Nevanlinna Theory and Pliicker Identities

A Digsertation, Presented
by

Sergei Panafidin

to

The Graduate School
in Partial Fulfillment of the
Requirements
for the Degree of
Doctor of Philogophy
in
Mathematics

Stony Brook University

May 2004




Stony Brook University
The Graduate Schocl | i

Sergei Panafidin ¥

4

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of this dissertation.

7 Bline Laysén

Distinguished Professor, Departrent of Mathematics, SBU
Dissertation Director '

A5 Tl 0,

Anthony Phillips & 7
Professor, Department of Mathematics, SBU
Chairman of Dissertation

O, ,D.@MM f}\]d{
Denson Hill
Professor, Department of Mathematics, SBU

M
Martin Rocek ,

Professor, C.N. Yang Institute for Theoretical Physics, SBU
Qutside Member

\:

This dissertation is accepted by the Gra@tj&te ,SchZJ

Graduate School

il




Abstract of the Dissertation

Nevanlinna Theory and Pliicker Identities
by
Sergei Panafidin
Doctor of Philosophy
in
Mathematics
Stony Brook University

2004

The main results of Nevanlinna theory are obtained by integra-
tion of the equations given by the local First and Second Main

Theorems.

The First Main Theorem for sections of a holomorphic hermitian
bundles was proved by Bott and Chern. A section of a vector
bundle can be viewed as a special case of a vector bundle homo-
- morphism, and the vanishing of a section is a special (extreme)
case of degeneracy of a vector bundle map. In the first chapter we
prove the analogue of the local First Main Theorem for degeneracy

loci of bundle homomorphisms.

The Second Main Theorem for projective curves relates higher cur-
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vature forms of a curve and its singularities. In the second chap-

ter we generalize the local Second Main Theorem to the case of
holomorphic curves in grassmannians. To do this we define the
sequence of the higher curvature forms on the curve in the grass-

manian. These forms are matrix-valued and satisfy the recursive

relations similar to the ones that hold for projective curves. In -

the last section we prove the analogue of the Pliicker identities for

projective surfaces.
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Chapter 1

Introduction

Value distribution theory in general studies the behavior of holomorphic maps
{1 X — M between a noncompact complex manifold X and a compact com-
plex manifold M. The main object of interest is the growth of the intersection
of the image f(X) with the elements of some chosen family D, of analytic sub-
sets in M, where the parameter b takes values in a compact complex manifold
B. The growth of each individual intersection is usually compared with the
average over all b € B. The upper estimate for the growth of the intersection
set is called the First Main Theorem and the lower estimate for the sum of
growth functions for several b; is the Second Main Theorem. The main results
of the value distribution theory were obtained only for quite special cases.

The common choice of the family of analytic subsets is the family of divisors
of holomorphic se(;{;‘ions of some hoiomorphic vector bundle ¥ over M. Then
the space B is the projective space P(V), where V C I'yqi(E) is a subspace
of the space of holomorphic sections. The preimages f~(D;) are exactly the
divisors of the pullback sections of f*I.

In this case the first main theorem can be established for any X and M if &
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is a line bundle. Precisely, the result is that the order of growth of dvisor of any

section s € V is boundedl by the average over P(V) plus a constant, provided
that the space V is “sufficiently ample” (see section 2.2 for the definition).
The fact that the upper bound is the average implies that order of growth of
divisors of almost all (in the measure sense) sections is the same. The second
main theorem is a very strong improvement of the above statement. For line
bundles it is established in two cases: |

1. X is a riemann surface, M is the projective space P" and F is the dual
of the universal line bundle over P™. This case is known as equidistribution
theory of holomorphic curves due originally to Ahlfors (see [1]).

9. X is affine and M - projective manifolds with dim(X) = dim(M) and
E is any holomorphic line bundle with sufficiently ample space of holomorphic
sections. (see [5] and [6]).

For the bundles of rank higher then one even the upper 4estimate for the
growth of divisors is not known. The example of a holomrphic map 2 — 2
that omits an open set (due to Fatou and Bieberbach) shows that the growth of
a divisor may not be bounded by the average (for a trivial bundle over X = %)
and therefore there is no equidistribution (even in the measure sense) in this
case.

In all known cases the proof of the results of value distribution theory uses
as a starting point some local formulas on X that are integrated over compact
subsets. Our goal is to generalize these local formulas.

First we generalize the local first main theorem (see section 2.3, theorem 4)

proved by Bott and Chern for sections of holomorphic vector bundles. Section

¢ of vector bundle E can be considered as a homomorphism from the trivial




&

line bundle over X to E. Therefore vanishing of a section is a special case

of vanishing of a homomorphism o« : ¥ — E, which in turn is a special
(extreme) case of degeneracy of . For a pair of holgmorphic hermitian bundles
E and F, classified by maps to grassmannians, we define a natural family of
homomorphisms B — F' and prove a result (Theorem 9, Section 2.5) that, in
analogy with the theorem of Bott and Chern, relates the k-degeneracy current
Dy (@) to the smooth representative of it’s cohomology class. The essential
part of our statement (as in the case of sections) is the information about
the transgression (such as positivity) that in some cases can be used in value
distribution theory. Unfortunately the integration of this local formula meets
the same difficulties as in the case of sections. So in general we can not find
an upper bound for the growth of the degeneracy sets. However, we can show
(Proposition 11) that the average of the order of growth of Dy {a;) over all
homomorphisms « from the chosen family is equal to the order of growth of
the smooth form that represents them.

The second part of this work is devoted to the generalization of some local
formulas related to the second main theorem. For a projective curve f: X —
P" there is a system of relations between the higher curvature forms of the
curve (Theorem 12). The version of these relations that accounts for possible
(higher order) singularities of the curve (Theorem 13) is the starting point for
the proof of the defect relations for projective curves. We obtain the analogues
of the two above mentioned theorems for holomorphic curves in gragsmannians.
First we define the analogue of the higher curvature forms, which in this case
take values in endomorphisms of a bundle £, where E is the pullback of the

quotient bundle over the grassmannian. Then we prove Theorems 18 and 19




that generalize Theorems 12 and 13 for the case of holomorphic curves in

grassmannians.

In Section 3.6 we consider the case of surface§ in projective space. Our
approach is very similar to that used for the casg of curves. However we are
not able to compute the transgression and therefore obtain only the relations
between cohomology classes rather then their specific representatives. There-
fore the results of this section can be used only for compact surfaces. In this
case we obtain the analogue of Plucker formulas. The result is very similar to
Plucker formulas for curves with second differences replaced by the third.

In the last section 3.7 we show that for equidimensional maps f: X — FP",
which are a special case of the maps considered in [5] and [6], our construction
also reproduces the result equivalent to the local second main theorem. So, the

same general approach reproduces local formulas used in both extreme cases

of projective curves and equidimensional maps to projective space.




Chapter 2

Local First Main Theorem

2.1 Currents

In this section we briefly recall some facts about currents on complex manifolds
that we shall use later.

