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We prove the existence of an analogue of the usual pseudodifferential caleulus
for the Heisenberg group H", with the additional objective of possible gen-
eralisations to arbitrary homogeneous groups. Taylor, Beals-Greiner, Christ-
Geller-Gtowacki-Polin have developed analogues of classical pseudodifferen-
tial operators for the Heisenberg group. The method employed in this disserta-
tion consists in defining a class of convolution operators on H™, and verifving
that it satisfies a list of conditions which are well known to be sufficient for
the existence of a general calculus of pseudodifferential operators analogous
to the usual ST —pseudodifferential calculus on R, Among these conditions,
which have been identified by M. E. Taylor, is the requirement that the family
of convolution operators be closed under composition. A significant part of our

effort is spent in verifying this critical propetty.
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CHAPTER I ’

INTRODUCTION

Pseudodifferential operators are a generalisation of linear partial differeniial operators.
which arises from the study of elliptic partial differential equations, Pseudodifferential cal-
culus provides constructive methods for solving elliptic problems. The specific objective
was to obtain a collection, or calculus of integral operators that contain all elliptic par-
tial differential operators and their parametrices, and which be closed under composition
and taking of adjoints. Having such a calculus in place, whenever one is given an elliptic
partial or pseudodifferential operator, one ought to be able to write down immediately a
parametrix, and obtain estimates.

Some of the basic ingredients of the theory of pseudodifferential operators, such as the
study of operational calculus for noncommuting operatots in quantum mechanics, appeared
in the 1920s. However the main development occurred in the 1950s, in the work of Giraud,
Mikhlin, Calderén and Zygmund on the theory of singular integral operators. A, P. Calderén
and A. Zygmund [CalZyg57], studied integral operators of the form

©NE =| Keo-iway  VFer@, acw




i.e

(Kf)(x) = (K * f)(2) (L.1)

where K (w) = K{z,w), and whose only singularity is at w = 0.

In the early 1960s Atiyah and Singer made use of the caleulus of singular integral oper-
ators in their first proof of the index theorem, This and other applications stimulated interest
in these operators, Then Kohn and Nirenberg [KohNir 65] switched from the represcntatibn
of operators by singular integral kernels to a viewpoint based on “symbols”, and introduced
the terminology pseudodifferential operator (where apparently the prefix “pseudo” refers
to the “pseudo local” character of these operators, i.e. Ku does not have more singularities
than «, and perhaps also to the fact that in general they might not be local, i.e. it might

occur that supp KCu ¢ suppw). They rewrote the operator K in the form

f*
——

Koz —y) fly) dy

(Kf) ()

- f e i@V gz, €) Fly) dé dy (L2)

= | et o(x,€) F(€) dé

where formally the inverse Fourier transform of ¢ in the first variable is K,
G (w) = Kz(w) where a;(¢) = a(x, £)

A fundamental idea is to pass from the calculus of pseudodifferential operators to func-
tion algebras. One establishes a bijective correspondence between certain functions called

“symbols”, and operators, as follows:




Definition 1. We say that a linear operator a(x, D) : S(R™) — S{R") is a pseudodif-
ferential operator with symbol a{z, &) belonging to a certain class of distributions F, if

a(z, 1) can be represented by

oo, DI )(@) = | o4t 8) o) @3

for f € S(R™). In this case we say that a{x, D) belongs to Op (F).

Although this operator«—s symbol correspondence is not a homomorphism of algebras, it
preserves enough properties of the original operator algebra, and has the advantage that it
is casier to manipulate symbol functions than operators. Then the crucial point is that in
order to obtain collection of operators with particular features, one judiciously places de-
mands on the class of symbols F. In fact, if one is not careful, and in (L.3) allows general
functions or distributions one obtains an enormous family of operators, that is too diverse
to support an interesting theory. (E.g. any continuous linear map from S(R™) o S'(R™)
can be represented in this form with @ a tempered distribution.) ‘

The first symbol algebras were introduced by Kohn and Nirenberg, and were soon ex-

tended by Hérmander.

Definition 2. Let m, p, § be real numbers, and suppose p, § € [0, 1]. The (Hormander)
symbol class of order m, denoted by ST consists of those functions o(z, ) € C’OO"(R” X
R™} such that for any pair of multiindeces ¢, 3, and any compact set K < R™, there

exists a constant C, g ¢ such that

DEDga(3,8)| < Cop (@™ AP ok, ¢ e R

1/2

where (¢} = (1 + [|€]*)




Definition 3. The symbol p(z, £) belongs to Sm‘( ) if p € ST%(2) and there are smooth

Dimj (@, £) homogencous of degree m — jin § for [£] = 1, ie.

pm~j($;""€) =T jpm—-j(m f) ! Vlfl zl,r=z1

such that

p(ma é-) ~ Z pm_j (ma &)

70

where the asymptotic condition means that

p(z,€) - zpm_gma ANt

In this case we shall say that p(zx, £) is a classical or polyhomogeneous symbol.

Alternative frequently used notations for this class are S7* and

While the presentation of Calderén and Zygmund, (I.1), aﬂd the one by Kohn and
Nirenberg (1.2) appear equivalent, the second is more frequently preferred. To a great
extent this is due to the fact that Fourier transforms convert convolutions to products, which
are easier (0 manipulate. And in particular one can try to use division to invert £,

However, as Christ, Geller, Glowacki, and Polin emphasize in [CGGP 92}, when work-
ing on certain environments, such as a general Lie group, the advantages of (1.2) are largely
lost, but one can still define a class of pseudodifferential operators by using (I.1), with group
convolution.

In this dissertation, we shall exploit this idea, by using the Fourier transform as little
as possible, and by dealing directly with convolution operators, Our goal is to define a
natural class of multiplier operators on general nilpotent groups with dilations, in order to

prove the existence of an analogue of the usual pseudodifferential calculus for the Heisen-

berg group H", with the additional objective of possible generalisations to arbitrary homo-




geneous groups, Taylor[Taylor 84], Beals-Greiner [BeaGre 88], Christ-Geller-Glowacki-

Polin [CGGP 92] have developed analogues of classical pseudodifferential operators for

the Heisenberg group.The method we have employed .consists in proving that the class of
¥

convolution operators on H™ which we have defined, satisfies the list of conditions which

i

are well known to be sufficient for the existence of a general calculus of psc:udodjfferential
operators analogous to the usual 57 —pseudoditferential calculus on R™. Among these
conditions, which were identified by M. E. Taylor in [Taylor 84], is the requirement that
the family of convolution operators be closed under composition, A significant part of our
effort goes into verilying this critical property.

A brief description of the contents and main results contained in each chapter follows.

The notation used is introduced in Chapter 2,

¢ In Chapter 1, we provide a brief introduction to the motivating ideas, and briefly delineate

their historical development.

¢ In Chapter 2, we introduce notation, basic definttions, and results which will be needed

throughout the document.

» In Chapter 3, we characterize the space of the inverse Fourier transform of multipliers,

M (G) with § < 0. Our main results are the following two theorems:

Theorem, Let § be a real number, such that —QQ < j, and set kb = —¢) ~ 3.

a) Suppose K € M/ (Q), then for any multiindeces 3, y, there exists Cg, >
0 such that

|6ﬂ[((3:)' < Oﬁ,),|m|k“mHﬂ whenever z # 0.

Saynow § <0




b) Suppose K € Mi (@), then whenever j + |3 < O, the tempered distri-
bution (6°K) is in fact an I function, where the derivatives are taken
in the sense of tempered distributions,

b) Conversely, suppose that K € LG, Ifhat K is smooth away from 0,
and that the estimate (ITL.11) holds for’.all 8,7, whenever x # 0. Then
K € MI(G)

Theorem. Let j be a real number, such that j < —Q), and set k = —} — 1.

a) Suppose K € M (@), then for any multiindeces 3,1y, there exists Cgy >
0 such that

|6ﬁK(m)l < CpyBrjp-1y){T)  whenever z # 0.

where By,_ |5y i the bad power function of order k — 3] — ||,

b) Suppose K € M? (G), then whenever j -+ |8| < 0, the tempered distribu-
tion (0P K) is in fact an L' function, where the devivatives are taken in
the sense of tempered distributions.

¢) Conversely, assume that n > 1 if j € —QN, Suppose that K & I,
that K is smooth away from 0, and the estimate (IIL.12) holds for all
multiindeces 3,y whenever z # 0. Then K € M3 (G).

e In Chapter 4, the main result is the following theorem:

Theorem. For j1,ja < 0 the convolution of an element of M (H™) with an

element of M3 (H™) belongs to MP+52 (H™).

e In Chapter 5, we extend this property to any ji, j2 € R,




Theorem. Let j1, jo be two real numbers, with one of them negative, and the
remaining one non negative. If K1 € M (It™), and Ky € M (H™) then

their comvolution K1 » Ky € AL (™).
A‘ Iy
Theorem, Lef j1, jo be two non negative real numbers. If K1 € M’ (H™),

and Ko € M (H™) then their convolution K1+ Ky € M (HR),

e Tn Chapter 6, we discuss the existence of the calculus on the Heisenberg group, in partic-
ular we show that the family of Fréchet spaces {.M;i (H™)} e satisfies a set of hypothesis
sufficient for the existence of an analogue in H™ of the usual pseudodifferential calculus

in Buclidean space. The result is contained in this theorem

Theorem. Suppose ™ is the Heisenberg group of dimension n, and {Mj (H"‘)} .
JE

is the family of spaces of multipliers defined in 12. Then the following prop-

4 erties are satisfied

a) {Mj (H"™) }jEJR is a nested family of Fréchet spaces.

b) If§ = 0 then M’ (H™) < ST for some p & (0,1},

¢) Ifj < Othen M (H™) c S5 for some o € {0, 1].

d) KOHR) « M2 ) € M2 (BI7) and the product is continuous,

e) IfJ e M ("), and o is a multiindex, then D*J € M'™"(H") for
some T € (0,1].

) LetJ; € Mjﬂﬂ(]f-]l”), fori = 0,1,2,...,and 7 € {0,1]. Then there
existsa J € M (H™) such that, for any M, if N is sufficiently large

N
(J - Ji) e S;M.

=0

¢ IfJ € M (™) then J € M’ (H™).




And therefore on H™ there exists a general calculus of pseudodifferential op-

erators analogous to the usual ST —pseudodifferential calculus on R™.

In fact we prove all these conditions, except for (d}, nof only for the Heisenberg group,

but for the case a gencral Lie group with dilations. This will be the object of future work.
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CHAPTER 11

BASIC DEFINITIONS AND BASIC

RESULTS

Let g be a Lie algebra, which we shall assume real and finite dimensional, and let (& be
the corresponding connected and simply connected Lie group. If U and V' are any subsets
of the algebra g, we shall denote by [U, V] the vector subspace of g generated by all the
elements of the form [, #] with & € U, B € V. The lower central series of g is defined
inductively by

gy =8 8w = [%8¢-1]

The g(;y constitute a descending chain of ideals of g The Lie algebra g is called nilpotent of
step m, if there exists m € N for which g(n..5) = {0}.

Alternatively, if IJ and V are subsets of the Lie group G, [U, V] shall denote the sub-
group of G consisting of all elements of the form afa™! 3%, In this case the lower central

series of G is defined inductively by

Gumy=8  Gu=I[GGy-nl

and these G,y are a descending chain of normal subgroups of G, The Lie group g is called




nilpotent of step m if there exists m & N for which g1y = {identity},

Definition 4, Let V be a real vector space. A family {8; }+~q of linear maps of V to itself
is called a set of dilations on V', il there are real numbers A; > 0 and subspaces Wy, of V

such that V' is the direct sum of the W, and )

Bly, =t91d Vi

Definition 5. A homogeneous group is a connected and simply connected nilpotent group
G, with underlying manifold R™, for some n, and whose Lie algebra g is endowed with a

family of dilations {d;}~0, which are automorphisms of g.

The dilations are of the form &, = exp(Alogr) where A is a diagonalizable linear
operator on g with positive cigenvalues. The group automorphisms exp oé,oexp™ : G —
G will be called dilations of the group and will also be denoted by d,. The group & may
be identified topologically with g via the exponential map exp ; g - ( and with such an
identification

O G — G
(21, .2n) > (P™@1,...,r%%,)
Henceforth the eigenvalues of the matrix A, listed as many times as their multiplicity, will
always be denoted by {a,};_ . Moreover, as a condition of normalisation, we shall assume
without loss of generality that all the a; are increasingly ordered and that the first is equal
to 1, that is

I=a<...<5a,.

Definition 6, The homogeneous dimension @@ of the group G is the number

QmZai.

gl

We shall always use the letter ¢ to represent this quantity as well as A = [ i .

10




EXAMPLES O HOMOGENEOUS GROUPS

ii.

iil,

- underlying manifold and whose multiplication law is given by

abelian groups.
R™ with the usual additive struciure %
!
ry=r+y
and with dilations given by scalar multiplication

5r(mla v :m'n) = ('r‘almla o :'ranm'n.)

Note that §, is an automorphism. regardless of the choice of the weights ;.

Non-abelian, non-compact Heisenberg groups

If n € N, the Heiscnberg group H™ is the group with R*"*+1 = R™ x R* x R as

(@90 @\ t)=(z+7y+y t+t 2z -y ~y 2))
H™ is a homogeneous group with dilations
5’!‘(3"‘1: oy lny Y1y - :yn:t) = (Tmla ey Py TYL -0y T th)°

The homogeneous dimension of H™ is ¢ = 2n + 2,

Upper triangular groups. Let G be the group of all n x n real matrices [ai,j] such
that a; = 1 for 1 < ¢ < n and a;; = 0 when ¢ > j endowed with the usual matricial

multiplication. 7 is a homogeneous group with dilations

oy ([a,-j]) = [r" " ais)

11




Definition 7. Let G' be a homogeneous group with dilations {6, }. A homogeneous norm
on G, relative to the given dilations, is a continuous function | - | : G — [0, @), smooth

away from the origin satisfying
#

a) |z| = 0if and only if 2 is the identity clement, ,

b) |z = |z| forevery z € G

) \5T(w)'| = r|z| for every € G, and r > 0, i.e. the norm is homogeneous of degree 1.

If | - | is a homogeneous norm on (7 then there exists a constant C' > 1 such that
2y < C(|z] + |y]) forevery 2,y € G

s !
Homogencous norms alway exist. Moreover any two homogencous norms | - | and |+ |" on

(7 are always equivalent, i.e. there exist constants 1, C's > 0 such that

Chlz| < |z € Colz]  Vzed

HE
In view of this, in this thesis we choose to work with the followinhg homogeneous norm

ki 2% ﬁ
k3
|| o= Z Z;
i=1

We observe that if the dilations are isotropic, i.e. all the weights a, are equal, and satisfy our
condition of normalisation a1 = 1, then this homogeneous norm is simply the Euclidean

norm, which will be denoted by || - |i.

Definition 8. If 2 € &, r > 0, we define the ball of radius r about x as
B(z;r) = {y G Yyl < w}

We notice that B(z;r) = &.(B(0;1)).

12
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We fix a basis {Xl, . ,Xﬂ} of g such that AX; = a;X;, i.e. abasis consisting of

cigenvectors for the dilations {4, }, with eigenvalues r®, ..., 7% Now g is identified with
gz, the Lie algebra of left invariant vector fields on G, angl under this identification the X
are now regarded as first order left invariant differential operators on G.

For f € CY{G) we define the action of X; on f by the equation

Fly- exp(tfj)) ~ 1) %f(y : GKP(th))‘

X;f(y) =l it

A similar formula holds for the the right-invariant vector fields {X f}; The differential

operators {X;} and { X2} are homogeneous of degree a,; since they verify
Y J i J ¥

Xi(f 0 6n) () = r* (X 0 8:) (1)

and the analogous relation for {X f’} is also valid. .
The Haar measure on ¢’ is simply the Lebesgue measure on R™, under the identification
of (7 with gz, and of gz with R™ via the basis {Xﬁ} We denote by | E| the measure of any

measurable set B < . Then
6:(B)| =r®|B]  and  d(5.(2)) =r9dx

All our integrals on G are with respect to the Haar measure. So, for any integrable function

fonG
f F(6e(2)) dz = r—Qf f(x)dz
G aQ

Proposition 9 (p-test). Let | - | be a homogeneous norm on G. The integral

J |m‘p dx
|| <1

13




is convergent if and only if p > —@), and the integral

J |m|p dx
|z|=>1

is convergent if and only if p < —Q.

Definition 10. The convolution of two functions f, g on G is defined by

R

Fley ™ oly) dy = J Fgly™ =) dy
G

()@ - |

G

provided that the integrals converge.

We observe that in general, if G is non-commutative, such as the case of H", we have

frg#g=f.
Suppose the operator X is a left-invariant differential operator on G, and X % a right-

invariant differential operator on G, then the operators X and X ™ interact with convolutions

in the following way

X(fg) = f=(Xg)
XR(f+g) = (X*F) v
(Xf)xg=f*(X")
S(@) will denote the usval Schwartz space on &, thought of as R™.

Definition 11. If f € L1(R™), we define the Fourier transform of f, denoted by f, as

fo = | et

™

and the inverse Fourier transform of f, denoted by f, as

Ja) = j e=2miE 1(6) de.

™

14
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The following notation, definitions, and properties will be used frequently without in-

troduction. Most of them are as they appeat in [Geller]

Definition 12. Suppose j € R. We shall say that r € C®(&) is a multiplier of order j if for

every multiindex o € (ZT)" there exists Cj, > 0 such that -
|6r(€)] < Call + 117

for all £. We shall denote the space of all multipliers of order j by M (@).

o S(G) < M (G) and the inclusion is continuous.
o M' (@)  8(G) and the inclusion is sequentially continuous,
o If J &€ M’ (G) then .J € £ + &, and it is smooth away from zero.

o If o is a multiindex then &% : M’ (G} — M TN@), and multiplication by £ maps
M (G to M@,

e If j; < j5 then M™ (G) € MP(G)

o ForJ e M'(G), and N € Z", we define

Wl = 2o ||+ D oo
fee| < N

where | - || denotes the supremun norm.
The famil { . j } is a nondecreasing and separating sequence of semi-
Y Ul @y, g g parating seq

norms on M’ ().

o M 7 (G) := S(G) by definition. The norm used for this space is

Il - ||M‘°°(G},N = HS(G),_N

15




s Suppose J € M (@), we define m. g, the multiplier operator with multiplier J, as follows

gL
~r i!’
f——Jxf
/

o [[z] is used to denote the greatest integer less or equal to .

