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Abstract of the Dissertation

Conformally Compact Einstein Metrics with
Symmetry in Dimension 5
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Mohammad Javaheri
Doctor of Philosophy
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2005

We study the Dirichlet problem for conformally compact Einstein metrics on
F~manifolds with globally static isometric circle actions. As an application of our
general results ﬁe show that any non-flat analytic warped product metric on S x §!
with non-negative scalar curvature is the conformal infinity of some Einstein metric

on B* x St
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1 Introduction

Conformally compact Einstein metrics have recently been of great interest to
physicists and mathematicians alike. Understanding the interesting relationship be-
tween the geometry of the interior metric of a conformally compact Einstein metric
and its conformal boundary is a major issue in the AdS/CFT correspondence, a field
that is under intense investigation by string theorists; see Witten {26, 1998] for in-
stance. The mathematical work in this area started with the works of Fefferman and
Graham in [16, 1985] who studied the conformal invariants of Riemannian manifolds.

In this section we review the basic definitions, results and topics related to this work.

1.1 Conformally compact Einstein manifolds

Let N = NUAN be a connected compact oriented smooth manifold of dimension
(n+1) with boundary &N. A metric gon N is called Finstein, if there exists a constant
A such that Ric, = Ag.

Definition 1.1.1. A defining function for N is a non-negative C™ function

defined on N such that p=*(0) = N and dp 5 0 on &N. d /

Definition 1.1.2. (N, g) is called econformally compact if there exists a defining
function p such that g = p? - ¢ extends, at least continuously, to the boundary. The
metric g is called C™* conformally compact if a C™* extension to the boundary

exists, where m is a positive integer and a € (0,1). U

A geodesic defining function is a defining function p such that

Vol;=1. (1.1.1)

Any defining function for N induces a boundary metric vy = p?glay on ON. Con-

versely, associated to any boundary metric ~pyx, there exists a unique geodesic defining
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function p such that § = p?g induces yan, ¢f. [18, Lemma 5.2]. If pis a geodesic defin-
ing function associated with van, then § = p*g is called the geodesic compactification

agssociated with vyan.

Definition 1.1.3. A metric g on an open manifold N is called AH, or Asymgp-
totically Hyperbolic, if the sectional curvatures of two-planes at x € N converge to -1

as dist,(z,zo) — o0, where xp € N is a fixed point. O

An AH metric which is Einstein at the same time is called AHE. For an AHE
metric we have -

Ric, = ~ng . (1.1.2)

It is straightforward to show that a C* conformally compact Einstein metric
that satisfies (1.1.2) is AH. Using this fact, one could construct examples of Einstein
metrics which are not conformally compact. For example take any Einstein manifold
(N"t1 g} with Ric, = —(2n + 1)g, then N x N with the product metric is Einstein
with Ricyxy = —(2n + 1)gnxny but there are two-planes with sectional curvature

K =0 at évery point.

Definition 1.1.4. For a positive integer m and « € (0,1), define E;7'(V) to be
the set of conformally compact Einstein metrics g on N satisfying (1.1.2) that induce

a € metric on the boundary. a

The group D; of C™*4 diffeornorphisms of N that induce the identity on ON

acts on Eqjr (N) by usual pullback, and so one can form the moduli space
£ = B /Ds (113)

By changing the defining function p, the conformal class of the induced boundary
metric yv = pglonw does not change. In another words, there is a well defined

boundary map

I: Exy — C™*(aN) ,I(g) = [p*glan] (1.14)

where C™*(8N) is the set of conformal classes of C™* metrics on ON.




An important problem is whether one can solve the Dirichlet problem for this
class of metrics, i.e. to find an Einstein metric with a given conformal infinity., This
is a difficult analytic problem, since the equations form s non-linear clliptic system

e

which degenerates on the boundary. The moduli spaces 47, as in (1.1.3), are defined

and studied in [3, 7] (and we review them in §2) to approach the Dirichlet problem.

Using inverse function theory arguments, Graham and Lee [18, 1991] proved
that If the conformal structure is close enough to that of the round sphere, then an
Einstein filling exists, which is unique amongst Einstein metrics close to the Poincaré
metric. Biquard [11, 2000] generalized this result to arbitrary non-degenerate Einstein

manifolds (these metrics are the regular points of the boundary map; ¢f. §A.3).

On the other hand, uniqueness for the Dirichlet problem fails in general. This
was first observed by Hawking and Page [19, 1983]; see also [1] for some examples

and discussions.

A more global existence result holds in cases where the boundary metric is
conformal to a non-flat metric with non-negative scalar curvature. For example, in
[3] it is proved that any such conformal class on $° is the conformal infinity of some

AH FEinstein metric on B?; see §2.1 for more discussion.

In this work, we are primarily interested in the Dirichlet problem in the context

of strictly globally static S! actions.

Definition 1.1.5. An S! action on (N,g) is called strictly globally static if
(N, g) has the form
N=MxS", g=h+uds?®, (1.1.5)

where S* action is given by rotations in the S! factor and u : M — R is a smooth

function with u > 0. O

Anderson, Chrusciel and Delay 8, 9] have studied static circle actions in con-

nection to Lorentzian vacuum solutions of Einstein equations and have proved several

local existence results.




Theorem 1.1.6. {(Anderson, Chrusciel, Delay {9]) Let (N, g) be a non-degenerate
(cf. A.3.2), strictly globally static conformally compact Einstein melric, with
conformal infinity v = [glan] (conformal equivalence fcla,ss). Then any small static
perturbalion of -y is the conformal mfinily of a strictly jloba.lly static Riemannian

Einstein metric on N,

On the other hand, when dim N = 4 and M = 5%, by existence results of 8],
any C strictly globally static boundary metric vy of non-negative scalar curvature
is the conformal infinity of a complete Einstein strictly globally static vacuum metric
on R¥x 8!, Theorem B below is essentially a generalization of this resuit to dimension

5.

The Finstein equations (1.1.2) on N™*! descend to the following equations on

M™ (¢f. §A.2 for all calculations)

2
Ricy, = Z“—mh (1.1.6)
Ahu
—_— = n.
1

These are the Einstein equations on M coupled with a scalar field. It is easy to see
that (M, h) has constant scalar curvature sn = —n{n —1). If (N,g) is conformally
compact, one concludes that (M, h) is AH and
Dy 9
— =h-+0(" . (1.1.7)
The existence of a circle action on the boundary of an AHE metric implies the

existence of a circle action in the interior. In fact we have the following Isometry

Extension Theorem:

Theorem 1.1.7. (Anderson [3]) Let (N™*, g) be q O conformally compact
Einstein manifold with > boundary metric van,m = 3. Then any connected group

G of conformal isometries of (0N, Yow) extends to a group G of isometries of (N, g).

This theorem implies, in particular, that any AHE manifold (N,g) with the




round metric on 5" as its conformal boundary admits an effective isometric SO(n+1)
action which implies that (N, g) is the (n + 1)-dimensional hyperbolic space, cf. |3,
Theorm BJ. Another consequence of this theorem is ti’l&t any AHFE manifold (N, g)
with the standard product metric on S x S' as its conformal infinity admits an

effective isometric SO(n + 1) x S? action,

1.2 The main statements

Our main objective is to obtain existence results in the case of static eircle
actions in dimension 5. We reviewed a few such results in dimension 4 in the previous
subsection. We still lack a general theory in higher dimensions; however, we have the

following partial generalization.

Suppose dim ON is even. It follows from [21] that given analytic boundary data ;

on 8N, there exists a unique smooth polyhomogeneous AHE metric in a neighborhood

of ON which has the given data as its conformal boundary. The term polyhomogeneous :
means that the compactified metric (with defining function r) has a converging Taylor i

series near the boundary of the form of an infinite polynomial in r, rInr and boundary i

coordinates.

The question is that whether one can extend the above Iocal solution near the
boundary to the entire manifold and obtain global solutions to the Einstein equations. iy

In case of globally static circle actions with analytic boundary metric in dimension 5,

we establish similar results to those provided by the theory developed by Anderson

in (3, 7] in dimension 4.

We begin describing our main results. Let C? be the space of conformal classes

of real analytic and strictly globally static metrics on ON which contain a non-flat

metric with non-negative scalar curvature, and &9, = €3, ,, = II"1C%, Moreover

let I1° denote the restriction of II to EL anr




'THEOREM A. Let N® — M* x $ and the inclusion i1 OM — M induce o
surjection

Hy(OM,R) — Hy(M,R) — 0 . (1.2.1)

Then the boundary map TI° : ED ap — C2 is proper.

Using this Theorem, a Z-valued degree for the boundary map I1° can be defined

as follows:

Definition 1.2.1. Let « be a regular value of I1. Let ind, denote the maximal
dimension of the subspace of L**(N, g) on which I, is negative-definite, where I, is

the linearization of the Einstein equations. Define

degIl’ = 3~ (1) | (1.2.2)

9 €(M¥~1([4])
This definition is independent of the choice of a regular value v of I1°, ¢f. [3, Theorem
5.1]. A

One way to obtain existence results is to show that this degree is non-zero; we
do this for the manifold N = H5(—1)/Z with the boundary N = 8% x §'. The

precise definitions of these metrics are given below.

Definition 1.2.2. Think of the hyperbolic space as. the upper half space

HP(~1) = (R = {& = (21, 2, 73, 24, 75)| 25 > 0}, (1.2.3)
with the metric
1 1
9g = —{dai +.. . +dzl} = 5 g5, (1.2.4)
L5 Tk

and consider the one parameter group of isometries of (H5, gy) given by dilations

Dil = {A" : H® — H°| A*(z) = Az, A € R} . (1.2.5)

For L > 1 consider the subgroup ({L),") = (Z, +) of Dil generated by L, where




the identification is given by L «< 1. The action of (L) on H3(—1) is free and,

topologically, H*/Z = R* x §*. Define g, to be the hyperbolic metric on thig quotient

space induced by g;y. * (]

The metric g, is conformally compact Einstein with conformal infinity equal to
5% x 8'(log I) with the standard product metric. Here is a brief caleulation that

proves this point. A partial compactification of EI° is given by

plz) = a5/r(z) (126)

where r(z) is the Euclidean length of z. This function is invariant under the group
action and so it gives a compactification of F® /% with the following conformal bound-
ary

1
"}’(.‘17) = ?"2(.’1,‘) {dﬂ:f +...+ d&‘i‘i} = du? + Fs3(1) (127)

where u = logr. This metric is & translation invariant product metric on S3(1) x R.

By identifying r = 1 with r = I, we get a product metric on 5% x S'(log L.