On a complex manifold M of dimension m we denote by AP9(M) the space
of ¢ differential forms of type (p, ¢) and by A24(M) the space of such forms
with compact support with the C®°-topology. The space of currents of type
(p, ), denoted by CP9(M) is the topological dual space of A7 »™~9(M). The
set of forms of degree r is A" = @ppq=r AP and it’s dual is 7 = Spy=r CPL.
The graded space C*(M) of currents of all degrees form a module over the
differential forms A*(M). For ¢ € Ax(M), ¢ € A*(M) and X € C*(M) the

multiplieation is defined by:

(W A M) =AY Ap) | (2.1)

and differentiation by:




dA(p) = Mdy) (2:2)

A current A € C™"*(M) is called positive if

"N e A D) 2 0 (2.3)
We shall use the notation:
P
¢= (0~ 4
d 47r(8 d) (2.4)

There are three important examples of currents.
1. Smooth forms themselves. The action of 1 € A?¥(M) on ¢ € Ampim=a{ jf)

is defined by:

W) = /M YA (2.5)

By Stokes’ theorem, dip in the sense of currents agrees up to sign with di
in the sense of differential forms.

2. An analytic subvariety Z C M of pure codimension n defines a current

[Z] € C™™(M) by the formula:

[Z2](¢) = fz P (2.6)

where @ € AP M) and Ze, is the set of nonsingular points of Z.

3. Forms with locally integrable coefficients on A define currents by inte-

gration in the same way as smooth forms. The space of such forms we shall




denote by L} _(M). We shall be particularly interested in locally integrable

loc

forms that are smooth outside of some analytic subset of M.

If we have a smooth map f : N'— M therg is the pullback map f* :
A*(M) — A*(N). Tt’s dual f, : C*(N) — C*(M) is called the pushforward
map. For currents in general the pullback map is not defined. However for the
first, two cases described above (with some restrictions on the map f) there is
a natural way to define the pullback Iﬁap.

1. If the current is represented by a smooth form it’s pullback is defined
for any s.inooth f.

2. If the current [Z] corresponds to an analytic subvariety Z (possibly with
multiplicities) locally defined as Z = {g; = ... = gy = 0}, and f is holomorphic

and has the property:

codim{f~HZ)) = codim(Z) | (2.7)

then the pullback f*([Z]) is defined as an analytic subvariety (with multiplic-
ities) defined by the vanishing of the functions f*(g:), 1 =1, ..., k.

Later we shall need the following

Proposition 1 Whenever the pullback operation f* is defined on currents il
commutes with.the differentiation d and if f is holomorphic it also commutes
with d¢. Furthemore, if the currents w, [Z] and ) are as above (w - smooth, Z
- analytic subvariety and X - L}, smooth outside of Z ) and satisfy the current

equation

(7] — w=ddA (2.8)




on M, then their pullbacks by a holomorphic map f : N — M satisfy the

corresponding equation on N, provided f*\ is defined and Li..
¥

2.2 Holomorphic classifying maps

Let X be a complex manifold and E — X a holomorphic n-dimensional vector
bundle over X. Any such bundle can be classified by a map to a grassmannian
G (CY ) of n-planes in C¥. Which means that there is a map f : X — G,(CV)
such that E is the pullback of the universal n-plane bundle U(G,(C"Y)) over
the grassmannian along the map f.

However in general f can not be chosen holomorphic, 1t is easy to see
that if ' = f*U(G(CY)) for some holomorphic map f, then E* should have
nonzero holomorphic sections (which are pullbacks of holomorphic sections
of U*). Furthermore the space of holomorphic sections of * is “sufficiently

ample” in the following sense:

Definition 1 A subspace V C Typo(F) of the space of holomorphic sections of
a vector bundle F' over X is called sufficiently ample if the evaluation map

e: X x V= F is a surjective vector bundle homomorphism.

The evaluation map e is defined as e(z, s) = s(z)forze X andsc V.
The precise condition for existence of a holomorphic classifying map is as

follows:

Proposition 2 Holomorphic vector bundle 5 — X can be classified by a
holomorphic map to a grassmannian if and only if the space of holomorphic

sections of E* is sufficiently ample (the classifying map may not be unigue).




Proof. We have the standard exact sequence of bundles over the grassman-

nian:

#

0 = U(Gu(CY)) = Go(CV) x C¥ = @(GL{CY)) = 0 (2.9)

It’s dual is:

0 > Q*(Go(CV)) = Gn(TY) x (C¥)* — U*(Go(C)) =0 (2.10)

But (CN)* is canonically isomorphic to the space of holomorphic sections of
U* (G, (CV)). The sequence is exact, so the third homomorphism is surjective
and therefore the space (CV)* of zﬂl holomorphic sections of U*(G,(CY)) is
sufficiently ample. ‘

If the holomorphic classifying map f : X — Gn(CV) exists then f*({CV)*)
is a sufficiently ample subspace of I'po(E£*} and therefore Thot(E*) itself is
sufficiently ample.

Conversely, if there is a sufficiently ample V C Ty (E*), dimV = N, then
the kernel of the evaluation map e : X xV — E* has dimension (N —n) at every
point z € X and we can define the map f : X — Gn_n(V) by f(z) = ker{e|s).
This definition implies that ker(e) = f*U(Gn-n(V)). Therefore we have the

exact sequence:

0= FUGCN-(V)) = X XV = E* =0 (2.11)

Therefore £* = f*(V/U(Gn-n(V))) = [ (Q(Gn-n(V))). But Gy_r(V) =




G (V*) and Q*(Gy—n(V)) = U(GR(V*)). So if we use these identifications to

interpret f as a map to G,(V*), it is a holomorphic classifying map for &, L

¥

2.3 Connections and characteristic classes

In this section we shall give a brief overview of the geometric theory of charac-
teristic classes as developed by Chern and Weil. Although the general theory
does not require the bundle E to be holomorphic we shall consider only this
special case. Let B be an n-dimensional holomorphic vector bundle over a
complex manifold M. We shall denote by ['(E) the space of all C* sections of
E, by T'ha(E) the space of holomorphic sections and by A*(M, E) the graded

space of differential forms on M with values in F.

Definition 2 A connection on E is a first order differential operator D :

'{E) — [(T* @ E) that satisfies the Leibnitz rule:

D(fsy=df -s+ f-Ds (2.12)
for any f € AYM), s € T(FE).

Relative.to a local holomorphic frame in F a section s is represented by a
vector function §. Then Ds is represented by the vector valued 1-form d3+6-5
where @ is a locally defined (frame dependent) n x n-matrix valued 1-form.

Under the change of local frame # transforms by the gauge transformation:

06— g 0g+g'dg (2.13)

10
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The matrix {2 = df — @ A § transforms as ! — ¢~'(tg and therefore defines

a global (frame independent) End(E)-valued 2-form on M. It is called the
curvature of E. p

Definition 3 A polynomial on a Lie algebra is called invariant if it is con-

stant on the orbits of the adjoint action of the corresponding Lie group.

The construction of representatives of characteristic classes of £ is based

on the following

Theorem 3 For any invariant polynomial ¢ on gl(n,C) of degree k, () is
well defined closed 2k-form on M and it’s cohomology class does not depend

on the choice of connection.