Definition 13. Let  be a real number. For x € R™ — {0}, we define, B;, the bad power

function of order t, by

)
|? ift <0,
By(z) =1 |log|zl|+1  ift=0, (IL.1)
L 1 ift > 0. !

Definition 14. Consider the multiindex 8 € (Z*)™ we define
i I
1B ==Y aiffi I8l := > 8
i=1 i=1
Proposition 15. For every multiindex o
alod] < laf < anle] (11.2)
and for all € € R™ there exist positive constants ¢ and C such that

c(1+e]) <@ <c+igh™ (IL.3)

16




CHAPTER III -

CHARACTERIZATION OF

MI(G) WITH j < 0

Proposition 16, Suppose 7 is a real number such that —¢} < j, where, as usual, () denotes
the homogeneous dimension of G. Set k = —Q — j, and let m be an integer such that
j—2mA < —Q. o

If J is a function on R™, smooth away from zero, such that for every multiindex o there
exists a B, for which

10°J(8)] < BaleP 1, for alie #0, (LIL1)
then

a) J is locally integrable, J ¢ &', and therefore J is well defined.

b) Away from zero, J agrees with a smooth function. Moreover, there exists a constant
C, depending onn, m, and j, such that

| ()| < C’( 3 Ba) lz|¥, forallz # 0. (111.2)

| <2mA

¢c) If o € CP(R), and ¢ = 1 in a neighborhood of the origin, then [(1 — p)J] s
smooth away from zero, and for any N € Z there exists C = 0 such that

(1 - )] @) <Cla|™™  VYz=0 (I11.3)

17




Proof.

a) The estimate (III.1) with & = (0,...,0), and the fact that —Q < _J imply that J is

¥

locally integrable.

/
Now we select a ¢ ¢ C°(R™) such that ¢ = 1 in a neighborhood of 0, and we write

J=¢J+(1—¢)J

i ;

The first term above, (¢.J), is a tempered distribution because (¢.J) € L'(R™). The

second term, (1 — ¢).J, is measurable, therefore by estimate (II1.1), with o =0, we

have for f € S

[(L = )15 =

| 10 -0 r0 2

n

<

MR HIGHGIES

< | CLEP () de for some constant C
R

~ [ e[ @) [ eneep o] ae
JR

~

< [(1 + |§|)_(Q+1)] Collfllydé  forsome'N e Z*
Jrn

< Csli(L+ [Nl

where we have used a Schwartz space norm, denoted by |- || N

This implies that (1 — ¢)J is a temperate distribution, and consequently

J=_¢J +(1-§)J eS(G)
Mo’ \—,»—‘ |
ellcs’ s’ \

b, ¢) For these parts we choose ¢ € CP (&) such that ¢ = 1 for || < 1, and with supp¢

18




B(0; 2), and consider the decomposition

J=(@J)y+{(1—-¢)J .

i

We define the differential operator £ as follows

T
where D, = forr=1,...,n and A=Hai.

i=1

Our next step consists in showing that for m' € N there exists a constant A > 0,

2 0%,

R

depending on n,m/, §, and G such that
D

=0 if z] <1

/ < M B, if 1l <|z| <2
‘Em [(1—¢)J](m)‘ ) |a|<§m' , | 2 (I1L.4)

IS

My Balzl ™74 if 2 <o
|| =2m* A ‘

If |z| < 1, ¢ = 1 then (I — @)J(z) = O. Therefore L™ [(1 — ¢)J](z) = 0. If

1 < |2| < 2, then by Leibniz’s rule we have




|27 11 - )71 (=)

24 24 ;;’
By T ay ; &
n a kith .
1< <n 1y bmy ax%l B oy,
l=1,...,m/ E5 Lyt

= ¥ ()| T sttt - owese

1<i<n Ty 00y byt B
t=lym! lyl=2m’ A
e
TL j—|ex .
P (z’ j ) Y, CapCyBalal’ " '
l<qgn N1t mlS 5l
I=1,...m! y|=2m' A
<My Y Bolaf
Jor| <2m’ A
<My ) B
| x| 2m! A

If | > 2then (1 - ¢)J = J since suppgp = B(0;2). Therefore for |z > 2

£ (1~ )71 ()|

2A 2A

n g% Sy .
I T 1 e =R [

1<i<n oy o . ,_
I=1,..,m/ aw"':l a'TimJ i
'
1 i—2m' A .

< Z ( , )Ba|m|3 with |a| = 2m’A !
1<5,<n LR, 77 %
l:l,...,m’ .‘t
i—2m/A i

iy Y Bk
|o|]=2m/ A i
[
|

By choosing M = max {Mg, M3} we can see now that what was cliimed in (II1.4) is

valid. | i

Therefore for sufficiently large m’ such that § — 2m/A < —(Q, L‘.m’[(l — ¢)J] de-
creases rapidly enough at infinity so that £ [(1 — ¢)J| € I/(R™). Consequently by

the Riemann-Lebesgue Lemma [;Cm'[(l — ¢)J ]] is continuous and bounded on R™,

ks
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And since B

/

{mﬂu—¢wﬂv=(im?)mnl—@ﬂ“

_ |$|2m’A[(1 _ qb)ur] Ty
then [{1—¢).J] is continuous away from zero. Similarly, by (II1.4), zL™ [(1—¢)J]

(I11.5)

is in L1(R™), provided that § — 2m’A + |a| < —@Q. Therefore 0* [E"ﬁf [(1-¢)J]] =
(—2ri)llel [zoLm [(1— ) 1] "~ exists and is continuous and bounded. Hence by (I11.5)
l2)*™A[(1 - ¢)J] " e CU)(R™), where I(m!) —> o as 1/ — co. This shows that

[(1—¢)/] " e gl) away from 0. Hence [ (1 — ¢).J] Tegw away from 0,
Also ‘ [(1—¢)J] ) (:B)‘ < C|m|72m’A for any arbitrary m/, proving c),

We decompose J as

J=(@0)" +[(1—¢)J]
(¢J) is of class (/®, because ¢.J is a compactly supported distribution, and [(1—
qb)J] ; is C° away from 0, hence we have that J is smooth away from 0, proving the

-

first-part of b).

In order to prove that there exists a constant C such that

|| =2mA

‘j(m)SC( Y BQ)|m|k

t

we shall consider the special case of || = 1. Then using dilations it will be extended to

any = # Q.

. |£L‘| = 1:

Since (¢pJ) € L*(R™) )
61 @] <ot | < ClBof P de <GB, (L6
l¢]<2
We apply (111.4) with m’ = m, and notice that by hypothesis 7 — 2mA < —@, there-
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fore L™[(1 — $)J]| € L*{(R™), and we have

[em-9)7] @)
<|emia -

e

It ‘
= J ‘ﬁm [(1 - ¢)J] (&)‘d£+ J ‘Em [(L —).T](€)| dg
15[él<2 2<[¢]

< J M Y B.dé+ jM Y. Balef o Age

|a|€2mA ‘aJ:QmA

1<fel<2 21

SO ), BatM Y By | [ef ™

[xl<2mA || =2 A

2<[g|

SC1 ), Ba+Cp ) B,

[ <2m.A ) =2m.A

= 03 Z Ba

ja|<2mAa

On the other hand, [£™(1 — $)J] = [a|"™[(1 = $)J] " = [(t - $)7] ", because

|a:|2mA = 1. Hence

[(1~¢)J]V(w)‘ <Cs Y B, (I11.7)

|es|g2mA

Therefore by estimates (111.6), and (111.7)

(@) <[ ()] +[[@ - 6)J] ()]

SC’OBO+C'3( Yy Ba)
lof=2mA (IIL.8)
sc( > Ba) V]z| =1

|| <2mA

o« T F#O

Letr = |z, and set J, := J o 5(1). Given that ./ is smooth away from zero, J, is also
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smooth away from 0. Moreover for any multiindex «, and for £ s 0, J, satisfies

5@ = |l 08y Jee)|
= [ el[@) cf;%)](é)\
= rlol [ (00 0 82 (6)|
<ol T
_plelp, (%)ja gl

- Ba'rfj|{f|j*|a‘

Jo=(redy) =r2(Ten)

In fact, in view of inequality (I1I1.8)

|¢};(y)[ < C’( Z Barj) for |y| = 1.
Jox|<2mA
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Therefore, if |z] = r we have

7@ = |(Tos0d0y) @)
=9} (Jos.) (5 (@)|
=00 (3 @)

<r 90 Z Bor?

|ex|<2mA

26’( Z Ba)*r_j_Q
|| <2mA
Jee| <2mA

]
Q

The analogous result for the Fourier transform .7 is also valid.

.




Corollary 17. Under the same hypothesis of 16 we have

a) J is locally integrable, J € &', and therefore J is well defined.

¥
b) Away from zero, J agrees with ¢ smooth function. Moreover, there exists a con-
/

stant C, depending on n,m, and i, such that

|f($)|§0( z Ba)|m|k, forallz #0.

|| =2mA

c) Ifp e CP(R™), and ¢ = 1 in a neighborhood of zero, then [(1—)J] is smooth

away from zero, and for any N € 7%, there exists C = O such that

[(L-@)J] @)| <Clz|™Y  vVaz0 | (11L.9)

Corollary 18. If J € M’ (@) and 1 € CP(Q) with+ = 1 in a neighborhood of zero in
G, then (1 —)J e S(G).

Progf. We say that I is rapidly decreasing if for every nonnegative integer N there exists

a constant C'w = 0 such that
-N
|F(z)| < Cnla] Vo #0

Observe that we may assume that § > —Q, since M (G) € M (G) whenever j; < jo.

Now we select ¢ € CP(() as in part (c) of Proposition 16 on page 17, and we write
Jas J = @J + (1 — p)J. Therefore .J = (0J)  + [(1 — ©)J] . Coiisequently we can
express (1 — ). as

~

(1= T =(1—9)(p)) +QL -1 -¢)J] . (I11.10)

Since by part (c) of Proposition 16 [(1 — go)J] " is smooth away from zero and rapidly
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A

i e e Y L

decreasing, then the second term of (IT1.10) (1 - )[(1 — @) J] " is smooth and rapidly

decreasing. Since w.J is in S(G), its inverse Fourier transform is also in S(G). Therefore ﬂ
!

the first term of (I11.10) is also in Schwartz space. . r.l
* i J% g
Consequently in the previous paragraph we have shown that if J € M’ (G) then (1 — i

2

o

@b)j is smooth and rapidly decreasing.
If J e M (@), then (.)€ M™N(@) for any multiindex 8. Therefore (1 — i
) [(65 J )] T = (1 —p)a? J is smooth and rapidly decreasing. i]

By Leibniz rule ”»
Pl —p)J] =1 —9)PT +g

-

v |
for some g & C®(G). And since (1 — ¢)”J is smooth and rapidly decreasing for any !
multiindex 3, then 8°[(1 — 'zp)j | inherits both properties. This implies that (1- qj))f € !‘

S(@), which is what we wished to prove. | E
;

Theorem 19. Let § be a real number, such that —@Q < j, and setk = —Q — j. i

a} Suppose K € M (G, then for any multiindeces 3,7, there exist;Cﬂ,Y > 0 such that r}
I

{aﬁK(m)\ < QoM whenever = # 0. (IIL.11) |

|

Say now § < 0 !llrl
. i

b) Suppose K € MI(G), then whenever j + \8| < 0, ihe tempered distribution (7 K) k”
is in fact an L' function, where the derivatives are taken in the sense of tempered ﬁ
distributions. I’;

|

c) Conversely, suppose that K € ILY(G), that K is smooth away from 0, and that the

estimate (I11.11) holds for all 3,, whenever x # 0. Then K € M (G) lii

Proof. a) Observe that K ¢ Mi (@), therefore by Corollary 18, K is a smooth func-
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tion away from zero, and consequently for any multiindex /5 it makes sense to consider

(APK).

i

The argument proceeds in two steps: first we do thg case for the multiindex v =

(0,--+ ,0), and fivally the general case. /

« Case |y|=0
We define J := (6'6}()". For some constant C, we have J = (gﬁK)A = C‘.fﬁf?,
which means that J ¢ MH"S'(G). Suppose ¢ € CP(R™), with ¢ = 1 for |z| < 1,
and define J' := (1 — @)J. Then J = @.J + J'. Since J and ¢J are in M’ (@)
then also J” is in Mj+|ﬁ|(G), and therefore J' is smooth. Given that j > —(), then

7+ 18] > —Q. For any multiindex « there exists a constant C}, > () such that for all £

0" ()] < CalL+ (g1

< B¢ Pl for some B,.

We observe that the last inequality is valid for |£| < 1 because J' = 0 for [¢] < 1.

Thus by part (b) of Proposition 16 there exists a constant Cfg,y such.that for all z # 0
() @)] < ol
where & = —Q — (§ + |8|). Therefore for all z # 0 we have

‘aﬁf((m)j - ]ﬁ(m)l

<) @) + (@) ()]
< C’)’@T|w|’“ + OE,Y|$|’°
s C';6‘r|5‘3|k

"

Above, in the next to the last inequality, we have made use of the fact that since

(¢J) € S(G), its inverse Fourier transform is also in S(G), and since  is a negative
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integer there exists some constant Cg., > 0 such that ‘((pJ ) (m)’ < C'E,Y\aﬂ%.
Now observing that & = (—Q — §) — |8|= k — |8, we conclude that for all z » 0

there exists a constant Cg, such that i

]aﬁK(w)| < Clgylu/17

. Case ye (ZH)"

Two subcases are considered.

By the previous case, we know that
k— k—|81—
10° K (z)] < Cgle|* P! < Opl|f~ 1=

: where for the previous inequality we have used that |z| <1 -

» 1< |z

—

K e M’(@), therefore by Corollary 18 on page 25 if we choose ¢ € CX(G),
with ¢ = 1 in a neighborhood of zero, and supp ¢ = B(0,1), then for 1 < |z],
K =(1-¢)K € S(G). Hence

- if k —|8| — |v| = 0, then there exists a constant Cjg, such that
|P K ()| < Cay < Coylal P11 for1 < [a]

- if k& — |8] — |y| < 0, for any natural number m = —(k — | 3| — |7y|) there exists a

constant Cg., such that

K ()| < Cay (14 |u)) ™™ < Cpylal ™ < Cayla* M for1 < ja

The consideration of these two subcases establishes the second case and therefore the
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proof of part (a) of the theorem is complete, i.e. we have shown that for all multiindeces

(3,7 there exists a constant (g such that

1K (z)] < Cp el AIPT foralle 20

/

b) First we claim that in order to prove that 3° K € L7, it suffices to show that K & Lt

This claim is valid because if we are able to establish that K is an L' function whenever

K e M (@), then we can conclude that all its derivatives (07 K) = ((—2mi)l#l 2P K) i
are also L' functions whenever (§ + |8|) < 0, since these derivatives clearly belong to
e

By part (a), |K(z)| < Oo|:e:|k, for all z # 0. And since k = — @ — j > —Q, then away
from zero K agrees with a locally integrable function. Also if ¢ € C°(G) with ¢ = 1
in a neighborhood of zero, then by Corollary 18 (1 — ¢) K € S(G) therefore there exists
a constant €' such that |[(1 — ¢)K](z)| < Cle| 9%, 50 (1 — $) K € L. Consequently

there exists a function F such that F' € L!(G) and which, away from zero, coincides
with K.

We shall show that ¥ = K in the sense of distributions, We define } = K — I, and
observe that it is supported at the origin, therefore, using the Dirac distribution 4, it can

be written as a finite sum

M=K-—-F= )Y cad

lol<N '-*’

for constants ¢, and a certain N € Z*. Since IF=K-Fisa polynomial, in order

to prove that I” = 0, it suffices to show that r approaches zero at infinity. /' € ,

therefore, by the Riemann-Lebesgue lemma, F—oat infinity. On the other hand,
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since K € MJ(G), there exists a constant C such that
|E(§)|SC‘(1+|§|)j-—>O as, € — w0
#

because 7 < 0. Therefore I = 0, and K = ¥ in the éense of distribptions, hence K is

an I' function, as desired.

We want to show that & is a smooth function and that for every multiindex o there exists

a constant C, > 0 such that
[(“B) ()] < Ca L+ [g]Y ™ forall ¢

Since K e L! and |0°K (z)] < C’g7|:£|k_|ﬁ|_m for all multiindeces 3, and for all
x -0, it follows that

Ke (L +8)c&'+§

comp

where Ll denotes all the compactly supported elements of LL . Therefore K is a

smooth function.

We define J := (0%K) "~ and we shall show that / satisfies the hypothesis of Corollary
17. We have J = (5”‘1? ) T = (2mi)llolea K, and since away from zéro K is a smooth

function, J is also smooth away from zero.