As an application of Theorem A, we prove that for N = R%/Z ~ R* x §! a5
above, the boundary map is surjective. With a slight abuse of notation, let C° denote
the connected component containing the standard product metric on §% x S (log L)
and &7, = Eh axr = TT'CY be the connected component containing g, and let IT°

be the restriction of the boundary map to this connected component.

THEOREM B. For N =B%/Z and ON = 5% x S, one has:
degyTl® =1 . (1.2.8)

In particular any C™ non-flat and non-negative conformal class [v] is the conformal

mfinity of some conformally compact globally static Finstein metric on B* x S

‘The structure of this dissertation is as follows. In §2, we consider complete

conformally compact Einstein metrics on a 5-manifold that admit an isometric group




action. Suppose a group G acts on N and consider the space of conformally compact
Einstein metrics on N which are G-invariant and induce a G-invariant "™ boundary
metric on ON. We denote this space by Eg 'y, and prm:e that, if non-empty, this space
is an infinite dimensional Banach manifold. Moreover we define Egoan, the moduli
space of G-invariant conformally compact Einstein metrics under diffeomorphisms
that fix the boundary and preserve the G-action. We show that, if non-empty, this

is a separable C™ Banach manifold and the boundary map is Fredholm (cf. §2 for

exact definitions and details of these statements).

After this general result is proved, we focus on strictly globally static circle
actions on N®. In §3, we consider the interior behavior of the metric and derive a
compactness result by studying the Einstein equations coupled with scalar field. For
the results in §3 to be correct we need a ‘Boundary Condition’ on the behavior of the
metric near the boundary which gives us a C** control over the compactified metric

near its conformal infinity. This condition is proved in §4 through Prop. 10 and 11.

. In §4, after a brief introduction to the theory of Fuchsian systems, we study the
behavior of conformally compact Einstein metrics near the boundary and, at the end,

present the proofs of Theorem A and B.

1.3 Conventions and notations

e R denotes the (3,1) tensor (or (4,0) curvature tensor by coupling with the met-

ric) defined as
R(X,Y)Z = VXVYZ - VYVXZ - V[X}y]z . (139)

In addition Ric, denotes the Ricci curvature, the trace of R, and s, = scaly

denotes the scalar curvature of the metric g.




For a (k,0) tensor A, norm of A is denoted by |A| and

AR =" 1 A(es, €1, o i) (1.3.10)

for all ordered possible values of 4y,...,4 in {1,...,dim}, where e; give an

orthonormal basis for the tangent space.

The divergence of A is denoted by dA and is equal to trVA. The Laplacian
Af = §Vf is defined in such 2 way thaé, on R, it gives the usual second

derivative.
The barred (hatted, ...) expressions refer to the barred (hatted, ...) metrics.

dist,(z,y) refers to the length of the shortest geodesic connecting z and y.
The ball, respectively the sphere, of radius 7 centered at x € M is denoted by
BM(r), respectively S¥(r), and we drop M from this notation when there is

no awbiguity.

For a function p on N, let S(r) denote the level set and B(r) denote the upper

level set i.e.

S(a) ={z € N| p(z) = a} , Bla)={z € N| plz) >a}. (1.3.11)




1

2 The Banach Manifold &g ag

In this section we give the basic definitions and review the results in dimension

4., Tn addition we have a brief discussion of boundary regularity issue.

2.1 The Banach manifold £,y and the boundary map

Throughout this section, we fix a defining function py on N. For positive integer
kand 0 < 8 < 1, let Sg'ﬁ be the Banach space of symmetric bilinear forms A on N
such that

llpg2hlices < €', (2.1.1)

for some constant ¢ < oo, where the above norm is the usual C'*# norm with respect
to g. Throughout this section k,m are positive integers and a, 3 € (0,1) with the
conditions k > m and k+ 8 > m + a. Let Met™*(dN) be the set of C™* metrics
on ON and v € Met™*(dN).

Definition 2.1.1. For any boundary metric 7, we define a standard correspond-
ing AH metric g, on N that induces 7 on the boundary as follows. Fix a collar
neighborhood U of 8N and identify U with [0,1] x 8N in such a way that the first

component is given by py. For r = —log(py/2) let
gy = dr? 4+ sinh?(r) - v . (2.1.2)

Next let U’ be a thickening of I/ and let % be a function with the following properties:
n=1lonU,p=00on M\U and dn# 0on M\ U'. Finally define

gp=({—m-gc+n-gv, (2.1.3)

where ge is a fixed smooth Riemannian metric on M \ U. i
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Definition 2.1.2. Let Met%s denote the set of all metrics on N of the form

gy + b such that v € Met™*(8N) and h € S5, Define
E&B © Meth® (2.1.4)

a8 the subset of AHE metrics g with Ric, = —ng. In addition let. E’f:* be that subset

of EX% comprised of metrics which induce C™® metrics on the boundary. O

In dimension 4, it is proved in [1] that
Eyf = g . (2.1.5)

This statement is not correct in higher dimensions. See §2.3 for a discussion on

boundary regularity.

Remark 2.1.3. If there is a compact group action G on N = N U 8N and ~
is G-invariant, then by requiring the defining function pg, the cut function 5 and the
metric go to be G-invariant, the metric g., constructed above is G-invariant too; this

naturally gives rise to the definition of ﬁflet?jﬁm and Eéi o, of §2.2.
There are two diffeomorphism groups acting on Eﬁ’ff that are of interest to us.

Definition 2.1.4. Let D; denote the group of orientation preserving ™+«
diffeomorphisms that induce identity on the boundary. Let Dy denote the set of

elements ¢ € Dy that satisly

lim (220 — 1 . (2.1.6)

po—0" py
(]
The group D; is a normal subgroup of D, and the quotient D, /D, is naturally
isometric to the group of C™ positive functions on &N. The action of the group D;

on Eﬁg is free and proper and the quotient spaces

&y = ES/D; 2.17)

11




are (> separable Banach manifolds (i = 1,2), with boundary maps:

II: Sﬁ( —+ Met™(ON), Tg] =+, (2.1.8)
I:EQ —cm™e, Tigl=l], (2.L.9)

where C™ = ( is the space of conformally equivalent C™% metrics on the boundary.
The boundary maps above are C* and Fredholm of index 0. For the proofs of all the

above statements, see [7].

Definition 2.1.5. A linear operator between two Banach spaces is called Fred-
holm if it has finite dimensional kernel and cokernel. The Fredholm index of a
Fredhol operator is the difference between the dimension of its kernel and the codi-
mension of its image. A map between two Banach manifolds is & Frer;'lholm map if its

derivative is a Fredholm operator at every point. M

Let C° ¢ C denote the subset of non-negetive conformal classes i.e. classes which
contain some non-flat metric with non-negative scalar curvature. Let £4, = II71(C°)

and II° denote the restriction of II to this subset.

Theorem 2.1.6. (Anderson [3]) Let M be a 4-manifold for which the inclusion

i:OM ~» M induces a surjection
Hy(OM,R) — Hy(M,R) — 0 . (2.1.10)

Then for any (m, o), m = 4, the boundary map I1° : £, —+ C° is proper.
Given this, an integer-valued degree on each component of £4 & 1s defined as in

Definition 1.2.2. This degree is computed in the following cases, cf. [3].

1. M=R', OM =5%, degll® =1,
This implies that any conformal class [y] € C° on $% is the conformal infinity

of some AH Einstein metric on 3%,

2. M=R*x 5%, OM=S"x5%, deglI® =0 .

In this case II° is not surjective. In fact for large L, the boundary metric

12




SY(L} x S? is not in the image of II°.

3. M=8" xR, OM =5"x 5%, degll® =1 .

Theorem B is essentially a generalization of this result to dimension 5.

4 M =CP\B*, OM = §% , degll® =0 .
Here CIP?\IB* is the disc bundle of degree 1 over S2.

2.2 Definition and smoothness

In this section we consider the free action of a compact group G on N = NUSN.

Definition 2.2.1. Let G be a Lie group. A smooth group action on N is a
smooth map

c: GxN-—>N, ola,z)=z2-a. (2.2.1)

with the following properties: (x-a1) a3 = z-(o109) and 7 - 1 = z, where 1z

is the identity element of group (. The action is called free if -0 =z for all z

implies @ = 1g. A metric g on N is called G-invariant if Vg € G : a*g = g, where

a® is the pullback by a. A diffeomorphism ¢ : N — N is called G-invariant if for
every G-invariant metric g, ¢*g is G-invariant too. A function f: N — N is called

G—invamiantifVaEG’:a*f:foa=f. a

If a group G acts on N and the boundary metric vy is invariant under this group
action, then the geodesic defining function associated to this G-invariant boundary
metric is invariant under the group action too, and so it is a geodesic defining function
on the quotient space as well. This can be proved as follows. Since gy is G-invariant,
we have a*yay = 7y, for any a € &, where a* denotes the pullback of tensors on N
by a € Dif f(N). Hence if p is a geodesic defining function associated to Yon, G*p
is a geodesic defining function too. Since geodesic defining function associated to a

boundary metric is unique, we conclude a*p = pforalla € Gie pis G-invariant.

13




Definition 2.2.2. Let EG r denote the set of elements of £ A'ﬂ that are G-
invariant i.e.

gEEF g€ E* A(MaeG:a'g=g). (2.2.2)

In a similar mamner we define M etG > the set of G-invariant AH metrics, and SG 2

the G-invariant subset of S57. 0

Next choose a background G-invariant metric go € Eg’ﬁﬂ with a G-invariant

boundary metric vo. For v € Metg '3 (8N) close t0 1, following [7], define

g(v) = g0 + 19y — 90) {2.2.3)

where 7 is the G-invariant cutoff function in Remark 2.1.3. Now define the Bianchi-

gauged Einstein operator at go by

@ : Met™F x S™*(N) — Sy (), (2.2.4)

®(v, h) = (g, + h) = Ricy +ng + (5,)" Bay (9), (2.2.5)

where B,y is the Bianchi operator By (g) = dg(z9 + 2d(trgyg)- It is proved in [11]
that
Z%8 = $71(0) N {Ric < 0} C E55 (2.2.6)

and that Z provides a local slice to the action of the diffeomorphism group near
go € ET*. The derivative of this map at go with respect to the second factor is the

linearized Einstein operator
L{h) = D*D(h) — 2R(R) , (2.2.7)

where R is the action of the curvature operator, see (A-39) in the Appendix.

Related to our discussion on group actions, let Zé"l  be the G-invariant subset
of Z%%_ We first show that the action of G on N induces an action of G on Zsg.

To see this, notice that, since go is Einstein, Zam provides a slice to the action of

14




diffeomorphism group on Esy through go, and since g is a fixed point of the action
of G, this slice must be invariant under the action of the group G. From (7], we know
that Z% is a € Banach manifold and Zé’,e, g 1s the fixed point set of the compact

group action G. It follows that Zg"‘i 5 18 a O Banach submanifold of Z55.

