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Abstract of the Dissertation

A homology and cohomology theory for real
projective varieties

by
Jyh-Haur Teh
Doctor of Philosophy
in
Mathematics
Stony Brook University

2005

In this tﬁesis we develop homology and cohomology theories which
play the same role for real projective varietics that Lawson ho-
mology and morphic cohomology play for projective varieties re-
spectively. They have nice properties such as the existence of long
exact sequences, the homotopy invariance, the homotopy property
for trivial bundle projection, the splitting principle and the natu-
ral transformations to singular theories. The Friedlander-Lawson
Moving Lemma is used to prove a duality theorem between these

two theories. We consider them as extensions of singular homology
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and cohomology respectively, and we extend the classical Harnack-
Thom Theorem to get a comparison theorem between the rank
of Lawson homology groups with Z»-coefficients and the rank of
the groups in this homology theory. We define signatures in mor-
phic cohomology and state the Morphic Conjecture which includes
the Grothendieck Standard Conjecture over C as a special case.
We show that this conjecture implies an extension of the classical

Hodge Index Theorem to morphic cohomology.
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Chapter 1

Introduction

The study of solving polynomial equations dates back to the very beginning of
mathematics. General algebraic solutions of a given equation was the original
goal. This goal was achieved for equations of degree 2, 3 and 4. But it was
proved by Abel and Galois that it was impossible for equations of degree 5.
Galois theory was created several decades later to study some properties of the
roots of equations. At the same time, people started to consider the more com-
plicated problem of solving polynomial equations of more than one variable.
The zero loci of polynomial equations, which are called algebraic varieties, are
basic source of geometry and exemplify many important geometric phenom-
ena. In this thesis, we study- the properties of projective varieties which are
the zero loci of homogeneous polynomials in projective spaces. Projective va-

rieties, especially nonsingular ones, have wonderful properties such as: Hodge

decomposition, Lefschetz decomposition, Weak Lefschetz property. The struc-




ture of projective varieties is so rich that even though a lot of properties have

been discovered, their theory contains fundamental problems which are still
unsgolved. The most important of these is the Hodge Conjecture which claims
that the rational (p,p)-cohomology classes of a nonsingular projective variety
can be reprcsented by algebraic cycles with rational coefficients. Algebraic
cycles are some finite formal sum of irreducible subvarieties with integral coef-
ficients. If this conjecture is true, it implies the truth of many others, including
the famous Grothendieck Standard Conjecture. [n examining the proof of Weil
Conjecture for curves and abelian varieties over finite fields(by Weil himself),
Grothendieck was led to state his two Standard Conjectures which imply the
Weil Conjecture for smooth varieties defined over a finite field. There are anal-
ogous conjectures for smooth complex projective varieties. One of them, the
Hodge Standard Conjecture, which asserts that there is an abstract version of
the Hodge index theorem for the Q-vector space of classes of algebraic cycles,
is a consequence of hodge theory and Lefschetz decomposition over C.

Let X be a smooth projective variety of dimension n and G?(X) be the sub-

space of H%(X;Q) which is generated by algebraic cycles. By Hard Lefschetz




Theorem, we have the following commutative diagram:

HY (X, Q) 2= 1% (X Q)

! i

CI(X) C" ¥ (x)

where L% is an isomorphism for j < [2]. The Grothendieck Standard
Conjecture claims that restricting L% gives an isﬁmorphism between CV(X)
and C™7(X), or equivalently that the adjoint operator A maps Cm3{X) into
C¥(X). If the Hodge Conjecture is true, this will follow from the Hard Lef-
schetz Theorem, since then C9(X) = HM(X) and CV (X)) = HVIn3(X).

The group Z,{X) of p-cycles of a projective variety X encodes many prop-
erties of X. For many decades, since Z,(X) is a very large group in general,
quotients of Z,(X) were studied instead. For example, the quotient of Z,{X)
by rational equivalence is the Chow group CH,(X) on which the intersection
theory of algebraic varieties can be built [Fu].

For a complex projective variety X, the group Z,(X) has additional natu-
ral structure. According to the Chow Theorem, there is a canonical way, by
means of Chow forms, to give %,4(X), the set of effective p-cycles of degree
d, the structure of a projective variety. Thus €, 4(X) has a canonical analytic
topology. Since Z,(X) is the group completion of the monoid []%pq(X)}, it

dz0
inherits a topology from this analytic structure which makes it a topological




group. From this point of view, methods from topology, especially from homo-
topy theory, come into play. The \ltitle of the Hirzebruch’s book, " Topological
methods in algebraic geometry”, perfectly describes the way we study projec-
tive varieties via their cycle groups. The starting point of this approach is the
1,awson Suspension Theorem, which says that there is a homotopy equivalence
between Z,(X) and Z,. (X ), where %X is the projective cone over X (or
more topologically the Thom space of the O(1) bundle over X). It is then
natural to define the Lawson homology group L,H,(X) = m,_2,Z5(X), the
(n — 2p)-th homotopy group of Z,(X). When p = 0, we have by the Dold-
Thom Theorem that LoH,(X) = H,(X;Z) (the singular homology of X).
Thus we view the Lawson homology as an extension of singular homotogy for
projective varieties. This point of view will be strengthened after we develop
a corresponding theory for real projective varieties and extend some classical
theorems from singular homology.

In the past 15 years, Lawson, Friedlander, Mazur, Gabber, Michelsohn,
Lam, Lima-Filho, Walker and dos Santos have discovered many properties
of Lawson homology and have related it to other theories like Chow group,
higher Chow group, motivic cohomology and algebraic K-theory. Notably, the

morphic cohomology was established by Friedlander and Lawson, and a duality

theorem between morphic cohomology and Lawson homology was proved by




using their Moving Lemma [FL2], [F1.3]. Tt has been shown that Lawson
homology and morphic cohomology groups admit limit mixed Hodge structure
[FM], [FL1].

Algebraic topology also reaps the bounty of this harvest. Since

7ol = )

= W__l) = K(Z,2n)

where K(Z,2n) is the Eilenberg-Mac Lane space, we are able to represent
many Filenberg-Mac Lane spaces by more concrete algebraic cycle spaces. For
example, consider the natural embedding ¥?(P*) C €7(P") of the Grassman-
nian of codimension-q planes into the limit space F(IP7) = limg 00 'ia”g(]}”;‘) of

codimeﬁéion-q cycles of P*. Letfing n go to infinity, we get a map
BU, - K(Z,2) x K(Z,4) x --- x K(Z,2q)

where BU, = litn,_.@?(P"} is the classifying space for the unitary group
U;. A beautiful theorem by Lawson and Michelsohn [LMi] says that for each

g > 1, this map induces an isomorphism

Z 2 mag(BU)Y =5 moy(K(Z,ev)) = Z
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which is multiplication by (¢ — 1)! where K(Z, ev) = [1°, K{(Z,2¢). Our next

exarnple is from morphic cohomology.

e There is a join pairing in algebraic cocycle groups which induces the cup

produet in singular cohomology.

s The Chern classes in morphic cohomology map to the Chern classes in

singular cohomology.

e The cocycle group Z™(X) of a m-dimensional smooth projective mani-

fold is homotopy equivalent to the mapping space Map{X, K(Z, 2m)).

The Fundamental Theorem Of Algebra says that a degree d polynomial in
one variable over C has d zeros in complex plane counting multiplicities. A
polynomial f of degree d over R need not have d real zeros, bﬁt if we take
Z{f) to be the set of d zeros of f, and Z(f)™ to be the set of nonreal zeros
of f counting multiplicities, we find that if we define R(f) = Z(f) — Z(f)™,
since nonreal zeros appear in conjugate pairs, the cardinality |R(f)| of R(f)

and the degree d have the following relation:
|R(f)| = d mod 2

This is the Reduced ‘Real Fundamental Theorem of Algebra.

The principle is that everything in the complex world has a counterpart in
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the real world with Zy-coeflicients. Over C, the utility of (co)homology theory
with Z-coeflicients is related to the fact that the zeros of any polynomial can
be counted. But over R, we can only count the zeros modulo 2. The bridge
from the complex world to the real world passes to a quotient of the set of
elements invariant under conjugation. The reduced real cycle group is defined
as

Z’P(X )R

RP(X) = ZP(X)‘“’“

where X is a real projective Ve}riety, Zp(X)g is the set of p-cycles which are
conjugate invariant and Z,(X)* are cycles of the form ¢ + ¢. This group
first Eippeared in the thesis of Lam where he proved the Lawson Suspension
Theorem for reduced real cycle groups. We develop this idea further to get a
homology-like theory called reduced real Lawson homology and a cohomology-
like theory called reduced real morphic cohomplogy. By using the Moving
Lemma of Friedlander and Lawson, we prove a duality between them. Under
the natural transformations constructed in Chapter 4, this duality is compat-
ible with the usual Poincaré Duality with Zj-coefficients. As with morphic
cohomology, the join pairing of cycles induces a cup product in the reduced
real morphic cohomology and after passing to singular cohomology Wit—h Zig-

coefficients it becomes the usual cup product.

The Reduced Real Fundamental Theorem of Algebra. is a very special case




of Harnack-Thom Theorem proved in Chapter 6. The classical Harnack-Thom
Theorem compares the respective sums of Zy-betti of X and ReX, where X is
a real projective variety and ReX is the set of real points of X. We extend this
comparison to Lawson homology with Z,-coeflicients and to the reduced real
Lawson homology. When the cycle group is the zero c¢ycle group, we recover
the classical Harnack-Thom Theorem.

In the last chapter we define signatures in morphic Cohomology. We dis-
cover that there is a fundamental conjecture, called the " Morphic Conjecture”,

which implies the Grothendieck Standard Conjecture. With the assumption

of the Morphic Conjecture, we prove the Hodge Index Theorem for morphic

cohomology, which gives the classical Hodge Index Theorem in the case of
top dimension. We would like to establish a theorem analogous to the Rokhlin
First Theorem in order to relate morphic signatures to the Euler characteristic
in redﬁced real Lawson homology of X. We are unable to do this currently.
Perhaps what is needed is a cobordism theory for morphic cohomology.

The interplays between the real world and complex world are very inter-

esting. We hope that our study of real projective varieties would further our

understanding of projective varieties in general,
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Chapter 2

Reduced Real Lawson Homology Groups And

Reduced Real Morphic Cohomology Groups

2.1 Topology Of Reduced Real Cycle And Co-

cycle Spaces

Let V be a projective variety in CP". An r-cycle on V is a linear combination
of irreducible subvarieties of the same dimension = in V with Z-coeflicients.
Two subvarieties of V meet properly if the codimension of each component of
their intersection is the sum of the codimension in V' of that two subvarieties.
We say that a cycle ¢ is in reduced form if ¢ = > n;V; where n; are nonzero
integers and V; # V; if 4 # 7. When we say that a cycle ¢; meets another cycle

¢z properly we mean that in their reduced forms, each component of ¢; and ¢

meets properly.
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Throughout this thesis, a real projective variety V' < CP" is a complex
projective variety which is invariant under the conjugation.

Let us define some notation:

Definition Let X,Y be two projective varieties and the let the dimension of
X be m. Denote the group of all r-cycles of X by Z.(X) and by Z,.(Y)(X) the
subgroup of Z,n(X x Y') consisting of all cycles which meet = x ¥ properly
in X x Y for all 2 € X. We call Z.(Y)(X) the dimension r cocycle group of
X with values in V.

Suppose now X and Y are real projective varieties. We will write the
conjugate of a point # € X as T. The conjugation induces a map on cycle
groups. A subvariety V C X x Y is real if and only if V=V where V =
{(Z,)(z,y) € V}. For f € Z(Y)(X), we use f(z) to denoté the cycle-
theoretical fiber of f under the projection p : X x ¥ — X over z, that is,

f(z) = f ep~*(z) where o is the intersection product of cycles. Define flz)=

F(@). If f is real, then f(Z) = f ¢ p~(T) =Fepi(m) = fep~'{z) = f(z) for
allz € X and if T = f, for (z,y) € f, 7 € f(z) = f(Z). Thus [ is real if and
only if f = f. This notation is convenient when we think of f as & map from
X to the cycle space of Y.

Let Z,.{X)g be the subgroup of Z,(X) consisting of cycles invariant under

conjugation and let Z.(X)® = {V + V|V € Z.(X)} be the averaged cycle

10




group. We define the reduced real cycle group to be

where

Z’F‘(Y)(X)R = Z‘T‘(Y)(X) N Zr+m(X X Y)R:

Zo(VHX)™ = Z(Y)(X) N By X X V).

A topological group G is a group which is also a Hausdorfl space and for
(g.h) € G x G, the product {g,h) — gh~! is a continuous map. For a
projective variety X, let €, 4(X) be the set of degree d r-cycles of X. By

Chow Theorem, % 4(X) has a structure as a projective variety. Thus we may

-consider %,4(X) as a complex projective variety with the analytic topology.

Let K, y(X) = [l (€ra(X) x %.4,(X))/ ~ where the equivalence relation
di+dz2 <d

is given by (a1, b1) ~ (ag,be) if and only if @y + by = az + by. K, 4(X) inherits

topology from this quotient which makes K. 4(X) a compact Hausdorff space.

11




And from the filtration,

K’F’,I(X) C KT,Q(X) Coee= ZT(X):

we give Z.(X) the weak topology which means that a subset A C Z,(X} is
closed if and only if ANK, 4(X) is closed for all d. This topology makes Z,.(X)
a topological abelian group and we will call this topology the Chow topology.
In general, let

XicXp,cXqCc- o= X

be a chain of closed inclusions of topological spaces. We define the topology

on X by declaring a subset C' C X to be closed if and only if its intersection
C' N X, is closed for all ¢ 2 1. This topology is called the weak t.dpology with
respect to the subspaces.

The homotopy types of Z.(P*)g and Z.(F")** were computed in [LLM]
which are quite complicated but the homotopy type of R,.(IP*) is much simpler.
In the following. we will see that the reduced real cycle groups are closely related
to the singular homology with Zg-coeflicients of the real points. These are some

of the reasons that we work on the reduced real cycle groups.




Definition The filtration
Ko (X) € Knp(X) C o = Zu(X)
is called the canonical r-filtration of X and if X is a rcal projective variety,
Ket(X)r C Koo(X)r C oo = Zp(X)r

is called the canonical real r-filtration of X where K, ;(X)r is the subset of

real cycles in K, ;(X) and
Ko (X)™ C Ko X)® €0 = Z(X)™

is called the canonical averaged r-filtration of X where K, ;(X)* is the subset
of averaged cycles in K,.;(X). If a filtration is defined by a sequence of compact

sets, this filtration is called a compactly filtered filtration.

We will assume that all varieties considered in this paper are normal. For
V e Z.(Y)(X), we may view V as a cycle in X x Y with equidimensional
fibers over X or a continuous morphism from X to Z,.(Y). By giving compact-
open topology to the set of morphisms M(X, Z,(Y')), Friedlander and Lawson

proved that it is homeomorphic to Z.(Y)(X) by using their graphing con-

13
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struction. This is their viewpoint in [FL2]. In the following, we will intertwine

these two viewpoints very often.

