g

Self-similarity of the Mandelbrot set and
parabolic bifurcation

A Dissertation Presented
by
Rogelio Valdez

to

The Graduate School
in Partial Fulfillment of the
Requirements
for the Degree of
Doctor of Philosophy
in
Mathematics

Stony Brook Untversity

August 2004




State University of New York
at Stony Brook
The Graduate School

4

Rogelio Valdez

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of this dissertation.

M

Mikhail Lyubich
Professor of Mathematics
Dissertation Director

/i [~

John Milnor
Dlstmgulshed Professor of Mathematics
Chairman of Dissertation

(e

Arac 1Med}41.a-B6n1fant
Profdssor of Mathematics

A9

77 Saced Zakeri
Professor of Mathematics, CUNY
Outside Member

3

This dissertation is accepted by the Graduate School.

Dean of the Graduate School

ii

1 -




Abstract of the Dissertation

Self-similarity of the Mandelbrot set and
parabolic bifurcation

by
-Rogelio Valdez
Doctor of Philosophy
in
Mathematics
Stony Brook University

2004

" In this thesis, we extend Lyubich’s result about the smoothness
of the holonomy in the space of quadratic-like germs in the case
of tripling essentially bounded combinatorics. This combinatorics
are given by little copies of the Mandelbrot set which converge
to the root point of a primitive real copy of the Mandelbrot set.
This result implies self-similarity of the Mandelbrot set for this

combinatorics.
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Chapter 1

Introduction

In this thesis, we study the holonomy map of the lamination JF in the space
of quadratic-like germs given by the Aybrid classes. (See §3 for definitions
and background). Our purpose is to give conditions for smoothness of the
holonomy for some special type of combinatorics, associated with parabolic
bifurcation of a primitive parabolic point.

In this chapter, we first give some historical account of the study of the
regularity of the holonomy map and its applications. Afterward, we state the
main result and discuss some directions of further study.

1.1 The context

When we look at computer pictures of the Mandelbrot set, we can see that it
is not everywhere self-similar. However, some self-similar features are still ob-
servable. For instance, we can observe many little Mandelbrot copies inside the
Mandelbrot set. In order to explain this computer observable little Mandel-
brot copies, the notion of complexr renormalization was introduced by Douady
and Hubbard [DH1]. Since the space of quadratic polynomials is not invariant
under complex renormalization, a bigger space of complex analytic functions
was needed. This was one of the reasons of the introduction of quadratic-like
maps in holomorphic dynamics by [DH2).

Tt was then conjectured by Milnor that the little Mandelbrot sets around
the Feigenbaum point of stationary type have asymptotically the same shape
(M2, Conjs. 3.1 and 3.3)).

In [L3], Lyubich supplied the space of quadratic-like germs with topo-
logy and complex analytic structure, modeled on families of Banach spaces
and proved that the Douady-Hubbard hybrid classes form a foliation of the
connectedness locus C with complex codimension-one analytic leaves. Then,
a generalized version of the A-lemma was used to show that this foliation




is transversally quasi-conformal, that is, the holonomy map & between two
transversals to a hybrid class, is locally a restriction of a quasi-conformal map.

However, Douady and Hubbard [DH2], as well as Lyubich [L3], showed that
the foliation was not transversally smooth. For instance, consider the Ulam-
Neumann quadratic map P = P_y : z + 2% — 2 and a quadratic-like map f
in the hybrid class of P, i.e. f € H_p. Approximate both maps with super-
attracting parameter values ¢, — —2 and f, — fy fo € H,,, with different
rates of convergence, then the holonomy ¢, — f, is not smooth at —2. For
the same reason the foliation is not smooth at other Misiurewicz points and
quasiconformality seems to be the best transverse regularity of the foliation F
which is satisfied everywhere.

Another important result in [L3] is Lyubich’s Hyperbolicity Theorem for
the renormalization operator of real bounded type. Using this powerful re-
sult, the foliation was shown to be transversally C'**-conformal along the
hybrid class H,. of a Feigenbaum point ¢ (this is an expected regularity of a
codimension-one stable foliation). As a consequence, some of Miltor’s conjec-
tures were proven, in particular, the following result stated here in the case of
stationary combinatories.

Theorem 1.1.1 (Self-Similarity Theorem [L3]). Let My be a real Man-
delbrot copy and o © My — M be the homeomorphism of My onto the whole
Mandelbrot set M. Then o has a unique real fixed point ¢. Moreover, o s
C'*e_conformal at ¢, with derivative at ¢ eguol to the Feigenbaum universal
scaling constant A = Ay > 1.

In the same work, this result was generalized for bounded combinatorics by
proving that the foliation is C***-conformal at infinitely renormalizable points
of bounded type. Moreover, in [.4] the Hyperbolicity Theorem was proved for
any real combinatorics. In this case, there are three types of combinatorics
to deal with: bounded, “essentially bounded” and “high”. The notion of
“essentially bounded” was introduced in [L2].

For any bounded combinatorics, Sullivan [S] and McMullen [McM2] cons-
tructed the corresponding renormalization horseshoe and its strong stable fo-
liation. It was proven in [L3] that the renormalization horseshoe is hyperbolic.

The unbounded combinatorics can be split into two types: essentially
bounded and high. In the former case, the unboundedness is produced by
the saddle-node behavior of the eritical point. This phenomenon can be ana-
lyzed by means of parabolic bifurcation theory. For instance, there is a special
sequence of real little copies of the Mandelbrot set which converge to the
cusp of a primitive real hyperbolic component [D2]. The parameters in this
sequence of little copies have “essentially bounded” combinatorics. Loosely




speaking this means that a big period of renormalized maps is created only by
saddle-node behavior of the return maps.

A basic geometric quality of infinitely renormalizable maps is a prior:
bounds. By definition, an infinitely renormalizable quadratic map f has such
bounds if there exists a lower bound g > 0 such that for every n € N, the
renormalization R™f has a quadratic-like extension U — V', whose fundamen-
tal annulus VAU has modulus at least p. '

For real, infinitely renormalizable quadratic-like maps with bounded com-
binatorics, this property was proven by Sullivan [S]. Complex bounds were
proven for real quadratics of “essentially big type” by Lyubich [1.2]. In [LY],
complex bounds were proven for infinitely renormalizable maps with essen-
tially bounded combinatorics, thus completing the story for real maps. Inde-
pendently, it was done by Levin and van Strien [L.S].

The study of geometric limits of renormalization of quadratic-like maps
with essentially bounded type was carried out by Hinkle [Hi], based on the a
priors bounds of [LY]. Using this result, Lyubich proved hyperbolicity of the
renormalization operator with essentially bounded combinatorics [L4].

Let f be a quadratic-like germ which is infinitely renormalizable. Its tuning
invariant is defined as 7(f) = { My, M1, Ma, ...} where M, is the maximal M-
copy containing y(R"f) and x is the straightening map. We say that f has
real combinatorics if all M-copies in 7(f) are real. Let X be the space of all
possible real combinatorial types 7 = {M}52 _,, where the copies M} are
selected arbitrarily from the family of real maximal Mandelbrot copies.

Let us describe briefly the Renormalization Theorem, since it will be the
main tool for the proof of our result. Let us say that an infinitely renormaliza-
ble quadratic-like map f is complelely nonescaping under the renormalization
if some full renormalization orbit {R"f}32 _ ., is well defined, R"f € C, and
mod(f,) > u = u(f) > 0, n € Z. Let A C Q stand for the set of com-
pletely nonescaping maps with real combinatorics. We call this set the (full)
renormalization horseshoe. Then, for any real combinatorics, the renorma-
lization operator is hyperbolic in the space of real quadratic-like germs over
A. In particular, the stable leaves H(f), f € A, which are codimension-
one real analytic submanifolds in the space of real quadratic-like germs, form
an R-invariant lamination. Moreover, if ¢ € H(f) and mod(g) > v, then
||R"f — R*g||ly < Cp™ for n > N{(v), where p € (0,1) is a constant and V is
a neighborhood of the origin in C[L4].

The natural question is for which other points in the Mandelbrot set or for
which other combinatorics, we can have a better regularity of the holonomy
map than just quasi-conformality. McMullen has given a geometric condition
for which a quasi-conformal map from the Riemann sphere ¢ to itself,




conformal on a measurable set, is C**-conformal at a point in the boundary
of this measurable set; this geometric notion is known as “measurable deep
points” [McM2]. For example, root points of primitive hyperbolic components
are measurable deep points in the boundary of the Mandelbrot set. Since
the homeomorphism ¢ between a primitive little Mandelbrot copy and the
Mandelbrot set is holomorphic in the interior of the Mandelbrot set, and it j:
can be extended in a quasi-conformal way in a neighborhood of the Mandelbrot '
set [[.2], the holonomy map is C'**-conformal at these points,

Let us also mention that the results of [ALM] show that, in appropriate !{
Banach Spaces of analytic unimodal maps, the set of non-regular topological '
clagses in the space of unimodal maps, form a lamination £ with analytic i-
leaves of codimension one and quasi-symmetric holonomy, at least almost
everywhere. On the other hand, A. Avila and G. Moreira [AvM] have shown
some other interesting properties of the lamination by topological clagses: the
stratification of the set of typical non-regular analytic unimodal maps by topo-
logical classes is singular, in the sense that it fails drastically to be absolutely i
continuous. The lamination £ has automatically quasi-symmetric holonomy ,
but quasi-symmetric maps are not always absolutely continuous (even though 1
quast-conformal maps are). It turns out that £ is very far from being ab-

\
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solutely continuous, at least at the set of non-regular leaves. For example
it is completely singular on the set of Collet-Eckmann maps satisfying the
conclusions of Theorem A in [AvM].

1.2 Results

In the case of infinitely renormalizable quadratic maps with unbounded combi-
natorics, we will focus on the combinatorics for the éripling essentially bounded
case. This case of essentially bounded combinatorics is related to the existence
of a sequence of little Mandelbrot copies converging to the cusp of the real copy
of the Mandelbrot set of period 3 [D2, Hi]. For this particular sequence, it
is possible to estimate the rate of convergence to the cusp and the diameter
of its elements. In particular, we give an estimation of the distance between 1
two consecutive elements of this sequence of little copies of the Mandelbrot
set. It turns out that points in these copies have bounded essential period, for
which we can construct infinitely renormalizable parameters with essentially
~ bounded combinatorics. In order to prove smoothness, we need to look for
parameters with combinatorics given by subsequences that do not converge
“too” fast to the cusp.
Next we gtate the theorem, which gives a condition on the combinatorics




of a quadratic-like germ of tripling essentially bounded combinatorics that
implies smoothness of the holonomy.

Theorem 1.2.1. Let {My}$2, be the sequence of copies with tripling essen-
tially bounded period, with corresponding periods ny = 3k +2. Consider a real
quadratic-like germ f, € A with tuning invariant 7 £u) = { My, Y2, where this
sequence s given by an arbitrary choice of elements in {M}72,. Let p € (0,1)

be an upper bound of the contraction factor in the stable leaves. Suppose that

Zp”logkn < 00,

n>l
Then the foliation F is transversally Ct-conformal (smooth) at the point x(fi).

Let us outline the proof of this theorem. Let S be a transversal to the
leaf Hg(f,) through f € Hgr(f,). In order to check C'-conformality of the
holonomy, it is enough to check this property for the holonomy from & to the
unstable manifold W¥ = W¢ (fi). Let 8™ = R"™(S) be the m iterate of 8
under R, then it is sufficient to study the holonomy A, from &™ to W*{m): if
h denote the holonomy from & to W* then by the R-invariance of the foliation
" F, h=R"™o0hy, o R™ where R™ is a local conformal diffeomorphism.

The principal too!l of the proof is the Renormalization Theorem for any real
combinatorics. There exists an R~ -invariant family of real analytic curves

% {f), f € A (“local unstable leaves”). Also, there exists a sequence of
bidisks @(n) centered at R™f,, where an iterate T = R" acts hyperbolically
on this family (uniformly contracting in the horizontal direction and uniformly
expanding in the vertical direction).

By the hyperbolicity of T, the transversals &™ can be eventually repre-
sented as graphs of analytic functions ¢, : E*(y) — E2(vy) with bounded
vertical slope, where Ey™(vy) is the y-ball in the tangent space E“/*(n) at
R"f,. Moreover, these graphs are exponentially close to the corresponding
unstable manifolds W¥(n). The local unstable manifolds W*(R"f,) N Q(n)
can be also parametrized in the same way by some functions t,. By the hy-
perbolicity of T' on the family of bidisks Q(n), the manifolds 8™ approach,
exponentially fast, to the unstable manifolds W*(n):

”an - wnllc‘l < ""'JPH.:

where p € (0,1) is a strict upper bound of the contraction factor in the stable
leaves.

In a first lemma, we prove that for big n, the holonomy from 8" to
WU(R™f.) has an exponentially small ratio distortion for points with com-
parable distances to RB"f, which follows by the Renormalization Theorem and

I
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the A-lemma. We also need to have control in the distortion of the renormali-
zation operator R™. By the Koebe Distortion Theorem, the ratio distortion of
R"f is of order O(¢) for points in the domain of R"™ that are mapped to points
of relative distances of order O(¢) from R™f.

To prove smoothness of the holonomy, we needito give an estimation for
the distortion of the holonomy for two arbitrary points. These two points
may not have comparable distances to f, so we need to define a string of
points between them, in such a way that every two consecutive points in this -
string have comparable distances to f; a natural way to do it, is by going
half the distance to f at each step. The number of points from that string,
in the domain Ly, of R®, but not in the domain Ly, of R*™! (see §5.2), will
be comparable with logk, by the estimation on the size of the diameter of
My, and by the Koebe Distortion Theorem. This factor will be added to our
distortion estimate, and under the hypothesis of the combinatorics, we can
see that the ratio distortion of the holonomy is controlled by the tail of a
convergent series in p and logk,. Thus, the holonomy will be of order o(1),
which implies smoothness.

Corollary 1.2.2 (Self-similarity for essentially bounded combinatorics).
Let ¢ be a real infinitely renormalizable parameter value with essentially bounded
combinatorics satisfying the hypothesis in Theorem 1.2.1, and let My € M be
the Mandelbrot copy containing c. Then the homeomorphism o : My — M s
C*-conformal at c.

In the same way, we consider any real maximal little Mandelbrot copy M,
of period n > 3. Now let {M,,}>2, be the sequence of little Mandelbrot copies
with essentially bounded combinatorics which converges to the cusp of M (see
[84]). Then, the holonomy map is smooth at parameters that satisfy the same
conditions on the combinatorics as in Theorem 1.2.1.

In the last chapter, we look at conjugations between satellite parabolic
maps and the map z » 22 - 1/4. It is known that at those maps, the renor-
malization operator is not defined. However, some study has been done in
order to conjugate them to the root of the Mandelbrot set ([H1], [H2], [BD]).
Let us consider a satellite parabolic map, we can conjugate the dynamics on a
component of its Fatou set to the dynamics on the Fatou set of P(2) = 2*+1/4,
by a p-conformal map: we give a construction of a continuous map, between
a neighborhood of the Fatou set of P(z) = 2% + 1/4 and a neighborhood of
the Fatou component of f(z) = 2* — 3/4 containing the critical value. This
continuous map conjugates the dynamics in the Fatou set of P and it is a

p~conformal map. This result makes use of some techniques developed by
[H1].




Theorem 1.2.3. There is a neighborhood U of K(P) and a continuous func-
tion ¢ : U —> C such thal for all z € K(P), o P = f°2 o4p. Moreover,
Y e WP, for allp < 2 and 8y = 0 a.e. on K(P).

oc ?

1.3 Further study

The result about the holonomy for tripling essentially bounded combinatorics
stated before corresponds to the case of maps with only one central saddle-
node cascade, which is related to the existence of a sequence of little copies
approaching the tripling cusp. In general, we can consider essentially bounded
parameters with more than one central cascade of this type, that is, we
approach the tripling cusp with the sequence of little copies, then for every
element in this sequence we can consider a corresponding sequence of little
copies converging to its tripling cusp, and we do this procedure finitely many
times. This correspond to the most general version of essentially bounded
combinatorics. Therefore, the natural question is, for which of these combi-
natorics we have some regularity of the holonomy? Is it true, for instance,
that the Lipschitz condition is always satisfied by the holonomy map in some
cases?

Another direction is to consider the case of “high” unbounded combina-
torics. One question is to give a characterization of infinitely renormalizable
parameters with “high” combinatorics, for which the holonomy is at least
smooth. Or, we can also study how singular the holonomy could be.

Yamposlky in [Y] has approached differently the study of polynomials satis-
fying the essentially bounded condition. He considers them as small perturba-
tion of parabolic maps. Such a geometric consideration draws an instructive
parallel with the critical circle maps case. Then, it would be interesting to
study some properties of the holonomy in the space of parameters for circle
maps.

Finally, let us mention that some of the pictures were generated with a
series of programs called Julia created by C. McMullen. Also, the program
zfig for linux was used.

1.4 Notation

o As usual C denotes the Riemann sphere, C the complex numbers, R the
real line and N the non-negative integers.

o D={zecClz| <1}




X denotes the closure of a set X.

e if U € V, we say that U is compactly contained in V' (U is compact and
UcVv).

e a topological annulus means a doubly connectéd domain in C.

e if V is a simply connected domain and U C 'V then mod(U, V) =supy
mod{A) where A is an annulus separating U from oV

e 3 will denote a Banach space, B,(z) will stand for the ball of radius r
with center at x and B, = B,(0).

e P(z)=2*+c

e in a dynamical context, f™ denotes the n-th iterate of f.

e M will denote the Mandelbrot set.
¢ o< b means that the ratio a/b stays away from 0 and co.

e g ~ b means that a/b - 1.