The ‘representative of the total Chern class given by the connection D is

o(D) = det (I + %n) (2.14)

and for the Chern character it is

ch(D) = Tr(ez?) (2.15)

If the bundle E is equipped with an hermitian metric H, then there is
unique connection of type (1,0) that is compatible with the metric. And if
the matrix h represents the metric in a local frame then the connection and

curvature matrices are given by:

9=h"'0n, Q=2080=23anh"oh) (2.16)

11
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For a holomorphic section s of E, whose zero set has codimension equal

to rank(E), we shall denote by Div(s) the divisor of s. It is known that the
current Div(s) represents in cohomology the top ghern class ¢ ,(E) of E, and

therefore

en{ B, h) — Div(s) = dT (2.17)

for some current 7', where ¢,(E, h) = det(;-Q}) is the representative of the top
Chern class corresponding to the connection compatible with the metric h.
For the compact manifold M this would be sufficient to compute the number
of zeros {or the volume of Div(s)) of any section and conclude that all sections
vanish the same number of times.

Fo;ch noncompact M, to define the counting function that measures the
growth of Div(s) one has to restrict the integration to compact subsets of M
with boundary, and therefore the right side of equation (2.17) would contribute
to the estimates. Because of that one needs a more precise statement about
the right hand side of the equation. It is usually called the (nonintegrated)

First Main Theorem.

Theorem 4 Let (E,h) be a positive holomorphic hermitian bundle over M.

" Then for any bounded (in metric h) holomorphic section s there is formula:

cn(E, h) — Div(s) = dd°A(s) (2.18)

where \ is a positive L}, (n-1, n-1)-form on M.

12




If E is a line bundle then the assumption of positivity of E in the theorem
is not necessary and the formula becomes

L

er(E, h) — Div(s) = dd°log—r7> (2.19)

s ||2

where we can assume that the norm of s is bounded by 1 and therefore logﬁg—
is positive.

Another example is the case when -E is the direct sum of n copies of a line
bundle L with direct sum metric. Then any section s of E can be written as
(81, ,8n) where s; are the sections of E. If the divisors Diu(s;) intersect in

a variety of codimension n then the formula becomes

(ci (L, h))* — Div(sy) - Div(ss) ... Div(sy) = ddA (2.20)

with

log||8||2 Zwo —h-LY (2.21)

where the forms w = ¢;(L, h) and wy = w + dd°log||s||> are nonnegative and
|[s]|2 = 3.5, []sil[% In this case the assumption of positivity of £ is necessary
for positivity of X. The proof of the theorem can be found in [3] and the last

example in [é]

13




2.4 Integration

Theorem 4 is commonly used in value distribution theory as follows. One con-
siders the holomorphic map f: X — M from nonEompact complex manifold
X to compact M. Then if we choose a positive(holomorphic vector bundle
F over M and a subspace V in the space Ty (E) of holomorphic sections of
E, the problem is to study “the position of the image f(X) relative to the
divisors of sections from V”. To make it more precise we need to choose an

exhaustion function on X.

Definition 4 An exhaustion function is a proper C* map 7 : X — [0, c0)

Then the counting function for the divisor Div(s) of a section s € I'(F)

over M‘_ris
i!
r
i
N(s,r):/ E]i—n(s,t) (2.22)
ro
where
n(s,£) = f (dder)™" £* Div(s) (2.23)
By
and

Bi={ze X : r(z)<logt) and m=dimcX, n=rank(E) (2.24)

The pullback divisor f* Div(s) = Div(f*s) is well defined if the zero set of
the pullback section f*s has codimension n in X. Double integration of the !

current equation yields the formula ' ‘

14




N(s,r) =T(r)+ S(s,7) — m(s,r) + const (2.25)

v ¥
where

T(r) = / E: [ P (2.26)
S(s,7) = / (dder)™ ™ F*A(s) (2.27)
m(s,7r) :/‘;B (dd°rY™ "d°r f* A{s) (2.28)

Positivity of A(s) implies positivity of m(s,r). So in the case when the
order of growth of S(s,r) is smaller than that of T(r) this formula gives the
upper bound on the growth of divisors of holomorphic Sections: Thig is the case
when FE is a line bundle and 7 is the “special exhaustion function” for which
(dder)y™=mH = (dd°r)™ (since n = 1) has compact support. Unfortunately in
general the order of growth of S(s,r) can be larger then that of T(r) so this

' formula does not give an upper bound on the growth of N(s,r)
If we choose a sufficiently ample subspace of holomorphic sections Vg, so
that E* can be clasified by a holomorphic map to the grassmannian of n-planes

in Vi and give E the pullback metric, then

Proposition 5 For any r, T(r) is the average of N(s,r) over the projective

space P(Vg) (with the invariant volume form),

See (3] for the proof.

15




2.5 Degeneracy loci

Let E and F be holomorphic vector bundles over a complex manifold M with
rank{E) = m, rank(F) = n. And let o : E/ — F be a holomorphic bundle
homomorphism. We shall recall the definition of the k-th degencracy cutrent
(where 0 < k < min(m, n)) of « following [8]. The k-degeneracy current can
be defined for the very general class of k-atomic homomorphisms (see [8] for
the definition), however we shall be concerned only with the complex analytic
case.

For 7 = m — k let’s consider the bundle = : G,(E) — M the fibre of
which at cach point z € M is the grassmannian of r-planes in the fiber of &
over z. The pullback 7*E has a tautological subbundle U (G, (L)) whose fibre
over p € G, (E) consists of all vectors v € p. The homomorphism « lifts to

w*c : 7 E — 7 F which can be restricted to U(G,(E)):

& = W*GIU(GT(E)) : U(GT(E)) -7 F (229)

Definition 5 If the zeros of &, considered as a section of the bundle
Hom(U(G(E)), m*F) over G,(E), are an analytic subset of “correct” codi-
mension tn (so that the divisor of the section is a well defined current Div(@)),

the k-degeneracy current of o is defined as:

Dy (@) = 7, Div (&) (2.30)

Proposition 6 Whenever the degeneracy current Dy (o) is well defined

supp i (@) C {z € M : rank(az) < k} (2.31)

16




And if & vanishes nondegenerately then

Dy () = [Zelc)] & (2.32)

where [Sg(c)] is the current of integration over

Yp(a) ={z € M : rank(a,) = k} (2.33)

Now suppose that the bundles E* and F' have sufficiently ample subspaces
Vg« and Vg in their spaces of holomorphic sectioné. Then, as we discussed
before, there are holomorphic maps fiz : M — Gp(Vg.) and fr: M — G (Vi)
such that

E=fU(Gu(Vi), F*=fRUG(VF)) (2.34)

| The map fr can be also considered as a map fp: M — Gy_n(Vr). So

F = f3Q(Cra(Vi)) (2.35)

Then there is natural subspace in the space of homomorphisms o : & — F
formed by the pullbacks f*A of homomorphisms A : U{G,(V3.)) —
Q(Gn_n(Vr)) of bundles over the product Gp,(V3.) x Gun(Vp) where f =
fex fr M = Gu(Vi) X Gy_a(Vr).

