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Abstract of the Dissertation

Dehn Filling and Asymptotically Hyperbolic
Manifolds

by
Gordon Craig
Doctof of Philosophy
in
Mathematics
Stony Brook University

2004

In this thesis, we extend Anderson’s higher-dimensional Dehn fi11-
ing construction to a large class of infinite-volume hyperbolic mani-
folds, This gives an infinite family of topologically distinct asymp-
totically hyperbolic Einstein manifolds with the same conformal
infinity. The construction involves finding a sequence of approxi-
mate solutions to the Einstein equations and then perturbing them

to exact ones.

iii




£

Contents

List of Figures
Acknowledgements
1 Introduction
2 Background
3 Construction of Approximate Solutions
4 Control of Inverse
5 Conclusions

Bibliography

iv

vii

24

42

81

86




List of Figures '

1.1 A sequence of approximate solutions . . . . ... ... . ... 5
1.3 @ invertible on balls of uniform size. . . ... ... ...... 7

1.2 P invertible, but not on balls of uniform size. . . . . . ... .. 6
i
|

£




Acknowledgements

First of all, I would like to thank my advisor Michael Anderson, for sticking
with me throughout this long process and for teaching me how to do mathe-
matics, I would also like to give special thanks to Vestislav Apostolov and to
Niky Kamran for their encouragement and for helping to support me over the

s lagt term. I had many interesting discussions regarding this thesis and other
mathematical topics with people at Stony Brook and els_ewhere. I would par-
ticularly like to thank Mike, Vesti, Steven Boyer, Siddhartha Gadgil, Detlef
Gromoll, Lowell Jones, Claude LeBrun, Darren Long, Maung Min-Oo, Yair
Minsky, Rick Schoen and MacKenzie Wang.

I would like to thank all my friends and family for their encouragement and
support throughout my graduate studies. On Long Island: Daniel Attinger,
Alice and Ray Golbert, Eduardo Gonzalez, Karyn Luhdberg and Candida Sil-
veira, and in Montreal, Mark Steele, Nick Steele, Jean Dendy, Laura Cavanagh,
Nick St-Pierre, Phil Pouliot, Greg Jones, Carole Drolet, Juli Atherton, Alain
Bourget, Louis Garcean and Tracy Artemchuk.

Finally, I would like to thank my parents for all their love and support over

the years.




Chapter 1 ’

Introduction

The main goal of this thesis is to prove that it is possible to obtain infinitely

many topologically distinct asymptotically hyperbolic Einstein(AHE) metrics
by closing cusps on certain infinite-volume hyperbolic n-manifolds(n > 3).
We will start by defining AHE metrics and discussing some of their properties
and sti;ﬁcture, and then we will explain how our result fits into this picture.

Following this we will provide a brief outline of the proof of our main result.

Definition 1. Let M be a compact manifold with boundary. A smooth function

p is said to be o defining function for OM iff
p: M —[0,c0) (L.1)

satisfies p(p) = 0 iff p € OM and dp # 0 on OM.
Then we have:

Definition 2. A complete metric g on M = int(M) is said to be conformally

compact iff there ewists a defining function p for M such that § = p*g extends

to a metric on M.




"The canonical example of a conformally compact manifold is the Poincaré
model of hyperbolic space. In this case, § is the flat metric on the ball,
and p{z) = 1—_¥ﬁ In what follows, quantities with a bar over them will be

¥

measured with respect to the compactified metric 7, and ones without bars

will be measured with respect to the metric gon M =intM.

Definition 3. Consider a conformally compact metric G on M. If there exists
a defining function p such that [Vp| = 1 on OM, then we say that (M, g) is

asymptotically hyperbolic.

The reason for this terminology is that in this case the sectional curvatures
of (M, g) tend uniformly to -1. (cf. [And2))

Asymptotically hyperbolic(AI) manifolds are a natural class of non-compact
manifolds to work with because they have a nice structure at infinity; their
curvatufe tends toward a constant, and via the compactification g they have a
“boundary metric” at infinity. Since this metric is determined by the choice of
the function p, it actually only makes sense to speak of a boundary conformal
class. This conformal class is known as the conformal infinity of the complete
manifold (M, g).

Given an AH manifold, it is natural to want to put a canonical AH metric
on it. In two or three dimensions, the natural choice is a hyperbolic metric.
In higher dimensions, however, hyperbolic metrics generalize in two ways: to
hyperbolic metrics and to negatively curved Einstein metrics(constant negative
Ricci curvature.) If n > 3, the curvature tensor has more components than the
metric, so prescribing sectional‘curvature becomes more difficult. On the other

hand, the Ricci tensor has the same rank as the metric, so Einstein metrics
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are natural candidates to be canonical metrics. Accordingly, we define;

Definition 4. An asymptotically hyperbolic manifold with constant Ricci cur-

vature is called an asymptotically hyperbolic Einstgin(AHE) manifold.

There has been a great deal of interest in AHE metrics recently due to ap-
plications to physics. Physicists are particularly interested in the correspon-
dence between AHE metrics and their conformal infinities(c.f. [Bek|, [Wit],
[Andb]). This correspondence can be thought of as a geometric Dirichlet
problem(although a priori the topology of the filling manifold could be un-
determined.)

Anderson has worked exfensively on this correspondence in dimension
4({And2], [And3], [And6], [Andb]). In this case, there is generally not a bijec-
tive correspondence between AHE metrics and their conformal infinities, but
under ;ertain geometric conditions on the boundary, there are only finitely
many AHE manifolds bounded by the given conformal class, This is not al-
ways the case, however; in [And2], Anderson constructs infinitely many AHE
metrics bounded by a fixed conformal class. He then shows that in dimen-
sion 4, any such collection has a limit point which is an AHE manifold with
cusps(i.e. an Einstein metric whose ends are either conformally compact or of
finite volume.) Furthermore, this limit point has the same conformal infinity
as all the elements in the set.

Under some fairly natural conditions on these limit manifolds, it is possible
to show(still in 4 dimensions) that these limit manifolds are actually hyper-
bolic. This suggests a natural question: given a hyperbolic manifold whose

ends are either conformally compact or cusps, is there a sequence of AHE




&2

metrics with the same same conformal infinity converging toward it? This

is indeed the case in three dimensions(where AHE metrics are hyperbolic,)

~ although the methods used in this case come from hyperbolic geometry, and

cannot be applied to Einstein manifolds. Recently, i'Am:lerson developed a cusp
closing technique for finite-volume hyperbolic ma;lifolds([Andl]), generalizing
Thurston’s Dehn Filling result to higher dimensions. His construction leads
to infinite families of topologically distinct compact Einstein manifolds.

Our main result applies Anderson’s cusp closing construction to generate

a host of AHE metrics with the same conformal infinity:

Theorem 5. Let (N*®,g), (n > 2) be a complete geometrically finite hyperbolic
manifold, oll of whose cusps have toric cross sections. Then it is possible to
close the cusps to obtain infinitely many metrically distinct AHE manifolds,
all of which have the same conformal infinity as the original one. If the hyper-
bolic manifold N™ is nonelementary, then this procedure gives infinitely many

homotopy types. If n > 3 these AHE metrics are non-hyperbolic.

One can generate a large class of manifolds satisfying the hypotheses of

* the theorem by taking Maskit combination of complete hyperbolic cusps along

hyperplanes. {(c.f. [Kvt].)

‘The proof of the main result follows Anderson’s proof in [And1]: we con-
struct a sequence of approximate solutions to the Finstein equations(i.e. met-
rics whose Ricci curvature is tending toward some constant) and then perturb
the metrics to an exact solution. This basic gluing procedure is quite common

in geometric analysis, c.f. for example [Tau], [Kap], [MPU], [MPa].

The choice of approximate solutions is the first stumbling block in this




procedure. Although in theory it is easy to prescribe Ricci curvature, since

the Ricei tensor is of the same rank as the metric, in practice it is extremely
difficult, since we must find explicit solutions to a cogpled system-of nonlinear
PDEs. The construction of the approximate solutions requires the use of a
very special (explicit) family of metrics, as we shall see below.

The perturbation argument which gives the Einstein metrics has two parts.
We will be using a functional ®, and metrics which satisfy ®(g) = 0 will be
Hinstein. Then we will have a sequence of approximate solutions g, such that

®(gn) — 0. We can represent this by the the graph in Figure (1.1).
1 @(9)

(g1, 2(e1))
(g2, ®(g2))

. (g3, ®(gs))

’ (gm q)(gn))

Figure 1.1: A sequence of approximate solutions

Tt turns out that sequences of approximate solutions degenerate, so we

cannot use a limiting argument to obtain our exact solution. On the other

hand, the linearization of ® at each metric g, is invertible. 'Thus, we could




hope to use the inverse function theorem to invert @ in a neighborhood of
®(gn). Since ®(g,) — 0, we can hope that for n large enough, one of these
neighborhoods will contain 0, which will give us a metric g s;uch that ®~1(0) =
g. Invertibility of ® near ®{g,) is not enough tou insure this however. We
could have a situation in which the region on which @ is invertible shrinks as

n — 00, $0 0 never lies in this region. Such a case is represented in Figure

(1.2), where the disks represent the maximal region on which it is possible to

invert @,
d
(9) (g1, ®(g1))
(92, ©(g2))

(QSa @(93))

O (gn:rq)(gn))

@ g

Figure 1.2: @ invertible, but not on balls of uniform size.

Thus, we need to get a control on the size of the balls on which we can
invert. In this case, the picture will look like Figure (1.3), and so for n
large enough we can perturb g, to a metric satisfying ®(g) = 0. We obtain

this uniform control by bounding the linearization of ®, as Anderson does in




®(g)

S r,

(92, ©(g2))

(g1, ®(g1))

(93, D(93)) | |
Q (gn, ®(gn)) ~,

S~ i

Figure 1.3: ® invertible on balls of uniform size.

These figures are somewhat misleading since, as we shall see, the topology
of the approximate solutions M; will actually be varying. Furthermore, the
balls on which we will be inverting will actually be shrinking, and we will
only have a lower bound on their radius. Nonetheless, the idea is the same b

as in these figures. Note also that all we need for this argument is uniform

surjectivity, rather than uniform invertibility, but as we will see, we get the
invertibility for free, which makes things easier.

The main difference between our construction and Anderson’s is that our

approximate solutions are noncompact, due to the presence of the expanding

ends. This introduces some small difficulties in our analysis, but by construc-

tion we have very strong control over the expanding ends, since our metrics |




have fixed conformal infinities. As it turns out, the bulk of the argument is

identical to Anderson’s.

