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1 Introduction

In this thesis, we study stability of inviscid fluids in the Lagrangian sense.
That is, we look at how paths of particles diverge from each other under a
small perturbation of the initial velocity field. The more usual question of
stability is in the Eulerian sense, when one looks at how velocities at each point
diverge from a steady state under a small perturbation. We demonstrate, for
certain restricted types of flows as well as for some very particular examples, the
connection between these two forms of stability. In particular, we observe that
in many cases, Eulerian stability is incompatible with exponential Lagrangian
instability, although it is compatible with polynomial Lagrangian instability.

Several of the most important features of fluid stability, especially in the
incompressible case, are actually general properties of Lie groups with one-sided
invariant metrics. In finite dimensions, we can perform many computations on
such groups explicitly. For example, the geodesic equation linearized about a
steady solution is just a differential equation with constant coefficients, whose
solution may always be found explicitly. In addition, the Jacobi equation in
this case can always be written as two decoupled first-order equations, and this
makes them even easier to study.

There is a simple criterion for the Eulerian stability of a steady flow on a
Lie group; we verify that it captures nearly all instances of Eulerian stability
on a three-dimensional group. On the other hand, we compile some of the
known criteria for Lagrangian stability and demonstrate that they are much less
broadly applicable. Since these results all involve constant-coefficient differential
equations, we are able to avoid much technical machinery and prove most results
quite directly.

We finally list many examples of Jacobi fields and curvature tensors which
behave unlike what one might intuitively expect. For example, we have Ja-
cobi fields which grow exponentially despite having a strictly positive curvature
tensor (the Rauch comparison theorem only bounds the Jacobi field up to the
first conjugate point). We have geodesics along which the curvatures are both
positive and negative, and such that their Jacobi fields can oscillate, grow ex-
ponentially, or even grow polynomially. (Surprisingly, directions of negative
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curvature do not necessarily imply instability, due to the possibility of rotating
between directions of positive and negative curvature.) We conclude in the end
that, with the exception of curvature tensors which are negative-definite along
a geodesic, curvature is not a useful way to predict the growth of Jacobi fields.

The theory of geodesics on Lie groups is of interest primarily because in-
compressible fluid mechanics happens to fall into this category. V. Arnol’d
showed in 1965 that incompressible fluid flows are geodesics on the group of
volume-preserving diffeomorphisms Dµ when this group is provided with a right-
invariant kinetic energy metric. He conjectured that when the sectional curva-
ture in a plane section containing the tangent vector is negative, one should
have exponential divergence of geodesics. Since the group of volume-preserving
diffeomorphisms has many sections with negative curvature, one expects that
most fluid flows should be highly unstable, with small perturbations in the ini-
tial conditions leading to exponential growth of errors. As an application, he
used a simplified model of weather prediction, in which weather is viewed as the
small perturbations of a steady fluid flow (the tradewind current). On the basis
of this exponential growth conjecture, he computed that weather on the Earth
would be impossible to predict more than several weeks in advance.

Many studies after this fundamental observation focused on rather difficult
computations of curvature; in particular, finding the plane sections in which it is
positive or negative. We summarize some of these results, including Rouchon’s
Theorem that the only geodesics in Dµ with nonnegative sectional curvature in
all planes containing the tangent vector are the isometries. Thus we cannot ex-
pect to find many stable fluid flows by looking for those with positive sectional
curvature. We also compute explicitly the solution of the Jacobi equation for
isometries on constant-curvature discs, and find that most solutions grow lin-
early in time. Interestingly, if the disc is flat, all solutions grow linearly, while if
the disc has positive or negative curvature, some solutions are bounded in time.

Arnol’d also proved, using a very different method, an Eulerian stability
criterion for two-dimensional steady incompressible flows. This criterion is an
extension of the Eulerian stability test for finite-dimensional Lie groups, and
says that under certain conditions, all perturbations of the velocity field of a
steady flow remain bounded. Misio lek pointed out that there were fluid flows
with negative curvature in all planes containing the tangent vector but which
satisfied the Arnol’d stability criterion. This suggested that it was possible
for the velocity field of a fluid to remain close to its steady state under small
perturbations, but for the fluid particle paths themselves to diverge exponen-
tially from each other. In this thesis, we show that for certain classes of steady
two-dimensional flows, this is impossible: if the velocity field is stable in the
Eulerian sense, then the particle paths diverge at most quadratically in time,
not exponentially. (In many cases, the particle paths diverge only linearly in
time.)

We also demonstrate that even for the geodesics that one expects to be most
unstable (the ones with nonpositive curvature in every plane section containing
the tangent vector), it is still possible for the solutions of the Jacobi equation to
grow only linearly. We demonstrate this explicitly for the case of Couette flow,
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which appears in applications as a steady state solution of the viscous Euler
equations. Thus on Dµ, the sign of the curvature does not necessarily imply
anything about the growth of solutions to the Jacobi equation. So we cannot in
general expect to use curvature to determine whether incompressible fluid flows
are stable in the Lagrangian sense.

For a compressible barotropic fluid filling up a flat manifold, one expects
the Hessian of the potential energy on the diffeomorphism group to play the
same role in Lagrangian stability as the curvature of the volume-preserving
diffeomorphism group does for incompressible fluids. In contrast with curvature
on Dµ, we find that the positivity of the Hessian depends not on the velocity
field of the fluid, but only on the density function on the manifold. We derive
formulas for the gradient and Hessian with a technique involving Lie derivatives
which easily generalizes to many other situations.

We next give a precise criterion on the density function for the Hessian of the
potential energy to be nonnegative. Unfortunately, In the infinite-dimensional
case, the Hessian is unbounded, so the proof that positivity of the Hessian
implies stability (even locally) does not carry over. The obstacle is that the set
of conjugate points is dense along any curve which represents the motion of a
compressible fluid.

In one space dimension, for example on a circle, the Hessian is always nonneg-
ative, and is in fact strictly positive on a subspace of codimension one. For the
case of a constitutive law of the form p = Aρ3, we can write down a very explicit
solution of the linearized Euler equations, and thus examine the boundedness
of Jacobi fields. We find that for initial conditions lying in a codimension-one
subspace, the Jacobi fields are bounded; the remainder grow linearly in time.

We also compute the solution of the Jacobi equation for some steady flows
in two dimensions: a uniform motion on a torus and a rigid rotation on a disc.
In the first case, the Hessian of the potential is nonnegative; in the second, it
is strictly positive and bounded away from zero. We find a precise criterion
on the initial conditions, in each case, to ensure that the Jacobi fields are all
bounded in time. We find that compressible fluid flows seem more stable under
perturbations than corresponding incompressible fluid flows, in the sense that
for two steady flows with the same velocity field, the compressible one generally
has a wider range of initial conditions that lead to bounded Jacobi fields.

We end by suggesting natural possibilities for further study. Firstly, we can
study higher-dimensional incompressible and compressible flows, which seem
to feature different phenomena of stability than one- or two-dimensional flows.
Secondly, we can also study more general potential functions, such as those
corresponding to the motion of incompressible elastic solids, or to surface tension
for incompressible fluids with a free boundary. Finally, we can apply methods of
fluid mechanics to the diffeomorphism groups of general Riemannian manifolds
and hope to say something about their geometry.
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2 Stability in a finite-dimensional Lie group

In studying Lagrangian stability of incompressible fluids, we must work with the
geometry of the group of volume-preserving diffeomorphisms. Explicit compu-
tations in this group are quite difficult, partly because the diffeomorphism group
is infinite-dimensional, and partly because the formulas all involve a nonlocal
operator (the solution operator of a Dirichlet or Neumann problem). Thus it
is difficult to test conjectures with explicit examples. However, many of the re-
sults that are known about the group of volume-preserving diffeomorphisms are
actually special cases of more general results on Lie groups, of any dimension.
It is therefore helpful to study those features of stability theory which are true
on finite-dimensional Lie groups, since there are many well-known examples.

The presentation here is unusual in that it is focused on the Jacobi equation
along a stationary geodesic; this is the primary question in the stability of fluids,
but in the general theory of one-sided invariant metrics on Lie groups it has not
held great interest. We will follow Milnor [9] in notation and in the emphasis
on explicit computations in three dimensions, where a rich source of examples
can already be found.

The results presented here find application apart from fluid dynamics. For
example, along a stationary geodesic, the Jacobi equation is very easy to solve
explicitly, as we demonstrate. We thus immediately have many examples of
Jacobi fields for which the curvature operator has both positive and negative
eigenvalues; the simplest examples in symmetric spaces involve curvature of only
one sign.

Let G be a Lie group of dimension n, and let g be its Lie algebra. Suppose
that G is equipped with a left-invariant metric 〈·, ·〉. Let {E1, . . . , En} be an
orthonormal basis of g, which we also identify with the left-invariant vector
fields on G. Denote the structure constants by αijk, so that

[Ei, Ej ] =
n∑
k=1

αijkEk

IfX and Y are both left-invariant vector fields, then so is the covariant derivative
∇XY . The connection is given by the standard formula

〈∇Ei
Ej , Ek〉 = 1

2 (αkij + αkji + αijk)

See Milnor [9] for more details.
Any curve γ : (−ε, ε) → G in the Lie group with γ(0) = id corresponds to a

curve X : (−ε, ε) → g in the Lie algebra, by the formula

dγ

dt
= DLγ(t)X(t) (1)

whereDLg : g → TgG denotes the differential of the left-translation map Lg : G→
G at the identity. When G is the configuration space of a mechanical system,
the curve γ in the group G is called the Lagrangian picture of the system,
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while the curve X in the algebra g is called the Eulerian picture of the system.
The equation (1), an ordinary differential equation on G, always has a unique
solution with γ(0) = id, so we can always go from one to the other.

Suppose Y (t) is a time-dependent vector in g; then DLγ(t)Y (t) is a vector
field along γ. The covariant derivative of Y along γ is given by the following
formula:

D

dt
DLγ(t)Y (t) = DLγ(t)

(
dY

dt
+∇X(t)Y (t)

)
(2)

In particular, the geodesic equation D
dt
dγ
dt = 0 is equivalent to the Euler equation

on g:
dX

dt
+∇XX = 0 (3)

The study of linear stability is focused on the linearized geodesic equation,
which is derived as follows. Suppose γ(s, t) is a family of geodesics depend-
ing on a parameter s; let X(s, t) denote the corresponding family of curves in

g. Let Z(t) =
∂X(s, t)
∂s

∣∣
s=0

and let Y (t) be defined such that
∂γ(s, t)
∂s

∣∣
s=0

=

DLγ(t)Y (t). If we differentiate the equations (1) and (3) with respect to s, and
set s = 0, we obtain the equations

dY

dt
+ [X,Y ] = Z

dZ

dt
+∇XZ +∇ZX = 0

(4)

Note that the second equation does not involve Y at all; thus the equations are
decoupled. By plugging the first of equations (4) into the second, we obtain the
usual Jacobi equation for Y :(

d
dt +∇X

)2
Y (t) +R(Y,X)X = 0 (5)

but equations (4) are obviously easier to solve explicitly.
One complication that arises in the study of stability theory, especially for

Lagrangian stability, is that Y = (at + b)X is always a solution of the Jacobi
equation. Thus, to obtain boundedness of all Jacobi fields, we should look only
among those fields that are orthogonal to X. Fortunately, as is well-known, a
Jacobi field such that Y (0) and DY

dt (0) are both orthogonal to X will remain
orthogonal to X for all time.