Proposition 2.1.1. Suppose that Y is a subvariety of a projective variety X.

Then Z.(Y) is a closed subgroup of Z,(X).

Proof. This is because Z,(Y) N K, 4(X) = K, 4(Y) which is closed in K, g(X).

[

A filtration of a topological space T by a sequence of subspaces

ToC Ty G C Ty

is said to be locally compact if for any compact subset K C 7', there exists

some ¢ > 0 such that i C 7.

Lemma 2.1.2. Suppose that X is a Housdorff space and the topology on X is

given by the filtration

ToCcTyC - CTyoo=X

by the weak topology. Then this filtration is a locally compact filtration.

Proof. Let K C X be a compact subset. Assume that K is not contained in

any T, then we can find a sequence {;};c; where z; € (T} —Ti1})N K and I is

14
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a sequence of distinct integers which goes to infinity. Let U, = X — {2 }ier isth
Then U T = Ty — {x;]i < 4,7 # k} which is open for all . Thus Uy is an
open subset of X and K C U;c;U, but we are unable to find a finite subcover
which contradicts to the compactness of K. So K has to be contained in some

T.. n

Proposition 2.1.3. For real projective varieties X, Y, Z,(Y)(X)g and Z,(Y){X)®

are closed subgroups of Z,(Y)(X). In particular, %.(Y)r and Z,(Y)*® are

closed subgroups of Z,.(¥).

Proof. Define ¢ : Z(Y)(X) — Z(Y)X) by ¥(f) = F — f. Since ¢ is
continuous and Z.(Y)(X)g is the kernel of ¢, Z,.(Y){X) is closed. Suppose
that { f,,-,r-i— fn} is a sequence in Z,(Y)(X)® which converges to ¢. Since the
canonical averaged r-filtration of X is locally compact, by Lemma 2.1.2,
A = {fa + fa} U {c} is contained in K, 4(X)* for some d > 0. Therefore
there exist g, € K, 4(X)* such that g, + gn = fu + f, for all n. Let {g,,} be
a convergent subsequence of {gn} which converges to a cycle g. Then {gy,}
converges to g. Therefore g, + gr; converges to g+ g which implies ¢ = g+ 7.
Thus Z,(Y)(X)® is closed. Take X to be a point, it follows immediately that

Z+(Y)r and Z,(Y)™ are closed in Z,(Y). O

Corollary 2.1.4. For real projective varieties X, Y, R.(Y)(X) and R.(X) are

topological abelian groups.

15
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Proof. This is from the general fact that the quotient of a topological group

by any of its closed normal subgroups is a topological group. (1

Proposition 2.1.5. Suppose that G is a topological group and
KicKycCo=0

is a filtration by compact subsets of G which generotes the topology of G as
above. Let H be a closed normal subgroup of G and ¢ : G —— G/H be the
quotient map. Denote the restriction of g to Ky by qr and My = q(Ki). We

define a topology on My by making qi a quotient map, for all k. Then
1. My is a subspace of Mgy for all k.

2. the weak topology of G defined by the filtration
MicMyC-=GfH

cotncides with the quotient topology of G/H.

Praof. 1. If C C My, is a closed subset, since My, is compact, C' is also

16




compact. From the commutative diagram

b

Ky —> Kip

l‘?k l‘“’:‘l'l

My~ My

we have i71((C) = qki“lq,c—il(C) which is compact thus closed. So 7 is

continuous. Since My is compact and 1 is injective, it is an embedding,

2. Let ¢ be a closed subset of G/H under the quotient topology. Then
g~ '(C) is closed which means ¢~1(C) N K}, is closed for all k g (C'n
My) = ¢ (CYNg Y MRN K, = ¢ HC)N Ky, is closed, so N Myis closed
f01,"7 all &£ thus ' is closed under the weak topology. On the other hand,
agsume that (' is a closed subset of G/ H under the weak topoiogy, that is,
CNM, is closed for all k. ¢~ (CYNKy = ¢~ H(CNME)NK, = g7 (CN M)
which is closed for all &, thus € is a closed subset in the quotient topology.

d

Suppose that X is a real projective variety and Y is a real subvariety of

X. Denote

Z(X)™
Z'r(X: Y)m’ = 7 ((Y))a”j




Corollary 2.1.6. Suppose that X is a real projective variety and Y is a real

subvariety of X. Consider the canonical real and averaged filtrations of X :
Kr,l(X)IR C KT’Q(X)]R Covne == ZT(X)]R

Ko (XY™ C Kp(X)™ € oo = Z,(X)™

and the quotient maps q @ Z(X)g — R(X), ¢2: Z:(X)r — Z,(X,Y ),

g3t Zp (X)W — Z(X, Y)W, Then

1. for allk, i{ K p(X)n), (K u{X)r) and (K, (X)) are subspaces of

@ (Ko 1(X ), e Krp1(X)R) and g3(K, 4 1(X)%) respectively.

2. the weak topology of R.(X), Z.(X,Y ), Z.(X,Y )™ induced from the fil-

trations above coincides with the quotient topology on them.

Proposition 2.1.7. For a real projective variety X, let ReX denote the set

of real points of X and let Zo(ReX) denote the subgroup of Zo(X) generated

by real points of X. Then

1. Zp(ReX) is a closed subgroup of Zo(X)g.

Zo(ReX)

2. Ro(X) is isomorphic as a topological group to T AT OR

Proof. 1. Since X is compact, the quotient map from X x -+ - x X (k-times)

to the symmetric product SP*(X) is a closed map. ReX x -« X ReX

18




is a closed subset of X x -+ x X thus SP*(ReX) is a closed subset of

SP*(X). Consider the folowing filtrations:
ALC Ay C - = Zo(ReX)
where A, =[], SP*(ReX)} x SP*(ReX)/ ~ and
Bi C By C - = Zp(X)

where B, = [[}_, SP*(X) x §P*(X)/ ~ and ~ is the equivalence rela-
tion from the group completion. The topology of Zy(ReX) and Z,{X)
are defined by these two filtrations respectively. Since SP*(ReX) and
SP*(ReX) are cémpaot, Ay is closed in B,. Observe that Zg{ReX) N
B, = A,, thus Zy(ReX) is a closed subgroup of Z;(X) and hence a

closed subgroup of Zp(X)g.

. Let ¢ : Zo{X)r — Ro(X) be the quotient map and 7 : Zg(ReX)
Zy(X)r be the inclusion map. Then goi : Zp(ReX) — Ro(X) is a
continuous map and 2Zy(ReX) is in the kernel, thus we get a contin-

uous map P : %&Z—f{% — Rp{X). Since each class in Ry(X) can be

19
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represented uniquely by cyele of real points modulg 2, 4 is bijective. Let
KiCKyC--- :ZO(X)R

be the filtration which defines the topology of Zo(X)g and Ty — Ki N

Zo(ReX). Zo(ReX) is a closed subset of Zo(X)y and K; are compact,

thus 7} are compact for all 4. Since 1 is bijective, (T + 2% (ReX)) =
: o n Zy(ReX

K; + Zo(X)™ for each ¢ >> 0. For a closed C C ﬂﬂ_ﬁg%, H(C) N (K; +

Zo(X)*) = p(CNTi+2Zp( Re X }} which is closed, thus 4~ is continuous.

Then it is easy to see that ¢ is a topological group isomorphism.

O

Definition For any f € Z,(X), let f = Zief n;V; be in the redl;ced form.

Tet

RP(f): Z V5

which is called the real part of f. Let
== {i € I|V; is not real and V; is also a component of f}

and for ¢ € J, let m; be the maximum value of the coefficients of V; and V.




Define the averaged part to be

AP(f) =Y " my(Vi + V)

ieS

and the imaginary part to be

LP(f) = f — RP(f) — AP(f).

Then f € Z,(X)g if and only if IP(f) = 0.

Proposition 2.1.8. Suppose that X,Y, 7 are real projective varieties and Y

is a subvariety of Z, then !

1. the inclusion map i : Z,(YHX) — Z.(Z)(X) induces a closed embed- 4

ding i : Ry(Y)(X) — R.(Z)(X) forr > 0.

2. the inclusion map i : Z,(Y)™ — Z,(Z)* induces a closed embedding i

T Zu(2, Y)Y < Zo(Z,Y )R for v > 0. |

Proof. 1. Since the inclusion Z, (Y )}{(X) <y Z(Z)(X) is an embedding, the

restriction

i Z(YYX)r = Z(2)(X)m
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is also an embedding. Since Z,.(Y)(X)® ¢ Z.(Z)(X)™, { induces a map

i: R(Y)(X) — RA(Z)(X).

£ fe Z(Z2)(X)™ n Z(Y)(X)g, then RP(f) = 2g for some g &
Ze(Y)(X)r. Thus f = 29 + AP(f) € Z,{V}{X)®™ and therefore 7 is

injective.

Let A C Ay C - = Z(YNX), By C By C -+ = Z,(Z)(X) be the i

canonical r-filtrations. Let q1, g2 be the quotient maps from Z,(V)(X)g i

Z2(Z){X)r to R (Y)(X) and R,(Z){(X) respectively. Let C = ¢1{As), Dy =
(B} for all k. Since i(Ay) C By, i(Ci) C Dy and from the def-

inition of canonical filfrations, i (D) C Cj. For any closed sub-

set W of R.(Y)(X), W N C, is compact and by the injectivity of 3,
W N Cy) = (W) Ni(Ch) = (W) N Dy which is compact and thus
closed. By Corollary 2.1.6, 7! is continuous. Take W = R,(Y)(X), we

see that ¢(R,(Y)(X)) is closed in B, (Z)(X).

2. Since the inclusion i': Z,(Z)*® < Z,(Z)g is an embedding and i(Z,(Y)®) C i

Z(Y)z , it induces a map 7 : Z(Z,Y)® < Z(ZY)e. If i(f +

Z(Y)™) = f+ Z(Y)r = Z,(Y)g, then f € Z.(Y)g. This implies

RP(f) € Z,(Y)r. But f is also an averaged cycle, so that means
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RP(f) = 2g for some g € Z,(Y)g and therefore f = 29 + AP(f) €

Zp(Y)*™. Hence, ¢ is injective. For the rest, apply Corollary 2.1.6 and
follow the argument above.

(]

From this Proposition, when we need to take quotient, we will abuse of no-

tation and write 2’;@8‘3 and Z‘"((sz%)ﬂ, for the quotient of R, (Z)(X), Z.(Z,Y)r

by the images of 7 in R.(Y)(X) and Z,(Z,Y)* respectively.

2.2 "Relative Theory And Long Exact Sequences

We will .E_afpply the Borel construction to define the 1'edqced real Lawson homol-
ogy and reduced real morphic cohomology for quasi projective varieties. Let
us recal] the definition of Borel construction and some properties that we are
going to use later. For the construction of classifying spaces and some basic
properties, we refer the reader to [Ben|. In the following, we assume that every

topological group has the homotopy type of a CW-complex.

Definition Suppose that G is a topological group acting on a topological
space X. The Borel construction is the orbit space B(X,G) = (X x EG)/G

where £ is the universal bundle of G.
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Propesition 2.2.1. 1. The projection p : B{(G, X} — BG 15 a fibration

with fibre X where BG is the classifying space of G.

lp

BG
2. Suppose that ¢ : H — G is a topological group homomorphism with
closed image. Then the projection p : B(G,H) — G/H is a fibration

with fibre B(Ker¢) = EH/Kerg.

EH/Ker¢g — B(G, H)
P

G/H

In particular, when ¢ is injective, B(G, H) is homotopy equivalent to

C/H.

3. Suppose that we have a commutative diagram of topological group homo-

norphisms:

& :

i H, P1 Gy
o |m

HQ—&Gg

Then ¥, 1, induce a maep B(is, 1) : B(Gy, Hy) —— B(Ga, Hy). When




1,10 are homotopy equivalences, By, 41) s also o homotopy equiva-

lence.

4. Suppose that F: I x Hy — Hy, F' : I x G — (5 are homotopies

between Fy = 11, I = ] and I} = g, F| = 1, respectively where each

By, F} are group homomorphisms. If the Jollowing diagram commutes:

H -2 q, i

!
lFt " ij k

Jor each t € I, then B(yy,91) is homotopic to B(1, v}, )

Proof. (1) is a basic property of Borel construction. For (2), it is not difficult to

see that the fibre is EH /ker¢. If kerd is a point, since EH is contractible, from
the induced long exact sequence of that fibration and Whitehead ‘Theorem, we
get that B(G, H) is homotopy equivalent to G/H. For (3), consider the long

exact sequences on homotopy groups induced from the two fibrations

e —+7Tn(G1) ——*ﬂn(B(Gi,Hl)) —+7Tn(BH1) —
J/%* lB("pzu"f’l)t !(B“Pu
rrr = mn(G2) — 7, (B(Gy, Hy)) — o (BHy) — -

and then use the Whitehead Theorem which implies B (1, v1) is a homotopy

equivalence. For (4), by (3) £, F{ induce a map B(F}, F}) and thus F* and F"
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induce a map B(}’,F) : I x B(Gy, H) — B(Ga, Hy) which is a homotopy

between B(Fy, Fo) == B(3s, 1) and B(Fy, F{) = B(yy, ). 1

Definition Suppose that X, Y are real projective varieties and the dimension
of Y is n. We define the codimension ¢ real cocycle group on X with values in

Y to be

R(YNX) = B (Y)(X),

the codimension ¢ reduced real cocycle group of X to be

Ro(P*)(X)

Rt(X) = #&(P*—l)(X)'

To define relative reduced real morphic cohomology, we need to show that

RY(X) acts on Rf(Y).

Proposition 2.2.2. Suppose that X, Y are real projective varieties and Y is

a subvariety of X. Then there is a topological group homomorphism

¢: RH(X) — RY(Y).
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Proof. Consider the map

Zo(PY(X) — Zo(P')(Y)

defined by intersecting with ¥ x P in X x P*. Check the dimension we sce

~ that all cycles in Zy(P*)(X) intersect ¥ x P* properly and thus the map is

continuous. We have a commutative diagram:

Zo(PYX)™ —— Zo(P)(X)r — Ro(PH)(X)

Zo(BYY)™ ——= Zo(P*) (Y ) — Ro(P*)(Y)

where the maps in the middle are restriction of the map defined by intersecting
with ¥ x P!, Thus it induces a map from Ro(P)(X) to Ro(P*)(Y). And from

the following commutative diagram:

Ro(P"=1)(X) — Ro(P')}(X) ~— R'(X)

| |

Ro(B*=1)(Y) —= Ro(P")(Y'} —— RY(Y)

we see that it induces a map from R!(X) to RYY). O

Definition Suppose now Y is a subvariety of X. Define the codimension ¢
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relative reduced real cocycle group to be

RU(X|Y) = B(R'(Y), R'(X))

by the map from Proposition 2.2.2 and define the dimension p relative reduced

real cycle group to be

i
By (XIY) = 2.