Let us now set some of our notation and conventions. From here on, all
manifolds will be assumed to be complete and AHt unless otherwise stated.
Pointwise norms and inner products will be denoted by k| and (f, h) respec-
tively, while global ones will be denoted by ||A|| and {f, h}. K, ric, z and s will
represent the sectional, Ricci, trace-free Ricei and scalar curvatures. inj(M)
will denote the injectivity radius of M. n will be reserved for the dimension

the manifold M, and will always be strictly greater than 2. The curvature

operator is defined as
R(X,Y)Z=VyVxZ—-VxVvyZ—-VyxZ (1.2)

for any three X, Y, Z € TM. Qur Laplacians will have negative spectrum,
s0 Ag = —%. This is the so-called “Geometer’s Laplacian.” We will often
drop subscripts to improve readability if this will not lead to any confusion.
This thesis will be organized as follows: chapter 2 will cover background
material on the operator and function spaces we will be using. In chapter 3 we
construct our approximate solutions and discuss some of their properties, and
then in chapter 4 we obtain a uniform control over the operator D® on all the
approximate solutions. Finally, in chapter 5, we wrap things up by perturbing

our approximate solutions to exact ones and provide examples of manifolds on

which one can perform this cusp-closing construction.




Chapter 2 '

Background

In this chapter, we will discuss some of the analytical tools which will be

needed later. We will start by discussing the operator which we will be us-

* ing. For now, we will assume that our operators are defined on the space of

smooth(C*°) symmetric positive-definite bilinear forms on M, i.e. the space of
all metrics on M, which we will denote by S2(M). We will denote the space of
smooth symmetric bilinear forms on M by S?*(M). This is isomorphic to the
tangent space to S3(M) at some fixed metric g in the sense that infinitesimal
deformations of g can represented by elements of S?(M).

Since we are looking for Einstein metrics, the most natural choice for the
operator ® which we are studying would seem to be the trace-free Ricci cur-

vature

s
=ric — —g. 2.1
Z=ric— g (2.1)

We would then try to solve the equation

z2=0 (2.2)




by inverting z near 0. The operator z is natural because it is the negative of
the gradient of the total scalar curvature functional restricted to metrics with
a fixed volume form, (c.f [Bes|,) and is also invariant under rescalings and
changes of coordinates(i.e. under the action of the gr?:lp of diffeomorphisms.)
For our purposes, however, these last two features are actually drawbacks;
they ensure that z maps large subspaces onto points. Thus, z is far from
being invertible. Furthermore, the kernel which arises from rescalings and
diffeomorphisms is not particularly interesting to us, since we are looking for
Einstein metrics; once we find one of them, we already know that pullbacks

and rescalings of it will also be Einstein.

We can remove the scale invariance by considering the equation
ricg, +(n—1)g=0 (2.3)

Note that if g satisfies this equation, then s, = —n(n — 1), just like hy-
perbolic n-space. One should also note that this equation is simpler than the
previous one in that we have replaced Z, which is nonlinear in the partial
derivatives of g, by the constant (n — 1).

We still have to remove the diffeomorphism invariance of this equation.
We do this by taking a slice complementary to the action of the diffeomor-
phism group. Recall(c.f. [Bes]) that infinitesimally, T, S2(M) = 5?(M) splits
orthogonally with respect to the L? product

Ty, S3 (M) = Im(5") €P Ker(5), (2.4)

10




where the first term is tangent to the action of the group of diffeomorphisms.
Here 3% is the symmetrized covariant derivative, and the divergence § is its
formal adjoint. Thus, it would be natural to fix some reference metric and

then work with the equations .

ric, +{n—1)g=10 (2.5)

g9 =0 (2.6)

where g is near some reference metric go.
For reasons which will become clear below, we will actually choose to work

with the system

ricg +(n—1)g=0 (2.7)

By,g =0, (2.8)
where By, is the Bianchi operator associated to the metric o

By, : S* (M) —s QM (M) (2.9)

B (1) = 8yl + atryh (2.10)

(note that the differential Bianchi identity implies that B, (ricg) = 0 for any
metric g.)

The reason that we use this system is that we can combine the operator

11




ric + (n — 1)g and the Bianchi operator into a single map

Dy : Se(M) — SHM)

g > ricg + (n— 1)g + 87 By (9)

Now the linearization of ® at g, is
1
Dy @(h) = §ALh+ (n —1)h,
(c.f. [Biql],) where is the Lichnerowicz Laplacian Ay is defined as

Ap i SP (M) — S*H(M)

Arh = D*Dh+ricoh+ horic— 2R(h),
and R is the action of the curvature tensor on S?(M) :

} Rh(X,Y) = tr((W,Z)~ h(R(X,W)Y,Z))

- Z hR(X, eV, e;)

metric to identify them with elements of Hom (7'M, TM).

12

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

where {e;} is an orthonormal basis with respect to the metric at which we are

linearizing. Composition of symmetric bilinear forms is defined by using the

Dy, ® is clearly elliptic, and so ® is elliptic near go. This means that
locally its lincarization has a finite dimensional kernel, so we have effectively
eliminated the kernel arising from the action of the diffeomorphism group.

Of course, this is all a waste of time unless there is some connection between




the operator ®,4, and Einstein metrics, something which is not a prieri obvious.

The following lemma deals with this issue. Let p € M be some fixed point,

and let r(z) = dist{p, z).

Ed

Lemma 6. ({Big1]) Let (M,g) be AH, with m'cgr< 0. If ®,.(9) = 0 and

limy 0 | By, (g)| = 0, then ric, = —(n—1)g. In other words, g is Einstein with

scalar curvature —n(n — 1).

Proof: By construction of @, we only need to show that if ®,,(g) = 0 and

lim, 0 | Bgy(g)| = 0, then Byg = 0.

By the differential Bianchi identity we have that
By(ricg) =0
so applying B, to ®(g) = 0 gives
B,82 By, (g) = 0
Now set v = By,(g). Using the Weitzenbock formula (cf. [Biq2])
B,St = % (DD ~ ricy)

we get

(DyDy — ricg)y =0

Taking the pairing of this with v and taking the trace will give

Ag|’7f|2 <0

13

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)




Since |y| — 0 as r — oo, we can invoke the maximum principle to conclude

that

7= Bplg) =0 (2.29

and so ®(g) =ric, + (n—1)g=0. A ,

We must now discuss the function spaces on which we will do our analysis.
We cannot use the spaces S*(M), because we will need elliptic estimates and
various compactneés properties. Thus, we can use either Sobolev spaces or
Hélder spaces. We can define the latter locally, which makes it easier to
control them over a large class of manifolds which have similar local geometry.

Recall that on a bounded open domain Q C R", one defines the (k, a)-

Holder norm of a smooth function f to be

U= 3 suplo 1+ (swp PFEZEION) o

The space C**($) is defined to be the completion of ¢°(£2) with respect
to the (k, &)-Holder norm. These spaces have the desired analytical properties.
In particular, if o/ < e, then the inclusion of C**(0}) into C*<' () is compact,
and given an elliptic operator L, we can obtain Schauder estimates for it, which
give us strong control over L.

We will need similar properties for the analysis below, so we will have to
define Holder spaces of bilinear forms on a Riemannian manifold. We will do
this in local coordinates, so that the corresponding properties of Holder spaces
on a Euclidean domain will follow immediately. Qur definition will not be

intrinsic, but we have the following result which allows us to compare these

14
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Holder spaces on large families of manifolds;

Proposition 7. ([Andj]) Let @ > 1, Cyig > 0, k €N, 0 < o < 1. Then
¥
there ezists po > 0 such that if | V¥ Iric||ze0 < O and i(M) > iy, then for any

x € M, the ball B(z, po) has harmonic coordinates in which we have

Z PLﬁl sup Iaﬁgij(y)f -+ (2.26)
1<ifl<k YEB@w0)
B .. AR
STkt sup 6% 9i(y1) -~ 0 f”(ygn <01 .
|8|=k #,y2€B(x,00) |y1 — y2|

Here, we will fix @ sufficiently close to 1 for the rest of this paper. We
shall call the above coordinates C**-harmonic coordinates. NOW, given C' >
0, ig >. 0, we can define (£, a)-Holder norms on the class of manifolds with
|V*“tricl| < C and (M) > i5. Start by choosing a locally finite collection
of balls B(z;, po) with (k,a)-harmonic coordinates which cover M such that
the balls B (:ci, ’jl—“) are disjoint. (This is possible because the Ricci curvature

is bounded.) Then define the (k, &)-Hélder norm of A € S2(M)

[Allka = sup
€T

i

1<|ﬁ|<k yeB(a:,-,po)

{ > o sup |PPhy(y)] (2.28)

' S .. —_ H8h ..
+ Z pig+l0z| sup ‘3 hw(yl) o hw(yz)|} (2‘29)

— o
|'B|___k n "y2€B(mi 190) Iy]- y2|

where the supremum is taken over all the balls B(z;, o). We can then define

15




the C** topology on the space of metrics near g by setting the norm of a

metric g near g to be

lg — golls,0- , (2.30)

From here on out 4, C, k > 2 and « will all be fixed. The reader may be
concerned that we are only defining our operator @ and our function spaces
near some base metric gg. 'This is not an issue, since we are using a perturbation
argument, and thus will only be working in a neighborhood of the metric we
wish to perturb.

Now, it is clear that on open bounded sets & C M, we will have that the
inclusion of C**(Q) into C%* (Q) is compact for & < «. Furthermore, by
our control of the metric in these coordinates we will have interior Schauder
estimates for the elliptic operator L = Dy, ® on bounded sets 2 C M. (c.f.
[GiT].)

Our analysis will take place on manifolds approximating the hyperbolic
manifold whose cusps we will be closing. Thus we need to take into account two
types of noncompact behavior: moving down the cusps makes the injectivity
radius arbitrarily small, and moving out into the expanding end makes the
volume tend toward infinity. We will deal with these issues separately. In
both cases, we will need infinitely many coordinate charts, so to be able to
get uniform control over the entire manifold, we shall need to have coordinate
charts which are “uniformly similar” in some sense; i.e. they must be defined
on balls of approximately the same size and local geometry.

The problem that we will encounter from the injectivity radius tending

toward zero is that our coordinate charts will have to be made arbitrarily

16
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small as we move down the cusp. On the other hand, since the geometry is

hyperbolic(or, as we shall see, very close to it,) we can lift to a large enough
cover, and then calculate the norm on this cover.
#
‘Thus, we take Anderson’s definition from [And1]):
Definition 8. We say that a manifold has uniformly bounded local covering

geometry if, given some fized constant iy > 0, any ball B(x,4y) hes o finite

cover B(Z,ip) with diameter less than 1 and i(F) > 4.

Then, define the modified C**(M) norm C**(M) to be the C*=(M)
norm, with the norm being evaluated in (&, a)-harmonic coordinates on a
large enough cover if the injectivity radius is less than 4.

Now, let us define the main space which we will be working with:

Definition 9. Let S** be the completion of 5% with respect to the C**(M)

norm.