There are two notions of stability for a geodesic on a Lie group with left-
invariant metric. Our goal is to clarify the relationship between the two, in the
simplest cases.

Definition 2.1. Let X be a solution of the Euler equation (3).

• X is called stable in the Eulerian sense if every solution Z(t) of the equa-
tion

Ż(t) +∇X(t)Z(t) +∇Z(t)X(t) = 0

remains bounded for all time.
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• X is called stable in the Lagrangian sense if every solution Y (t) of the
Jacobi equation (or of equations (4)) with Y (0) = 0 and Ẏ (0) orthogonal
to X remains bounded for all time.

The simplest case is when one is dealing with a stationary vector X; that
is, a time-independent solution of Euler’s equation. Such a vector satisfies the

equation ∇XX = 0, or, writing X =
n∑
i=1

XiEi, the n equations

n∑
i,j

XiXjαkij = 0, k = 1, . . . , n (6)

Such stationary solutions correspond to those tangent vectors for which the ge-
ometric (Riemannian) exponential map coincides with the algebraic (Lie group)
exponential map. In this case, the equations (4) have constant coefficients, and
we can do everything quite explicitly. The following construction makes things
a bit more convenient.

Proposition 2.2. If X is a stationary solution of the Euler equation, then
the linearized geodesic equations (4) can be decoupled into a set of equations
on the 1-dimensional space spanned by X and the (n − 1)-dimensional space
perpendicular to X.

Proof. We already know that Z = aX and Y = (at + b)X are solutions of
equations (4) for any constants a and b. We need to show that the operators
Z 7→ ∇ZX + ∇XZ and Y 7→ [X,Y ] map the orthogonal complement of X to
itself, i.e. that if Z and Y are orthogonal to X, then so are ∇ZX +∇XZ and
[X,Y ]. We have

〈∇ZX +∇XZ,X〉 = 〈∇XZ,X〉
= −〈Z,∇XX〉
= 0

and

〈[X,Y ], X〉 = 〈∇XY −∇YX,X〉
= −〈Y,∇XX〉
= 0

So the equations (4) are actually equations on the orthogonal complement
of X.

If a basis of g is chosen so that X = E1, then we define (n − 1) × (n − 1)
matrices A and B and corresponding operators by the formulas

Aij ≡ 〈A(Ei), Ej〉 = 〈∇XEi, Ej〉 Bij ≡ 〈B(Ei), Ej〉 = 〈∇Ei
X,Ej〉
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for 2 ≤ i, j ≤ n. Since 〈∇XU, V 〉 + 〈∇XV,U〉 = 0 by left-invariance, A is an
antisymmetric matrix. The equations (4) become

dY

dt
+ (A−B)Y = Z

dZ

dt
+ (A+B)Z = 0

(7)

The explicit solution of these equations, with Z(0) = Z0 and Y (0) = 0, is

Z(t) = e−t(A+B)Z0

Y (t) =
(∫ t

0

e(s−t)(A−B)e−s(A+B) ds

)
Z0

(8)

Note that it is very rare for A and B to commute, so this formula generally does
not simplify.

3 Eulerian stability theory

The following theorem is simple and follows naturally from standard principles
of ordinary differential equations.

Theorem 3.1. Let X be a stationary solution of the Euler equation. X is stable
in the Eulerian sense iff both of the following hold.

• All the eigenvalues of (A+B) have nonnegative real part.

• For any eigenvalue λ of (A+B) with vanishing real part and multiplicity
k, the eigenspace has dimension k. (In other words, nondegenerate Jordan
blocks of (A+B) correspond to eigenvalues with strictly negative real part
only.)

Proof. The general solution of dZdt + (A + B)Z = 0 is a sum of terms of the
form tje−λt, where λ is an eigenvalue of (A + B) and j is an integer between
0 and (k − 1), with k the size of the largest Jordan block corresponding to λ.
If the real part of λ is positive, then tje−λt is always bounded in time; if the
real part of λ is negative, then tje−λt is always unbounded in time. If the real
part of λ vanishes, then the solutions are of the form tj or tjei|λ|t, and both of
these are bounded for all time if and only if j is always zero; that is, if the size
of the corresponding Jordan block is exactly one. If each term in the solution is
bounded for all time, then the general solution is bounded as well for all time.

Corollary 3.2. If the left-invariant vector field generated by X is divergence-
free (for example if G is a unimodular group), then X is stable in the Eulerian
sense iff (A+B) is diagonalizable and all eigenvalues of (A+B) are imaginary
or zero.
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Proof. Choosing a basis such that X = E1, the trace of B is

Tr (B) =
n∑
i=1

〈∇Ei
X,Ei〉 = divX = −Tr (adX)

So if divX = 0, then Tr (B) = 0. More generally, if G is unimodular, then
Tr (adU) = 0 for any U and in particular for X.

The consequence is that Tr (A + B) = 0, and therefore if any eigenvalue of
(A+B) has nonvanishing real part, there must be an eigenvalue with negative
real part. Thus, for stability, all eigenvalues must have vanishing real part. By
Theorem 3.1, (A+B) must be diagonalizable.

The following criterion for Eulerian stability is by far the simplest, but is
rarely satisfied.

Corollary 3.3. If the left-invariant vector field generated by X is a Killing field
(for example if the given metric on G is bi-invariant) then X is stable in the
Eulerian sense.

Proof. The condition that X be Killing is that

〈∇UX,V 〉+ 〈∇VX,U〉 = 0

for any U and V , which is equivalent to the condition that B be antisymmetric.
In that case, (A+B) is also antisymmetric and so i(A+B) is Hermitian. Thus
i(A + B) has a basis of eigenvectors with real eigenvalues, and so (A + B) has
a basis of eigenvectors with imaginary eigenvalues.

If the given metric is bi-invariant, then every vector in g is stationary, since
the metric exponential map and the group exponential map are identical. Thus
on a group with bi-invariant metric, every geodesic is Eulerian stable.

It is, unfortunately, often difficult to check whether the eigenvalues of (A+B)
are real or imaginary, and there are not many simple criteria known for the
general case. The most useful one is given by the following theorem. The
criterion is originally due to Arnol’d [1], but the proof we give is a simpler one
due to Barston [4]. It is a special case of a general technique presented by
Barston.

Theorem 3.4. The stationary geodesic vector X is stable in the Eulerian sense
if the symmetric matrix

1
2 (B −BT )(BT −A) (9)

is either positive definite or negative definite.

Proof. Let us write B = S + U , where S is symmetric and U is antisymmetric,
for convenience. Since the curvature R(Y,X)X is symmetric and is equal to
(A+B)(A−B) +A2 = BA−AB−B2, the antisymmetric part of BA−AB−

8



B2 must vanish. Since the symmetric part is SA − AS − S2 − U2 and the
antisymmetric part is UA−AU − SU − US, we must have

UA−AU − SU − US = 0 (10)

The matrix U(S−U−A) is symmetric, by equation (10). It is also a constant
of motion of the system dZ′

dt + (S − U −A)Z ′ = 0, since

d

dt
〈Z ′, U(S − U −A)Z ′〉

=
〈
dZ ′

dt
, U(S − U −A)Z ′

〉
+
〈
Z ′, U(S − U −A)

dZ ′

dt

〉
= −〈(S − U −A)Z ′, U(S − U −A)Z ′〉 − 〈Z ′, U(S − U −A)(S − U −A)〉
= −〈Z ′,

[
(S + U +A)U(S − U −A) + U(S − U −A)(S − U −A)

]
Z ′〉

= 0

since (S + U +A)U + U(S − U −A) = 0 by equation (10).
Now since the eigenvalues and Jordan form of (BT − A) = (B + A)T are

exactly the same as those of (B+A), the system dZ ′dt+(BT−A)Z ′ = 0 is stable
iff the system dZdt + (B + A)Z = 0 is stable. If U(S − U − A) is sign-definite
(say positive definite for example) then C = 〈Z ′, U(S − U − A)Z ′〉 > ε〈Z ′, Z ′〉
for some positive constants C and ε. So the solutions of dZ′

dt + (BT −A)Z ′ = 0
are bounded for all time, and therefore so are the solutions of the linearized
Euler equation dZ

dt + (B +A)Z = 0.

In terms of the structure constants αijk, and in a basis where X = E1, the
operator (B −BT )(BT −A) is given by

〈(B −BT )(BT −A)Ei, Ej〉 =
n∑
k=2

αki1(αj1k + αjk1) (11)

3.1 Lagrangian stability theory

The following criterion for Lagrangian stability is simple to prove but often
difficult to check in practice.

Theorem 3.5. The geodesic generated by X is stable in the Lagrangian sense if
and only if the eigenvalues of both (A+B) and (A−B) are all purely imaginary
or zero, and the matrix

Q =
(

(A−B) −I
0 (A+B)

)
(12)

is diagonalizable.
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Proof. Since the trace of the matrix Q is 2 Tr A = 0, if any eigenvalues of Q
have nonzero real part, then some eigenvalue has negative real part, and hence
the equation

d

dt

(
Y
Z

)
+
(

(A−B) −I
0 (A+B)

)(
Y
Z

)
= 0

has exponentially growing solutions.
If the matrix Q is not diagonalizable, then there are solutions which grow

linearly in time, and hence the system is unstable. If Q is diagonalizable with
purely imaginary eigenvalues, then clearly the system is stable.

Corollary 3.6. If the stationary vector X is stable in the Lagrangian sense,
then it is stable in the Eulerian sense.

Proof. We can determine the eigenvectors of Q =
(
A−B −I

0 A+B

)
in terms of the

eigenvectors of (A−B) and (A+B). First, any eigenvector of Q is of the form
( UV ). The equation (

A−B −I
0 A+B

)(
U
V

)
= λ

(
U
V

)
implies the two equations

(A−B)U − V = λU

(A+B)V = λV

In particular, if V is nonzero then V is an eigenvector of (A + B) and λ is
an eigenvalue of (A + B). If Q is diagonalizable, then there must be enough
eigenvectors of Q to span the (n − 1)-dimensional space {0} × X⊥ ⊂ g × g;
(n− 1) of these vectors form a basis, and the second components of each form
a basis of eigenvectors of (A+B). Since all of the eigenvalues of Q are zero or
imaginary, so are the eigenvalues of (A+ B). Thus X is stable in the Eulerian
sense by Theorem 3.1.