We say that a quasi projective variety U is real if there exist real projective

varieties X and ¥, Y C X such that U/ = X — Y. We define the p-th reduced

real cycle group of U to be R,(U) = R,(X|Y) = ;’;E};; . We will show later

that for another pair of real projective varieties X', Y" where Y’ < X' and -':-

U=X -V Eg; is homeomorphic to ﬁi‘("ﬁ)} :

Proposition 2.2.3. 1. RYX) is homotopy equivalent to B(By(P*)(X), Ro(P1){( X)) i
2. Ry(X|Y') is homotopy equivalent to B(R,(X), Ry(Y)). ‘t

Proof. By Proposition 2.1.8, Ro(P*1)(X) < Ro(P*)(X) and R,(Y) — R,(X) )

are injective. Thus by 2.2.1, R*(X) is homotopy equivalent to B(Ry(PH)(X), Ro(P*1)(X))

and 1,(X|Y) is homotopy equivalent to B(R,(X), R,(Y)). O

Now we are ready to define reduced real Lawson homology groups and

reduced real morphic cohomology groups. I
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Definition We define the p dimensional reduced real Lawson homology group

of a real projective variety U to be

RL,H,(U) = m, p(Rp(U)),

the codimension ¢ reduced real morphic cohomology group of a real projective

variety X to be

RLHH(X) = o(BY(X)) = mer(B(Ro(P')(X), Bo(P* (X)),

the reduced real bivariant ¥Y-valued morphic cohomology to be

RIIHMX;Y) = m p RI(Y)(X).

Suppoée now X,Y are real projective varieties and ¥ C X. We deline the

relative reduced real morphic cohomology group to be

RIMM(X|Y) = moy(RUXIY)) = ms( B(RI(Y), BY(X)))

and the relative reduced real Lawson homology group to be

RLH(X[Y) = finp( Rp(X[Y)) = #np(B(Bp(X), Hu(¥)))-




Theorem 2.2.4. {Long exact sequences) Suppose that X, Y are real projective
varieties and Y C X. Then we have the long eract sequence in reduced real

Lawson homology:

. — RE,H,(Y) — RE,H (X)) — RLH(X[Y) — RLH, 1(Y) —» -

and the long exact sequence in reduced real morphic cohomology:

s RIPER(Y) — RIMHMX|Y) — RIFH*YY(X) — RIIHFY(Y) — -+

Proef. By Borel construction, we have two fibrations

By(X) — B(By(X), By(Y))

B(R,(Y))

BY) — B(R!(Y), £'(X)

i

B(R/(X))

Thus they induce long exact sequences on homotopy groups and we recall that

for a topological group G, mx(BG) = me—1(G). (|

Proposition 2.2.5. Suppose that X3 C X9 C X1 are real projective varieties.




There is o long exact sequence in reduced real Lawson homology:
oo RLyHp(X|X3) — RL,H,(Xh]Xa) — RL,H,(X1|Xa) — RLyHy 1 (Xo| X3) — -+

Proof. It is easy to see that R,(X,|X3) acts on B,(X1|X3). By Borel construc-

tion, we have a fibration

Rp(X1|X3) —— B(Ry(X1]X3), 1p( X5 X3))

B(R,(X»}Xs})

which induces a long exact sequence on homotopy groups:
e RLpHn(Xg‘Xg) — RLpHn(XIIXg) — RLPHH(X].\XQ) — RL‘pHn_J(Xg'Xg) —F e

a

Corollary 2.2.6. Suppose that U,V are real projective varieties and V C U

is closed. Then there is a (localization) long ezuct sequence in reduced real

Lawson homology:

o RL,Ho (VY ~— RLyHo(U) — BLH(U — V) — RLHo 1(V) — -
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Proof. Let U = X{ — X3 where X1, Xy are real projective varietics and take
the closure V of V in X;. Let Xy =V UX;. Then Xy — X3 =V, X; — X, =
U~V and X3 C X, C X;. By the Proposition above, we get the long exact

sequence, D

We need to show that the definition of reduced real cycle groups for real

quasi projective varieties is independent: of choices of ifs compactification.

Proposition 2.2.7. Suppose that X,Y are real projective varieties and Y is

B (X)
R (Y)

Zr(XxY)lk
Zr{X,Y e

a subvariety of X. Then 15 homeomorphic to

Proof. Let Q1,Q2, q1, g2 be the quotient maps and ¢(z -+ Z,(X)* + R,.(Y)) =

T+ Zo(Y)r + Z{X, Y)*® as following:

Ze{ X )m
PN
R.(X) Zy(X, V)R
Qll le
Re(X) P Zo(X,Y)r
A (Y) Zr{X Y)ou

The diagram commutes and since those quotient maps are open maps, ¢ is
continuous. Fasy to see that 1 is bijective and the inverse of ¢ is also contin-

uous. (|
Definition Suppose that X, Y, X', Y’ are real projective varieties and ¥ C X,
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Y’ C X'. (X,Y) is said to be relatively isomorphic to (X', Y") if there is
a real regular map f : X — X' such that f induces an isomorphism as
quasiprojective varicties between X —Y and X' —Y". fis called a real relative

isororphism.

Following Lima-Filho's approach in [Lil], we can show that

Proposition 2.2.8. Suppose that f : (X,Y) — (X', Y") is a real relotive

isomorphism. Then f induces a topological group isomorphism between
1. Z(X,Y)gr and Z (X", Y )r
2, Z(X,Y)™ and Z,(X',Y")*

Corollary 2.2.9. Suppose that f : (X,Y) — (X', Y7} is a real relative iso-

morphism, then f induces a homotopy equivalence between %ﬁ% and 1;:—((}—;—:%

Proof. By Proposition 2.2.8 and Proposition 2.2.1, B(Z(X,Y ), Z:(X,Y)™)

is homotopy equivalent to B(Z.(X',Y e, Z(X',Y")®). Thus ZeX e o -

Ze{(X,¥)%
motopy equivalent to %‘% From Proposition 2.2.7, we see that %rg)
and J—Z—"i(w)l are homotopy equivalent. a

Thus the reduced real cycle groups of a real quasi projective variety are

well defined.
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Chapter 3

Functoriality And Fundamental Properties of

Reduced Real Morphic Cohomology

3.1 Functoriality

The following proposition is an analogue of the functoriality of morphic coho-

i i Sk S

mology which are established in [FL1].

Proposition 3.1.1. Suppose that X, X', Y,Y" are real projective varieties and
f: X' —— X, g:Y —Y' are morphisms of real projective varieties.

(a) The “pullback of reduced real cocycles” determines a homomorphism

£*: RIFHY(X;Y) — RLPHY(XLY).




(b) The “pushforward of reduced real cycles” determines a homomorphism
gt RLEHYX;Y) — RLCH™(X;Y)

where ¢ = dimY — dimY'.
(c) Given morphisms fo 1 X' — X, i : X" — X' and g1 1 Y — Y,

gs ' Y — Y" where X, X', X" Y, Y',Y" are all real projective varietics, then

(foo f1) = (fi)* o (fo)* and (ga 0 g1)s = (g2)s 0 (g1)«

Proof. (a) f*: Z°(Y)(X) — Z*(Y)(X') is a continuous map which is proved
in [FL1, Proposition 2.4]. So we only need to verify that f* maps real cycles to
real cycles and averaged cycles to averaged cycles. Since f is real ‘morphism,
its graph gr(f) in X' x X is a real subvariety. Consider gr(f) <Y in X'x X xY
and for any V € ZHY)X), X' xV C X' x X x Y. It is easy to check that
gr(f) x Y intersects X' x V prope;:ly. Let pr: X' x X x Y — X' x Y be the
projection. Then f*V = pr,((gr(f) x Y)e (X' x V)) € Z°(Y)(X") where pr, is
the push-forward map of cycles induced from pr. Since intersection preserves
reality of cycles, and pr is a real morphisms, f* sends real cycles to real cycles
and averaged cycles to averaged cycles. So it induces a map from R*(Y)(X)

to R*(Y)(X"} and therefore a group homomorphism in homotopy groups.
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(b) Similar to the approach in (a).

(c) Since (fy o fi)* = ff o f3 for Y-valued cocycle groups as proved in

(FL1, Proposition 2.4, from (a}, this relation passes to the quotient. Thus

(fo0 fi)* = ffo ff in reduced Y-valued real cycle groups and reduced real

cycle groups. A similar argument works for g1, ga. [l

Proposition 3.1.2. Let f : X — X', g : Y/ — Y be morphisms of real

projective varieties.

(o) If f has equidimensional fibers, then there are Gysin homomorphisms

A RLPHYX;Y) — RIFCHT(XY)

for all s,q with s > g = ¢ where c = dim(X) — dim(X").

(b) If g is flat, then for all s, q with s > q, there are Gysin homomaorphisms

¢ : RIPHYX;Y) — RL*HYX;Y").

(c) Ifh:X — X and fo 1 X' — X" are as in part (a), or if

g Y — Y and gu i V" — Y are as in part (b), then

(fa0 fr=(fro (i) and (g20 g1)' = (g1) o {g2)".




Proof. Since a similar result is established in [FL1, Proposition 2.5] for morphic
cohomology, we only need to verify that the maps send real cycles to real cycles

and averaged cycles to averaged cycles. (|

3.2 Fundamental Properties

3.2.1 Homotopy Invariance

Proposition 3.2.1. Let X, X' and Y be real projective varieties. Suppose that
F:lxX — X' is a continuous map where I is the unit interval and for
cacht € I, I, is a real algebraic morphism. If Fy(z) = f(z), Fi(z) = g{x) for
oll x € X, then f* = g*: RL'H*(X")Y) — RL*H*{X;Y) and they induce

the same map f* = g% RL*H*(X") — RL*H*(X).

Proof. Consider the map

F* Z(Y)HX') % C — ZY)(X)

which sends (o, %) to f¥. This map is continuous and is a homotopy between f
and g. Since each F} is a real morphism, by Proposition 3.1.1 F} passes to the
quotient and thus F induces a map F* : R{(Y X'} xC — R,(Y)(X) which is
a homotopy between Ff = f* and F} = g* so they induce the same map from

RL*H*(X";Y) to RL*H*(X;Y). F* induces a homotopy Ry(P1)(X)xC —
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Ro(P=1)(X) and a homotopy Ro(PH)(X") x C — Ro(P*)(X) between the two
maps induced by f and g. By Proposition 2.2.1, their induced maps from

RYX') to R* (X} are homotopic. [

3.2.2 The Splitting Principle

Proposition 3.2.2. RIP? is homeomorphic to SP*(P!)g where SPIPY)R s

the subset of SPYPY) consisting of conjugate invariant zero cycles.

Proof. A proof of P4 = SP4P') can be found in [L2]. The main idea is
sketched in the following. For p = {py,...,pa} € SPIPY), let p; = [-b; 1 a] €

P! and we associate p a homogeneous polynomial

d

d
P(z,y) = [[laz + by) = > axaby™™*

i=1 k=0

where

Cp = E a;bp

=
ond the sum is taken over all multi-indices [ = {0 < ¢ < -+ < 4 £ d} of
length |7] = & and I" is the complementary multi-index with |7 =d—k. The
map ¥ : SPYP') — P4 which maps p to the point [cg : -+ : cd] € Pd ig

an isomorphism. To prove our statement, we observe that if p is conjugation
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nvariant, i.e, = {PL P4} =D,

d
H(atw +by) = [[(az +biy) = 2 cpzty®
i=1

thus ¢ = ¢k and therefore [cp : -+t ¢ca] € RBP4, Tor the inverse, a point
[co o+ ca € RP? is sent to a point p = {p1,..,pa} by taking the roots

{, .-, pa of the homogeneous polynomial

d

P(z,y) =Y aay™"

k=0

Since ¢ are real, a nonreal root and its conjugate are both roots of P(z,y),

thus p is conjugate invariant. ]

From section 2.10 of [FL1], for 1 < ¢ < s, there is a monoid homomorphism

SP(p*) -2 SP(P")

which is induced by the morphism

Pe = SP°(P') — SPESPI(PY)




defined by

{mla ‘--15‘33} — Z{xiu “‘axig}

=

where we identify P with SP*(P') and then extend by linearity and compose
with the natural map SP(SP(:) (PY)) — SP(P*). From here we see that
p(&1, ..o, Ts) = m which means p is real.

Extend the map p by linearity to a group homomorphism

p i Zo(P%) —» Zo(PF).

For a projective variety X, we get a map, by abuse of notation,

P Zo(P)(X) — Zo(P*)(X)

by composing with p. If X is a real projective variety, since p is real, p reduces

to a map p' : Ro(P*)(X) ~ Ro{P*)(X) where 1 < ¢ < 5.

The inclusion map i : P* — P* induces an inclusion map ¢’ : Bo(PH)(X) —

Ro{P*)(X) by Proposition 2.1.8. ;

Lemma 3.2.3. The composition @' = p' 04 : Ro(P)(X) —> Ro(P*)(X) is of
the form

o = Id A+




where tmage ¥ C Rp(P1)(X).

Proof. p' o ¥(f + Zo(P*)(X)™) = poi(f) + Zo(P)(X)®. By Lemma 2.1 in
[FL1], poi(f) = (Id+ )(f) where image of 4 is contained in Zy(Pr1)(X)
and ¢ is a real map, thus ¢ maps Zo(P*)(X)g to Zo(P* 1)(X)g and therefore

p' o' = (Id + ') where the image of ¢ is contained in Ro(P* 1)(X). O

It is easy o see that ¢ : RNX) = B(Ry(P*)(X), Ro(P*"1)(X)) ~— RYX)
is homotopic to zero and by Proposition 2.13 in {FL1] with M* = Ry(P*)(X),

we get the splitting principle for our reduced real theory.

Theorem 3.2.4. (Splitting Principle) For a real projective varicty X, we have

a homolopy equivalence:

Ry(P*)(X) = RY(X) x RMX) x -+ x R*(X).

3.2.3 The Lawson Suspension Theorem

Suppose that X ¢ P"* are projective varieties. Let 2o, € P°. The suspension of
X, %X C P! is the complex cone over X , or equivalently, the Thom space
of the hyperplane bundle (}(1) in P" restricted to X. A point in ¥X can be
written as [¢ : ] where t € C,z € X. We consider X as a subvariety of ¥.X

by identifying X with the zero section of £.X.
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Proposition 3.2.5. Suppose that ¢ : X — Y is a morphism of projective

varieties where X C P Y CP™. Then the following diagram commutes:

X ——Y

|, |

gXﬁE‘Ly‘,}f

where (Yep)([t - z]) = [t : p(z)] for allt € C,z € X.

Proof. The maps in vertical arrows are inclusions and it is eagy to check that

the diagram commutes. [

The above commutativity induces commutativity in cycle groups.

Corollary 3.2.6. 1. Suppose that ¢ : X — Y is a morphism of projective

varieties. Then the following dicgram commutes:

Zp(X) —2—Z,(Y) .

2. Suppose that ¢ : X — Y is a morphism of real projective varieties.
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Then the following diagram commautes:

R(X) —L— R.(Y)

l |

RA(PX) 225 R(3Y)

For f € Z,(Y)(X), we consider f as a map from X to Z,(¥). Define the
suspension map ¥, : Z,(Y)(X) — Z 1 (¥Y)(X) by (h)(z) = ¥f(z), the
pointwise suspension. The suspension map is continuous and in [IPL1, Theorem
3.3], the Lawson Suspension Theorem for bivariant morphic cohomology is

proved.
Theorem 3.2.7. %, : Z,(Y)(X) — Z.11(ZY)(X) is a homotopy equivalence.