Chapter 2 | :
Background §

2.1 Preliminaries

We discuss here some of the definitions and results that will be used through
this work. All the results are well known (see [L1],[M1]). g

s 2.1.1 The Carathéodory topology

A disk is an open simply connected region in C. Consider the set D of pointed S
disks (U, u). The Carathéodory topology on D is defined as follows: (Up, un) — ri
(U, u) if and only if : :
(1) un = u;

(il) for any compact K C U, K C U, for all n sufficiently large;
(iii) for any open connected N containing u, if N C U, for infinitely many n,
then N C U.

Equivalently, convergence means u, -— u, and for any subsequence such g
that ((fl‘ — Uy) — K in the Hausdorff topology on compact sets of the sphere, |
U is equal to the component of (C — U,) — K containing .

Carathéodory topology on functions. Let H be the set of all holomor-
phic functions f : (U,u) — C defined on pointed disks (U, u) € D. We define It
the Carathéodory topology on H as follows. Let f, : (Un,u,) — C be a
sequence in H. Then f,, converges to f: (U,u) -+ C if: i
(1) (Up,tp) — (U,u) in D. !
(ii) for all n sufficiently large, f, converges to f uniformly on compact subsets ;
of U. ili

Any compact set K ¢ U is eventually contained in U,, so f, is defined on ;
K for all n sufficiently large. We note the following facts .i




1. If the domains are K-quasidisks then the Carathéodory convergence of
pointed domains is equivalent to the Hausdorff convergence of their clo-
sures.

2. The set of K-quasidisks in C containing a definite neighborhood of the
origin and with bounded diameter is compact in the Hausdorft topology.

2.1.2 The Koebe Distortion Theorem

One important tool in the estimations of distortion of analytic maps is given
by the set of Koebe distortion theorems. The Koebe distortion theorems make
precise the fact that a univalent map has bounded geometry. The principle
can be stated as follows:

Theorem 2.1.1 (Koebe Distortion). The space of univalent maps f : 1D —
C is compact up to post-composition with automorphism of C.

The Koebe principle also controls univalent maps defined on digks which
are not round. For this case, one obtains bounded geometry after removing
an annulus of definite modulus.

Theorem 2.1.2. Let D C U C C be disks with mod(D,U) > m > 0. Let
f: U —C be a univalent map. Then there is a constant C(m) such that for
any z,y,z2 € D

/() — f(2)]

1 s %
C—(?‘{)U (@} < — < C’(m)-|f (z)].

2.1.3 Quasi-conformal Mappings

Definition 2.1.3. A homeomorphism f : X — Y between Riemann surfaces
X and Y is K-quasi-conformal, K > 1 if for all annuli A C X,

%mod(A) < mod(f(A)) < Kmod(A).

Let us use the notation dz = dx + idy, dZ = dx — idy, and

o= =lh-in), fe= L= l(htif)

The Jacobian J(f) of [ is given by J(f) = |f.|? — |/z]?, then f preserves
orientation if and only if |fz| < |f.|. We are concerned only with mappings
that satisfy this condition.
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There is also an equivalent analytic definition: f is K-quasi-conformal if
locally has distributional derivatives in 72, and if the complex dilatation g,
given locally by

& _ fx_2/ozdz
P~ T, Af 0z dz’ s

satisfies |p| < (K — 1)/(K + 1) almost everywhere. The dilatation s is also
called the Beltrami coefficient of f, and the equation f; = pf, is the Beltram:
equation. Note that |u| < 1if f is orientation preserving and that u = 0 if and
only if f is conformal. Also, we can associate to f an infinitesimal ellipse field
by assigning to each z in the domain, the ellipse that is mapped to a circle by
f. The argument of the major axis of this infinitesimal ellipse corresponding
to f at z is w/2 -+ arg(p) /2 , and the eccentricity is (|f,| — [ f2])/{|fe] + | f2]) =
(1) /(14| p]). Thus, we associate to any p satisfying || < 1 an infinitesimal
ellipse field, that is, a choice of direction and eccentricity at each point. Solving
the Beltrami equation f; = uf, is then equivalent to finding f whose associated
ellipse field coincides with that of 4. A mapping f is 1-quasi-conformal if and
only if f conformal in the usual sense.

Measurable Riemann Mapping Theorem The great flexibility of quasi-
conformal maps comes from the fact that any p with ||g)|e < 1 is realized by
a quasi-conformal map.

Theorem 2.1.4 (Ahlfors-Bers). For any L™ Beltrami differential i on the
plane with ||| < 1, there is o unique quasi-conformal map ¢ : C —— C such
that ¢ fizes 0 and 1 and the complex dilatation of ¢ is .

2.1.4 The llemma

Let X C C be a subset of the complex plane. A holomorphic motion of X
over a Banach domain (A,0) is a family of injections hy : X — C, A € A,
with ko =id, holomorphically depending on A € B; (for any given z € X).
The dual viewpoint on holomorphic motions is to consider the graphs of the
functions A +— hy(2), z € X, which form a lamination F in A x C with complex
codimension-one analytic leaves.

A basic fact about holomorphic motions usually known as the “A-lemma”,
consists of two parts: extension and quasi-conformality.

Theorem 2.1.5. The A-lemma (Extension). A holomorphic motion hy :
Xy — Xy, of a set X, C C over a topological disk D admits an extension
to a holomorphic motion Hy : C — C of the whole complez plane over D.
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Given two complex one-dimensional transversals S and 7 to the lamination
F in By x C, we have a holonomy map & — 7. We say that this map is locally
quasi-conformal if it admits local quasi-conformal extensions near any point.

Theorem 2.1.6. The A-lemma (Quasi-conformality). Holomorphic motion
hy of a set X over a Banach ball By is transversally quasi-conformal. The
local dilatation K of the holonomy from p = (\u) € S to ¢ = (u,v) € T
depends only on the hyperbolic distance p between the points A end p in By,
Moreover, K =1+ O(p) as p — 0.

2.2 Dynamics of Complex Polynomials

2.2.1 The Filled Julia set

Let f: C — C be a monic polynomial of degree d > 2, f(z) = 2%+ 12471 +
o0+ Gg_1% + Qg

Definition 2.2.1. A point z such that f(z) = z for some p > 1 is a periodic
point for f. The least such p is the period of z. The multiplier of o point z of
period p is the derivative (fPY(z) of the first return map.

If f7(2) = z, we say the z is repelling if |(f?)(2)| > 1, indifferent if
|(f7Y(2)| = 1, attracting if |{f7)'(2)] < 1 and super-attracting if |{ f?)'(2)| = 0.
An indifferent point is parabolic if (f7)(z) is a root of unity.

The Fatou set F(f) c C is the largest open set such that the iterates
{f*: n > 1} form a normal family. We denote by K the set of points with
bounded orbit under f

K; = {2 € C| f(2) » 00}
and by As(oco) the set of points with unbounded orbit
Ag(00) = C\Ky = {2 € C | f(2) — oo},

The set K is called the filled Julia set, the set Ag(co) is called the attracting
basin of oo and the common boundary 8K = 8As(oc) = Jy is called the Julia
sef. Note that the critical orbit is bounded if the critical point belongs to K
and unbounded if the critical point belongs to As(co). The following lemma
states a basic property about Kjy.

Lemma 2.2.2. For any polynomial f of degree ot least two, the set Ky C C is
compact, with connected complement. It can be described as the union of the
Julia set J; together with all bounded components of the complement C\J;.
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[n particular, the Fatou set is the complement of the Julia set F'(f) = C\J;.
A connected component of C\J¢ is called a Fatou component.
We define the function Gy : C — R U {0} by

1
Gy(2) = Jim Lolog (17 ()

where logy (|z|) =max{0,log(]2|)}. The map G satisfies that is continuous on
C, harmonic on C\ K and equal to 0 on K. Moreover, G¢(z) =log(|2|)+O(1)
when |z| — oo, and G;(f(2)) = dGs(2). These properties show that the
restriction of Gy to C\Kj is the Green function of the filled Julia set K.

Equipotentials. Choose any n > 0. The set G}"l(n) is called the equipoten-
tial of value 77. Note that f maps each equipotential G’J}l(n) to the equipotential
G}‘l(dn) by a d-to-one fold covering map.

2.2.2 The Bottcher Theorem

In a more general setting, we consider the dynamics of a holomorphic map in
some small neighborhood of a fixed point. We assume that the fixed point is
at z = 0, then we can describe the map by a power series of the form

f(z) =Xz 4 a2 +azz® + -+,

which converges for |z| sufficiently small. When A = ( the fixed point z == 0 is
super-attracting, then the map takes the form

J(2) = a,2" + anﬂz““ 4+,
with n > 2 and a, # 0.

Theorem 2.2.3 (Béttcher), With f as above, there exists a local holomor-
phic change of coordinate w = ¢(z), with ¢(0) = 0, which conjugate f to the
n—th power map w — w" throughout some neighborhood of zero. Furthermore,
¢ is unique up to multiplication by an (n — 1) — st root of unity.

Thus, near any critical fixed point, f is conjugate to a map of the form ¢ o
fo¢™ :w— w" with n > 2. This theorem is applied in the case of a
fixed point at infinity. For example, the point at cc is a super-attracting fixed
point for any polynomial f of degree d > 2 extended to the Riemann sphere
C = CU{o0}.
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Application to dynamics of polynomials. For a monic polynomial f of
degree d, set Uy = {z € C : Gy(z}) > G(f)}. Then, there exists a unique
‘analytic isomorphism B

05 Us — C\Doxpi(y)
satisfying ¢s(2)/z — 1 as |2| — oo and conjugaﬁing f to the polynomial
Jo(z) = 2% ie. prof = fyo ;. If all the critical points of f are contained in
Ky then Uy = C\Ky and K are connected.

Theorem 2.2.4. Let f be a polynomial of degree d > 2. If the filled Julia
set Ky contains all of the finite critical points of f, then both K; and J; are
connected, and the complement of Ky is confomally isomorphic to the exterior
of the closed unit disk D under an isomorphism

pr: C\K; — C\D
which conjugate f on C\K; to the d-th power map w — w®. On the other

hand, if at least one critical point of f belongs to C\K;, then both K 7 and Jg
have uncountably many connected components.

2.2.3 External Rays

Suppose that the set K is connected. Let ¢; @\K F— @\ﬁ be as above.
The orthogonal trajectories {z : arg(p;(2)) = constant} to the family of
equipotentials curves are called external rays for K ¢ The ray of external ar-
gument 6 € T = R/Z, where § € R/Z, is defined by Ry = @7 ({re?™|r > 1}).

The external rays and equipotentials form two orthogonal invariant foliations
of C\K e

Definition 2.2.5. An external ray Ry is called rational if its angle 8 € R/Z

is rational; end periodic if 6 is periodic under multzphcamon by the degree d so
that d°6 = §{modl) for somep > 1.

Some particular rational rays are essential in the construction of the puzzle
in the quadratic polynomial case. If K is not connected, one can still consider
the orthogonal trajectories to the equipotentials in C\K; minus the critical

points of Gy. Some rays branch at critical points of G #» the others continue
unbroken toward K.

2.3 The Quadratic Family

Now, let P(z) = az’+bz+cbhe a qua.dratlc polynomial. It can be conjugated
by w = Az to a monic polynomial »% + .z + 8. This can be further conjugated

14




by a translation that moves any given point to 0. If we move one of the fixed
points to 0, we have conjugated P to the form Az+2?%, where A is the multiplier
of the fixed point. This does not determine the conjugacy class uniquely, as
we can place the second fixed point at 0. If we move the critical point to 0,
we have conjugated P to the form ’

Pz)=2"te¢, ceC

and different choice of ¢ corresponds to different conjugacy class. Thus, we can
regard the ¢-plane as representing conjugacy classes of quadratic polynomials.
The dynamical behavior of ¢ plays a crucial role in determining the dynamics
of P, and the topology of K,. By Theorem 2.2.4, if P*{0) — oo as n - 00,
the Julia set J, is totally disconnected. Otherwise, P7*(0) is bounded and the
Julia set is connected. This dichotomy is reflected in the definition of the
Mandelbrot set M.

2.3.1 The Mandelbrot set

The Mandelbrot set M is defined as the set of ¢ € € for which J(P,) is con-
nected, that is,
M={ceC:P0)-=»oo0, n— oc}

Thus, ¢ € M if and only if 0 does not belong to the basin of attraction of the
super-attracting fixed point at co. If ¢ € C\M, then J(F,) is a Cantor set.

The Mandelbrot set itself is connected (see [DH1],[CG]). This is proven by
constructing explicitly the Riemann mapping @ : C\ M — C\ D defined
as

Pp(c) = pelc),
where ¢, is the Bottcher function of P..

A quadratic polynomial P, with ¢ € M is called hyperbolic if it has an
attracting cycle. The set of hyperbolic parameter values is the union of some
components of the interior of M called hyperbolic components. The main
cardioid of M is defined as the set of points ¢ for which P, has a neutral fixed
point. It encloses the main hyperbolic component where P, has an attracting
fixed point,

We also consider the family of quadratic maps mentioned above, fa(z) =

224 Az, A€ C in which the multipliers at the two fixed point are X at z = 0,
and 2 — A at 2 =1 — A. The set of parameters in the A-plane for which the
corresponding orbit of 0 stays bounded under the dynamics of fy is a doubled
branched covering of M, with the only branched point at 1.
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Figure 2.1: The Mandelbrot set

2.3.2 Limbs and Wakes of the Mandelbrot set

The boundary of each hyperbolic component £ of the Mandelbrot set M can be
parametrized by a map g : [0,1} — 9 so that, at ¢ = yq(¢), the indifferent ik
periodic orbit has multiplier €*™. The point ¢ = vq(0) is called the root of the
| hyperbolic component {}. The largest hyperbolic component £y consists of all
parameter values ¢ for which P, has an attracting fixed point, Its boundary
is the main cardioid mentioned before. At each boundary point vq,(p/q), for '
any p/q € (0,1)NQ, there is attached a hyperbolic component ,,/, of period 1
q. We define the p/q-limb of M, M,,, as the union of ¢ = vq,(p/q) and the
connected component of M \ €y attached to the main cardioid at the point
¢ = Yao(p/q)- 0

Using the Riemann map ®,;, we can define the parometer external rays
and equipotentials as the preimages of the straight rays going to oo and round
circles centered at 0. Define the parameter external ray of external argument
0 as Rar(0) = 37 ({re*™@ : 1 < r < 00}). If Ry(0) has a limit ¢ € M when
r — 1, we say that Rps(0) lands at ¢. It is known that all external rays with
rational arguments land at either a root of a hyperbolic component or at a
Misiurewicz point, i.e. a parameter value ¢ € M for which w = 0 is strictly
preperiodic under P,.

There are exactly two external rays landing at each root point in M (except
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at ¢ = 1/4). Given p/q € (0,1)NQ, we denote by 8;,, and &7 /g the arguments of
the two external rays landing at the root point of Qp_/q, ie., at vo,(p/q) € 0.
Then, we define the p/g-wake of M, W, as the open subset of C that contains
the p/g-limb of M and is bounded by these two rays.

¥

2.3.3 The Dynamics of P.(z) = 2* + ¢ for c € Wy

The polynomial P,(z) = 2%+ ¢ has one critical point w = 0. For ¢ € M we
denote by /3, the fixed point satisfying 8. = v.(0) and by /3, the other preimage
of 8, with 8, = 7.(1/2) = —f.. Let a, be the other fixed point of P,(2). For
¢ € Wiy, e =7.(1/3) = 7.(2/3). We denote by o, the other preimage of a,
then of, = .(1/6) = 4.(5/6) = —,.. Choose 1 > 0 and set

Wisz:{zeC:Gc(z)g—gg}, W = W.

The lines £, = R.(1/3) U {a.} U R(2/3) and £, = R.{1/6) U {a} U R.(5/6)

decompose W into 3 compact subsets V, V!, V' withw e V, 8. e V', gl e V"

Set V; = V NW,, ete. (The V; are called the central pieces of the puzzle.)
The polynomial P, induces a homeomorphism from V', onto V/ U Vi, a

homeomorphism from V}; onto V U'V; and a mapping of degree 2 from Vz+1
onto V.

Re(1/3)

Ro(2/3)

Figure 2.2; The first two levels in the puzzle for ¢ € Wy,
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2.4 Parabolic Periodic points

This section is mostly based in the works of [S1, 82, O]. Here we explain
briefly the theory of parabolic points, parabolic bifurcation, and the existence
of Fatou coordinates. '

2.4.1 Change of coordinates

We consider functions f(z) = Az + ag2” + agz” + -+ which are defined and
holomorphic in some neighborhood of the origin, with the multiplier A at the
fixed point equal to a root of unity, A? = 1. Such a fixed point is said to be
parabolic provided that f°¢ is not the identity map. Consider the case A = 1.
Then, we write the map f as

f(2) = 2(1L 4+ az™ + (higher terms)) = z -+ az"*" + (higher terms)

with n > 1 and a # 0. The integer n + 1 is called the multiplicity of the fixed
point.