The set Eﬁg differs from fog by the action of diffeonorphism group, in that,
for any g € Eﬁg near gp, there exists a diffeomorphism ¢ such that ¢*g € Zﬁﬁ. We

prove a similar property for Zg’ﬁ g in the Lemma below.

Lemma 1. Suppose go € Eg’fw, Isom(ge) =G and g € Egi 5 8 near gy, then

there exzists a G-invariant diffeornorphism ¢ such that ¢*g € Zgﬂ u

Proof. Let ¢*g=h € Z%8  For any @ € G we have
AH

(6 2ag) (h) = h . | (2.238)

Since Isom(gy) = G and ¢ 'a¢ fixes an element of the slice, we have o lap e G It

follows that the homomorphism ¢ : ¢ — G defined by

$la) = ¢~'ad (2.2.9)

is well-defined, hence one to one and onto. Then (2.2.8} implies that # is a fixed point
of the action as desired. On the other hand (2.2.9) implies that ¢ is in N(G), the
normalizer of G in the diffeomorphism group and so, Va € (G and for any G-invariant

metric g, we have
a*(¢*g) = (¢a)'g = (bp)"g = ¢"(b"g) = &g , (2.2.10)

where b = ¢lag € (. This means that ¢*g is G-invariant, and so ¢ is G-invariant

by definition. n

The group P, acts on Eﬁ}g and preserves the boundary map in the sense that

Vo e Dy T(g) =1i{g%g) . (2.2.11)

15




With regard to the group action G, we define P§ to be the G-invariant subgroup of

Dy, This group acts on Eé’j . and the discussion above implies that the quotient

Eun = B&oau/ D5 ‘ (2.2.12)

is a O™ separable Banach manifold, under the condition that there exists a go in this
get, with Isom(go) = G. This condition holds if ngi 4 18 non-empty, since the set of
guch elements are dense and open in Eg’fw Because of (2.2.11), the boundary map

descends to a map

I : EFy — Metg*(ON), (gD = - (2.2.13)

The above discussion leads to the following:

*‘ Proposition 2. The space 8((;.2' LH is a smooth separable Banach manifold, (if
non-empty). The boundary map I : Eg )AH - Meti®(ON) is a O Fredholm map of

indez 0, and

Ker(DI), = K¢ , (2.2.14)
where K, gG is the space of L? infinitesimal G-invariant Einstein deformations at g.

Proof. The proof is essentially the same as the proof of [7, Prop. 4.3]; one only

needs to replace every set by its G-invariant subset and apply the above discussion. W

Now let D¢ be the G-invariant subgroup of Dy. These are Cmtla Glinvariant

diffeomorphisms that induce identity on the boundary. It's easy to see that DF is a

normal subgroup of P§ with the quotient group DF /D§ which is naturally isometric

to the positive O™ G-invariant functions on OM. Thus define 'sii::“ J 1

5834;1 = Egiﬂ/ Df = Sg,hﬂ (DF/D5) - (2-2.15)

It’s straightforward to show that this is a C* Banach manifold (if nonempty) and the ii;i!:!_‘:' : I

boundary map II naturally descends to a C° boundary map m: S(Gl’)A y — Cg which
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is Fredholm, of index 0 with kernel as in (2.2.14).

2.3 Boundary regularity

In dimension 4, it is shown in [1] that if g has an L*? conformal compactification,
for some p > 4, then it admits a compactification, with the same boundary metric,
which is as smooth as the boundary metric. However, in dimension 3, this result
is definitely false because, in the asymptotic expansion of the metric, log terms ap-
pear from the order 4 on. The Fefferman-Graham expansion of the metric in {total)

dimension 5 has the form

7~ g0+ A9 + o og p)hgy + plgw + - .. (2.3.1)

While gg), h4), the divergence dguy and #r(gey ) are all determined by gioy = ~yaw,
the transverse-traceless part of giy is not determined by the bounciary metric. At the
same time, all other terms in the formal expansion above are determined by g and
g(4)- The log terms that appear in the above expansion force the metric to be at most
C% conformally compact. On the positive side, the recent results of Chrugciel et al.
113, 2004] show that for smooth boundary metrics, the polyhomogeneous expansion

above exists to all orders. Also S. Kichenassamy {21, 2004] proves that, in case of

analytic boundary metrics, the expansion (2.3.1) converges to §(z, p) and g(z, p} is

analytic in p and plog p, where these two are considered as independent parameters.

Although the boundary regularity breaks down in higher dimensions, we have

the following Theorem. Tun the following é Ax is the moduli space of metrics g which

are conformally compact with the condition that there exists a compactification §

which is a smooth function of (¢,#*logt,y) where ¢ is the geodesic defining function

and y parameterizes the boundary.

Theorem 2.3.1. (Anderson [7]) Let N be a compact oriented (n + 1)-manifold
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with boundary ON,n > 3. Then, for a given {m, o), with 2 < m < n~1 the space £

(if non-empty) is a smooth infinite dimensional Banach manifold and the boundary
map s a smooth Fredholm map of index 0. Moreover the space Eap is a Fréchet

manifold and the boundary map
I: 84y — C=C® (2.3.2)

is a smooth Fredholm map of index 0.
The same proof as Proposition 2 gives:

Proposition 2'. Let ég, axr be the G-invariant subset of Eag. Then, if nonempty,

this 1s a C'*° infinite dimensional Fréchet manifold with the boundary map
It : Egam — CF (2.3.3)

where CF is the G-invariant subset of C®°. The boundary map is smooth and Fredholm

of indez 0.
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3 The Interior Behavior [

h
|%
In this section we study the behavior of AH Einstein metrics in the interior Ii
(i.e. away from the boundary) of 5-manifolds with static S* actions. The key step, E;
as in dimension 4 (¢f. [3]), is to control the L? norm of the curvature tensor on
large balls. Since for W, the Weyl curvature, and z, the trace-free Ricci, we have
|R|? = |W|% + }|z[* + 6, we need a control on the I? norm of W and z, and a control
on the volume of balls in M. These bounds are obtained in Lemma 4, Proposition 6 i

and Corollary 7. I

3.1 Preliminary Lemimas

1
2 B

In the sequel (N, g) is an AHE metric with a globally static circle action as in |
(1.1.5) and p is the geodesic compactification associated with the boundary metric . f;
Throughout this section, until Proposition 9, we assume that u >0 on M. Here and
throughout let BM(R) = B,(R), respectively BJY (R), be the ball of radius R centered

at  in M, respectively N. -

The next Lemma is useful to control 4 and |Vu| on large domains in M. Choose o
a point ¥ € M where the minimum of % occurs and set m = u(y) > 0. Different J

choices for y are possible but we fix a y once for all.

Lemma 3. There exists a constant ag > 0 such thatVer e M

|Vu(z)] < apulz) - {log P—fnﬂ +1) . (3.1.1)

Moreover, for every R > 0, there exists a function G = G(R) such that Yz € By(R)

uw(z) < m-G(R),
)

(3.1.2)

|Vu(z)] <m-G(R (3.1.3)
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Proof. Take n(t) to be a geodesic in BY (r) of speed one starting at z, and write
n(t) = (p(£), 8(¢)), where the curves ¢(t) and 8(t) are in M and S? respectively. Since
' (6)* = ¢/ (O)F + v ((E)IF' () = 1, we have (8] < 1 and |§)] < L/uléd))
It follows first that the length of the curve ¢(¢) is at most r, and secondly since
u($(t)) = m,

0(r)| < f‘)% < 7% . (3.1.10)

This means that BY(r) € {{z,0) € M x §* : z € BM(r),|0| < r/m} and so

wol BY (r) < zf % -udV, < 2rG - vol BM(r) | (3.1.11)
BY(r)

where G = G(R) comes from Lemma 3. This proves one part of (3.1.8). To prove
the other inequalities, without loss of generality, by re-scaling u, assume m = 1 and

notice that {(z,8) € BM(r) x 8 : 16| < u_(l,z,),} C BY{r+1) and so

vol BM(r) < wolBY (r +1) . {3.1.12)

Now since (N, g) is Einstein, one has volBY (r + 1) < V{r), where V depends only on
r. This proves the second half of (3.1.8). Then (3.1.9) follows from (3.1.11),(3.1.12)

and the volume comparison theorem on (N, g). I
Next we need to prove a non-collapsing result.

Lemma 5. Let N = M x S be any AH Einstein manifold of dimension 5 as
in (1.1.5), with C** geodesic compactification § = t* - g and boundary metric yy. In

addition assume that

Ing(8N) = dist;(C,ON) 2 7 , (3.1.13)

where C is the cutlocus of the boundary, and

diamSw(t) < T, (3.1.14)




Jorty =742 and Sy(t1) = {z € (N,§) : t{z) = t.}. Then for all z € M with
d < distz(x,ONY < D |’ (3.1.15)

we have

volBY(1) 2 v >0, (3.1.16)
where vy depends on (ON,yn),d, D, T, 7 and dist,(z,y).

Proof. Define En(z,t) to be the inward exponential map of (¥, 3) at N and
Jy(z,t) to be its Jacobian. Also let Ty(z) be the distance to the cutlocus of Ey at

z € ON. Then using the infinitesimal Bishop-Gromov volume comparison theorem

jN(:B,t)

7O~ L

is monotone non-decreasing in ¢, for any fixed . From this it’s straightforward to

show that
vl S (i)

- @ ' 110

By taking t == ¢, = /2, this implies that volzSy(t1) = (3/4)*vol,,,ON, or equivalently
'UOZNSN(t]_) 2 C s (3119)

where C' depends on vy and ¢;. Since N is Einstein, there is c(R) such that for
R >1:wlBY(1) = ¢(R) - volB¥(R). Conditions (3.1.14) and (3.1.15) imply that
there exists R such that Sy(t1) € BY (R —1) and so:

vol BY (1) 2 ¢(R) - volBY (R) = ¢(R) - vol(BY (R\BY (R - 2))
1
> e(R) - wolSi(n) > %C(R) O =0, (3.1.20)
Now the result follows from (3.1.20) and (3.1.8). [ |
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3.2 L? bounds on Trace-free Ricci and Weyl curvature

We now prove an upper bound on the L* norm of the trace-free Ricei. In order
to proceed, we impose the following condition on the compactified metric 7 near dN;

this condition will be removed in the next section {through Propositions 7 and 8).

Boundary Condition. There exists a geodesic compactification § = p*g, and
constants py,C > 0 such that for I = {z € N| p(z) < po}, the C** norm of g (with

respect to a fived background metric) is bounded by C for a € (0,1).

Notice that the Boundary Condition implies the bounds (3.1.13) and (3.1.14},
and so (3.1.16) is valid for z € M with v depending on bounds on distz(z, ON) and

disty(z, ).