Given that & = —Q — j > —Q, we have that (k + |o|) > —Q. Since the estimate
(II1.11) holds by hypothesis, for any 3

[@)©)] = o [mlex] ©)

< G J¢|*HDBL poran ¢ 2 0,




Then by Corollary 17, there exists a constant C' such that for all 22 # ¢

(@) < Ofa| 1D ’
Observing that —Q) ~ (k + |af) = (-Q — k) - |a| = 7 — |/, the previous inequality

can be rewritten to express that for all z 5 0
[T ()| = [ (8°R) ()] < Gz~

Therefore for all x

[(8*R) ()| < C(1 + Jaf)?1

Consequently X € M7 (G), and hence K € A’ {(7), and this completes the proof of

&

part {c) of the theorem.

ad

In order to get a complete characterisation of the spaces M (@) for j < 0, we still need

to cover the case of those ch/j(G) with 7 < —@Q. We start by establishing some auxiliary

resuits. -

We recall that {6y : r > 0} denotes the family of automorphisms of the group (@

consisting of dilations of the type

6 (x) =(rMaz1,. .., 7%2,)
n

and Q= Z a; is called the homogeneous dimension of (.
i=1

Lemma 20. Suppose ¢ and ¢ are positive real numbers. Then there exists a constant C

such that

2|~ de < Ce”,

]a:|<€ F
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Proof. Introducing a change of variable we have

z=368,(2') so dz=¢e%ds
¥ H

We also observe that

o] "9+ = |5 (o)) = o Qe

Therefore

J |~y = 79 J || "9’ = & J |m'|mthdm' < Ce°

|z)<e [f] <1 |1

where the last integral converges since —@Q + ¢ > Q). O

Proposition 21. Suppose F is a L' function, C® away from 0, satisfying the condition

|F(x)] < Cla| 7

for all x # 0, where ¢ is a real number such that ¢ > o, If G isan L' function such that

G = 8;F away from zero, then, in the distributional sense, G = 0; 1.

Proof. Let 1 € CP(G} be such that 1) = 1 near the origin. For ¢ > 0, we define i 1=

W 0 8(1/s)- Let ¢ € CZ°(G) and observe that supp (o) © B{0;€).
Away from zero G = 0, F, therefore (G — d;F") is supported at 0, hence for all € > 0

(G = 0;F)(p) = (G — 05 ) (=) -

We intend to apply (1,¢) to (G — &;F), obtain estimates and take the imit as & — 07,

effectively showing that
lim (G — &;F) (teip) = 0
e—0+t
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which allows us to conclude that ¢ = ; F in the distributional sense.

*J e

g%

1

= ‘ G{theip) —

z))|
S [max Yetp) ]

|=l<e

P

ulmlé_&'
n

J|z|se

~

Jz|<e

m

J]z|<e

|G($)| dr + Og
|G(z)| dz + Ca
|G(:L‘)] dx + GQ

|G(.’B)‘ dz + Oy

g — 0T, Therefore

+

o

o

l[(aﬂbe o] ﬂ’)i d

\G(a:)[ da + [Eﬁif (1/)55;;@)] J

z|<e

lz|<e

| <&
"

|o|<e

J|z|<e

‘(G_ajF) (7/)590)‘ = |G("p690) - ajF(@bs(PH
(i) |
[ cueardo+ o) + 1(@549)

v Gt
1143

SCHJ |G'(a:)|dm+czj | ()| doe
|z|<e || <e

(|m|<a x| (054), ]) J‘m |F(z)| do

|F(z)| dz + Cs (Ei)

|F(a)| do + C ( )

<[ 6@l Glde | @l e @]
R™

|7

e
o

m)\ dx

m)| dz

Ol l —Qre gy

|#(2)] de - C., (E%) g® by Lemma 20

‘F(m)\ da + Cye® %

lim (G — 5jF) (Tﬁe(p) = (.

g—0t
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Given that we have ¢ — a; > 0, the last term, as well as the other two, approach zero when




i

Theorem 22. Let j be a real number, such that § < —Q, and set k = - — 4.

a) Suppose K € M? (G), then for any multiindeces 3,7, there exists Cpy > 0 such that
5

FE@)| < CpyBicigr i) whenever z 0, (UL.12)

where By_1p|_(y| is the bad power function of order k — || — ||,

b) Suppose K € M (G), then whenever § + |8| < 0, the tempered distribution (P K)
is in fact an L' function, where the derivatives are taken in the sense of tempered

distributions.

¢) Conversely, assume that n > 1 if j € ~QN. Suppose that K ¢ LY, that K is smooth
away from 0, and the estimate (111.12) holds for all multiindeces B,y whenever x # Q.
Then K € Mj(G).

Proof.

E

a} First we notice that Corollary 18 guarantees that for any multiindex 3, the derivatives
P K exist away from zero, because K € M/ (G). We start the proof by establishing es-
timate (I11.12) for a special case, namely for a special multiindex, and then we proceed

with the general case.

e Case |y|=0

» k=8 <0 ie i+ |8 > —Q.

We shall show that @° K verifies the hypothesis of patt (a) of Theorem 19 on
page 26, and this is all we need do for this case.

K belongs to M¥(@), therefore (PK)" = (—2m) 1B R e MI+HIBI(Q), so
K € MIIPI(@). Wehave k — |B] = (~Q — ) — |8 = (—j — |8) = Q < 0
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then § + |G| > —Q, and consequently the hypothesis of part (a) of Theorem 19, are

satisfied. Therefore by estimate (I11.11), there exists a constant (7] such that

"

’(5ﬁK)(3:)| < 01’$|~Q*(j+fﬁ|)~|04—|01

1

= (3’1[.ﬁc|',cﬁ|'6I Yz #0

k—|pl=0ie.j+ |8 =-Q.

First we shall estimate [2,(¢°K)] for r = 1,...,n. We ha‘;;: 6. (87 K)]” =
(—2mi)lBl1e B e MIHBI+or (), and this implies that [8, (95 K)] & Afi+Bl+ar
forr =1,...,n. Because j+{B8|+a, = —Q +a, > —Q it follows that [6,(° K)]
is under the hypothesis of part (a) of Theorem 19 on page 26, and consequently
we can use estimate (I11.11). Hence for all z # 0 there exist constants ¢,., with

= 1,...,n, such that

[, (P K ()| < ey ||~ @— G HIBl+an)
= CT|$|ﬁQ_(_Q+Qr)

= cole]

Now fix z, = (o,, - . ., %, ), With |z, = 1, and consider the following function

Iy, (0,00) — C

t—— [(aﬁK) o ‘5?3] (370) = (aﬁK) (talicola g, )
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Therefore using the chain rule and the previously obtained estimate, we have

o ()] oz LG

[0 (°K) | (Eutaa)) larg™ e,

I

=

I, 1)

3
Il
_

N
1=

-
—

erl (o) |7 e £ [ |

RgEl

£

-
i
-

(since jzo|=1)

< et 0 |30 T4 ap o=t

]

-
)
s

c,ma,ntfl

i
1=

_!
]
—

T
= ct! where C = Z 0 Cop

r=1
On the other hand, for all ¢ € (0, co) we have

re

r@ = || 0w o)

J1

o,

E
<|| cttde+ I}go(l)\
vl

re
<|| ct! dt’ +
vl

Fmo(l)]
< C|loge| + | (6°K) (o)
< C’\ 10g5| + Ch

< Oy (lloge| + 1)

where O = |mlax ‘ (8‘6 K) (sr:)‘ and where we have used Corollary 18 to establish
z|=1

that K is smooth away from zero since P K € MG,

For x #* O, id = 5lm“$|—1 = 613;] e} 6|m|~1, and {5‘m‘ﬁl($)1 = \mr_1|ﬂj| = 1, hence




using the previous estimate we have

K

|@K) @) = | (°K) (010 B @)

Uil

<Oy (‘logkv\’ + 1)

» k— |8 > 0ie. 7+ 0] < —Q.
Since PPK = (—2mi)BIEAR e pmi +81(@), therefore there exists some constant
C such that ‘ (6’3K) ) (€) ‘ < O(1+ |§|)j+|ﬁ| for all €. Since by hypothesis §+|3| <
—@, wehave (0°K) " isin L}@), therefore its inverse Fourier transform (67 K) is
a bounded function, i.e. there exists a constant C' such that | (8" K)(z)| < Cj for

all z = 0,

Concisely, in the last few pages we have shown that for all z = 0

» if k — || < O there exists a constant C'; such that -
(°K)@)| < Cula]*
» if & — || = 0 there exists a constant Cy such that
‘(é‘ﬁK)(m)’ < Co (|log ||| + 1)

» if &k — |B| > 0 there exists a constant Cy such that

|(#K)(@)| < s




Therefore we can conclude that there exisis a constant C‘g such that

(@ K)@)| < CsBy @)

for all z # 0, and where By,_ g denotes the bad power function of order & — |3},

» Case < any multiindex

We shall assume |y| # 0, since |y| = 0 has already been discussed.

> k—16l— >0

This implies & — 3| > ||, therefore, applying the case already proved, there exists
a constant C'g such that |(6'8K )(:c)| < Cl, for all x 0, which,is what we had to
prove in this case,

» k=Bl —]h=0

This implies k& — || = ||, therefore, using the case already proved, there exists a

constant Cg such that for all z # 0

|(0°K)(@)] < Cp

< Cp (| log ||| + 1)

» k— 18— <0

The following two subcases are considered separately:

n 1<z

K € MI(G), therefore if we choose ¢ € CP(G) such that ¢ = 1 in a neigh-
borhood of zero, such that supp ¢ < B(0;1), then outside of supp ¢ we have
K = (1 - ¢)K e 8(G). Therefore given that k& — 8] — |y| < 0, if we choose

any m € N such that —m < k — |8] — ||, then there exists a positive constant




C1 such that whenever 1 < |z|

‘6'3[(1 — qb)K] (w)‘ < (1 + [w|)_m gﬁi\m\"m < C’“m[k*lﬁl—lﬁl_

;

m0#|z| <1
The three possibilities for k—|f|, positive, zero, and negative, will be considered
separately:
¢ 0 <k — |G| By the case already proved there exists a constant Cp > 0 such
that

[(°K) ()| < C < gl P11

where for the last inequality the facts that &k — || — |y| < 0, and that 0 #

|| < 1, have been used.

¢ &k —|B| = 0 By the previous case, there exists a positive constant Cp such that
(P K) ()| < C5 (| logal| + 1) < Cila] ™M = & |]b181-1

with C~*1 a positive constant, and where for establishing the second inequality
above, we have used the facts that 0 + |z| < 1 and |log |me < || 7M.

¢ k— 0] <0 By the case previously proved, there exists a constant Cs >0
such that

(82K ) ()| < Cpla/* 18l < Cglee)F= 1811

- where for the last inequality above, we have used the facts that 0 # |z] < 1

and that k — 8| — || < k — |8 < 0. i
Therefore for 0 # |z| < 1 there exists a positive constant C! = max {Oﬁ, 51}
such that

(P K) ()| < Y| 18-1,
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Consequently if k—|8]—|y| < 0 there exists a positive constant ;, = max {C, CY

K4

such that

(0P K) ()| < Cula[* A v 20,
¥

Summarizing, we have shown that for all z # 0 ‘

» if k— |8} — |y| > O, then there exists a constant Cg such that

-

0P K (z)| < Cp
» if k& — |B| - |y| = 0, then there exists a constant C'z such that

I@'BK(LEH < Cg {|log || +1)

"

» if & —|3| — |v| < 0, then there exists a constant O such that
|3’3K($)| < Ol|m|k“|ﬁ\—|’7|

Therefore it can be concluded that for any multiindeces 3, and -y there exists a positive

constant Cg., such that for all z # 0
|0°K ()| < Cgy B 51— (%) -

And this concludes the proof of part (a) of the theorem. !
b) The argument to prove part (b) is essentially the same as the one used to prove part (b)
of Theorem 19.

In order to prove that 8K e L(G) it suffices to show that K € (&), because if we

are able to show that K is an I, function whenever K & M7 (@), then its distributional

derivatives 02 K will also be L' functions, as long as 7 + |4| < 0. This because in this




case &9 K bolongs to MIHBI(@).

We know that for every v & (Z+)” there exists a positive constant Cyy such that
K ()| € CoyBr_y(z). Given that j < —Q we have that k = ~@Q —j = 0. The

following two possibilities are considered separately: -

-kZQQ%j>O

then | K ()| < Coy for all 7 + 0, therefore K agrees away from zero with a locally
integrable function.
k=-Q—j=0

we choose any multiindex v such that —) < —|«|. For example, v = (1,0,...,0)

will do. In such case k — |y| = 0 — || < 0, which means

[K (@) < Coylaf M = Copia| 17

a

and because Q@ = 3" | a; > a1 - 1 = |y| we have that K agrees away from zeto with

a locally integrable function.

Given that in both cases KX agrees away from zero with a locally integrable function, and
that by Corollary 18 (1 — ¢)K € L*, with ¢ € C°(G) and ¢ = 1 in a neighborhood of
zero, there exits a function F € L'(G) which away from zero coincides with X, Then
it can be shown that #' = K in the sense of distributions in a similar fashion as in part

(b) of Theorem 19.

¢} We need to show that K is smooth and that for any multiindex 3 there exists a positive

constant Cg such that the partial derivatives satisfy
(@R)@©) <cpt+1e) ™ we.

Assume ¢ is a multiindex of the form o« = te;, where e; is the 1—th element of the
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canonical basis of R, and £ € N such that —Q) < j§ + || = 7 +ta; < 0. We shall show
that K € MV (G) = M (@), .

We notice that such t does exist. If n > 1, then surely QQ > a;, therefore the open
interval

‘

()

a; oo

has length C% > 1, and therefore it has to contain some natural number ¢. Therefore
ta; € (—Q — j,—7), L.e. —Q < j + ta; < 0. In the case that n = 1, the open interval

(—Q — j, —j) contains a positive multiple of a; = (), unless j € —QN,

First we observe that ¢* K is smooth away from zero, because K is smooth away from

Zero.

Our next step is to see that *K satisfies estimate (IT1.11). Since by hypothesis we
know that estimate (IT1.12) holds for K, then for any multiindeces @, there exists a

constant Cg o 4 > 0 such that for all  # 0

|07 (°K) ()] < CoranBr-tal-si-m(®)
k—|o|—i8]-
" Oﬂ+an|93‘ jed—=iB1=I~1
In the previous equation we have made use of the fact that — (@) < j -+ || which implies
that k — |ee| = |8 = |v| = —Q — 7 — |a| — |B] — || < 0. Then estimate (IT1.11) holds

for ¢*K.

Our next and final step will consist in using induction to prove that the distributional
derivative %K = "% K is in L(G). In fact we show by induction F K e LHG), for
1< s <t seN, Assume s = 1. By hypothesis K is in L*(G) and C*® away from 0.

Since ([11.12) holds for K, then for any multiindeces 3, ~, there exists Cg, such that

|07 K (2} < Cay B— -1 (2)
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where with 67 is the derivative in the usual sense. Then since k = —(J — j = 0

s ifk>0
|K (z)| < CoByl() = .

Co(jloglz}| +1) ifk=0

A more succinct estimate is
‘K(m)] < Cilz| 9t with ¢ > gy

since in the case that & > 0 we can take ¢ = (, and in the case that ¥ = 0 we can take

¢ = — ¢ for any € > 0 such that Q — ¢ > a,. *

Given that for any multiindex -y
|0 K ()| < CyBrjal--i| (&) = CyBya, (@)

choosing -y such that & — a; — }y| < —Q we see that &;K is integrable near infinity.
And if |y| = 0, we have k — a; — || = k — a; which is greater than —(, then ¢; K
is integrable near zero. Consequently the usual derivative 8;K is an L* function away
from zero, Therefore by Proposition 21 the derivative ¢;.K in the sense of distributions
agrees with the usual derivatives ;K a.c. Then the distributional derivative 6;K is in
LMG). o

Now assume the thesis to be valid for (s — 1), that is &} ~'K isin LY(G). By hypothesis
8;?“1K is O™ away from zero and ]af“lK(:c)| < OBg_(s-1)q;(x). Since k — sa; >
k—ta; > —Qthen k—(s—1)ay = k— (t—1)a; > —C +a;. Hence there exists ¢ > ay
such that

‘af_lK(“")l < OBjy (s-1jas(®) < C‘l|m|‘Q+cl )
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Recalling that
|3fK(.‘B)[ < nyka.sa1;7|'y| (23) :

and arguing in a similar fashion as for s = 1, we condplete the indyctive step. So we
can conclude that 0*K is a L' function away from zero. Then by Proposition 21 the
distributional derivative 6% K agrees with the usual derivative 0*K a.e. Therefore the

distributicnal derivative %K is in L' ().

‘We have verified that 0“ K satisfies all the hypothesis of part (c) of Theorem 19 and con-

sequently (0°K) ¢ M G) = M7“Y(G). Hence (0°K)" = (—2mi)leligag =
(—2mi)lall gt K e M7 ** (). Which means that L8 ¢ M (G).

By choosing a ¢ € C°((), equal to 1 in a neighborhood of zero, one can write K as
follows

K= (9K)  + (1-9F

AN —

eLl & eSs

comp

Hence by (I11.12), and the fact that K ¢ L'(G) we have shown that Ke (L) +8 <

comp

£+ 8, and therefore K € C®(Q).

Let S be the homogeneous unit sphere, i.e. S = {x € G : |z| = 1}, where |- | denotes
the homogeneous norm of G. Given that S is clearly compact, we can find a positive

number ¢, such that S be covered by the family of sets

U ={zel:|n|>c} fors=1,...,n.

Now we construct a covering of R™—{0} consisting of those cones obtained by including

for each point = € Uy, the “radial ray” passing through that point,

Iyi={6(z) : z€U,, andr > 0} = Uc’J}(US) fors=1,...,n.

=0
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Since every point in R™ — {0} is of the form &, () for some r > 0 and x € 5, the family

of cones {I'; }5_y covers R” — {0}, Therefore if £ € R™ — {0}, for some ¢ we have that

fely,ie foracetainzeU; < S

o

s (I11.13)

b= @) = P s 6] = e

o

Next we show that for any multiindex /3 there exists a positive constant Cg such that

K@) <Cp(1+1e) T we (IIT.14)
If |¢| = 1 we have
(@R = [5‘* (ar )H
Qi) 5 (;’2_) |3 (4 o (eR)] (5)]
les+r=0 ! ‘
< o Y dEh © o (4R)©|
leg+r=4 "
G o Y el g
lej+r=03
(1+|€|)m‘ ) i—lrl
- +¢
(€€T;, then [&:]>c|¢]*) (L+[g)= \gl)wf‘ 7|
S G IEfFZT 1] C|£|(H'1)a'z (1+ |£DJ
(L+ €)™ (L4 [gh
- C ‘
zzei.;:ﬁ g™ B
< Gz Y. (L+fgy T
leg+r=f
(o1=fed+]rl=taccil) Ca(t +]e])*
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If |€] < 1, by the continuity of {1 + |¢ |)“" A1 there exists a positive constant m such
that
0<m< (1+g)y 1

¢ ar

Hence for all|¢| < 1

(1 + |£DJ’*W|

s C
B -
|PK ()| < C < -

Choosing Cg = max {%, 04} we obtain (I11.14}. And therefore KeMi (G), which

is what we had to prove.