The easiest criteria to prove Lagrangian stability are direct methods that
do not rely on the splitting (7). A general summary of the simple criteria is
given in Walker [17]. The following theorem is simple to verify and yields strong
results.

Theorem 3.7. If the operator Y 7→ ∇[X,Y ]X+∇X [X,Y ] is positive definite on
the orthogonal complement of X in g, then X is stable in the Lagrangian sense.

Proof. Using the formula DY
dt = dY

dt +AY , we see that the Jacobi equation is

d2Y

dt2
+ 2A

dY

dt
+A2Y +R(Y,X)X = 0 (13)

Computing the inner product of equation (13) with dY
dt , we obtain

d

dt

(〈
dY

dt
,
dY

dt

〉
+ 〈A2Y, Y 〉+ 〈R(Y,X)X,Y 〉

)
= 0
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Since Y (0) = 0 and Ẏ (0) = Z0, we have〈
dY

dt
,
dY

dt

〉
+ 〈A2Y, Y 〉+ 〈R(Y,X)X,Y 〉 = 〈Z0, Z0〉 (14)

If Y is orthogonal to X and Y 7→ A2Y + R(Y,X)X is positive definite on
the orthogonal complement of X, then there is some ε > 0 such that 〈A2Y, Y 〉+
〈R(Y,X)X,Y 〉 > ε〈Y, Y 〉. Thus by equation (14)

〈Y, Y 〉 < 1
ε
〈Z0, Z0〉

Computing R(Y,X)X +A2Y , we obtain

R(Y,X)X +A2Y = ∇Y∇XX −∇X∇YX +∇[X,Y ]X +∇X∇XY

= ∇[X,Y ]X +∇X [X,Y ]

The latter expression is usually easier to compute than the curvature.

In coordinates for which X = E1, the expression ∇[X,Y ]X + ∇X [X,Y ] is
given by

〈∇[X,Ei]X +∇X [X,Ei], Ej〉 =
n∑
k=1

α1ik(αjk1 + αj1k)

Notice that since A2 is nonpositive, positive-definiteness of this expression im-
plies positive-definiteness of the curvature. As we will see, positivity of the
curvature alone does not in general imply stability.

However, there is one condition under which positivity of curvature is equiv-
alent to stability.

Theorem 3.8. If (∇XR)(Y,X)X = 0 for all Y , and if for some ε > 0, the
inequality 〈R(Y,X)X,Y 〉 > ε〈Y, Y 〉 holds for every Y orthogonal to X, then X
is stable in the Lagrangian sense.

Proof. Recall that the covariant derivative of a tensor is defined so that(
∇XR

)
(Y,X)X = ∇X

(
R(Y,X)X

)
−R(∇XY,X)X −R(Y,∇XX)X −R(Y,X)∇XX

= ∇X

(
R(Y,X)X

)
−R(∇XY,X)X

since ∇XX = 0. So

∇X

(
R(Y,X)X

)
= R(∇XY,X)X

If RX denotes the linear operator Y 7→ R(Y,X)X, then this formula is equiv-
alent to ARX = RXA. Note that it is very rare for a symmetric matrix to
commute with an antisymmetric matrix: in this case, one can check that it
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happens iff there is an orthonormal basis of eigenvectors of RX such that RX
and A take the form

RX =


r1I1 0 · · · 0

0 r2I2 · · · 0
...

...
. . .

...
0 0 · · · rkIk

 A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ak


with each Ij an identity matrix and each Aj an antisymmetric matrix of the
same dimension as Ij . In particular, if RX is proportional to the identity matrix,
this condition is satisfied for any A.

The Jacobi equation (13) may be rewritten as

e−tA
d2

dt2
(
etAY (t)

)
+RXY = 0

Multiplying by etA and letting V (t) = etAY (t), we have

d2V

dt2
+ etARXe

−tAV (t) = 0

and since RX and A commute,

d2V

dt2
+RXV = 0

Computing the inner product with dV
dt , we obtain

d

dt

(〈
dV

dt
,
dV

dt

〉
+ 〈R(V,X)X,V 〉

)
= 0

Since V (0) = 0 and V̇ (0) = Z0, we have〈
dV

dt
,
dV

dt

〉
+ 〈R(V,X)X,V 〉 = 〈Z0, Z0〉

and since 〈R(V,X)X,V 〉 > ε〈V, V 〉 = ε〈Y, Y 〉, we have

〈Y, Y 〉 < 1
ε
〈Z0, Z0〉

and X is stable in the Lagrangian sense.

Note that the condition of the theorem applies if the left-invariant metric on
G is actually bi-invariant. In this case, the curvature is automatically nonnega-
tive, but the hypothesis that the curvature is actually strictly positive in planes
containing X is stronger.

There is also a simple criterion for instability: if the curvature operator
RX : Y 7→ R(Y,X)X is nonpositive, then X must be unstable in the Lagrangian
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sense, and all Jacobi fields grow at least linearly. In fact, if RX is negative
definite, then all Jacobi fields grow exponentially. These facts are simple con-
sequences of the Rauch comparison theorem. Note that the Rauch comparison
theorem can be used to guarantee instability, but not to guarantee stability:
positive curvature only gives one boundedness up to the first conjugate point,
and not necessarily anything beyond that. We will see examples for which the
curvature is positive in all directions along the geodesic but Jacobi fields still
grow exponentially, as well as those for which the curvature is sometimes nega-
tive yet all Jacobi fields remain bounded.

When the criteria given above are not satisfied, there are several more
complicated “parameter-dependent” criteria for stability; some are given in
Walker [17]. However, it is easier to look for criteria using the splitting (7).
The following is helpful and quite simple. Note that G admits a bi-invariant
metric iff it is the direct product of a compact group and a commutative group,
by Lemma 7.5 of Milnor [9].

Theorem 3.9. If G admits a bi-invariant metric, then all solutions of the
homogeneous equation

dY

dt
+ [X,Y ] = 0

are bounded in time.

Proof. The main observation is that the equation depends not on the metric
but only on the differential geometric structure of the Lie group. Thus the
eigenvalues of Y 7→ [X,Y ] do not depend on which metric is being used, and so
one might as well use a bi-invariant metric.

Under a bi-invariant metric 〈〈·, ·〉〉, the operator Y 7→ [X,Y ] is antisymmet-
ric, since if ∇̃ denotes the bi-invariant connection,

〈〈[X,Y ], Y 〉〉 = 〈〈∇̃XY, Y 〉〉 − 〈〈∇̃YX,Y 〉〉 = −〈〈X, ∇̃Y Y 〉〉 = 0

because ∇̃Y Y = 0 for any Y . Therefore the eigenvalues of Y 7→ [X,Y ] must be
purely imaginary and Y 7→ [X,Y ] must be diagonalizable. So all solutions are
bounded in time.

If the conditions of both Theorem 3.4 and Theorem 3.9 are satisfied, then
we can at least say that (A + B) and (A − B) are both diagonalizable with
imaginary eigenvalues. To then conclude Lagrangian stability requires knowing
whether the matrix Q defined by (12) is diagonalizable, which is more difficult.
However, we can at least conclude the following.

Theorem 3.10. If (A+B) and (A−B) are each diagonalizable with imaginary
eigenvalues, then all Jacobi fields grow at most linearly.

Proof. Choose a basis in which (A−B) is diagonal with imaginary eigenvalues,
and let P be the matrix of this basis. Then P−1(A − B)P ≡ iD is purely
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imaginary and diagonal, and therefore(
P−1(A−B)P

)∗ = −P−1(A−B)P

P ∗(A−B)TP−1∗ = −P−1(A−B)P

(A−B)T (PP ∗)−1 = −(PP ∗)−1(A−B)(
(PP ∗)−1(A−B)

)T
= −

(
(PP ∗)−1(A−B)

)
That is, if M is the symmetric, positive definite matrix M = (PP ∗)−1, then
M(A−B) is antisymmetric.

The solution of dY
dt + (A−B)Y = Z is given by

Y (t) =
∫ t

0

e(s−t)(A−B)Z(s) ds =
∫ t

0

Pei(s−t)DP−1Z(s) ds

We then have

〈Y (t),MY (t)〉 = 〈P−1Y (t), P−1Y (t)〉

=
∫ t

0

∫ t

0

〈
ei(s−t)DP−1Z(s), ei(r−t)DP−1Z(r)

〉
dr ds

≤
[ ∫ t

0

√〈
ei(s−t)DP−1Z(s), ei(s−t)DP−1Z(s)

〉
ds
]2

=
[ ∫ t

0

√
〈P−1Z(s), P−1Z(s)〉 ds

]2
=
[ ∫ t

0

√
〈Z(s),MZ(s)〉 ds

]2
If µ1, . . . , µn denote the n positive eigenvalues of M in increasing order, then

〈Z,MZ〉 ≤ µn〈Z,Z〉 and 〈Y, Y 〉 ≤ 1
µ1
〈Y,MY 〉 for all Z and Y . By assumption,

〈Z(t), Z(t)〉 is bounded for all time by some number c2. Thus we have

〈Y (t), Y (t)〉 ≤ µn
µ1
c2t2

so that Y (t) grows at most linearly in time for large t.

It seems likely that under the hypotheses of the theorem, Jacobi fields will
typically be bounded, and only in degenerate cases will they grow linearly; the
theorem shows that this is the worst degeneracy that can occur. For example,
if G admits a bi-invariant metric and the quadratic form (9) is positive-definite,
then under small perturbations of the metric, both these conditions are still
satisfied. One can conjecture that there exists a perturbation of the metric
which makes the system matrix Q from equation (12) diagonalizable, and thus
leads to boundedness of all Jacobi fields.

In any case, one should consider the case in which Jacobi fields grow linearly
to be different in nature from the case in which they grow exponentially; if
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G admits a bi-invariant metric, then the latter can happen only when there
is exponential growth in the solutions of the linearized Euler equation. On
the other hand, if G does not admit a bi-invariant metric, then it is possible
for exponential growth to be introduced in passing to the Lagrangian point of
view.

Of course, for practical purposes one should note that all of these results
on linear stability do not necessarily tell one much about the solutions of the
genuine Euler equation under a perturbation; there are well-known examples
for which it is quite possible to have stability in the linearized equations but
instability in the actual nonlinear equation. We must leave this question aside in
this research, however, as the linear problem already presents many subtleties.