Definition 3.2.1. The width of (N, 7) is
Wid; = sup{dists(z,2:)| ® € N,z € N}, (3.2.1)

ie. the length of the longest p-geodesic from JN to points in the interior. O

Proposition 6. Assume for some wy < 00,
Wids < wp . (3.2.2)

Then under the Boundary Condition, for any p > 0 there exists a constant K =
K(p,wq) such that
/ |2 dvol, < K, (3.2.3)
B{p)

where B(p) = {z € M| p(x) = p}.

Proof. Let S(p) be the set of points 2 € M such that p(x) = p. Recall that

uz = D?u —uh and tr, z = (2, h) = 0. One has
wlz|? = (z,uz) = (2, D*u) = 6{z(du, )} — {62, Vu) , (3.2.4)
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where z(du,.) is viewed as a 1-form. Since dz = §Ric = %dsg = {, divergence theorem

implies thaj;

]B(p) ulzf? = /(p) o{z(du, )} = /S(;) z(du, dr) . (3.2.5)

Without loss of generality we assume p < po/2, where py is provided by the Boundary
Condition. If pis a geodesic defining function, equation (1.1.6) gives rise to the

following equation on (M, = A°h), of. [10].
_ D2p
Ric= —(n - 2)== p ( )h - (3.2.6)
This implies that on $(p)
D?p
z{du, dr) < I{RZC+2 L (—»— i} du, dr)| < K, - - pldul | (3.2.7)

where K is independent of p and is provided by the Boundary Condition. Also
volS(p) = p~vol; S(p) < p~ 51, for a constant v, independent of p. From (3.2.5) and
(3.2.7) one has

Ky

m/B(p) 122 < fa(p) ulz)? < E;T”{ - max |dy| < m-G(R), (3.2.8)

where G(R) comes from Lemma 3 and R — max dist(y, z) for x € B(p). It is left to
show that R is bounded from above, Choose y; on the intersection of the geodesic

connecting y to N in (N, g) and S(po/2). Then for any z € B{p) we have

-~ 2
dist(y, x) < dist(y,y) + dist(y;, z) < wopﬂ/};o/Q + ;.E—diamgS(po/Q) . {(3.2.9)
This gives an upper bound for R and the Proposition follows. n

Proposition 6 leads to the following corollary which provides a L* control on the

Weyl curvature.
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Corollary 7. The Boundary Condition and (3.2.2) imply

f WP h<oo, | (3.2.10)
M

where Ay depends only on wo.

Proof. We refer to the proof of [3, Proposition 4.2]

and point out the difference

which is the fact that trace-free Ricci is not zero in our case. The idea is to find

two bounds, one bound on the domain £ = B(p/2) and another bound on the

complement ¢

= M\B(po/2). In the region (° the Boundary Condition provides
an upper bound for [|W[? =

JIW]?, while on Q, we use the Chern-Gauss-Bonnet

theorem:

2*" 7T2 — DU }‘2:2
L{W{ = 81%x(Q) — 6 szngl | +LQB(R,A), (3.2.11)

where B(R, A)

is some boundary term that, depends on the curvature R and A, the

second fundamental form of S(p/2).

Again by Boundary Condition this boundary

term and volO$) are uniformly controlled, and by Proposition 6, the term involving z

is also controlled. This proves the assertion. n

3.3 A counter example :

One may attempt to find an intrinsic upper bound for f, u|z[?, i.e. an upper

bound that depends only on the conformal boundary,

bound for f,_ |22,

and from there conclude a
The example below shows that, in general, this integral is

intrinsic to the conformal boundary.
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Proof. Define
g W)
f(z) =log 3 (3.1.9)
Since u(z) = m, we have f(z) = 0 and fly) = 0. Sinqe (N, g) is Einstein and

Anf =4 (cf §A.2), following [12, Theorem 6], we conclude that Va € s

Vi) € ao(f(z) +1), (3.1.5)

where ap is a constant. This is the same as (3.1.1). To prove the second inequality,

rewrite the above inequality as

[V{log(f(z) + )} < ap . (3.1.6)

which implies that log(f(z) + 1) < ap - dist o(2,y) € Roy and so
Ve € By(R): w(z)<m- exp o exp(Ray) . (3.1.7)

Finally this and (3.1.1) give the upper bound on |Vul. |

For future purposes, we need a volume comparison result which enables ug to
compare the volume of balls of different radii in A7, Such a result holds on (I, g) by
the usual Bishop-Gromov volume comparison theorem [24], since (N, g) is Einstein.
Hence to obtain a similar result on (M, h) one only needs to compare the volume of

balls in M with the volume of balls in N ; this is done in the following Lemma.

Lemma 4. There exists a function V{r),r > 0 such that

N
Vo € BY(R): %% SwalBY (r)y < V(r) (3.1.8)

where G(R)} comes from Lemma 8. Moreover fora > b >0, there exists o constant

c=c{a,b,R)} such that

Yz € BM(R): volBM(a) < ¢- vol BM(b) . (3.1.9)
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Ezample. Consider N = R? x 52 with the AdS Schwarzschild metric:

g= VAld?"z + Vd92 f- nggaﬁ(l), (331)
2m )
V=192 - T (3.3.2)

If we denote the largest zero of V by 7y, (3.3.2) gives the metric on the domain

(r0,00) x 5% x $%. We define M = (ry,00) x %, where HM = S%(1) and N =
S1(8) x S*(1) with the standard product metric, where

47y
T drd (3.3.3)

B =

The funciion u = V2 gives the length of the orbits and a simple calculation yields

2
Di{ewes) =0, Dufes,e) = u(1+ =) , (3.3.4)

D*u(Vr, Vr) = u(l — %T»—)V'l, D*u(Vr, X)) =0, (3.3.5)

)

where e; make an orthonormal frame for g. One has

VXYLV 2(X,Y) = 2R 0(X,Y), (V. Vr) — ——i-?—?g(Vr, V),  (3.3.)

=
, which irnplies that |2|* = 487 and so

o[

o

2
/ V1/2(48%)V‘1/2r3drdy = 12m*vol(S%)/rf . (3.3.7)
53

From (3.3.3} we conclude that two values of m may define the same conformal bound-

ary {i.e. the same @) while the above mentioned integrals have different values.




3.4 Compactness

'To be able to use Lemma 5 we need to have (3.1.15) which gives a bound on
the distance from the boundary in the compactified metric. Here we prove that there

exists p; > 0 such that
distz(y, ON) = p, , (3.4.1)

where ¥ is chosen to be a point where a minimum of % oceurs. The Boundary Condi-
tion implies that there exist two constants ¢, ¢ > 0 such that, Vz with dist;(z, ON) <

/0/2, one has
c< pu . (3.4.2)

At y one has u = %(m) which is bounded by some D near the boundary, by the

Boundary Condition. This and the above inequality imply that p(y) > ¢/D.
_Proposition 6 and Corollary 7 give I? control over the trace-free Ricci and Weyl

curvature. In the proof of next theorem, which is our main compactness result in

this section, we need L* bounds on the Ricci curvature. At this point it's useful to

consider the conforﬁlally related metric
h=uh, (3.4.3)

whose curvature, as we see in the sequel, is easier to control, because of the simplicity
of the equations under this conformal change. In fact the Einstein equations on (N, g)

induce the following equations on (M, &)

. " 4
Ric = (%)du odu —6h, Alogu=— . (3.4.4)

&

In the following discussion we re-scale u such that m = min# = 1. Notice that

Proposition 6 and Corollary 7 are valid for any m > 0,

From (3.1.2) we conclude that the two metrics & and b are quasi-isornetric on
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B,(R), and so

diam; B,(R) < R, , (3.4.5)

where R; depends only on K. By Lemma 5 there is a lower bound on the volume of

the unit ball B, (1} in (M, A). Tt follows
vol; By(R) 2 wol; By(1) = volp,By(1) > g , (3.4.6)

for B > 1 and 1 depending on dist;(y, N).

As to the Ricei curvature, (3.4.4) and Lemma 3 give
Ficl < = [ul? + 6]h] < A 3.4.7
{fic] < 55 Vul® +6lh[ <A, (3.4.7)

where A depends only on R. In order to obtain an upper bound on the L2 norm of

the curvature of 4, we notice that |BJ? = [IW|? + 312* + 3:5%, where % and § denote

the trace-free Ricci and scalar curvature of 4. Now (3.4.4) and Lemma 3 imply

f (18P + = 8)dvol,, < C - vol, By(R) (3.4.8)
ByR) 2 24

and Lemma 4 implies vol; B,(R) < V, where C and V' depend only on B. Tt follows

/ B dvol; < / (127 + 2 82)dvol, + / Whdvol, < &, (34.9)
By(R) By(R) 24 M

Yy

where O =C-V + g depends on R and wy.

We are ready to state the main result of this section.

g E Theorem 8. Let g; = h; +u2dé? ¢ Egry be a sequence of metrics on N® =
M* x S that satisfy the Boundary Gondition, with w; > 0. In addition assume that

the inclusion map i: OM — M induces a surjection

Hy(8M,R) — Hy(M,R) — 0 , (3.4.10)
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and that there is a positive constant wy < oo such that
Wid;, < wy. f (3.4.11)

Let y; € M be a point where the minimum of u; occurs. Then there ezists a subse-
quence of (M, hy, y;) which converges to a complete metric (L, b, Yoo) With oo = lim y;.
The convergence s in the C™ topology, uniformly on compact subsets, and the man-
tfold L weakly embeds in M,

LccM, (3.4.12)

i.e. stooth bounded domains in L embed as such in M. Moreover the manifold (L x
S, b+ w?d6?) is Binstein, where u is defined by u(lim z;) = lmw; () /wi(y:) for any

sequence ; € M.

Proof. Re-scale u; so that u(y;) = 1. First we show that, after this re-scaling,
the Boundary Condition stays valid (for a possibly smaller value of py). 1t’s enough
to show that w;(y;) is away from 0. Take any z € S(py/2), where py is provided by the
Boundary Condition. Then Lemma 3 and the upper bound on the width of (¥, 7;)
imply that

i = w() = Fows(z) (3.4.13)

where 3y is independent of i. On the other hand, the Boundary Condition gives a
lower bound on p;u; in the po-distance of the boundary. It follows that there exists a
constant ¢ > 0 such that (po/2)u;(x) > c. This and the above inequality imply that

there is a lower bound on ;. We divide the rest of the proof into four steps.