CHAPTER IV

CONVOLUTION IN M/j(Hn)

WITH 7 < 0

IV.1 BASIC DEFINITIONS AND RESULTS

Definition 23, The Heisenberg group H™ is a non-commutative homogeneous group

with underlying manifold R?**! = R? x R™ x R, and the group law

n
($,y,t) ' (mijl’ti) = (SL’ + m’ay + y’:t +t -2 Z (mjy;i - méiyj))
i=1

The dilations in H™ are given by

&(z,y,t) = (ra,ry,rit) forr > 0.

The homogeneous dimension of H" is @ = 2n + 2, which is always greater or equal to 4.
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The homogeneous norm in H™ is given by

[(@,5,0)] = (jal* + Jg* + )"
¥

Consider g7,, the Lic algebra of left-invariant vector fields on ™. We [ix a basis

{X1,..., Xu Y1, Y0, T}

of gz, by choosing X3, ¥;, and T as the left-invariant vector fields which agree with 4. .2
y FERET

and 5@5 at the origin. Similarly we have
{X&,. . XEYE . YE TR

the corresponding basis of right invariant vector fields on H™ chosen by requiring that
XJ, YA, and T% be the unique right-invariant vector fields which agree with 3%,-, E?}:: and

gaft— at the origin. It is known that

ijé%+2yj-é% i=1...n
Y;-:BZ—j«-%ja—i j=1...n
Xf:-a%—_zyj% j=1,...n
];jRﬂ—a—Z?—i—ijgE i=1,...n
TRE—{%

The differential operators Xy, ¥y, X, ¥} are homogeneous of degree 1, and 7, T are

homogeneous of degree 2.
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We have the commulation relations

[X;, ;] = —47

¥

and all other commutators of {X1,..., X,, V1,..., ¥, 7'} vanish.

Similarly
[XF Y] = 4T
and all other commutators of -{X]_, oy X, Y9, Y, T} vanish, Since 7 = gat— then
T(fxg)=(Tf)xg=[*(Tg).
Definition 24. For j = 1,...,2n + 1 we define the multiplication map
Mj : S(Hn) e S(I[ﬂﬂ')
fo— M;(f)
where
z; f{zyy, 1) ifj=1,...,n
(M; f)(z,y,t) = < yif(@,y,t) ifj=n+l,...,20n (IV.1)
tf(z,u,t) if  =2n+ 1.
.

We observe that if f belongs to the Schwartz space S(H™), then clearly (A f) is in S(H™)
forall j = 1,...,2n + 1. Moreover if f,g € S(H"), then f * ¢ is also in S(H™) and
therefore M, {f » g) makes sense,

Substitution of M;{f) by x; f, or by y; f, or by L f, are abuses of notation which will be
made whenever the risk of confusion be minimal.

By duality the multiplication maps can be extended to &', More preciscly the maps
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M; : S(H™) — S(H™) are extended to M; : S'(H™) — S'(H™) by the formula

[M; ()] (f) = AM;()] vAe S'H"), fes

¥

w = (m,y,t) U= (.’I?’,y",t’)
(f ) (u)

f (uv™ N g(v) dv

j=

Hete v = (—a/, ~yf, —th).

Definition 25. For f, g ¢ L'(H™) we define f g, the convolution of f with g, as follows

J sc-—a:,y Y, t— .t’-i-QZ RIS myj))g(m’,y’,t')dw’dy’dt’

Proposition 26.

a) Say f,g € S(H") then

t(f % g) = (tf) x g+ [ = (tg) —22 (i f) =

j=

i fe&(H") and g e S(HM).

i, g€ S(H) and f & £'(H")

iii, f,ge &(H),

zi(frg) = (x;f)xg+ f(z;9) F=1,...

yi(f = 9) = (3 f) = 9 + [+ (y;9) i=1,...

, T

, T

(v59) —

(55 ) * (z59)]

(1V.2)

(IV.3)

(IV.4)

b) The relations (IV.2), (IV.3), and (1V.4) remain valid for each of the following cases:

Proof. We start with the first equation, (IV.2). Forj =1,...,n
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[M;(f = 9)[() = [25(f = )] (w)
= ((z; ;) + T;)J fluvHg(w) dvr
e

= (z; — x}) L}n FluvrDg(w) dv + ) JFHH Fluv™Hg(w) do

= |05 e g0) o+ | sy (z0) @)
n Hn

= [(M;f) = g] (u) + [f » (M;g)] (w)

The proof of the second identity, (TV.3), is completely analogous and therefore it will be

omitted. The proof of the last identity, (IV.4), follows.

[M%H( )] (u)
= [t(f * )] (w)

= [(t t' Z :cjyj T ii/;v) +t'—2 i mg’yj ;,yj)_) (f *Q)} (u)

Jj=1 j=1

(t —t'+2 Z :t:J,.'yJ Ty ) J;]—Iﬂ FlurDg(v) dv

e J;H[n fleagw)dv —2 Z (v — =5us) J;HI“ Fluv™)g(w)dv

J=1

- Lln (Man1f) (™) g(v) dv +j J(wo™) (Man419) (v) dv

]HITL
<2 Xl =y = ] [ o)
= [(Mons15) ] () + 7+ (Manr9)] ()
_zzj (M) (™) (Myn9) (8) = (Mt ) ™ Y {(My0) ()] o
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= [(M%Hf) g (w) + [f (M2n+19')] (u)

934 0) ¢ (Masss) ~ (Mossf) = (M:0)]

i=l

Part (a) has been proved. Part (b) follows immediately from part (a), and the fact that
‘

C®(H™) is dense in &' (H").

By the use of induction the following corollary follows from Proposition 26.

4

Corollary 27.

a) Say f,g € S(H"™) and k € N then

k
m;“(j'*q): Z (p)(mi’f*:rjg) j=1,...,n (IV.5)

pt+a=Fk

k
P frg) = D, (p)(yﬁf*yj*g) j=1,...,n (IV.6)

pHg=k

linear combination of terms of the form (Rf) # (Pg} |
tk(f *g) = with R and P homogeneous polynomials in x,3,t
such that homdeg R + homdeg P = 2k
(IV.7)

b) Relations (IV.5), (IV.6), and (IV.7) remain valid in each of the following cases

i, fe&'(H") and g€ S(H™).

ii. g S(H™) and f € E'(H").

iii. f,ge E(H) .




Proposition 28. If K; € M (H"), i = 1,2, then

a)

0 ,
%-(le * Kg) = (XJ,‘,R Kl) # Kq 42 (yj T,Kj[) 3 Ky
7

+ 5 (X5 Kn) w (Vi Ka) — 4 (Y K)o (X, ).

An alternative expression is

9
o (K » Ko) = Ko » (X;K) — 2K = (5 TK)
¥

+ 5 Yy B) ¢ (X[ Ka) = 5 (Xyska) = (Y KG).

b)
¢
51;;(1{1 * Kg) = (YjRKI) ¥ Ky + 2(z; TKy) * Ky

+ 5 (Y K0 ¢ (X P2y Ko) — § (X5 K1) » (Y Ka)

J

An alternative expression is

2

5‘y-(Kl + Ko) = Ky » (Y;K») — 2K * (z; TK))
i

+ 3 (XyaKq) « (Y Ko) — 1 (VimyKy) » (XTKS) .

?
¢) (K1 v Ka) = § (X1 K)o (YRER) — L (Vi Ky (XTK).

d) Alternative expressions for the previous are
0
E(Kl * Kg) = (TKl) ¥ I(Z

0
E(Kl x Ko) = K1 % (T'Ky).
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Proof. We use Proposition 26 noting that by Corollary 18, X 1, Ko € &'(H™) + S(H™).

a) a_i](Kl * Ko) = (XjQ o+ Zij) (K1 % K3) |
= XK1+ K3) + Qij(K;* K»)
= (XK1Y % Ky + 2Ty, (Ky » Ky)
= (XJ'K) * Ko + 2T ((4y;5G1) # K + Ky # (y; + Ky))
= (X K1) » Kp + 2y, TK) « Ky + Ky # (2Ty; K3)
= (XJK1) « Ky + 2(y; TKY) = Ko

+ K (X Yy 0)
= (XJK1) « Ky + 20y, TEY) = Ko

+ Kox GOV - vy ko)
= (XFK1) + Ky + 2(y;TK}) = Ky

+ HOGED) * (VysKa) — LK) = (X PRy 0y).
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d
%—(Kl #* 1{2) = (XJ e Qij) (I(l # KQ)
2
= Xj(Kl * Kg) - Qij(Kl * Kg)
= Ky % (X;Kq) — 2Ty (K +'K3)

= I{l ® (XJKZ) — 2T ((yjKl) & Kg -+ Kl ® (yng))

= Ky % (X;K9) — 2K * (y;TKy) — (2Ty; K1) » Ko
== Kl * (XJKQ) — QK] * (y‘?TKQ)

-+ (%[Xj,lfj]yjK].) * _KQ

= Kl F (XjKQ) — 2K1 ® (ijKg)

+ 3 (XY — VX )y Ko + K

= f(l * (XJKQ,) - 2K1 * (yj TKQ)

+ 1 (ViyiE) = (X Ka) — 5 (XjusKi) + (Y] Ka) .

b) The proof of part (b) is analogous to that of part (a).

c) P
BE(Kl ¥ Ky) = T(Kj * Ks)

= (TKy)» K
= (—%[Xl,YL]Kl) x Ky
— (-0 Yr - YiXi)Ky) = Ko

(V1X1 K1)+ Ko — 5 (X1Y1Kq) # Ko

= 1(Xy Ky) » (YKo) — 5 (Y1 K1)+ (X{K).




d) There is nothing to prove in this case since 7' = % and

0 .
(B%”Kl) *Kg = Kl * (EEKQ) .

0

Remark 29, Given that the differential operators X;, ¥;, X7, ¥;% are homogencous of de-
gree 1, and T is homogeneous of degree 2, it follows from the previous proposition that for
K; & M itis possible to write

Sum of four terms of the form &1 * K. 2,

d
?—(K] * KZ) = ~ a1 ~ Ny
Tj with K7 € M™*" (H") and K, € M™ (1)

or alternatively is also possible to express this

o Sum of four terms of the form i * K,
F(KI * K2) B ~ T iy =T+l
L with Ky € M™ (™) and Ko € M (™)

The analogous statements are valid for %.

For %(Kl * K3) we have the expression

Sum of two terms of the form & 1% K 9,

)
(K1 = Ka) = ~ i 41 ~L gt
with Ky € M (H") and Ky € M™" (H")

ot
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Corollary 30. Assume K\, Ky € M (H"), and m & 7.

a) Foreachi =1,...,n, there exist Ki € M), and Ki, € M (T such
that ¥

ai:; (m . Kg) - f‘i (I{T}:)r . Kg,,,)
=1

2

Alternatively for each i = 1,...,n, there exist Ki & M"™(H™), and K, €

it . \ . )
MPZTVH™) such that the previous expression is valid.

b) Foreachi = 1,...,n, there exist Ki . € M7 (H"), and K, e M2 (H™) such

that

%;(Kl . Kg) = g (K}'ﬂ, " K;)

2

Alternatively for each i = 1,...,n, there exist Kj, € M H, and Ki, €

Il ) . ' . .
M) such that for the previous expression is valid.

Proaf,

a) Induction over the order of differentiation, m, will be used. By the previous remark we

know that
4

9 i ;
2 em) - 3 (1,50
"' re=l
with K}, € M (H™), and Ki. € M2 (H™). Now we assume the thesis to be valid

1

for m — 1, thatis

1
am_I

4"
amm——l (Kl * I{?') = Z]_ (Ki,f' * Kiz%,'r')

i

with K4 e M (EM), and K3, € M7 (H7),
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Therefore

am a am-—l
Grse) = 2 k)
6m§”( ER2) = G gt e
-1
5 4
e T ¥ K"Ia )
6331; ,,..gl ( 1,0 ¥ 27
4 -1
- a 7 3
=) E(Kl,r* Kz,r)
r=1
A"y
=2 Y (Ki.x k)
r=1 g=1
4" '
=Y (i, i, )

with K% e M gmy = (B), and K7, & A’ (H™), which is what we

£

wanted to prove.

The proof of the other parts is completely analogous.

0O

Say (z,9,t) € H?, and § = (Br,.. Bong1) € (21?71 g myldindex. We shall
designate by B, B, and f; those muitiindeces in (7*)2»+1 having the same components
as 3, but replacing with zeroes those components which do not affect the z;, the y;, and ¢,
respectively. Therefore if, as usual for H”, we denote by |3 := V3" By + 28041, then the

following two equations hold

B =B+ By + B, and 18] = |Bz] + |8} + 18]

We shall refer to the three multiindeces Ba, By, and By as the codrdinatewise subordinated
decomposition of the multiindex 3, although when confusion appear improbable, only sub-

ordinated decomposition will be used,
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Proposition 31. If K; € M%(H?), ¢ = 1,2, 8 € (Z)2 1 with 3, By, and S its

subordinated decomposition. Then #
a) There exist Ky, € M Y, and Ky € M2 (H™), such that

418z
5’6’“ (I‘(l * Kg) = Z (Kl,v' ® K2,r)
r=1

Alternatively there exist K1, € M (H™), and Ky, € M-fﬂ+|ﬂm|(lfl[”'), such that the

previous expression is valid.

b) There exist K1, € MV (™), and Koy, € M (H),

!

alfyl
aﬁy (Kl ¥ KQ,) == Z (Kl,,,- * Kz,,,-)

r=1

Alternatively there exist K1, € M (H), and Ky, € M5, such thar the

previous expression is valid,

¢) (K + Ky) = (T“‘S“’”I{l) « Ky

where T =T oTo ... o T, andwith T"*V™ k) e M8 (),
Smmrermsrrm e
%bﬁtl times

Alternatively

aﬁt(Kl * Ko) = K # (T(Igtlng)

with TV K, ¢ M2t (Hm),

Proof. We shall prove part (a) by induction on & = | Bz|. f k =1, then 3, = ¢;, where e;

is the i—th element of he canonical base of R2™1, 1 < 4 & n. Therefore by Remark 29 we
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£

have that
2 4
e (Kl # Kz) = (K1 ® Kg) = Z (Kl,'r' % Kzﬂ.)
B ri&]

S 8 o i ——
with K, € M”+1(IH[”) = M“Hﬁ”'(Hn), and Ko, € M™(H™). We assume that for
= |3;| - 1 the thesis is valid. Consider some 3; # 0, with 1 < 4 < n, then we can
express Oy as fp = o +e; = (B1,...,0i — 1,...,6s,0,...,0) + ¢;. Note || = |3, — 1.

Therefore by the inductive hypothesis we have

9% (K % Ky) = 0997 (K1 » K)

4lfie-1
=y (Kyrx Kgy)
r=1
4|ﬁm“'1
=Y (K v Kay)
r=1
AlBz|-1 4
s Z Z (Klﬁ's E S Kgl.,.s) .
=1 5=1
4|I3m|

I
o7

(Kl,r ® KE,T)

-1
i
=

with K1, € M’ (H"), and K, € M7 (H"), as desired.

The alternative case, as well as part (b), and its alternative, can be proved with an
analogous argument.

Part (¢) is proved by induction on & = fa,,.1. In case that & = Bg,.1 = 1, we have

B; = egny1, and hence, by part (d) of Proposition 28,

0P (K1 % Ky) = — (K1 » Kp) = (TK7 * Ky)

R

with TK; € M7 (1) = A7 ().

Now we assume that the thesis is valid for & — 1 = 9,41 — 1 and we shall prove that it
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15 valid for Bor 1. Set J; = eant1 + 0 = egnar + (0,...,0, Ban11 ~ 1). Therefore by the

inductive hypothesis

(K v Kp) = 0t (K 4 )
=& ((I’Kl) " KZ)

( m) 1

|0+e2n+1|

T )*KQ

18]
(T 4 Kl)*KQ,
[B¢]

withT % Ky e M gy o P Y, s desired,

The proof of the alternative statement can be obtained by an analogous argument, [

As an immediate consequence we can state the following:

Corollary 32. If K1, Ky € M¥(H"), and B8 € ("L with 8, B, and B, its sub-
ordinated decomposition, then there exist K1, € At (H™), and Ky, € M (H™),

such that
|ﬂm +8yl

8P (K # K) = Z (K1 * Koy (IV.8)

Aliernatively there exist K1, € M’ ("), and Kz, € M (H™) such that the previ-

ous expression is valid,

Proof. Observe that § = B, + 0, + B, therefore if we apply the previous proposition to
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B3, By, and (3, respectively, we have

(K1 = Kp) = 0P 0% 0% (K, = Ky)

= PPy ((Tlﬁtwf(l) ¥ Kz)

4l Byl
= pPe Z (Ky % Ky,

=1
418yl
= aﬁm (Kl}r * KZ,‘I’)
r=1

Byl g8z
= Z Z (K]-,’-"a * I{?','rs)
r==] s=1

AP +2yl
= Z (K * Ko p)

r=l1

with Klj,- € M”jl.+|ﬁt|+|ﬁy|+|ﬁm| (Hn) - Mﬁl"“ml(]}][n)’ and KQ,T € .K;ijg(lﬂ[n).