Even though the space 5% is well-defined for our noncompact manifolds, it
is too large for our purposes, since it includes many forms over whose asymp-
totic behavior we have very little control. Furthermore, we do not want to
change the conformal infinity of our approximate solution when we perturb it
to an exact solution, so we want our perturbation to vanish at infinity. Both

of these considerations lead us to the following definition:

Definition 10. Let p be a geodesic defining function, and let r(z) = log (%)
For § > 0, we define the 5-weighted Hélder space Sp**(M) to be
{u = e ulug € SP(M)}. If u € S3(M), define ||ullnas = lluollka =

”e'aru”kia'

17
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Note that although this norm depends on our choice of p, the space S’f’“
does not. p is a geodesic defining function iff |Vp| = 1 in a neighborhood of
OM. Such functions have the property that if r = log (%), then

¥

[Vr|=[Vp| =1 (2.31)

in some neighborhood of OM. Thus r is a distance function outside some
compact set. It always possible to construct such defining functions for AH
metrics{c.f. [GL].)

Before we state some analytic properties of these spaces, we will need a

technical lemma:

Lemma 11. There is some constant Cgs > O such that

6% (e f)] < C pe™

> (7]

[7<i8]

(2.32)

Proof: First, note that we are not taking any inner products, since 8% (e*%" f)
is not a tensor, but rather an expression calculated in local coordinates. The

lemma will follow from the product rule provided we can bound

8,607 < Jeié"% (2.33)
But
Or ar\*
o | < 7| VRV =/, (2.34)
i J

where () is the fixed constant we used to define our harmonic coordinates. 1

18




This lemma allows us to interchange differentiation and multiplication by
our scaling factor. Let us now adapt various standard results on Hoélder spaces

into our present context. The following results are taken from [Lee]. .|-
) 1l

Theorem 12. ([Lec]} Let &' < & and o/ < a. Then the inclusion S (M) —
SE (M) is compact.

Proof: Say that we have a set {h,} in S;“,’al (M) such that it i
|
| 17y l[y08 < C (2.35) ;

| Then we wish to find an & € S&* (M) such that we can take a subsequence

l " ( h,,,) with

| hi — b in SE (2.36)

\

\

| I

i } i

i

Now note that by definitions of our norms, ' i
|

| hillk,as = (€7 Bill 5, (2.37)

By [GiT], given any bounded set £, C M, the inclusion SE(Q) — ii!l
S5 () is compact. Thus, by a diagonal argument, we can construct an h

Bl |
such that I

e’ h — "R in §8(Q) (2.38) ”I

for all bounded sets £2. The problem is that we cannot necessarily conclude
uniform convergence on the whole manifold M. To do do this, we will use the

decay properties of these forms. Now, note that there is some A > 0 such that

ki = Allkes < A, since SB4M) c S5 (M), Say we are given € > 0. Let
o, 5 g

19




v = {z € M|r(z} < N}, and let T'y be an open set containing M — Q.

Then choose N(¢) large enough that

—(d—=8"r € o
e | gy < 24 (2.39)

i

Then if 4 > N(e), we have

b~ billearsr = Nl€” (b~ h)|loa (2.40)
= eIl — )|k (2.41)

< e @ et (h — ha)ll gn.0 () (2.42)
HleT e (B — 2 [ gmoe oy (2.43)

< e grar oy € (= ki)l gy (244)
Hle™ I ghar g I b = B gror gy (245)

< Culle” (b~ )| gmer gy + -g- (2.46)

where Cy depends only on N. And we are done, since e’ h; converges to e’ 5 -
in S5 (Qp). W

We will be using Bochner-technique arguments, so we shall need to use
forms which are square-integrable. The following lemma describes under which

conditions this occurs.

Lemma 13. ([Lee]) Let (M, g) be asymptotically hyperbolic. If § > 2t then
SP (M) © LA(S2(M)).

Proof: Let u & .S'f;"a. Then by definition, there exists uy € S$*%(M) such

20




that

u = upe " (2.47)

In particular, ug is bounded.

v

To show that ||ul|z> converges, all we need to do is to check that

/ / Iy <o (2.48)
ro Jrl(p

for some rg > 0.

Since r is a distance function outside a compact set, we can deduce from
the Gauss lemma that dV = e®~U7dV outside this compact set, where dV is
the volure form for the metric § on the compact manifold 3, Then we will

be done if we can bound the integral

o0 OO
/ / luo(p)|2e %M dV < C(g) sup|u0|2[ e 1=20r g (2.49)
ro Jroli{p]

To

This last integral is finite as long as § > %1,

Let us now discuss some mapping properties of the operator
® : SPHM) — SFPH(M) (2.50)

Proposition 14. ([Lee]) ® is well-defined as an operator from S8 into

k—2,a
g2,

Proof: The only thing we need to check is that the exponential decay

property, since it is clear that ® maps forms in S%*(}) into S¥~2*(M). But
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by Lemma 11, we have

()| k,06 = ||65T(I)(h)||k,a" (2.51)
< C’oll<1>(e‘5"h)l|;e,a (2.52)
< O h|xa (2.53)
< GillAllkas (2.54)

|
We will also need elliptic estimates for these operators. In analogy to

the weighted Hélder norms, define the d-weighted L norm to be ||h| 1% =

1€ All e

Proposition 15. ({Lee]) Let Ly = D @, be the linearization of ®, at g,
where ||g — go|lk,as < €0, and €5 > 0 is chosen such that Ly is elliptic. Then
there is some constant Ay, depending on k, o, €q and & such that we have the

following estimate

1Allkes < Ao(|| LB /lk—2,0,6 + || 2l ge) (2.55)

Proof: By definition of L, we have uniform (k — 2, o)-control over its
coefficients via our (k, a)-control over the metric g. Then, by definition of our

Holder spaces, we get the estimates

[llee < Ao(llLAlla—z,0+ lIR2]|zoo) (2.36)

from the Schauder interior estimates on the balls B(z;, po). (c.f. [GiT])
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Using lemma 11 as in the previous proposition allows us the conclude the
same estimate for the d-weighted spaces. 1

We end this section by quoting a key result of Biquard’s on the behavior of
the operator L = Dy ®,,. We know that L is elliptic, but since we are working
on noncompact manifolds M, it does not follow that L is Fredholm. Thus
if we do not choose our function spaces carefully, ker(L) or coker(L) could
well be infinite-dimensional. Biquard’s results give appropriate conditions to

guarantee that L is Fredholm. (Also see [Lee].)

Proposition 16. ([Big1]) Let (M", go) be an asymptotically hyperbolic man-
ifold. If § € (0,n — 1), then

L: Sk,a Mn) N Sk-—?,a Mn) (257)
é é

is Fredholm. Furthermore, L is an isomorphism iff kerz2(L) = 0.
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Chapter 3

Construction of Approximate Solutions

In this chapter, we construct our approximate solutions, and discuss some
(\)f their topological properties. Topologically, filling in cusps just amounts to
”::‘Ltta,ching a solid torus to each cusp end. Metrically, we must truncate the cusp
at some finite distance before attaching the solid torus. This is not too hard,
assuming that we do not require anything of the filling manifolds. But we
want our filled manifolds(our approximate solutions) to have Ricci curvature
close to a constant. This turns out to be much more difficuli.

We will be filling each cusp separately, so we will only need to explain the

procedure on one of them. All of our cusps look like
go = pdp* + g1y > p>0 (3.1)

Note that as p — 0, the 7" Us are collapsing. Without loss of generality,
we can assume that po > 1 by rescaling the p parameter. This will give us a
metric of the same form, but with a rescaled 771 Let us cut off the cusp

at the torus p = 1. Then we are faced with the task of attaching something
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to boundary torus Tp in such a way that the metric on the glued manifold is
smooth. Note that 7j’s metric is the flat metric gra-1.

For this construction to work, we will need to use a sequence of filling
manifolds which are hyperbolic near their boundary,rand whose trace-free Ricecl
curvature tends toward zero. We will use members of a family of AHE metrics
on D? x T%2, We can obtain our filling manifolds by truncating these at
some fixed distance, and then perturbing the metric near the boundary to
make it hyperbolic. The perturbations will get smaller as we go further and
further out, since the manifold is AH. We will start by discussing these filling
manifolds.

Consider the following metric on D? x T"%;
gpr = (V) tdr? + V(r)d6® + r’grm-2 (3.2)

where gyw-2 is an arbitrary flat metric on the (n — 2)-torus.

We ﬁill specify the range of the (r,#) parameters and the exact form of
V(r) below, but first let us calculate the curvatures of these metrics in terms
of the function V(r). We will start by setting up an orthonormal basis for
these metrics: let &1 = V'V, ea = —\/%33, and e; = %quj, where the 0,
3 € j < n are an orthonormal basis for the T2, A straightforward calcula-

tion(i)erformed at the end of this chapter) shows that the e; diagonalize the
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curvature tensor, and that the corresponding sectional curvatures are

V.f.l'
Kyp = -y

V! ,
Ky=Ky=—5- §>2
K,;jm 2 1,7 > 2

Now, let

V{r) =r% - 2mr® "

Using the same basis as above, we have

Kig = -1+ (2302
rrﬂ
(n—3)m
Kiyj=Ky=-1-"—7
2m
K,;j = '—]. + Tn.*l

where once again 4, j are assumed to be greater than 2.

(3.7)

(3.8)

(3.9)

(3.10)

Another straightforward calculation shows that this metric is Einstein with

scalar curvature —n(n — 1) and asymptotically hyperbolic. (We have yet to

specify the range of the r parameter, but it is clear that the metric is well-

defined for large enough r, so it makes sense to speak of its asymptotic prop-

erties.)

If m = 0, we get a hyperbolic cusp metric

Jo = 'T‘_Zd‘rz + 'f'ggsl Th—2
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This metric will be complete if we let r € (0, 00).

On the other hand, if m > 0, we get a nontrivial Einstein metric. These
metrics are called T2 Anti-deSitter Black Hole metrigs. They will be com-
plete provided we let r > 74 = (2m)=T and 0 < 0,< Bu = Gy (OF
[And2].) Note that the locus {r =7} is a flat totally geodesic T"%. By
analogy with the core geodesics in hyperbolic Dehn surgery(c.f. [Thu],) we
call this a core torus.

Now recall that we introduced these manifolds because we want to glue

them into a cusp. They have the correct topological and local geometric prop-

erties to work. The first choice we could make would be to cut off one of

.. the black hole metrics above at some large 7, and then perturb it to make it

hyperbolic near the boundary. The problem is that we cannot fix the global
geometry near the boundary; although we can choose the metric on the 7772,
the boundary metric will necessarily be the product of this flat metric and a
large S?, since the size of the S factor is determined by 7.

To resolve this difficulty, we will exploit the large isometry group of these
metrics to take a quotient with the desired boundary. Below, we shall use the
term “black hole metric” to refer to any metric on D? x T" 2 which has the

same universal cover as ggpy.

Proposition 17. Suppose we have an Sl x RV2-invariant metric on D? X
R2. Let Ty be some flat (n — 1)-torus, and let ¢ C Ty ke a simple closed
geodesic such that

L(o) = L{8D?). (3.12)
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Then ATy C Isom(D? x R*?) such that

~ Mf,m (3.13)

is « solid torus with OMpy = Ty,

Proof: We have
To = RYT, (3.14)

where I’ is some {n — 1)-dimensional group of translations of R*~1. Since o
is closed and simple, the translation induced by ¢ is a generator for I We
can find elements y; € R*~! such that the set {0, v1,...,Yn—2} forms a set of
.generators for I'. Let us denote the subgroup of m(7,) generated by o by (o).