Step 1. In this step we show that for each R > 0, there exists a subsequence of

(B, (R), hi, 1) that converges, in the C'ba topology, to a O Riemannian manifold

{V, h, Yoo )y Ui — Yeo- Recall 4 is chosen such that u;{y;) = minu;. The bounds (3.4.11)
and (3.4.1) give -

M < disty, (v, ON) < wy . (3.4.14)

The Boundary Condition implies that the bounds (3.1.13) and (3.1.14) are valid for
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some 7 and 7. Then (3.4.14) and Lemma 5 imply that (3.1.16) is valid on BM(R)

~

and hence (3.4.6) follows. Now consider the sequence (By,(R), ks, ;) and observe
that (3.4.5)~(3.4.9) imply that a subsequence (denot(-;d again by k) is converging,
in Gromov-Hausdorff topology, to a 4-dimensional orbifold (V, A, Yoo) which is a C°
Riemannian metric and O off the singular points (¢f [2, Theorem 2.6]). The
topological assumption (3.4.10) is made exactly to rule out orbifold degenerations (ef.
[3]) and so we conclude that a subsequence of the sequence (By, (R}, h;, ;) converges

in the C"* topology to a €'V Riemannian metric (v, b, Yoo)y Ui — Yoo

Step 2. Now we proceed to control u Further in order to control the Ricci
curvature of (M, h). By Lemma 3, both 4 and |du) are bounded in B,,(R) and so one
has a ¢V bound for v = logu. Step 1 implies that there is & uniform lower bound
ho on the CY* harmonic radius of (By,(R), k), (cf. [2]). For ¢ B, (R) take the ball
of radius hy centered at z in (M, fs) From this, Schauder estimates, applied to the
elliptic equation Ay = dexp(—v) (¢f. (3.4.4)), give a C* bound on v and hence on
% on a smaller ball (¢f. [17, Theorem 6.2)) i.e.

Vz € Bu{ro/2) : |vlpe < €, (3.4.15)

where C is independent of i, although it depends on r and R. By (1.1.6), this gives

a uniform C° bound on the Ricei curvature of h; on By, (R)
| Ricp,| < A, (3.4.16)

for some A > 0 independent of ;.

Step 3. In this step we use standard clliptic regularity results to draw the

promised '™ convergence. Proposition 6 and Corollary 7 imply

/ | R, [2dVi, < A, (3.4.17)
By (1)

where A is independent of i. Now Lemma, 5, (3.4.16) and (3.4.17) imply that a
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subsequence of (By,(R), s, y:) converges in the C1* topology to a C1® Riemannian

metric (B, (R), R, ¥x). 1t follows that (By, (1) x Sl,g.,;,y,;) converge to (B, (R) x
51,9, Yse), in CY topology, where the metric on By, (R) xS i given by g; = h;+uidé?.
Since these metrics are Einstein, the C1** convergence implies C™ convergence. Now

take /2 — oo and the theorem follows.

Step 4. Finally we prove that the function u(limw;) = limu(z;) is well
defined and equations (1.1.6) are valid on (L,h). For the sequence {y;} we have
u(Yoo) = limu;(15) = 1. For any sequence &; — %, we have distn, (%, 9;) < T for
some T" > 0. The discussion in Step 3 then implies that u and its derivatives are
bounded on B,,(T') and so {u;} is an equicontinuous family of functions on compact
setis. [t follows that lim w;(z;) is well-defined. As soon as « is defined as a weak limit
of u;, the C'° convergence obtained in Step 3 and taking limit from both sides of

(1.1.6) imply the last assertion in the Theorem. |

3.5 -Static circle actions with fixed points

So far we have assumed v > 0. We can remove this assumption as follows. Define
T = {x € N| u(z) =0}, (3.5.1)

and les M = (N —1')/8" be the quotient manifold. M is a 4-manifold with boundary
T'. The set T is the fixed point set of the S* action and it is a collection of submanifolds
of even codimension in N (odd codimension in M), in another words, it consists
of a finite collection of smooth 3-dimensional submanifolds & = UZX;, and a finite
collection of smooth curves v = Uy in N. The quotient manifold is topologically
a 4-dimensional manifold with boundary 8M = I, while v corresponds to singular
curves in M. Nevertheless, M has a boundary at infinity 8,,M which is the quotient

ON under the S* action. As an example, consider the AdS Schwarzschild metric of
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£3.3. The fixed point set of the S* action there is a totally geodesic 3-sphere.

The equations (1.1.6) are still valid on M. In th?e below discussion B(pp, p) =

B(p)\B(po).

Proposition 9. Under the same conditions of Theorem 8, this time with the
possibility of u = 0, the same conclusion holds for a subsequence of (Bi(po, p), i, %i),

where z; sobisfy (3.1.15), with the difference that L is a manifold with boundary 8L.

Proof. In the sequel we drop the subscript <. The Boundary Condition implies
that, for all = with p < g
e<pu<C, (3.5.2)

where ¢, C' > 0 are constants. By taking ¢ smaller, we can assume ¢ < po. Since
u is subharmonic, the maximum of u on the set B(pg) is realized by some xq with

p{zo) = py. Hence the above inequality implies that for all =

u(x) < C/po + C/plz) , (3.5.3)
and for x with p{z) < ;.70

u(z) 2 ¢/pl(z) > ¢/po - (3.5.4)
Now we show that there exists a constant @ > 0 such that for all z & B(c/2) one has

B.(a) € B(c) . (3.5.5)

Take 7(t) to be a minimizing geodesic of speed one from z to z € S(c). To prove
(3.5.5), it is enough to show that the length of this curve in (M, &) has a lower bound.
We can assume that z = 5(f) is the first point of the intersection of n with S(c). One

has

o= [ 1@ls = [ Hitolds > 320, (356)

where L(n) denotes the length of the curve n(t) in (M, h). Now Boundary Condition
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provides a lower bound for L(n) and {3.5.5) follows.

Equations (3:5.4) and (3.5.5) imply v > 1 on By(a) for all z € B(¢/2). Asin
Lemma 3 we define f{z) = logu{z) > 0 and use [12, Theorem 6] to conclude that for
all z with p(z) < ¢/2 |

|du| < G'{p) , (3.5.7)

where (' depends on p through (3.5.4). From this, the same proof as in Proposition

G gives

[ uaav, < x(p). (35.8)
B(p)

This and (3.5.4) imply that, for p < py
[ lapav, <x(). (3.5.9
B{po.p)
In this case, the bound on the Weyl curvature is automatic

f Wi |2dV;, = / (WildVi < Ny(p) - (3.5.10)
B(po.p) B(pa.p) ,

The above two inequalities give the bound on the 12 norm of the curvature on B(pg, p).

Irom here on the same proof as in Theorem 8§ works. n
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4 The Boundary Behavior

Assume g is an AHE metric on N™* with boundary metric v and associated
geodesic defining function p. Let 4 denote the second fundamental form of the level

sets S(p) of p and H = trA. One has the following system of equations, cf. [5].

. pép - ﬂg,; - 2ng = p{ZR‘iCp - ng “+ (gp)2} ) (401)
pH —H = pla]?, ' (4.0.2)
A = —dH (4.0.3)

where g, is induced by § = p’gon § (p), Ric, is its Ricci curvature and dot denotes
the differentiation w.r.t. p. In case n = 4, the formal solution to this system, given

by the Fefferman-Graham expansion, is the following )

(9) ~ 9@y + Pg(2y + p*(log p)ha) -+ Pga ..., (4.0.4)

where gy = « is the boundary metric and 9, 9i4)s Peay,... are 2-tensors on the 8
boundary. This formal series does not need to converge in general. However, if the i

boundary metric and the 9(4) term above are analytic, the following result holds:

Theorem 4.0.1 (Kichenassamy [21]) Let n > 1. /o

1. Eq. (4.0.1) admits formal solutions involving logarithms of p. |

2. The series converge: solutions are holomorphic functions of p and plup, when

p 8 smali,

d. The series contains n(n + 1}/2 arbitrary coefficients, which can be identified

with

(a) the n(n+1)/2 components of the metric tensor TN

(b) the (n®+n —2)/2 independent components Ty; of the trace-free part of the

coefficient of p*; and




(c) the trace T of the coefficient of p™*, where the trace is taken with respect to

YN -

4. The other two equations in the system reduce the arbitrariness in the solutions:
they determine v and V%NT,-J;, where V., is the covariant derivalive on 8N

determined by yn.

This theorem gives solutions to Einstein equations in a collar neighborhood of
the boundary, given the analytic boundary metric g and the trace-free part of g,

(trg(s is locally calculable by the boundary metric).

4.1 Fuchsian systems and stability of solutions

Let 4 = (1, ..., um) be a function of (z1, ..., z,) € @ C C". Let A(z) be a matrix
with entries holomorphic in z. Moreover let &g, ..., t; be the time variables which we
assume are close to zero in C. Then a Fuchsian PDE is a partial differential equation

of the type

{
(N + Ay = o fol@,l0, ooy oy 1y U (4.1.1)

p=0

where f1, ..., fi are holomorphic functions in all their arguments and

N = Zn.@jtia/afj ) (412)
if
where n;; are constants, 0 < 4, j < p. Regarding such systems the following existence

result holds:

Theorem 4.1.1. (Kichenassamy [20]) Consider the Fuchsian system (4.1.1)
where N = Zi;:o(tk + kty 1)0/Otx. Suppose [ is analytic ‘near (0,0,0,0) without
constant terms in t' = (fo, ..., t1). Moreover assume that A is a constant matriz with
no eigenvalues with negative real part. Then (4.1.1) has near the origin ezactly one

anelytic solution which vanishes for t' = 0.

35




The proof is rather technical; we use the proof of this theorem in order to

establish Prop. 10 below.

Fuchsian reduction. From now on we focus on the case n = 4 although the
discussion is correct in all dimensions. Therefore let g bé an AHE metric on N5
with geodesic defining function » and analytic boundary metric g0y = Y. Since by
Theorem 4.0.1, the formal solutions to the system above converge, with coefficients

being holomorphic functions of r and = In r, one writes

g=pg=go+rp, (4.1.3)
where p is given by
7
p=q-+ Z r (In7)*u(r,rIn T}, (4.1.4)
k=0 '

for some g that contains all terms of lower total degree in r (including terms up to
the fourth order). Let @ = (to, ..., u7); each u; is a 2-tensor on ON. Decomposing
@ = 43 + 103 to the sum of traceless part and a part proportional to 9(v), we have the

following first-order Fuchsian system for an unknown v (deﬁned below),
(N-I*B)ﬁ“: 'F'()QIS(.’IJ,T‘D,?"I,‘I‘)', 86’) ) (415)

where 4 and r; correspond to r and r Inr respectively, and N = 60/ 8rg +118/0r) is
a differential operator on the algebra B) of formal series in ro and ry (with analytic

coeflicients), B is a matrix and
T= (vi)1cx<1z = (i, N, (rodyilh )1giga, o, Ny, {rofiila)1<ica) (4.1.6)

where 0; represent tangential differentiation.