The proof of the alternative is analogous, O

Proposition 33, Let § be a multiindex in (Z)***1, with subordinated decomposition
Bzy By, Br and p, q, nonnegative integers such that p + q = |8,| + 18, + 18 = 8.
Then any linear combination of terms of the form 8% 0Ps 65 (K x K3) = 0% (K » Ky)
with K1 € M (H™), and Ko € M™ "(H™), is equal o a linear combination of terms

of the form (K » Ky), with K1 € M™ (H") and K, € M (HP),

Progf. By induction on the value of k = p+¢. p+ g = 0, thenp = ¢ = 0, and
|Gz + |By] + |B¢| = 0. Thercfore

Z i 982 Py P (K"lﬂ; e Kgﬂ') = Z Ci(ffl_i #® Kg,‘i)
im=] =1

with K1; € M (H™) = M™ (H™), and Kg; € M (1) = A7 (1),
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We assume now that the thesis is valid for all &£ < (p -+ ¢) — 1. We shall consider two

possibilities for 4,

° [B] # 0O
If |B| # 0, then for some 1 < { < n, we must have some a— in &%, Therefore
B can be expressed by 8, = ZB’: + €, where ¢; is the [—th element of the canonical
basis of R***1, Using Corollary 30 we are able to introduce 3:%{ into the first factor
of each K ; ¥ Ky ; in the casc that p > 0, or into the second factor, in the case p = 0.

Then we use the inductive hypothesis to conclude the proof,

e o> 0

By Corollary 30 part (a), we have

)

D, cd’aM o (K Kyy) = Y c:0™ 0 o (Z (K14, * Kz4,)
= = - with

4712 —
— Z Q'aﬁmaﬁyaﬁa (Kl,r e KQ,’.")
r=]1
K& M) = ATV, K, € P (), and |2 +16, ]+
|Bi] = (0 —1) + ¢ = (p + ¢) — 1. Then by the inductive hypothesis, we have

that

i ciaﬁwaﬁyaﬁt (Kl,i * K2,i) = ZES (f‘(tl,s * f?g,s)
i=1 s

with ffl’s e M (H™), and Erg’s e M7 (H™), which is what we wanied to

prove,

B D=0

If p = 0, then ¢ # 0. By Corollary 30, part (a), alternative version, on page 57,

we have that

o dm —
Z 0% PPt (K 5 % Ky ) = Z e8P 9P Pt (K1, % Ko
=1 il
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with K1, c M31~p(Hﬂ) Kzr c Mrz q+1 (Hﬂ) — .72 (Q—l)( ,)’ and |B‘;| +
|8y + 18] =p+{¢—1) = (p+ ¢) — L. Then by the inductive hypothesis, we

have
W

}_‘ c-ﬁﬁmaﬁyaﬁi (1{1 i ¥ Kz,; = ZEE (Ril_,s #* EZ,s)
g==1
with &1, € M” (H"), and Ky , € M™ (]HI”)

¢ |)6:"| = 0:

> |ﬁy| >0

i |3y > 0, then for some 1 < { < n, we must have some 3_ in ¢, Therefore

3, can be expressed as 3, = ﬁy + ;. Using part (b) of Corollary 30 we are able

to introduce (—3%- into the first factor of each K ; * K3, in the case thatp > 0, or

into the second factor in the case that p = 0. Then we use inductive hypothesis

to conclude the proof.

m >0

By part (b) of Corollary 30, we have
m
Z ¢; 0% 0Py 9P (K14 » Kp5)

=1
_ zgaﬁyaﬁ*(i (K1, * Koy, ) )

=1

= Z Cp 5% o5 (Kl,r + Kyy)
r=1
with K1, € M) = MPTETV (@), Ky, € M), and

|[3.y| + 16| = (p — 1) + ¢ = p + ¢ — 1. Therefore applying the inductive

hypothesis we have
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5

Z ¢ o= Py pbt (Kl,«; " Kz,z') = Z&“S (}"‘(J’l,s # I’E'z,_‘_,)
i=1

with Ky, € M (B"), and K, , € A% (H),
g p=0:

If p = 0, then ¢ # 0. By part (b) of Corollary 30, in its alternative version,

we have that
m 4m .
Z i Bﬁ’*‘ 6ﬁy Ao (KP]’.,; * Kg’i) = Z Cp 5.ﬁ'y aﬁt (Kl,,.-* Kz),.)
i=1 =]

ot

with Krl,r c M”j1~p(Hn)’ ﬁz,r . ]\;["jzfq«}vi(]ﬂ[n) - M.‘J‘Zﬁ(ﬂ'mll (Hn)’ and
1Byl + 18] = p+(qg—1) = p+g— 1. Therefore by the inductive

hypothesis applied to the previous line

Z Ci 5’6’" 6’33‘ 6["" (Kl,fi * I{Z,é) = Z Es (}?1,5 #* -ﬁZ,H)
i=1 8

with K1, € M (H"), and &, , € M7 (H), as desired,

> |Gyl = 0

If |85] = |By] = 0, then p + g = |G| which is greater or equal than 2. We

distinguish the following two possibilities for p:

B p =2

Since |B;| # 0, then there exists some 56; in &%, Therefore H; can be
expressed as §; = Et -+ ean+1, Using then by part (d) of Proposition 28 we

are able to introduce gf into the first factor of each Ky ; % Ky ; to obtain

LG m o
Y ;0P P 0P (K% Kay) = Y e 5ﬁ*é%(ff1,é * Ky4)
=1 i1
=Y o (K 1i % Kay)
i1
with i; € M7 = MUYV, Ky e MPTUEM, and
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[Gsl = (p—2) + ¢ = p + ¢ — 2. Therefore by the inductive hypothesis

Z ) aﬁm aﬁy aﬁt (-K],,i * KQ,%') = Z 83 (%1,.5 * %2,3)

=]

with K1, € M’ (H™), and Ky, € M (H™), as desired.

Bp <2

We discriminate the following two cascs

¢ ¢ = 2: Since f§; can be expressed as 5 = ﬁt + €941 then by part (d)

of Proposition 28, we are able to introduce ;% into the second factor of

each K71 ; * Ky ; and obtain

T m ~ % %
Z Ci (Z’ﬁw 65?' 6'6* (Kl’.,‘; # Kgﬂ') = z ¥ (?ﬁy (Kls'i * KZ:";)
dem1 i=1

with K13 € MP 7 ("), Koy € M%7 (0r) = K724 (g,

and IBA = p + ¢ — 2. Therefore by the inductive hypothesis

™ ~ o~
Z ¢; 0% oy gPt (K1 % Kyy) = ZE& (%#1,8 * ?2,5)
gau] 8

with f(:lﬁ e M (H™), and %2,3 e M™ (H™), as desired.

¢ g<2: Giventhatp + ¢ = || = 2, and p and ¢ are less than 2,
therefore p = ¢ = 1. Since §; = B} + €9n41 then by Remark 29 we

are able to introduce the 3‘% into both factors of each K3 ; * K. 2,4

an‘ e ~ a
Y ¢ 0% 0% 3P (K g% Kpy) = Z ¢ 8% é%‘(Kl,z' * Ky)

ge=] i=1
1 .2
= Z c; 67 Z (K1, * Kai,)
i=1 =1
2m

= Z Cr aﬁi (I?l,r ® KZ,'.")

r=]1
with K1, € M7 (17 = MO0 (1,

66




Ko, € M7 () < 47970 (5m),

and |3 = {p—1)+(g—1) = p+ g — 2. Therefore by the inductive
hypothesis

Z(‘ (3‘& aﬁyaﬁt(Kl.,;*Kg.ﬁ ZCq K19*K‘35)

w1th K 1,0 € M (HM), and K, J'\/[”2 (H™), as desired.

This concludes the proof of the proposition, |

Definition 34. We define the following spaces

PRE) = {p : p homogencous polynomial of degree & on &3 }

A homogeneous distribution on G is said to be regular if it is smooth away [rom zero.

Mhom, (G) := {K ;K regular homogeneous distribution of degree & on (¥ }

Rhom,(Q) ifk ¢ 7t
K@) =

{ K +plz)log|z| : K € Rhom,(G), and p € ’P’“} itkeZ*

2% f(x) de = 0 for all monomials ma}

8,(C) := {fe S(G) - [

JG

The following three propositions are from [CGGP 92] and their proofs will be omitted.
Proposition 35. If K € K¥(G) then there exists an operator

Qo(K) : S@) — S,{G)
f —r fa KK
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e e i

Propesition 36. If K; € K*(G) then
OO(-KI)OO(KZ) = Oo(K)
¥
Jor some K € KM+R+0Q This K is uniquely determined modulo P +2+Q (&), and ir

will be denoted by K1 = K.
Proposition 37 (Christ-Geller-Glowacki-Polin). Say v € CE(G), with @; = 1 near

zero, for i = 1,2. Then we may convolve the compactly supported distributions oy K+

and s K5, and we have

K% Ky — 01Ky * o Ky is smooth on (V.
Lemma 38, Assume that K & KF(G)

a) If —Q < k <0, then there exists a constant C > 0 such that

|K(z)| < CBy(z).

b) If k> 0, and ¢ € CP(G) such that @ = 1 in a neighborhood of 0, then there exists

a constant C' > 0 such that

(K )(x)| < CBy(z).

Proof.

a —@<k<0
If~Q <k <0, then K € Rthomy(G). Since K € C®(G ~ {0}), on the homogeneous
unit sphere we have ]K(m)[ < O, with C = ‘In]a,}f {|K(z)}. K is homogeneous of

degree k, then for all 2 7 0

)| = e (1l )| = bt

K (—“i)} < Clzf* = OBy(z).

|
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k=0

K € K°(G) then K(z) = Ki(z)+p(2)log |z, with K1 € $ihom,(G) and p &€ P(G).

Hence there exist constants C7 and ¢ such that | K7 (z)| < C1, and p(z) = ¢, Therefore

forall & # 0 '
|K (z)| = | K1(2) + clog |=}|
< C1 + |df|log |||
< C(1+ |log |2l|)
= CB,(z)
b) 0<k¢zZt

If0 < k ¢ Z* then K € Mhom,(G). Thus there exists a constant Cp, such that
|K ()| < C1||®. Therefore for all 2 € supp (¢K)

(K )(@)| < CaCilz|® < O = CBi(x).

where the last inequality is valid since we are working on a compact set.

O<keZt

If0 < k € Z1 then K = Ky(z) +p(z) log ||, with K71 € Rhom,(G) and p & P¥(G).
Therefore there exist constants Cy, Cy and O3 such that |K 1 (z)] < Cilz/%, |p(2)| <

Calz|®, and |log ||| < Cslz|™? on B(0;1). Then for € supp (¢K)

(K ()| < |(0K1)(@)| + [(wp){(z) log |2]|
< Cyla|® + Cslaw|P**
<C

= OBk(:c)
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Cgorollary 39, Suppose —Q) < ki, ko and 1,02 € CF(Q), with ; = 1 near the origin,

then there exists a constant C > 0 such that

901Bk1 (’U,) # (/92Bk2 (u) e GBk:lﬁk2+Q (u)

Proof. Two cases will be considered separately.

o -G < kl,kg < ()

Since ki, ka < 0 then By, (1) = [u}™, and By, (u) = |u|™. Therefore By, & K¥(G),
and By, € K*2(G). By Proposition 37 there exists ¢ € C®(G) such that ¢y By, *
o Br, = K% Ko+, Since K12 Ky € Kkitk2+@(3), and since the convolution of the
compactly supported distributions ; By, is also a compactly supported distribution, then

by Lemma 38 there exists a constant ' such that for all w € supp (gol By, =3 Bkz)
|(K1 % KoY (w)| < CLBro ks (w)

Therefore

(01 Bx,) (@) * (2 Biey)(w)| = | (K12 Ko)(w) + 1(u)]

< C1Bk; +kp+q(u) + C2

S CBkl +k3+Q (u)

In the last inequality we have made use of the fact that we are working on a compact set.

« Atleastone k; = 0

Assume that k1 = 0. Then since kg > —Q, k1 + kg + & > 0, and we only need show
that 1 By, # @9By, is bounded. All the possibilities to be considered will be handled
using the following strategy: 1By, * @28, is a convolution in LP(G) * L(G), with

P, ¢ conjugate, i.e. 11; + % = 1, therefore it is in L*((), and hence bounded.
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e k1 >0, —Q < ka

ki > 0 then ¢ By, = Cigp; € L®(G).

palul® sif —Q <hg <0
2B, (u) = { a(|loglull +1) « if ko =0

“2(192 if 0< ]{}2

All of the possibilities above are in L' ((¥). For the second one, one only needs observe
that near zero (|log |ul| + 1) < Cu| ™2, which is in L1(G) when multiplied by .
Thercfore (1 By, * 2Bk, € L2(G) » LHG) < L¥(G).

0By, = i(|loglul| + 1). We choose any & > 0 such that @ —e > 0. Then
(|log |ul| + 1) < Clu/~C5F) on B(0;1). Thus (|log [ul| + 1)* < CJul™@7),
near zero, and hence the product with oy belongs to LY(G) , and so ¢; By, € LA(G).

Therefore o1 By, * 2B, € E2(G) * LA(G) < L(G).

e oky =0, —Q < kg < O

e B, = 1,02|u|k2. We choose any € > 0 such that g = ;% — & > 1, then gko > —Q).

Consequently o By, € L(G). Since k3 = 0 then 15y, = gol(| log |u|| +1). Let
p be the conjugate of g, thus (| log |u|| + 1) < G|u|"§l§5 on B(0;1), and so @1 By, €
LP(G). Therefore @) By, * e By, € LP(G) * LAUG) < L*(G).

Remark 40, The following statements are special cases of the previous corollary

L ki, ko as well as kg + ko + @, negative:

If 1,2 € CP(G) such that ¢; = 1 near the origin, and —Q < ki, ke < 0, with
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k1 + ko + < 0, then there exist some constant C' such that

< O\u1k1+k2+Q

[orlu™ « oful®

¥

I, ky, ko negative and &y + ko + Q = 0: ‘

If 1,02 € CP(@) such that ¢; = 1 near the origin, and —Q) < k1, k2 < 0, with

k1 + ko + @ = 0, then there exist some constant C' such that

prlul « afuf®| < € {1og ul| +1)

ML K, kg negative and k1 + ko + &) positive:

If i1, 2 € C®(G) such that i; = 1 near the origin, and —Q < kg, k2 < 0, with

k1 + ko + @ > 0, then there exist some constant € such that

orlul™ * polul™] < C

IV. k, negative, k& positive:

If (o1, € CP(G) such that ¢; = 1 near the origin, —Q < k, < 0, and k1 > 0, then

there exists a constant C' such that

<C

1 (| 1ogul] + 1) » palul*

IV.2 MAIN THEOREM

Theorem 41, For j1, jo < 0 the convolution of an element of Mo (HI™) with an element

of Miz(H") belongs to Mt +2(H™),
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Proof, Given that the tempered distributions K are in A (H™), then by part (b) of Theo-

rems 19, and 22 each K is in L*(H™), and therefore Ky # Ky is in L1(H™).
In view of part (¢) of Theorems 19 and 22, it suffices to show that for every multiindex
L)

3, there exists a positive constant Cg such that for all w # 0.
04 % 1) ()] < Cip B by p-11 (1) av.1)

where By, | g, 1.0 |8 18 the bad power function of order & + &g -+ @ — | 3]. Recall that the
k; were defined as &, = —@Q — ;.

First we observe that it suffices to verify (IV.1) for the case of Ky and K compactly
supported. Choosing ¢; € CP(H™) such that ¢; = 1 in a neighborhood of zero, we can
write |

K; = ;K + (1 ~ ) K i=1,2.
Therefore

K1 Ko =1 K7 % 0aKg +[(1 — 1) K1) # 92Ky
(1V.2)

+ 1K * [(1 = @2) Ka] + (L — @) Ki] = [(1 — 92) K2]

In view of the fact that the convolution of clements of & is again in S (ile. S* 8§ € 8),
it can be claimed that {{1 — ¢4 ) K] # [(1 — 2) K] is in S. Also, in view of the fact that
the convolution of a compactly supported distribution with elements of S belongs to S,
(S =& < &), it can be claimed that o3 K7 = [(1 — ¢2) K3] and [(1 — zpl)fﬁ] # 0y Ky are
in S. Then itis clear that the last three terms above belong to &, and bence satisfy estimate
(IV.1). Hence we have shown that the verification of (IV,1)can be reduced to the case of
compactly supported K,

Henceforth we can assume without loss of generality that K and K have compact
support.

Notice that since we may choose ¢ and g to have compact support in an arbitrarily
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small neighborhood of the origin, and that the last three terms of (IV.2)belong to S{H™),
hence K1 # Ky is smooth away from zero.

We consider the following possibilities for k1, and &q.
o

® CASE1-—ki,ke <0, k1 + ko + @ < 0 Let 8 be multiindex with 3, 3, and ; its

subordinated decomposition. We observe that for some positive constant C'

|u||’3| - |(a:,y,t)ll'ﬂl <C Z |331;||'8| +- 2 lyi“m + Mlﬁ\/:ﬁ (Iv.3)
i=1 i=1

In what follows we shall work on obtaining estimates for
o] |08 (K = Ka)(w)], sl P08 (B # Ko (w)|, and (]3]0 (s + Ko (w)|

discriminating cases according to the parity of |3].

i

» | 0] even: Denoting by e; the i—th element of the canonical base of R#**+1, and

using the dual Leibniz rule, we have:

;|1 laﬁ (K1 # KQ)‘ = ‘;c'f'aﬁm 9 3P By Kg)’

_ o8 g5 Z (_1)'&85‘ (ﬁm)a’Y [(aam’miﬁl) (K= KQ)] ‘

Yt+ae;=Fs ac;
agZt
= |7 o Y (-1)° ((ﬁ;)*’) o & [l % )| ‘
YHaei=Py
aeZt

=005 3 (0B 87 | N () (2T K+ alK)

Traci=Fq P+Q=‘.6|_“
aeZt
<a Y Y et (e k)|
y+ae;=Br  pta=|y|+|By| G|
acft

where

- |Be| = |y +ae] = |v] + a,

cpta =8l —a= (16| + 18y +18:l) —a = Iv| +[8,] + 15,
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c2PKy e MUPHY),  and 27K, € MPI(HP),

By Proposition 33, from the previous inequality we are able to conclude that for

some K ; € JWJ"'L(]HI”)
[

| |08 (K¢, # Kz)(u)\ < Y el (Ko x K ()|

< O, P EtR iy 0 o
Remark 40.(F) has been used in the last inequality.