There are n equally spaced repelling directions at the origin, separated by
n equally spaced attracting directions. Note that the repelling directions for
[ are just the attracting directions for the inverse map f~!, which is also well
defined ahd holomorphic in a neighborhood of the origin. ‘

We can use the change of coordinates w = ¢(2) = ¢/2", where ¢ = —1/na.
If we write f(z) = 2(1 + az™ + o(2")), where the notation o(z") stands for a
remainder term depending on z, which tends to zero faster than 2™ so that
o(2")/z" — 0 as z — 0, the corresponding transformation in the w-plane is
w = F{w) = ¢o fo¢H{w) where ¢ (w) = {/c/w, taking the branch of the
n-th root in an appropriate domain. Note that

Fod ) = /S0 +al +ol L)

then : ] .
c —nac
Flw) = w(l +a— + o{ =)™ = w(1l d
() = w1+l +o( L) = w1 2 L oL
Since nac = —1, this can be written as Fi(w) = w+ 1+ o(1) where o{1) stands

for the remainder term which tends to zero as |w| — oo.
There is a more precise statement for the asymptotes of the map F, written
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the map f as f(z) = 2(1 + az™ + b2"t + O(z"1)) then
N Y- Y T
Flw) = () (L+a +6(—) " +- )]
c C.nil - )
= —— b~—- 7 F— n B
Wl +aS 465 o) J
c €\ it
— w(l —nas — nh( )%
w( na._ n(w)
= wH14+Cw s+ =w+ 1+ 0(1/w) i

+)

as |w| — co.

That is, there exist constants r and C so that {(F'(w) —w - 1] < C/ \/W
whenever |w| > r. In particular, it follows that Re(#{w)) > Re(w) + 1 —
when |w| > 7.

For simplicity, we only treat the case where f has a parabolic fixed point
with multiplier 1, i.e. fo(z) = z+ 2% + .., and F(w) =w+ 1+ S+ .. as
w — 0.

The topology that we will use is the Compact-Open topology together with
domain of definition. For any holomorphic map f defined on a subset of @,

= let D(f) denote the domain of definition of f, Now set

= {f : D(f) — C | £ is holomorphic and 3fo) = aD(f)}

where two functions are considered to be distinet if they have different domain ;
of definition. We can construct a non—Hausdorff topology on H so that f,, — f ,

if and only if for every compact set K C D( f) there is an ng so that K ¢ D( fm)
for every m > ng, and f.|k — f|x uniformly as m — +oc.

We take a very small 79 > 0 so that the closed disk Ky = Da,, C D(fo). 0
This disk K¢ will remain fixed. Then, we take a small neighborhood Ny of f in
the compact open topology. Assuming this is small enough, then K, C D(f) §
for every f € Nj. i

Given rg > 0, we define z_ = —rg and z; = ry so that z_ is in the attracting
direction of fy and 2, is in the repelling direction. il

Lemma 2.4.1. (Fundamental regions for fy). Let v50 be the mazimal trajec- §
tory passing through z, for the vector field z = i(fo(2) — z), where s € {+, —}.

Then v, is well defined on R and ~,o(t) € f%{} forallt e R. Also v, ¢(t) — 0
as t — £oo. None of these paths intersect each other.

Proof. The existence is given by the existence and uniqueness of solution
| curves. Also, for any autonomous differential equation the trajectories will
never intersect, unless they coincide everywhere.
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On the set Ty = {z € Ko\ {0} : |arg(z/2s)| < 3w/8} we make the change
of coordinates
1
W = I(Z) == —;,

and in this coordinate we get a function Fy, =7 o fowo [ |§:,

Fyw) = I(fo(z) = —>(1+2+0(%)"
= w(l— >+ O™ )™

=wu+%+qW+m

= w+1+0ww™) asw - oo,

If we define 'y g = I 0y, then we have

I o(0) = I'(ren(O(t) = °

where z = 7, 0(%). ‘

Then T") o(t) will be an almost vertical line in the w-coordinate, passing
through w,. = {{z.) = F1/rg € R. Thus 'y o(t) — oo as t — *oo, implying
that v40(t) — 0 as t — Zo0 (since w = oo corresponds to z = 0).

Since I' = 'y is an almost vertical line through +1/7y, [T'(#)] is always
large and we must have F, ~ w + 1. This implies that I'(R) eannot intersect
Fy(I'(R)), which in turn implies that v(R) does not intersect fo(¥(R)). Since
2 — 0 when w — oo, the 74 ¢ must be loops with their ends at 0. - il

In addition, if we define Z,9 = 7,0(R), then fo({_p) lies inside the loop
£.0U{0} and fy(€1 ) lies outside the loop €40 U {0}. We denote by S, the
closed set bounded by £,0U fo(€s0) U {0}.

We need the following standard theorem [BR).

Theorem 2.4.2 (Continuous dependence of solutions). Let D ¢ C be a
subset of the complex plane and f, g: D — C be continuous. Also let z(t),
w(t) be differentiable solutions of 2 = f(2) and w = g(w) on an open interval
I containing to. ,

If f is k-Lipschitz in D and |f(2) ~ g(2)| < u for all z € D, then

2(8) = W] < J2(to) — wlto)]eH=el + K ekl - 1)

fortel.
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Then, the next lemma follows as an application.

Lemma 2.4.3. Suppose that h € Ny where Ny is a very small neighborhood
of fo(z) = 2+ 22+ ..., and that f — 20(f) € Dsrea \ Dargra 18 continuous
on Ny. For f € Ny let ps be the mazimal trajectory, for & = i[f(z) — 2] with
p#(0) = 2(f). If pa(t) € Diypora \ Dargs for oll £ = 0 then pg,(t) — 0 as
t — --00. '

S_ 1] S 1]
Fo

S'—)f S“l“:f
!

Figure 2.3: Dynamics of a parabolic map and a perturbation.

Given f € Ny, we let v,y + I — C be the maximal solution of the
vector fleld 2 = i(f(2) — 2) (defined on Kj) satisfying ~, 7(0) = z,. Also let
£ s = 5,7 (). Then, the “Continuous dependence of solutions” tells us that if
[ € Ny, and Ny is sufficiently small, then all forward and backward trajectories
for the vector field Z = i(f(2) — #) will enter the open disk D,/ (since the
same is true for fp).

Consider now all f € Ny such that if f/(0) = exp(2ra(f)), where a(f) €
C and —1 < Rea(f) < 1, then |arga(f)| < n/4. By [O], if f € Np and
larga(f)| < #/4 then every forward and backward trajectory for the vector
field 2 = i(f(2) — 2) passing through z, stays in D, /2 once it has entered that
disk: for s € {+, —} there are some ¢_, ¢, € R such that {_ < 0 < ¢, and

Vot ((=00,8.)) C Drojas Vo5 ([, 84]) € Ko\ Droga, Yo, ({84,00)) C Dygae

Proposition 2.4.4. With f as before, the following hold,
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1. Every -y, s(t) converges to a fized point (close to 0) ast — £oo

2. For any fized point o of f in Ky and s € {+, —}, then either , ;(+00) =
g or s g(—00) = 0.

3. We have 7_,;(+00) = 7y,7(-+00) and 7.,s(~00} = 71,1(~o0).

4. For s € {+,—}, the closure of {£,;}U{¥s s} is homeomorphic to a circle
where s # § € {+,-}.

5. Fors c {+,—} we have £,y N f{ls ;) = 0 and the closure of £, ;U f(£s ¢)
is a Jordan contour which bounds a closed Jordan domain S, ;. These
S, can only intersect each other at the fived points.

Proof. This follows from the previous lemma.

2.4.2 Fatou Coordinates

We set 5§ ; = S5 s \{7-,r(+00),v- s(—00)}, we call these sets the fundamental
regions for f.

Notice that if o = «._ t(4o00) then Imf'(o) > 0 and “the dynamics of f
rotates anti-clockwise around ¢”. Similarly if o = . y(—00) then Im f'{c) < 0
and the dynamics of f rotates clockwise around o”.

Lemma 2,4.5. Suppose thal Qp C C is a region bounded by either one or two
(non-intersecting) differentioble paths v : R — C where arg ¥i(t) € [%, 32

FRa
Jort € R and eachi. If F': Qp —— C is analytic, univalent and satisfies
1
F(w) - (w+ 1] < 7,
F(w) ~ 1] <
4

on Qr, and Qr contains both £ = iR and F(£), then there is an analytic,
univalent map @r : Qp —> C satisfying

Op(F(w)) = Op(w) + 1, if w,F(w) € Qp.

The map @r will be unique up to addition by a constant, If F — wy(F) is
conlinuous i a neighborhood of Fy in H, and wy(F) € Qg,, then for F close
to Fy we can always normalize ®p by requiring that ®p(we(F)) = 0. Then
F = &p will be continuous with respect to the compact-open topology in o
neighborhood of Fy.
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Y1 J Y2
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Qr

Figure 2.4: The domain of F.

Proof. See [L1],[S2]. Tt depends on the Ahlfors-Bers Theorem,
L

Lemma 2.4.6 (Existence of Fatou Coordinates). Let K be o closed Jor-
dan domain and let N C'H such that every f € N is defined in a neighborhood

of K. Suppose that f — 2(f) € K is a continuous map on N.
Now let M’ be the set of f € N such thal the following are satisfied.

1 |f(z) — 2| < 75 and | f(z) — 1| < 35 for every z € K;

2.9 R — K solves 5 = if(2) — 2] with v¢(0) = 2(f) and v+{t) —
oi{f) € K ast — +o00 (for some o_(f), o1.(f);

3. f(¢;) C K and £; 0 f(bg) = 8, where & = 7;(R).

Then, for oll f € M', we can let Sy be the closed set bounded by the loop
£ U f(8p) Ufo-(f), on(N)} and let S; = S; \{o-, 0.} (o fundamental
region).

There is an analytic, injeclive map @y 1 Sy —— C such that

Os(f(2) = Dp(2)+1, for every z € £y,

and Oy is unique up to addition by a constant. We call @5 a Fatou Coordinate.
Also, the Ecalle Cylinder St/ f is isomorphic to C/R. We can normalize O
such that @¢(ze(f)) = 0.

The map f v Sy is Hausdorff lower semi-continuous on M'. Also, the
map [+ P is continuous on M'.




Proof. First let Wy : 5% — C be defined as

Y A S
itz = /zo(f) FO—¢

where z € §}. Welet Fy = Upo fo W, : W(S;)*— € and we will prove
that :

U (£;) is the vertical line {it : ¢t € R};
2. [Fy(w) — (w+1)| < § if w, Flw) € Qr;
3. |Fp(wy -1 < § if weQp.

If the last three conditions hold, we can apply lemma 2.4.5 to get ®p,
W;(S%) — C and then we let &y = &p, 0 ¥y : 5 — C.

1. The first condition holds on W¢(S%) because

B we  ge
Uy(s(t) = fw e

B 7 () [
= ffvf(S) )ds /Ozds it.

2. If z € £ is fixed and p(t) = (1 — t)2 + ¢f(2) where ¢ € [0,1] then we can
show that p([0,1]) C Sy (using the condition 1 of the lemma). And also

0) ~p0] = F2) ~ =l = If - i) =  ~ e (p(0)
= | /0 (I — id) o p)'(£)ds|

- 1f U = idet) - P (1)
</ )~ 11 - 1£() — #lds

1
< E‘f(z) - ZI#

—

since |f/(z) — 1| < &. This implies that

flo@®) —p@t) . _ 1
| OET <35 (2.1)
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If w, Fy(w) € Qp and w = Wy(z}), we get

7
Fr(w)—w = Ws(f(2)) — Vs (2) :fz g / Flp

p(t b
then by equation (1), we see that |Fy(w) — (w —!— 1)| < %
3. We can also see that
i) = WU 7Y ) = ) = G

Applying (1) again with t = 1, we must have [F}(w) — 1| < 7.

Therefore, ®; : S} — C exists. By the continuous dependence of solutions
we have that F = 74(t) is continuous for every ¢. Since &5 = {v;(t) : ¢ € R},
f— £ s must be lower semi-continuous on M’, ’, then it follows that f — 5
is lower semi-continuous on M !, Also, if fi € M’, then given any compact

G C Sfl, we will have G C Sf' if f is sufficiently close to fi.

We can show that f > (Uy: Sf — W(Sy)) and f o (Fy: ¥ #(8%) — C)
are continuous. So if we set wo(f ) == Wz (f )) then Lemma 2.4.5 tells us that
P (@p: Uy(8)) — €) is continuous. Thus f — ®po Uy = & is
continuous also. '

C
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Chapter 3

Hybrid lamination and Renormalization

3.1 Quadratic-like germs

In this section we give a summary of [L3, §§3,4] and [1.4, §2].

3.1.1 Quadratic-like maps

A holomorphic map f : U — U’ is called quadratic-like if it is a double
branched covering between topological disks U, U’ in C such that 7 € U,
It has a single critical point which is assumed to be located at the origin 0.
We will also make the following assumptions:

¢ The boundaries U and U’ are quasicircles. Hence f is continuous on
U and maps 8U onto AU’ as a double covering.

e U is symmetric with respect to the origin and f is even, ie. f(—2) =

f(2).

The filled Julia set of f is defined as the set of non-escaping points under
iteration by f: K(f}={z: ff2 €U, n=090,1,...}. Its boundary is called the
Julia set, J(f) = 0K (f). The set K(f) and J{f) are connected if and only
if 0 € K(f). Otherwise, these sets are Cantor. The fundamental annulus of
a quadratic-like map f: U — U’ is the annulus between the domain and the
range of f, A = U\U. We let mod(f) =mod(A). Any quadratic-like map f
has two fixed points counted with multiplicity, that in the case of connected
Julia set can be dynamically distinguished. One of them, «, is either non-
repelling or if you remove it, makes the Julia set disconnected. The other one,
3, does not disconnected the Julia set if it is removed.

A quadratic-like map f : U — U’ is called real if the domains U and U’ are
R-symmetric and f commutes with the conjugacy z — Z.
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3.1.2 Space of quadratic-like germs

A quadratic-like map ¢ : V — V' is an adjustment of another quadratic-like
map f: U —=U' iV cU, g=f|Vand 8V’ c U\U. (In particular, we can
restrict f to V = f~1U, provided f(0) € U). Let us say that two quadratic-like
maps f and f represent the same quadratic-like germ if there is a sequence
of quadratic-like maps f = fo, f1,..., fn = f, such that f;4; is obtained by an
adjustment of f; or the other way around. By [McM1 §5.5], a quadratic-like
germ has a well-defined Julia set.

We will consider quadratic-like maps/germs up to affine conjugacy (resca-
ling), so that near the origin they can be normalized as follows:

[o.e]
@) =c+ 22+ ) aps™,
k=2

which will still be called “quadratic-like maps/germs”,

Let QM be the union of the space of normalized quadratic-like maps and
the quadratic family QP = {P.(2} = 2* 4 c}ec. We have the following
convergence structure on @M [McM1,85.1]: a sequence of maps f, : Vi, — V!
converges to amap f : V' — V' if the pointed domains (V;!, V,, 0) Carathéodory
converge to (V/,V,0), and f, — f uniformly on compact subsets of V.

A quadratic-like germ is called real if it has a real representative. Any
quadratic polynomial F, determines a quadratic-like germ by restricting it to
the preimage P, !(ID,) of a sufficiently big round disk D,. These germs will be
called “quadratic polynomials”.

3.1.3 Complex structure on the space of quadratic-like
germs

Let @ stand for the space of quadratic-like germs, and let C be its connected-
ness locus, the subset of germs with connected Julia set. Let Qg stand for
the space of real quadratic-like germs. We will endow @ with topology and
complex analytic structure modeled on a family of Banach spaces By.

Let V be the set of topological disks V' 3 0 with piecewise smooth boun-
dary symmetric with respect to the origin. Let By denote the affine space
of normalized even analytic functions f(z) = ¢+ 22+ 3>, ax2® on V €V
continuous up to the boundary supplied with the sup-norm ||-||y. Let By (f,€)
stand for the e-ball in By centered at f.

If f:V — V'is a quadratic-like map, then all nearby maps g € By are also
quadratic-like on a slightly smaller domain. Thus, we have a natural inclusion
Jv of some Banach ball By (f,¢) into Q. We will call it a Banach ball or a
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Banach slice of @ and we will denote it by Q. The inclusions jy : Qv — @
play a role of Banach charts on @ (though @ is not going to be a Banach
manifold). For U C V, let juyv : By — By stand for the restriction operator,

where juy = ji* o fv.

Lemma 3.1.1. The family of local charts jy satz’sﬁe,s the following properties.

Pi1: Countable base and compactness. There exists o countable family of Ba-
nach slices Qy,, with the following property: for any f € Qy, there is a
d > 0 and a Banach slice Qy, such that V, € V, and the Banach ball
By (f,8) C Q is compactly embedded into Qy, .

P2: Analyticity. For W C V, the inclusion jwy : Qv — Bw is complex
analytic. '

P3: Density. If W C V, then the space By is dense in By . (The differential
Dijwv(f) has a dense tmage in By ).