Then since m;(Tp) is Abelian, (o) is normal, which implies that the covering

map
p: R T (3.15)
splits as p = p; o pe, where
pp RV S R/ {o) = St x RP2 (3.16)
and
p:St xR 5 (ST xR Ty~ T (3.17)

where ['y =I'/{o)
Now, say we have an S' x R*2-invariant metric on D? x R"2, and that
the length of 4D? is L{a).

We will use the above remark to construct a quotient of this metric with
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boundary 1. We can describe this quotient in terms of coordinates
(r, 8, ds, ..., on_2), where the ¢;’s are the standard coordinates on ®*2, Define
an isometric action of I'y on D? x R* 2 by keeping r fixed and acting on the
St x R*? coordinates. The boundary of this quotifa;t will certainly be Ty,
and it is clear that there are no fixed points on r = 0 since no element maps
o to itself except the identity, so the quotient is indeed a manifold. N

Note that the reason that this works is that we were able to split off the
(o) from the rest of ', and then fill it in with a disk. The basic point is that
when we project the other generators onto the core R*~2, they cannot be zero,
or else they would be parallel to ¢. If one thinks about the three-dimensional

case, one can picture the universal cover as being a tubular neighborhood

S ofa geodesic in hyperbolic space. Then ¢ would be the boundary of a disk

~ perpendicular to the core geodesic. One can obtain the torus T2 by taking the

quotient of the cylinder by {v), where « s some composition of a translation
and a rotation. The only way that this action will not extend to the core
geodesic is if v has no translation component. But this is impossible if the
quotient of the boundary is to be a torus.

Now we will get an appropriate metric on this quotient. All we need is an
ST x R*~2-invariant metric on D? x R*2. Since we want an Einstein metric,
we will take the universal cover of the 7"~ 2-black hole metrics, slightly altered
near the boundary. It turns out that the value of m is irrelevant to the local
geometry of these(c.f. [And2],) so we will set m = 1.

Let

(3.18)
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and define

Jrit = V(r) tdr? + V(r)d6? + riggye; 7 € [+, R), 0 € [0, 51) (3.19)

L

where V(r) =r? — ::f(_?, x(ry=1forr <R-2, X(r)'z 0forr>R-1

Now note that for r» > R — 1,
% = 7'_2de + ?,,2 (da2 + gEucl) (320)
By taking the quotient, we will get the metric

29T

grit = r2dr® 4+ R (3.21)
onr>R-—1
By the change of coordinates
r
= — 3.22
P=7 (3.22)

we get a metric which is identically equal near its boundary to the hyperbolic
cusp metric which we are trying to fill in. In the event that we have k toric
cusps, we can cut off each one, and perform this procedure on a geodesic o*
in each boundary torus. We then obtain a manifold (Ms, g5), where o is the
ordered k-tuple of geodesics (0%)1<i<k-

We say that M, is a Dehn filling of N, again by analogy with the three-
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dimensional case. The size of the Dehn filling is defined to be
|o| = min L(c*) = min(R,:5,) (3.23)
2 H P

This is well-defined, since we fix the boundary tori at the beginning.

We can see explicitly from (1.3)-(1.5) that

1@, (9o)lk-206 = lricg, + (0 — 1)gellk-2,0s (3.24)
i
= o+ X (3.25)
s
k—2,0,8
1
< ¢ = (3.26)

Note that one must be careful in the last line, since we are bounding
Holder norms, in which derivatives are calculated with respect to harmonic
coordinates, and not with respect to the coordinate . But r is related to the

geodesic coordinate s by

r = O(e) (3.27)

for large s, so we can establish the bound with respect to s, and then translate

back into terms of It.

Thus, we have the following proposition:

Proposition 18. Let (N, g) be a geometrically finite hyperbolic manifold,
whose k cusps oll have toric cross-sections. Then for any k-tuple o of geodesics

in these cusp cross-sections, it is possible to construct a manifold (M,, gs) such

that

@4, (90)lli-208 = Olo]'™") (3.28)
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These (M,,g,) are AH and have the same conformal infinity as (N, g).

In three dimensions, we no longer have these black hole metrics. In fact,
the only candidate for the glued-in metric is a quotient of hyperbolic space.
But there are many hyperbolic 3-manifolds bounded by 2-tori; we may take
the quotient of a tubular neighborhood of a geodesic in H® by a cyclic group
of loxodromic transformations which fix . To fill in a cusp, we must alter the
metric near the boundary torus so that the second fundamental form of the
solid torus agrees with that of the truncated cusp. ‘Thus, the filled manifold
is not hyperbolic.

Then the above proposition still holds in this case.

We end this chapter with a few remarks on the topology of the M,’s. We

start with the Gromov-Thurston 2z-theorem. (The proof is due to Bleiler and
Hodgson, c.f.[BIH])

Proposition 19. (Gromov-Thurston, [GrT]) If lo| > 2x, then M, admits a
nonpositively curved metric, such that the core tori are totally geodesic and

whose sectional curvature is strictly negative off the core tori.

Proof: By proposition 17, all we need to do is to construct a nonpositively
curved St x R*2-invariant metric on D? x R*2 which is hyperbolic near the
boundary, is flat exactly on the core R*?, and such that L(6D?) = L{o). We
will construct these metrics explicitly.

Consider the following metric on D? x R*2;

Jom = dr® + f2(r)d92 + h2(r)gEuc¢; D<r<1;0<8 <27 (3.29)
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Let (¢s,..., ¢) be the standard coordinates on B*2. If we choose the

N
orthonormal basis ¢; = §,,e, = 'ic—“, e; = %, 7 > 2, then we can calculate the
curvatures of this metric in the same fashion as for the black hole metrics to

#
obtain

fﬂ
hﬂ'
Ky=—"; i>2 (3.31)
! rit
Ky = ﬁ%; P> 2 (3.32)
W\’ |

We want to find positive functions f and A which are increasing, strictly
convex, and such that f,h # 0 away from r = 0. We must also, however,
ensure that the metric is hyperbolic near r = 1, and complete at r = 0. We

can choose

£r) = L) (3.34)
hir) ="t (3.35)
on [1 — €, 1] and
f{r) = 2m sinh(r) | (3.36)
h(r) = cosh(r) (3.37)

on [0, e
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In this case

H(0) =0

F(0) =27

Note that
2w -
f(0)= lim1 fr)dr (3.40)

r—=0 r 0

measures the cone angle over the locus + = 0, so the metric is complete.

'The problem we face now is to extend the definitions of these two functions
in such a way as to ensure that f and h are strictly convex and increasing
on [0,1]. In general this will not be possible, since the convexity will force
the function to have greater than linear growth., If f(e;) = 27 sinhe, and
fle1) = L(o)e=! are too close, we will not be able to connect them by a
strictly convex and increasing function. |

But if L(g) > 27, one can use a bump function to construct such an f
explicitly. 1

Thus, we have:

Proposition 20. For |o| > 27, M, 4s a K(m, 1), and every noncyclic Abelian

subgroup of w, (M) is carried by one of the core tori.

Proof: {Adapted from Theorem 6.3.9 of [Pet].) The first statement follows
directly from the fact that M, admits a metric of nonpositive sectional curva-
ture. To prove the second one, consider the action of m (M,) by isometries on

——

M,, the universal cover of M,, where A}; is equipped with the lifted metric.
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Let a € m(M,), and let p € M, satisfy

dlp,a(p)) = inf d(a,(a) (3.41)

Such a p exists because M,’s is injectivity radius'is nonzero, and is large on
the expanding ends of M,. Thus any minimizing sequence for the function
d(z, &(z)) must project down to some compact subset of M, .

Since AZ is simply connected and of nonpositive curvature, there is a
unique geodesic  joining p = y(0) and a(p) = v(#y). Furthermore, o must fix
7. To show this, all we need to prove is that a?(p) lies on «. If it does not,
then let x = y(£) be the midpoint of the segment pa(p) of v. By assumption,
the three points z, a(x) and a(p) cannot all lie on the same geodesic, so we

must have

dw,o(@)) < d(z,0() + dlalp), ofa) (3.42)
= 21 dpq) (3.43)
= 1 (3.44)
= d(p,a(p)), (3.45)

which is impossible, since p minimizes d{x, a(z)).

Ifa, 8 € m(M,) commute, then oo (p) = Boa(p), so A sends the geodesic
segment pa(p) to the geodesic segment B()A(a(p)). Furthermore, we can see
that o must map the unique geodesic joining p to B(p) to the unique one
Joining a(p) and B(a(p)). This gives a geodesic quadrilateral whose angles

add up to 27. By the Topogonov theorem, this quadrilateral must lie in a flat
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submanifold, so we are done. 1

We will also need the following result:

Proposition 21. Let N admit a nonelementary gegmetm’cally finite hyperbolic

metric. Then N admits only finilely many classes of homotopy equivalencies.

Proof: Let

F:N—N (3.46)

be a homotopy equivalence. Given a hyperbolic metric g on N, we can deform
F so that it fixes the conformal infinity of (N, g). Then by Sullivan rigid-
ity(cf. [Kvt]), F' can be represented by an isometry. But by [Rat2] generic
nonelementary geometrically finite hyperbolic metrics have only finitely many
isometries. N

We may now prove that our Dehn fillings give rise to infinitely many ho-

motopy classes.

Proposition 22. Let N admit o geometrically finite nonelementary hyperbolic
metric, all of whose cusps are tori. Let M, be obtained from N by a Dehn
filling. Then there are only finitely many other Dehn fillings which have the
same homotopy type as M,.

Proof: We will simply adapt Anderson’s proof from [And1] to the infinite

volume case. The idea of the proof is to show that a homotopy equivalence
F:M, — My - (3.47)

leads either to a nontrivial homotopy equivalence of the hyperbolic manifold

N, or to a nontrivial isomorphism of the Dehn filling data. Since there are
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only finitely many members in either of these classes, we can conclude that

there are only finitely many M,’s in any homotopy class.

By Seifert-Van Kampen, we have that

N 7T'1(N) 0
m(My) = T (3.48)

By proposition 20, we know that for |o| sufficiently large, the only (conju-
gacy classes) of noncyclic Abelian subgroups of m (M,,) are carried by the core

tori. Now, say that we have a homotopy equivalence
M, — My (3.49)

Then F, must permute the cyclic subgroups carried by the essential tori. This
in turn implies that # must map neighborhoods of these tori onto each other,
We can then use F' to define a map G from the original hyperb‘olic manifold N
to itself such that G fixes the conformal infinity of N, interchanges the cusps
of N and such that G, is an isomorphism of m;(N). Then again by Sullivan

rigidity, G is a homotopy equivalence, of which there are only finitely many by

the previous proposition. Now the homotopy equivalence ¥ must also preserve

the Dehn filling data, so necessarily we must have

Fulo) = (o)) (3.50)
;

But given a cyclic group, there are only two elements which can generate it. “5

Thus, there are only finitely many Dehn-filled manifolds homotopy equivalent

to M,. &
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The theorem does not hold if we drop the hypothesis that (V, g) is nonele-
mentary; one can construct infinitely many nonisometric black hole metrics on
the solid torus D? x T%~2 with the same conformal infinity 77 !(c.f. [And2].)