Let us show that the analogue Lawson Suspension Theorem is also true
for bivariant reduced real cycle groups and reduced real morphic cohomology
groups. The Lawson Suspension Theorem for the real cycle groups and av-
eraged groups of projective spaces can be found in [LLM]. The equivariant

version of the Lawson Suspension Theorem can be found in [LLM2).

Theorem 3.2.8. Suppose that X,Y are real projective varieties and Y C PV,

Then
L Y Zo(YHX)g — Ze (BY ) Xr is a homotopy equivalence.

2. % Z(YV)X)™ — Z 1 (BY)(X)™ is a homatopy equivalence.
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3 Y R(YY(X) — Re1(TY)(X) ds a homotopy equivalence.

Proof. Let

T (BY)(X) = {f € Z. 1 (3Y)(X)| f () meets 2 xY properly for all 2 ¢ X},

T (XY ) (X = Tt (BY N X) 0 Zo 1 (BY ) (X,
Tt (BYYXO™ = s (BY)(X) 01 Zogs (B (X)°.

Following Proposition 3.2 in [F1], we define A C PN+ x P! x PN+ o
be the graph of the rational map PVl x P! — P¥+1 whose restriction to
PN+ x ¢ for t € Al — {0} is the linear automorphism ©, : PN+l ., PN+
sending [z : -+t 2yt zZypa] GO [z -+ 5 2y %zm.i]. More explicitly, A is the

closed subvariety given by the homogeneous equations:

XY — X;Y; =0

TXN+11/J' - SXjYN+1 - 0, for < Z,j < N.

and (Xo: : Xygt) € PNFL[S T € P [Yg 1 - -0 Viyyq] € PV

For f € Trp(TYHX), t € R— {0} C P!, define ¢(f) = Pria[(X x
A) o (f x t x PN where Pryy @ X x PNHL x P! x PNHL X x PN+
is the projection and as the proof in [F1, Proposition 3.2], ¢.(f)(z) meets

z X Y properly in z X Y for all z € X, hence ¢; is a real map and ¢:(f) €

44




Tt (EY}(X)r. When ¢ = 0, check the equations defining A, we sce that
do(f) = Wf & (X xY)) € ¥2,(Y) ().

For t ¢ R, since ¢, is real, ¢ maps T..1 (Y )(X)r to Tra(TY)(X)r
and T (BY)(X)™ to T, a(FY W X)™. Therefore, ¢o @ Tpp 1 (PY I X)g —
iZT(Y)(X)R and ¢ 1 T (LY HX)® —— EZT(Y)(X)“” are strong deforma-
tion retractions.

For a cycle ¢ = > n;V; in its reduced form, we define the degree of c
to be dege = 37 |ni|degV;. Designate Zyy o(ZY)(X), Tri1,(2Y)(X) to be
the subset of Z,41(2Y)(X), Tr41 (%Y )(X) respectively consisting of cycles of

degree < e and denote Z.1,(EY ) X)r = Zri (LY )X) N 7,1 (ZY) (X)),

Lo e(FY ) (Xm = Toa (BY Y (X N T, (BY )(X), Zrp1,o(EY )X ) = Zna o(FYHXON

Zeys (B )(X) and Toy1 (V) (X)% = Ty 1 (BY Y™ A T o(BY)(X).
The second step is to show that the inclusion map Ty i (¥Y)(X)r —
Zy(ZY)(X)r and the inclusion map Tey; (BY)(X)® < Zy41 (Y (X)* in-
duce homotopy equivalences. We follow the proof in [FL1, Theorem 3.3
Take two real poinﬁs to=1[0:--: 1 &5 =[0: -1 1:1] g PN+2 _ pN+1,
Consider PV*2 ag the algebraic suspension of PY+! {0 the point #, and let
pr: PN — £} — PN+ denote the linear projection away from ¢;. Then

consider the partially defined function

Yo : Zoi1,4(FYYX) X Dive — Zri1,2e(EY)(X)
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given by fi;

W.(f, D) = (Id x pr){(Lf) « (X x D)) :

where Div, is the set of effective real divisors of degree e on PV+2,

Let !

A(f(z)) = {D € Div, : (£f(x) » D) does not meet {z} x H properly}

where I C PM*2 is the hyperplane containing PV U {¢;}.

By [Ll, Lemma 5.11], one has

codimp(A{f(z))) > (P ' : ' 1)

where p = dimf(x). In particular, codimp(A(f{z))) — oo a5 e — o0.
We now choose e{d) so that codimp(A(f(z))) > dimX +1 for all e > e(d).

Then setting

A(f) = Usex & (f(z)),

: we have codime(A(f)) > 1 for all e > e(d). Consequently, for each e > e(d),

there must exist a line L, C Div, containing e - P¥*! such that

(Le — e - PV¥ 1Y () A(F) = 0.
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It follows immediately that ¥, restricted to Zriy (LY )X) % (Le —€- Py
has image in Thyy g (2Y)(X) and this map is homotopic to the map given by
multiplication by e. Since ¥, is a real map, by restricting W., we get two

- maps:
U, : Zrprd(BY)(X)R X (Le — ¢ BYHY) — T 0 (FY ) (Xmy

U, Zrpra(BY)(X)™ X (Lo — e P o Ty ae(RY)(X)™

which are both homotopic to the map given by the multiplication by e. It
then follows as in [F1, Theorem 4.2] that the inclusions induce homotopy
equivalences.

Clonsider the following commutative diagram:

Z(Y)(X)*™ 5 (Y)(X)r

I lx

Zpp 1 (BY)(20)® —— Zo 1 (XY ) (X

where the vertical arrows are homotopy equivalences induced by the suspension
map. By Proposition 2.2.1, there is a homotopy equivalence induced by ¥

from R.(Y)(X) to R (PYNX). O

Take X to be a real point, we have the Lawson Suspension Theorem for




reduced real Lawson homology.

Corollary 3.2.9. R,(X) is homotopy equivalent to Ry (X ) fort > 0.

Corollary 3.2.10. Ry (") is homotopy equivalent to K (Zs,0) x K (Zg,_l) X

e X K(Zg,n“t).

Proof. By Lawson Suspension Theorem, we have R, (IP") = Ro(Pm=#). Since
Ro(P"t) = % where Zo(RIP™ ) is the free abelian group generated by

points of RP"~*, by Dold-Thom Theorem, %;% is homotopy equivalent

to K(Z@,O)XK(ZQ,l)X---XK(Zg,TL—t). 0
The following is the Lawson Suspension for reduced real cocycles.

Corollary 3.2.11. RY{(X) is homotopy equivelent to %_

Proof. We have a commutative diagram of homotopy equivalences from the

Suspension Theorem:

Ro(P)(X) —  Ro(P)(X)
! l

Ri(PYX)  — Ra(PT)(X)

and then by Proposition 2.2.1, they induce a homotopy equivalence between
RYX) and

B(R(P™)(X), Ra(P*)(X)
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which is homotopy equivalent to RTIE%%(X)—)- H

3.2.4 Homotopy Property

Theorem 3.2.12. Let X be a real quasiprojective variely and E be o real
algebraic vector bundle over X of rank k, i.e., E is a real quasiprojective
variety and 7w E — X is a complex algebraic vector bundle or rank k. Then

7+ Re(X) — Ropx(E) induces a homotopy equivalence.

Proof. If the dimension of X is 0, this is trivial. Assume that the Theorem
is true for any real quasiprojective variety of dimension < n. Suppose that
the dimension of X is n + 1. Take a real quasi projective variety ¥’ which is
closed in X such that F restricted to U = X —Y is trivial. From the following

diagram of fibrations:

R.(X) Ro(U) BR,(Y)

l |

Rey(B) — Rpya(U x C%) — BRoyy(Ely)

By the induction hypothesis, 7* : BR.(Y) — BR,.1(E|y) is a homotopy
equivalence. Thus the Theorem follows if it is true for trivial bundles. Then
it is easy to see that we only need to show that the Theorem is true for the
case where I is a trivial line bundle. We use induction on the dimension

of X. Assume that the Theorem is true for trivial line bundle over any real
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quasiprojective varieties of dimension < n. Let the dimension of X be n and
X be the closure of X. Take real projective varieties ¥, Y’ C X of dimension
smaller than n such that X = X — Y and U = X — ¥’ where the hyperplane

line bundle O (1}}y = U x C. From the following diagram of fibrations:

RA(X) = Be(X ) BR.(Y UY")

1 | |

Br1(O%(1)) — Boa((X NU) x C) > BRy 1 (Oyuy (1))

By the Lawson Suspension Theorem, the left and right vertical arrows are
homotopy equivalences, thus 7% : R.(X NU) — R, (X NU) xC) is a
homotopy equivalence. Since X = (X NU)U (X NY"), and from the following

diagram:

R(X) R.(X NU)

l l

Ryp1(X x €) — R ((X NU) X C) — BRy1 (X NY") x C)

BR.(XNY"

By the induction hypothesis, the right vertical arrow is a homotopy equiva-

lence. Therefore, 7 : R.(X) — R,11(X x C). O
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3.2.5 Real FL-Moving Lemma

The main ingredient of the proof of the duality theorem between morphic
cohomology and Lawson homology is the Moving Lemma proved in [FL2].
Here we observe that the FL-Moving Lemma passes to reduced real morphic
cohomology. Since we are not going to use the full power of FL-Moving Lemma,

we state a simple form which fits our need.

Theorem 3.2.13. Suppose that X C P" is a real projective variety of di-
mension m. Fiz nonnegative integers r,8,e where v + 5 = . There exists o

connected tnterval I C R containing 0 and a map
U Z(X)x I — Z,(X)

A such that
1. Uy = tdentat'g
2. Forte I, U, is a real map.

3. For all cycles Y, Z of dimensions r,s and degree < e and all t # 0, any
component of excess dimension(i.e., > v+ s —m) of Y ¢ U,(Z) lies in

the singular locus of X for any t # 0.




Friedlander and Lawson construct the map ¥ from the map

Un(Z,p) = (=1)™ UM 41)-Rp- (Z)4> (= 1) 75 {Op p{prea( Rpcron - 0Rpa(Z))} o X

i=1

for some /N large enough. We give a brief explanation of the definitions of
functions involved in this map. Let F' = (fo,-+, fm), a (m-+1)-tuples of
real homogenous polynomials of degree d in P* where the zero locus of F is
disjoint from X. Via the Veronese embedding, we embed P" into P¥ where
M = (”:g_ ) — 1, Let mp : PM... - P™ be the linear projection determined
by F' and L(F) the center of mp. F' determines a finite map pp : X —s P7,
see for example [Sh]. For a cycle Z, n5(Z) = Z#L(F), Cp(Z) = nh{pp. (),

Rp(Z) = Cp(Z) @ X — Z where #} is the join. Since F is real, Ry, © are real

maps, so ¥ is also a real map and thus ¥ is also a real map.

3.2.6 Duality Theorem

Now we are able to give a proof of a duality theorem between reduced real

Lawson homology and reduced real morphic cohomology for nonsingular real

projective varieties.

‘Theorem 3.2.14. Suppose that X,Y are nonsingular real projective varieties

and the dimension of X is m. Then

52




1. R (Y)(X) 1s homotopy equivalent to B, (X xY)
2. RYX) is homotopy equivalent to R, (X x AY) for anyt > 0
3. RY(X) 1s homotopy equivalent to Ry, _(X) for 0 <t <m.

Therefore, we have a group isomorphism

RLPHA(X) 22 RLpeHm 1 (X)

Jor 0 <,k <m.

Proof. For each e > 0, let

Ke= ] €aXxY)x6p(X xY)/~
dy+dz<e

and let

K= [l %a(Y)X)x Ga(Y)(X)/ ~

ditda<e
where ~ is the naive group completion relation and %€, 4(Y)(X) = € ma(X %
Y) NV (X).
Let g be the quotient map from Zp (X x Y )g t0 Rppm (X X Y) and let ¢ be
the quotient map from Z.(Y}(X)g to B, (Y)(X). Let K, = ¢(K. N Zyprm(X ¥

Y)r), K, = ¢ (K, 0 Z,(Y)(X)w).
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By Real FL-Moving Lemma, we get two real maps
U: Zoy X XYY x T — Zpp (X x Y),

W Z(YUX) x T — Zo(Y)(X)

where I = [0,1] is the unit interval. Since ¥ and ¥’ preserve Z,(X X
Y, Zryn(X X Y)Y and Z.(Y)(X)w, Z.(Y)(X)* respectively, they induce
maps on B, (Y X) x I and R,1m(X x Y) x I. By abuse of notation, we will
use the same notation ¥, ¥’ to denote these two maps respectively. Restricting
U U to K. x I and f?.?: x I, we get two maps R¢. = \n1}|f~(exf, R, = {IIV’|R’,EM.

The inclusion map Z : Z,(Y)(X) ~= Zoym(X x Y) induces an injective
map |

RZ : Ry(Y)(X) — Rrym(X x Y).

By Lemma 2.1.2, the filtrations
[?Bcf?;...:Rr+m(XxY)

and

KjC K{- = R(Y)(X)
are locally compact and R%Z is filtration-preserving,.
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We have the following commutative diagrams:

Ry x [~ R, (Y)(X)

R@x[dl R
o~ Re
Ke x I Rr.;.m(X x Y)
By x {1} —— 2 R(Y)(X)
| =
K,ox {1} —s R (X X Y)

and there is a map A, = Ré, from K, x 1 to R.(Y)(X}. Thus by Lemma [5.2]
in [FL3}, R.(Y)(X) is homotopy equivalent to R,y,(X x V).

Furthermore, we have a commutative diagram of fibrations:

Ro(P)(X)  —  Ro(P)(X) —  RYX)
! ! !
R(X x1) — Ru(X xP) — R,(X x A

The first two columns are homotopy equivalences which implies the last
one is also a homotopy equivalence. If 0 <t < m, by the homotopy property

of trivial bundle projection, R*(X) is homotopy equivalent to Ry,_(X). [

Proposition 3.2.15. Suppose X is a nonsingular real projective variety, Then

Ro(X x A*) is homotopy equivalent to Q'Ry(X) where Q7*Ro(X) is the t-
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fold delooping of Ro(X) given the infinite loop space structure induced by the

structure as a topological abelian group of Ro(X).