Given a set X' C Q, the intersections Xy = X' N Gy = j;,' A will be called
a Banach slice of X' (f and € are implicit in this notation). By the intrinsic (or
Banach) topology/metric on the slice Qy we will mean the topology/metric
induced from the Banach space By. We endow Q with the finest topology
which makes all the local charts jy continuous, i.e. aset V C @ is open if and
only if all its Banach slices My are intrinsically open. '

Let us say that two metrics p and d on the same space K are Hélder
equivalent if there exist constants C' > 0 and § > 0 such that

C oz, ) < d(z,y) < Colz,y)’.
Lemma 3.1.2. The topological space Q satisfies the following properties:

(i) A sequence f = {f,} in Q converges to f € Q if and only if there exists
a finite family of Banach slices Q; = Qy, such that f € NQ;, f C UQ,,
and the corresponding subsequences f* = f N Q; converge to f in the
intrinsic topology of Q;.

(i) A set K C @ is compact (or sequentially compact) if and only if there
exists a finite family of Banach slices Q; and intrinsically compact sub-
sets Ky C Qy such that K < UK;. Thus, compactness and sequential
compactness in Q are equivalent. '

(#i) A compact set K C Q is metrizable with a “Montel metric” distyen
induced from some By containing K. The Montel metrics induced from
different domains V' are Holder equivalent.
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The family of local charts jy- endows @ with the complex analytic structure
modeled on the family of Banach spaces By. For a germ f € Q, V; is the
set of topological disks V' € V such that f has a quadratic-like representative
fv:V — f{V) in the space By.

Given a quadratic-like germ f, let mod(f) = supmod(A), where A runs
over the fundamental annuli of quadratic-like representatives of f. For u > 0,
let Q(, p) stand for the set of normalized quadratic-like germs which have
representatives f : V' — V' such that the curves 8V and 9V’ are p-quasicircles,
mod{(V', V) > g, |f(0)] < p, and disty,1,(0, £(0)) < p, where the hyperbolic
distance is measured in V'. Let Q(u) = {f € @ : mod(f) > u}. Note that
Clp) = Q(u)NC < Qu, B(p)). Finally we state the following compactness
lemma.

Lemma 3.1.3. A subset IC of Q (resp. of C) is pre-compact if and only if it
is contained in some Q(u, R) (resp. in C(u)). Any compact set K sits in a
union of finitely many Banach slices.

3.1.4 Conjugacies and Hybrid classes

Two quadratic-like maps f: U — U’ and f: V — V' are called topologically
conjugate if there exists a homeomorphism & : (U',U) - (V',V) such that
h(fz) = f(hz), 2 € U. Two quadratic-like germs f and f are called topolo-
gically conjugate if there is a choice of topologically conjugate quadratic-like
representatives.

Two maps/germs are called guasi-conformally/smoothly etc. conjugate if
they admit a conjugacy h with the corresponding regularity. If two maps/germs
are qc conjugate with 6k = 0 almost everywhere on the filled Julia set, then
f and f are called hybrid equivalent. Let H(f) stand for the hybrid class of
J € Q. The relation between points in € and the quadratic family is given by
the following theorem.

Theorem 3.1.4 (Straightening [DH2)] ). If f is a quadratic-like germ with
connected Julia set then its hybrid class H(f) contains a unigue quadratic
polynomial P : z v 2%+ x(f), where ¢ = x(f) is a point of the Mandelbrot set
M.

Moreover, the polynomial P and the quasi-conformal map A, which con-
jugates P and f, are uniquely determined by the choice of an equivariant
quasi-conformal map

H:C\U—=C\D,, H(fz)=Py(Hz) forzedU
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where FPy(z) = 2%. Such a map H is called a tubing of the fundamental annulus
UNU, and the quadratic polynomial P is called the straightening of f.

Then, given a quadratic-like map with connected Julia set, we can define
external rays and equipotentials near the filled Julia set by conjugating it to a
polynomial and transferring the corresponding curves.

3.1.5 Hybrid lamination

By the Straightening Theorem, every hybrid class H(f) in C intersects the
quadratic family QP at a smgle point ¢ = x(f) of the Mandelbrot st M. We
denote such hybrid classes as H,, c € M.

It is proven in [L3] that the hybrid classes H,, ¢ € M , are connected
codimension-one holomorphic submanifolds of Q.

Theorem 3.1.5 (Leaves). The hybrid classes H,, ¢ € M, are connected
codimension-one complex analytic submanifolds of Q. The quadratic family
QP is a complex one dimensional submanifold of Q, transversal to these sub-
manifolds.

Horizontal foliation of C. These leaves form a foliation (or rather a lamina-
tion) F called horizontal. This foliation will be transversally quasi-conformal
everywhere, and holomorphic on int C.

Lemma 3.1.6 ([L3]). The partition of int C into the hybrid clusses is a com-
plex analytic foliation.

The hybrid classes in the connectedness locus will also be called the leaves
of 7. A Banach slice Fy of the foliation F is the restriction of F to the Banach
space By, in such a way that the leaves of Fy are Hy (f) = H(f)N By, f € C.
‘Then, sufficiently deep Banach slices of F are still foliations with complex
codimension-one analytic leaves in the corresponding Banach space.

Lemma 3.1.7 ([L3]). For any fo € C there exists a domain Vy € Vy, such
that for any V C Vo, V € Vy,, the slice Fy near fy is a foliation in By with
complex codimension-one analytic leaves.

Also, the foliation Fy, admits a local smooth extension beyond C, the leaves
of this foliation are given by the position of the critical point in the appropriate
local chart,

Theorem 3.1.8 ([L3]). For any fo € C and any Banach slice By > fo,
U € Vg, as in Lemma 8.1.7, there exists a Banach neighborhood U ¢ By of
fo such that the foliation Fy admils an eztension to U with codzmenszon one
complex analytic leaves which is smooth on U\C.
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3.1.6 F is transversally quasi-conformal

Definition 3.1.9. The foliation F is transversally quasi-conformal if the ho-
lonomy between two transversals 8 and Sy is locally a restriction of a gc map.

Thus, take two hybrid equivalent germs f; € €, and two holomorphic
transversals S; to the leaf H = H(f;) through f;. The holonomy v:C NSy —
C NS, along F is called locally quasi-conformal at f; if it admits a local gc
extension ¥ : £y — l, where £; C 8; are neighborhoods of the f; in the
transversals S;. The local dilatation of v at f; is defined as inf Dil(¥) where
the infimum is taken over all local qc extensions ¥ of . For a transversal S,
let mod(S) =infres mod (f). Then the following holds.

Theorem 3.1.10 ([L3]). The foliation F is transversally quasi-conformal.
The dilatation of the holonomy between two transversals & and Sy depends
only on y = min(mod(S;), mod(8s)). Moreover, if the transversals &; are re-
presented by holomorphic one-parameter families {fi\} of quadratic-like maps
such that mod(f; ) = p > 0, then the local dilatation of vy at f; is bounded by

K ().

Proof. Let us take two transversals &; and &, to a leaf H of the foliation
and a Beltrami path -y in H joining two intersection points. Since this path is
compact, it is contained in finitely many Banach slices, whose number N de-
pends only on g. By Theorem 3.1.8, this path can be covered by finitely many
Banach balls By,(f;,€;) such that F extends to the bigger balls By, (f;, 2¢;).
Hence, the holonomy between 8; and & can be decomposed into N Banach
holomorphic motions, which extend to the twice bigger domains. By the M-
lemma, each of the Banach motions is locally transversally quasi-conformal
with uniform dilatation. (B

In particular, if we take the quadratic family QP as one of the transversals,
we obtain that the straightening y : § — QP is locally K-quasi-conformal,
with K depending only on mod(S), and X — 1 as mod(S) — oo.

On the other hand, the foliation F is not generally transversally smooth.
Take the Ulam-Neumann quadratic polynomial P = P_y : 2 — 2% — 2 with a
posteritical fixed point § = 2. We can take a convergent sequence of super-
attracting parameter values ¢, ~+ -2 in such a way that ¢, — 2 < 4™ where 4
is the multiplier of 8. But we can take another map f € H.5 and a sequence
of maps f, — f, fu € H,.,, with rate of convergence A™", where X is the
multiplier of the g-fixed point of f. Since A can be made different from 4, the
holonomy ¢, — fy, is not smooth at —2. For the same reason the foliation is
not smooth at other Misiurewicz points. Thus, quasi-conformality is the best
transverse regularity of F which is satisfied everywhere. However, Lyubich
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proved that F is transversally smooth at Feigenbaum points. Also, after
McMullen, a relation between conformality and deep points in the Mandelbrot
set implies that the foliation is trangversally smooth at parabolic points, roots
of hyperbolic components of the Mandelbrot set.

3.1.7 Quadratic-like families

For a background in the theory of quadratic-like families see [DH2]. Let us
consider a domain A € C. A domain ¥V C A x C is called a topological
bidisk over A if it is homeomorphic over A to a straight bidisk A x ID. Let
Vi = w1 A} stand for the vertical fibers of a bidisk V, where 7 : V — A is
the natural projection. We will assume that they are quasi-disks containing 0.
Denote by 0"V = U,ea8V, the horizontal boundary of V.

Figure 3.1: The space of quadratic-like germs.

Amap f: V — V between two bidisks V C V' over A is called a quadratic-
like family over A = Ag if £ is a holomorphic endomorphism preserving the
fibers such that every fiber restriction fy : Vs — Vi, 2=+ 22 +¢(A\) 4+ ..., is a
normalized quadratic-like map with the critical point at 0. Any quadratic-like
family f represents a holomorphic curve in Q.

A quadratic-like family £ : V — V' over (A, %) is equipped if the base
map f is equipped with a tubing H, (see 3.1.4) and there is an equivariant
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holomorphic motion h,
ha (€, c(VAVL)) = (C,el(VAWL)), A €A,

where equivariance means that hy(fi2) = fa(hr2) for z € OV,

Let M = {A cA:0€e K(A) ={) € A: f, €} stand for the
Mandelbrot set of f. The family f is full if M} is eompact.

Let #(A) = f1(0) denote the critical value of f3, and let ®(X) = (A, ¢(N)).
Let A' = Al = {A € A: ¢(X\) € V3. }. Consider the natural map

n=mn: A\A — VAV,  n(d) = hxl(é()\))

from the parameter region A\A! to the dynamical annulus V/\V,. A family
f is called proper if the map 7 is proper, ie., n(A) — V! as A — BA. Any
proper family is full.

For a full family, one defines the winding number w(f) as the winding

“number of the curve A i— ¢(\) about the origin, as A goes once anti-clockwise

around a Jordan curve v ¢ A\M} surrounding Mf. A full family is called
unfolded if w(f) = 1.
The straightening provides the continuous map

X =Xt : (A Mp) — (D, M).

If £ is full and unfolded, then x : M{ —» M isa homeomorphism. If f is pfoper
then x is a homeomorphism in the whole domain A.

3.2 Renormalization of quadratic-like germs |

The notion of complex renormalization was introduced by Douady and
Hubbard [DHZ2] in order to explain computer observable little Mandelbrot
copies inside the Mandelbrot set.

Let f be a quadratic-like map. Assume that we can find topological disks
U & U’ around O and an integer p such that g = fP : U — U’ is a quadratic-like
map with connected Julia set. Assume that the little Julia sets f*J(g), k =
0,..,p — 1, are pairwise disjoint except, perhaps, touching at their 3-fixed
points. Then, the map f is called renormalizable of period p and the map g is
called its pre-renormalization. The quadratic-like germ of g, considered up to
rescaling, is called a renormalization Rf of f

Take a quadratic-like representative f : V' — V', If the pre-renormalization
g = f? : U — U’ above is sclected in such a way that f*U e V, k =
0,1,...,p~ 1, then we say that g is subordinate to V. In the same way, we can
define the germ of subordinate pre-renormalizations R fy .
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3.2.1 The Renormalization in QF

A parameter value ¢ € C in the Mandelbrot set M is called super-attracting
if 0 is periodic under F,. To each super-attracting parameter ¢ # 0, there is
associated a copy of M containing ¢ called the Mandelbrot set tuned by c,
little Mandelbrot copy or an M-copy, canonically homeomorphic to the whole
set M, denoted by c* M. The root of ¢ * M, r, is the point corresponding
to the cusp 1/4 and the center is the point c. A little Mandelbrot copy is
called primitive if it is not attached at its root point to any other hyperbolic
component, QOtherwise, it is called satellite. For every copy ¢ * M, there is
a p > 1 such that for any ¢ € c* M, except possibly the root, and any
f € H(c) there is a domain U 3 0 such that f?|y is a quadratic-like map.
Then, the map fP|y is a (complex) pre-renormalization of f and f is said to
be renormalizable of period p. This pre-renormalization is always simple, i.e.
the iterates of J(fP|y} under f are either disjoint or intersect only along the
orbit of B(f?|y}, the B-fixed points.

The period of the copy, p(c * M), is the maximal such p and we say that
¢ * M is maximal if there is only one such p or, equivalently, if it does not
belong to any other copy, except M itself. These copies are disjoint, and any
other copy, except M itself, belongs to a unique maximal one. All maximal
copies are primitive except for the ones attached to the main cardioid.

We say that ¢ * M is real if ¢ is real. The only real maximal M-copy
for which the root point is not renormalizable is the period two copy M 2),
Also, all real maximal Mandelbrot copies are primitive except for the period
two copy M@, We will denote the real period three copy by M. Define
H(cx M) as the set of renormalizable maps f € x™'(c* M).

All the copies M’ # M are obtained from M by iterated tunings

M =cgx.xcxM

where ¢, is the center of the maximal Mandelbrot copy M, = M., . Thus, any
two M-copies are either digjoint or nested.

Let M’ == M’ in the primitive case and M’ = M'\{ra} otherwise. For
a copy M, let Tay = x~IM' C C (vesp. Ty = X M’ C Tar) stand for the
union of the hybrid classes via. M’ (resp. M’). These sets will be called the
(horizontal) renormalization strips. The strips Ty are closed. The renormali-
zation strip is called maximal if it corresponds to a maximal Mandelbrot copy.
Note that the maximal renormalization strips are pairwise disjoint.

There is a canonical renormalization operator Ry @ Ty — C defined as
the p = py-fold iterate of f restricted to an appropiate neighborhood U of
the critical point, up to rescaling. This neighborhood is selected in such a way
that g = f?|y is a quadratic-like map with connected Julia set, and the “little
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Julia sets” f*J(g), k¥ = 0,1,...,p — 1, are pairwise disjoint except, perhaps,
touching at their S-fixed points. The maps f € Ty are called renormalizable
with combinatorics M’ :

Let ¢+ M be a maximal M-copy with period p and suppose f € H(c* M).
If f*|yy and fP|yr are two pre-renormalizations then [f?|y;] = [f?|y]. Hence we
can define the renormalization R(f) to be the normalized quadratic-like germ
of any pre-renormalization of period p. Thus, the renormalization of a germ
R([f]) is the renormalization of a quadratic-like representative. A quadratic-
like map f is infinitely renormalizable if R™(f) is defined for all n > 0, i.e.
x(f) is contained in infinitely many M-copies. The tuning invariant of an
infinitely renormalizable map f is

T(-f) = {M[h Ml, Mz, }

where M, is the maximal M-copy containing x(R"(f)). We say f has real
combinatorics if all M-copies in 7{f) are real. One says that an infinitely
renormalizable map f has a bounded type if all the periods p(M,,) are bounded.

3.2.2 Real renormalizations strips

A Mandelbrot copy M’ is called real if it is centered on the real line, The
real slice’J = M'NR C (—2,1/4) of a real Mandelbrot copy is an interval
called the renormalization window. Denote by M the family of maximal real
Mandelbrot copies. The set of maximal renormalization windows (formally
coinciding with M) will be denoted by 7.

quadratic family

Space of quadratic like germs

Figure 3.2: The real horseshoe.
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We say that the maps f € Ty are renormalizable with real combinatorics
encoded by the little Mandelbrot set M’ € M. Thus, the renormalization
operator R is canonically defined on the union of all renormalization strips.
We let Ry = R|TMf.

Remember from 3.1.3, Qk is the space of real quadsatic-like germs, The real
slice of the renormalization strip 7y will be denoted as 7, where J = M'NR
is the corresponding renormalization window. Thus the union of 7;, J € 7
forms the domain of definition of the renormalization £ in the space Qp of
real quadratic-like maps.

Injectivity of R. 2
Lemma 3.2.1 ([MvS]). The renormalization operator 1\
R:UsegTs = Qn i

8 injective, ! ‘

¢ 3.2.3 Complex bounds

Definition 3.2.2. An infinitely renormalizable map f 'V — V' is said to
have a priori bounds if mod(R"fy) > v >0, n =0,1,..., where the R*fy are
the subordinate renormalizations of fy. We say that a map f € C is close to
the cusp if |x(f) — 1/4] <e.

The following two theorems establish combinatorial rigidity of infinitely
renormalizable maps with real combinatorics and complex bounds. Moreover, !
complex bounds are proven to exist for real quadratic-like maps.

Theorem 3.2.3 (A priori bounds [L3],[LY]). Let f : V — V' be an n-times il
renormalizable real quadratic-like map with mod(V\V) > > 0. Then 5

mod(R*fy) > vn(p) > v(p) > 0, !

unless the last renormalization s of doubling type and R™f is close to the cusp.
| Moreover, iminf v,(1) > v > 0, where v is an absolute constant. Thus, all :
real infinitely renormalizable maps have o priori bounds. |[

I

. Theorem 3.2.4 ([L3]). If P, and Py are two infinitely renormalizable quadra-
5 tic polynomiels with complex a priori bounds and the same real combinatorics j
then c = c. '
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3.2.4 Analytic extension

Any Ry admits a complex analytic extension to Banach neighborhoods of
maps f € Ty If Ryprfy = fP: U — U is a subordinated quadratic-like pre-
renormalization of f € Cy, then any nearby map ¢ € Cy admits a quadratic-
like return map ¢* : U, — U’ with the same range. Since g” analytically
depends on g, this provides us with the desired extension. ([L3,§5.3]).