Now setting C = max {Ch,} we have that forany i = 1,...,n
=1,y7

|mi||ﬂ|‘6ﬁ (K = K;)(u)‘ < Cylu/F Rt vy 20, (Iv.4)

The aﬁalogous gstimate involving y; can be cstablished with identical proof and will

be omitted. Namely setting Co =  max {Co,} we have that forany i = 1,...,n
|yi|]ﬁ|‘6ﬁ(K1 * Kz)(u)‘ < ColuFr 2R 20, i=1,...,n  (IV.5)

Now we prove the third estimate.
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|t|lﬁl/2 |5ﬁ(K1 " Kg)

- fﬂﬁi/z OP= oy b ([ﬁ # Kz)‘

= |g% 5 Z (m1)|a62n+1|( Bt )a!r [5062,1+1(t|ﬂ|/2)(}(1*[{2)}

el
Y+oean 11 =0 .
acZt

= (o ¥ e s [ ()|

ytaenn 1 =5
acZt

18l .,
¢ Y|Pt [t’l (K= Kg)] ‘

y-+aeon+1=5t -
aedt

=C" Y P08 o [(PrKL) # (Qrk2)]
"y-i-ac:zm_-li =f 0
ag#v™

where
PnKi € M), and QK e MPTUH™), with
P, and €y, homogencous polynomials in z, y, and £, such that the sum of

their homogeneous degrees equals

28— a) = || +18yl + I = p + 0.

By Proposition 33 for some K, € M (H™), and Kos € M (H™), we have

|ﬁ||ﬁ|j2 |8’8(K1 * Kg) (‘LL)' < ZCS

Cs

< Cg\u|kl+k2+Q w0
Remark 40 (1) was used in the last inequality.

(Kl,s s Kg,s) (u)‘

Therefore we have shown that for some positive constant C's
[t 112 108 (¢ % Ko) (u)| < CsluffrHe2t@, (IV.6)

Using the three estimates which we have just proved, namely (I'V.4), (IV.5) and
(IV.6), we have
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4

[u]16° (K1« K2) ()|

L e
<C (Z s 3 [+ |»¢|'ﬁ/;") 167 (K, * K3) (w)]
te=1 1

B

<C (nCﬂ’U‘llirszrQ + ’H,Og|u‘k1+kr2+Q + Cslulk1+i€2+c2)

< CplulER vy 0

(IV.7)

Therefore we can conclude that for every multiindex £, with || even, there exists

a positive constant Cg such that for all & # 0
‘aﬂ (K], " Kz) (‘U;)‘ < Oﬁlu‘ki-l-kz-ﬁ-‘f?—WI

» | 3| odd: We shall work with |3] £ 1 and then we shall proceed as in the case when

| 7| was an even number,

|41 laﬁ(Kl *K2)‘

= [o¥ 8 (K % K))]

Py 3P Z (“1)“((ﬁ;)é)ﬁa‘ a Z (\ﬁl:iijl—ﬂ) (2P Ky # 21K)

ytae;=0 pg==
acZt 18l+1~a
<¢f % Y |orot o (R x Kay)|
y-tae;=

3 )82 gtg=
acZt |yl By Bel L1

where Ky, o= 2l Ky and Kog = 2Ky,
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Hence we may regard

I?l,p g MULF)-FFD (H™), and I?g,q € ./Wj?“q(]l-]l”),.
or alternatively #

Ry, e MO P and K, € MUsTD=E@F0 @)
with
pFD+g=p+@T1) =y + |8 + |5

By Proposition 33, from the last inequality we can conclude that for some
Ky, e MIF(H™) and Ky, € MP2(H"),

or alternatively for some
Ky.€ M (H") and Ky, € MPFLH™),

we have

|CC?;||£3H:1 ‘83(};(1 * Kg)(u)‘ < ch‘ (Kl,s #® Kg,s) (u)|

< O luffret@t g 0
where Remark 40.(T) was used to establish the last inequality.

Therefore we have shown that for some positive constant C' = max {Cn}
i=1,...,m

| P |08 (K # Ko) ()| < O] 9 (TV.8)

for alt u # 0, and 4 = 1, ..., n. Similarly it follows that for some positive constant

Cz == EIILB.X {Ogi}

a7 08 (K % Ka)(w)] < Cluf S (1V.9)
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forallu # 0,andi=1,...,n.

Now we compute the third estimate.

‘t|(|ﬁ|:t1)/2 ‘aﬁ(Kl " Kz)‘ "
Bl
g

9% 0P P (K + 163)
<o Z a8z aBy oy [t["g%i'l'—&]

Yt+aean 175
aeZt

= Z 6’3“3 353’ 672% [(PmKl) ® (QmK2)]
y+eean+1=0t m
acZt
where Py, Qm ate homogeneous polynomials in #, 4 and ¢ such that the sum of

(K + K3) ||

their homogeneous degrees equals “3[1-‘312:—tl — @] = |8s| + |8y} + || £ 1. Hence we

may regard
+ either
PLKy € MOTFO-0F)(HP) and QK € Mi9(Hm),
- or alternatively

P K1 € MI—P(H) and QK € MU2F)-6GF1(H)

with (P F 1} +qg=p+@FD =8| + 13+ =18 —2a

By Proposition 33 on page 62, on page 62, for some
K1, € MOTUH®) and K, € M2 (H™)

or for some

K1, € MI(H™) and Kg, € M*FL(H™)
we have

108 (K1 K2) ()] <Y el (K10 * Kao,ofu)]

8

< 03}u1k1+k2+62:l:1 Vai 5 O
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Remark 40.(1) was used in the last inequality.

Therefore we have shown that for some positive constant Cs

{12 (1 0 k)@ < Ol O vumo avao)

f

Using the estimates which we have just proved, (IV.8), (IV.9), and (IV.10), we

have

[ PIEL |08 (K # 1) (w)|

<C (Z VD 3 091 |t“""59) 1 (161 % Ka) )
i

=1
<C (ncll?b’kl+k2+Qil n nc,2|u|k]_+kz+ﬁ2il n nc,a‘u|k1+kg+cgi1)
< Cﬁ"{,ﬂ|k1+k2+@il

Hence we can conclude that for all v # 0
k1 +k
|u|]ﬁ'|63(K1 *Kg)(-u)| < Cg‘u| 1+k2+Q)

Note:
We observe that in the proof of the case |3| odd, our use of Remark 40.(I) is valid.
When working with | 4] £ 1 the hypothesis of that remark are satisfied when

- elther j1 F1 <0, jo <0, and [(j1 F 1) + f2] > —Q,

- orwhen j; <0, (j2 F1) < 0,and [j1 + (j2 T 1)] > ~Q.
Since j1 and fy are negative then 7; < 1, 4 = 1,2. On the other hand k1 + kg + Q) is
negative 8o ky + kg + @ = (—Q — 1) + (—Q — J2) + @ < 0, then ji + jg > ~@,
which implies j; + jp > —Q — 1. Consequently in order for the hypothesis of part I
of Remark 40 to hold we need

e f1<—=lorjq < —1, when working with |3 — 1,

« f1tda>—-Q+1, when working with |3] + 1.
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So, the hypothesis of the remark fail to hold
« ifj1 2 —1and jo = —1, when working with |4] — 1
e iffit o< —-Q+1, when working with |8} + 1.
However the last three inequalities cannot hold, simultaneously, because if this were

the case then

—2=—1-1<h+Hh<-Q+1

hence () < 3, which is impossible because the smallest homogeneous dimension

for the Heisenberg group is 4.

It follows that || — 1 can be used when |3 + 1 makes the hypothesis of part I of
Remark 40 fail; alternatively, if || — 1 makes the hypothesis of the remark fail,
|3] — 1 will be used.

‘Therefore we have shown that if & < 0, ¢ = 1,2 and k1 + ke + @ < 0, then for each

multiindex 3 there exists some positive constant (s such that ‘

|08 (K1 * Ka)(u)| < Calul 79 1Pl - yy 2 0,

CASE Il — k1, kg < 0, |A = 0: We have k; = —j; —(} > —( because the j; are neg-

ative, hence the hypothesis of Corollary 39are satisfied, and therefore we are allowed

to claim that there exists a constant C,, such that

(K1 % Ka)(w)] < Co Brripea(u) Y0,

CASE UL — ki, ko <0, b1+ ko +Q =0

QOur argument here consists in reducing this case to one of the previous ones, depend-

ing on the multiindex £.
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We start by working on the first convolution factor of P (K + K3). We discriminate

the following two possible cases:

» |B| < ~[j1] — 1: By Corollary 32 we obtain

P (K % Ky) = 67 0% 0P (K| % Ky)
4"33] + 8y

- (Kl,r £ KQ’;,.)
) ra==] —
with K7, € MIVHPI(H™), and Ky, € MP2(H™).

By hypothesis, |8] < —[#]l —1 = —[[j1 +1]. Therefore j, + |B] < j1 —
[71 + 1] < 0. The number & = —& — 71 is negative by hypothesis, hence
~@ < §1 < F1 +|B8] < 0, which implies that —@ — (41 -+ |8|} < 0. Conse-
quently Case IT can be applied to cach Ky, * Ko .

Then, for all w # 0

4|ﬂm +ﬂ‘y|

P Kl = | D (K« Kop)(w)

=1
4|ﬁm'¥"ﬁy|

< Z ‘(Kl,'r * Kg).,..)(’d)l

r=1
4__iﬂa: +8y|

< Z CTB[—Q%:&+|ﬂ|)]+(-Q—J'2‘)+Q ('U;)

r=1

S OB, ayrqmim ()

with Cg = max {C’,.}.
T'L‘l,...,lilﬁm.{hﬁyl

w |8| 2 —[[41] — 1: Given that |3| = —[j1]] — 1, the multiindex 3 can be written as

B=v+a with|a| = —[is] -1, or || =—[i]~2

The derivatives corresponding to the multiindex «a will be applied on the first factor
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P (K = Kg), and the derivatives corresponding (o the multiindex v will be applied
on the second factor of the convolution of each element of the linear combination

which results from the derivatives corresponding to the muldindex .

El
By Corollary 32 we obtain

K = Ky) = 87 (K1 = K3)

= 0 5 % 0 (K %K)
£0w+am

= 3 & (K Kop)

=1

with Ky, € M1 (H) and K, € M2 (H7).

Tn what follows the following two possibilities for -y are considered separalely:

£

w |y <[] - 1:
By Corollary 32

4:L“:1}+a-yt
PELwKg) = Y (K« Kap)
r=1
4|C!m—|-(x.y|
3 e (K e )
r=1 _
4|0f:n+41y| 4\1@ +yyl ! (IV. 1 J.)
= Z z (Kls'-"s * Kzars)
=l s=1

ety iyl

= Z (Kyr* Koy)
with Ky, & M (Hﬂ;,m ;nd K, & M),
The fact that }y| < —[[ja]] — 1 implies that j; + |7| is negative. Since by hy-
pothesis kg = —Q — jz < 0, then —Q < fa < 2 + |7 < 0. Hence the number
~@Q — (2 + |7]) is negative. By hypothesis, || = —[[s1] -1, or fof =

—[[51]1 -2, hence —2 < j1 +(~[[1]—2) < i+ ol < f+(~[h]-1) <0
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thatis —2 < f1 +]e| < 0. Since in the case of the Heisenberg group the small-

est possible value for the homogencous dimension is 4, then —@Q — (41 + |a)
is negative. Consequently we can use Cage II for each K3, * Ko, of (IV.11)

and conclude for all & 5 0

4|ﬂlm+ﬂy+"rm+’]’y\
N (Ko Ko ){u)
r=1
4|0ta:+ﬂfy+"In:+W’y|
g Z |(K1,-r # KZ,T)(“H
=]
4|ﬂ!m+0fy+’]fm+’}‘y|

— Y
: Z CrBy e it it G-ta v (4

=l

0P (K x Ko)(u)] =

=C8B,, tnsia-garnm @
= 08B, 1r1q1m (W)

with Cg= max {O,.}.

r=1 4fam+0fy+’?‘a:+']’-y|
1eeny

[H 2 —[l52] - 1

Since || Z —[[72]]—1, then we can write y as v = 7+0, with || = —[[j2] -1,

or o] = —[j2] — 2.
By Corollary 32
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| +org|
4
P(Ky*Ko)= 3 (K, Kay)
re=l
4|‘1:1:+0=y| F]
Z o7 o 30w aﬁ(Kl,r " szr)

r=1

H

(IV.12)

4|'9¢m'|'0fy| 4|Gm+0y|

= Y 7 Y (Ko s Kan)
=]

g=1

Zﬂam teaytoptayl

= Y 8"(K1, * Kag)
with K3 , € Mj]'+'zr(llfﬂ“1), and Kg, € MiHel(Em),
Next we intend to apply Case 1 to each 87 (K  * Ky, ). Therefore we have to
do some formal verification that the hypothesis of Case I are indeed satisfied.
Thus we need to verify that: j1 + |a, jo + 0|, =@ — (41 +]a]), =@~ (j2 +
lo]), and [—Q — (41 + |a])] + [Q — (j2 + |o!}] + @ are negative numbers.
By hypothesis, |a| = —[1] — 1, or |a| = =[] — 2, hence -2 < j1 +
(=51l —2) < ji+]el <+ (—J] —1) <0; thatis -2 < 71 + o] <0,
Since in the case of the Heisenberg group the smallest possible value of the
homogeneous dimension, is 4, then —@ — (41 + |o|) is negative, Similarly, by
hypothesis |a| = —[f2]] =1, or |e| = —[[§2] — 2. Therefore —2 < jo+|a| <
0, which implies that —Q — (J2 + |¢|) is negative.
It only remains to see that [-Q — (j1 + |&])] + [-@ — (j2 + [o])] + @ < 0.
Given that ~2 < 41 + |a] < 0, and —2 < jg + |o| < 0, then [-@Q —
(1 + la))] + [-Q — (J2 + |o])] + @ < —@Q -+ 4. Because the homogeneous
dimension (7 is always greater than 4 when n > 3, all the hypothesis of Case I
are satisfied, unless n = 3.
Since @ = A whenn = 3, then [~Q — (1 = al)] + [-Q — (jz + o] + @ =
| (1 +1a) = (2 + |o]) — 4 < 0, unless 41 + |o] = ~2, and jp + |o| = =2,
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Consequently, all the hypothesis of Case I are satisfied unless n = 3, and
g1+ o] = ja +io] = —2.
Consider the situation when all hypothesis of Case I are satisfied. Using Case

L in identity (I'V.12) yields that, for all 4 ;éh

4|C‘¢m oy top +0"y|

> (K x Kag) (1)

=]

|09(K » K») ()]

|ex +oytogtoy|

4
7 (K Kp) ()|

/N

)3

r=1

4|Ulm+ﬂt»y Ham +U'y| .
[-@—{d141al]+[-@—(ig + e[} +Q—| 7}
> o
=l

4|¢1:z: taytant+oyl
(—@—i)+(—Q—i)+@—{lal+o|+[r]}
= 2, Cnlul

7=l

/N

ul

4|0‘-:z:+ﬂ-y+0'm+ﬂ‘y|

k1 +hgd-Q—1 6]
= Y Culu
r=].

k1 +ka+Q-18|

< Cp |uf

with Cg= max {OTT},
|egtaytog+ay|
=14

and with |3 = |a| + |y| =

a| + o] + 7.
Now, since k1 + kz + @ — | 8] < 0, the last inequality above implies that, for
alu 0

|6'5'(K1 #* Kg) ('bﬂ)' = Cﬁ Bk1+k2+Q“|ﬁl(u).

Let us discuss now the situation when n = 3, and j1 + || = jg + |0 = —2.
We shall discriminate two possible cases, namely:

¢ || =0

I |7] = 0 then (IV.12) becomes
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gloatoytoatoyl
P(BixKa) = ) (K1, % Ka,)
with &y, € M’jff‘i’(ﬂl) = M7(HY), and Ky, & M@ =
M ). ’
Since each Ky, * Ky, is under the hypothesis of Case 11 then we can

conciude that for all 4 5= 0

/Lloem oy tontoyl

Z (Kl.r # KQ.T') (u)

=1

Iaﬁ(Kl * Kz) (‘U,)l =

| + ooy bog oyl

4
(K1, = Ksr) (u)’

< ¥

e

4lam+ay+:rm+rry\

< Z CrB ey o +-q—tiyt1ob1 12 ()

=l
4\0@ +aytoptoyl

2 OBy gty ()

]

=1
SO B, v im(¥)
with Cg= max {C’?.}.
r=1,.. 4 fE T oyl

¢ |r| 0

If |7] # O then in @™ we must have some 2, or 3%, or £. Next we shall
introduce oné of these derivatives on each K1, % Ky, of (IV.12) using
Remark 29, and then we shall end up in Case L

For example, suppose we have a% in &7, and we wish to introduce into the

first factor of Ky , # Ky, in (IV.12). We know that

4an+n‘:»y+a~m+ay\

6‘3(K1 *Kg) = z 5?‘(}(—1:?' *® KZ,,-)
=]

with K1, € M@ = MY, and Ky, € M2T700Y) =

87




g
MTHD.
There exists some 3% in 67, therefore 7 = 7 + ¢1 where ez is the first ele-

ment of the canonical base of R®, Therefore applying remark 29 we obtain
L)

|aa; +n:y+cra, ey |

P+ Ky) L (?T Klr*KZr)

lam oy tog oyl

4 4
= TZ; ar (;(KLW *Ki%.n))

|C\fm ey oy Hay|+1

= Z & (K1 * Koy
with K1, € M ) .y M7THEY), and Ky, € MY =
M7 ).
We also note that |£] == |a| +|e| + |7| = o] + |o| +|7| 4 1. Since for each

& (K1, # Ka,) we are under the hypothesis of Case I then for all u # 0

|0!m ey toptoy|+1

18]
O (K + Kp)(u ‘ Z By g5y viat+l-aig+loni+a—iz (W)
<O B, Liigan (W)
with Cg = max {C;—T}.
SR R A A

If we have some "a% in & and we want to use it, we proceed in an analogous
fashion as our previous case. In this situation we have that 7 = 7 + ey,
where es is the second element of the canonical base of R3, and we shall
use Remark 29,

Finally if there is some 3‘% in & and we want to use it, we imitate our pre-

vious work. Here 7 = 7 + ez and we apply Remark 29. Therefore
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4|ﬂlm+0¢y+ﬂ'm oyl

_ 0
P(KieKg)= Y & (Kip x Kap)

=]

&
4\am +oy o ayl o

=Y (N Ear))

=1 . g=1

7 4|C¥m+0!y+0'm+0y|

= Z 57:(K1!,.*K2,7-)
re=1

with K1, € M HY = M7UEY), and K, € A 1Y) =
MTHHD).