3.2 Examples in three dimensions

We can illustrate how effective the various stability criteria are with very explicit
examples in three dimensions. In addition, we can illustrate how curvature often
fails to predict stability or instability in the way one intuitively expects.

Suppose that G is a three-dimensional unimodular Lie group (that is, every
left-invariant vector field is divergence-free). Then, as given in Milnor [9], there
is a basis {E1, E2, E3} of g and numbers {λ1, λ2, λ3} such that

[E1, E2] = λ3E3, [E2, E3] = λ1E1, [E3, E1] = λ2E2 (15)

or more concisely, in terms of the structure constants,

αijk = sgn(ijk)λk (16)

where sgn(ijk) is 1 if the permutation (ijk) is even, −1 if the permutation is
odd, and 0 if any two of i, j, and k are equal.

We then have the following formula for the covariant derivative:

〈∇Ei
Ej , Ek〉 = 1

2 sgn(ijk)(λj − λi + λk) (17)

The equation ∇XX = 0 is

1
2

3∑
i=1

3∑
j=1

XiXjsgn(ijk)(λj − λi + λk) = 0

for all k from 1 to 3. Writing these equations out, we obtain

(λ3 − λ2)X2X3 = 0

(λ1 − λ3)X3X1 = 0

(λ2 − λ1)X1X2 = 0

If the λ’s are all distinct, then the only solutions are those with two of the
X’s vanishing and the third one nonzero. So we can assume X1 6= 0 and
X2 = X3 = 0. If two λ’s are the same, it is possible to have other solutions.
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Suppose the coordinates are labeled so that λ1 = λ2, but λ3 is distinct from
either one. Then either X3 6= 0 and X1 = X2 = 0 (in which case we can switch
the numbering so that X1 6= 0 and the others vanish) or X1 and X2 are both
nonvanishing and X3 = 0. In the latter case, we can rotate in the X1-X2 plane
so that X1 6= 0 and X2 = 0. If all three λ’s are the same, then every choice
of X’s yields a solution and we can rotate axes so that X is parallel to E1. In
all cases, then, we can assume that X is parallel to E1. Since the norm of X is
conserved, we might as well assume that 〈X,X〉 = 1 and that X = E1.

The linearized Euler equations (7) become

d

dt

(
Z2

Z3

)
+
(

0 λ1 − λ3

λ2 − λ1 0

)(
Z2

Z3

)
= 0 (18)

d

dt

(
Y 2

Y 3

)
+
(

0 −λ2

λ3 0

)(
Y 2

Y 3

)
=
(
Z2

Z3

)
(19)

By applying Theorem 3.1 directly, we have the following result.

Proposition 3.11. The stationary solution X = E1 is stable in the Eulerian
sense if and only if one of the following holds:

• λ3 > λ1 and λ2 > λ1

• λ3 < λ1 and λ2 < λ1

• λ3 = λ2 = λ1

Proof. The characteristic equation of (A+B) is

r2 + (λ3 − λ1)(λ2 − λ1) = 0

(A + B) is certainly diagonalizable if (λ3 − λ1)(λ2 − λ1) > 0, for then it has
two distinct imaginary eigenvalues. In case λ3 = λ1 or λ2 = λ1, the matrix has
two repeated roots. If one of these equalities holds but not the other, then the
Jordan form of (A+B) is ( 0 1

0 0 ), and the system is not stable. However, if both
equalities hold, then (A+B) ≡ 0 and the system is stable.

We can also apply Theorem 3.5 directly, and obtain the following result.

Proposition 3.12. The stationary solution X = E1 is stable in the Lagrangian
sense if and only if it is stable in the Eulerian sense, λ1 6= 0, and in addition
one of the following holds:

• λ2 > 0 and λ3 > 0

• λ2 < 0 and λ3 < 0

• λ2 = λ3 = 0
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Proof. First, the characteristic polynomial of (A−B) is

r2 + λ2λ3 = 0

So we must have λ2λ3 ≥ 0. If λ2λ3 > 0, then (A − B) has two distinct eigen-
values. If the four eigenvalues of Q are distinct, then of course Q always has a
diagonal basis. The eigenvalues of (A+B) and (A−B) will be distinct unless

(λ3 − λ1)(λ2 − λ1) = λ2λ3

that is, unless λ1 = 0 or λ1 = λ2 + λ3. If λ1 = 0, we can verify that Q =(
(A−B) −I

0 (A+B)

)
never has a basis of eigenvectors. If, on the other hand, λ1 =

λ2 + λ3 then Q always has a basis of eigenvectors. (The computations are easy
but slightly tedious.)

The other degenerate case is when one of λ2 or λ3 vanishes. Again one can
verify that if only one vanishes, then Q is not diagonalizable, but if both vanish,
then Q is diagonalizable.

Now we can check to see how effective each of the stability criteria proposed
in the previous sections are in this case. Theorem 3.4 tells us that X is stable
in the Eulerian sense if the quadratic form

(B −BT )(BT −A) =
(
λ1(λ3 − λ1) 0

0 λ1(λ2 − λ1)

)
is either positive-definite or negative-definite. This happens iff λ1 6= 0 and
(λ2 − λ1)(λ3 − λ1) > 0. Thus the only instances of stability not indicated by
this criterion are those when λ1 = 0 and λ2 = λ3 = λ1. Thus we can expect the
criterion for Eulerian stability is in general quite strong.

For Lagrangian stability, the situation is not so promising. The criterion
given by Theorem 3.7 says that X is stable in the Lagrangian sense if the
quadratic form

(B +A)(B −A) =
(
λ3(λ1 − λ3) 0

0 λ2(λ1 − λ2)

)
is positive definite. This happens iff one of the following holds:

• λ3 > 0, λ2 > 0, λ1 > λ3, and λ1 > λ2

• λ3 < 0, λ2 < 0, λ1 < λ3, and λ1 < λ2

Although this criterion is sometimes useful, it clearly misses many of the actual
parameter values for which E1 is Lagrangian stable.

The criterion given by Theorem 3.9 is slightly more useful. The only three-
dimensional groups which admit bi-invariant metrics are the ones for which all
λ’s are positive, all are negative, or all are zero. This covers many of the cases
in Proposition 3.12, except that λ1 in general need not be of the same sign as
λ2 and λ3. Of course, Theorem 3.9 does not actually tell us whether we have

17



stability in the Lagrangian sense; we still have to check whether the system
matrix Q is diagonalizable in each case.

The curvature operator is easiest to compute from the formula

R(Y,X)X = −∇X∇XY +∇X [X,Y ] +∇[X,Y ]X

(which is valid whenever ∇XX = 0) since we already know the last two terms.
We have

R(E2, E1)E1 =
[

1
4 (λ1 − λ2 − λ3)2 + λ3(λ1 − λ3)

]
E2

R(E3, E1)E1 =
[

1
4 (λ1 − λ2 − λ3)2 + λ2(λ1 − λ2)

]
E3

(20)

Using this formula, we can demonstrate some seemingly paradoxical relations
between curvature and stability.

Example 3.13. There are Lie groups for which the curvature is both positive
and negative in sections containing the tangent vector along a steady geodesic,
and such that the Jacobi fields all have either

• no growth in time,

• exponential growth in time, or

• polynomial growth in time.

For the first example, let λ1 = −1, λ2 = 1, and λ3 = 2. Then the curvature
matrix Y 7→ R(Y,E1)E1 is

RX =
(
−2 0
0 2

)
The stationary vector E1 satisfies the conditions of Propositions 3.11 and 3.12
and is therefore stable in the Lagrangian sense; all Jacobi fields oscillate sinu-
soidally.

For the second example, let λ1 = −1, λ2 = −1, and λ3 = 2. The curvature
matrix is

RX =
(
−5 0
0 1

)
and the Jacobi fields grow exponentially on the order of e

√
2t.

For the third example, let λ1 = 0, λ2 = 0, and λ3 = 2. The curvature matrix
is

RX =
(
−3 0
0 1

)
The equations are then

Ż2 = 2Z3 Ẏ 2 = Z2

Ż3 = 0 Ẏ 3 = −2Y 2 + Z3
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and the solution with Z2(0) = p, Z3(0) = q, Y 2(0) = 0, and Y 3(0) = 0 is

Z2(t) = p+ 2qt Y 2(t) = pt+ qt2

Z3(t) = q Y 3(t) = qt− pt2 − 2
3qt

3

and this gives perhaps the only known example of a Jacobi field that grows like
t3.

As a result of these examples, we cannot say that negative curvature in one
direction will necessarily imply exponential instability, even in finite-dimensional
Lie groups. (Arnol’d conjectured in 1965 that it did for the infinite-dimensional
group of volume-preserving diffeomorphisms.) It is only negative curvature in
all directions that yields such results.

Example 3.14. There is a Lie group for which the curvature operator is positive-
definite along a steady geodesic, and for which almost all Jacobi fields grow
exponentially.

Let λ1 = 6, λ2 = −1, and λ3 = 1. Then there is a Lagrangian instability
which results in Jacobi fields with Y (0) = 0 growing like et, except for those
with initial conditions such that Z2(0) +Z3(0) = 0. But the curvature operator
is positive-definite:

RX =
(

14 0
0 2

)
The reason for this is that the Rauch comparison theorem only yields bounds on
Jacobi fields up to the first conjugate point. Beyond that, it says nothing about
growth, and so it is entirely possible for the amplitude to grow exponentially
even when the Jacobi field vanishes intermittently.

In conclusion, we have found that the relationship between curvature and
Lagrangian stability is much more subtle than was anticipated in Arnol’d’s orig-
inal research, for general Lie groups. We have also shown while there are simple
criteria which guarantee Eulerian stability, the known criteria for Lagrangian
stability are generally not exhaustive. One rigorous criterion is that the curva-
ture R(Y,X)X be strictly larger than the second covariant derivative along the
geodesic, −∇X∇XY , but this is rarely satisfied. Another criterion is topological
and algebraic in nature, but only guarantees sublinear growth of Jacobi fields.
In general it seems easier to distinguish between polynomial and nonpolynomial
growth of Jacobi fields than between boundedness and unboundedness. We will
find this to be especially true in infinite dimensions, when studying the stability
of incompressible fluid flows.

4 Riemannian geometry of the diffeomorphism
group

The results in the preceding section apply only to finite-dimensional Lie groups.
In fluid mechanics, the main topic of interest is infinite-dimensional Lie groups.
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We expect many of the results to remain the same, however, although the proofs
may change somewhat. Almost all of the computations remain essentially the
same, however.