¥
These can be thought of as Dehn fillings of the complete hyperbolic cusps
go = r2dr® 4+ r¥ g (3.51)

Now, as promised above, we will perform the calculation of the curvature
of the metric

gpg = (V(r)) Hdr?* 4+ V(r)d6® + rgra— (3.52)

To simplify our calculations, we will use f(r) to denote +/V(r). Then we

have

&1 = 10, | (3.53)
ey = % (3.54)
8y,
e; = -fi; j>2 (3.55)

where the 8¢j form an orthonormal frame for the 772,

By direct calculation, we get that

[62, 61] = f’eg (356)

lej,€1] = %63'; j>2 (3.57)

38




Since the frame (e;) is orthonormal, we have

(Vesesner) = %(([Gf:eg‘], er) — ([es exl, €5) — ([es; e, €3)) (3.58)

#

Thus we obtain that if 5,k > 2,

g Velel = Veleg = Velej =0 (359)

Voer = e (3.60)

! Vejel = }-ej (361)

Vey€j = Veeg = 0 (3.62)

_! Ve,62 = —fleq (3.63)
@ k

Vejek = “63 Fel (364)

Now that we have all the necessary covariant derivatives, it is now com-

pletely straightforward to calculate the various curvatures;

By inspection, we sce that R{e;,e;)ey = 0 if 4,7 and % are all distinct.

Since R(X,Y)Z = —R(Y,X)Z, this means that the frame(e;) diagonalizes

the curvature tensor, and that we only have to perform the four following

i

|

1
39 F
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calculations to know the entire curvature tensor.

We also have if § > 2,

and

R(el, 62)61

Rle1, ej)eq

Re;, ez)e;

Ve, Vee1 — Vi, Ve — Vies,e11€1
—Ve, (f'es) - f’ngel' ;‘
—(e1f)ea — ['Veea — F'Vese
—~ff'es — (f’)2 €s

VY

2

vejveq €y — Velvejel - V[(3_,',61]81

VEZVGj € — vﬁj Vezeg’ - V[eg,eﬂej

Mveg (iel) '
T
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(3.76)

(3.77)
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Finally, assume that 7,k > 2 and are distinct. Then

R(ej: ek)ﬂj = v%vej €j — vejVEnej - V[ek,e,-]ej

~ _v, (Jf.el) ”
T 1
T

Since

we are done.
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Chapter 4

Control of Inverse

In this section, we will perform the analysis which will allow us to invert
our operators ®, . To do this, we will need to invert the linear operators
Ly = 2D, ®, and get some kind of uniform control on the behavior of the
inverses. We cannot get an absolute uniform bound on their operator norms,
but we can make sure that they do not grow too fast with respect to the length
of the Delhn surgery . We prove via a contradiction argument that there is

some A independent of ¢ such that

12|k, < Alog|o||| Ly (h)] k=20, (4.1)

forall h Sf’a, provided £ > 3 and that ¢ is weakly balanced, in the following

sense:
Definition 23. We say that o = (¢', 02, ...,09) is weakly balanced if it satisfies

the following inequality

mc(0%) < 1ol = (min 2(0%) ) (4.

J
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for some fixed ¢5 > 0.

We will motivate the presence of the log |o| term and the weak balancing
condition below. The estimate above shows that ker(L,) = 0, so by Biquard’s
*

Theorem we get that

L7V 5F ey ghe (4.3)

is well-defined and

125 ke < Alog|o|]| £]ik-2,a.5 (4.4)

The proof of estimate (4.1) is essentially identical to Anderson’s proof in
the finite-volume case([And1]). The only additional difficulty that we face here
is that S’f’“ functions are not necessarily in L?, but by choosing § > 9—5—1 we
can avoid this problem. In this section, any unlabeled norms will be assumed

to be L? norms and § ¢ (22, n — 1) will be assumed to be fixed.

Proposition 24. Let (M,,g,) be a sequence of approzimate solutions. Then

there exists a constant independent of o such that

1ellkys < Alogloll| Lo (h)]l5-2,0.6 (4.5)

Proof: We work by contradiction, so we will have to take limits. This
leads to some difficulty, since there is no uniform bound on the diameter of
the M,’s, and so the limits will not be uniquely defined. On the other hand,
all of the limits are Einstein, which gives them extra structure which we will

exploit.
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Let us set up the contradiction. If there is no A such that

NAllk,05 < Aloglo|||Lo(R)||x-2,0.6, (4.6)

¥

for all o, then necessarily there is a sequence h; € Sf “*(M,,, 9o;) such that
17ill,e = 1 (4.7)

but
log [oy|| Li(R) | 2,06 — O (4.8)

where we have replaced the subscript o; by an .
By the Schauder estimates, we know that there is a Ay independent of &

guch that

15llk,as < Ao(l[La(B)ile-206 + Illzge) (4.9)

for all A € S¥(M,). Thus, under our assumption,
il e > A >0 (4.10)

Therefore, showing that [|h[|e — 0 will give us & contradiction.

The most natural way of looking at M, is to see it as being made up of two
distinct pieces: the original hyperbolic manifold N and the collection of black
hole metrics with which we are filling in the cusps of N. Our strategy is to
take the limit of the h;’s, which will lead to infinitesimal Einstein deformations
of each piece. We will get our contradiction by showing that there can be no

nontrivial deformations,
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We will spend most of our time working on the filled regions of the cusps,

i.e. the ends which are close to the black hole metrics. We will use the variables
r to refer to the r-variable in our parametrization of the black hole metrics,
and 2 will refer to the gluing region, as seen from P;le black hole metrics. Note
that, by construction, i = % Qur analysis will take place on each black
hole region separately, so there will be no risk of confusion.

For the region associated to the kth cusp, we have the relation:
R} = prL(af) = Brlail (4.11)
To begin, note that we have the following Weitzenbdck formula(c.f. [Bes}):

ddh + déh = D*Dh ~ Rh + horic (4.12)

where d is the exterior derivative on vector-valued one-forms induced by the
connection, and ¢ is its formal adjoint.

From this, we get that

Lh = D*Dh—2Rh+horic+ricoh+2(n — 1)k (4.13)

= ddh+ déh — Rh+ricoh+ 2(n— 1)h (4.14)
We will work primarily with this form of L, since we can prove stronger

positivity properties with it.

Now, by construction, we have that on M;,

ric+ (n—1)g = 7(r) (4.15)
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where 7 is supported on the region of the black hole metric (R; — 2, R; — 1)
and satisfies

lr| < CR}™ (4.16)

Thus,
Lh =d8dh+débh — Rh+{(n—1Lh+70h (4.17)

Now, consider
(Lh, BY = (8dh, b)Y + {(dSh, h) — {Rh, k) + (n — 1) ||B||* + (T o h,h)  (4.18)

Recall that we have Lh — 0 and h bounded, and we want to show that
h — 0. This should be possible as long as all the terms on the right hand side
are positive or tend toward 0. Integration by parts will work on the first two
terms, so we need to get a handle on the term (Rh,h). We will do this by
controlling the pointwise norm (Rh,h). First, we will break it up into three

pieces. Let h = hg + L@glg (so hyg is the trace-free part of h.)

Lemma 25.

(Rh, h) = (Rho, ho) + mi(r) + O ((trh)?) (4.19)
Where p;(r) is supported in the black hole region and is O (R;(n_l))

Proof: To begin, note that

(Rh,B) = (R (ho + (t;h) g)  ho + ——(”:)g ) (4.20)
= (Rho, ho) + ?(Rg, ho) + %(Rho, g) (4.21)
+%§*)j(ric, g) (4.22)
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E’J:ek Zh 83,6’;)6:;,85)

Thus,

(Rg,ho) = (g, Rho)

‘ _ t’l"(Rh())
- Zho ej:ek: Gj:ek)

gk

= D Kjiho(ex, ex)
2 : ik
= —(n—Dtr(hy) +

2

bounded. 1

The following lemma allows us to control (Rhyg, k).

Lemma 26. (Besse) Let

@= sup ———————(Rho’ho)
{ho|trho=0} |h’0|2

be the largest eigenvalue of R acting on SE. Then

a < (n—2)Knaz — TiCmin

47

Now, we have that (ric, g) = s, which is uniformly bounded. Furthermore,

if we take an orthonormal frame (e;) which diagonalizes the curvature tensor,

(4.23)

(4.24)
(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

Where p;(r) = Zm(d + Kjp)holew, ex) = O (R.—(”_U) since Ay is uniformly

(4.30)

(4.31)




T
|
|
| Proof: Choose some trace-free 9 such that Ry = an. Since we are working
! pointwise, we may assume that we are using an orthonormal frame in which
1 is diagonal, and that n(e;, 1) = m1 = sup [ny,] = 1.

¥

We have that Rn = an, so

¢ = anm = Rn(er,er)

| = ZW(R(elaez’)ehei)
i
| = Z i1
i1

== ZniiKmam - Zn@i(Kmam - Kl@)
i£1l il

< Kmaw(trn - 7711) + 7 Z(Kmam - Kli)

£ 171
= (’ﬂ - 2)Kma.m - Z Kl‘i
£l

S (n - 2)Km¢m: - T?:Cmm

Lemma 27. As i — oo, we have ||trh)|z2 — 0

Proof: Recall that

L(h) = D*"Dh — 2R(h) + rico h+ h o ric + 2(n — 1)A (4.32)

We have that trRR(h) = (ric, h) and trD*Dh = Atrh. Thus, i

2 I
trL{h) = Atrh —2(ric, h) + 2(n — 1)trh + ftrh i)

{l

A(trh) — 2(z, h) + 2(n — V)irh i
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Thus,
Altrh) + 2(n — trh = trL(h) + 2(2, h)

Integrating both sides against {rh gives us .

ltrh|? < (Atrh,trh) +2(n — 1)||trh|®

(trL(h) + 2(z, h), trh)

A

[erLh) + 2(z, B - [l

< (er Ll + 211211 - 1131 Il

Thus,
[Erhll < [ler LI+ 21211 - [|A]

(4.33)

(4.34)
(4.35)
(4.36)

(4.37)

(4.38)

which tends to 0, since ||z|| and || LA|| — 0 (because L < 'L?), and ||A] is

bounded. 1

Now, let U, = {z|r(z) < p} be a tubular neighborhood of the totally

geodesic core 1™ Vs, and let M = M; — U,. We will fix p < R; = infj, Rf

below. Note that 14, has ¢ connected components, where g is the number of

cusps of N,
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By Lemmas 25 and 26, on M/.