Proposition 7 Over GV ) X Gy n(Vr) the globally defined holomorphic

bundle maps A U(Gp(VE)) = Q(Gn_nl{Vr)) are in natural one to one corre-

spondence with the matrices A € Hom(VE., V) = V- ® V. Furthermore, the |

17




homomorphisms corresponding to the matrices of maximal rank have the de-

generacy loci Y, (A) of correct dimension and their degeneracy currents Dy (A)

are the currents of integration over the regular subget of Zx(A).

Proof. Any matrix A € H om(Vi., Vi) defines the homomorphism A by re-
striction of A to the subbundle U(G,, (V. )) and then projecting to the quotient
Q(Gn-n(VF)). The space of all holomorphic bundle maps is I'(U* (G (Vi.)))®
QIGN_n(VF))) = I'(UH(Gr(VEN) @T(QGrn-n(VF))) = Vi @V therefore all
the homomorphisms A are generated by the matrices A in the above manner.

The k-degeneracy locus of A is:

Se(A) = {(p,q) € Gu(VE:) X Gyn(Vi) : dim(Apng) > n—k} (2.36)

To prove that the k-degeneracy current is the current of integration over
Yr(A) with multiplicity one we should consider the universal bundle U, —

G (Vis), over the flag manifold

G (Vige) = {(p, @) € G (V) X G (Vige) @ g Cp} (2.37)

and the homomorphism U, -+ Q(Gn_n(Vr)) defined by restriction of AtoU,
and projection to the quotient. If A has maximal rank, this homomorphism

vanishes to first order on

Xk: — {(p,q,fﬁ) € Gm(vg’*) x GT(VE**) x GN—H(VF) CqCp, AQ’ - 33'} (238)

18




Therefore, by the previous proposition, the degeneracy current is the cur-

rent of integration over Xy (A).

It i3 known (see [8] for the proof) that

Proposition 8 D (A) is represented in cohomology by the Shur polynomial
Ag’:k)(c(Q)c(U)*l) in Chern classes of @ = Q(Gu_n(Vi)) and U =
U(Gn (Vi )).

We are going to prove the following

Theorem 9 For a homomorphism A corresponding to the matriz A of maxi-

mal rank there 4s the current equation.

AP (A@Q)e(U) ) — Dy (A) = dd°A (2.39)

where Ay, 18 a positive form with L}, coefficients.

Proof. We shall first consider the case when dimVg. < dimVyr so that the
assumption that A has maximal rank means that it is injective. Let Y be the
product Y = G, (Vi) X Gyn(Vr) X P(Hom{Vi., Vp)) X Gnu(Vr) X Gp(Ve).
And define

Yy, = {(p,q,ﬂ,_:c,y) €Y : Apcz, ycCa yC q} (2.40)

Lemma 10 Y} is a smooth manifold.

19




Proof.

Let’s consider

#

X ={(p, A z) € Gn(VE) x Hom(V, Vi) x Gn(Vy) : Apcz}  (2.41)

X is a smooth vector bundle over Gy, (Vi) X G (V). So it’s projectiviza-

tion P(X) is a smooth manifold. Let

o GN——n(‘/F) X P(X) X Gk(VF) — GN__W,(V}IJ) X Gm(VF) X Gk(VF) (242)

be the projection. Then ¥}, = ¢~ (F}) where

Fo={{g,2,¥) € Gny_n(Vr) X Gr{VF) x Ge(VF) + yCuxz, yCq} (243)

Since Fy, —» Gr(Vr) is smooth fiber bundle and do is surjective, we conclude

that Y} is a smooth manifold.

O
Let’s-consider two projections:
Yy (2.44)
/ \
G(VE) X Gy_pn(Vr) P{Hom(Vj., V)

20




The differential dm, is surjective and drs is surjective for all points in Y5
that correspond to injective A € Hom(Vi., Vi)

On P{Hom(V3., Vr)) we have the equation:

6] = v + dd° (2.45)

where [a] is a current corresponding to the point a € P(Hom(Vi., Vr)), v is
the volume form on P(Hom(C™,C")} and ) is some positive (n — 1,n — 1)
form with L}, coefficients. The explicit formula for A is a special case of the

formula. (2.20):

A:log(%: il’“lz) (ﬂiw” bt ’“) (2.46)

where @ = dd®log(} 5, |2|%) and wy = ddlog(> ", 12:]?) in projective coor-

dinates z; such that z;{a) =0fori=1,...,n.

So, if we choose @ corresponding to an injective homomorphism, then the
singular sets of w3 and A do not intersect and therefore we can define Ay =
T (m5(A)). Then )y is a well defined positive form with L}, coefficients that

satisfies the equation

(3 (v)) — mia(73([a])) = dd®As (2.47)

But 7. (73([a])) is precisely the k-degeneracy current of the bundle homo-
morphism A corresponding to ¢. And m, (73 (v)) is a smooth Uy x Uy in-
variant form on Gy, (Vi) X Gy_p(VF). Invariant forms on the product of the

gragsmannians are harmonic and unique in their cohomology class. Therefore
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T1.(m3(v)) should be equal to A™ % (c(Q@)c(U)~!) and therefore ), defined in

this way is positive and satisfies the equation (2.39).

L]
¥
The pullback of the equation (2.39) to M is:
AT e(FYe(B) ™) - By (a) = ddAy (2.48)

1

again with positive £,

form Aj. It can be integrated twice as in the case of

divisors of sections of a vector bundle to obtain the equation

Ng(a,r) =T(r) + S{a,r) — m{a, 1) + const (2.49)

Where Ny (e, 7) represents the order of growth of the k-degeneracy set of «,
T'(r) does not depend on « and m(e, r) is positive. Unfortunat‘ely the presence
of the term S(w, 7) does not allow us to use this equation to obtain the upper
bound on Ng(ea,r).

For a fixed r Ni{a,r) is a function on P{Hom{V}.,Vr)}. Because we were
considering only injective matrices, Ni(e, r) is defined only on the correspond-

ing open dense subset of P(Hom(V}., Vr)). However

Proposition 11 Ny(a,r) has an integrable continuation to the whole space

P(Hoél'-"f—?,(Vg*, Vr)) and it’s average is equal to T'(r).

Proof.
We can pull back to M the smooth fiber bundle 7, : Yy, — G, (VA X

Gn—n(VF). Then we have the diagram:
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Y (2.50)

M P(Hom(Vj.,Vr))

The function Ny(e,r) can be rewritten as:

Nuleur) = [ Du(@) sy = (m)n” () (251
where
= [ S (aerys (2.52)

and x; is the characteristic function of By = {x ¢ M : () < logz} (7 is the
exhaustion function, dy = dim(I;)).