In the remainder of this research, we are interested in the motion of a fluid
which fills up a fixed domain M . We consider only the case where M is a
compact manifold, possibly with boundary. For many purposes, it is sufficient
to consider only the velocity of a fluid element at each point of the domain,
and study how this field of velocities evolves in time. (This is the Eulerian,
or spatial, point of view.) We, however, are interested in the motion of each
individual fluid particle. (This is the Lagrangian, or material, point of view.)

One way to think of this motion is to consider the particles separately: for
each point in the domain, we have a path through the domain. Then the motion
of the fluid is determined by a map from M to C(R,M). An alternative way is
to consider the motion of the fluid as determined by a map from R to C(M,M),
or into D(M) if we require the maps to be nonsingular (as we generally will).
The advantage of this more global approach is that if we view D(M) as the
configuration space, then the fluid motion is simply a path in this space. We can
then view the motion as being a standard Newtonian mechanics problem on an
infinite-dimensional space, and use analogies from finite-dimensional Newtonian
mechanics to understand the fluid.

The advantage of this over the alternative Eulerian approach is that one is
working with what are essentially ordinary differential equations on an infinite-
dimensional space, rather than partial differential equations on a finite-dimensional
space. In addition, we can then use notions such as positive curvature and con-
vexity of potential energy to study the stability of such motion.

For “dust,” i.e. a fluid with no internal forces, the motion of the fluid will
be a geodesic through the space D(M), if the kinetic energy in D(M) is defined
in the usual way as the integral of the kinetic energy of each particle. This
is, of course, equivalent to stating that each individual particle simply follows
a geodesic in M . All geometrical information about D(M) comes in a natural
way from the geometry of M ; for example, nonnegative curvature throughout M
implies nonnegative curvature throughout D(M). Similarly, given a potential
energy function on M , we get a natural potential energy function on D(M) by
integration. Convexity of the potential energy on M implies convexity of the
integrated potential on D(M). Again, the solution of Newton’s equation on
D(M) is determined completely by the solution to Newton’s equation on M .

4.1 Differential geometry of D(M)

Although, in practice, we are generally interested in the diffeomorphisms of a
single space, it is helpful conceptually to distinguish the domain and range of
the maps. The domain is considered the “home” of the fluid particles, and the
mass of any collection of particles is defined there. The range is the physical
space in which the particles are moving, and the Riemannian metric (along with
the Riemannian volume form) is defined there. The advantage of this approach
is that conservation of mass is automatic, and the equation of continuity is
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then unnecessary. It is this which enables us to consider a fluid flow as a path
in infinite-dimensional space, rather than simply as a solution to a nonlinear
partial differential equation.

So let N be a compact orientable manifold, without boundary, and let ν
be a volume form on N . N will be considered the home of the particles; the
mass of a subset Ω ⊂ N is defined to be

∫
Ω
ν. Let M be a compact orientable

manifold, without boundary. Let g = 〈·, ·〉 be a Riemannian metric on M , and
let µ denote the corresponding volume form. We will suppose that N and M are
diffeomorphic, but we will retain the distinction in notation. The case in which
M and N have a boundary is of practical interest, but various complications
arise when one carries over the ideas. We will discuss this point in more detail
later.

The space of C∞ diffeomorphisms η : N → M is denoted by D(N,M) or
simply D. For technical reasons, it is sometimes convenient to expand this space
to include those diffeomorphisms that are only Hs, with Hs inverses. (Here we
assume s > n/2 + 1, so that the maps will all be at least C1.) The space of
Hs diffeomorphisms is denoted by Ds(N,M). Ds(N,M) is a Hilbert manifold
with the topology given by the Sobolev Hs norm. D(N,M) is an inverse-limit-
Hilbert (ILH) manifold, in the terminology of Omori [12]; its topology is the
Frechet topology generated by all the Sobolev metrics for s > n/2 + 1.

For technical aspects and rigorous proofs of this background material, see
Ebin-Marsden [7]. Here we are interested mainly in certain formulas and ex-
plicit solutions of certain differential equations, so we will merely summarize the
known results given there. In particular, we will assume everything is C∞.

It will be very useful to define the density first, as it appears frequently
throughout fluid dynamics. Given an orientation-preserving diffeomorphism
η : N → M , (η−1)∗ν is a volume form on M . It is thus a multiple of µ, the
Riemannian volume form on M , and we define the density ρ : M → R to be the
map satisfying

(η−1)∗ν = ρµ

Clearly ρ is always positive, by our restrictions, and depends on the diffeomor-
phism η. (Physically, the mass density changes as the particles move through
space, although the masses of particles themselves never change.)

The tangent space to the manifold D at a particular η is thought of as the
set of infinitesimal displacements in D starting at η. If we interpret what this
means for individual points, we see that an infinitesimal displacement should be
a map which takes a point p ∈ N to an infinitesimal displacement in M , based
at η(p). In other words, it is a map of the form X ◦ η, where X is a vector field
on M . Summarizing, we have

TηD(N,M) =
{
X ◦ η

∣∣X is a vector field on M
}

Loosely speaking, tangent vectors in TηD correspond to vector fields on the
physical space.

A natural question is then what vector fields on D look like. In general,
they are very difficult to describe explicitly. However, recall that for practical
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purposes in Riemannian geometry, we only need to be able to find a single
vector field which coincides with a particular vector at one point. This we can
do easily. Given any vector field X on M , we define a right-invariant vector
field X on D(N,M) by the formula

Xη = X ◦ η

This field is right-invariant since composition with η is both the right trans-
lation on the group and the differential of the right translation. Its usefulness
arises from the fact that we can do virtually any computation on D with right-
invariant vector fields, and this simplifies things greatly. Left translations, on
the other hand, are pretty much useless: the right-translation of X ◦ id is X ◦ η,
while the left-translation is η∗X, which is far too complicated to work with,
either theoretically or in computations.

Since M is compact, any vector field X has a one-parameter flow φt defined
for all time t. Now if X is a vector field on M , and X is its right-invariant
extension to D, then the flow of X is a one-parameter family Φt : D → D given
by the easily-verified formula

Φt(η) = φt ◦ η

and also defined for all t.
An easy way to obtain examples of functions on D is to begin with a function

f : M → R, and define F : D(N,M) → R by the formula

F (η) =
∫
N

f ◦ η ν

Note that we can rewrite this formula in terms of integration on the physical
space M as

F (η) =
∫
M

fρ µ

(This is one instance where keeping the domain and range separate clarifies
the situation. Natural physical functions will always be defined on the physical
space M , but integration is more natural over N ; thus the density appears in
most physically-constructed integrals.)

Now the function XF is simple enough to compute: we find

(XF )(η) =
∫
N

Xf ν (21)

In a similar fashion, we can compute the Lie bracket of two right-invariant vector
fields X and Y from the flow definition. We find that

[X,Y]η = [X,Y ] ◦ η (22)
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4.2 The metric and covariant derivative

The metric g = 〈〈·, ·〉〉 on D(N,M) is defined so that 1
2g(X ◦ η,X ◦ η) is the

kinetic energy corresponding to a configuration η of particles having velocities
defined by X. Thus it is

g(X ◦ η,X ◦ η) =
∫
N

g(X,X) ◦ η ν =
∫
M

ρg(X,X) µ

Clearly then

g(X ◦ η, Y ◦ η) =
∫
N

g(X,Y ) ◦ η ν

We observe that the metric is not left-invariant, or even right-invariant. By
a change of variables, we have g(X ◦ η, Y ◦ η) = g(X ◦ ξ, Y ◦ ξ) if and only if
the densities corresponding to η and ξ are the same, and they will not be unless
η−1 ◦ ξ happens to be a volume-preserving diffeomorphism.

An important point is that this metric is only L2; the distance function
defined by this metric on D or even Ds does not generate the corresponding
topology. The topology generated by this metric is too weak to be useful for
studying classical solutions of the equations of fluid mechanics, in which we need
everything to have at least one derivative. Because of this, we cannot expect
global theorems of Riemannian geometry to be valid for this situation, at least
not in the usual form or with the usual proofs.

The existence of the covariant derivative is already somewhat tricky to prove,
although getting a formula for it is much easier, at least for right-invariant vector
fields. If X and Y are right-invariant, then the usual derivation, using equations
(21) and (22), yields the following formula in terms of X and Y :(

∇XY
)
η

= ∇XY ◦ η (23)

See Bao-Lafontaine-Ratiu [3] for details.
This formula is nice, but it is a bit too specialized since we want to compute

covariant derivatives of fields which are not necessarily right-invariant. Although
we won’t need the most general formula for the covariant derivative of a vector
field, we will need the most general formula for the derivative of a vector field
along a curve. Fortunately this is fairly simple. Let γ : (−ε, ε) → D(N,M) be a
curve in D. We can write a general vector field along γ in the form Y (t) ◦ γ(t),
where Y (t) is a time-dependent vector field on M .

To compute DY
dt , we let X(t) denote the vector field on M such that dγ

dt =
X(t) ◦ γ(t).

Proposition 4.1. The covariant derivative of t 7→ Y (t) ◦ γ(t) along γ is

DY
dt

=
∂Y

∂t
+∇X(t)Y (t) (24)

See Bao-Lafontaine-Ratiu [3] for a proof. Note the similarity to equation
(2); in this case, the right-translations are done implicitly.
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With this formula we can characterize geodesics on D(N,M). Suppose
γ : (−ε, ε) → D(N,M) is a curve. Then for each p ∈ N , γp : (−ε, ε) → M
defined by γp(t) = γ(t)(p) is a curve in M . Covariant differentiation along γ
is very simply related to covariant differentiation along γp. Let Y be a time-
dependent vector field along γ. Define a vector field Yp along γp by the formula
Yp(t) = Y (t, γp(t)). We can easily check that the covariant derivative of Yp
along γp is

DYp
dt

=
∂Yp
∂t

+∇dγp/dtYp

and this formula obviously agrees with the infinite-dimensional analogue from
Proposition 4.1.

The consequence of this is that if γ is a geodesic in D(N,M), i.e. a curve
for which the covariant derivative of the tangent vector field is zero, then γp is
a geodesic in M for each p ∈ N , and the converse is obviously true as well. So
for each η ∈ D(N,M) and each vector X ◦η ∈ TηD(N,M), we find the geodesic
through η in direction X◦η by simply following, for each p, the geodesic through
η(p) in direction Xη(p). This is as one would expect: since the dust metric
represents particles moving with no internal or external forces, one expects the
collection to move in the same way as the individual particles would. It is,
however, somewhat surprising that the exponential map for the dust metric
has the same smoothness properties as in finite dimensions, even when the
topology of D is given by the Frechet topology or a Sobolev Hs norm. See
Ebin-Marsden [7] for details.