3.3 Yoccoz Puzzle

This section is based in [[.2, §2, 3]

Let f: U" — U be a quadratic-like map with both fixed points o and 3
repelling, where « is the dividing fixed point with rotation number ¢ /o, p> 1.
Let E be an equipotential sufficiently close to K(f) (so that both I and fE
are closed curves). Let R, denote the union of external rays landing at o
and let R], = —R, the symmetric configuration. Let Q be the component of
C\(E U R, U R.,) containing the critical point 0. Let us consider the domain
' C ©, the component of f~PQ attached to c. If 0 & £ then f2: (¥ — Qisa
double covering map. Moreover, if 0 does not escape € under iterates of 12,
we say that f is DH immediately renormalizable.

The rays R, cut the domain bounded by E into p closed topological disks
Y;(G), ¢ = 0,...,p — 1 called puzzle picces of zero depth, such that fé’Y;.(O) is
outside of (] int¥; .

Now define puzzle pieces Y,é(”) of depth n as the closures of the connected
components of f~7 int}’;c(o). They form a partition of the neighborhood of
K(f) bounded by f™FE. If the critical orbit does not land at a, then for
every depth there is a single puzzle piece containing the critical point. It is
called critical and is labeled as Y™ = y™,

Let Yy denote the family of all puzzle pieces of f of all levels, They satisfy
the following conditions (Markov):

i} Any two puzzle pieces are either nested or have disjoint interiors (the
puzzle piece of bigger depth is contained in the one of smaller depth).

it} The image of any puzzle piece Yi(”) ( of depth n > 0) is a puzzle piece
Yk(”_l) of the previous depth. Moreover, f : Y;(”) — Yk(”_l) is a two-to-one
branched covering or a conformal isomorphism depending on whether Y;(") is
critical or not.

On depth 1 we have 2p—1 puzzle pieces; Y1) = YD(I), p—1 non central Yi(l)
attached to a {cuts of Y;-(O) by the equipotential f~!'F), and p — 1 symmetric
ones Zi(l) attached to o/. Moreover, f|Y™) two-to-one covers 3’1(1), f'|Yi(1)
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univalently covers Yiﬂ, i=1,.,p—2and f leﬁ)l univalently covers Y1 U

U; Zi(l). Thus f2[Y ™ truncasted by f~*(E) is the union of YV and Z,L-(l).

3.3.1 Lyubich’s Principal Nest

¥
Given a set W = cl(int W) and 2 such that f*z € intW, we define the pull-
back of W along the orbit orbi(z) as the chain of sets Wy = W, W_; >
F5 1z, ..., W_i 2 zsuch that W_,, is the closure of the component of f~™(intW)
containing f5*~™z.

If z ¢ intW and & > 0 is the moment of first return of the orbit of z back
to intW, then we will refer fo the pull-backs corresponding to the first return
of ord(z) to intW.

Let us consider the puzzle pieces of depth 1; Y, Yi(l} and Zz-(l), i =
1,..,p—1. If z € YN then fPz is either in Y or in one of Zi(l). Hence either
0 € YO for all & = 0,1,.. or there is a smallest ¢ > 0 and v such that
70 € z", Thus, either f is immediately DH-renormalizable, or the critical
point escapes through one of the non-critical pieces attached to o,

Figure 3.3: First levels of the Principal Nest.

In the former case, the principal nest of puzzle pieces consists of just Y@,
In the escaping case we will construct the principal nest

YO 5 y@® 5y 5

as follows: let V©® 3 0 be the pull-back of Z5" along orby,0. Let us define V7™
as the pullback of V" corresponding to the first return map of the critical point
0 back to intV™. If the critical point never returns back to intV™ we stop, and
the principal nest is finite. This case is called combinatorially non-recurrent.
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Let s = s(n) be the first return time of the critical point back to intV"~1,
then g, = £ : ¥V — V™1 is a two-to-one branched covering (f*V"n
intV*!t ={, fork =1,..,8 —1so f: f*V" — f*"1V™ are univalent for those
K's).

3.3.2 Central Cascades

Let us call a return to level n — 1 central if g,0 € V", ie. s(n) = s(n + 1).
Thus g, = gyt in VL

Definition 3.3.1. The sequence n,n-+1,...,n+ N —1 (with N > 1) of levels
of the principal nest form a central cascade if the returns to oll levels n,n +
1,.on-+ N —2 are central, while the return to level n + N — 1 is non-central.
In this case grnax|V™F = gua|[VPHR, k=1, N and g 0 € VPEN-T\YEN

Thus, all the maps gu41, ..., gn+n are the same quadratic-like maps with
shrinking domains of definition. The number N of levels in the cascade is
its length. A cascade of length 1 consists of a single non-central level. The
cascade is maximal if the return to level n — 1 is non-central.

The whole principal nest, except Y%, is the union of disjoint maximal
cascades, this number is called the height x(f) of f. In other words, x(f) is
the number of different quadratic-like maps among the g,’s.

3.3.3 Renormalization and central cascades

We state a proposition which relates the notion of central cascade with renor-
malization of a quadratic-like map. Let ng count the non-central levels for a
quadratic-like map f; if this sequence is infinite, f is non-renormalizable,

Proposition 3.3.2 ([L2]). A quadratic-like map is renormalizable if and only
if it is either immediately renormalizable, or the principal nest VO D V1 o ..,
ends with an infinite cascade of central returns. Thus the height x(f) is finite
iff f is either renormalizable or combinatorially non-recurrent.

The above proposition shows that there is a well-defined first renormaliza-
tion Rf with the biggest Julia set, and it can be constructed in the following
way. If f is immediately renormalizable, then Rf is obtained by thickening
Y®) — Y, Otherwise, the principal nest ends up with the infinite central
cascade V™ P D V™D ., and Rf = g : V™ — VL,

In this case, x(Rf), the internal class of the first renormalization, belongs
to a maximal copy My of the Mandelbrot set.
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3.3.4 Generalized Renormalization

Now, let {U;} be a finite or countable family of topological disks with disjoint
interiors strictly contained in a topological disk 7. Wecallamap g : | JU; —» U
a generalized quadratic-tike map if g : U; — U is a branched covering of degree
2 which is univalent on all but one U, i.e., it has a sidgle (and non-degenerate)
critical point; we can normalize in such a way that 0 is the critical point with
0 € Uy. The generalized quadratic-like map g is of “finite type” if its domain
consists of finitely many disks U;. We define in this case the filled Julia set
K(g) as the set of all non-escaping points, and J(g) = 8K (g) (quadratic-like
maps correspond to the case of a single disk U;). For instance, the principal
sequence g, of the first return maps are in this class.

3.4 Mandelbrot-like families

In this section, we will describe the equivalent to the Mandelbrot set in a
family of quadratic-like maps,

We consider a family of quadratic-like maps h = {h)}iew with w, the
critical point, equipped with a tubing © [DH2|,[L3]. More precisely we assume:

e W is a Jordan domain in C, with C' boundary.

e For gach A € W, the map O, is a quasi-conformal embedding of ARz R
in C; for each z € AR2 r the point 8,(z) depends holomorphically on A. TLet
Cy = 0,(5%) and Ci = 0,(SE); we denote by Uy (resp. U3) the Jordan
domain bounded by C), (resp. C}).

e h, is a quadratic-like map Uj — Uy; the map A : (A, z) — (X, hy(2)) is
C-analytic and maps in a proper way U’ — U, where i = {(\, 2} : A € W and
z € Uy} is an open set and U’ is defined similarly.

. @A( ) h)\(@)‘( )) for z € Sl

¢ The map h extends contmuously to a map U —U and ©:(\z)—
(A, ©x(2)) extends continuously to a map W x Agz . — U such that ©, is
injective on Apz p for A € OW. The map A — w), extends continuously to W.

e For A € OW, we have hy(w,) € C).

e When A ranges over 0W making 1 turn, the vector hy(w,) — wy makes
1 turn around 0.

We denote by My the connectedness locus of the family h. It is proved
in [DH2] that My is homeomorphic to the Mandelbrot set A, by a map ¥
using the Straightening Theorem. This map is an homeomorphism of W onto
an open set in C. Lyubich [L3| improved this result by showing that y is
quasi-conformal on W for any W' relatively compact in W.




Chapter 4

Essentially bounded combinatorics 'z

4.1 Little copies of the Mandelbrot set

In this section we give a size estimation and speed of convergence for a par- i
ticular sequence of little copies of the Mandelbrot set, which converges to the }[
root, point of a primitive copy of the Mandelbrot set. It is based in [D2]. 1

The Model

Let £ = (fy : Uy — Uj)xea be an analytic family of quadratic-like maps, ‘
where A is an open set in C and Ay € A. We suppose that f,, has a fixed
point oy with derivative 1; this implies that fy, is hybrid equivalent to 22 + %. g!i
We are only interested in values of A which are close to Ay, I

Let gy : Vi — U, be an analytic isomorphism, depending analytically on
A, with V) relatively compact in U )\\U;. We suppose that the open sets are
Jordan domains with a C? boundary undergoing a holomorphic motion.

Let w be the critical point of fy, and let a, (X) = f{{w,) and by = g5 " (w,). "
We denote by Fy the map U{ UV\, — U, which induces fy on U} and g, on }|’!
Vy; thus, {Fy}aea is a family of generalized quadratic-like maps. We define i
K(F) as the set of points z such that FJ(z) is defined and belongs to U UV}, g
for all n. K(F)) is a full compact set in C. i

Denote by Mg the set of values of A for which w), € K (F\). Mr is a closed
set in A. Note that A € Mp does not imply that K{F)) is connected, in fact il
it is easy to sec that K (F)) is never connected. :

We can normalize the functions, by a change of variables, in such a way
that A\ =0, ag = 0, and fa(z) = 2+ 22 + X + O(®). /!

41




Figure 4.1: The maps Fy and F).

Fatou coordinates

For the map Fy : z — 2 + 2%, one can define two Fatou coordinate & :
Qf, — C and ® : Qp — C such that Qf (resp. Qf) contains the disk
Df={z:|z—7r| <7r} (resp. D7 = {z:|z+7r| <r}), for r > 0 small

Q

enough. As a holomorphic function, @3 extends to all of K(Fp), but is no
longer injective there. A maximal domain for ®}, is C\R..

Figure 4.2: The Fatou coordinates for 7.

In our setting, the map fy is quasi-conformally conjugate to . We can
choose a Fatou coordinate ¢y whose domain €y contains D (for r > 0 small
enough) and the points a, = f#(wg) for n > 1.

Following the construction of the quasi-conformal conjugacy between fo
and P, we can find a Fatou coordinate ¢} for fy whose domain QF contains
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Vo and mod(§2F\V,) > p for some u > 0.

Now choose ry > 0 small and 6 € (0,7}, and define the sector S as the
set of values of A such that |A| < rp and |arg(A)| < 8. We set §* = S\{0}.
Moreover, if ry is small enough, we have S C A, and for A € S there exist
Fatou coordinates ¢, : Q5 — C and ¢ : Qf -~ C such that:

i) the fixed points of fy belong to the boundaries 80, 8Q7;

ii) the set OF = {(A,2)]A €S, z€ Qf} is openin S x C;

iii) for A € S§* the intersection €2} N2} is the domain of a Fatou coordinate;

iv) (normalization) ¢, (a,(A)) = n, gb)\ (b)) = 0.

Restricting S if necessary, we have VA C Qf for all A € S, with definite mo-
dulus between them since they converge to VO and QF respectively. Moreover,

with the above conditions, the function (A, z) — qb)\( ) s continuous on o*
and C-analytic on Q% N (S* x C).

Figure 4.3: Perturbed Fatou coordinates for B,

The phase map

For A € 8%, the functions qﬁj'f both induce a Fatou coordinate on 2 NQy, then
$% — ¢y is a constant function with value 7()) € C. This defines a function
7 : 5% — C called the lifted phase, which is holomorphic and tends to co as A
tends to 0,

Lemma 4.1.1. The lifted phase map satisfies
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Proof. We will give the proof when f : z — z+ 2%+ A, A > 0. In this
case, the fixed points of f are o = iV With multipliers pF = 14 20/,
Let us make the change of variable { = \/_ log 2 °‘+, where the branches
of logarithm differ by 7/+/A on £ N Q5. Under this change of variable, f is
conjugated to *

logp N 1 l 1 — 21‘\/—,2/,0
23f 2iv/ A 62“/w z

The function F) satisfy the following propertles
i) Fy(z) = 2+ 14+ Vi(2), Va(2)| < 5, IVi(2)| < § outside a fixed disk.

i) I\(z) — 2z — 1;)%,/3_ as Imz — +o0.

Then, there exists ¢¥(z) conjugating Fj to 2z — z+1 on V=, where ¢3 () =
ViE is a right\left region in the complex plane. Let 2~ € Vi~ and let U be the
region bounded by the (left)boundary of V,~ and the (right)boundary of the
region T (V3 ) where Tz (2) = 2 + 5. Finally, let ¢, be the Fatou coordinate
on U. Then qﬁ;\oTvr—}-cr)\ onVA and ¢y = ¢y + oy on V;", with o}
and oy chosen in such a way that % converges to ¢=, the Fatou coordinates
of z -+ z + 2% Then, the phase map is or;{ — oy, = o) For Imz > 0 large,
¢% can be extended to the disk of center z and radius R, D(z, R), where it is
univalent.

Statement: ¢\ (z 2“/_ as Im z — +oo. Since
A 1 og p

F)\(Z) —

w(z)?

L= $a(Fx(2)) — da(2) = wlz)di(2) + ——da(2) -+ ...

where w(z) = F\(z) — z, it follows that |¢}(2) — E%‘ < £ by the Cauchy

1 26K
w(z) — logpt

formula {or Koebe Distortion Theorem). The claim follows, since
Let hy = ¢ o (¢1)71, then

hy= ¢y o (¢f) ! = T, ogro(Tozo ¢ylo T ) =T, o hy o T3
where by, = ¢y 0 T_z oy 1. Let wt = ¢r(21), then we get
() ~wt = groTgodiw) —wh =4z -7
2t
= ) -t = [ s

+ .
7 g T2V
fz_ Pdz == /\logp++

Since
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oy 2w _ 2w
we conclude that hy(wt) = wh — o) — ot e and —a, ToaaF by as

A — 0 for some bg; therefore, oy ~ BE@%TT ~ = 0

Reducing 0p and 7y if necessary, the map = induces a C-analytic isomor-
phism A — A of S* onto a closed set S, From 7 (A} = £+ O(1), we obtain
that A ~ 7“1 Then A ~ 3\5 and "Df ~ :)%;r— when A tends to 0, or equivalently,
when X = 7(}) tends to oo in 8.

A sequence of Mandelbrot-like families

Let T,(2) = 24w be the complex translation by w € C. We set V) = ¢{(V3)
for A\ € S, and Wy, = {A € §: A+ n e Vi) where A = 771(})). We set
W, =1 1(VV ). Then the sets W, are disjoint. More precisely, W,, is the set
of values of A such that a;(A\) € 0y UQS for 1 <4 < nand ¢,()\) € V5. In
order to see this, note that for A € W,,, )\-I— nev, implies that there is z € V),
such that ¢ (z) = A+ n; since ¢ (2) — ¢y (2) = A, then ¢5(2) = n. By the
normalization of ¢, we conclude that z = an()\)

We choose base points in all these sets: wy for Uy, by for Vi, 0 = ¢} (by)
for Vi, Ap = = —n for Wa, and A, = 774(\,) for W,,, so that IR (wy,) = by,

Figure 4.4: The sequence of domains W,, in S.

When n tends to infinity, the open set T,,(W,,) tends to Vj, with convergence
of the boundaries for the Hausdorff distance. In particular

diam(W,,) = diam(Ty,(W,)) — & = diam(Vj).

It follows that
?TZ 27['260

An ™~ 3 and diam(W,) ~

nd '
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for which n*diam(W,,) = 2r%8, + O(1).

The set W, consists of parameters A € A with disconnected Julia sets for
which the critical point escapes U} exactly after n iterations of f, and escapes
exactly through the corresponding set V). But we can consider parameters
close to W, which still escape in the same time buf not through the set V),
We define the set A, = {A € S fi{w,) € Q+\U’} then W, C A,. We set

—{Aef:l+ne gbA (QH\U})}, where 7~ ()\) = \; since ¢} (f{w,)) —
qu (S (wy)) = A, then ST (fH(wy)) = A+ n, ie. A € A, We conclude that
A, = A,

Now, we have that T,,(A4,) tends to ¢ (5 \Us), with convergence of the
boundaries. In particular

diam(4,) = diam(T,(4,)) - 70 = diam{gF (R\TL)).
By the same estimations as above, we have that diam(A,) ~ 2"—;9,'@, ie.
n®diam(A,) = 2m%y + O(1).

By the choice of the sets V) and the choice for the domains U, we have
Yo = 8o > 0, since Vy ¢ U\,

Even though parameters in W, have disconnected Julia sets, we still can
construct a connected locus inside these sets by changing the map f). For
A € W, we denote by VY the connected component of f,™(V)) which contains
wy, and we set Gy = gao fy : V{ — Uy.