The form p, is continuous therefore 7*u, is continuous. d’f(g is surjective
almost averywhere, so the fiber integral of 7*(, has integrable continuation

across the singular set of my.
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Chapter 3

Local Second Main Theorem

3.1 Overview of the classic theory of projec-
tive curves

Let’s consider a holomrphic map f : X - P" from a smooth Riemann surface
X to n-dimensional projective space. Then the object of interest for value
distribution theory is the counting function N(a,7) that measures the order of
growth of the intersection of the image f(X) with a hyperplane a in P*. There
are two basic questions. One is to find an upper bound on N (g, r) independent
of a. And the second is to find the lower bound for the sum of several N(a;,r)
where g; form a system of hyperplanes in general position. The first question
is simpler and can be answered in terms of the function f itself. To answer the
second-question (or to prove the second main theorem of the value distribution
theory) oﬁe has to consider the maps involving the derivatives of higher order
of the original map f. They are called associated curves and below we shall

briefly recall their construction. Let’s choose a local coordinate z on X and use
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the homogeneous coordinates on P™. Then the map f is locally represented
by the vector valued function f(z) = (fo(2), f(2),..., fa(2)). Then we can
define

¥

2y =F@ A FER A A fO) (3.1)

where f®)(2) is the k-th derivative of f(z) with respect to local coordinate z.
The ambiguity in the choice of local coordinate makes fk(z) well defined only

up to nonvanishing scalar holomorphic function. Therefore the subsets

Sp={zec X : fi(z)=0} (3.2)

are well defined in X, and outside of %, fi(2) unambiguously defines a (k+1)-
plane in €. Thus we obtain the function f; : X \ X = G (C*1), The
map fk can be also considered as a (locally defined} vector valued function
fio 1 X — ARFHLCnHL Therefore it has well defined divisor Dy that is a current
supported on the set ¥;. Because the map f is holomorphic, ¥ is a finite set

of points 7% in X, and

Dy = Y nilzi] (33)

where ni is the order of vanishing of fi at 2. From the construction one can
see that 2y C g4y and the difference Dyy; — Dy is a positive current.

In thé neighbourhood of a point z%, the function f, can be written as
Fu(z) = g(2)h(z) where g(z) is a scalar function vanishing at o} to the order

nt and h(z) is nonvanishing vector function. Therefore the previously defined
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maps f, can be extended to all X. We shall denote the extended maps fi :
X — Gk+1((C"+1) and

Definition 6 The map fi : X — G 1 (Cv™Y) cofistructed as above is called

k-th associated curve for the curve f: X — P™.
Let cy, denote the Kéchler form on Gy (C**"). Then

Definition 7 The forms wy = fioy on X are called the k-th curvature forms

of the curve f : X — P™.

Any (1,1) form on X can be interpreted as an hermitian form on 77X, As
the pullbacks of the positive forms on grassmannians along holomorphic maps,
all forms wy are nonnegative. And the first curvature form wy is an hermitian
metric on X (which is singular on ¥;) induced from the metric on P”, If the
map f is an immersion, then wy is a nonsingular hermitian metric on 7°X.
Similarly, other curvature forms wy are singular metrics on 7T°'X induced by
the corresponding maps to grassmannians.

It turns out that the curvature forms wy, are not independent but can all be
computed starting from wy. The recursive realations are given by the following

theorem (see [4]).
Theorem 12 If the curve f : X — P™ is not contained in any hyperplane in
P then

ddclogdﬁk = Wg-.1 — 2&)]@ -+ Wett (34)

where w_y = wy, = 0 and @y, 18 locally defined function such that wy, = OydzAdz

The equation holds outside of the discrete set Ly on which &y vanishes.
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If we choose an hermitian metric & on X locally represented as h = h|dz|?,

then we can rewrite these relations as

¥

dd‘"‘log% + K = Wp—1 — 2wk :{- Wet1 (35)

where K is the curvature of X corresponding to the metric 4 and again the
equation holds outside of the singular set ¥;. In this equation % is globally
well defined nonnegative function on X vanisning at discrete set, .
We shall be interested in the integration of this equation on X (or compact
subsets of X if it is not compact). Therefore we need an equation valid on all
X. To obtain such an equation we need to understand the left hand side of
@ (3.5) as a current and add terms that account for the presence of singularities.

The result is

Theorem 13
a"‘) .
ddclogf + K = We—1 — 2&)19 -+ We1 — (D.fc-—l — QD,(G + Dk+1) (36)

.For the proof see for example [11], [10] or [1]. The classical texts do not
use currents to state the result. However the proof of an essentially equivalent
statment can be found there. The original proof is based on the direct calcu-
lation of the forms wy. We shall reprove it from a slightly different point of
tviewl-;_in the next section.

If X is compact then the integration of this equation on X yields the

Pliicker formulas:
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X(X) = Vg1~ 20 + Vpg1 — (M1 — 204 + np 1) (3.7)

where v, = f < W 18 the volume of the k-th associated curve and ny, = > nt
is it’s total k-singularity.

If X is not compact but has a parabolic exhaustion function 7 where

Definition 8 An ezhaustion function T on o Riemann surface X is called

parabolic if dd°r = 0 outside of a compact set.

then double integration (first over the ball B; defined by the exhaustion func-
tion 7 and then over the parameter £) of equation (3.6) produces result that is
the starting point for the proof of the defect relations which is the main result
of the value distribution theory. Unlike the case of the first main theorem,
where the upper estimates on the counting function (when they can be ob-
tained at all) follow quite easily from the local first main theorem, the proof of
defect relations is difficult. However the local formula (3.6} plays an important

role in the theory. Our goal will be to obtain some generalizations of it.

3.2 Derivative bundles

In this section we shall review some facts about the derivative bundles following
(with some change of notations) the papers [2] and [9] where all the further
detzﬁls can be found.

Let £ be a holomorphic vector bundle of dimension n over complex m-
dimensional manifold X. The cohomology group H*(X, End(#)®Q) contains

an obstruction a(F) to trivialization of £ (if X is compact Kéiehler manifold,
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HY(X, End(E)®%Q) can be identified with H"'{X, Fnd(F)) and the curvature
form of E corresponding to any metric connection on E is a representative of

the cohomology class a(F)).

L

Definition 9 An extension of a holomorphic bundle F" by F' is an ezact

sequence of vector bundles:

03 F = F = F' -0 (3.8)
It is known that

Proposition 14 The cquivalence classes of extensions of F" by F' are in one-
to-one correspondence with the elements of H'(X, Hom(F", F')), the trivial

extension corresponding to the zero element.

The element a(F) can be considered as an element of H'(X, Hom(E,E ®

Definition 10 The extension
02 EQ—HF +E—0 (3.9)

corresponding to —a(E) is called the derivative of the bundie E.