Since M is compact without boundary, it is geodesically complete: any
geodesic extends for all time. However, D(N,M) is not geodesically complete.
The reason is that if we extend geodesics from every point, some pair of geodesics
will typically intersect, say, at time tc. (One can easily visualize this when M
is a circle: if two particles are moving counterclockwise, each with constant
velocity, and one is moving faster than the other, then they must eventually
collide. In the language of physics, this is one example of a shock.) Once the
geodesics intersect, γ(tc) cannot be a diffeomorphism, since it is not 1-1. The
space C∞(N,M) with the same metric is geodesically complete, since we don’t
need to worry about whether the maps are invertible, but then the density is
no longer defined and the physical application breaks down.

Finally, we note that we can rewrite the geodesic equation in a more familiar
form, using formula (23). If γ : (−ε, ε) → D(N,M) is a geodesic, let X be the
time-dependent vector field such that γ̇(t) = X(t) ◦ γ(t). Then the geodesic
equation is D

dt
dγ
dt = 0, which can also be written as

∂X

∂t
+∇XX = 0 (25)

Note that there is no explicit dependence on γ, and thus we can think of this
as simply being an equation in the space of vector fields on M . In fact, this is
the more typical way to think of such equations.

Equation (25) is generally known as the pressureless Euler equation. Note
that this is a partial differential equation in n dimensions, although the solution
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(in terms of geodesics on M) is obtained by thinking of it as an ordinary differen-
tial equation in infinite dimensions. For explicit computations, Euler equations
are usually easier; but for theoretical purposes, it is sometimes preferable to con-
sider the ordinary differential equation on TD, since ODE’s in any dimension
are nearly always simpler than PDE’s.

The point of view in which one takes, as the fundamental objects of study,
the velocity field and equations like (25), is called the “Eulerian,” or sometimes
“spatial,” approach. Our approach, in which the fundamental objects are the
paths of particles (or, collectively, the path in the diffeomorphism group), is
called the “Lagrangian,” or sometimes “material” approach. The connection
between the two comes from simply integrating the velocity field to obtain the
particle paths.

4.3 The curvature

Since the formulas for the covariant derivative are so simple, we should not be
surprised that the curvature of D turns out to be very simple as well. The curva-
ture is defined in terms of vector fields, but since it is tensorial, it depends only
on the values of those vector fields at a particular point. Thus, when computing
curvature, we can assume the fields are right-invariant, and use equation (23)
to evaluate it.

Let η ∈ D(N,M). Let X, Y , and Z be vector fields on M , and let X, Y,
and Z denote the corresponding right-invariant vector fields on D(N,M). Then
the curvature R at η is given by

R(Xη,Yη)Zη = ∇Xη∇YZ−∇Yη∇XZ−∇[X,Y]ηZ

=
(
∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

)
◦ η

= R(X,Y )Z ◦ η
(26)

So we find that not only does the curvature depend only on the vector fields
X, Y , and Z, as must be true for any manifold, but that the curvature vector
field at a point depends only on the vector fields at that point. This is more
than we could generally expect of tensors on D.

So far everything that we have computed on D(N,M) has turned out to be
essentially the same, at least for right-invariant fields, as the corresponding ob-
jects on M . The only thing that is not quite the same is the sectional curvature,
which ends up being slightly more subtle. It is still easy to compute, though.
Let X and Y be vector fields on M , η ∈ D(N,M), and ρ the density function
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corresponding to η. Then we have

K(X ◦ η, Y ◦ η) =

=
〈〈R(Y ◦ η,X ◦ η)X ◦ η, Y ◦ η〉〉

〈〈X ◦ η,X ◦ η〉〉 〈〈Y ◦ η, Y ◦ η〉〉 − 〈〈X ◦ η, Y ◦ η〉〉 〈〈X ◦ η, Y ◦ η〉〉

=

∫
M
ρ〈R(Y,X)X,Y 〉µ( ∫

M
ρ〈X,X〉µ

)( ∫
M
ρ〈Y, Y 〉µ

)
−
( ∫

M
ρ〈X,Y 〉µ

)2
=

∫
M
ρK(X,Y )

(
〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2

)
µ( ∫

M
ρ〈X,X〉µ

)( ∫
M
ρ〈Y, Y 〉µ

)
−
( ∫

M
ρ〈X,Y 〉µ

)2
(27)

Clearly if the sectional curvature on M is everywhere zero, then so is the
sectional curvature on D(N,M). However, even if the sectional curvature on
M is nowhere zero, there are always directions in which the sectional curvature
of D(N,M) is zero. To see this, let X be arbitrary, and let Y be of the form
Y = fX, for some nonconstant function f . Then K(X,Y ) ≡ 0 pointwise, since
these fields are pointwise dependent. However, as tangent vectors in TD, they
are independent; the denominator in equation (27) is nonzero. So K(X ◦ η, f ◦
η Y ◦ η) = 0.

What this means is that in general, useful curvature bounds on M do not
give useful curvature bounds on D(N,M). Strict positivity of curvature on M ,
for example, yields only nonnegativity of curvature on D(N,M). This point is
discussed more thoroughly, with explicit examples, in [3].

Lastly, we write down the Jacobi equation on D(N,M). Generally the Jacobi
equation for a vector field Y along a geodesic γ is

D

dt

DY

dt
+R(Y, γ̇)γ̇ = 0

Letting γ̇ = X(t)◦γ, writing this out using formula (24), and eliminating explicit
dependence on γ, we obtain(

∂

∂t
+∇X

)(
∂Y

∂t
+∇XY

)
+R(Y,X)X = 0 (28)

The relation to the geodesic equation (25) is somewhat unclear from this ex-
pression, though. The relationship is as follows. Given a solution X of equation
(25), the linearized Euler equation is easily seen to be

∂Z

∂t
+∇XZ +∇ZX = 0 (29)

If we now define Y by the equation

∂Y

∂t
+ [X,Y ] = Z (30)
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—this is the linearization of the equation γ̇(t) = X(t) ◦ γ(t)—we find that Y
satisfies the Jacobi equation. Conversely, if Y satisfies the Jacobi equation and
we define Z by equation (30), then Z satisfies the linearized Euler equation
(29). So the second-order Jacobi equation (28) is equivalent to the two first-
order equations (29) and (30).

At the moment this does not seem to help us. The Jacobi equation is equiv-
alent to the Jacobi equations for Yp along geodesics γp, for all p. So in this case,
we would simply solve the Jacobi equation (28) by solving ordinary differential
equations in M . On the other hand, we note that we have split the usual Jacobi
equation into two first-order equations, which are decoupled from each other.
Translating back to M , we obtain two decoupled first-order ordinary differential
equations along each integral curve of X, which yield the usual Jacobi fields.
The consequences of this fact are potentially very interesting, and we would ex-
pect to be able to use this to analyze ordinary Riemannian manifolds. However,
this takes us too far afield for the moment, and we will leave the topic for future
research.

This same trick also works when we use internal forces and study real fluids.
The equation (30) in general relates the linearized Euler equation, commonly
used for stability analysis, with the curvature. If it is easier to compute the
curvature than to solve the linearized Euler equation, as is typical, then we might
expect this approach to yield more results than the usual stability analysis. In
the rest of this paper, we will discuss why this approach does not work very
often, either in incompressible or compressible fluid stability studies, and why
it is generally much easier to study the two equations (29) and (30) than to
study the full Jacobi equation (28). We also resolve at least one paradox that
has caused confusion in previous literature, namely the fact that fluid flows can
be “stable” in the Eulerian sense and “unstable” in the Lagrangian sense.

5 Stability of the motion of an incompressible
fluid

A fluid is called incompressible if the volume of any collection of fluid particles
remains unchanged as the fluid moves. Since the mass of any such collection is
already unchanged throughout the motion, this implies that the density of the
fluid must be constant in time (although not necessarily in space). Symbolically,
we have the formula

γ(t)∗µ = γ(0)∗µ

for all t, if γ is the path in D(N,M) of an incompressible fluid.
Thus the condition of incompressibility implies that the motion is con-

strained to move through the space of diffeomorphisms which preserve the vol-
ume form. It is typical to assume that in fact the density is uniform throughout
the fluid (in other words, constant in both time and space). Such a fluid is
called homogeneous. In this case, we have that

γ(t)∗µ = ν
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For a homogeneous incompressible fluid, therefore, there is no advantage in
considering N and M separately, since the distinction between the two volume
forms µ and ν is irrelevant. Therefore, in keeping with convention, we will simply
work with a single manifold M and the group of diffeomorphisms D = D(M)
from M to itself. When we discuss compressible flows, we will again distinguish
between M and N .

We denote by Dµ(M) the set of diffeomorphisms of M which preserve the
volume form µ:

Dµ(M) =
{
η ∈ D(M)

∣∣∣ η∗µ = µ
}

Then clearly the notion of incompressibility is a constraint that the diffeomor-
phism lies in Dµ. Important results of Ebin and Marsden [7] show that Dµ is
actually a submanifold of D, in the ILH topology or even in the Hs Sobolev
topology, for s > n/2 + 1. In fact, the same is true if M has a smooth boundary
∂M ; the diffeomorphisms then must map the boundary ∂M to itself. So we
may extend the discussion to manifolds which have a boundary.

Now that we have our configuration space, the volume-preserving diffeomor-
phismsDµ(M) of a possibly bounded manifoldM , we can state the minimization
principle which enables us to determine the motion of the fluid. Since we have
a metric and a kinetic energy on D(M) already, we can simply restrict this to
Dµ to get a metric and kinetic energy there as well. We then require that the
motion of an incompressible fluid minimize the length of the path in Dµ. In
other words, we are studying geodesics in Dµ, and therefore the submanifold
geometry of Dµ.

The equations for incompressible fluid flow were known and understood long
before Riemannian geometry or the theory of diffeomorphism groups. The fact
that they could be derived by a minimum-action principle using only the con-
straint of volume-preserving was shown by Ehrenfest in his thesis, in the early
part of the twentieth century. This method was not used for other purposes,
however, until Arnol’d rederived the formulas in 1965 in a paper called “Sur la
ge’ome’trie diffe’rentielle des groupes de Lie de dimension infinie et ses applica-
tions ‘a l’hydrodynamique des fluides parfaits,” using the Lie group perspective
and an analogy with the Euler equations for a rigid body. He also proposed
that negative curvature of the group Dµ should imply exponential divergence of
fluid paths. An excellent and up-to-date reference for this approach is Arnol’d-
Khesin [2].