Proposition 4.1.2 ([D2]). Take n big enough. Then for A € W,, the map
Gy Vi — Uy is quadratic-like, and the family G, = (G)\)aew, is Mandelbrot-
like.

We fix & > 1. For each n, we can choose a tubing 8, = (0))yew,, for
Gy, with 9, : ARz r — Us\Vi quasi-conformal. Then the straightening y,, =
Xo, : Wi — Wy is a quasi-conformal map where W, is a neighborhood of
the Mandelbrot set.

Primitive copies

Let cg be the root point of a primitive hyperbolic component of the interior
of the Mandelbrot set M, and denote by Q) the map z — 22 + ¢g + A. Let
A be the the component of the interior of K,, which contains 0, and & be the
period of A, so that QF induces a proper map A — A of degree 2. We suppose
co # é. There is a parabolic point cp € A of period k with (QF) (ag) = 1.

Using the conjugation of the map Q) to 2 — z+1 by the Fatou coordinates,
it is possible to construct a sequence (b, )nez such that
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i) b1 = Qolby) for all n
i) by = 0 for some N

iii) b, ¢ Aforn < N

iv) by — o9 when m — 0.

Lemma 4.1.3 ([D2]). One can find Jordan domains Uy, U}, Vo with C1
boundary such that:

i) A C U, C Uy C Uy

i) QO induces a proper map fo : Ul — Uy of degree 2;

iii) Vo C U\U};

iv) there is | = —mk < N for some m € N such that QY ™" induces an
tsomorphism go : Vo — Up.

In fact one can choose Uy contained in an arbitrary small neighborhood of
A, then we take for instance Uy = U for every A € C. For A close to 0, let
UA (resp. V,\) be the Jordan domain bounded by the component of Q5 (5U 3)
(resp. Q51U close to AU} (resp. 9Vp).

There is a simply connected neighborhood A of 0 such that 0U| and 9V,
undergo a holomorphic motlon when A ranges in A, and that the inclusions
UA c Uy, Vh C U,\\UA hold for A € A. Then Q)\ and @4 induce maps
Ul — Uy and gy : Vi, — Uy and we are in the situation described above,

Finally, we have a map = : A — C given by A — ¢+ A which sends 0 to ¢,
Mp to M and OMp to M. In particular the little copy of the Mandelbrot set
generated in W, is mapped to M, a little copy of the Mandelbrot set. The
center A, of W, satisfies that A, ~ Z—j Therefore, M, approaches the root
point ¢q as nl—z approaches to 0. Similarly we have that diam(M,) ~ #

The size estimations

Consider the lifted phase map 7()), we will calculate the estimations given in
section 4.1.4 for the family of maps in S.
Firszt, from A, = 77(—n) we get —n = ZL + O(1), then & ~ —n and

Lemma 4.1.4, The distance between two consecutive little Mandelbrot fami-
lies, in the collection {Gn}, is of order O(1/(n+ 1)) as n — oc.

Proof. First, since A\, = 771(—n), we have that —n = 7+ O(1), then

—T

T ™~ thus A, ~ :;fz For the derivative, we have that

d\ 272
|)\n “h3
dA n
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Using the estimation of the difference between the diameters of W,, and A4,,,
n3(diam(A,) — diam(W,,)) = 2r2(~v — &) + O(1)

we can conclude that diam(A,,})—diam(W,) ~ %;(’YO,— o) and then

_ 27
dist(Wy, Wata) 2 E (Yo — do)

(n+1

with the corresponding estimate between the little Mandelbrot copies,

dist(My, Mp1) = O(1/(n + 1)%).

4.2 Essentially bounded combinatorics

We will consider a central cascade C = ™V
VMmoo vyl o o YNl N g 10 € YL ymt

The double covering g1 : V™! — V™ can be viewed as a small perturbation
of a quadratic-like map ¢, with a definite modulus and with non-escaping
critical point. THere, we use the Carathéodory topology and the fact that
Q(u) is a compact set. By Theorem II in [L2], all the return maps gpy1
of the principal nest belong to Q(fi). Let Qn (or Qn(p)) denote the space
of quadratic-like maps ¢ : U’ — U from Q (or Q(u)) such that ¢"0 € U,
n=0,1,..,N. Since Ny Qn (1) = Qoo(p), for any neighborhood U D Qu{ps),
there is an NV such that Qn () C . In this sense any double map g € Qn(p) is
close to some quadratic-like map g, with connected Julia set, in particular, the
return map g,,,1 generating a cascade of length N. Moreover, since g1 has
an escaping fixed point, the neighborhood of g, containing g,,41 also contains
a quadratic-like map with hybrid class ¢(g,) € M.

4.2.1 Preliminaries

Let us restrict our discussion to the real line. Let I’ C I be two intervals, a map
f o (I',0I') — (1,0I) is called quasi-quadratic if it is S-unimodal (negative
Schwartzian derivative} and has quadratic-like critical point 0 € intt”.

Let 1° = {o, o] be the interval between the dividing fixed point o and the
symmetric one. Let Y denote the Markov family of pull-backs of the intf°,
Given a critical interval J > 0, we can define a (generalized) renormalization
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Ty f on J as the first return map to J restricted to the component of its domain
meeting the post-critical set w(0). If f admits a unimodal renormalization
Rf =1} f for some J, then there are only finitely many such components.

Let 79 D 11 o ... D I*t! be the real principal nest of intervals until the next
quadratic-like level. Let us look at real cascades of cantral returns. The return
to level n—1 is called high or low if g,I™ D I"™ or g, I"*NI"™ = B correspondingly,
Let us classify a central cascade C = C™tN, [ o [t o | o> ™V g0 €
i1 fmAN gg Ulam-Neumann or saddle-node according as the return to
level m~+ N —1 is high or low, which is equivalent to the condition 0 € g,,,,., ™"
or otherwise. In the former case, the map g1 : 7™ — I™ is combinatorially
close to the Ulam-Neumann map 2z — 22 — 2, while in the latter, it is close to
the saddle node map z — 2% + 1.

Unlike the complex situation, on the real line we observe only two types
of cascades since there are only two boundary points in the “real Mandelbrot
set” [—2, 1]. The next lemma shows that for a long saddle-node cascade, the
map gmay : I — I™ ig a small perturbation of a map with a parabolic fixed
point.

Lemma 4.2.1 ([L2]). Let g, : Uy — Vi be a sequence of real-symmetric
quadratic-like maps with mod(gy) > € > 0 having saddle-node cascade of length
Ik — 00. Then any limit point of this sequence in the Carathéodory topology

f:U =V 1s hybrid equivalent to z v 2%+ 1/4, and thus has o parabolic fized

point.

Proof. Tt takes [}, iterates for the critical point to escape Uy under iterates
of gr. Hence the critical point does not escape U under iterates of f. By the
kneading theory [MT] f has on the real line topological type of 22 + ¢ with
—2 < ¢ £ 1/4. Since small perturbations of f have escaping critical point,
the choice for ¢ is only two boundary parameter values, 1/4 and ~2. Since
cascades of ¢ are of saddle-node type, ¢ = 1/4. O

Let us consider the orbit J, = f*I", k = 0,...s(n), of I"™ until its first
return to "1, i.e. fE0I" C I""L. Let us see how this orbit passes through a
saddle-node cascade. The level m 4+ s of the cascade is “branched” if for some
interval Ji C I™\I"™ we have gpy1Jp C I\ J™Fs,

4.2.2 Essential Period

There is a especial type of combinatorics related to the parabolic bifurcation
which usually requires a special treatment. In this section we will briefly recall
the definition of the essential period of a renormalizable unimodal map, We
will follow the work of Lyubich, Hinkle and Yampolsky.
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Let f be a renormalizable unimodal map. Consider its principal nest of
intervals

[o(f), (A= > I' D> D ..
where a( f) is the dividing fixed point of f, and I > 0 is the central component
of the first return map of ™1, ’

G+ UL — ™1,

[

Set m(0) = 0, and let m(0) < m(l) < ... < m(x) be the sequence of non-
central levels. Then the map gnye)41|me = pRS is a pre-renormalization of

/.

>fh

mEy M +1 Mpt1 — 1 Mgy
el e
= S

Figure 4.5: A saddle-node cascade.

For 0 < k < &, let z € P(f) N (I™EN\I™E+) and set dy{x) =min{j —
m(k), m(k + 1) — j}, where gm@y41 € FP\I#™. This number shows how deep
the image of x lands inside the cascade. Now we define di as the maximum
of di(x) over all points z € P(f) 0 (I™*N\ [™EHL) | For a saddle node-cascade
the levels [ such that m(k) +dx <1 < m(k+1) —dy are neglectable. Define the
essential period as follows. Set J = I™*1 and let p be its period. Consider
the orbit Jy = J, J; = f4(Jo)}, ¢ < p—1. Suppose that Ji lands at a neglectable
level of a central cascade generated by the branch of g,/ ;m = f'™. We will call
the iterates Ji, Jet1, .oy Joti,,—1, Which constitute one iterate by the cascade,
neglectable. The number of non-neglectable intervals in the orbit {J;}77) is
the essential period, p.(f). '

4.2.3 Tripling essentially bounded combinatorics

There is a simple example of an infinitely renormalizable map of unbounded
but essentially bounded combinatorial type. This map is constructed in such a
way that its every renormalization is a small perturbation of a unimodal map
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with period 3 parabolic orbit. Closeness to a parabolic map will give high
renormalization periods, but all the essential periods will be bounded.

First, let us consider the dynamics of the quadratic map fy : z — 22— 1.75.
This polynomial has a parabolic orbit of period 3 on the real line. Let 2y be
the element of this orbit which is closer to 0. Let, J° == [a(f),o/f], and I'
be the central component of the domain of the first return map g : 1° — I,
For this map we have g|p = f3, 2 € I', and f**(0) — 2. The map g has
two non-central components: /] the one whose boundary contains «(f), then
g = f%: I} — I°. For small perturbation of f, f.(2) = 22— 1.75+¢, € > 0, the
orbit of 0 under f. eventually escapes I'. Let us define ¢, as the parameter
value for which f¥(0) € I', i < n—1, f3(0) € I, and f2(0) = 0.
These maps correspond to the centers of a sequence of small copies ,,.5,-3) of
the Mandelbrot set converging to the cusp ¢ = —1.75 of the real period 3 copy
M, The existence of these maps follows from [Hi].

fz
f2 7
2 {

Figure 4.6: The first return map for 22 — 1.75 and 22 -+ ¢,

We will show now that the essential period for all these maps is bounded.
For each n, f., will have only one central cascade, with length 7, therefore we
need to check for neglectable levels only in this cascade. Consider the map
fen» its principal nest is given by '

Pyt ortosmo gt

where all the returns of level n = 1,2,...,n — 1 are central and the level n is
non-central. Moreover, the level n 4 1 is the renormalization level, Then the
sequence of non-central levels is m{0) = 0 < m(1) = n for which I' > I* >
... D I™ is the only central cascade of length m(1) — m{0) = n; it is clear that
the cascade is saddle-node since 0 eventually escapes I,
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Figure'4.7: A blow-up of a Julia set: an airplane inside of an airplane.

Now consider z € P(f.,) N (I°\I")}, then z = f3*(0) and do(z) =min{j —
0,m — j}=0 since = never comes back to the cascade. Thus, all the levels
m(0) = 0 < 1 < m(1) = n are neglectable, i.e. ali of the levels of the central
cascade of f. are neglectable, Denote by J = I™2} the renormalization
interval of f., with period p = p(fe,), which is some la,rge number if €, is
small. To calculate the essential period of the orbit {J; = f2 ( JVP), we have
to ignore all the iterates, but five: Jo, J1, J2 and Jy—g, Jp-1. These correspond
to the first iterate of the orbit of J by the cascade generated by the central
branch of g|pn = f2, and the one iterate by the non-central branch g\ = f2,
which, after the interval has run through the whole cascade, maps it back over
the critical point. Thus, the essential period pe(fe,) = 5, on the other hand
p(fe,) — oo

This is the desired example, we can select ki in the real quadratic family,
by choosing an infinitely renormalizable parameter value ¢ € M such that
x(RF(f)) € Mnh), with ng - oo. Thus, we can blow-up a small copy M, find
its period 3 cusp and the corresponding sequence of small copies converging
to this cusp, then blow-up one of them and find its period 3 cusp; continue
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Figure 4.8: The Julia sets of 22 — 1.75 and 2° + ¢, for some large n.

this procedure to infinity.

Relation between p.(f) = 5 and little copies of M We give now a
relation between the little copies constructed before and bounded essential
period.

Lemma 4.2.2. The family of little Mandelbrot copies { My, C Wy }lnsn coincide
with the family of copies {Mf)}nzN for some big N.

Proof. Given a long saddle-node cascade of length N, the map G obtained
from gms1 @ 1™ — I™ by rescaling I'"™ to the unit size, must be close to
a saddle node quasi-quadratic map. In [L.2], G can be reduced to the form
z > 2+ ¢ + (2), where 9(z) > 0 is uniformly comparable with 22, Then,
the quasi-symmetric class of the cascade is determined by €, which in turn
is related to the length of the cascade by N < 1/+/e. In our case we have

n = 1/ /e
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Figure 4.9: The map z +» 2% — 1.75, and its small perturbation.

By our estimation of the center A, of the set W,, we get that A, ~ 2—2
| Since n* = 1/A, and the parameters in M have cascades of length n, we
| conclude that e, ~ A,. d \
|
|
' !3‘
| "

54




—— e i = — R — — J—

95

Figure 4.10: The sequence { M, }.




Figure 4.11: Blow-up of M, for big n.
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Chapter 5

Smoothness of the holonomy

5.1 The Full Renormalization Horseshoe

Let f be an infinitely renormalizable quadratic-like germ. Its tuning invariant
is defined as 7(f) = { Mg, My, Ma, ...} where M,, is the maximal M-copy con-
taining x(R"f). We say that f has real combinatorics if all M-copies in 7(f)
are real.

Let X be the space of all possible real combinatorial types 7 = {M}52__,
where the My € M are selected arbitrarily from the family of real maximal
Mandelbrot copies. Supply X with the weak topology.

Let us say that an infinitely renormalizable quadratic-like map f is com-
pletely nonescaping under the renormalization if some full renormalization or-
bit {R*f}52_ is well defined, R"f € C, and mod(f,) > p = u(f) > 0,
n ¢ 4.

Let A C Q stand for the set of completely nonescaping maps with real
combinatorics. We call this set the (full) renormalization horseshoe.

5.1.1 The Renormalization Theorem

Remember that, for J € J, 7 is a real renormalization strip, whose union
over all J, forms the domain of definition of the renormalization R in the
space Qp of real quadratic-like maps (7 is the collection of of real maximal
renormalization windows). We now state Lyubich’s Renormalization Theorem.

Theorem 5.1.1 ([L4]). There is a constant p € (0,1) and a neighborhood V
of the origin in C such that:

(i) A is precompact in Qp, R-invariant, and R|A is topologically conjugate
to the two-sided shift w : X — ¥ in countably many symbols.
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(ii) The topological classes Hr(f), f € A are codimension-one real analytic
submanifolds in Qg (stable leaves) which form an R-invarient lamination
in Qr. Moreover, if g € Hr(f) and mod(g) > v, then R"g € By and :
i — Rrglly < Cpt forn > N(w). i

(i1i) There exists an R™'-invariant fomily of real an’aiy-tic curves WE(f), o
f € A (unstable leaves) which transversally pass through all real hybrid
classes ¢ € [—2,1/4 — €] and such that

|[R™f - B™glly <Cp", n = 0, L]
provided g € WE(f). i

(iv) The renormalization operator has uniformly bounded distortion with res-
pect to the Montel metric on the unstables leaves. 'y

(v) The stable lamination is transversally quasi-symmetric. 3

In the proof of the Renormalization Theorem there are finer properties
;which will be used in our result.

5.1.2 Absolute a priori bounds

Let Cp C € be the union of complex quadratic-like germs f with real straigh- IR
tening, x(f) € [—2,1/4]. Let Cr{ps) = Cr NC(p) and let Cr(y,n) be the set of g
n times renormalizable germs of Cg(p). Then, the following lemma gives an i l ;
absolute a priori bounds in Cg: I

Lemma 5.1.2 ({L4}]). There is an absolute u > 0 such that if the germ of f :
V — V' belongs to Cr(p,n + 1), then mod(R™(fy)) > u form = N(v),...,n,
where R™( fy) is the subordinate renormalization.

Using the above result, it is possible to select a family of Banach slices
invariant with respect to some iterate of the renormalization:

Lemma 5.1.3 ([L4]). Let p be an absolute bound from Lemma 5.1.2, and
0 < v < u. There exist N = N(v), § > 0, and a family of quadratic-like
representatives f @ V(f) — V'(f) of germs f € C(v), with the following
properties:

e mod(V{f\V(f)) > +(v) > 0;

o If f €Cr(v,n+1) and g € By(3) N'H([), then RNg € By (p), where
p=pd) — 0asd — 0 (v being fired), By = By ond Bs(§) =
Bys)(f,6).
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In particular the set A belongs to C(u) and R : A — A is a homeomorphism.