The equation (4.1.5) is the Fuchsian reduction of (4.0.1). Theorem 4.1.1 estab-
lishes the existence of holomorphic solutions for small r. Following & suggestion by

Kichenassamy [22], in the following Proposition we prove the stability of solutions.
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Proposition 10. Suppose Qfo) and 9‘%4) are analytic on ON and

(920):924)) — (g0), 9(0)) , (4.1.7)

with convergence in the C? topology on the boundary to analytic tensors guy, gay-
Then the associated solutions g;, given by Theorem 4.0.1 converge to a solution § as
holomorphic functions of z,r and rlnr (polyhomogeneous convergence). Moreover

G — g in the C™ topology of meirics in (0,¢) x AN, on compact sets, for some ¢ > 0.

Proof. One needs to verify the polyhomogeneous convergence and the second
part of the theorem follows. Thus we need to show that if (g(y), g(4;) and (920)= ey
are close in the C* topology on 8N, then g and 7’ are close in the polyhomogeneous
topology in a collar neighborhood of @N in N. The Fuchsian equation (4.1.5) for
(QEO)a gE4)) becomes

(N + B = rod(z, ro, 71, W, OW) | (4.1.8)

where o is defined in terms of gy, gjy). Define: ¥ = 7 — . Comparing (4.1.5) and
(4.1.8), we have

(N + BY = rofo(z, 10,71, T, W, 07, 0F) = ro fol] . (4.1.9)

The function fp is a function of rg, 71,4 and 0%, Since we need the proof of Theorem
4.1.1 to finish the proof, we briefly sketch the ideas of the proof and refer the reader
to the reference [20, Theorem 2.2} for more details. The Fuchsian system (4.1.1) with

two time variables (T,Y) = (rg, 1) becomes:
(N+A)z= f(T,Y,X,2z,Dz) , 2(0,0,X) = 20(X) € ker(4), (4.1.10)

where D = Dy and f = Tfy = 0for T =Y = 0. Notice that T =Y = 0
corresponds to the boundary and z corresponds to % in our case, while 2y corresponds
to the boundary data which is solely a function of X (a parameter representing the

boundary coordinates). Qur goal is to control z in terms of z; and constants that
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depend only on the boundary metric.

The proof is in five steps. Define
Fl2] = (T,Y,X,2,Dz) . (4.1.11)
Step 1. First one shows that the system

(N + A)2(T,Y) = k(T,Y) , 2(0,0) =0, (4.1.12)

where k is analytic and independent of X and vanishes for T =Y =0, has a unique

analytic solution, given by
1
AT, Y) = H[k = / oA Th(oT, o(T' e +Y))do . (4.1.13)
0
Therefore rewrite the equation (4.1.10) as z = H[F{z]]. Let u = Flz] and consider
u=Glu| = F[H[4]] . (4.1.14)

One proceeds to solve this equation by a fixed point argument.

Step 2. One defines two norms as follows. Assume f is analytic for X € C®
and d(X,Q) < 2sp and u € C™ with |u| < 2R, for some sg, B > 0, where Q0 is a

bounded open neighborhood of 0. For a function u = u(X) define the s-norm
|lulls = sup{ju(X)] : d(X,0Q) < s} . (4.1.15)

For a function u = u(T,Y, X), and a > 0, sufficiently small, define the o~norm

3a(TY )} <a(sp—s), 0Ls<sg

o = sup {50"1||u||3(T,Y)(30~3) 1_&"} . (41.16)

where 8o = 6p(T,Y) = |[T'| + 0|Y | and 0 < # < 1 is fixed.

Steps 3. One proves the following estimate for the s-norm of H [u] in terms of
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the a-norm of «

Il (7, Y) < Crafua | (4.117)
where €} is a constant.

Step 4. Moreover, for 0 < &' < 's < sy, if |Jul,, |[v]|, < R one has

170 = Floljlo(r, v) < S0, ) (4119

Step 5. Now assume that |ula, |v|e < R/(2Ca) and let Glu] = F[H[u}] One

proves the following inequality
|Glu] — Gol]o < Caalu —vlq , (4.1.19)
for some constant Cs. Now define 1y = 0 and 11 = G[up] and choose Ry so that
|[u1][so € Rodo(T,Y) , | (4.1.20)
if |T| + 6]Y'| = &. Now choose a so small that
Csa < 1/2 and Rosy < Rf4Cha . (4.1.21)

This implies that G is a contraction in the a-norm on the set {lule € R/(4C10)} and

50 by contraction mapping principle, a unique solution exists in this set.

End of proof of Prop. 10. Since ¥ is a solution inside the set above we have
[¥la < Roso . ‘ (4.1.22)

Since the two initial pairs (90, 9(ay) and (QEO)?gEt;)) are uniformly close in the 2
topology on 9N, 4y = G[0] = F|0] is small and so correspondingly one chooses Ry

small. It follows from the above inequality and definitions in Step 2 of the proof above
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that
”st < O(S, 30, JO:ROTG) s (4123)

where C(sy, 8, Ry, a) = o{ Ry).

This implies that the u terms (and in fact their first derivatives) are uniformly
close to each other. Since ¢ involves only a finite number of terms and, by assumption,
the first few terms and their derivatives are uniformly close, we conclude that g and

g are close in the C° topology. In another words:

) = gto)lle= + llgte) = gtaller < = (|7 — glloo < b(e) , (4.1.24)

and the first part of the theorem follows. The second part of the theorem follows from
the first part, since Inr is a € function with bounded derivatives away from the
boundary, ¢f. (4.1.3) and (4.1.4). Notice that C° closeness of these metrics implies
their C*° closeness since these are solutions to elliptic PDE away from the boundary.

A consequence of the above Proposition is that, under the same assumptions,
we have §; — g in the C%# topology on 8N for B & {0,1); this convergence cannot
be strengthened to C4.

4.2 The logarithmic C** harmonic radius

In this section we define the logarithmic C'*® harmonic radius of a conformally

compact Einstein metric and prove the Boundary Condition.

Definition 4.2.1. Let p be a geodesic defining function for an AHE metric gon
N and define § = p?g. Let N, ={z € N| p(z) = p} and N* = {z € N| plz) < pl.
Let v, g2), ... be as in the Fefferman-Graham expansion in (2.3.1). Fix py > 0 and

define a good r-covering of N to be a covering U,, s € J = J; U J; satisfying the
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followirig conditions:

* (1)) d=LeCOrisq Lebesgue number for the covering {U,}.

L] (1‘2) Vs € Jy

— (12-1) There are charts $s 2 Br) x [0,7) — U, C N such that the co-

ordinate along [0,7) is just p and other coordinates z* are constant along

integral curves of p.
— (r2-2) ¢5(Br)) € 6N and #s(B4(r/10)}, s € 11, cover HN.

— (12:3) 71 U, N ON — B*(r) are harmonic coordinates on the boundary.
— (12-4) For all j = ¢
N =anape .

-6 and y = (9, %) with |y = j jn] < 4 and

sgpr“"“@“’f“u <C, (4.2.1)
where f =g, —y — plg — (p*log Pha).
. (13) Vs € J,
-3 U, ¢ N 1o

— (13-2) There are charts ¢, : B(r) = U, C N such that ¢, ' U, — BS(r)

are harmonic coordinates,

— (r3-3) For all j = 0,...,4 and ~ with vl =3
sup | @7gll, < C (4.2.2)
U,

o (rd)Vse J: |do; 1| < €€ and ldgs| < e on their domain of definition.

Finally define the logarithmic (e harmonic radius, r(N; ) to be the supremum of

all 7 such that a good r-covering exists. 0

By definition, a lower bound on r implies upper bounds on the C? norms of 9oy

and Ge4y.
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Now we show that if g is bounded in 2 fixed background metric, then there ex-
ists a lower bound on the logarithmic C'** harmonic radius r in a collar neighborhood

of the boundary. The following Proposition is the a.nal'ogue of [3, Theorem. 4.3].

Proposition 11. Let (N,g) be a strictly globally static AH Binstein metric
satisfying (1.1.5) with a C** conformal compactification, and boundary meiric .
Suppose that 7y is analytic and that, in a fived coordinate system on 8N, ||vl|gse < K.
If § s the associated geodesic compactification of g determined by -y, then there are

constants po > 0 and ro > 0, depending on ~y, such that

r(NF gy =27y . {4.2.3)

Proof. 'The Proposition follows from the following two lemmas.

Lemma 12. Let v denote the distance from the boundary to its cutlocus C

{defined by the exponential map). For (N,g) as in Proposition 11, there exists a

constant co depending only on -y such that

r(N#;3) 2 o . (4.2.4)
' Proof. To the contrary, assume for a sequence {§;}, with the conditions of
Proposition 11 satisfied, one has / |

N#o. 5. . L :
rVig) ey (4.2.5) P
7(8:) Ti U

Re-scale the metrics by A; = ;" — 0o and obtain 3
gi=X" 8. (4.2.6) S

In the sequel the primed functions, tensors, etc. correspond to the primed metrics. e

For these re-scaled metrics we have: o

ri=rlg)=1. (4.2.7)




Since r/7 is scale-invariant, it follows from (4.2.5) that 77 ~+ oo. Fix a point xp on

the boundary of M. The definition 4.2.1 of the logarithmic C'** harmonic radiug, and
(r2-4) in particular, implies that the terms (90)(e) are ;taounded in the C*“ topology
and so a subsequence will converge in the C? topology to a 2-tensor 924). On the
other hand the boundary metrics (g})) converge to the flat metric +' on R* which is
analytic. It follows that a subsequence of (N, g%, &p) converges in the C? topology
to a metric ¢’ on & limit manifold L, while t; = Ai; — ¥, where ¢’ is a smooth posilive
function on L. Since + is analytic (it is flat), Prop. A-2 of Appendix implies that
9t i analytic. Now it follows from Proposition 10 that a subsequence of (N#, g;, %o)
converges in the polyhomogeneous topology near the boundary and the C* topology

away from the boundary. Notice that L is a manifold with boundary L.

To draw a contradiction we first show that this metric is flat. The proof of i3,
Prop. 4.4] implies that (Z,¢’) is Ricci flat with A" = D% = 0 and Vit is a parallel

vector field. Since N = M x §* and g; = h; + uldf?, we have
gl = (£)2h; + (1)*uld6® = b} + (u})*d6” . (4.2.8)

Since (N, g}, zp) converges to (L, ¢', 2o), we have (M, b, zo) converging to (P, A/, o),
where P is a submanifold of L with induced metric ’. Orthogonal to P, there are
curves in L which are the limits of the S orbits in (M, h;). Since D?t' = 0 on L and
# is constant along these curves, we conclude that D*' = 0 on P and go in particular
gy = 0. One has

¢ =R +v%do* (4.2.9)

for v = lim #u;. We show that v is constant on L: from (A-33) we have
d .
—_ log(t;u,-) = (Sh:/ﬁ — Sg;/S)ti . (4210)

dt,

For @ = lim z;, we have #](z;) — t'() and (su /6 — 541 /8)(2:) — (sw/6—54/8) (z) =0.
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Hence the right hand side of the above equation is zero in the limit,

gi? logw =0, : (4.2.11)

which implies that  is constant.