Subsequent research has been focused mainly on computations of curvature,
yet there are very few results on the implications for Lagrangian stability. Much
more is currently known about Eulerian stability of incompressible steady flows,
and this is also due to Arnol’d, but through quite different methods. The
connection between the two methods has not been entirely clear, despite the
fact that both were essentially discovered by the same person. We hope to
illuminate this connection somewhat here, at least for some special classes of
fluid flows.
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5.1 Differential geometry of Dµ(M)

The group of volume-preserving diffeomorphisms of a manifold M , possibly with
boundary ∂M , consists of those satisfying

η∗µ = µ

This description is not very convenient, and it is in fact much easier to describe
the tangent space TDµ.

If γ : (−ε, ε) → Dµ(M) is a curve, then we must have

γ(t)∗µ = µ (31)

for all t. Let us define a time-dependent vector field X on M by the formula

γ̇(t) = X(t) ◦ γ(t)

Differentiating equation (31) with respect to time, we obtain

0 =
d

dt
(γ(t)∗µ) = γ(t)∗(LX(t)µ) (32)

Here LX is the Lie derivative of the volume form µ in direction X. This formula
is a generalization to the time-dependent case of the more well-known definition
of the Lie derivative in the direction of a time-independent vector field.

In addition, since any diffeomorphism of M to itself must take the boundary
∂M to itself, we know that the vector fields X(t) must all be tangent to the
boundary. In other words, if n̂ denotes the unit normal vector field on ∂M , then
〈X, n̂〉

∣∣
∂M

= 0.
Because of these facts, the tangent space at a diffeomorphism η ∈ Dµ is

TηDµ(M) =
{
X ◦ η

∣∣LXµ = 0, 〈X, n̂〉
∣∣
∂M

= 0
}

Since we know that LXµ = divX µ, this implies that the tangent space to
Dµ(M) at the identity consists of all divergence-free vector fields which are
tangent to the boundary.

5.2 The metric on Dµ; orthogonal projection

The metric 〈〈·, ·〉〉 on Dµ is simply the metric inherited from the space D. Specif-
ically, it is

〈〈X ◦ η, Y ◦ η〉〉 =
∫
M

〈X,Y 〉 ◦ η µ

for vector fields X and Y and a volume-preserving diffeomorphism η. Changing
variables, and using the fact that η∗µ = µ, we obtain

〈〈X ◦ η, Y ◦ η〉〉 =
∫
M

〈X,Y 〉µ
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In other words, the inner product does not depend on the diffeomorphism η.
Thus, on the group of volume-preserving diffeomorphisms, the metric is right-
invariant. (It is still not left-invariant, though.) This results in the simplification
of a number of formulas, even if we don’t use Lie-theoretic methods explicitly.

One of the most important formulas in the study of incompressible fluids is
the following decomposition: if X is any vector field on a manifold M , possibly
with boundary ∂M , then we can write

X = U +∇f (33)

where divU = 0, U is tangent to the boundary, and ∇f is the gradient of some
function f .

We demonstrate this as follows. If we compute the divergence of these
fields, we obtain ∆f = divX. If we impose the Neumann boundary condi-
tion 〈∇f, n̂〉 = 〈X, n̂〉, then we have a Neumann problem for f which has a
unique solution (up to an arbitrary constant, which we can specify by requir-
ing

∫
M
f µ = 0, for example). Then U := X − ∇f is divergence-free, and by

construction its normal component on the boundary is zero.
The value of this construction is that the two components are orthogonal in

the metric 〈〈·, ·〉〉: if V is divergence-free and tangent to the boundary, then for
any function g ∫

M

〈V,∇g〉µ =
∫
M

div (gV )µ−
∫
M

g divV µ

=
∫
∂M

g〈V, n̂〉 ιn̂µ

= 0

(34)

Therefore the orthogonal projection of an arbitrary vector field X onto the
space TeDµ of divergence-free vector fields tangent to the boundary is

P(X) = X −∇f (35)

where f is defined to be the solution of the Neumann problem above.
There is an alternative formula for the orthogonal projection, which uses

Hodge theory on forms, and is especially useful in two dimensions. We will use
the notation of Schwarz [15], a good reference especially for the Hodge theory
of forms in Sobolev topologies.

If X is a vector field, then lowering indices using the metric g yields a 1-form
X[. There is then a Hodge decomposition

X[ = dq + δω + dε+ φ (36)

Here q is a 0-form (i.e., a function) which vanishes on the boundary, ω is a 2-form
whose normal component vanishes on the boundary (and we may assume that
dω = 0), ε is a harmonic function with ∆ε = 0, and φ is a Neumann field (i.e.,
a harmonic field with vanishing normal component). (Recall that a harmonic
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field α is one satisfying dα = 0 and δα = 0.) The decomposition is orthogonal
in the metric 〈〈·, ·〉〉.

Since divV = −δV [ and df = (∇f)[ for any vector field V and function f ,
we see that by equation (34), the orthogonal projection of the term dq + dε is
zero. So we have

P(X) = (δω + φ)]

This is not so helpful without formulas for ω and φ, however.
Computing d of both sides of (36), we obtain dX[ = dδω. Noting that

dω = 0, this is equivalent to

dX[ = (dδ + δd)ω

and therefore ω is the solution of4H ω = dX[ (where4H = dδ+δd is the Hodge
Laplacian) satisfying the condition nω = 0 on the boundary. This does not
completely specify ω, since ω is unique only up to a choice of a Neumann field,
but it does completely specify δω, which is all we really need. Unfortunately,
2-forms are not terribly convenient to work with in general, and this is why this
approach is mainly preferred in 2 dimensions.

When n = 2, 2-forms are equivalent to functions: any 2-form ω can be
written as − ? ψ, where ψ is a function on M . The condition nω = 0 translates
into ψ = 0 on the boundary (see Schwarz [15], Section 1.2). So the term δω
is −δ(?ψ) = ?dψ. We denote the vector field corresponding to this 1-form as
sgrad ψ. The function ψ solves the Dirichlet problem ∆ψ = −4H ψ = ?4H ω =
?dX[ = curl X. (We interpret the curl of a vector field in 2 dimensions as a
function, and we consider it to be defined on a general manifold by the relation
above.) Thus we find that the projection of X onto the space of divergence-free
vector fields tangent to the boundary is

P(X) = sgrad ψ +W (37)

where ψ is defined by ∆ψ = curl X and ψ
∣∣
∂M

= 0, while W satisfies curl W = 0
and divW = 0.

The other component of the Hodge decomposition, as yet undetermined,
is the Neumann field φ (corresponding to the vector field W ). The space of
Neumann 1-fields H1

N is finite-dimensional, and is in fact determined completely
by the topology of M . (The same is true if M has no boundary.) Thus it is
fairly easy to compute the projection of X onto this finite-dimensional subspace.
If {Wk, 1 ≤ k ≤ K} is an orthogonal basis of this subspace, then

P(X) = sgrad ψ +
K∑
k=1

∫
M
〈X,Wk〉µ∫

M
〈Wk,Wk〉µ

Wk

For the reader’s convenience, we provide formulas for sgrad and curl on
a general 2-dimensional Riemannian manifold with metric g =

( g11 g12
g12 g22

)
and

volume form µ =
√

det g dx ∧ dy. We have

sgrad f =
1√

det g

(
−∂f
∂y

∂

∂x
+
∂f

∂x

∂

∂y

)
(38)
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and

curl X =
1√

det g

(
∂

∂x
(g12X1 + g22X

2)− ∂

∂y
(g11X1 + g12X

2)
)

(39)

The following are easily-verified consequences, for any f :

〈sgrad f, sgrad f〉 = 〈∇f,∇f〉
〈sgrad f,∇f〉 = 0

curl ∇f = 0
curl sgrad f = ∆f

(40)

5.3 The covariant derivative and the geodesic equation on
Dµ

Since Dµ is a submanifold of D, and the metric on Dµ is inherited from that
on D, we know that the covariant derivative ∇̃ on Dµ is the projection of the
covariant derivative ∇ on D.

For vector fields X and Y in TeDµ, define a function pXY by the following
conditions:

∆pXY = −div (∇XY )

〈∇pXY , n̂〉 = −〈∇XY, n̂〉∫
M

pXY µ = 0

(41)

The first two problems specify a Neumann problem for pXY , which has a unique
solution up to an arbitrary constant; the last equation simply specifies the con-
stant.

Suppose X and Y are right-invariant vector fields onDµ, with Xη = X◦η and
Yη = Y ◦η for any η ∈ Dµ. Then by equation (35), we have the following formula
for the covariant derivative of a right-invariant vector fields Y in direction X:

∇̃Xη
Y = P(∇Xη

Y) = P(∇XY ◦ η) = P(∇XY ) ◦ η = (∇XY +∇pXY ) ◦ η (42)

It should be noted that the equation P(U ◦ η) = P(U) ◦ η is not entirely
obvious, and is true only because the metric is right-invariant. For the remainder
of this section, we will omit explicit mention of the diffeomorphism η since our
formulas will always be right-invariant. Thus, computations at an arbitrary
diffeomorphism η are done by right-translating all quantities to the identity
e, performing the computation there, then right-translating back to η. This
procedure will be implicit in what we do from now on.

The formula (42) is true in any dimension, and is quite useful especially
when studying the curvature of Dµ. Recall that the second fundamental form
B(X,Y) is defined to be the component of ∇XY which is perpendicular to
TeDµ. It actually depends only on the values of X and Y at a particular
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diffeomorphism, so we have B(X,Y)e = B(Xe,Ye) = B(X,Y ) for divergence-
free vector fields X and Y on M . By formula (42), we have

B(X,Y ) = ∇pXY (43)

It follows from this, and can be shown directly, that the function pXY is sym-
metric as an operator in X and Y .

Before continuing, we derive another formula for the covariant derivative, in
terms of the action on 1-forms. Let α = X[ and let β be the 1-form defined by
β] = P(∇XX). Let Z be any vector field in TeDµ, and let γ = Z[. Then we
have, for any such γ,∫

M

〈β, γ〉µ =
∫
M

〈P(∇XX), Z〉µ

=
∫
M

〈∇XX,Z〉µ

=
∫
M

X〈X,Z〉µ+
∫
M

〈X, [Z,X]〉µ− 1
2

∫
M

Z〈X,X〉µ

and the first and third integrals on the last line vanish by formula (34).
Now we use the fact that

〈X, [Z,X]〉 = α([Z,X]) = Xα(Z)− Zα(X)− dα(Z,X)

and obtain ∫
M

〈β, γ〉µ = −
∫
M

dα(Z,X)µ

where we again used formula (34) to eliminate two integrals. Now since dα(Z,X) =
〈γ ∧ α, dα〉, we have (using the definition of the Hodge star operator)∫

M

〈β, γ〉µ = −
∫
M

〈γ ∧ α, dα〉µ

= −
∫
M

γ ∧ α ∧ ?dα

= (−1)n
∫
M

〈γ, ?(α ∧ ?dα)〉µ

Thus, since this is true for any γ in the kernel of δ, we must have (by the Hodge
decomposition)

β = (−1)n ? (α ∧ ?dα) + dq (44)

for some function q.
Knowing P(∇XX) for any X, we can obtain P(∇XY ) + P(∇YX) by po-

larization. And since P(∇XY )−P(∇YX) = P([X,Y ]) = [X,Y ], we can easily
obtain a general formula for P(∇XY ).