:The bundle 5 has also a simple description in terms of transition functions
corresponding to a local trivialization. Let’s choose a covering {U;} of X such
that the restriction of B to U; is trivial for all i. Over each U we can fix the
trivialization of E, the local holomorphic frame {u;} and the corresponding

local holomorphic connection




Dy : T(Bly) = T{(E @ Q)]y) (3.10)

defined by Dyu; = 0 for all 2. ’

Let V' be another trivializing neighbourhood and denote by Ay the End(E)-
valued (1,0) form on U NV that represents the local connection Dy relative
to the local frame over V. A (1,0)-type connection on the bundle  can be
undertood as a splitting £y — E ®  of extension (3.9). Local holomorphic
connection Dy defines the local holomorphic splitting Fi|ly = £ @ F & .
Similarly |y = £ & E ® Q and the transition functions gyy relating two

different splittings of E, over U and V are:

I |0
Gov = (3.11)
AUV I ‘ :

‘The forms Ayy can be written in terms of the first partial derivatives of the
transition functions of the bundle E.

By its design the bundle F; has the property -tha,t for any holomorphic
section s of F there is a global holomorphic section s; of ) that can be
locally defined as si|y = (s; Dys).

By analogy with the first derivative E} it is possible to define (see [9] for

the construction) the sequence of the consecutive extensions:

0= E@S™Q - By — B —0 (3.12)

whose transition functions can be expressed in terms of the higher derivatives

of the transition functions of F. And similarly to F; they have the property
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that s locally defined as

skly = (s, Dys, ..., DEs) (3.13)

¥

is a global holomorphic section of Fy. Here DE ; I'(E|y) — T{((E @ S*Q)[,) is

the k-th derivative in the frame, chosen on U,

3.3 Associated maps

As we discussed before there are two equivalent approaches to studying holo-
morphic maps f : X — Gy ,(C"). One can either start with the map f
and obtain the (positive) holomorphic vector bundle ¥ over X, that is the
pullback of the quotient bundle over the grassmannian, and the subspace in
the space of holomorphic sections of £ formed by the pullback sections. Or
alternatively we can start with the bundle E and a sufficiently ample subspace
V' 1in the space of it’s holomorphic sections. Then the map f naturally arises
as the holomorphic classifying map for £ by mapping # € X to the subspace
P, C V of sections vanishing at z.

Similarly we can define the associated maps for the map f as maps aris-
ing out of an attempt to construct the holomorphic classifying maps for the
derivative bundles Ej. As in the case of associated curves, these maps will be
initially defined outside of some “singular” subset of X. In some cases they
(;a:il be extended across the singularities.

Let V5 = X x V be the trivial bundle and consider the k-th derivative

evaluation map eg : Vy — E;, defined by
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(x)dz, ... dz,

L]

95 iz, 05 ) (3.14)

The right hand side of this equation is an element of E® (EQ@Q) ... (E®
S¥Q2), that is locally isomorphic to Ey, where Q is the holomorphic cotangent
bundle on X and S*Q is its symmetric tensor power. This element does depend
on the choice of the local coordinates z; and so does the local splitting of Ej
into direct sum of £ ® €. And the right hand side, considered as an element
of Ey is well defined and independent of the choice of local coordinates. The
map ey : Vo — By = E is the usual evaluation map (priviously denoted by e).

The singular sets are defined by:

Yp={z€X : egly Iisnotsurjective} - (3.15)

Irom the definition of the homomorphisms e; one can see that ¥ C Zp..
Over the “nonsingular” subset X \ 3, one can define the smooth vector bundie
Vie1 = ker(ey) and the map fi, : X — Guy_q, (V), where fr(2) is the fiber of
Vi over z € X and dy, = dim(Ey).

From the exact sequence

0= Vi = Vo= FE, =0 (3.16)

on X \ ¥; we see that the restriction Eg|x\», = Vo/Vis1r. And therefore
Eilxvn, = fa@(Grg, (V) and Vi, = ffU(Gy-q, (V). If we choose an hermi-

tian metric on V, all subbundles V; will have natural metrics and the bundles
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B, will have “singular metrics” that are smooth metrics outside of .
By their definition, the bundles V; have the fiber over & € X formed by all

soctions in V' that vanish at least to order k at x: ¥

Vi = {(z,5) € (X \5) x V : s vanishes at least to order & at z} (3.17)

The restriction & = exly, is a map to the subbundle £ ® S*Q C Ej, that
is given by the formula:

ak
éx(z,8) = ﬁ(m)dzm odzy, for (z,s) € Vi (3.18)
i1+ 0 - Oy

where the right hand side is independent of local coordinates due to the van-
ishing of the lower order derivatives of s. So the bundles Vi = ker(&;) and we

have the diagram:

Vo Vi Va Vy-oo (3.19)

E E®Q E® S

Trom the exact sequence (of bundies over over X \ X)

0= Viy = Vi= E®S* 2= 0 (3.20)

and the sequence for the quotient By = V4/Viy1

02 E®S*Q — By — Fy =0 (3.21)

33




we conclude that the singular projected metrics 2(F & S*Q) induced by pro-

jections &, : Vi —» £ ® S*§ in diagram (3.19) are the same as the metrics

that & $*Q receive as subbundles of B (provided that By |x\x, = Vo/Vi has
¥

the quotient metric which is also the pullback of the Uy invariant metric on

Q(Cn4,(V)))-

3.4 Geometric construction of associated maps

Now we shall describe a different construction of the same maps f, (again
defined outside of some singular sets 33;).

Let f* be the pullback of holomorphic 1-forms f* : T*Gy_n(V) — T*X.
Because T*Gn_p(V) = UGn_n(V) @ Q*GN._n(V) we have the map

F UGy (V) ®Q Grn(V) = © ~ (3.22)

which can also be considered as a map:

FHUGN-(V) = Q@ QG0N (V) (3.23)

Then we can define the first associated map fi : X — Gy_q, (V) on the

subset of X where f* is surjective as

J1(z) = {kernel of f* restricted to the fiber over f(z)} (3.24)

Now let’s observe that this definition of the first associated map agrees
with the one that we gave before. The pullback f* defines the homomor-

phism @ f*T*Gr_q, (V) = T*X of bundles over X. But f*T"Gy_q4,(V) =
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UGN, (V) ® f*Q* Gy, (V) = V1 ® E*. So we have a homomorphism:

oV ® - Q) (325)

Or equivalently

& Vi > E®Q (3.26)

The above definition defines the value of f; as the kernel of &;. But the
homomorphism &, is precisely the same as €, described in the previous section.
To proceed with the definition of the higher order associated maps, let’s
consider the map ¢; : X = Gn_pny—q,(V) to the flag manifold of pairs of
planes in V' defined by ¢,(x) = (f(z), fi(z)). Let m; be the projections:

GN nN-d ‘ (3.27)
Gn GNd
Then f = mgo g, and f; = m o g1. The pullback of the universal bun-
dle 7fU(Gn_q,) 15 a subbundle of #jU(Gy_y). Therefore miU(Gn 4,) ®
756 (Gn_p) is a subbundle of 7fU(Gn_p) ® 7}Q*(Gn-n) which is isomor-
phic to 73 (T*Gx ).