Then using Case I, we obtain for v 5 0

2_4|<¥w+ﬂy+0‘a=+°‘y|

PK + Kz)(u)[ <Y G, B
r=1

[~@—(f1 -+l +D]+[--Q—(dg+ o4 D]+ G| 7| (u)

<C8 B, raas )
with Cg =  max { C’ﬂ;r}.
reel,.. 24100 toy e oyl

Observe that in this case we cannot use part (d) of Proposition 28, because
it will result in

‘llcz;c+ay+o’g +ayl

P(KivKg)= ) r?'F((TKLr) * Kz,r)
=1

where TK7, € M (|1 = MOEY), and Ky, € M (HY), and

still we do not know how to handle the situation of AMO(H™) « 47 {H™).

e CASEIV — SOMEk; = 0

Suppose without loss of generality that &y > 0. Since kg > —(, and k; = 0, then
ki+ke+ G >0

Two subcases will be distinguished:
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> 10 =0
By Corollary 39 it can be concluded that then there exists a positive constant (7,

such that for all % # 0

I(Kl ® KQ«)(“’H % GoBk1+k2+Q(u) .

» |8 #0

8 |8 <[k +1

If | 8] < [[k1]]+ 1 Corollary 32 will be applied to d%( K7 * K3). Then foru = 0

’aﬁ(f{l . Kg)(u)‘ = ‘aﬁm 8% 9P (Fy = Kg)(u)‘
'1|5m+;@’y‘

N (K Ky, )(u)

=1
4\ﬁm+ﬁy\

£ Z (Kl,r * K2,r)(u)‘

=1

with K1, € M"Y 1™ and Ky, € M2 (HP).

Now, if —Q — (j1 +18) < 0, and ky = —Q — jo < 0, we apply Case IL to
each K1, * Ky, Andif —Q — (j1+|3]) 2 0, ot kg = ~@Q — jo > 0 we apply
Case I'V with multiindex (0, ...,0). Then for all % # 0

|ﬁm+ﬁ‘y|
0P (K1 » Ko)(u ‘ Z Cr Bi-a-ti+sn+k+a (1)

< Cp Bij+igta-10 (¥)

with Cg = max ).
B re=l,. |.@m+ﬂ'y|{ T}

w |8 2 [kl +1
Since |3 = [k1] + 1, then we can write J as 3 = v+, with |a| = [[k1] + 1,
or |a| = [[k1]] + 2. By Corollary 32 applied to 8°( K| » K3) we obtain
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yaﬂ (K * Kg)(u)‘ - \m 9% 99 99 (I, % Ky) (u)‘
4 etay!

a7 Z (Kl,'r * K?,T‘)(u)

=1

rﬂaa: +ay|

< Z ‘a"f(m,? * K?,,'r)(u)‘
=1

(IV.13)
with K1, € M HP) and Ko, € M7 (1),

Two subcases will be distinguished, namety

¢ |yl <kl +1
Applying Corollary 32 to each ¢7(K1, = Ky ) of equation (IV.13) we

obtain
4|C‘m+<1y|
Pl Kn)w)| < Y [om (K x o))
re=]
Joeteul ety ‘
=Y | % K+ Ko@)
=1 g=21

4|0!:i: +ay e +yy |
< Y | Ko
r=1
with K1, € M (1) and Ko € M7 ().

Observe that —~@ — (1 + Je|) = ki — |al. Since || = [k] + 1L,
or |a| = [ki] + 2, then -2 € —@Q — (j1 + |a) < 0. Therefore if
—Q — (Ja + |7]} < 0, we are under the hypothesis of Case II, and if
—@ — (jg + |7]) = 0, we are under the hypothesis of Case 1V with multi-
index (0,...,0).

Therefore for all u # 0
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4|°fm+ﬂ"y-+')‘m +ryl

(K » Ka) )| <

=

Cr B[“Q“(fj_+|ﬂ|)]+[""Q"U2 +lvNl+e (u)
1

k]
Y
< Cp Ble1+k>3+@—\a+'7f| ('u)

<OsB, 1o {u)

with Cjg = max {C’r}.

T=1,'“)4|O!n: +0!y +vz +"|’y|

¢ |7l = Tkl +1

Since |7y| = [k1]} + 2, then one can write v = 7 + ¢ with |o] = [[ko]] + 1,

or |o| = [kg]] + 2. By Corollary 32 applied to (IV.13)

- we have for all u # 0
4__1C!a:+f-‘¢-y|
P (K # 1{2)(1;,)] <Y oo e, « Kg,,.)('u.)’

r=1 ’
4|f¥:r-+ﬂy| 4\01‘.'5'5@,'1

=3 ia'r ¥ (K, ® Kz,n)(u)‘
r=1 5=1
4|Ulm+ﬂ!'y+ﬂ'm+dy\

< Y |F (Ko % Ko ){(u)
=]

with K1, € M), and Ky, € M (1),

Since o = [[ki]] + 1, or || = [k1] + 2, then =2 € —Q — (f1 + o) =

ki — || Similarly, since |o| = [ko]] + 1, or o] = [k2] + 2, then

—2 £ —@Q — (jy + |o]) = kg — |o|. And given that the homogeneous
dimension ¢ in the case of the Heisenberg group is greater or equal to 4,
then [-@ — (j1 + |a|)] + [-&@ — (J2 + |o])] + @ = 0. Therefore we are
under the hypothesis of Case IIL

; Then for all % # 0, we have
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4\ cep +evy +ox oyl

ﬁ ™
& (K *1{2)('&)‘ < L Cr, B[—Qm(j:+|°4)]+E4Qﬂ(jz+iﬂl)J+Q—lfl (u)

=]
-3
< (g Bqu-k2+Q—UfF+!al+lal) (u)
(r)a:qm:.l_a.) T
= "8 i ()
with O = max {c..}
el 4|aa:+ﬂ'y+f’m+ffy|

This concludes the proof of Case IV, as well as the proof of the theorem,

J
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CHAPTER V

M (HY « M ()

WITH SOME j; = 0

V.1 BASIC DEFINITIONS AND RESULTS

Let G be a homogeneous group with dilations {§, },~¢ defined by
Sr(@1y. s @) = (™1, . 1% y,)

If neeessary codrdinates are assumed to be relabeled, so that the exponents a; form a in-

creasing sequence, a1 < g9 £ ... € a,. Recall the definition of the homogeneous norm in

& as
n 24\ 24
Ykl &p
g1

[

with A = ﬁai‘

=1

04




2

Proposition 42, Let G be a homogeneous group, and suppose that {X;}7_, are the left

invariant vector fields which agree with 5% at the origin, Then

a) Any left invariant vector field X; can be written as”

7] = ¢
Xﬂ =5—t Z pJ,k(a")m“ 3= L, 2 T2
amj k=7t 8mk
where p; (@) = pjr(21,...,25-1) are homogeneous polynomials, with respect to

the group dilations, of degree a;, — a;.

b) Any ag—g can be written as

0 " '
5&;;=Xj+k2_, Ge@)Xe =10
=j+1

where ¢; i, are homogeneous polynomials, with respect to the group dilations, of de-

gree G — ag.
. « YR . 2 1" . B ,
Entirely analogous formulae express X 4 interms of { R }k=o’ as well as 3 interms
R ™
of {Xﬂ"“}ho'
Proof, See [FolSte 821, [

Proposition 43. Say j € R, If K € MH(G), then there exist K, € M ™ (Q), r =

1,...,n, and possibly an error term Ko € M’ " {G), such that

K = X’FK‘?‘ + I{o

T

r=1




bis

Proof. Set

i\ & .
by = s K r=1...,n
(2"7) |§|2A+] ¥

and

~

1 ~
Fo= | —gi— K
(|5|M+1 )

— 24 Jan{ 24
Since K € Mi(G), then g,( Vi e ptrer®

MG = MITT(G) forall = 1, n. And B, & MTT(G). Consequently
B M@, r=1,...,n,and F, e M “( G).

(V.1)

Mj+2A—M(G). Therefore I, €

Wc have

I
gl +1

- :"=1§:r +1 5
|€I2“‘+1
2_11

1 ~
7
Z |§|2A + 1 |§|2A +1

(L6

c v) & 1 5
= ( 2’"'”’57) 2 + 7

) [ B

(—2mwit, B + F

5

il
'M‘j

7= 1
Qo

]
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Therefore

0
Kz;amr

where F, € M' (@), r = 1,...,n, and I, € M Q).

F, + F, (V.2)

By Proposition 42 we know that we can express ‘3% in terms of the left invarjant vector

ficlds X/s as
7

— =Xpt Y G(@)X. k=1,...,n
amk * s=21|1-‘|-1k()

where ¢, , are homogeneous polynomials of degree a, — ag.

Then
i, %) 7,
K= ooy b e By e oo b oo By o+ F
N 1+ Y 2 -+ + R +
= (Xl + Z q2,kz(m)Xk) JFll + (X2 + Z q.'_’:,k'(m)Xk) FZ R XnFn =+ Fo
k=2 k=3

= X1 + Xo(guo(z) )+ + X, (Z Q?',n(m)Fn> + I
pe=]1

Therefore if we define
K, = Z q,,.(Z)F r=1,...,n and K,=F, (V.3)
k=1

with ¢, »(z) :== 1. Then we can write K as

K= iXTKT + K,.

r=1
Since Fj, € M’ (G), r = 1,...,n, and g, are homogeneous polynomials of degree
ar ~ ag, hence q, F) € M oy = MT(G), k = 1,...,r. Therefore

—i_04,

Krmz;=1qk,rFkeﬁjm&r(a)sfor?"ﬂ11-")nandKO=FOEM (G) (
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Corollary 44, If K & M’ (G), with j € R, then there exist K, € M™ (), r =

. . . -2
L,...,n, and possibly an error term K, in M' ™" (G, such that

™ [
K=Y XFK +K,
re=l !

—

Proof. The proof is analogous to the proof of Proposition 43 1

Proposition 45. Let j ¢ R. IF K € M/ (G), then for any s € N there exist K, &
M (@), r=1,...,n, and K, € M ™" (G) such that K can be written as

K=Y XK +K, (V.4)
r=1

Similarly for any s € N there exist K, & Mj"ar((}’), r = 1,...,n, and K, €

M (Q) such that K can be written as

K=Y XEk, + K, ' (V.5)

=]

Proof. We proceed by induction on s. By Proposition 43on page 95,K can be written as

Trd-2A

K=Y XK. +K, with KelM ™ (@) ad K,eM

=1

().

For s — 1 assume that we have K = Y7 XK, + K, with K, & M 7(G) and K, €
MTHED(@). Applying Proposition 43 to K, we obtain

T

Z k:Ko,k = Ko,o

Xe (K + Kop) + Koo

il

é

ri—2As

where K, € M7 (@), Ko € M'™7(G), and K, & MO (G =

98
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Since M’ 47(@) <@ M (@), then (K, + Ko,) € M (@). Therefore
K=Y XK +K,
7] F4

where K, = K, + Kop € M (@), and K, € M7*°(@), as desired.

The proof of the right invariant case is completely analogous.

N

Proposition 46. Assume j e R, If K € M (@), then for any k,s € N there exist

e e gy e O i —2As s
Kei g €M (@), and Ko € M’ 7 (G such that K can be written as

K= Z Koy oo X Koy + KD (V.6)

1., psn

Analogous formulae are valid for the right invariant vector fields {XiR}.,-

Proogf. We proceed by induction on k. By Proposition V.4 it is possible to write K as

~i-2As ,

K=Y"_ XK, + K, with K, ¢ M " (G), and K, € M {G). We assume that for

k — 1 the thesis is valid, i.¢. we assume that we can express

K = Z X7'1 e er__lK'rl,...,rk_l + JE?{’o (V.7

Irin g 1SR

e gy =

with K, . € M

i 2A8

—arp_y (@), and K, e M (G). Now, applying Proposition

45 to each K., ., . and substituting in (V.7) we obtain

7z
K = Z Xy o Xy ( Z X Boriprg KO:""I,---:T'Rwl) + Ko
l€r . g1 S0 Nrp=1 :
= Z Xy o 'X’f‘ch?"h-v-ﬂ'k + Z Koy e ‘erm1KOﬂ‘1,--~,Tk~1 + Ko
1€ri..re<n l€r ,rpo1sn

with Koy, e € M 77R(@), and with Xy - Xy Kopre, € MG,
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Therefore

K= Y XX

Th—1

Koy T K,

1€t resn

x
~rii g As

with K, = Y o X X Komreoy Ko | € MTTT(G), and with

JEC ST < )

e i

K’-’"l:--':’"h € M S (G)
A completely analogous argument, which is being omitted, proves the right invariant

case, ]

V.2 MAIN THEQREMS

Theorem 47. Let j1, j2 be two real numbers, with one of them negative, and the remain-

ing one non negative. If Ky € M" (H™), and K € M2 (H") then their convolution

K * Koy € M2 (HM).

Proagf,

« j1 < 0and j2 = O

Consider any natural numbers & and s, such that j, — ka1 < 0, and §; — 245 < 0. By

Proposition 46 on the previous page

K2 Z X‘r1 e er,Krl,...,rk + Ko

1€ry ., Trsn

with Ky, p, € M2 (), and K, € M7 (HP,
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Therefore

Ky# Ky =Ky # ( > Xy 'Xe-kKn.-u,m) + K,

1., ,r;e =n p

=K% ( el 'X?'kf{m,...,?'k) + K+ K,
1<’r1 )

= X (Ku# Koy pn) + K2 K,

1&71 PRSI

S g e

Notice that K; € M’ (H"), with §; < 0, and K., € M Tk (1), Since

J2 = @py — ... = 0 X o — kap < 0 by ouwr hypothesis on k, then K, . €
Mﬁﬂmarim.-.“ark (H™), with 3 — an, — ... — ap, < 0. Therefore, by Theorem 41,

each Ky = Km,-.-,m & M’fhﬂ'z""ﬂn*---*af'k (Hn)' Hence X'f'l e "XT'R: (Kl # K?'la---ﬂ'k:) E
MP2 @), And therefore Y. Xy, oo Xy (K % Koy ) € MO (),

1€ri.rpsn

Observe that K, € M’”“MB(H”), and that jo — 248 < 0. Then by Theorem 41 we
know Ki = K, € M2 (HR. Since M (HM < MR (HP), we have
that Ky = K, € M ™7 (HP).

Consequently

Ky * K2 1S Mjlﬂg (Hn)

41 = 0and jo < O:

Consider any natural numbers % and s, such that 71 — ka; < 0 and j; — 24s < 0. By
Proposition 46
K= > XxEFXEK, .+ K,

Tk
1€y psn

with Ky, | € M7 (Y, and K, € MO (H™). With an identical argu-

ment as in the previous case we can establish that K « Ky € M (H™).
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Theorem 48, Let j1, iy be two non negative real numbers. If K € M (H™), and

Ky € M (H") then their convolution Ky = Ko & M (H™).

Proof. Consider arbitrary natural numbers &, s such that ja - kaq < 0, and j2 — 284 < 0.

Then by Proposition 46, K3 has the following expression

Kp= Y Xy XpKip,m + Ko
JESUER IR S /)
with K1 y,..rp € TV (H"), and K, € METEA (m,

Then we have

Kl £ Kz = K]_ * ( .X',r-i " 'erK'rl,...,f.-'k + Ko)

1<ry oy
: = Y Xy K (K5 Koy) Kk K
Eri o rpsn
K1 isin M (H™), with 1 = 0. Since fo—dp, . . .~y < Jz—ka1 < 0, by our hypothesis
over k, then K., ., is in AT (H™), with jg — @y, — ... — G, < 0. Therefore
by Theorem 47, case I, each Ky # K, ., € AT T (
(K1 % Ky, ) € M (H7), And therefore Pt rpen Xr X (K % Fypy )
is in M7 72 (),
K, e sz'ﬁzsA(H"), with jg — 2s4 < 0. Then by Theorem 47, case I, K1 * K, €
MPTHRTRA Y Given that M2 () < M (T, then Kix K, € MR (HP).

H™). S0, Xoyyevny Xry

Consequently, K1 = K3 is in Y (H™), as desired. 0
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CHAPTER VI

EXISTENCE OF i

PSEUDODIFFERENTIAL CALCULI :

i
We begin by recalling some basic facts on pseudodifferential operators of Hrmander type |;|[
(p,0), and how the elements of Op (Si%(IR™)) can be characterised. ‘T?
uf;h‘
Definition 49 (Hérmander), Let m, p,d be real numbers, and suppose p,d € [0,1}. h:r
The symbol class of order m, denoted by S7%s consists of those functions a(z,€) € ?i9
C({IR™ x R™) such that for any pair of multiindeces «, 3, and any compact set K < R", l‘:.ﬁ:
there exists a constant C,, g x such that . H
Il
: DEDgaz, g)‘ < Cppicley™ AL yp e g Ry '
where (€) = (1 + [|€]%) /2. 1@
| !
| |
i |
! !
I
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Definition 50, We say that a linear operator a{z, 7)) : S(R™) — S(R") is a pseu-
dodifferential operator with symbol a(z, £) of class S5, if a{z, D) can be represented
by

[ote, DIJ@) = | 0% 6) iy as

for f & S{R™). In this case we say that a(z, D) belongs to Op ( }f‘,) ”l

It a{z,§) € 57, then the operator afz, 1) : S(R™) — S(R™) can be extended to ‘| i
a(z, D) : S'(R™) —> §'(R™) by

[a(e, D)J] = F(as)

L where

ag(¢) = jeg""”"fa(m,g) flmyde  VfeSR™). |V

Definition 51, We say that an operator A(D) in S{R™) is a Fourier multiplier operator i
if |
D)) = [ e =tale) Floras

for f € S(R™). The reason for this name is that these operators multiply the Fourier |

transform of f by a function a(£), called the multiplier. i

Notice that Fourier multiplier operators can be written as convolution operators

[A(D)f](@) = (o) (2) = @+ N)() M

: : . . . , I
e Will be used to denote the space of those Fourier mullipliers which are in 57%. With ;‘
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the family of seminorms defined by

||p||a,m,p = Sl;p {<£>'-m+PHaH ID?p(é) J}

w
e 1a o Frd
.S'P, ' 1s a Fréchet space.