Let O° = {E} C By} stand for the field of tangent subspaces to F over A
(“ the horizontal field”), and let O = {E% C B;}, f € A be the continuous
invariant tangent line field transverse to F. Then, the renormalization opera-
tor B: A — A is uniformly hyperbolic with ©* and*®* serving as the stable
and unstable fields. Consider a number N = N(v), a bound + = v(z) and the
family of Banach slices By, f € C(v) from Lemma 5.1.3; by [L4, §3.7.2], there
exists a family of special bidisks Qy C By(68) centered at f for some small §
and f € A such that RNQ; C Bgwny (the family is invariant), and RY has
uniform horizontal contraction and uniform vertical expansion.

Finally, let us denote by E‘;f “(6) = E;/ “(f,8) the 6-balls in the spaces E;/ Y
centered at f. In fact Qy is generated by a small topological disk S r C LY
containing f, and a holomorphic motion of some local holonomy F ¢ over a set
homeomorphic to £3(4).

5.1.3 Transverse control of the renormalization

The following statement shows that the renormalization has transversally
bounded distortion with respect to the Montel metric in quadratic-like families.

Lemma 5.1.4 ([L4]). Consider o quadratic-like family £ of class Gop Toke
a little Mandelbrot set M € M and let My be the corresponding set in the
Jamily £. If p(M) > 2, then there is A = A(C, 1) > 0 and a domain Qp C £ of
the renormalization Ry with mod(Qe\ M) > X such that the curve Ry () is
uniformly transverse to the foliation F, and Ry on Q¢ has K (C, w)-bounded
distortion (independent of M ) with respect to the Montel metric.

It follows from the fact that the Montel metric has bounded distortion with
respect the hyperbolic metric and from the Koebe Distortion Theorem.

5.2 Holonomy for tripling essentially bounded
combinatorics

Let {My}32, be the sequence of little copies of the Mandelbrot set of periods
ng = 3k -+ 2 constructed above, with essentially bounded combinatorics. Let
consider the sequence of corresponding real slices Sy = {J, = M, NR}E,. Let
[« be a real infinitely renormalizable quadratic-like germ with tuning invariant
T(f) = {My,}320 and let S = {J,, = M, N R}, be the corresponding
sequence of real slices, where this sequence is given by an arbitrary choice of
elements of Sy. Let ¢, stand for the center of the corresponding copy M, .
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First, let us mention here that when the combinatorics of f, is given by S
with &, — oo, we have the following result by Hinkle.

Theorem 5.2.1 ([Hi]). There is a unique quadratic-like germ F such that
R'f — F for any f € Hg(f.). Any quadratic-like representative of F' is
hybrid equivalent to 2% — 1.75 and hence has a period three parabolic orbit.

- Let us look closer at these real slices and the combinatorics of the map fi.
In Jy, there is a sequence of real slices of little copies of the Mandelbrot set

which correspond to {J;}¢2, under tuning: if {Jéo)}z‘;l are these slices, which
we call of level 0, then ¢y * Jj, = J,go) for all k, where dy = ¢q is the center of
My,. Between those real slices, there is one J,g?) , such that cox Jy, = Jlg?) with
center d;.

Similarly, in J;E?) there is a sequence of real slices {J,il)}f;‘;l, of level 1, which
under tuning correspond to {J,}$2,: di x Jp = J,gl); between the real slices of
level 1, there is one, J,g) . such that d; x J;, = J,g) with center dp; in the same
way we can define the corresponding slices of level n inside J,E:"U. Thus, we
have a sequence of real slices of little Mandelbrot copies

T DI I 5

such that x(f.) € Moz, J,g:_l) and X(R“(J,g:"—l))) =Jy, forn > 1.

5.3 Smoothness Condition

Definition 5.3.1. A map h : (M1,0) — (M3,0) between two subsets in C is
called C*-conformal (or smooth) at the origin if there ezists T # 0 such that
h(u) = tu(l -+ o(1)) for u € My near 0.

Recall that Cr C C stand for the union of (complex) quadratic-like germs f
with connected Julia set and real straightening, i.e., such that x(f) € [(—2,1/4].

Definition 5.3.2. The foliation F is transversally C*-conformal ( smooth) at
a point ¢ € M (or along a leaf H.) if for any two transversals S and T to
the leaf He, the holonomy b + Mg — My is C'-conformal at the points of
intersection with H,, where Mg = SNCp and My =T N Cx.

By Lemma 5.3, there exist a sequence of quadratic-like representatives
R"f, : Vi(n) — V/(n) and a natural number N = N(v) such that the family
of Banach slices (By,(n), R™f.) is invariant under 7 = RY and the orbit of
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f € H(f.) under T" is uniformly exponentially asymptotic to the orbit of f, in
these Banach slices.

By the Renormalization Theorem, there exists an R '-invariant family of
real analytic curves Wi (f), f € A (“local unstable leaves”) with Wi, (f) C
By. Tn particular for f, € A, let us define W (f,) E W* and W (R"f.) =
W (n) for n > 1.

Also, there exists a sequence of bidisks Q(n) C By, centered at R"f,,
where the iterate 1" acts hyperbolically on this family (uniformly contracting
in the horizontal direction and uniformly expanding in the vertical direction).

Let S be a transversal to the leaf Hg(f,) through f € Hg(f.). In order to
check C'-conformality of the holonomy, it is enough to check this property for
the holonomy from & to the unstable manifold W* = W} _(f,). Let us take
a Banach slice By 5 f locally containing the transversal S. Then, there is a
neighborhood U C By of f which is mapped by R™ into some Banach slice
By, (my as above. Thus, the curve ™ = R™(S) locally sits in By, ().

It is sufficient to study the holonomy A, from 8™ to W*(m): if h denotes
the holonomy from & to W* then by the R-invariance of the foliation,

h=R"™0hy,oR™ (5.1)

where R™ : (S, ) — (8™, B™f) is a local conformal diffeomorphism [L3, §5.4].

Then the situation reduces to the Banach set up, and without loss of gene-
rality we can assume that S itself belongs to the Banach neighborhood (bidisk)
Q1) C By, of fi.

Let 8™ denote the connected component of @Q(n) N T"S containing f, =
T"f.. By the hyperbolicity of T, the transversals S can be eventually re-
presented as graphs of analytic functions ¢, : E¥(v) — E5(v) with bounded
vertical slope, where E5/*()} is the 4-ball in the tangent space E2/* at f,.
Moreover, these graphs are exponentially close to the corresponding unstable
manifolds W*(n). The local unstable manifolds W*(n) N Q(n) can be also
parametrized in the same way by some functions .

By the hyperbolicity of T' on the family of bidisks Q@(n), the manifolds 8
approach, exponentially fast, to the unstable manifolds W*(n):

||¢7n = "pn”Cl < &p" (5.2)

where p € (0,1) is an upper bound of the contraction factor in the stable
leaves, Moreover, s > 0 can be a priori selected arbitrary small (replace S by
some S™ with m = m(k)).

Let us use the projections p : 8™ — EY as analytic charts on 8", By the
Koebe Theorem, they have distortion O(e) in scale ¢ with a uniform cons-
tant (independent of n). We will use the following notation: for u,v € 8",
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w — v means the difference between the local coordinates: p(u) — p(v). Let
B,(g) stand for the neighborhood of radius r around ¢ in Mg. Note that
we can assume also T = R since the combinatorics of 1" are included in the
combinatorics of R. .

Lemma 5.3.3. Let Mg = SNCr and MT = S™NCy be the truncated iterates
of M, such that S™ is at a distance O(p"™) from WH(m). Then the holonomy
from 8™ to W(m) has an ezponentially small ratio distortion on points with
comparable distance to R™(f) = g.

Proof. Let 21, 23 be two points in M such that R™(z) = G, R™(%) =
are defined and have comparable distances to R™(f) = g. We can extend the
foliation Fy to a neighborhood of B™f, in By,(my by Theorem 3.1.8. If v is
sufficiently small then the bi-disk E3(27) x E}#(27) is contained in the domain
of the extended foliation. Consider the holonomy A, : 8™ — W*(m) along
the extended foliation. By the A-lemma, Ay, is Kp-qc with Ky, =1+ O(p™).
Then by the distortion estimates for qc maps in [LV] and the fact that the

_holonomy preserves the angles at R™f up to order O(pT), with any p1 > p,
“we obtain

() — hnlg) _ G =0
hm(CZ) - hm(g) G2—9g

(14 O(p1")) (5.3)
for any p1 > p.
0J

There is an alternative way to compute the distortion in the last Lemma.
Consider the cross-ratio of four points in C,

Uy — Uz Ug — U4

[u11u21u37u4] = :

U1 — Ug Uz — U4

Taking uy = g, Uy = (1, ug = {2 and uy = oo we obtain (g, ug, Uz, wa] =
ﬁ. Consider the K- qc map A, and let u be the its Beltrami differential,
lizil]oe < 1. Let S, = B/t (0) be the open ball of radius 1/||l|s in C. For
X € Bijjju..(0) we have that Ay is a Beltrami differential with liAzt||oo < 1.
By Theorem 2.4, there is a quasi-conformal map hy with Beltrami differential
Ap. Moreover, hy(z) is holomorphic for each z € C.

We consider the map T': S, — C\{0,1} = 5" given by

A [h)\(g)1 hh(@): h)\(CQ)a 00]:

which is a holomorphic map between two hyperbolic Riemann surfaces. If
dg, and dg are the hyperbolic metrics in S, and S' respectively, for a com-
pact set K C Bi/|ju.(0) containing 0,1 we have that de(T'( A1), T{X2)) <
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cxedg, (M, Az). In particular,

G —9g bml)) — hwlg)
G — g hmlG) ~ hmlg)

where dg, (0, 1) is independent of g, (; and (3. Since dg, (0,1) is of order O(p™),
we obtain the estimation.

Irom formula (2), we need to control the distortion of the renormalization
operator R™. The following lemma gives the first partial estimation of the
distortion. It follows directly from the Koebe Distortion Theorem.

s (210, 70) = d ) < s, (0,1

Lemma 5.3.4. Let € > (1. Let 21,20 € Mg be two points in the domain of
R™, such that they go to points of relative distances of order O(€) from R™f.
Then the ratio distortion of R™f is given by
I T
Ba) BN 2= 4 o). (5.4)
R(z) —R™(f) z—f
‘That is, the Koebe Theorem gives distortion of order € for any two points

whose images under R™ have relative distances of order ¢ from R™f. But
in order to apply Lemma 5.3.3, we also need to have comparable distances
between the images to R™f. The next lemma gives an estimation for the
distortion of the holonomy for two arbitrary points: these two points may
not have comparable distances to f, so we need to define a string of points
between them in such a way that every two consecutive points in this string
have comparable distances to f; a natural way to do it, is by going half the
distance to f at each step.

Lemma 5.3.5. Lete > 0 and m € N as in Lemma 5.3.8. Let § > 0 such that
if u € Mg N Bs(f), its image under R™ has relative distance of order ¢ from
R™f. Then for any two points u,v € MgN Bs(f), with [v— f| < |u— f] <4,
the ratio distortion of the holonomy is given by

hu) — fi _ hlv) ~ fi

=y (L Ok 0)(e + 57))), (5.5)

where k(u,v) = log Jﬁ—:—ﬂ

Proof. Let ug = u, 4y, ...,ux = v be a string of points in Mg N Bs(f) such
that |u; — f| = |wi—y — f|/2 for i < k and |ug.1 — F|/2 < Jug — f| < Juk—1 — f).
Such & string exists since the Mandelbrot set M is connected and the holonomy
from M to Mg is continuous. Hence the set Mg intersects every circle around
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[ with sufficiently small radius. The number of points in this sequence satisfy

k= log ‘” i / log 2. We would like to estimate the following quotients

h{ui) — fu : h(tig1) — fu

Ui, Uigr1) =
Q( iy H—) 'Un,,—f ui—{—l_f

for 0 < ¢ < k, where h is the holonomy between the two transversals. For
all 4, we have that the ratio Q(u;, u;11) is the product of the following three

quotients
Rm(?ﬁ«;) _ Rm(

) :

R™(t;q) — R™ (f) Uiy — f (5:6)

R0 (0) = o (1) )= R -
(B (i41)) — hea(B()) R (t01) — R (F) |

( ) f* . h (Rm(uz)) _hm(Rmf) (58)

Muip) = fi * B (B™(uig1)) — B (R f)

By Lemma 5.3.4 the first quotient is equal to 1 + O(e). Moreover, R™(u;)
and R™(u;41) have comparable distances to R™ f by the Koebe Theorem, since
we start with points of comparable distances |u; — f| = |u;—1 — f1/2. Then by
Lemma 5.3.3, the second quotient is equal to 1 + O(p™).

To estimate the last one, we need to apply the inverse map R™™ : W¥(m) —
W to the points b (R™(w;)), hm{R™(%ir1)) and Ay (R™ f). Since the foliation
Fv is R-invariant, we obtain the points A(u;}, A{uir1) and f.. By the Koebe
Theorem, the ratio distortion of this transition is O(¢") with any €' = /¢ > ¢
(the renormalization operator has uniformly bounded distortion on the unsta-
ble leaves). Combining all this we obtain that

Qus, uirn) = h(qzi)__ff* : h(iz:)—_f :

=14 Oe+ p™).
Finally, since
k-1
=[] @ui, uss1)
i=0

we obtain that the ratio distortion estimate for the holonomy h : Mg — W*
is given by

h(:j)—_ff* = h(v)_ P (14 O(k(u, v)(e + ™) (5.9)
when u,v € Bs(f). O
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Remark 5.3.6. Note that we can improve the factor in the ratio distortion es-
timate of h by computing the distortion of the holonomy map h,, in the image,
under the renormalizalion operator R™, of the string of points ug, v, ..., Ug,
then adding the distortion factor of R™ only at the pomngs u and v; in such a
way, we get distortion of order O(e + p™k{u, v)).

Figure 5.1: The factorization of the holonomy map.

Now, we state the main theorem, which gives a condition on the combi-
natorics of a quadratic-like germ of essentially bounded combinatorics that
implies smoothness of the holonomy.

Theorem 5.3.7. Let {M;}2, be the sequence of copies with tripling essen-
tially bounded period, with corresponding periods ny, = 3k - 2. Consider a real
quadratic-like germ f, € A with tuning invariant 7(f,) = { My, }2°,, where this
sequence is given by an arbitrary choice of elements in {M}2,. Let p € (0,1)
be an upper bound of the contraction factor in the stable leaves. Suppose that

Zpﬂ log k,, < oo.

n=1

Then the foliation F is transversally C*-conformal (smooth) at the point X(fe).
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Proof. As we mention before, it is enough to check C*-conformality of
the holonomy from a transversal S via f € Hg(f.) to the unstable manifold

W = W;"O'C(f*). Since f S HR(f*); X(f) € ﬂ:osl J!E:_l)'

Our assumption of the convergence of the series Enzl plog k,, implies that

lim sup(p" log ko)™ < 1,

Nn—00

then if » = limsup(log k,)'/?, it follows that pr < 1lorr < 1/p; then the

nN—0oQ
. . '4
maximum growth of k,, is of order €.

Choose € > 0, then for any N big enough (for instance in order to have that
S¥ is at a distance O(p") from W*(N)), there exist é = d(¢, N) > 0 so that if
we take two points u,v € Mg N B;(f) on distances of the same order from f,
after N iterations of R, they go to points R¥(u), RN (v), fv = RY(f) € M¥
with relative distances of order e. By lemma 5.3.4 we have that

R¥(u) — fw _u—
RN(v) — fn v

}0(1 1 0(e)), (5.10)

in fact N is at least log({e/d)/log A where A > 1 is an upper bound for the
unstable eigenvalue A,. Later we will choose N in a particular way.
Let us define L, = Jé:_l) for all n. Note that L, belongs to the sequence

(JS “DYyee  of real slices of little copies of the Mandelbrot set of level n—1, that
correspond to the original sequence {Ji }32; under tuning, with all the elements
of the sequence inside J,E:__f‘) In particular, we have that R"(L,} = Jj, for all
n.

For a point u &€ Mg N Bs(f) we have the following:

i} there is n € N such that x{w) € Ly\Lpt1, with Ley1 C x(Bs(f)) C Ly,

i) if § small enough, we have n > N

iii) R™y is defined for all 1 < m < n+ 1 with x(R™u) € Jg, for all
m e {1,.,n}

iV) X(Rn+1u) g Jkn+1
Thus, v is at least n 4 1 times renormalizable and its tuning invariant up to
level n + 1 coincides with the first n 4+ 1 terms of the tuning invariant of f.

Now take two points u,v € Mg with [v — f] < |[u— f|] < 6, with §
sufficiently small that satisfy the conditions i)-iv) above. Then w € L,\Lpy1
for some n > N and v € L,y with ¢ maximum. Let vy = u,vq,...,0p = v
be a string of points in Mg such that |v; — f| = |v;i_1 — f|/2 for ¢ < k and
|vk—1 — f1/2 < jvg — f| < |vk—1 — f|- The number of points in this sequence
satisfy k£ = log llﬁ%j:} From this string of points, we will get a substring
Ug, U1, .-, % Dy an inductive construction, to which we will apply Lemma 35.3.5.
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First, we want to have distortion of order O{e/m™), m > 2, for R*. We
need to estimate how many points v; between u; and u;; belong to each level
Liforn <i<mn+t Let S, = {v;: v € Ly\Lpt1} and let |S,| = s(n).