Proof. For two Eilenberg-Mac Lane spaces K(G, 1), K((H, j), denote

K(G Q) K(H,j) = K(G® H,i+ )

and

(TG0 T, = 11 11 K(Gi® Hyiti).
i=1 i=1 =1 i j=re

Fromn Theorem A.5. in [LLM], there is a canonical homotopy equivalence
between Ro(X) and [, K (Hi(ReX; Za), k). We will always consider the
homotopic splitting of Ry(X) into Eilenberg-Mac Lane spaces by this canon-
ical homotopy equivalence. By the Kinneth formula for Zs-coeflicients and
the Dold-Thom Theorem, we have Ro(X X PtY) = Ro(X) ® Ro(P'™') and
Ro(X x P*) = Ro(X) & Ro(IP*). Since the inclusion map P-! s P! induces
an isomorphism i, : Hy(RP!; Zy) — He(RPY Zy) for 0 < k < t in homol-
ogy, iv 1 T{Ro(P™Y)) —> me(Bo(PY)) is an isomorphism for 0 < k < ¢ by

Dold-Thom Theorem therefore 7, : mRo(X x P1) — mRe(X x P*) is an

isomorphism for 0 < { < t and an injection for [ > . From the long exact




e e e e e TR e e s e i i

sequence

o mBRg(X X PN o MRy (X X PY) s m(Rp(X x AY)) — - -

we see that ay(Ro(X x A%)) = 01f 0 < <t and m(Rp{ X x AY)) = %
if 1 > t. Write Ro(X) homotopy equivalent to a product of Eilenberg-Mac
Lane spaces and denote the 4-th component of the Filenberg-Mac Lane space
of Ry(X) to be Ry;(X). Then for [ > ¢, from above calculation, we have
Ro(X % &%) = Roy o(X) @ Foo(P*) = Rogo(X) @ K (Za, ) = 0t Roy_(X).

Thus Ro(X x AY) = QT Ry(X). |
By taking homotopy groups, we have the following resuit:

Corollary 3.2.16. For a nonsingular real projective variety X,

RIoH,((X), ifk >t
RLoHi(X x Af) =

0, ifk < t.

Corollary 3.2.17. Suppose that X is a nonsingular real projective variety of

dimension m. Then

RIMH*(X) = RI™MH*(X) = Hy_((ReX; Zy)

fort > m >k and RL*HYNX) =0 fort > k > m.
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Proof. RIFHM(X) = me ik RX) = meog R (X % A) = mp o Fo(X X ATT") =

m_ kST ™ Ry (X))

0, ifk>m

ok Ro(X) = Hyn_k(ReX; Zs) = RL™H*(X) ifk<m

ITi—o K (Z2,5) ift <n
Corollary 3.2.18. RY{P*) = 0 ’

ngﬂK(Zg,i+t—ﬂ,) ‘I.fL>'n,
Proof. If¢ < n, by the Duality Theorem, R {P") = R,(P" x AY) = R 4(P") =
Hz=o K(Zs,t); if t > n, then RYP™) = R,(P" x AY) = Rp(P™ x A1y =

Q4 By (P = QG [T K(Za, 1) = [Timg K{Za,i 41— 1), L

Corollary 3.2.19. Supposc that X is a smooth projective vartety of dimension

m. Then R'(PX) is homotopy equivalent to RY(X) for 0 <t < m.

Proof. RAYX) 2 Ry -o(BX) = Rp_o(X) 2 RI(X). =




Chapter 4

Natural Maps And Operators

4.1 From Reduced Real Morphic Cohomology

To Singular Cohomology

Lemma 4.1.1. Suppose that G is a topological group and X is o locally com-
pact Hausdor(f space, then with the compact-open topology, Map{ X, G), the set
of continuous functions from X to G, is a topological group under pointwise

multiplication.

Proof. We define an operation X from Map(X, G)xMap(X, G) — Map(X, Gx
@) as following: for f,g € Map(X, G}, (f x g)(z) = (f{2), g(z)). 1t is proved
in [Bre| that & : Map(X,G) x Map(X,G) — Map(X,G x G) is a home-
omorphism. Let 4+ : G X G — G be the group operation of G which is

continuous, thus +' induces a continuous map + from Map(X,G x G) to
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Map(X, ). The operation + : Map(X,G) x Map(X,G) — Map(X,G) is
defined by (f--¢)(z) = f(z)+g(z) and we see that + = + o x which is contin-
uous. Since the map which gends g € 7 to —g is continuous, the map sending
f € Map(X,G) to —f is continuous. Therefore Map(X,G) is a topological

group. 1

Suppose that X, Y are real projective varieties. By using the graphing con-
struction of Friedlander and Lawson, Z,.(Y )(X) can be ideniified as a subspace
of Map(X, Z,(Y)) where Map(X, Z.(Y')) denotes the space of continuous func-
tions from X to Z,(Y) with the compact-open topology. Thus the inclusion
map i : Z(Y Y X)gr — Map(X, Z.(Y)) is an embedding. For f € Z.(¥Y){X)g,
if we restrict f to Re(X), the set of real points of X, since f(z) = f(Z) = f(z),
the image of f lies in Z,(Y)r. Composing the inclusion map with the restric-

tion map, we have a continuous map
U Z (YN X)) — Map(ReX, Z.(Y)r).

Composing again with the quotient map g : Z.(Y)r — R.(Y), we have a

continuous map

¥ Z (YW X)p — Map(ReX, R.(Y)).
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Iff=g+9 W(f)z) = g(z) + 9(z) + £(Y)* = 9(z} + 9(z) € Z:(Y)™ =

Z (V)% 50 Z.(Y)(X)®™ C Ker¥” therefore ¥ induces a continuous map

U : R(YHX) — Map(ReX, B, (Y)).

We summarize the above construction in following diagram:

A
b |
k!
7

=] 9
!

3

% .
ol 3
i

Z(Y)(X)m ‘: Map(X, Z.(Y))
N l restriction
| Y Map(ReX, Z,(Y)y)

RAY)(X) L Map(ReX, R.(Y))

Now we are going to construct a map from RY(X) to M ap(ReX , Bo(A%)).
Let ¢' : Ro(P*) — Ro(A?) be the quotient map. Then ¢’ induces a map,
also denoting as ¢', from Map(ReX, Ro(P")) to Map(ReX, Rg(A")). Let @ =
¢ oW Ry(P)(X) — Map(ReX, Ry(Ah)). For f € Ry(P1){X), f € ker(®),
so @ induces a map ®* : R¥(X) — Map(ReX, Ry(A')). We summarize the

construction of ®* as following:

1 B -+ ZoPYX)™ + RolP* (X)) = ¢ 0 ¢ (flre).
Since Ro(A*) is the Filenberg-Mac Lane space K (Zs;t), taking homotopy
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i
7
e

groups, ®¢ induces a group homomorphism:
4% . RLFH®(X) — HY(ReX;Zs).

Proposition 4.1.2. &% : RI!H®(X) — H%(ReX;7s) is a naturel transfor-

mation for each k with 0 < k < ¢t.

Proof. Suppose that f : X — Y is a morphism between two real projective
varieties. f induces a map f*: RHY) — R*X) by mapping ¢+ Ro(P!=1)(Y)
to ¢ o f -+ Re(P"1)(X). Since f is a real map, it maps Re(X) to Re(Y), thus
[ induces a map f*: Map(ReY, Ro{A%)) — Map(ReX, Rs(AY)). 1t is easy to

check that the following diagram commutes:

RY(Y) I, RH(X)

Map(ReY, Ry(A%)) L Map(ReX, Ry(A"))

which then induces a commutative diagram of homotopy groups. (]
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4.2 S-Map In Reduced Real Morphic Coho-

mology

Let us give a construction of the S-map in reduced real morphic cohomology:

Fix 5o, € RPL.
RHX) x RP* RYX) x Ro(P")
1 #
RHX) ARP B(R(PHY(X), R (P (X))

\ Eﬂl

B(Ro(P**1)(X), o(P*)(X))
II
RM-l(X)

The top horizontal row sends (f + Ro(P*~")(X),2) € R x RP! to (f +
Ro(P1){X), z— ) and the join on the right hand side sends (fHRy(P1(X), v}
to fty-+ R (P (X) where f#y € Ry(P?)(X). ¥ is the homotopy inverse
of the suspension map.

So we have a map from RY{X) A St — R*(X) which induces a map in

the reduced real morphic cohomology:

S RI}HH(X) — RIMPHA(X).
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Propesition 4.2.1. For a real projective variety X, the following diegram

commates;

RI}HK(X) RLM*THE(X)

Btk %

H*(ReX; Zs)

Proof. Fix a point z € RIP'. Consider the following diagram:

t42 b=
RHX) A RP! e RAL(X)

CI-“"XId l ' (I,H»l

Map(ReX, Ro(A%)) ARP' —— Map(ReX, B0 F = pap(ReX, Ry( A1)

The right arrow in the bottom row sends f A z to the map (f A z)(y) =
Fy)#(z — o). It is easy to see that these two squares commute. For the

rest, follow the argument in Theorem 5.2, [FL1]. (]

4.2.1 Filtration

For a real projective variety X, define 7' = ®"*(RL*H*(X)). By the above

proposition, we have a filtration:

FECFHC . C HYReX; L)




e st s R

which is analogous to the “topological filtration” defined by Friedlander and

Mazur in [FM].

4,2.2 The H-Operator

From the construction of S-map, we have a map
H: RHX) <> RHX) x Ro(P") — R*(X)
and then taking the homotopy group, we have
H:RL'H*(X) — RL*M HM(X)
which is the H-operator in reduced real morphic cohomology.

4.3 From Reduced Real Lawson Homology To

Singular Homology

In Lawson homology, there is a natural transformation

(I).,.,k : LTHk(X) — Hk(X;Z)
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defined by iterating the s-map in Lawson homology ¢ times and then compos-
ite with the isomorphism from Dold-Thom Theorem. We show that similar
construction is valid in reduced real Lawson homology. And thus we have a
natural transformation from reduced real Lawson homology to singular homol-
ogy of the real points with Z coefficients.

Fix a point 2o, € RP!.

Rt(X) x R}Pl —_— R;(X) X RO(PI)

l |

Be(X) ARP' ——— Ry (X P!

~

R: 1(X)
The map on the top horizontal row sends (V, ) € Ry(X) x R to‘V#.(m -
Too) € Ri(X) X Ry(P!) and since joining with a zero cycle is a zero cycle,
it reduces to the smash product of R¢(X) and RP'. Tinally, we take the
homotopy inverse of the suspension map twice. So we get amap s: 5 LA

R,(X) — R,—1(X) which induces a map in the reduced real Lawson homology
L RLtHk(X) - RLt_ij(X).

We iterate this map t times and then apply the Dold-Thom isomorphism
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71 7 Ro(X) — Hy(ReX; 7). This gives us a map

q)t,k H RLgI{k(X) — f[k(BGX, Zg)

where @, =70 st

Proposition 4.3.1. For a morphism f : X —— Y between real projective

varieties X, Y, the following diagram commutes:

RL, Hy(X) —% Hy(ReX; Z)

| |
By

RLH(Y) —% Hy(ReY; Z,)

Thus ® is a netural transformation from reduced real Lowson hbmology to

singular homology of real points with Zs-coefficients.

Proof. The following diagram commutes:

B, (X) A RP' — Ry (X#PY) <T— R, ;(X)
ifﬂ’\fd l(f#[d)# lﬂ:
Ry(Y) A RPY — Ry 1 (Y#PY) <— Ry 1Y)
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Taking homotopy groups, we have the following commutative diagram:

RL, Hy(X) —> RL, 1 Hi(X)

lf* lf*
RL, H.(Y) —2 RL, {Hy(Y)
And by the functoriality of Dold-Thom isomorphism, we have the commu-

tative diagram:

RLOHk(X) —I"'Hk(ReX;Zz)

| |+

RLyHW(Y) -~ Hy(ReY'; Zs)
Applying the commutative diagram of s-map r times and applying the
commutative diagram of Deld-Thom isomorphism, we get the required com-

mutativity. [

4.3.1 Filtrations

Definition (The geometric filtration) Let X be a real projective variety and
denote by RG;H,(X) C H,(ReX;Z,) the subspace of H,(ReX;Zs) gener-
ated by the images of maps Hn(ReY; Zy) — Hp(ReX;Zs) induced from all
morphisms Y -+ X of real projective variety V' of dimension < 2n—j. The

subspaces RG;H,(X) form a decreasing filbration:

oo © RO HR(X) C RGyj 1 Ho(X) C -+ C RGoH(X) € Ha(ReX; 7o)
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which is called the geometric filtration.

The s-map in rednced real Lawson homology enables us to define a filtration

which is analogous to the topological filtration in the Lawson homology.

Definition (The topological filtration) Suppose that X is a real projective
variety. Let RT,H,(X) denote the subspace of H,(ReX;Zs) given by the
image of ®,,, e,

RTHA(X) = ®,,(RLHAL (X))

The subspaces RT,H,,(X) form a decreasing filtration:
oo C RTHo(X) C RT,_(Hp(X) C - C RT H,(X) = Ho{Re X Za),

and RT,H,(X) vanishes if ¢ > n. This filtration is called the topological

filtration.

Tt was conjectured by Friedlander and Mazur in [FM] that the topological
filtration and geometric filtration in Lawson homology coincide. We post the

similar conjecture for reduced real Lawson homology.

Conjecture For a smooth real projective variety X, the topological filtration

and the geometric filtration in reduced real Lawson homology coincide, i.e.,

RT,H,(X) = RGHn(X).
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4.3.2 The h-Operator

Let 1s now construct a map which is the analogue of the h-operator in Lawson

homology.
-2
b R(X) s Ry(X) % Ro(P") o Rppa (XY 5 Ry (X)
which induces a map, called the h-operator, in reduced real Lawson homology:

h: RLTJH,IC(X) — RLrﬁlHk_l(X).




Chapter 5

Operations

5.1 Cup Product

From Seg¢tion 6 in [FL1], there is a continuous pairing induced by the join of

varieties:
ZY)(X) A 2 (V) (X) s 25 (V)X x X)
given by
(o) (w,2') = (p(2))# (' ()
For a point [Zg : ... i Tn : Yo & -t Ym| € VHU in the join of two varieties V'

and U, [Zo: v i Tn i Pot o Ul =[T0 1 o 1 Zn 1 Y0 1 o @ Y] € VFU, thus 4 is

a real pairing. Therefore, for real projective varieties X, X', Y,Y”, # reduces
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to a continuous pairing

RAY)(X) AR (YHXY 5 R (VY (X = X1,
Taking the homotopy groups, we have a pairing:

RISHYUX;Y)® RIS HY (X', YY) — RIPT HUC (X x X5 VY,
and when restricted to the diagonal in X x X it determines a cup product:
RIFHYX;Y)® RLSHT (X, Y} £ RL™ HO (X, Y #Y7).

" The pairing
RAP)(X) AR (PT)(X) — R x XY

by the Lawson Suspension Theorem reduces to a pairing on the reduced real

cocycle groups :

RY(X)YARY(X'y — RY(X x X')

and when restricted to the diagonal in X x X, we get a pairing

RY(X) A R¥(X) — R (X)
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which gives us a commutative cup product in reduced real morphic cohomol-

ogy:

RIFHY(X) ® RLYHY (X) — RL* HU(X).