Since (L, ¢') is Ricci-flat and v is constant, (P, }) is Ricci-flat too. Now since
P splits along ¢’ geodesics, P = Q x R. It follows that ¢} is Ricci-flat and hence flat
(dimQ = 3). It follows that both P and I are flat, Moreover, since 81, is equal to
R* with the flat metric, (L, ¢’) is isometric to R* x R*.

It follows from the above discussion that ' = oo on L, where 7 is the loga-
rithmic C'** harmonic radius, This will contradict (4.2.7) as soon as we show that
the logarithmic C** harmonic radius is at least semi-lower continuous in the poly-
homogeneous topology. To see this, suppose the F-G expansions of g; converge to g’
as analytic functions of z, p and log p. We show that r; > v — ¢, for i large, where
7,7; are the logarithmic harmonic radii of § and Gi- Recall the definition 4.2.1 for
the logarithmic C** harmonic radius. Since the polyhomogeneous con\}ergénce of g;
to ¢ implies at least the C3* convergence, we see that the conditions rl, r2-1, r2-2,
13-1 and r4 are all valid on (N, g) for a slightly smaller choice of r. Also since the
boundary metrics plg;|sy converge to P*glan in the C? topology on the boundary,
both conditions r2-3 and r3-2 are valid (again for a possibly smaller r) along a subse-
quence. Finally both r2-4 and r3-3 follow from Proposition 10, since the convergence

is in the C™ topology in a collar neighborhood of the boundary as functions of z,p

and log p. n
! Lemma 13. For (N,g) as in Proposition 11, there is a constant i depending
only on K and o such that

(N;§) > p (4.2.12)

Proof. If the conclusion doesn’t hold, then there exists a sequence {g; } satislying
the conditions of Proposition 11 such that 7i — 0. So re-scale these metrics by

10()™" — oo so that 7} > 10 for these new metrics. The previous lemma then
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mplies a lower bound on r{ and so (by Prop. 10 and the proof of Lemms, 12) a
subsequence of (N, i, o) converges to g limit (L, ¢, z0). Here OL = R* with the fiat
metric and z, is a fixed point chosen in AM. Since r{; 2 10¢g, the definition of the

logarithmic C%* harmonic radiys gives

(g — (¢ (4.2.13)

where the convergence is in the (%o topology on the boundary. From here on we
adopt the same proof as in [3, Prop.4.5] (from (4.24) on) and point out the differences.
The main issue is to generalize the claims in [3, (4.31)-(4.36)] to the situation at haxnd;
¢f. also Prop. A-1 of the Appendix. Thus start by inserting 9(),s + g,y in place of
9(3),s 1n [3, (4.30)], where T(g) 18 defined in (A-3). Then observe that 7, terms as
well ag 9(4),s terms converge to their limits and so the same argument presented in
the reference is applicable to prove that the limit metric (N, ¢ ) has a free isometric
R*-action which preserves t' so that (N, 9') is foliated by equidistant leaves isometric
to R*. Now a similar argument as in Lemma 12 shows that N = P xR where P
is a totally geodesic 4-dimensional submanifold of N. (P, ¢')p) is also Ricei flat and
admits an isometric R® action which preserves the distance # from the boundary
AP =R®. Now the proof of 3, Prop.4.5) implies that then P~ (RY)+ which, in turn,
implies that N ~ R4 x R*. This is a contradiction because 7 = 10 on the limit and

the proof is completed, |

Proposition 11 implies the Boundary Condition, since the lower bound on the
harmoniec radius obtained in the Proposition implies at least the (38 convergence of
the geodesic compactifications. Now we are in the position to prove the following

Proposition. The proof is immediate from Theorem 8§ and Propositions 6 and 7.

Proposition 14. Let % be a sequence of strictly globally static AH Finstein
metrics on N = M x S, with strictly globally static and analytic boundary metrics

Y% on ON = OM x §' and Suppose y; — vy in the (2 topology on AN, where v s
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analytic. Moreover suppose that the inclusion map ¢ : OM — M induces a surjection
Hy(OM, R) — Hy(M,R) -0 , (4.2.14)

and that there is a constant wy < co such that
Wid;, N < wp . (4.2.15)

Then a subsequence of g; converges smoothly and uniformly on compact subsets to
an AH Einstein metric g on N with boundary metric v. In o collar neighborhood of
ON, the geodesic compactifications §; converge in the polyhomogeneous topology to the
geodesic compactification § of g. This convergence s in the C* topology away from

the boundary. a

4,3 Proofs of theorems A and B

In this subsection we present the proofs of Theorems A and B.

Proof of Theorem A. To prove that II° is proper, we need to show that for
any sequence of analytic boundary metrics Y% — 7 € €2 and AH Einstein metrics
9i € Egrag with TI%([g;]) = [] there is a subsequence of g; converging to an AHE

metric g. We consider the following two cases:

Case i. There is a constant 50 > 0 such that for the scalar curvature 8., of

W

Sy 2 8y . (4.3.1)

In this case one has (cf. A.2):

o _ 8D 28p)* 1,
=T &

i P p 327

(4.3.2)
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This gives (1/s5) < p/32. Integrating this inequality implies that the length of each

minimizing p geodesic is at most 4v/3/+/3; L.e.

/3

ids, < . 4.3.
Widy, NG (4.3.3)
Hence theorem follows from Prop. 14.
Case 4. The only case remaining is when s,, 2 0 and
Widg, — 00 . (4.3.4)

In this case we use the rigidity result of [1, Remark 5.2, Lernma 5.5]. Very briefly,
the sequence (N, g, %) converges in Gromov-Hausdorff topology to a hyperbolic cusp
metric with flat boundary metric. This contradicts the condition v € C? and the

proof is completed. |

At this point we consider connected components of &Y 4 and restrict II° to these
components, Before we present the proof of Theorem B, we need to show that the
definition 1.2.1 of degII® is well-defined in the context of analytic metrics. Notice
that we have proved II° is proper on £} 45 but it’s still an open problem whether this
space has a manifold structure. On the other hand Theorem 2.3.1 and Proposition 2’
give a manifold structure for the space &1 ap. By Sard-Smale theorem [25], regular
values of the Fredholm map II are open and dense in C™. On the other hand C“
is dense in €% and so there exist many analytic metrics amongst the regular values
of TI. It follows that the definition 1.2.1 of degII’ is meaningful for such analytic
regular values of Il and [3, Theorem 5.1] shows that this definition is independent of
the choice of these analytic regular values. Now we are ready to present the proof of

Theorem B.

Proof of Theorem B. As seed metric we take go, the metric induced from the
hyperbolic metric on B®/Z, where the Z action is given by a fixed translation along a
geodesic (cf. 1.2.2). The conformal boundary of go is the standard product metric on

5% x §'(log I). The isometry extension theorem 1.1.7 implies that any AH Einstein
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metric with this conformal infinity has SO(4) x SU(2) acting effectively by isometries.
The only such metrics are the hyperbolic metric on B’® and the AdS-Schwarzschild
metric on S® x R?. The latter is defined on a diﬂ:'e;ent manifold than B and so
()2 [y] = [ga])- Tt follows '

degIl’ =1 . (4.3.5)

In particular, YI? is onto the component containing the standard product metric. W
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A  Appendix

A.1 The Renormalized actiqn

Here we study the renormalized action related to our work in §4 and particularly
in the proof of Lemma 13. Let ¢ be the geodesic defining function for a conformally
compact Einstein metric g on N® and let B(e) denote the subset of N with ¢ > €

‘Then one has the following expansion
volB(e) = vgye ™ + vge 2 + Lloge + V + o(1) . (A-1)

The constant V is called the renormalized volume. The renormalized Einstein-Hilbert
action is given by

Ir*(g) = 8V . (A-2)

'The constants v(; and L are explicitly computable from (8N, ). In dimension 5, [7=*

depends on the choice of the boundary metric (while L does not).

The variation of I"™" at a given g € EY gives rise to a 1-form on the manifold

E3i and one has the following formula (cf. [14])
ar(g) = ~2gw +r() (A-3)

where g(4) comes from the Fefferman-Graham expansion (4.0.4) and T(g) 18 a two-tensor

computable by the local geometry of 4. Thus

dfmn(g") = —2/ < gy + T(g) , 0> dv.]',. (A-Zf:)
oN

We prove an analogue to [3, Theorem 2.3,

Proposition A-1. lLet g < E%. Then any connected Lie group of confor-

mal isometries of the boundary metric (9N, 7) extends to an action by isometries on

49




(N, g).

Proof. We sketch the proof following the proof of _[3, "F'heorem 2.3) and point out
the differences as necessary. Suppose ¢, is a 1-parameter group of isometries of (9N, ~)
with ¢y = id and ?:7 = 7. One can extend these isometries to diffeomorphisms of
N preserving the defining function p and obtain a curve 9s = ¢;0 of Einstein metrics
with a fixed conformal infinity -y (w.r.t. p). We need to show that the coeflicient gy, ,
in the F-G expansion of Js 18 constant for small s, (T(g,) Temains constant since it's
determined by ). As in dimension 4, two analytic metrics with the same conformal
infinity and the same 9(4) terms are locally isometric; thus one needs to prove the
following:

Fa).s = G(ay - {A-B)

Consider a 2-parameter family of metrics 9su = gs + uh, where h, is an in-
finitesimal deformation of 9s so that the induced variation on the boundary is fixed
ie. A, = hoyo = hey. To prove the above equation, in place of W, the square of
the L2 norm of the Weyl curvature (which is relevant to dimension 4}, we use Iren,
the renormalized action, Now we show that bhe analogue of (3, (2.19)] is valid in our

situation. For the 7, fterm we have

d
ET(!]&) =0. (A-—ﬁ)

It follows that

d d
/E;N<d_gg(4),s, h(o))d’b‘ol-y = faN (-C-l;{g{,;),s -+ T(g,)}, h(g))d’vol?

d
- &; /BN (9(4)'3 + T(ﬂs)}? h(D),s)d’UOl-r

1 d TEen
= _§E§dfgs (hs) . (A-?)
To finish the proof, it’s enough to show
d d .
hadl ___I:u en — =
T i (9s +uh,) =0, (A-8)
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at s = v = 0. For fixed u and varying s consider
1 €T
ST gy + whs) — I (g0 + uho)] (A-9)