. By the construction of the map ¢, we have

iU (Cy-a) ® Q" (Gvn) C ker(g)) (3.28)

The manifold Gy_n,n—q, has two fiber bundle structures:
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1. GN—n,Nwdl = GN*dl (U(GN—TL))
2. GNWH,N_dl — Gdl—n(Q(GN—dl))

Irom the first we have exact sequence:

0= miU(Gneg) = 75U(Gy_n) = Q@ —0 (3.29)

where () is the quotient. The injective map niU{Gy—q,) — 73U (Gn—p) defines
the projection T{(Q}(Gy_q;) = TQ(Gn_n). Therefore we have the following

exact sequence:

0—=U—=miQ(Gn-g) = 75Q(GNx ) =0 (3.30)

corresponding to the second fiber bundle structure. Here U is the kernel of
the pro jection,

Taking tensor product of (21) with m§Q*(Gy—n) we have:

0 — 1 U{(GN_d,) @ myQ* (Gron) = 73T (CGren) = Q@ mQ* (Gy_y) = 0
| (3.31)
Similarly the tensor prouct of the sequence dual to (6) with 73U (Gun_g,)

is:

0= 7 Q (G n) @MU(Grn_gy) = TIT*(CGrn_g) = U @ iU (Gr_g) — 0
(3.32)

Now consider the I-form pullback map g} restricted to #¥T*(Gy_g,). Ac-
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cording to (20) m3Q*(Gy—n) ® T{U(Gn—_q,) is contained in its kernel. So we

can define the map:

¥
ay U @uiU(Gr_g,) = T X 3.33
l I

Let’s consider the corresponding map

g mU(Cyog) 2> T*X QU (3.34)

We shall define the (N — dy)-dimensional subspace of V necessary to define
the map fy as ker(@z) on the subset of X where d» is surjective.
| Now one can consider the flag manifold Gy_g4 ny-g, with two projections
to the grassmannians and define the next associated map in the same manner
as above. Repeating the procedure until eventually the map &y fails to be
generically surjective one can obtain all the associated maps. As in the case
of f1 one can check that this construction of fi, agrees with the definition from

the previous section.

3.5 Holomorphic curves in projective space and

grassmannians

"In the case of projective curves the associated maps can be extended to the
whole curve X . This implies that the bundles V; defined above over nongingular
sets X \ ; can be extended to smooth bundles over X. The higher curvature

forms wy, are the pullbacks of the invariant Kéehler forms on the grassmannians
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and therefore equal to the representatives of the first Chern classes of the

pullbacks of the quotient bundles:

wr = c{f3Q(Gy k1)) = 61(%/%,)‘ = —c1 (Vi) (3.35)

From the exact sequence

0 — Vipy —> Vi —2> B @ Q0 —> 0 (3.36)

we conclude that (see [7] for the proof)

ei(D(E ® S*Q)) = op + (wi — Wiet) (3.37)

a(D(E® S$*Q)) — c1(E @ S*Q) = dd°X, (3.38)

where oy, is the 1-degeneracy current of €, ¢ (ﬁ(E ® S*®Q)) is the ¢, character- .
! istic current of the singular pushforward connection on £ ® $*Q} corresponding |
to the singular projected metric on it and ¢;(F ® S*Q) is the smooth repre-
sentative of the first Chern class corresponding to some metrics on E and €.

T'wo last equations combined imply that

Wh—1— 2w+ w1 — (O — 05 1) = 1 (E®S*Q) — 1 (E@SPF1Q) +-dd°)y (3.39)

However Dy, = Ef:o Ok, S0 that
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Op — Op_1 = Dk:+1 - 2Dk -+ kal (340)

and ¢ (E®S*Q) — 1 (F® S*1Q) = ¢,(Q). Therefore to reprove equation (3.6)
we should compute the transgression A,. But because it is a locally integrable
function it is sufficient to compute Ay on the nonsingular subset X \ ¥,. This
is equivalent to computing the projected metric on F ® S*Q). Therefore the

result will follow from the following

Proposition 15 The projected metrics on the bundles £ ® S*Q are nonsin-

gular outside of Xy and satisfy the recursive relotions:

ME @ S Q) = WME ® S¥70)  wi (3.41)

where wy, i the right hand side is understood as o meltric on Q = T*X (non-

singular outside of Y ).

Proof. For each associated map fp + X — Gy_;—1(V) let’s consider the

holomorphic 1-form pullback map

fi (T Gnepa (V) = Vi@ (V/V)" = Q (3.42)

The inclusion map Vj — V4_1 defines the projection V/Vy, — V/Vj_ 1 and
therefore (V/Vi-1)* is a subbundle of (V/Vi)*. From the geometric construc-

tion of the associated maps fi it follows that:

Vi ® (V/Vi)® Cker(fi) (3.43)
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The quotient (Vi ® (V/Vi)*}/(Vi ® (V/Vi1)*) is just Vi @ (Vie1/ Vi) =

Vi ® (E ® S*1Q)*. Therefore f; defines a map:

;

G Vi ®(E® S = Q (3.44)
Because Vi ® (E ® S¥71Q)* is a quotient bundle of T*G;.v_;c_l(V) with
projection metric, the metric on € defined by the projection & is the same
as the metric defined by the map f}, which is the composition of the two
projections . Therefore its Kéehler form is the pullback along f¢ of the Kéehler
form on the grassmannian G, 1_x(V) which is equal to wy = —¢,(V)). Because
E®S*1Q1 is just a line bundle, we can take tensor product of (3.44) with E®

S5-10) to compute the projected metric on £ ® S*Q stated in the proposition.
Cl

Next we consider the case of curves in grassmannians. As we did for pro-
jective curves we shall start with a riemann surface X, a vector bundle IV over
it and a sufficiently ample subspace V in the space of holomorphic sections of
#. Let n be the rank of E. Then the general construction produces a map
f:X = Gy_o(V) such that B = f*Q(Gn_.(V)) and it’s associated maps fj.
The proof of the fact that the associated maps and corresponding bundles Vi
can be extended across the singularities to the entire curve X can be repeated
with almost no changes for the bundle & of rank n > 1 (but it is important
for the argument that X is still 1-dimensional}).

Again the derivatives of associated maps dfy : TX — TGy_p(k+1) define

metrics on T X that are singular on L. But the pullback fi (TG v_nirr1))|x\5, =

40




|

Ef ® Viix\x, has the additional structure of the tensor product which allows

us define the End(Ey)-valued hermitian form hi on the tangent bundle of X.

Lemma 16 On X \ Xy the (End(E;)-valued) curdature form @y of Lig cur-
responding to the metric induced on it by the projection eg|x\s, : Vo — Fy 18

equal to hy interpreted as a (1,1) form on X.

The equation (3.43) remains true for n > 1 and therefore the image of
dfy, belongs to the subbundle (B ® S*Q) ® V) of TG x—nw41y (V). Therefore,
relative to the orthogonal splitting By = E® SEQ + Ey_y, @y is represented
by the matrix

wy | 0

i = (3.45)
010

with only one nonzero block, corresponding to the (1,1) form &) on X with
values in Fnd(E® S*Q) = End(E). Now the last proposition can be repeated

almost without changes:

Proposition 17 The projected metrics on the bundles & @ SEQ are nonsin-

gular outside of Xy, and satisfy the recursive relations:

WME ® Q) = h(E® S*'Q) - @1 (3.46)

where the right hand side is the matriz product of M{E @ Sk =10 understood

valued hermitian form @y.

as an hermitian form on SE1Q with values in Hom(E, B*) and the End(E)-




Proof. Repeating the argument used for the projective curves, we conclude

that the homomorphism

¥
& Vi@ (ES 1) -0 (3.47)

cotrresponding to

& Vi — Q0 (B@S8) (3.48)

induces the projected End(E ® S*Q)-valued form Az on €2 that is precisely @y.