Proposition 5.1.1. Suppose thet X, X" Y, Y, W, W' Z, Z' arc all real projec-
tive varietics end f : X — X',g: W — W' are real morphisms., Then we

have the following commutative diagrams:

RAYY(X') A R (Z) (W)~ R+ (Y £2Y(X x W)
7 f*»‘\g*l l(fxg)*
RH{YY(X) A R (ZYW) 2 R (YHZ)(X < W)

2
Ro(X') A R (X7) s Ro (X
f*f\f*l lf’“
R (X) A B (X) —— R+ (X)
3.

R(X)(Y) A RS (W)(Z) R (XHW)(Y % 7)
f*"\g*l l(.fx.g)t
Rsmc(Xr) (Y) A Rs’—c’(Wn') (Z) _#f._a. R(s+s’)-—(c—|—c’)(xf#wf)(y % Z)

where ¢ = dimX — dimX', ¢ = dimW — dimW’.

In short, cup product in reduced real morphic cohomology is natural with

73




respect to real morphisms.

Proof. We observe that

(Fo)#(g%") = (p o N#(¢ 0 9) = (i) o (f x g) = (f x 9)" (w#t¢),

(fea)#(gecd) = (f % g)u(afbal)
and then check that they pass to reduced real cocycles, ' 0

From Lawson Suspension Theorem, we obtain a canonical homotopy equiv-

alence:

29— f[ def ﬁ K{(7Z., 2k)
k=0

for all n > ¢. In [LMi], Lawson and Michelsohn showed that the complex join

i g+q’
#e: J[ x ][] — [I has the property that

#Helean) = Z Lgr & Los

r4-s=k

in integral cohomology where tg; is the generator of

H*(K(Z,2k),Z) = Z.

‘The cup product in cohomology is characterized by some axioms which can
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be found for example in [AGP]. From the above result, it is easy to check that
the complex join induces the cup product in integral cohomology. Following

a similar approach, Lam in {Lam] showed that the corresponding result holds

q q' a+q q
for the pairing: # : [{g x [[x — 1 g where [[g = K(Zs,0) x K(Zy,1) x

- X K(Zy,q), thus # induces the cup product in Zy-cohomology.
We now show that the natural transformation from reduced real morphic

cohomology to Zg-singular cohomology is a ring homomorphism.

Proposition 5.1.2. Suppose that X and X' are real projective varieties. Then

Jor all s, ¢ and q,q', there are commutative diagrams:

" RLZHY(X) @ RL* HY(X')

RLF HT (X % X"
lq;sa@q,s’,q’ i‘pa+s’.a+q’
HYReX;Zy) ® HY (ReX'; Zo) — H Y (Re(X x X"); Zy)
where the lower horizontal arrow is the usuel cup product in Zs-coefficients.
In particular, the map

D" RLVHNX) — H'(ReX; Ly)

s o graded-ring homomorphism.




Proof. Consider the following commutative diagram:

R(X)A RY (X" RV (X x X"

l |

Map(ReX, Ro(A%)) A Map(ReX", Ro(A¥)) > Mup(Re(X( x X'}, Ro(A*)

Since the lower arrow in the diagram above is exactly the map classifying the
cup product in Zo-cohomology, taking homotopy, proves the first assertion.
Taking X = X’ and the naturality of ® in the case of the diagonal map

§: X — X x X, we see that it is a ring homomorphism. O

5.2 Slant Product

Suppose that X,Y are projective varieties. Define a product
Ze(YHX) X Zp(X) — Zpip(Y)

by sending (f, V) to Pr.(fe(V xY)) where Pr: X xY — Y is the projection
and we consider f as a cycle in X x Y which intersects V' x Y properly. It is
proved in [FL1, Proposition 7.1] this is a continuous pairing.

Now suppose that X,Y are real projective varieties. Since in the definition,
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each operation is real, the above pairing reduces to a pairing

R (YW X) % Bp(X) = Bpyp(Y)
and it is easy to see that it reduces again to
R (Y)(X) A By(X) — Rpyp(Y).
Therefore, we have a slant product:
RLTHMX;Y)® RL,H,(X) —> RL,pHppyor (V).

Fix r = 0,p < t. For Y = Pt~!, the product from the above construction

sends

Ro(P 1) (X) A Rp(X) — Rp(P*1).

Therefore, the product

Ro(P'}(X) A Rp(X) — Ry(P)

reduces to
Ro((P%)(X) Ry
Ro® 00 " ) ey
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Since Tgfffg% = Rp(A") = Ro(A'?), we have a pairing:

RH(X) A Rp(X) —> Ro(A")
which induces a Kronecker pairing:
RIEHY(X) @ RLH(X) — 7y

forp<k <t

Proposition 5.2.1. Let X be a real projective vartety. Then for all s = q,

the diagram

RLPHY(X) ® RLoH,(X)

13

T Ty, q Lo

K‘ﬁop
HY(ReX;7,) @ Hy(ReX; Zy)
commutes; i.e., under the natural transformation to Zg-singular theory, the

Kronecker pairing introduced above is carried to the topological one.

Proof. The canonical homeomorphism between Ro(X ) and 5229}1(%:% is given

by sending an element ¢ € Rg(X) to the cycle formed by real points of X that
represent ¢ which is unique modulo 2, i.e., there exist unique 1, ..., 2 € ReX

such that ¢ = Ele x; + Zo(X)™ and c is mapped to Ele z; + 2Zp(ReX)
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a3 the proof in Proposition 2.1.7. In the following, we will assume that the

representation of ¢ is the real point representation.

Consider the following diagram:

R2(X) A Ro(X)

\

EXINT Ro(A®)
Map(ReX, Ro(A%)) A Ro(X)

The slant product on the top row sends (f+Zo ()™ + R (P 1) (X}, 3, @i+
Zo(X)™) to (32, F(ms) + Zo(PH)* + Ro(P*~')) and the pairing in the bottom
row sends {(p, >, z;) to >, (). Under the natural maps, it is not difficult
to see that the diagram commutes. |

Taking homotopy groups, from the bottom row, we get a pairing:
5 HYReX,;Zy) @ Hy(ReX; Zg) — Ty

Observe that the following diagram commutes:

6 Zo(ReX Za(st
Map(ReX, (zzéffst)) ) A 250((;5)()) (250((53) )

l |

Map(ReX, Ro(AY)) A Ro(X) Ro(AY)
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where the canonical quotient map S* — RP induces a map from Map{ReX, (

to Map(ReX, Ry(A*)) and a map from ( 205 10 1o Ro(Al), and we use (ZL(St—))U =

276(5%) 2Z5(St)

K (Zs,t) to denote the component of % containing the identity. The map

Zo{Re X))

from ;7vp3 to Re(X) is the canonical map which is defined in 2.1.7. Each

vertical arrow of the diagram above is a homotopy equivalence. Thus to prove
this Proposition it will suffice to establish the following lemma which is a

éeneralization of Lemma 8.3 in [FL1}. [

We use the convention that Zy = Z and DZZ?((YS)} = Zo{Y}.

Lemma 5.2.2. For any finite CW-complez Y ond p = 0 or a prime number,

the pairing

v (v, 2 0 ) (fz?))

sending (f, 3., nayi + pZo(Y )} to 3, naf (y:) -+ pZo(S*) induces a pairing

w1 HIY Zy) @ Ho(Y; Zp) — Ly

which is the topological Kronecker pairing k'°P where K = (1%((‘?5%)0 = K(Zy,t)

is the component of p—Z‘lg(Sng— containing the identity.

Proof. For a continuous map ¢ : Y — Z, from the definition, « has following

naturality property:
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st e, u) = s(o, @.u) (5.1}

for all « € HY(Z;Zy,) and uw € H,(Y;Z,,).

Let Y = 89, K = (810 — K(Z,,t). A generator of HI(S%7,) =

Ti—qMap{S?, K} is given by the homotopy class of f : §9 — Map(5?, K)

where f(z)(y) = x Ay +pZp(S) and a generator of H,(S% Z,) — wq(%) is

given by the homotopy class of g : $9 —— p‘j?zﬁ’o((‘(‘;;q)) defined by g(x) = z+pZy(S7).

Then fAg: S*7A87 — K where

(f hglz Ay) = Fa)(9(y) = F(@)(y + pZe(ST) = & Ay + pZs(SH

is the generator of Hy(K; Z,) = Z,. Thus x = x'? when Y is a sphere.

Now let V' = (pzz”o(gq)) ) = K(Zp;q). Leti: S — Y denote the gen-
erator of m,. Let u € HUY;Z,) and ¢ € H,(Y;Z,) be given. Since i, :
Hy(8% Zy) — Hy(Y; Zy) is an isomorphism, there is an element 7 € H, (37, Z,)
with 4,7 = ¢. Then by equation 5.1 and the case of spheres, kP (u, o) =
KEP(iu, T) = w(i*u, T} = Ky, o).

For a general space Y, fix u € HY(Y';Zy) and let f : Y — K(Z,,q) be the

map classifying u; i.e., u = f* where « € H1(K(Z,,q);Z,) is the canonical
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S s

generator. Then for any 7 € H, (Y %,), we have
KP(u, ) = KP(¢, fu7) = 8l fur) = K{u, 7).

This complete the proofs. |

5.3 The Compatibility Of The Duality Theo-
rem With The Z,-Poincaré Duality

Let us recall that a projective variety X is said to have full real points if

dimgpReX = dimcX.

Theorem 5.3.1. Suppose that X is a real projective manifold of dimension m
and X has full real points, then the duality theorem 3.2.6 is compatible with

the Zio-Poincaré duality of its real points, i.e., the following diagram commutes:

RL*H*(X) 2> R Hpn-4(X)

o l

HY(ReX; Zn) 2 Hyi(ReX; Ls)

where P is the Poincaré duality map sending « € H*(ReX; Zy) to aN[ReX]| €
Hp i (ReX; Zg).
Proof. By Proposition 4.2.1, we reduce the problem to the case { = m, ie,
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we need to prove the commutativity of the following diagram:

RL™EH*(X) —22o RLH, (X)

o] g

HYReX;7s) —2> Hoy_p(ReX; Za)

Since the evaluation and intersection products:
H*(ReX;7) @ Hy(ReX; %) =5 Hy(ReX; %),

Hy o(ReX;Zy) @ Hy(ReX; Zy) -2 Ho(ReX; Zy)

are perfect pairings, it suffices to prove that
< B(a), 7 >=T(#D(0)) O

for all &« € RL™H® X) and all v € Hy(ReX;Z;) where 7 is the Dold-Thom
isomorphism. To prove this equality, it suffices to prove the commutativity of

the following diagram:

83




H*(ReX; 7o) ® Hy(ReX; Zy)

PRT

bk Ho(ReX; 7)

¢t

Tm-t{R™(X)) ® me( Ro(X))

RPRpry

?Tmﬁk(Rm(X X Am)) 2 ’.ﬂ'k(Rm(X 4 Am))

-1

pfr{c-r*1®p'r{0'r

Hp, x{ReX;Zs) ® Hy(ReX; Zy)

where

€ = prys o pri : mo(Ho(X)) — wm(Ro(X X A™)) — 7 (Ro(A™))

and \ is the slant product. The commutativity of the top square follows from

the construction of slant product 5.2 and the naturality of Kronecker pairing

5.2.1.

To verify the commutativity of the middle square of the diagram 5.2, it

\ T (Ro(A™))

P o (Bo(A™))

2 Ho(ReX; Zy)

suffices to show that the following diagram commutes:

R™X) A Ro(X)
ﬂi’@/\p‘r{l
Bon(X % A7) A Rip(X x A™)

BTr2. 08 Rg(Am)

(5.2)

For [ + Ro(P™ 1) (X) € R™X), Yomzi + Z(X)™ € Ro(X), ZD(f +
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Bo(P™ ) (X)) = [+ Bun(X x P70, pri(mimi + Zo(X)™) = 3 m(ms %

P™) 4 R (X X P, pray[(f + R (X X P™ 1)) @ (3 my (s x P™) + R (X X
PN = prou(f o Xng(z: x P™)) 4 Re(P™') which is the slant product
between f -~ Rn(X x P™ 1) and 3 nyzy 4 Zo(X)*.

To prove the commutativity of the bottom square, it suffices to prove the

commutativity of the following diagram:

¥ @2
Hun k(ReX; ) ® Hi(ReX; Zg) — 20" o gBM (ReX x R™ 7o) ® HEM (ReX x R™ Zy)

m+-k
. .
Ha(ReX x ReX;75) or xzm )’ HEM((ReX % R™) Zy)
Al Al
HolReX; 22) i HEM(ReX X W™ 7,)
= C|prax
Ho(ReX; 7p) < HBM(R™: 7,5)

(6.3}

The composition of the maps in the right column can be identified with
the map pro, o e in diagram 5.2 using the naturality of 7 and the homotopy
property of trivial bundle projection of reduced real Lawson homology and the

composition of the maps in the left column of diagram 5.3 is the intersection

pairing. Thus the commutativity of diagram 5.3 implies the commutativity

of the last square of 5.2.
The evident intertwining of the external product x and the flat pull-back

pri implies the commutativity of the top square. The Gysin maps and flat pull-
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backs commute, for a proof, for example in [FG; 3.4.d]. The commutativity of

the bottom square comes from the definition of e. O




Chapter 6

Harnack-Thom Theorem In Reduced Real

Lawson Homology .

Real algebraic geometry has a very long history and under this name, it has
two big branches. One direction of real algebraic geometry is to study complex
projective varieties which are invariant under conjugation. Thus some familiar
concepts such ag two varieties with complementary dimensions must meet,
projection of a variety is again a variety, are still valid in this content. But
there is another possible meaning of the name "real algebraic geometry” which
is the study of the real zero loci of real polynomials in real Euclidean spaces
or real projective spaces. We call this type of real algebraic variety a “totally
real algebraic variety” to distinguish it from the previous one. Life is more
complicated in the totally real world. For example two circles in R* may not

intersect, the projection of a circle in R? to R! may not even be an algebraic
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variety, an irreducible smooth real variety may not be connected. It is not
difficult to see that classical methods from complex algebraic geometry do
not quite work here. As shown in [T}, we define a real version of suspension
map for totally real algebraic cycles, but the analogous Lawson Suspension
Theorem becomes very complicated in this case. Ewven though totally real
algebraic geometry does not have good properties from the classical point of
view, it has its own problems. For example since totally real algebraic varieties
are more flexible, we are able to ask if any smooth manifold is diffeomorphic
to some nonsingular totally real algebraic varieties. This is the Nash-Tognoli
Theorem and a proof can be found in [BCR].

The Harnack Theorem says that a nonsingular totally real curve of degree
d in R]P’z_ has at most g(d) + 1 connected components where g(d) = (d_l)zd_z).
Later on Thom generalized Harnack’s Theorem to all totally real projective
varieties. In this section, we generalize Harnack-Thom Theorem further to a
statement involving Lawson homology and reduced real Lawson homology. For
0-cycle spaces, we recover the Harnack-Thom Theorem. This result strength-
ens our belief that Lawson homology and reduced real Lawson homology are
the right extensions of singular homology for projective varieties.

Let us recall that the real part RP{C) of a cycle C, roughly speaking, is

the part consisting of irreducible real subvarieties and the average part AP(C)
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*  Lemma 6.0.3. The following sequence is ezact: { —

of a cycle C is the part consisting of conjugate pairs of complex cycles. The
imaginary part is the part left after cancelling out the real and average parts.
The precise definitions and some basic properties are given in 2.1.