(B(h),h) = (R(ho), ko) + i + O ((trh)?) (4.39)
< {(n— 2)Kimeg ~ TCmin) |hr2 + i+ Ciltrh? (4.40)
= (~(n—2)+(n-1)+O0@R"™) A (4.41)
+ui + Cy[trhf? (4.42)
< (L4 CoRy™) [h)? -+ s+ Cultrh)? (4.43)
Now consider
(Lh, B)dV = / (6dh, b) + (dSh, ) — (Rh, h) (4.44)
+(n— D)k + (o h,h) dV (4.45)

- f |6BJ2 + [dh|? — (Rh,B) + (n— 1)[BP  (4.46)

+(rohh)dV + [ Q(h,0h)dA (4.47)
A,

Here, Q(h, 0h) is the boundary term from the integration by parts. It is a
fixed quadratic polynomial in A and its derivatives, Choose some ¢ > 0. By

our estimates on (Rh, h), and assuming that 7 is large enough that |7;| < ¢ and

L4 CoR™™ < (4.48)

ro] S
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we get that this last quantity is A

> /M - (-’;H) B2 -+ (n — D2 dV — Gy /M (irh)? 4V (4.49) !

-~ / pdV + | Q(h,0h) dA (4.50) j
Mo oL, '

Now, y; is O(R] ™) and supported on a region of bounded volume(the black

hole region) and by the previous lemma |[trh;|l;2 — 0, so we may choose i

large enough that the previous quantity is

n
> [ = (G e) IR+ o= DIAF a2 Qs onaais)

— (" _q_ 2 9%
- (2 1 E) /Mp Ih[* dV + pr(h,ah)dA 2 (4.52)

We also have that

fM p(th h)dV < % ( ]M ) |Lh|*dV + /Mp |h|2dV> (4.53)

and

Q(h, Bh)dA
TR

< CVol(aU,) (4.54)

since we have C%° control over the hy’s. 3
|

Combining all this information gives ;J

1 1) 3

- / LR dV + CVol(oU,) > (— —e— —) f B2 dV -2  (4.55)
2 Joe ) 2) Jase

where we can make € > 0 arbitrarily small by making i large. i

By assumption, |[LA[/e — 0, so we have that f,,, [LR{?dV — 0. Re-
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mark that inj(ol,) = O (j%) Thus, if we choose a sequence p; such that
2 — 0, we'll obtain that f,,,, |k/2dV tends to 0. Since S§* C L2, this gives
us uniform convergence of the /4;’s on any set whose injectivity radius remains
bounded below. Thus, by a diagonal argument, W(: can find some sequence r;
such that h; converges uniformly to 0 on M™ anci = — 0

Now, let us examine what is happening on each component of i, the
complement of the set M™. By construction, the core tori are collapsing to
points, so any neighborhood of these tori is degenerating to a line segment.
Since we want to have a nice limit, we lift everything to finite covers in order
to “unwrap the collapse.” (c.f. [And2].) Choose a sequence of points p; in a
core torus. Since inj(T'(r)) = O (%), by lifting (¢4, g:, ;) to an [%’L]-fold
cover, where [ ] is the greatest integer part function, we will get a sequence of
manifolds whose injectivity radius is bounded away from 0.

By definition of the C** norm, the G*“-norm of these manifolds is bounded,

so we get a limit manifold (Mpg, gggr). Clearly the h;’s lift to the finite covers

too, so we get lifted forms h;. These h; satisfy

|Bdllas < C (4.56)

on the lifted manifolds (14, §;). Thus, given o/ < , and § < §, we can extract
a subsequence to get a limit h € S;“,‘“r. Note that A must be 7! invariant
and satisfy Lh=0. |

If |r; — r4| is uniformly bounded, the torus T(r;) stays within a fixed dis-
tance of the core torus for all . Thus, the core torus can always see the region

on which h; is tending uniformly to 0. We can therefore take a pointed limit
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1
|

based at p; € T'(r;), and conclude that A = 0 if r > 7,. By analyticity of
infinitesimal Einstein deformations, this leads us to conclude that % is iden-
tically 0, giviﬁg us our contradiction. Thus, we shall assume that r; — co.
This gives us that the limiting manifolds (M BIH, ;B r) are complete. We are
going to work at an infinite distance from the coﬁformal infinity of M,, so we
can drop the weight factor §. It will also be understood that we are working
on the lifted manifolds, so we will suppress the tildes.

At this point, we would like to say that since h;(r;) — 0 and r; — o0,
this forces our limiting sequence to have

lim [|A)] = 0 (4.57)

=30

We could then apply the foﬂowing results to get our contradiction:

Proposition 28. h is tangent to the space of T™ ' -invariant AHE metrics on

M

Proof: This is nontrivial, since spaces of AHE metrics are infinite-dimen-
sional, and so vector fields do not necessarily integrate. By [And3], however,
we know that if the AHE manifold (M, g) has a C? conformal compactiﬁcat‘ion,
then infinitesimal deformations do indeed integrate. The function p = r~! is
certainly 0 exactly at the conformal infinity of (Mgg, ggx), and with respect

to the compactified metric,

dr

2

T vg ) (4.58)

|dpfy =

is nonzero on the boundary, so p is a defining function. Near the boundary,
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the compactified metric is

dr? V(r)

g = 92 R .
I=pm db* + gpa-2 (4.59)

¥

One may replace r by the coordinate s, where

ds 1
— = 4.60
dr  ry/V(r) (4.60)
To get
g =ds’® + F(s)d6* -+ gpn-2 (4.61)

and a short calculation shows that F' is C? up to the boundary. 1

Proposition 29. ([Andi], c.f. also [BB]) Let g be a complete T -invariant

AHFE metric on the solid torus D? x T" 2. Then g 45 a black hole metric.

Proof: All such metrics are covered by S' x R" “-invariant metrics on
D?* x R*2, All we need to do is to show that this cover is the universal
covering of the black hole metrics. The analysis (relegated to the end of the
chapter) shows that up to rescaling, there is only one negative scalar curvature
51 x R*~2.jnvariant Einstein metric on D? x ®* 2, which must therefore be

the black hole metric. 1

Proposition 30. Let g, be a curve of complete T™ -invariant AHE metric
on the solid torus D? x T*2. Then g; is completely determined by gy and the

curve v; consisting of the conformal infinities of the g,’s.

Proof: By the previous proposition, all the g’s are covered by (D* x
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Rn_2 3 ‘&BH)' ThU.S,

_ JbH
0 _Ft

(4.62)
where Ty C Tsom(ggy) is isomorphic to Z*2. Consider the “defining function”
p =17 for gpy(note that (D? x R*2, p*Gpy) is not a compact manifold with
boundary.)

Then the conformal infinity of (D? x "2, p?gpy) is a flat S* x R*™2. The
action of I'; commutes with multiplication by‘ p, so the conformal infinity of g,
is the quotient of the flat S* x R"~? by I';. Conversely, the conformal infinity
v, of g, also determines the group G, = I'; -+ v; up to conjugacy, where

Rﬂ-—-l
” ’Yt - G't

(4.63)

Given an initial gy, we can identify vy with the $' in the universal cover. This
determines v, for ¢ > 0, and thus I'; determines ¢;. 1

Combining these propositions gives us the following corollary:
Corollary 31. A T" linvariant AHE metric on o solid torus has no non-
trivial infinitestmal deformations for which

lim [R(r)| =0 (4.64)

o0

Proof: Since it integrates, it is tangent to curve of deformations. Irom the
invariance, we know that this curve must lie in the space of black hole metrics.
Since lim,_,o0 |A(r)| = 0 it must be a curve which fixes conformal infinities.
Thus it is a constant curve, and so h=0. 1

Unfortunately(for us,) we cannot apply these propositions directly; the
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problem comes from the fact that the h;’s tend to A uniformly on compact
subsets, and we cannot relate the rate of convergence to the size of the compact
set. Thus, we cannot know that r; is included in each set. Consider the

¥

following example: Let I = [—k, k], and

fk: Iy — [—1,1]—

T
k
Clearly, || f(z)]lre — 0 as k& —> 00, so one would expect that the fy's
are tending toward a constant function. This constant may, however, depend
on the basepoint zy; let zx = ak, where —1 < o < 1. Then the (pointed)
“ Gromov-Hausdorff limit of the triple (Ix, z&, fx(z)) will be the triple (R, 0, o).
Thus the limit of the f is indeed a constant function, but the constant depends
on the choice of the basepoints x.
The issue here is that the manifolds I}, are converging to their limit faster
than the f; are converging to theirs, so the convergence cannot be made uni-
form on the whole set. |

More precisely, we have that

fol@) — )] < fyfé(S) s (4.65)
A (4.66)
< Millzelz — 9] (4.67)

Therefore, if we choose points zz,y, whose distance is increasing fast

enough, we cannot conclude that fi(z) and fi(y) have the same limit
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On the other hand, if we require that || ff||ze — 0 more rapidly than any
two points can separate, say by demanding that diam ()| fi|lz= — 0, then

we can get that

A

(fe(@) = @) < M fillee

z—yl (4.68)

no matter which basepoints we take.

Let us now attempt to adapt this argument to the operator L. As we will
see below, on T l-invariant deformations h, the components of Lh = 0 are
asymptotic to FEuler equations. For the components (Lh)y,, this equation has
a nontrivial Oth order term, so all of its solutions either blow up or decay to

0. Its other components are asymptotic to equations of the form

Lf=rif"4nrf =0 (4.70)

which have constant solutions. This leads to a problem for us, since we could
have the same situation as above; even though f(r;) — 0 and f tends to a
constant, we cannot conclude that f — 0 everywhere. This is where the
log(R;) factor comes in.

By use of an integrating factor([BdP]), we may rewrite this as

f(r) x/?—nl?;/s“_gl}f(s) ds dr (4.71)




Thus,
| |f(r1) — f(ra)] = 2 ?—"1;1- / s"2Lf(s) ds dr (4.72)
< % /: O () dr (4.73)
| 2]l oo ra

Our situation is a bit more delicate, since we are not working exactly with
this operator, but with perturbations of it. Furthermore, since we need to use
the rate at which the h;'s converge, we cannot just work with limits, but must

« Tather get precise bounds on how things behave asymptotically.

We now want to analyze the system of ODE’s that these deformations must

satisfy. The proof of the following proposition consists of a long calculation,

and is therefore relegated to the end of this chapter.