One has g; = go+s6* X +0(s%) for X = d(#s)/ds. Let qo = go+uh, = go+sub/+O{s?)

for b = dh,/ds and re-write the above expression as
1 1 ran
E[Ire”(qo + sub! + s6* X + O(s%)) — I"(gg + sul’)] + E[I’"E”(q() + suh’) — 1" (go)] .
Take the limit of the above expression as s — 0. The first bracketed term gives:

A EX) = [ (Ol 5%) =2 [ et X) (A0
N aN

where r,, is the term coming from the F-G expansion of gy. Since 6*X = 0 on 8N ,

the second term above vanishes. Calculations in the proof of [3, Theorem 2.3] and

the fact that 1™ is diffeomorphism invariant show that at u = 0:

d ern £ — ’
&E/N(v‘mﬁ 0 X)=0. (A-11)

In & similar manner, the limit of the second bracketed term in (A-10), 88 5 — 0, is
AT o (wh') = /N (VoI uh/ydV —2 /a N((9+uh) () F g, Wh) +O(u?) . (A-12)

The second term above vanishes since A’ = 0 on the boundary. Taking the u derivative

of the first term above at u = 0 gives

i

/ (VI uns uh)dV + f (VI" hhydv . (A-13)

The first term vanishes since % = 0 and the second term vanishes since go is Einstein S

and hence a critical point of I™*" so that VI =0, |

Now we consider the expansion (A-1) more carefully. One can take an analytic
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curve g, of AHE metrics with analytic boundary metrics -y, and study the dependence

of V;, the re-normalized volume of the metric gs with conformal boundary -y, on s.

Since the equation (A-3) relates dI to 9¢4), this may prbve useful in studying the 99

term. We prove the following:

Proposition A-2. Let g be o conformally compact Einstein metric on N® with
a geodesic defining function p and analytic boundary metric v. Then the 9(a) term in

the Fefferman-Graham expansion (4.0.4) s analytic.

Proof. Let § = p?g = dp? + g, and write
det
dvoly = f(zx, p)dp dvol., = p“s(:i‘—z?%i)” *dp dvol., , (A-14)

where f(z,p) is analytic in z and p > 0. Let e < wo < Wid, and consider the

following expansion (¢f. [15])
| 0o e+ e+ D)o 4 Vi o). (At

Choose zo € AN. We first show that V{z) is analytic in z at zy and for simplicity
take zg = 0 (via a chart). Since f(x, p) i8 analytic in =, for a fixed rho, the following

Taylor series of f converges for all [z] < r and p > ¢, where r > 0 is a constant

independent of p:
flpm) =3 Kp)z . (A-16)
Hence

" Fo o = 3 f " M0 = Y Adoe (A-17)

is the expansion of the integral above and converges on the same region. On the

other, (A-15) implies there exist constants @i, b, e, Vi such that

1
Ai(e) = aie™ + bie % + ¢ log -t Vi +oe) . (A-18)




We would like to show that the following Taylor series of VV(z) is convergent:

Viz)=> V', (A-19)
Since the series in (A-17) converges, there exists a constant C such that
Ym : [An(e)f < Cr™ (A-20)

From (A-18) and the fact that a;, b;, ¢; are all determined by 7 (which is analytic) we

have
1
Vin| < 1Am(&)] + lamle ™ + ol + | log - tlo(e| < Giri™, (A-21)

for some Cy,r; > 0. This proves that (A-19) is convergent on a slightly smaller

neighborhood of 25 = 0.

Now consider the following map

® : Metlyy x SU(N) — SE(N), (A-22)

P(7, k) =®(g,+ h) = Ricy +ng + (Jg)*Bgﬁ) (g), {A-23)

defined as in (2.2.4), where w is used to denote the analytic subset of the corresponding
sets. Let V denote the analytic variety ®~1(0) N{Ricy, < 0} and for any fixed € N ,
consider V(z} as a functional on V. We show that this functional is analytic on V.
Thus let g, = g+ sh be an analytic variation of g which is Einstein to the first order
with the induced boundary metric Ys = ¥ + sh®, where 2@ is an analytic 2-tensor
on the boundary. The geodesic defining function ps associated to -y, is now analytic
in 5. Let’s write V(z, s) for V{(z) to show its dependence on gs. We would like to
show that V(z, s} depends analytically on s as well. Going back to the definition of

V(z,s) in equation (A-15), by taking m derivatives with respect to s we have
0 ) (m) 1
/ S (z, p, s)dp = (g, s)e ey (x, s)e2 4. L) (%, 5)log =+ V™ (2, 5)+o(c) .
P €
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The terms ¢4, ¢, are analytic in s since the variation of the boundary metric, A®,
is analytic and these terms are determined by the boundary metric. Now a similar
argument as before shows that there are constants C,72 such that |[V™)(z, )| <

Cary™ which implies that V(z, s) is analytic in s.

Now one caleulates

im © = im1 T, 8)dvol., — T 0
W) =lim 2V (g =~ Vi) = iy 2( [ Vo, )uok, | Vi@, 0o,

.1 / Nz
=/, lim ;(V(a:, s/ det(1a)i; — V(z,0)/ det();;)d

- /a N(d—dS-V(m,s) + :21-(7, A®Y)dvoL, (A-24)

On the other hand from (A-3) we have dV(h) = ¢ fonlow + 7, hE®)dyol,,. Com-

paring this with the above, we conclude that
1 1
YVt gy =1l +rg)

where VV denotes the gradient of V on the space of analytic tensors on the boundary
defined by (VV, (@) = £V (x,s). Since V is analytic, VV is an analytic 2-tensor and
then the above equation implies that 9(4) 1s analytic as well, since -, and consequently } ;

T(g); 18 analytic. n Sl

Remark. Propositions A-1 and A-2 are valid in all dimensions. The proofs are i

the same with gy replaced by G- i

A.2 Calculations .!;iij

IEN=MxS" and g=h+ u?df?, then the curvature quantities of (N, g) and E

(M, k) are related as discussed below. Take an orthonormal basis {e;} for Ti, 9 M. Let i

L be the unit tangent along the S! orbits at (z,8). Then {e;}U {L} is an orthonormal i

basis for T, /N, For any & S, M x {8} is a totally geodesic hypersurface in N
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and so we have the following (the tilde expressions refer to (N, g))

Vel =0, ’ (A-25)
Vies =%N , ; (A-26)
Vil =—Vu/u . (A-27)
These imply the following
e L, I ¢;) = —DPu(eq ;) fu (A28)

which is essentially (1.1.6), if Ric — —4g, which is the case from here on. Taking
trace of the above equality gives Au/u = —Riey(L, L) = 4.

If f is a C? function defined on M » e can extend f to N by defining f(z, §) =
f(z). A simple caleulation yields

Af = Af +(Vf, Vuju) . - (A-29)

Also if w > 0, one verifies that Alogw = (Aw) frw ~ }(ﬁ’w)/w[z and so the above

equation for f = logu becomes

Alogu=4 . (A-30)

If p is a geodesic defining function for the Einstein manifold (N, g) and g = pg,

one has
Ricy = —3(9;;’—") - (A—;’-’—Bg . (A-31)

Taking trace of the above equation gives 5y = —8(Anp)/p, where 5y is the scalar
curvature of (¥, 7). A similar calculation gives Sy = —6(Aup)/p for the scalar

curvature of (M, A). These two equations imply
- (vp :vf/z> = D2P(I‘}I_’) = tTN'sz — tTMD2p == (gM/6 - §N/8)p ) (A"Sz)

where L = L/p is the unit tangent vector with respect to the bared metric, On the
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other hand Vu = —u(V;L) = —up? (Vi)
imply

—upVp. This and the above equation

2(m) (V0 F(ou)
=(Vp,uVp) +(Vp , pVu)
=u+(Vp,-puViL —u¥p)

=p2u(§M/6 - §N/8) . (A—33)

Next, we prove the following identity for the scalar curvature of the compactified
metric
D22
5, = S (A-34)
p

This is the 5-dimensional version of [1, Prop. 1.4]. The Ricatti equation for the flow
lines of Vp ig

H' + AP + Ric(Vp,Vp) =0, (A-35)
where H = ¢r A = Ap and H' = (H,Vp). Replacing the Ricei curvature term by
using (A-31) and then dividing by g leads to

@j N ID:pP _ % —0. (A-36)

On the other hand (Ap)'/p = (Ap/pY + Ap/p?. This and the above equation imply

(Ap/py +'J£:p—lz =0, (A-37)

which is equivalent to (A-34), since Aplp = —5y/8.
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A.3 Non-degenerate Einstein metrics

Definition A.3.1. Lichnerowicz Laplacian of a symmetric 2-tensor A is given
by
Aph=D*Dh—r,oh—hor, — 28,4 (A-38)

where D denotes the covariant derivative, D* is its adjoint, r; is the Ricci curvature

and fﬁg Is the action of curvature tensor on symmetric 2 tensors given by

(Bh)(X,Y) = D TRX e)e;, Y) (A-39)

where ¢; form an orthonormal basis. (1
In case of Einstein g with Tg = —ng, the formula (A-38) becomes

Ap=D"D—2n -2k, . (A-40)

Lichnerowicz Laplacian is related to the variation of the Ricei curvature in direction

of & through the formula
sy 1 . 1
rh = §ALh — &;(0gh) — §ng(trgh) . (A-41)

Definition A.3.2. An Einstein metric g with Ric, = —ng is called non-
degenerate if the operator

P=A;+2pn ) (A—42)
has trivial L? kernel on the space of trace-free symmetric 2-tensors, |

Graham and Lee [18, 1991] proved that if the conformal structure is close enough
to that of the round sphere, then an Einstein ﬁlling exists, which is unique amongst
Einstein metrics close to the Poincaré metric. Biquard (11, 2000] genera,lized this
result to arbitrary non-degenerate Einstein manifolds. Lee [23, 2001] proves the fol-

lowing stability result;
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Theorem A.3.3, (Lee [23]) Let N be the interior of a smooth compact (n +

1}-dimensional manifold-with-boundary N, n > 3, and let g; be a non-degenerate

Einstein metric on N that is conformally compact of class Ch8 with 2 < 1 Ln-1

end 0 < 8 < 1. Let p be a smooth defining function for BN, and let v = pgolan.

Then there is a constant € > 0 such that for any CY Riemannian metric v on ON
with fly — wl| < €, there ezists an Finstein metric g on N that has 7y as conformal

infinity and is conformally compact of class C'8.

The non-degeneracy condition in the above theorem holds if the sectional cur-

vature of gy is non-positive.
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