In the following, we will assume that X is a real projective variety.

Proposition 6.0.2. Suppose that the sequence {AP( [} converges to f where

fi € Zy(X), then RP(f) € 2Zp(X)n-
Proof. Since AP(f;) € Z,(X)® and Z,(X)™ is closed by Proposition 2.1.3,
fisin Z,(X)® so RP(f) € 2Z,(X)r. O

Zy(Xe b Zy(X) lte
, by A Ty
2,0k Tp(X)

Zp(X)* 0.
225(X)r

Proof. Tt is casy to check that i(f + 2Z,(X)r) = f -+ 22,(X) is Wéll defined
and injective and (L4 ¢, )(f + 2Z,(X)) = [+ F +22,(X)r is well defined
and surjective. 1+ c, sends the image of 7 to 0, thus the only thing we need
to prove is for f + F € 2Zp(X)r, f € Zp(X)m. Since f + [ = 2RP(f) +
9AP(f) + IP(f) -+ IP(J) € 2Z,(X)r, this implies TP(f) = IF( fl=0s0

f € Z,(X)m. | O

Definition Let Q,(X) be the collection of all ¢ in Z,(X)* such that there
exists a sequence {v;} C Z,(X)g where v; = RP(u;) for all 7 and v; converges

to ¢. It is not difficult to see that (,(X) is a topological subgroup of Z,(X)*.
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Let ZQp(X)r = 2Z,(X)r + Qp(X) denote the internal sum of 2Z,(X)r and
(Qp(X), then again ZQ(X)r is a topological subgroup of Z,(X)™. @,(X)
is the closure of average p-cycles formed by irreducible real subvarieties, thus

ZQu{X)r is a closed subgroup.

The following example was given by Lawson to show that the set of 1-cycles
formed by irreducible real subvaricties may not be closed which contrasts to

the case of O-cycles, i.e., ZQu(X)r may not be equal to 2Z,(X)r.

Example In P?, consider the sequence of irreducible real subvaricties V, =
the zero locus of X2 + Y2 — eZ2. As ¢ converges to 0, V. converges to the

cycle formed by two lines X = iY and X = —iY which have no real points.

Proposition 6.0.4. For a real projective variety X, ZQo(X ) = 2Z0(X)r.

Proof. The free abelian group Zs(ReX) generated by real points of X is closed

in Zo(X), s0 if ¢ € Qu(X), then ¢ € 2Z4(X)x, see Preposition 2.1.7. O

Lemma 6.0.5. Define AP : Z%sg";m — 55&’851 b

f.+ ZQy(X)m— AP(f} + ZQp(X)x.

Then 2_15 13 continuous.
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Proof. There exist compact sets K; such that
K, C Ky Kqy - :Zp(X)R

and the topology of Z,{X)r is given by the weak topology induced from this

filtration. Thus the filkration

Ky 4+ ZQy(X)r C Ky + 2Qp(X)g C - = _*zzé(gi
?

Zp(X)m

defines the topology of 78750

Suppose that f; -+ ZQ,(X)= converges to ZQp(X)p. Since A = {fi +
ZQP(X)R} U {ZQ,(X)r} is compact, A C Kp + ZQy(X)r for some n. Thus
there exists g; € K, such that under the quotient map g, q(g:) = [i+ZQp(X)r
for all 5. K, is compact, thus {g;} has a convergent subsequence. If for every
convergent subsequence {g;;} of {a:}, {Eﬁ(q(gij))} converges to a same point,
then {AP(q(g:))} converges.

Let {g:;;} be a convergent subsequence of {g;} and g be the point that
gi; converges to, thus g € ZQu(X)r. Let {AP(gij)} be a subsequence of
{AP(g:;)} which converges to a real cycle h. Since {gir} is a subsequence of

{gi;}, it converges to g, hence

RP(gi) = Gijie — AP(gige) —> 9 — b
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By Proposition 6.0.2, RP(h) € 2Z,(X)g and since RP{g) € 2Z,(X)r we have

RP(g—h) € 2Z,(X)}r- g— h is a real cycle and this implies g — h € Z,(X)*.
Furthermore, since {RP(g;;)} — g — h, by definition, g — i € @,(X). gisin
ZQy(X g thus h € ZQu(X)r. Passing to the quotient, we see that AP(gy;) +
ZQ,(X)m — ZQu(X)r for all convergent subsequences of {AP(gy;)}, thus
AP(gi)+ ZQp(X)r — ZQp{X )r. Consequently, this impliecs the convergence
of (AP(g:) + Z@Q(X)x} to ZQu(X)r. Then AP(f; + ZQp(X)k) = AP(g: +

ZQy(X)r) = AP(g:) + ZQp(X)r — ZQp(X)g. So AP is continuous.  {J

Lemma 6.0.6. Define RP: ZZ:(%)ﬁ. — Z‘%’}Sﬁ“ﬁ{. by

f+ Zp(X)™ — RP(f) + ZQp(X ).

Then ﬁﬁ 18 continuous.

Proof. We proceed as in the proof above. There exist compact sets K such

that

KiCKyCKyC o = p(X)R

and the topology of Z,(X)r is given by the weak topology induced from this

filtration. The filtration

Ki+ Z,(X)® CKp+ Zp(X)™ C oo =
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defines the topology of 2’(%);1 and the filtration

: I (X)m
K+ ZQ(X)r © Ko+ ZQ,(X e = IENIIR
1+ ZQp(X)w C Ko+ ZQp(X)n ZQy(X)x
defines the topology of 7%,5?)3')‘]“

Suppose that fi+2,(X)™ converges to Zp(X). Since A = {fi+Z,(X)* U
{Z,(X)™} is compact, A C K, + Z,(X)® for some n. Thus there cxists
g; € K, such that under the quotient map gq, q(g;) = f; + Z,(X)™ for all ¢’s.
.Let {gi;} be a convergent subsequence of {g;} and let g be the point that g;;
converges to, thus g € Z,(X)®. Let {RP(gijx)} be a subsequence of { RP(gy;) }
which converges to a real cycle h. Since {g;;} is a subsequence of {g;;}, it

converges to ¢, hence
AP(gizk) = gijk — RP(gipe) — 9 — h.

By Proposition 6.0.2, RP(g — h) € 27,(X)gr and since RP(g) € 2Z,(X)n
we have RP(h) € 2Z,(X)r. h is a real cycle and this implies h € Z,(X)™.
Furthermore, since { RP(gi;)} — h, by definition, h € @,(X). Passing to the
quotient, we see that RP(gije) + ZQp(X)r — ZQp(X)r. Thus RP(gi;) +
ZQ,(X)r — ZQu(X)w which implies that RP(g;}+ ZQp(X)r — ZQp(X)»

and therefore RP is continuous. U
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Theorem 6.0.7. EZQL,(J%(Y)?.{ is isomorphic as o topological group to -Zéi%—})é% X

Zp{X)™
Z2Qp(X)r

Zp(X Zp(X Zp ()™ .
Proof. Define 1 : ZCS,E(PgSRm o Z:((X))ﬁ, X Zé’gi())(m by f+ ZQu(X)r — {f +

av P Zp(X )4y Z2(X g
Zo( X)W, AP(f) + ZQp(X)r) and define ¢ : ZZP(())(()),;E, X Z"'&i(}}{)n — ZCS,E()EH){R by
(F + Zo(X), g+ ZQy(X)m) +— RP(f) + g+ #Qy(X)n. By Lommas, 9 and

¢ are continuous and it is easy to check they are inverse of each other. 0O

For a group G, let B(() be the classilying space of G. From [Ben, Theo-
rem 2.4.12], if N is a normal closed subgroup of M, then there is a fibration
B(M) — B(M/N) with fibre B(N). Recall that m{B(G)) = m;_1(G), see
[Ben, Theorem 2.4.11].

Lot A = Z00x g o %X o _ BX™ p_ B p_ ZXk

225(X)R? T 22(X)? T 2Z,(X)m? ZQp( X )r? X T Zp(X)ew
o= ZO™ o 20X
ZQu(Xn? 22,{X )’

In the following Proposition, we use the notation T}, to denote the n-th
homotopy group of B(T') where T' is any of the groups A, ..., G. We note that

all these groups are Zs-gpaces so their homotopy groups are vector spaces over

Zs.

Proposition 6.0.8. We have the following fibrations:

1. B{A) — B(B) —s B(0)

2. B(C) —» B(A) — B(FE)
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3. B(G) — B(A) — B(D) : |
/. B(G) — B(C) — B(F)

These fibrations induce long exact sequences:

Cr4l it b c

1 I A B, O, Ty Ay — e
Entl <. a; e

2 ... 50, A4, 5 E, =0~
day1 gn fin tr

g Gy A S Dy S G — e
f+1 gt ot f

4. BN Gy S O Sy 5 Gy e

" Proof. (1) follows from 6.0.3, (2) and (3) follow from the fact that ¢ and G
are normal closed subgroups of A. (4) follows from the fact that ¢ is a normal

closed subgroup of C. ‘ O

Definition Suppose that X is a quasiprojective variety. We define the L, total
Betti number of X with Zs coefficients to be B{p)(X) = > r o ronk Ly Hy(X; Zo)
where

ZLU (X)

Lka(X; Zg) = Tl'z_ic_p('é"é*"()(—) .
n

If X is a real quasi projective variety, we define the real I, total Betti number
to be B(p)(X) = 350 rankRL,Hy(X). Wecall x,(X) = > 5o (—1)Frank L, Hy(X; Zs)
the L, Euler characteristic of X with coefficients in Zy and x,(ReX) =

Y eo(—1rank RL,H(X) the real L, Buler characteristic.
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Theorem 6.0.9. Suppose that X is a real projective variety. Let B(p)(X) be

the L,, total Betti number of X with Zy coefficients, B{p)(X e = 2 5, ﬂk(zgzp,,())((;;

BQIX) = Yo m(52Cd8)  If B(p)(X), B(p)(X)r and BQ(p)(X) ere

finite, then
1. xp(X) = xp(ReX) mod 2

B(p)(X) = B(pHX) mod 2

Proof. To simplify the notation, we use the same notation as in Proposition
6.0.8 but with different meaning. We use M, to denote the rank of the n-th
homotopy group of M, Kerg, and Imng, the rank of the kernel and the rank
of the image of a homomorphism g, respectively.

Frorr; the finiteness assumption of B(p)(X), B(p){X)r and BQ,(X), we
know that oo o Cny 302 By o g Dy 3002 7 are finite from the long ex-
act sequence 1, 2, 3, 4 respectively in Proposition 6.0.8. This implies that

S o Imen, Yooy Kercn, Y onry Imgs and 357 I'mg,, are finite.

1. From the first two long exact sequences, we have x,(B) = xp(4) + xp(C)

and xp(A4) = xp(C) + xp(F), thus x,(B) = Xp(E) mod 2.

2. From the long exact sequence 3 in Proposition 6.0.8, we get Dy, = Imay, +
Imd, = A, — Kera" + G,_1 — Imgn_1 = An — Imgn + Gny — Imgn 1.

From the long exact sequence 4, we get F, = Imc) + Imf, = Cy ~
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Kerd! +Gy 1 —Imgl,_y = Cp—Imgy+Gn1—Imgy, . Since D= ExF

by Theorem 6.0.7, we have D, = E, + F,. Substitute the formulas of

D,, and F, into this equation and simplify it, we get
A, = B, +Cy + 6,

where 8, = Img, -+ Imga_1 — Img), — Img,, ;. From the long ex-
act sequence 1, C, = Kerc, + Imc,, thus B, = Ima, + Imb, =
Ap — Imepgr + Keren = Ep + Co - 0n — Imea + Kerey = Ep + 0+
Ime, — Imeni1 + 2Kerc,. So Yo o By = 3 olo B + 2 S (Imgy —
Img., + Kercy,). Therefore 3 o g By = > £ mod 2 and by definition,

Yooty B = B(p)(X) and 332, B = A(p)(X).

O

Corollary 6.0.10. In addition to the assumptions of the previows Theorem

also assume that % ts contractible, then

1. B(p)(X) < B(p)(X)
2. Bn)(X) = B(p)(X) mod 2
9. xp(X) = xp(ReX) mod 2

Proof. We use the same notation G = f;%‘%%:? as above. If G is contractible,

97




(@) = Ofor allk > 0. Thus I'mg,, = imyg,, = 0,80 B, = > E, 425 kercy,

which implies >~ B, <5 F,. O

Corollary 6.0.11. (Harnack-Thom Theorem) Let X be o real projective vari-
ety and let B(X), x{(X) denote the standard totol Betti number, Euler charac-
teristic respectively of X in Zo-coefficients and J{ReX), x(ReX) the standard

total Betti number, Euler characteristic of ReX in Za-coefficients. Then
1. B(ReX) < B(X)
2. B(X) = B(ReX) mod 2
3. x(X) = x(ReX) mod 2

Proof. For p = 0, 2Qo(X)r = 2Z5(X)g, thus G = —g%l(%ﬁl is a point. By
Dold-Thom Theorem, m(agidk) = Hi(X;Za), mu( 70008 ) = Hy(X[Zo; L)
where X /7, is the orbit space of X under the action of the conjugation. Thus
B(0)(X) and B(0)(X)g are finite. Then use the corollary above with p =

0. (|
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Chapter 7

Signatures In Morphic Cohomology

7.1 Signatures

Suppose that <, > is a symmetric bilinear form on a vector space V' over Q.
Take a matrix representation 4 of <, > and denote AT, A7, A% the number of
positive, negative and zero eigenvalues respectively, then the signature of <, >
is defined to be A" — A~. It can be proved that it is independent of the basis
chosen.

Before we proceed to the definition of signatures in morphic cohomology,
we need the following result in which we make some modification of the original

proof in [FL1, 7.8].

Proposition 7.1.1. Suppose that X is a smooth projective variety of dimen-
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sion m. Then for any t > m, we have a commutative diagram:

LDHYX)®Q d LHYMH(X)eQ
H(X;Q)

and each map is an isomorphism.

Proof. By the Duality Theorem of morphic cohomology, we know that Z*{X)
is homotopy equivalent to Z,,(X x A¥). It > m, Z, (X x Af) = Zy(X x AF™).