For all v;,vi41 € Ly\ L1 we have that

h{vi) — [ Y /
i) — fo Vi — f
since |v; — f| and |v;4q — f| are comparable (Hﬂ:—f}l = 2).

We start with vy = ug. Eventually, our string of points reaches the level
Lyt Since we want to have distortion of order O(e/m™) for the map R", we
need to go deeper in L, applying RBY to our string of points until we reach
a point v; = wy € Lyq, so that its image under B™**! goes to R*"(u;} with

¥

(1+O(e+p"))

relative distance of order ¢/m™*! from RB"1f. At this point of the string we

start applying R™! instead of R, so we need log (m™*!/e} further steps inside
L1y to reach those points. Suppose we have constructed wu; inside L, to
construct w1, we apply R™ to the string of points vy inside Ly j\Lpyir,
which are at most s(n + j), then we continue inside Lyy;41 until we reach a
point v; = w4, for which its image under R*"1 goes to R™1(u;y,) with
relative distance of order ¢/m™"+! from R*™!f Before this change on the
iterate of R, we have applied B™ to at most s(n+ 7) + log (m™++1/¢) points
that will give distortion of order Oe/m™*¥). We continue with this procedure
until we reach the last level n-¢. By Lemma 5.3.5, we conclude that the ratio
distortion of A is

hu — 1, u— 4t c n+it N mj'l-l '
hgv;—}i:v—;(HO(;ﬁJ’;(SU)HOg - )pf))

Note that s{(m) ~ log dmuf log 2 and
ldmt1—F

Rm+1(dm) _ Rm—l~1(f) _ dm _ f
Rt (dpgs) — ROV(f)  dogr — f

(1+0O(x))

by the Koebe Theorem, here we take x € (0,1/8) and restricted R™! to

A = (RO (=175 — k,&))), then x(B™t(A)) = (~1.75 — K, k) for
all m € N, that is, we have a definite Koebe space in the image of ™11,
then we conclude that logﬁéﬂ?ﬂ— ~ 31og kmy1, since x(R™(dy)) = 0,

mo+1—f]
X(Rm+1(dm+1)) = Cm+1 € Mkm+1 and diam(Mka) ~ Egif—l
We get the following series, which we need to show that is convergent,
it
> (log kjy1 + log —)p’. (5.11)
§=20
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The first part of (5.11) is the series Z ¢’ log k; 1, which is convergent since

j=20
; 1 .
> o ploghin == P loghi 2
720 P >0
and the last series is convergent. .
. I+
The second series in (5.11} is Z ¢ log o , which is convergent since
€
j=0
" i+ og It - (5 +2)logm — loge
un sup-—---————mg5— = 5 .
j—n:x;p pi log 2 jﬂoop p(J + 1) logm — loge
logm
= limsu , +1
j_mop’o((3+1)logm—loge )
= p<l1

Finally, we can choose N sufficiently big such that the two partial sums

ntt

o Y plogksy,

i=n

n--t ijrl

. j;pjlog -

are sufficiently small since n > N. Thus,

h(u) — fi u— f
= 14 O(sl(e
o =214 0(s(9)
with s(¢) — 0 as ¢ — 0. Hence, we have that the limit for M:)u—_ffi asv — f

cannot be 0 or co. Fix § and u € Mg N Bs(f), let v, be a sequence of points
in Mg N Bs(f) satisfying:

i) v, — f as n — oo,

i} for all n € N, vy, — f| < |u -~ f]

. Un) — Jx

i) lim ———— =1

00 'Un —_—
Then passing to the limit as n — oo, we conclude that
%)_—ff* — (1 +O(s(e))

Therefore h(u) — fi = 7(u — f)} + o(1). O
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Corollary 5.3.8 (Self-similarity for essentially bounded combinatorics). it
Let ¢ be a real infinitely renormalizable real parameter value with essentially
bounded combinatorics satisfying the hypothesis in the theorem, and let M, €
M be the Mandelbrot copy containing c. Then the homeomprphism o : My — il
M 4s C*-conformal at c.

Proof. The holonomy A : M; — W* locally conjugates ¢ to the renormaliza- y
tion: At o Roh = o, Since this holonomy is C'-conformal, o is C''-conformal K
at c. O %
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Chapter 6

A p-conformal conjugation

6.1 Preliminaries

Let Z C C be an open set. We denote by C(U) the vector space of continuous
functions from U to C. Let C,(U) be the functions on I/ with compact support.
The space L*(U) is defined as the completion of C,(U) with the norm 2

defined by
171 = / / (o) Pdody
zell

where z = z + 4y. Finally, let L2 (U} be the space of functions on U that
locally belong to LA(U). We will write L? = L?(C).

We need to introduce the class of G. David’s u-conformal maps. Let
WAP(C) be the space of maps ¢ : C ~— C such that @ € L, and Dy € 12

in the sense of distributions. We note that a W, (C) map is ACL (absolutely

continuous on lines) ([A], p.28). For these maps, the dilatation ratio is defined
as K, = 99;!+|‘P2|.
acy

Definition 6.1.1. A p-conformal map ¢ : C — C is an orientation preser-
ving homeomorphism such that:

(i) ¢ € WP for all p < 2, and

(ii) there exist C, a > 0 and Ky > 1 such that, for all K > K,

Area{z € C : Ky, > K} < Cexp(—aK),

(Remark: Inverse map of a y-conformal map need not be p-conformal)
We have the following counterpart for the Measurable Riemann Mapping
Theorem in the case of y-conformal maps.

Theorem 6.1.2 (G. David). Let u be a Beltrami coefficient on C. If there
exist constants C, a > 0 and Ky > 1 such thaet, for K > Ky,

Area{z € C : K, (2) > K} < Cexp(—aK).
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then there exists an ACL homeomorphism ¢ : C — C, unique up to compo-
sition by a conformal map, such that, for allp <2, p € WLP(C) and p, =
a.e.

6.2 Maps between germs

We are interested in defining local homeomorphism of the origin that are ex-
tensions of partial conjugacies between two maps on invariant sectors. These
maps will be defined in neighborhoods of repelling and parabolic points.

6.2.1 Repelling point and invariant sectors

Let f be a holomorphic function defined on a neighborhood D of zero, such that
f(0) = 0 and f7(0) = A with |A| > 1. In a simply connected neighborhood of 0
, there exists a linearizing coordinate, i.e. an isomorphism i : D — h(D) C C
such that h(f(2)) = A(z), for z € f(D)ND. Let Ty = (D\{0})/(f) be the
quotient torus which is isomorphic to the torus C/(Zlog A @ 2énZ). Denote
by n: D\{0} — T} the canonical projection. Any annulus A C Ty such that
S =171 (A) is connected, defines an f-invariant sector. Its edges will be the
lift of the boundary of A.

Two repelling germs are always quasiconformally conjugate: take a quasi-
conformal map between one quotient torus onto the other and then lift the
map to a neighborhood of the fixed points.

6.2.2 Parabolic point and invariant sectors

Let g.(2) = z + 2**1 + O(2**%), v > 1, be a holomorphic germ defined in a
neighborhood of the origin. There exist the Fatou coordinates which conjugate
the germ on 2v overlapping sectors of the origin to the translation z — 2 + 1
in a half plane. Consider a repelling sector, the quotient space is a cylinder
(isomorphic to €/Z) in which one can consider subannuli for which their lifts
are connected. These lifts define invariant sectors.

Now, we are going to define local homeomorphisms of the origin that are
extensions of partial conjugacies between f and g, on invariant sectors: the
conjugacy being defined on sectors, the extension will map circle arcs centered
at the origin to circle arcs centered at the origin. The extension is always
piecewise C,

Let us consider an open sector § = {# € C : |argz| < @ and 0 < |2| < 1},
where 0 < 8 < wand f : z = Az, A > 1 (repelling model). The map
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$(z) = log A/ log z conjugates f to ¢g(z) = %; (parabolic model) defined on
the cusp C' = w(S) with vertex at the origin.

Let Q¢ be the quadrilateral bounded by the segments in the unit disk
[(1/ A 0)e* ¥ (1/A)et ) and the circle arcs of radii 1/A™! and 1/A" con-
tained in D\S, then Qf = f(Q}).

In the case of a parabolic germ g,,, we define )¢ as the quadrilaterals outside

a repelling cusp bounded by circle arcs of radii of order 1/n'* and 1/(n-+ 1)1/,

Between two parabolic germs, one can define holomorphic conjugacies between
two repelling petals and we want to understand the regularity of one of its
extensions.

Lemma 6.2.1 ([H1]). There exists a piccewise C* homeomorphism ¥, an
extension of 1 in a neighborhood of the origin, such that K¢ =< n on QL. In
particular, ¥ is p-conformal and ¥ € W2,

Proof. Define ¥ : D\S — D\C by

£

it, log A

_— (T
T Dt

pe
where a,(t) is an afline map in ¢, for fixed p.

This map ¥ is a homeomorphism from D\S onto ID\C, which maps circles
centered at the origin to circles centered at the origin. Let Q¢ = ¥(Q1).
The dilatation ratio of ¥ can be calculated by estimating ratios of moduli of
quadrilaterals as follows: mod Q¥ = 1 and mod Q4 =< log(1 + 1/n) =< 1/n; on

7 .
QI we have Ky =< %;} = K, = n. Hence for ny big enough,

Area{z € D : Kyg(z) > ng} < ArealU,>,, @7 < ¢/,

where ¢ > 0 is independent of ng.
Note that the Area Qf =< 2rl(l - 1)y =21(l.1ly <

nti/ T w \nutl

|~

. Moreover, since

)

T

¥ is orientation preserving, it suffices to show that |8,¥|? =< K¢ Jac ¥ belong
to Ll
/|8z\11|2xAreaC’+Z Ky - JacV
n>1 Qh

and since

Z » Ky - Jac¥ = Zn-AreaQﬁ = 21/7@2 < 00,

nzl N nx1 n>1
we obtain the result. O
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We observe that between two parabolic germs, we can always define holo-
morphic conjugacies ¥ between two repeling petals. In this case we have the
following.

Lemma 6.2.2. For ¢ a holomorphic map belween two repéiiz’ng petals of two
parabolic germs, g1 and g,, the extension ¥ is quasiconformal.

Proof. In the case of a parabolic germ g, let Q. be the quadrilaterals
outside a repelling cusp bounded by circle arcs of radii of order 1/n and 1/(n--
1). For the parabolic germ g,, let % be the quadrilaterals outside a repelling
cusp bounded by circle ares of radii of order 1/n'/¥ and 1/(n + 1)/,

The dilatation ratio of ¥ can be calculated by estimating ratios of moduli
of quadrilaterals as follows: mod @} = log(1 + 1/n) =< 1/n and mod Q% =
Llog(1l +1/n) = +L on @ we have Ky = %& = 1. Therefore U is a
quasiconformal map. U

6.2.3 Coverings of the unit circle

Let us consider a holomorphic map (h, X) defined in a neighborhood of St
such that A(S') = S! and where X C §! is an invariant set. Let us assume
that X contains, at least, all the critical orbits of k and all the parabolic points
on §*. Also, we will assume that:

i) h is topological expanding, i.e. for every subinterval I C S!, there exists
n > 1 such that A*(1) D SY

ii) A is combinatorially finite, i.e. X}, is finite.

Thus, h has a finite number of parabolic points and of strictly preperiodic
critical orbits.

Dynamical Partition Given a topologically expanding real analytic map
(h,X) of S!, we define a partition of a neighborhood of S$' which isolates
the non expanding dynamics of its extension H : W/ — W, which is a
holomorphic map, where the domains are annuli and symmetric with respect
the unit circle. Assume that H is an extension on an annulus (1/R < |2| < R),
R>1.

We first define sectors with vertices coming from X. Then we will fill up
the partition with quadrilaterals. Let z1,...,2z; be a periodic orbit on X.

1) If the orbit is repelling, then looking in the quotient torus, we can define
two symmetric annuli which separate both components of the projection of §'.
If their lifts are S; (sectors with vertex ;) then they are H*-invariant.

2) If the orbit is parabolic, S! belongs to two repelling petals (topological
expanding property). Define two symmetric sectors with respect to 8! and
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disjoint from it such that their edges are invariant curves living in the repelling
petals which contain S'. These sectors are also H*-invariant.

Then one can pull back the sectors already defined. We need to be careful
here if a point is critical, but in our case there won’t be critical points in S*.
If W is small enough, then all sectors and their backward orbits along 8 are
pairwise digjoint. In particular, it follows that the map I is expansive [DH1].

Let (S;) denote the sectors just defined with vertex in X. Write V =
WA(US;) and V' = W'\(US;). Since I is expansive, we get V' C V and the
common boundary comes from the invariant edges. Let v = 8W. Define
v = H Y y) NV. The curves 7 and 7, together with the edges of the
sectors bound in V' a finite union of quadrilaterals ¢Jg. By induction define
Qn = H(Qr_1). Then V\(UQ,) = UH(S;) are the backward orbits of S;.

Let f(z) = P.aj(z) = 2> — 2. 'We have that the connected components
of the interior of K(f) are quasidisks ([CJY]). Let U be the component of

K{f) containing the critial value ¢; = —%, then U is invariant under f°2. Tet
R : U ~— D be the Riemann map from U to D such that R(¢;) = 0 and
- 2.1
R(—é) = 1 This map conjugates f°? to the Blaschke product B{z) = 1%_—}:3,
3

where B (1) = 1 is a parabolic fixed point of multiplicity 3 with two attracting
petals. In fact, B is conjugate to the map h(z) = ;%5 with a parabolic fixed
point at 0 and A(z) =z — 2% + 25 — .o = 2(1 — 22 + O(21)).

Since U is a quasidisk we can extend R to a K-quasiconformal map of
C, such that R|U conjugates conformally f°2 to B. In particular R = 0
on U. Let g = B|S?, then g is an expanding covering of degree 2 with only
one parabolic fixed point. We want to isolate the non-expanding dynamics
of its extension G : W' — W. In particular, (B, X) with X = {1} is an
expanding holomorphic map on S!. Consider the corresponding partition of a.
neighborhood of §' = J(B), starting with only one invariant sector (the one
with vertex at 1), Let us consider the map P(z) = Pis(2) = 2* + 1.

Theorem 6.2.3. There is a neighborhood U of K(P) and a continuos function
Y U — C such that for all z € K(P), o P = f*2o4). Moreover, ¢ € Wéf,
forallp <2 and 0¢ =0 a.c. on K(P).

Proof. We want to construct a partition of a neighborhood of the Julia set
of P, “the cauliflower”. Let us take U’ and U, two domains bounded by two
equipotentials such that P~Y(U} = U’. Let C, be an invariant sector with
vertex at 1/2 in the exterior of K{P) that can be decomposed in fundamental
domains Dy,. Let T = U\Cy, T = U'\Cy, I'g = U and ['; = P~HTo) N T.

The curves I'y and I'y, together with the edges of the sector Cy, bound in
T a quadrilateral @. By induction define @}, = P=Y(Q!,_,), then T\(UQ,) =
UP~™(CYy) are the backward orbits of Cy, and let C, stand for the inverse
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image of Cy with vertex at P~"(1/2). We obtain a partition of quadrilaterals
Q. and preimages of C which is combinatorially equivalent to the partition
for (B, X).

Define two diffeomorphisms g : 9 — ' and 4, : 11 /— ['y, such that
Yo B = Pos. Extend both maps quasiconformally to ¢y and denote it by .
Using inverse branches of B and P and the combinatorics, oxtend this map to
be quasiconformal homeomorphism % : V\(B™"(Sp)) — T\(P(Cp)) which
conjugate B to P.

On the sector Sy, extend % using Lemma 6.2.2 in the following way. For
the parabolic germ defined on the sector Sy, one can find a germ g, and a
conformal map which maps Sy outside a “repelling cusp” C. Since the sector
C) is also parabolic, we have a u-conformal extension between the two sectors.

Then, one can define 1 on their preimages by a pull back argument. This
extension is a priori not quasiconformal nor compatible with the dynamics.
But we end up with a homeomorphism from V to " which conjugates 5 to P.

By the construction of 1/ we need to compute the norm L? of d,¢ in the
exterior of the cauliflower where ¢ = 7»~!. Note that the restriction of ¢ to
thé domain D, has dilatation Ky =< 1.

0.6l = [ (o dacp =Y [ (#5300, 40
T Cﬂ

and

[ (s ducap = [ (1P Jaog(y i (P Y

Ch 0
which is equal to

/c (K, Tace)? (B (DPI(PY [P

since Jacy(P~™)|(P~™)|* = Jacy |(B™™)'|.
Let o € (1,2) be the Hausdorfl dimension of J(P), and let ¢ € (1
By the Koebe theorem

1041 < C [ (Kydnog 2 ST IBY (O - (P /2,
and by the Hoélder inequality the sum is bounded by

Z| BT (1)[P9) 1/q Z| )(1/2) |1 1/q)1 /g

2
1/q

/ (Ky Jacg)P? < C’an/z(AreaDn)l‘P/Q(/ Jac ¢/,
Co -

Dy,

=),

By [McM3], since pg > 1 and 5 > a, the sums are finite. Moreover,
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We conclude that

/ (Ko Jacg)?’? < 03 (1/n)*= 0/ < oo
Co n

Hence ¢ € WhP. Note that 0,1 ¢ W' since |[8,9](7. = 3on [yp,, Jacd ' =<

S 1/nd < oo
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