Suppose a(z,&) € 555, For any € R™ we define a,{¢) = a(z,£). I A{y) is the
operator of Fourier multiplication by ay(€), then for any f & S(R™)

[a(z, D) f](z) = [ e gfw, &) fle) de
) J eI 0y (6) Fle) de (VLD
= [Az) f](z)

Therefore one can say that locally, a pseudodifferential operator is a multiplier operator,
where the multiplier depends smoothly upon the point at which we are.

Since [A(z) fl(2) = (B * f)(2) then

la(z, D)f1(z) = (G = f){=).

Therefore, locally one can always represent a pseundodifferential operator as a family of con-
volution operators, where one convolves with an element &, € (Sg”#) " This point of view
is very useful when working with pseudodifferential operators on homogeneous groups G,
where the group Fourier transform is cumbersome (o use. Consequently pseudodifferen-
tial operators on R™ with symbols in S50 can be obtained from families of convolution
operators on R™,

M. E. Taylor shows similarly that classes of pseudodifferential operators on a Lie &

group can be constructed from smooth families of operators on G, If (7 is a Lie group,

instead of Fourier multiplier operators, we consider convolution operators on (7 , defined
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o

[Af](z) = L o) Fy ey dy  VfeC®

where dy stands for the Haar measure on the group, And the Fourier transform of a, &
belongs to X, a Fréchet space contained in C®(g’), where g’ stands for the linear dual of
the Lie algebra of G.

We assume that X < 577, (R") for some m & R and p € {0,1], and we say that
Ae Op(%).

Ha(y,&) = [e*@¢ gy, ) dz is a smooth function of y, with values in X, for y in a
neighborhood of the identity element e € G, then A(y) defined using the modular function

A by
A1) = | aty,os) S0 At ¥ e 0@

is a smooth function of y, taking values in the Fréchet space Op (%X). A = 1 ina homoge-

neous group. Then we associate the operator

[2f](z) = [A(z) f]{z)

andd we say that %L € Op (%) Notice the analogy with (VL.1), If a(y, ) has compact
support in ¢, we say U € Ope (%)
In the following theorem we have collected a list of remarks and results from M.E. Tay-

lor.

Theorem 52, Suppose G is a Lie group, and {X™},, .p is @ nested family of Fréchet spaces

satisfying the following properties
a) Ifm = 0then X™ < STy for some p € (0, 1].

b} Ifm < QthenX™ < S79 for some o € (0,1].
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¢) IfAe Op(X™), and B € Op(X™), then AB € Op (X™+2), Morcover the

compogsition of convolution operators is CORURUOUS.
d) Ifp(€) € X™ then Dgp(€) e xmllod for some v € (0,1],

e} IfK; € X", then there exists K € X™ such that, for any M, if N is sufficiently
large,

K— (K4 + Ky)e 8
B I p(&) € X then p(€) € X,
IfA € Op (ﬁwﬁml) and B € Ope (.’?Zm?) then 4B & Op (55’”1””2), and it has an

asympiotic expansion

[28£)(z) ~ Y A () Bin (2) f(z)

=0

If e Op (%m) then the adjoint U* € Op (%m) and it has the following asymptotic
expansion

21 f](2) ~ 3 A7 (@) f(2)

y=0

The proof can be found in [Taylor 84]

Corollary 53. In order to prove the existence on a Lie group G of an analogue of the
usual pseudodifferential calculus on Euclidean space, it suffices to construct a family

{ X", ep satisfying the hypothesis of the previous theorem.

We consider the family {Mj (G)} . whete the spaces of multipliers M’ (G) are as in

jE
definition 12, and we shall show that this family verifies the hypothesis of Theorem 52,

Proposition 54, {Mj (G)} e is a nested family of Fréchet spaces.

je&
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Proof, Fach M”(G’) is casily seen to be a Fréchet space. Suppose j1 <€ jo and J €

M (G). If  is a multiindex, then there exists a positive constant Cq such that for afl §

0% 7(€)] < Call + €]

< Co(1 + €yl since j1 < Jz
Therefore J € M™ ((7). We also notice that the inclusion map is continuous. 0

Proposition 55. Ifj = 0 then M’ (Q) © Sgs,ﬁ,ﬁ?”'ﬂme pe (0,1}

Proof If J € M’ (@), and a € (Z*)" then there exists a positive constant C,, such that for

all &

)

16°0(€)] < Call + [y

= Call + €))7 (1 + [g]) 71

1+ ¢y
(T [eDTeT=

1+ )

< Oé(—‘a'r“m
<§>;;;||ﬂ']|
< Ch —5533—_

<£>a l[exl|
== Cg:(g).?"" %llall

€ Cy since ||a||a1 < |of

Then J € & .. Therefore M’ (G) © Sj# with p = 2% € (0, 1]. 0O

(&)
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Proposition 56. I j < 0, then M’ (Q) C Sﬁ;, Jor some o € (0,1].

Progf, If J € M’ (@), and @ € ()™, then there exists a positive constant C, such that

for all £ ’

|027(€)| < Call + [y
, (1€
S Co™ 78 ol

1.
< Crrﬁ&)“”'g

“ <£>HaII%
L8l

= Cpey™ ™"

1
Fo - fer .
Then J € S(Z‘)#‘ Therefore M’ (G) < S;#, with o = a]:, and p = £L. O
A

Proposition 57, M (H") = M’ (H") < M’ (H"™) and the product is continuous.

Proof. Tn chapters ITT and IV we have established that M (T%)« M (T17) < A1 (1m)
for all jl,jg &R,
In order to prove the continuity of the product, for a fixed pair of 71, jo € R we define

the following bilinear map
T . M.’:"l (Hn) » Mj2 (Hn) _______>_M$"1+.f2 (Hn)

(J1, Jo) b (Jy = T3}

and show that it is continucus.

We consider the following mappings, where “double” arrows are used to denote map-
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ping which are sequentially continuous

S.f (RQT.: -I~1)

Mjl (][]{17,) % sz (Hﬂ) = N M?].""-’iﬂ (Hﬂ,)

where 4 denotes the inclusion, 7T is the same map as 7 but it is thought as a map from
M (H™) x M™ (H™) to S/ (R?*+1), Notice that the spaces, M2 (H™), and M”* (H") x

M (I, are Fréchet spaces.
P

In order 1o prove the continuity of 7" it suffices to prove that ¢ is sequentially continuous
and that 7' is separately sequentially continuous and then by the Closed Graph Theorem, T
will result continuos,

Suppose {Ji}, is a sequence in M2 (H™), J € M (™), and Jp —> J as

k — o, Therefore

[0 = 2 016060~ )| P—
’ <N
So, for N =10
HJk B JHM“‘""? 0 - H (1 * |€|)M(jl+j2)(‘f'Iﬂ - J)‘ k———+c0 0
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For fe S(RZTH-J,) we have
(7 = 7) ]
jRZn..{-.l (Jk - J) (g) ./(ﬁ) dfl

< | A ) (- )@ 0+ ) ) e

s(wﬂo+mf““%@~n@0(mﬂu+af“wmﬂgojuﬂmﬂ*ﬁ
¢ £ REn-+1

S GHIHM”Jk — J—”Mjl'}'jz 0 ;m--__; 0
for some M € ZF, and where | - ||5; denotes a Schwarz space seminorm. Consequently

it M3 () < §7(R27+1) 5 sequentially continuous.
Now we want to prove that T is separately sequentially continuous, which means that

we want 1o show that for cach fixed J; € M (H™) and J; & A7 (H™) the operators

Ty

# Tsy f oo 2241 32 prrm
M7 (H?) SR M2 {H")
J1 b (fl # f)

--;“-S!(Rgn"i"l)
Jo (fl #* fg) )

are sequentially continuous,
In order to show that the mapping 7'y, is sequentially continuous, we shall see that it can
be written as the composition of sequentially continuous mappings F, G defined as follows,

and the Fourier transforit.

" &

M (H™) E@S

&7 (R2n+1 )

Sf(RQ?’H—l)

J1l

(wimbwwiﬁ——é{wi)&E+ﬁ~@i*ﬁk“"’[@ﬁn*é+a-@zﬁé]

where ¢ € CP(R*™ 1), ¢ = 1 in a neighborhood of zero,
Wesay that by, —> RinE' @S if by = (fr, gn), b = (fg) with f, f€ &, g, g€ S

fo— fin& and g, —> ¢gin S. Since &' + &' = &', we have $ * S’ < &, and where the
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inclusions are sequentially continuous, therefore 7 is sequentially continuous.
Since ~ is the Fourier transform from &’ to &, it is continuous.

Finally in order to show that F is continuous, for a fixed ¢ ¢ CP(R***1), we shall

B

show that the mappings
Mjl (]HI'"’) R 8,! Mjl (Hn) Rs S
J (le J (1 “-(30)‘51

are continuous, and hence F' = Ry 4+ Ry will be shown to be continuous.

Consider the following mappings

SI(RQTL-I-l)
Ry ”‘
Mjl (Hn) B . S(R2n+1)

The se(:]uential continuity of ﬁg follows from the following observations. First, the fact
that the inclusion ¢ : M (H™) — S'(R?*1) is sequentially continuous. Second, the
continuity of the inverse Fourier transform in &'(R?*™1). And finally the continuity in &'
of multiplication by (1 — ). The continuity of Ry follows from the the Closed Graph
Theorem, since we also know that the inclusion 7 : S(R?" 1) — S/(R*"*) is sequentially
continuous and that the spaces M (H™) and S(R*"*1) are of Fréchet tyt)e.

To see that R; is continuous we fix f, € C'® and observe that the function

M (H™) - C
B (pJ)(fo)

~

is continuous since (c,ojl)(fo) = :fl(cpfo) = Ji[(efo) |, s0 R(J) = Ji|{efs)" ], and
(wfo) " € 8, and convergence in M implies convergence in S’

Therefore F' = Ry + Ry is a continuous map. Therefore Ty, is sequentially continuous.
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The sequential continuity of T, follows in a completely analogous fashion. Hence 7 is

separately sequentially continuous, and therefore 1" is continuous. ]

Proposition 58. Let J; € M'"(G), for i = 0,1,2,..., and 7 € (0,1]. Then there
existsa J € M’ () such that, for any M, if N is sufficiently large (J - Zfio L) €

—M
S

*

Progf. Letep : R™ — [0, 1] be a C* function such that 4% = 0 for [¢| < 1, and 1) = 1 for
€] 2 2. Let {t;}; be a positive decreasing sequence such that 0 < ... < £; < £, < 1 with

'li]gl_l_ t; = 0. These ¢; will be specified later. Define

o0

) = ) (8(9) Ji(€)
i—0
Since #; —> 0 a3 ¢ — 0T, then for any fixed &, 1(d;,(£)) = 0 for all, except for a
finite number of 4; so there are only finitely many non zero terms in the previous sum.
Cohsequently this sum is well defined, and it follows that J € C®(R™).

~r(N+1)

Our intention is to show that J — YV J; € M’ (G) for any N & Z™. Then by

Propositions 55 and 56 we shall have

fer {N+1)

N j T o
J-Y e M (@) c ST

fag s for some o € {0, 1]
i=0 (E)

Hence if we choose N sufficiently large such that § — 7(N + 1) < —AM, then we have
[j — (N + 1)]o < —M, which implies that

N
Iy e S("i)#
1==0

n

as desired.,
Since ¢ = 0 for || < 1, and ¢ = 1 for €] > 2, then for [3] # 0, (85%¢) (6:()) =0,
when |6, (€)| = t|¢] < 1, or when |6:(¢)| = t}¢| = 2. Then for |8} # 0, (8’31/;) (8:(£) = 0
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implies that 1 < |§,(€)] = tf¢] < 2,1e. t71 < |¢] <2675 0 < ¢ < 1then 1 + €| is
also comparable with t~1, which implies that there exisis some positive constant €’ such

that £ < C'(1 + |€])~L. Therefore if 0 < £ < 1, we have
¥

P @] = [0 [ @Pe)e(en)| |
= A |(P)(5:(6))]
< O”ﬂm
< 0" (L +[gl)

= Cp(L+ ¢y~ .

Therefore {1/) o (&}0 o M (@)
<t<

For any multiindex e, and i € Z*, from Leibnix’s rule, and the fact that J; € M (@,

we have

PEEE)| = | T Cond® (527" 5(6)

Bty=a . E
<Y Ol (6|67 (8]

Btry=a

< Y CpaCs(l+|€)7PlC, (1 +|ghi—rah
Biy=a

< Cin(1 + [l

< Ciy (1 + [0l

. - 4—Ti
Therefore {(w o (St)L}Mtsl c M (G).

We define C; 1= max {Cj, : |a| <4}, Since 9(£) = 0if |¢| < 1 then 9(6,(¢)) # O,
implies |6:(€)] = #|¢| > 1, ie. |¢] > £71. So, we select £; > 0 such that t; < #;_1,

€] > 17!, and Cit] < 27% Then (8, (£)) = 0if (1 + €)™ 2 . Therefore for any
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multiindex e such that |e| < 4 we have

o [9(3.6) 5] < G0 + JeP = . |
]

= O (14 [E)) T (1 [g)F Tl :

(1-+16)7 (" 1) vin \

< Citf (1 gl i

< 271 + [gy il MV

For any multiindex 3 we choose i, such that 4, = ||, and we express J as |’

JMi(woﬁti)Ji-l- > (pody) ‘
==l)

. i
| [ =iz +1 l
|

i
Since ZE":O (4 o 6t1.)Ji is a finite sum and {¢ o §;,)J; € .Mj—ﬂ(G) o Mj(G); then “

f; & Yk o (10 8,) J; € M’ (G). Therefore there exists a positive constant C' such that for all £

2 Y $(0,(O)5(O) < 00 + A )
i=0 i
|
| By (V1.2) l
|
| Y G @)@ < Y 2Ty l
| i=ia+1 i=zig 41 :
< ( 3 2—7;) (1 + jefy? |\
j‘ i=to+1 ,
| < (14 gl !
|
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Consequently

LY p(Eu) )

H?‘:=1:0+1

< O(] + |£|)J“|ﬁ| + (1 + lé—}).‘)”“ﬂ

‘Mﬂms

P Y (5u€) 1O
=0

= (C+1)(1+e)’ P

Since this estimate holds for any multiindex (3, then J € M’ (&)

Moreover, for N € Z™, writing

20}

[('{j: o (5,51) — 1] Ji+ Z (’(,L' o Sté_)Ji

1=N--1

™=

N
I3 Ji=

i==( K

i
=]

oo
e {N+1)

and working in the same fashion as before, we obtain Z (1 0 &) € M (&).

On the other hand, since (¢) = 1 for |£] = 2, fgb(dtl.'(g)z)N—_ﬁ_ = 0 for |65, (&) = G:|€| = 2.
S0, (8, (€))) — 1 = O for [¢] > 23" Then 3%, [(9 0 8:,) — 1]J; € M77(G) = S(G).

Consequently for any N

==l

(J—ij)ewW“”WQ

ie J~ YR O

Proposition 59, If J € M’ () then for any multiindex o, D*J € M* ™' (Q) for some
T € (0,1].

Proof. Suppose § is any multiindex. Since J € M’ (G, then for all £

@) = [Prae!
< Cora(1+ |£|)j*|a+ﬁ\

= Corp(1 4|6 1eD-18
Therefore 02J € M* (@), so D*J & M1 (G) € M with  any number in the
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interval (0, 1], £l

Proposition 60. If.J € M’ (Q) then J € M’ (G)

Proof. Let o be a multiindex, since J € M’ (G) theh there exists a positive constant C,,
such that for ail £
lo=7(0)] < Ca1 + 161!

Since |6°‘j(§)| = ‘3(”*](5)

, then for all &

)] < (1 gy

Therefore J & M’ (G). m

The following theorem contains a summary of the results from the previous seven
propositions, and establishes the existence on the Heisenberg group of the general calculus

TH

analogous to the usual ST —pseudodifferential caleulus on R™,
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@)

b)

c)

d)

7

g)

Theorem 61 (Existence of a usuak pseudodifferential calculus for H™). Suppose H"
is the Heisenberg group of dimension n, and {Mj (]HI”)} iy the family of spaces of

Jelk

multipliers defined in 12, Then the following properties are satisfied

E)
{Mj (H™) } is a nested family of Fréchet spaces.

FeR

If§ = 0then M (H"™) < Sy for some p € (0,1].
If§ < Othen M (H") 8725 for some o € (0, 1],
M) « MP () < MO (H7) and the product is continuous.

T fjex]

If J € M (H™), and a is a multiindes, then D*J & M’V (H"™) for some

7€ (0,1].

Let Jy € MM, fori = 0,1,2,..., and 7 € (0,1]. Then there exists a
J € M’ (H") such that, for any M, if N is sufficiently large

N
(J -y Ji) e s,
t==()

IfJ € M (™) then J € M’ (H™).

And therefore on TI™ there exists a general calculus of pseudodifferential operators anal-

ogous to the usual STy—pseudodifferential calculus on R™.

We note that for the case of a general homogeneous group we have proved all the con-

ditions in 52, except for part (d). We believe this generalisation can be proved adapting the

techniques used in this work.
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