From the Gbration:

ZQ(X X ]P}t_l) — ZO(X X I[Dt)

1

Zo(X x At™)

we get a long exact sequence:
c— Hp(X x Py Ly H(X ) P s BPM(X x AT

— Hp (X x Py
and then tensor by @, we get
oo Hyp (X x P Q) e He(X x P Q) — HPM{X x AT Q)
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o5

s Hy (X X PR Q) s

where i, is induced from the inclusion map 4 : X x Pm~1 < X x P, Since
the inclusion map ic : PE™1 < P induces an isomorphism in homology
groups ic, : Hp (B — H(P™) for k < 2(t —m — 1), thus i, is injective
and by Kiinneth formula in homology, it is not difficult to see that

0, if k < 2(t - m)
HEM(X x AY™ Q) =

i aeem (X Q), i & > 206 —m)

Therefore, if t > m, L' H¥(X)®Q = 1y Zp(X X AT @Q = mom—i(Zo(X))®
Q = Hom_+(X;Q) = H*(X;Q). By Theorem 5.2 in [FL1], we have the follow-

ing commutative diagram:

LHY(X)g 5 L H(X)g
s
%
HYX;Q)

If ¢t = m, since ™ is an isomorphism and by the dimension reason, S is an
isomorphism, so ®**1¢ is also an isomorphism. Thus the three maps in this

diagram are all isomorphisms for { > m. a

Suppose now X is a nonsingular projective variety of complex dimension
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2m. The cup product in morphic cohomology

LSHZm(X)@) LsHZm(X) N L25H4m(X)

is a symmetric bilinear form for all s > m. But since it is possible that
LPH*™(X) has infinite rank, we do not define the signature directly.
Recall that there is a natural transformation ®* : LIF*(X) —s H*(X)

for any g, k. Define
B LIH*z) @ F

LiHA(X
( Jr K er@%’k

the morphic cohomology with F coeflicients quotient by the kernel of ®. Now
LIH*(X)p is finitely generated and we will very often identify LIH*(X) with

the image $9*(LIH*(X)).

Definition (meorphic signatures) For a smooth connected projective variety X
of complex dimension 2m and for s > m, we define the s-th morphic signature

of X, denoting as o,, to be the signature of the symmetric bilinear form:
<> DH™(X)q ® IPH*™(X)q — LBH™(X)q = Q.

We observe that when s = 2m, ¢, is just the usual signature of X.
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7.2 The Morphic Conjecture

Recall that from Corollary 5.4 in [FL1], we know that the groups L°H iWX)=
%[ H1(X)) carry Hodge structure for a smooth projective variety X. Thus

we are able to define the hodge numbers for morphic cohomology.

Definition Suppose that X is a smooth projective variety. Decompose

i (X)e = P HIX)
pta=k

and we define the morphic hodge numbers of X to be
RPY(X) = dimcHP(X).

Let Q € LH?(X) be a class coming from a very ample line bundle over

X. Define an operation
L LPHI(X) — LA HTE(X)

by L£{c:) = Q- . The transformation &** carries the cup product in morphic
cohomology to the cup product in singular cohomology and it sends { to
“the cohomology class represented by 2. Thus under the transformation ®**,

L carrics over to the standard Lefschetz operator L. Thus LPHI(X) is L-
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2,

invariant.

There is a standard Hermitian inner product on &/??(X), the (p, ¢)-forms

on X, called the Hodge inner product defined by

(e, ) =fxa/\*ﬁ

where * is the Hodge star operator. Let A to be the adjoint of L with re-
spect to Hodge inner product. Since I, A commute with the Laplacian, they
define operators on the harmonic spaces. From Hodge theory we know that a
cohomology class has a unique harmonic representation. We identify the co-
homology groups of X with harmonic forms on X. The Hodge inner product
induces é, Hermitian inner product in harmonic spaces which we also call the
Hodge inner product. Restrict Hodge inner product to IPH 1 X)¢, and let A

be the adjoint of L. It seems natural to ask if the following question is true.

Conjecture (Morphic Conjecture) For a smooth projective manifold X, the
adjoint operator A : HP4(X) —— HP_177(X) is the restriction of the standard
adjoint operator, i.e.,

A= Algpacxy.

Let us recall the Grothendieck Standard Conjecture . For a smooth pro-

jective variety X with dimension n, let C?(X) be the subspace of H¥(X; Q)
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which is generated by algebraic cycles. By Hard Lefschetz Theorem, we have 1

the following commutative diagram: i

n—23

1% (X, Q) L (X, )

o

C(X) i () ;:

where "% is an isomorphism for j < |%|. Grothendieck Standard Conjec- ]
ture claims that the restriction of L™ % also gives an isomorphism between i
C?(X) and C“‘f (X) or equivalently, the adjoint operator A maps (" (X)
into CY(X). This conjecture has various forms as e);plained in [Kle]. The case |

of abelian varieties was proved by Lieberman in [Lieb]. Friedlander in [F'3]

showed that by assuming this conjecture, the topological filtration defined by
using the s-map in Lawson homology coincides with the geometric filtration.
One simple observation is that the Grothendieck Standard Conjecture is a

special case of the Morphic Conjecture. |

Proposition 7.2.1. The Morphic Congecture tmplies the Grothendieck Stan-

dard Conjecture.

Proof. If the Morphic Conjecture is true, then A"~% maps i Fon=2 (X)e =

C" (X)) @ C into EHéj (X) = CH(X) ® C, thus they are isomorphic which ‘

implies that C™7(X) is isomorphic to C¥(X). x
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Let a, b be two nonnegative integers. Define

LH(X)y = HY(X)s @ LT HYX)p®- - 0 DHY(X )5 ® P HYX)e @ -

n n~1
- EB LoV H%( X )g @ LA A (X
i=0 =0

where F = Z, QQ,R or C,
LH®**(X)g is an L-invariant subring of the cohomology ring @320 Hi{X;m),

Let us use H*(X;C) to denote the cohomology ring of X.

Proposition 7.2.2. Suppose that X is a projective mantfold of dimension
n. Assuming the Morphic Conjecture, LH®*(X) is a slo{C) submodule of

H*(X;C) thus it has a sub-Lefschetz decomposition.

Proof. Let h =73 ,.(n — k)Pry where Pry projects a form to its k-component.

The sly(C) structure on H*(X; C) is given by
[A, L] = h, [h, A} = 24, [h, L} = —2L

and since £, A are the restriction of L, A on LH*?(X )¢, from the relation h =
[A, L], we see that h restricts to an operator on LH**(X)¢. Thus LH**(X)¢
has a 5l3(C) structure and therefore admits a sub-Lefschetz decomposition of

the Lefschetz decomposition of H*(X;C) O
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7.3 Hodge Index Theorem In Morphic Coho-

mology

In the following, by assuming the Morphic Conjecture on LH*®(X), we are
going to generalize the classical hodge index theorem to morphic cohomology.

See [Hirz] or {GH] for a proof of the classical Hodge Index Theorem.

Theorem 7.3.1. (Hodge Index Theorem) If the Morphic Conjecture is true
on LH*(X)¢ where X is a projective 2n-manifold and a,b are nonnegative

integers, then gayn(X) = 3, (—1)2ARY where

P

a+p—42"‘1, if p+q is even

b+ 2=l ifp g s odd .

Proof. Let m = 2n. Let w be the (1, 1)-form associated to the standard Kéhler
metric on X and let 79 be the space of harmonic (p, g)-forms on X. The
Lefschetz operator L : J#P9 —s 2#Pt19%l i defined by Lo = w A «. Since
w is real, we have Lo = L@, therefore L is a real operator. The conjugate of
the hodge star operator ¥ | FP1 — ™ P™4 ig an anti-isomorphism where

o = %@ = *& and the adjoint operator A : P9 — H#P~131 ig given by

*i

the formula A = (—1)P*9%%L%. It is easy to verify that A = (~1)P*? % L% and

Aa = A=,
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Using the Hodge structure on L# H*(X), decompose LFHMX) = B S,

r-g=k

Now we assume that the Morphic Conjecture is true on LH*(X) and we use

£, ) for the restriction of L, A to LH®*(X) respectively. Let h = 3 s (m —

k) Pry, where Pry is the projection of a form to its k-component and we use

the same notation for its restriction to LI**(X ). Let By = kerA : P —
p—1,q—1

Ay 1

In the following, we verify each step as in the proof of the Hodge Index

Theorem in [Hirz, Theorem 15.8.2].

1 ALk BERah Bg"l-‘f*‘,er g < m,k > 11is, up to a non-zero scalar

factor, equal to LF.
Proof. By using the relations [A, £] = h and (h, L] = —2L. |
2. LBy Bk, 03 for p+ ¢ < m is a monomorphism.

Proof. If £¥« = 0, applying (1), we have £¥*a = cAL*a = 0 and then

repeating this process several times we get oo = (. Ll

3. By the Lefschetz decomposition on LH®**(X}, we have

P — By @ LBy M @@ LIBTT

where r = min{p, q).
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4, For p & E’“Bg"k’q_k where p - g = m, ¥p = (175,

5. By Lefschetz decomposition, we have

Ea-i-nHm(X)C — @ LkBg—k.q*k

ptg=m
k<min{p.q)

6. The summands in the above direct sum decomposition are mutually
1 ‘\-

orthogonal with respect to the hodge inner product.

Proof. This is from the proof in [Hirz]. [}

£a+nHm(X)R . GB EE,G

pHg=m
k<p<q

where 77 is the real vector space of real harmonic forms o which can

be written in the form a =@ + @ with p € Lk Bk

8. Tatn(X) is the index of the quadratic form

Q@)= [ ans

where «, 8 € L2 H™(X ).

9. By (4) and (6), the real vector space summands in the sum (7) are




mutually orthogonal with respect to Q. (4) implies that the quadratic

form (—1)9*Q(e, B) is positive definite when restricted to Fe,

10. Therefore,

Tarn(X) = D (=) dime B},

pHg=m
k<p<q

11.

Cata(X) = D (=1)**dimeL"BY"

ptg=m
k<min(p,q)

Proof. dimgEP? = 2dimcL¥BE" for p < g and dimgES™ = dimg Lk B,

O

12. Let Al = dimg 250, ‘Then
ppha—k _ ek La bl o g pRoRF o dime £F BRI

Sp—k,g—k p—k—Lq—k—1

forp-+qg<m.

Proof. From (3), we get

—k,q— —kq—k —k—1,9—k~1 —k—rqg—k—
gy k.q kiBg q EBLBg q @"'EBETBE g r
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13.

14.

and

ngop—k—1,q—k— —k—1,g—k—1 —k—2,g—k—2 1 pp—k—r+1lg-k—r+1
Jiapkl,qklngkl,qk GBLng Wg—k @ DL 1ngr+q T+‘

Then by (2), we see that dimgLiBEFTH 7R = dimg Lt BE i hakmed

for i < min(p — k,q — k). i

By the Morphic Conjecture, we have the Hard Lefschetz Theorem, there-

p—k—1,g-k—1 _ pptk+1,g4+k+1 _ -
fore JF\v,&p_k_l'lHH = h5p+k+].,q+k+1 for p + ¢ = m and by Hodge structure,

hr,k _ hk,‘l" — hm——r,m—k
Sr.k

Sk Fm—ram—k "

Tarn(X) = _(=1)TREY.

d

Proof. From (11) and (12), we see that

Ua-+n(X) = Z (_l)fI‘l-k(hp—k,q#k = hp—k-l,q-kal

Sp—k,q—k Sp—k—1,g—k-1
ptg=m
k<min{p.q)
By (13) and some simple calculation, we get the formula. 0

|

Corollary 7.3.2. When a = m, the above formula gives the classical Hodge
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Index Theorem:

o(X) = oa(X) = Z(—l)qh};fq 2= Z(ml)qhm'

Fis na

7.4 Some Discussions

7.4.1 Relations Between Signature And Euler Charac-
teristic

The Hirzebruch Signature Formula says that the signature o(M) of an oriented

A

smooth manifold M** can be represented as a linear combination of Pontrjagin
numbers, i.e.,

o(M) = Ly(p1, ..., px)|[M],

see [Hirz, chapter I1.8] for the detail. We wonder if there is any formula of this
kind for the morphic signatures. It will be very interesting and important to
have this kind of formulas. For instance the Hodge Conjecture even for smooth
hypersurfaces in P* are known only for very few cases, see [Lew] for a survey.
For a smooth hypersurface X of dimension 2n in a complex projective space
P2+l by the Weak Lefschetz Theorem, we have H*(X;Q) = H*(P* Q)
for k& < 2n. Thus dimension of H??(X;(}) is 1 for p # n,0 < p < 2n and

HPP(X;Q) is generated by algebraic cycles. Therefore the adjoint operator
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A o HIPeInop(X()) — HPP(X;Q) is an isomorphism for 0 < p < n.
For p=mn, A H™(X,Q) ~— H™(X;Q) which is an isomorphism. Thus

the Grothendieck Standard Conjecture is trivially true for this case which is

* equivalent to the Morphic Conjecture for the case LH*®(X), thus the signa-

ture formula above is valid for @ = 0. By the weak Lefschetz Theorem, the
cochomology groups of X are same as the cohomology groups of the projective
space except the middle cohomology group, thus the signature formula has a

very simple form:

ou(X) = L4 (1" 4 (1)

where A" is the dimension of the subspace of H™"(X) which is generated
by algebraic cycles. The Hodge Conjecture says that hjv™ = hg™ where hg™
is the dimension of H™*(X;Q) def (X)) N H*(X;Q). Thus if there is
anyway to calculate o,(X), it is equal to the calculation of A", which can be
used to verify the Hodge Conjecture in the case of hypersurfaces since hg™ of
hypersurfaces in projective spaces can all be calculated, see [Lew, Chapter 9.

The signature of oriented smooth 4k-manifolds is a cobordism invariant.
The main part of the proof of Hirzebruch Signature Formula is to apply Thom

Theorem, which determines the structure of oriented cobordism with ratio-

nal coefficients, to calculate the signature. Thus we hope there is a cobor-
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dism theory for morphic cohomology such that the morphic signatures are
also cobordism invariants.

Let us recall a theorem by Rokhlin about a relation of the signature of a
complex projective manifold and the Euler characteristic of its real points. See

|Gud] for a proof and [DK] for theorems of this type.

Theorem 7.4.1. (Rokhlin First Theorem) Suppose that X is a complexr pro-
jective manifold of dimension 2n. If X is an M-manifold, i.e., the Z,-betti

number of X is same as the Zg-betti number of ReX, then
i x(ReX)} = ¢(X) mod 16
where x(ReX) is the Zg-culer characteristic of ReX and o(X) is the usual

signature of X.

Since we believe our reduced real theory is the extension of singular theory,
it is natural to ask if there is any theorem analogous to Rokhlin First Theorem

in our reduced real Lawson homology and Lawson homology.

7.4.2 Relations With KR-Theory

A by-product in the joint work of Atiyah and Singer on the index theorem is

the establishment of K R-theory by Atiyah in [A]. They discovered that for a
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smooth manifold X with smooth involution 7, they could define an involution

on the cotangent sphere bundle S(X} by

(ﬂ?,f) = (:E: _T*(f))

But if 7 is the identity involution on X, the involution on S(X) is not the
identity but is the anti-podal map on each fibre and this was the basic reason
why the K R-theory was established. For the detail, see [A].

Karoubi and Weibel recently established an isomorphism betwe-eﬁ alge-
braic K-theory and K R-theory of nonsingular real algebraic varieties for some
range, see [KW]. They proved a theorem, what they called the Real version of
Riemann-Roch, and used Voevodsky’s result of Milnor conjecturg and Post-
nikov style tower of Friedlander and Suslin to obtain their results.

A closely related theory, semi-topological K-theory for real varieties, is
established by Friedlander and Walker in [F'W] which is related to the Zo-
equivariant Lawson homology founded by Santos in [San].

We believe that there are Stiefel-Whitney classes which sends real algebraic

vector bundles to reduced real morphic cohomology. The work is ongoing.
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