Proposition 32. Say we have a black hole metric g. Let e = /V5,, ¢y =

S=04., and e; = 18, , where the 8, ‘s, 3< 3 < n form an orthonormal basis
VvV ;i 7 r Uy [
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for the core torus. Then if b is S* x T 2-invariant, Lh = 2D,P,h is given by

(V)2

\ 2n —2)V

(Lh)un = Ahy +h11( v T (n 3 ) ) (4.76)
i )
i VI 2
i —hay ((21/? + 2K12) ' (4.77)
5 V
| —QZ ((—2) + Km) Pk (4.78)
i w2 N
1 Vf‘z VN2

(Lh)se = Ahs +h22(2 V) — hay ((21) -|-2K12) ~ 23" Kaphi(4.79)

_ k2

N2 2 —9
| (L) = Ahiy+ g ((‘Q L 2 - WV, lez) (4.80)
where
n—2 ;

If 1 > 2, we have

2V

(Lh)sy = Ahyj+ —5(his — hur) — 2;Kkjhkk (4.82)
(Lh); = Ahy + by ((Z:)z + +T21)V + 2K1j) (4.83)
(Lh)o; = Ahgj + hyy (% + rK?' -+ 2K2j) (4.84)
and finally, if 4,7 > 2, we get
(Lh)i; = Ahg; + hy (%2— + 2K5j) (4.85)

This gystem seems unmanageable for the black hole metrics, but we can

get around this by noting the following two facts:
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Proposition 33. Let go be a complete hyperbolic cusp metric “

g = 172dr* 4 grn- (4.86)

! ¥

where gr-1 1s an arbitrary flat metric on the torus with orthonormal basis 0,5
. By .

2<73<n. Let (el =18, e; = —il;j > 2) form an orthonormal frame for gg.

Then if h 4s T™ ' -invariant, Loh = Lgoh is given by the following formulas.

i

(Lh)i1 = Ahy +2(n — 1) Ay (4.87) Z

and if j,k > 2,

) (Lh)jj = Ahjj + 2trh — 2h11 (488) 3‘!
(Lh)1; = Ahyy +nhy {4.89)

where A = —r202 — nrd,. i

Proof: Set V(r) = and K, = —1 4 ¥ above. 1 " i
Now that we have the much simpler form of L for go, we must relate it to !
the corresponding operz‘)Jtor on the black hole metrics. We will use C* estimates
instead of Holder ones, since they are easy to establish, and we do not need
the stronger norms; we already have the existence of the limit form . The C* i

norms will be calculated in the same harmonic coordinates as the S&* ones.
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Proposition 34. If ||h|c2 is bounded and T" *-invariant, then

lL.ch — Lyih

|z = O(r— (1) (4.91)

£

Proof: This can be seem by inspection of the formulas, remarking that

Vir)=r*- (4.92)

Thus, it K, represent the sectional curvatures of the metric,

11+ K| = O(r— (1) (4.93)
.1 — (Z)Q = O(r— 1) (4.94)
’1 — TKZ = O(r~(+=1) (4.95)

Thus, if A is T '-invariant and bounded in C?, we get the following sys-

tems of equations for Lh = 0

Ahyy +2(n — 1)hy = un (4.96)
Ahg; + 2trh — 2hay = g (4.97)
Ahyj +nhy; = ugy (4.98)

Ahi; = (4.99)

where 4,7 > 1, and |u| = O(r—(*~1})
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Recall that we want to prove that

li}m |h{r)] =0 : {4.100)

The above system is uncoupled, apart from ‘the hy; and the trh in the
equation for the diagonal terms. We will begin by showing that both of these
terms are Q(r—®-1),

The equation for hjy is a nonhomogeneous Euler equation, with indicial

equation
ol —1)+na—2(n—-1)=0 (4.101)
Which has roots
—n—~1) — —1)2 2 — 1
o =~ \/(”2 Pr8n-1) (4.102)
—(n— —1)2 o :
oy — (n—1)- \/(n2 )2-+8(n—1) (4.103)
(4.104)
Note that
a < —(’H, — 1) (4105)
0 < ay {4.106)

Then, by variation of parameters, the general solution is

1 (r"‘l /uu(r“l‘“l) dr—r“ifun(r"l‘“?) dr)
Qg — ¥y

(4.107)

h]l = Cl?"al 4 Cg'i"a2 -
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It is clear that the first, third and fourth terms are O(r~™"~%), Since hy; is
bounded, ¢; = 0, Thus,
hi = O (r=®=1) (4.108)

¥

We can obtain an equation for trh by adding.those for the (Lh) j; 8. This

gives us the equation
A(trh) + 2(n — Dtrh = Z’U}ﬁ (4.109)
i=1

which is of exactly the same form as that for 4,;. Thus, we can conclude that
trh = O (r~(n=1), |

"These two results give us that the equation for k;;, with neither i or j equal
to 1, is

Ahy; = O (r~(=1) (4.110)

We will deal with this in a second, but first, we must examine the equation
for hij, § > 1;

Tzhlj + n?"hlj - nhlj = Uy, (4111)

This is once again a nonhomogeneous Euler equation, with indicial equation
& +(n—1Na-n=0 (4.112)

This gives the two roots

_—n-1)+ (n—1)2+4n:

a 5 1 (4.113)
a2=—(n_l)_v2(n_1)2+4n=~n (4.114)
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Thus, the general solution is
hij =cir+eor™ n_——l—ll (rfulj(r“g) dr — r"”/ulj(r”“) dr) (4.115)
’
Once again, since wu; = O(r~ 1Y) and hy; is bounded, we see that hy; =
O(r—tn=1),

"Thus, all that is left is to examine the equations for Ay, 4,5 > 1. Although
the equation that they satisfy seems to be the simplest of the ones that we
have looked at, the h;;’s are in fact the most subtle case. As we mentioned
above, the issue is that the equation Ah;; = 0 is an Euler equation with no
Oth order term. Therefore, there are constant solutions, which neither biow
up nor go to zero as r — 00.

Since we want to invoke the rate at which Lh; tends toward 0, we will now
be working with the A;’s rather than h. Thus, we will need. to quantify the

rate at which the h;’s are converging to their 7 l-invariant limit.
ging

Let

N 1
W) = 7 fT Il o)A (4.116)

be the average of h over the torus T'(r). Then we have
Proposition 35. ||h — h(r)lles = O (%)

R;

Proof: We have

. 1 .
sup |hi(r,z) — hy(r)| < AT an_l(T) |hi(ry ) — Ry(r)| A (4.117)

z€T(r)

Now, we know that h; is the lift of a form defined on a torus of diameter
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2

O ( ]—;—) Since ||Aif|k,e < C, we know that the inﬁegrand must be less than C

times the diameter of the base torus, so it is also O (ﬁ;) We have assumed

~ that k£ > 3, so we can repeat this for the first and second derivatives of ;. W

£
We know that on our unwrapped black hole metrics, we have

LAY = Lo(h) + O@r— (=) (4.118)

Finally, by assumption,

Lh = 0( L ) | | (4.119)

log |0

1
w0 (10g (mka(om) (4120)
(4.121)

where the minimum in the last line is taken over all the cusps of (M,,, g5,). The
problem here is that we need to get a bound involving the R; of the particular
cusp end we are working on. The hypothesis that o is weakly balanced implies
that

log (m;;ix L(crf)) < ¢ log |l (4.122)

which implies that

L(h) = o (logzﬁ)) (4.123)
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Putting this all together gives us

Lo(he) = Lpg(h)+0 (r® 1) (4.124)

= Lpu(h)+0 (r® 1) {0 (}%) (4.125)

= 0 (loglRi) +O(r =Yy 10 (%) (4.126)

Now, dropping the #’s and the hats, we see that if a,b > 1

2Rl + nrhl, = eq (4.127)

where

—(n— 1
eqy = O (%) +O (r ( 1)) + 0 (IOgRi) (4.128)

Recall that we know that lim;. o hs(r;} = 0. We want to show that this is
true for any sequence p; < r; with p; — oo.

Using an integrating factor, we get

|has(7s) — hap ()] < e / leas(s)|s™ 2 dsdr (4.129)
P rogh— 1 r
< i 7‘_” (Cl /1~+ R ds + Cs /M 571 ds (4.130)
r Sn—2
+¢; g ds) dr (4.131)

where ¢; — 0. Then this is

- logr;
< (n—1) . i
< Ca + Cyr; gt ¢ fog I,

(4.132)
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Thus, we can conclude that

TILI& |A(r)} =0 (4.133)
E)

So by corollary (31) we finally have our contradiction, and therefore the
main estimate. N

Finally, to finish this chapter, we extend the invertibility of L, = 2D,&,
to a neighborhood of our approximate solution. Below, B(z, €) will refer to a

ball in the SF**-topology.

Proposition 36. There exist ¢ > 0,A > 0 such that for all ¢ large enough
and weakly balanced, the operator L, is invertible on the ball B(g,,¢€), and for
all f € ®(B(gq,€)), we have that

1(Lg) " fllias < Alog o]l fllo-208 (4.134)

Proof: If not, there is a sequence of g;’s and ¢,’s with ||g; — g, |lk,as — 0,

and a sequence h; € Sf’a(Mi, ¢i) such that
|Pillk,0 = 1 (4.135)

but
log |o[[| Lg hillk-2,06 — 0 (4.136)

But then we can repeat the proof of the previous proposition to obtain a
contradiction, B

Now, as an appendix to this chapter, we will finish the uniqueness proof for
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the black hole metrics and perform the calculation of the equations satisfied
by their 7" invariant infinitesimal deformations.

Rest of Proof of Prop 29: Let g be a complete S* x R*%-invariant
Einstein metric on D* x R*~2 with scalar curvatu;e s = —n{n —1). Then we

can take coordinates (7, ¢1, ..., ¢p_1) such that

n—1
g=d? +>  fi(r)de? (4.137)
i=1

This choice of coordinates is somewhat awkward, since ¢ is a circular coor-
dinate, while all the other ¢;’s range over all real numberé. Nonetheless, this
choice will keep our formulas simple. Note that we can assume each factor has
a warped product form because the intrinsic metric on each one is flat. We
will associate the index 0 to the r coordinate.

As in our proof of the 2r-theorem, it is easy to see that in these coordinates

£
Ky = _f_J (4.138)
J
and if 5,k > 0, 7 £k,
ik
Ky = _fj-f;g (4.139)
i
Then ric= —-(n — 1) g leads to the equations
n—1 pp
Zfﬂ— =n—1 (4.140)
and if & > 0,
" 14
}& + %’“ e —1 (4.141)
£ gk 13T




Let us define v; = j—;i and 4 = ) v;. Then

’ Ji L/,

"
_ 3 2
= ==y

2
fi
and so

and the equations for £ > 0 become
vy uvg =n—1
If we add all of the equations for £ > 0, we get

u +ut=(n— 1)

(4.142)

(4.143)

(4.144)

(4.145)

(4.146)

(4.147)

This equation has the trivial solutions w = +(n — 1). In this case, we find

that the vy’s satisly the equation
vyt {n— Doy =(n—-1)

which has the solution

v = =1 -|—.cke:F(”_1)r
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(4.149)




Since v = (log fx)', this gives us

C;

log fr, = +r 1eq:r + Ak (4150)

L

n_

Now, recall that we want the ¢; coordinates to bound a disk, so we must

have lim,_,o f1(r) = 0. But no matter how we choose A; or c1, we cannot make
this happen. Thus u # +(n — 1).