This implies the statement of the proposition. (I

We can use this result in the same way as it was used in the case of pro-
jective curves. First corollary is the recursive relation between the curvature

forms &y,

Theorem 18 If ¢ bundle FE of rank n over a compler curve X is classified as
a holomorphic hermitian bundle by o map to the grassmannian Grim—1)(V) of
planes of codimension n in en hermitian space V' of dimension mn, then the

higher curvature forms @y, satisfy the recursive relations:

iz, -
Wpy1 — W + Ea(hkilahkﬂ), Wl =&y, =0 (349)

hi = h(E ® S*Q), s0 hgpr = hy @,  ho = h(F) (3.50)

The equations hold outside of the singular sets Ly. The form @y defined by

relations (3:49) on X \ Iy, has a smooth continuation to all X, All forms @y,
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are positive- definite outside of the finite sets Xy,

Another application is the analog of the formula (3.6). If we define (as
before) Dy as 1-degeneracy current of e, and oy as 1-degeneracy current of €,
then from the general theory of singular connections (see [7]) applied to the

diagram (3.19) we obtain

Woq ~ 2wk +Why g — (05 —0k-1) = c1 (B S*N) — 1 (BR S¥ Q) +dd° A (3.51)

where w! = tr(@;) and all other notations are as in the formula (3.39) of which
this formula is an exact analog. The last proposition allows to compute the

transgression A in (3.51) to prove the following

Theorem 19 Let f : X — Gpim—1)(V) be a holomorphic curve in the grass-
mannian. Then for any choice of hermitian metric h on X the higher curvature

forms of the curve and it’s singularities satisfy the following current equation

det (&
dd° 10g %%ﬂ +nkK = w;,_l - 201}; + (JJ;_H ad (D}cul - Q.Dk, + Dk+l) (352)

where Wy, 15 defined locally by @y = wpdz A dZ and @%f—’“l is a globally well

defined function on X.

If X is compact this equation can be integrated to obtain the Pliicker

identities:

‘]’?,X(X) = Vy—1 — 2V + Vpy1 — (nk_l — 2ng + n}g+1) (353)
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where vy = [, wy is the volume of the k-th associated curve and ny = Y, n}

is it’s total k-singularity.

E

3.6 Surfaces in projective space

In this section X will denote a complex surface and I is a line bundle over it.
As we did before, we can define the singular sets X, associated maps f; on
X \ 2 and the bundles V; over X \ ¥;. Unfortunately in general the bundles

Vi can not be extended smoothly to all X.

Lemma 20 The bundles Vi can be continued smoothly to X \ Sk, where Sy C

Yk 18 @ finite point set.

Proof. Because the bundle Vj, is defined as the kernel of ¢, : V; — E,
the problem of continuation of V is equivalent to the continuation of the im-
age e;(E}) < Vy across L. Let z be a nonisolated point in ;. In some
neighbourhood U/ of this point the bundle £y can be trivialized, and the map
A% F, — A%V can be represented by a vector function g on U. On X \ g it
defines a map U — P{A%V). The intersection U M X is an analytic subset of
U defined by the vanishing of g. Qutside of a finite set sing(Xy), Iy is locally
irreducible, defined by vanishing to the first order of a holomorphic function
¥, Then each component g; of the vector function g can be represented as
gi =[] ¢¥™ - h; where h; doesn’t vanish identically on U M Xy,. Therefore on U,
g = ¢g where § does not vanish identically on U N X, and ¢ is a scalar holo-
morphic function. The function § then vanishes on a discrete set and outside

of it defines the map X — P(A%V). But on the open dense set X \ S; the
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image of this map belongs to G4, C P(A%V). Therefore the extended map is
also a map to the grassmannian. 0
s

Let m be the largest value of & for which ey is generically surjective. Then
all the bundles Vi, k = 1,--+ ,m can be continued to X \ Sy,.

Let 7 : X — X be the blowup of X at all points in Sp,. Then the fact that
the associated maps and bundles Vi, restricted to any curve C in X can be
continued across Sy, M C implies that the pullback bundles Vi, = 7V} can be
continued to all X.

If we define Dy, as L-degeneracy current of e; and oy, as 1-degeneracy current
of €z then we have the following analog of Plicker identities for surfaces, which

interestingly involves third differences.

Theorem 21 On X there is the relation between cohomology classes:

c1(Vier1) = 3er (Vi) +3e1 (V1) — e1(Vi—2) = Diq1 =3D+ 3Dy — Dy—o+c1(X)
(3.54)

Proof. Because V. C ker(é) we can consider the equidimensional homo-

morphisms

B Vi/ Vi1 — E® S*Q (3.55)

After we blow up all isolated singular points, all the degeneracy sets in X on
which 8 drops rank by one have codimension one which is the “expected”

dimension. Therefore we have the formula
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ar(Vi/Viwr) — e1(E ® S*Q) = oy + dT; (3.56)

which together with the exact sequence 7

0 E®@ SO (ES*) o= (EeS¥10) oA’ Q=0 (3.57)

implies the equation (3.54). O

3.7 Equidimensional maps to projective space

In this section we consider equidimensional holomorphic maps f : X — P*(V).
This is a special case of maps f: X — M with dim(X) = dim(M) considered
in [6]. The general construction from sections 3 and 4 applies in this case. The

diagram (3.19) terminates after V; and becomes

Vo Vi 0 (3.58)
lé lél
E EeoN

The (singular) metric induced on £ ® } from V] is

WE®Q) = h(E) - w(E) (3.59)

where w(E) is understood as a hermitian form on TX. Outside of the singular

subset where df fails to be injective, V} is isomorphic to £ ® © and we have
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the exact sequence

0> EQ 3 Vi—2E—=0

5

Therefore outside of the singularities

w(E) = dd°log (det h(E)) = —dd®log (det(h(E) - w(E))) =

~dd®log h(E)" + dd°log w(E)"

Taking into account singularities we obtain the current equation

dd’log w(&)" = (n+ Vw(E) — Dy

(3.60)

(3.61)

(3.62)

the singular volume form w({E)™ on X is just the pullback of invariant volume

form on the projective space.

- This formula is precisely the nonintegrated second main theorem for equidi-

mensional maps into projective space. Notice that the same general construc-

tion produces a local second main theorem in both extreme cases of lowest {the

case of holomorphic curves) and highest (considered in this section) dimension

of X. These two cases are the simplest. First because for curves all bundles

 F® 5% remnain one dimensional for all & and the second because the diagram

(3.58) terminates after V) and therefore there are no higher order associated

maps. This allows one to hope that other local formulas obtained in this way

might also find some application.
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