Jim di(O, i) < Jim (45 (0, ¢) + dis(e, exgp)) = 1
and S{cpgy, Treg)) 1s orthogonal to S7-L, we have

lim 7y = Jim, (dr (0, caep)® — 1) = 0.

00

Therefore by Theorem 6.5, we have

lim 7,;(5)(0) = lim 3'71) o A;(;)(O) = jll}& i) (O)

‘ 2
= lim Cr(f) - lim (&)—ﬁ) (O - Ck(j]) =c
: di( )

J—oo j—roo O, Ck(5)

Thus ¢ € A(I") contradicting eq. (6.4). Hence there exists a constant C' > 1

such that

dE (71' ' 7b)

<C forallz cUNHY, be UNQT) and v € T.
dE(:E:b)

We can prove the following proposition due to Lemma 6.7.

Proposition 6.8. Suppose that a € Q(I"). Then there exist an open neighbor-

hood U of a in H* UQT'} and a constant C > 1 such that

C(1-dp(0,2)*) > 1 dp(O,v2)* forallzcUNH" and v e T.
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Proaf. Suppose that a € Q(I'). By Lemma 6.7, there exist open neighborhood

U of ¢ and C' > 1 such that

(v, v
070 70) i forall e UNHEY, be Un QM andy el (6.5)
dE(mab)

Note that we may assume that I'(O) N U = @ and the boundary of U/ is a |

sphere orthogonal to S !, intersected with B™. i

C

Figure 6.1: Since 8U is orthogonal to S7% L, we have b € U N Q(T).

Suppose that ¢ UNH" and v € I'. Since I'{O) N U = ), we have

x,vx # O. Consider z and vz as vectors in B” € R" and let

b:—x— and c¢= g

15(0,7) 02 (0, 7z) |
so that b € U N QL) (see Figure 6.1). Since vb € 8!, we have

1 —dg(O,vz) = dg(yz,c) and de(yz,c) < dplyz,vb).

Therefore by eq. (6.5), we have
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1 ds(0,yz)

< 2
dE(,Y'CEJ C)
CZE(R}‘,!J)
o dslym)
- dp(z, b)
< 2C.

Let ¢ = 2C", Then C (1 —dg(0,2)%) > 1 —dg(O,vz)?.
We will make use of the following theorem (see [94] for a proof).

Theorem 6.9. Suppose that z,y € H* C B". Then

2dE(xa y)2

lh + - ‘
coshdu{z,y) =1+ (1 —de(O,2)?) (1 = dg(O,y)?)

Now we can prove Theorem 6.1,

Proof of Theorem 6.1. By applying Proposition 6.8 followed by Lemma

6.3, we can choose an open neighborhood U of ¢ in H™ U Q{T"} and a constant

C > 1 such that

C(1—de(0,y)?) > 1—dp(0,vy)*
dp(z,vy)* > Cdglz,y)? (6.6)

forall z,y € UNH" and v # 1.
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Suppose that z,y € UNH" and v +# 1. From eq. (6.6}, we have

Cdg(z,vy)* (1 — de(0,9)?) > Cdp(z,y)* (1 — de(0,7)") -

Hence
de(z, ) _ du(z,y)’
1 —de(0,yy)? = 1 —de(0,y)*
Therefore

QdE('E'.\ ’Yy)g ~ 2dﬁ($1y)2
(1—dp(0,2)%) (1 = dr(0,)?) = (1 - dp(0,2)%) (1 — dr(0,y)?)

Hence from Theorem 6.9, we have cosh du(z, vy) > cosh du{w, y). Therefore

Notice that eq. (6.7) is true for v = 1, too. Hence du(x,vy) > dulz,y)

for all z,y € UNH” and v € I". Therefore from eq. (6.1), we have
d{p(z), ply)) = 1r6111; du(z,vy) > dulz,y) forall z,y € UNH"
b

It is clear from eq. (6.1}, that d(p(z), p(y)) < dulz,y) for any z,y € U NH™
Therefore d(p{z), p(y}) = dulz,y) for all z,y € UNH" i
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