Assuming u is not identically n — 1, we get

du

—m——(n ) F = dr (4.151)

Partial fractions or a hyperbolic substitution lead to
u = (n—1)coth ((n — 1)(r — ) (4.152)

We may set 7o = 0 by allowing the r coordinate to range from 7, to oo,
where 7, will be specified below. Then we get the following equations for each

k> 0:

vy +uvy = (n—1) (4.153)

or

U+ (n—1)coth ((n — V)r)vg = (n — 1) (4.154)

Using an integrating factor, this becomes

(sinh ((n — 1)r) vx) = (n — 1)sinh {(n — 1)r) + cx (4.155)
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or

vy = coth ((n — 1)r)) + ¢xesch ((n — 1)7) (4.156)

As above, v, = (log(f%))', so integration gives ,

log(fx) = . i 7 log (sinh ((n — 1)r)) (4.157)
ncf ~ log [esch ((n — 1)r) + coth ((n — 1)r)| + Ay (4.158)

Finally, we get

_ sinh' % ((n — 1)r) =
fo= B ((1 + cosh ((n — 1)7‘))“?6) (4.159)

The By’s can be absorbed into the d¢’s by rescaling, so they all give equivalent
metrics.

We want the ¢, factor to bound a disk, so we must have f| -~ 0 asr — r.
This can only occur if ry = 0 and ¢; < —1. For the metric to be smooth, we

must also have that f/(0) is well-defined.

flr) =w(r)filr) (4.160)

which is equal to

1

sinh! " ((n — Dr) )=
1+ cosh((n — 1)7~))01) , (4.161)

(coth((n — 1)r) + cresch((n - 1)r)) (

so for this to stay bounded as r — 0, the exponent of the sinh({n ~ 1)r) must
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be equal to 1. This gives us

;icf =1 (4.162)

80 ¢y = —(n — 2). To determine the other c’s, note that all the curvatures
must be bounded at r = 0 and

Ky, = wmu (4.163)

= coth?((n — 1)r) (4.164)

+(e1 + ) coth((n — 1)r)esch((n — 1)r) (4.165)

+erexesch?((n — 1)r) (4.166)

_ cosh?((n — 1)r) 4 (e1 + ) cosh((n — 1)7) + ¢ycp (4.167)

sinh®*((n — 1)r
Now, one can see by taking a Maclaurin series expansion that necessary con-
dition for this to be bounded is that
1+ cp+ o +ecy = 0 (4168)
or
epler + 1) = —(¢e1 = 1) (4.169)

Since ¢; # 1, we get that ¢, = —1 if £ > 1. Now, we have proved that if there
exists an S' x R*~2-invariant Einstein metric on D?xR*? with s = —n(n—1),
it must be unique. Thus it must be isometric to §zgy. 1

Proof of Proposition 32: Recall that

Lh = D*Dh — 2Rh (4.170)
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where
D*Dh = —tr(D(Dh)) = =~ (Ve,Ve,h — V... 1) (4.171)
k ¥
and
RR(X,Y) =) h(R(X,ex)Y, ex) (4.172)
k

We will also need the following covariant derivatives: if j,k > 2 and f = vV,

we have
Vezej = Vejeg =0 (4173)
Veer=Veer =V, ;=0 (4.174)
Vee2 = —f'e; (4.175)
Veer = —5;“131 (4.176)
Vee1 = fleg (4.177)
Ve 1 e; (4.178)

where

F=vVv (4.179)
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Therefore,

We will calculate D*Dh explicitly using the Leibniz rule; let

50

We have that

D*

Veep = f
Ve e = 5kf
Ve €l = —f'e}
Vel = —%ej

h = E hapes e
a,b

D*Dh =" D*D (hueie})

a,b

(4.180)
(4.181)
(4.182)
(4.183)
(4.184)
(

4.185)

(4.186)

(4.187)

==Y (Ve Ve, (haele))) + D Vv,,c; (haehe)) (4.188)
k : k

=— Z ((exerhap)enes + 2(exhas) Ve, (eher) + hap Ve, Ve, (eher))  (4.189)
P

_ (f’ + (n— 2){;) Ve (hapeier) (4.190)

74




Since the hgp's only depend on r, this gives

—(e1e1)haseres — 2(e1hap) Ve, (ehel) — Z( ab Ve, Ve, (€rer))
k ¥

(74 0-21) (@hateies + hava i)

Since Ve el =0 Va, we get

(st + (£+ 025 @) e

~hav Y, (Ve, Veyel)eh + 2(Verel) (Vey€0) -+ €5(Vep Var))
k

The first term is

= —(ratsona)+ {5+ (0 -2)1) Ok i
9 .
= (P AT 7 n-91,)

= Alhg)eie;

where

f2
A= 207 (2ff' F(n- 2)7) ,

(4.191)

(4.192)

(4.193)

(4.194)

(4.195)

(4.196)

(4.197)

(4.198)

'To calculate the second part of D*D(hgyete;), we must consider different

cases corresponding to different values of @ and .




S VaVact = ~r¥ei- 3 (L) (1199)
k

k>3 Ny
- — ((f’)2 + (n —2) (%) ) et (4.200)
2 (Ve Vees) = = (f)e (4.201)

k

and finally, if 7 > 3, this gives us

> (Ve Vees) = - (i)zeﬁ (4.202)

k

Thus, exploiting the symmetry of b, we get

D*D(hHGTeI) = (AILII)ETGT . (4203)
—2h4y (Z(Vekvekﬁ”{)fi? - (veke’;)(v%e;)) (4.204)

k
= (Ahll)efef (4.205)

+2hy3 ((f’)2 + (n—2) (%) 2) erey (4.206)

2
—2hy (f’)ze§e§+(£) ;e;te}:) (4.207)
D*D(hggt‘};e;) = (Ahzg)e§e§ (4208)
—2hgs (Z(V%vekeg)eg + (Vekeg)(veheg)) (4.209)
k

= (Ahg)ese; + 2hay (') esel — 2hon(f)2erer (4.210)
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and if § > 2,

D*D(hjieje;) = (Ahyj)eie; (4.211)
2Ny (Z(Vej\?’e,ce;)e; + (Vekc;f)(veke;)) (4.212)
- .
Ay |
= (Ahjj)e;e;-’-Fthj (;) e;e;f (4.213)
f 2
—thj (;) ETBT (4.214)

For the off-diagonal terms, we have

D*D(h]_gefe{) = (Ahlg)efez (4215)
—h12 > (Ve Veeb)es (4.216)
k

+2(V6ke;)(vek€;) + GT(V%VJ%E;)) (4.217)

(4.218)

which gives us

2
(Ahig)ele; + has ((f')2 +(n—2) (%) ) eres + 2h1a(f') elel + hia(f) e} el
(4.219)

or equivalently

((Ahlz) + P12 (4(]”)2 + (n— 2) (é) 2)) eles (4.220)

7




fat

If 5 > 2, we get

D*D(hyclel) = (Ahj)elel (4.221)
1y (Vo Vert)e; +2(V0,e}) (Vi) (4.222)

+e{(%'%ve,ﬂe;)) (4.223)

= (Ahlj)e”l‘e; (4.224)

+hy; ((f’)2 + (n—2) (% 2) ee; (4.225)

2 (%)2 erel + hy; ({)ge;e; (4.226)

which is equal to

=3 |~

((Ahlj) + hyj ((f’)2 4 {n + 1) (

and

D*Dihyjeses) = (Ahg)eses (4.228)
—h3j D (Ve Ve, €3)6 + 2V oye5) (Vorel) (4.229)

k
+e§(vekvek€;)) (4.230)

2
= (Ahzj)B;B; + hzj ((f’)z + (—) ) 636; (4231)
Finally, if ¢, 7 > 2,7 # j, we have

9 .
D*D(h”e:e’;) = ((Ah«,jj) + th ("‘") ) 8:6;‘ (4232)
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The reader will be glad to know that the calculation of BA is much easier;

Rhiej e;) = > h(R(ej,ex)e;, ex) (4.233)
k

¥

= Y Kpjhu (4.234)
k

with the convention that K;; =0, and if ¢ # j,

i Rh((z‘i, Ej) = Z h(R(Bm, ek)ej, 6;‘,) (4235)
| k
= h(R(BM ej)ej, Bj) = —-K@'jhij (4236)
We are now in a position to write out all of the components of Lh. J
@ e |
(Lh)i1 = ARy + 2hy ((fr)z +(n—2) (;) ) ‘ (4.237) J
AN
—2hgs (F)* + Kiz) =2 ((}") + Kﬂe) hei (4.238)
k>2 . ‘
(Lh)es = Ahgy+ 2hoa(f')* = 21y ((f)* + K1) (4.239) !
j -sff
~23 " Kokhu (4.240) i
k>2 ' W
i 2 |.Il
(Lh)lg = Ahlg + hlz 4(]0’)2 + ('I’b — 2) (‘_?"H) + 2K12 (4241) il}ull
{F
;“|-’
i
|
i
‘f::|
i
1
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5> 2 we have

2 2
ey = Angong (1) =2 (£) =23 Kighus 2m)
£\
(Lh)y; = Ahy; + hyj ((f')z +(n+1) (;) + 2K1j) (4.243)
£\?
(Lh)o; = Ahgy -+ ha ((f')2 + (;) + Q-KZj) (4.244)
and finally, if 4,7 > 2, we get

(Lh)g; = Ahy; + 2hi; ((f)? + Kij) (4.245)

Replacing f by vV and noting that (vV) = 5% gives us Proposition 32
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Chapter 5

Conclusions

In this chapter, we conclude the construction of the AHE metrics on the M, ’s.

Proposition 37. If lo| is large enough and o is weakly balanced, then the
manifolds M, admit an asymptotically hyperbolic Einstein manifold with the

same conformal infinity as N.

Proof: Let § € (232, n—1). There is some ¢ > 0 such that on the ball

B(g,, ¢), the map

N s (5.1)

has an invertible linearization and

1(D2) 7" fllk,as < Alog || f]lk-2.0 (5.2)

Thus, by the inverse function theorem([Dieu]}), & is invertible on B(g,, €),
and maps B(g,, ¢) surjectively onto some 4 Sf_z’“ containing &, (g,). All
we need to show is that 0 € &. To do this, we will need a lower bound on the

diameter of /.
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Let B(®(¢-),v) C U. By our control on (D®)~" we know that &' is

Lipschitz with Lipschitz constant Alog|a|. Therefore,

S1(B(®(g), 7)) C Blgw, Alog o]) (5.3)

Thus if we choose ¢ = we will obtain that B(®(g,),v) C Im{®).

Alo€g|a|’
All that is left to do is to make sure that 0 € B(®(g,),v) for & large enough.

But [[®(gs) |-2,06 = O(lo]' ™), s0

19(95) — Ol 2,08 < Clof'™ < i ( ! ) (5.4)

logo]

for |o| large enough, since € and A are fixed. 11
Abusing notation slightly, let us denote these AIIE metrics by g,. Then
we have that, for any sequence of points p, which remain within a bounded

distance of a gluing torus

lim (Ma: go’npa') = (N: Q') (55)

[#| =00

in any of the Sf’“ topologies, where (N, g) is our original hyperbolic manifold.
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