Now we look at this formula in the special case n = 2. When n = 2, dα is a
2-form, so ?dα is a 0-form. Therefore, α ∧ ?dα = (?dα)α, and so

β = (?dα) ? α+ dq
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Computing d of the right-hand side, we obtain

d((?dα) ? α) = d(?dα) ∧ ?α+ (?dα) ∧ d ? α
= 〈d(?dα), α〉
= X(?dα)
= X(curl X)

Using equation (37), we have

P(∇XX) = sgrad (∆−1
0 X(curl X)) +W (45)

for some harmonic vector field W , tangent to the boundary, with curl W = 0
and divW = 0.

Now the geodesic equation on Dµ is obtained in exactly the same way as on
D in equation (25). A geodesic γ on Dµ satisfies the equation

D̃
∂t

dγ

dt
= 0

The covariant derivative D̃
∂t along a curve in Dµ is simply the projection of the

covariant derivative in D. So we have

P
(

D
∂t

dγ

dt

)
= 0

Now, if γ̇(t) = X(t) ◦ γ(t), then using Proposition 4.1, we have

P
(
∂X

∂t
+∇XX

)
= 0

Since the metric and volume form are independent of time, the projection of
the first term is simply ∂X

∂t , while the projection of the second term is obtained
from equation (42). We get

∂X

∂t
+∇XX = −∇pXX (46)

This is the Euler equation for incompressible fluid flows. The function pXX is
called the pressure of the incompressible flow X.

In two dimensions, we can use formula (37) to rewrite the geodesic equation
in a much more convenient form. We obtain

∂

∂t
curl X +X(curl X) = 0 (47)

If X = sgrad f +W where f is a function which vanishes on the boundary and
W is a vector field with divW = 0 and curl W = 0, then this equation becomes

∂

∂t
∆f + {f,∆f}+W (∆f) = 0 (48)
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where the Poisson bracket {f, g} is a function defined by

{f, g} = ?(df ∧ dg)

Of course, we still need an equation for W , the Neumann-field component
of the velocity field X, but the best we can do in general is

∂W

∂t
= −ΠH1

N
(∇XX)

where ΠH1
N

denotes orthogonal projection onto the finite-dimensional space of
Neumann fields. For special cases we can work this out explicitly.

A fluid motion γ is called steady if the corresponding vector field is inde-
pendent of time, i.e. γ̇(t) = X ◦ γ(t). From equation (46), we see that a steady
incompressible fluid flow satisfies the equation

∇XX = −∇pXX (49)

In two dimensions, using equation (47), we find that a steady flow satisfies

X(curl X) = 0 (50)

5.4 Curvature formulas for Dµ

Up to this point we have essentially been rederiving well-known equations in the
general Riemannian case, from our basic hypothesis that flows of incompressible
fluids are geodesics on Dµ. The Euler equations had been derived well before
the geometric interpretation was understood, from physical arguments. The
fact that they are equivalent to geodesic equations, however, makes curvature a
natural object to study.

In finite dimensions, the curvature along a geodesic tells us about the sta-
bility of small perturbations along it. If the curvature is strictly negative, then
small perturbations grow exponentially; if the curvature is strictly positive, then
small perturbations are bounded (at least up to the first conjugate point). We
would expect something similar to be valid in the infinite-dimensional case of
Dµ. Thus we compute several formulas for the curvature, in order to figure out
when it is positive and when it is negative.

The simplest formula for the curvature of Dµ comes from the theory of iso-
metric immersions. By Gauss’ Equation for isometric immersions, the curvature
R̃ of Dµ is related to the curvature R of D through of the second fundamental
form B. Using equation (43), we have, for vector fields X, Y , Z, W in TeDµ,

〈〈R̃(X,Y )Z,W 〉〉 = 〈〈R(X,Y )Z,W 〉〉+
〈〈B(X,W ),B(Y, Z)〉〉 − 〈〈B(X,Z),B(Y,W )〉〉

=
∫
M

〈R(X,Y )Z,W 〉µ+∫
M

〈∇pXW ,∇pY Z〉µ−
∫
M

〈∇pXZ ,∇pYW 〉µ

(51)
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We can rewrite this formula to remove the implicit dependence on W , to get
an equation for R̃(X,Y )Z by itself. To do this, we integrate the middle term
by parts, using the definition (41) and formula (34).

∫
M

〈∇pXW ,∇pY Z〉µ =
∫
M

div (pY Z∇pXW )µ−
∫
M

pY Z∆pXW µ

=
∫
∂M

pY Z〈∇pXW , n̂〉 ιn̂µ+
∫
M

pY Zdiv (∇XW )µ

= −
∫
∂M

pY Z〈∇XW, n̂〉 ιn̂µ+
∫
M

div (pY Z∇XW )µ

−
∫
M

〈∇pY Z ,∇XW 〉

= −
∫
M

X〈∇pY Z ,W 〉µ+
∫
M

〈∇X∇pY Z ,W 〉µ

=
∫
M

〈∇X∇pY Z ,W 〉µ

We get a similar formula by integrating the last term in equation (51) by parts.
Using these formulas in equation (51), we get∫
M

〈R̃(X,Y )Z,W 〉µ =
∫
M

〈R(X,Y )Z,W 〉µ

+
∫
M

〈∇X∇pY Z ,W 〉µ−
∫
M

〈∇Y∇pXZ ,W 〉µ (52)

Therefore, the curvature R̃ itself is

R̃(X,Y )Z = P
(
R(X,Y )Z +∇X∇pY Z −∇Y∇pXZ

)
(53)

Rouchon [14] first derived this formula using a rather different method, using the
Jacobi equation on Dµ. He used it to derive a necessary and sufficient condition
for sectional curvature to be positive for all planes containing a given direction.
We will present his result in the next section.

We obtain a very different formula for the curvature by using a more direct
method. This formula fits more naturally with the alternative formulas given
above in two dimensions for the covariant derivative. We are primarily interested
in the sectional curvature, which involves only 〈〈R̃(Y,X)X,Y 〉〉. Using the
definition of the curvature, we have

R̃(Y,X)X = ∇̃Y ∇̃XX − ∇̃X∇̃YX − ∇̃[Y,X]X
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Computing the inner product, we get

〈〈R̃(Y,X)X,Y 〉〉 =

=
∫
M

〈∇̃Y ∇̃XX,Y 〉µ−
∫
M

〈∇̃X∇̃YX,Y 〉µ−
∫
M

〈∇̃[Y,X]X,Y 〉µ

=
∫
M

Y 〈∇̃XX,Y 〉µ−
∫
M

〈∇̃XX, ∇̃Y Y 〉µ−
∫
M

X〈∇̃YX,Y 〉µ

+
∫
M

〈∇̃YX, ∇̃XY 〉µ−
∫
M

〈∇̃[Y,X]X,Y 〉µ

= −
∫
M

〈P(∇XX),P(∇Y Y 〉µ+
∫
M

〈P(∇YX),P(∇XY 〉µ

+
∫
M

〈P(∇[X,Y ]X), Y 〉µ

= −
∫
M

〈P(∇XX),P(∇Y Y 〉µ+
∫
M

〈P(∇YX),P(∇YX〉µ

+
∫
M

〈P(∇YX), [X,Y ]〉µ+
∫
M

〈P(∇[X,Y ]X), Y 〉µ

Now notice that in the last line, the two projection operators are actually
unnecessary, because [X,Y ] and Y are already in TeDµ. This enables us to write

〈〈R̃(Y,X)Y,X〉〉 = −
∫
M

〈P(∇XX),P(∇Y Y 〉µ+
∫
M

〈P(∇YX),P(∇YX〉µ

+
∫
M

〈∇YX, [X,Y ]〉µ+
∫
M

〈∇[X,Y ]X,Y 〉µ

= −
∫
M

〈P(∇XX),P(∇Y Y 〉µ+
∫
M

〈P(∇YX),P(∇YX〉µ

+
∫
M

LXg(Y, [X,Y ])µ

(54)

The last formula is valid since

LXg(U, V ) = 〈∇UX,V 〉+ 〈∇VX,U〉

A simpler version of this formula was first derived by Misio lek [10], under the
assumption that LXg = 0, though the technique is the same.

5.5 The sign of the curvature

We would intuitively expect to be able to predict the motion of fluid particles if
the curvature is nonnegative along the geodesic defined by the fluid flow. This is
important especially when studying the motion of particles (such as pollutants)
moving along with the fluid; for such a purpose, Eulerian stability theory is less
directly helpful.
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Arnol’d was the first to compute curvature explicitly for the torus T2. (The
computation is described in Arnol’d and Khesin [2].) He showed that the curva-
ture was often negative. Lukatsky [8] developed several explicit formulas for the
curvature in various cases, and gave criteria for positive or negative curvature
for Euclidean space. Rouchon [14] proved that when M is a body in R3, the
only vectors X in Dµ(M) with K(X,Y ) ≥ 0 for all Y are Killing fields on M .
His method is basically two-dimensional and local, so it is easily generalized
as demonstrated below. Misio lek was the first to show in full generality that
K(X,Y ) ≥ 0 when X is a Killing field. Theorem 5.3 below unifies these results.

Before demonstrating the theorem, however, we first perform a simplification
of formula (52). We are interested in the sectional curvature, so we compute
〈〈R̃(Y,X)X,Y 〉〉. Here we assume X is the velocity field of a (possibly non-
steady) incompressible fluid flow at a particular time, while Y is some arbitrary
divergence-free vector field linearly independent of X. Combining formulas (52)
and (51) (in particular, performing our simplification on the middle but not the
last term of formula (51)), we obtain∫

M

〈R̃(Y,X)X,Y 〉µ =
∫
M

〈R(Y,X)X,Y 〉µ

+
∫
M

〈∇Y∇pXX , Y 〉µ−
∫
M

〈∇pXY ,∇pXY 〉µ (55)

Note that the first two terms involve integrals of quantities bilinear in Y .
This will be very useful, as we can then analyze these linear operators pointwise
in each tangent space. The last term is nonpositive, and we can rewrite it using
the orthogonal decomposition ∇YX = P(∇YX)−∇pXY :∫

M

〈R̃(Y,X)X,Y 〉µ =
∫
M

〈R(Y,X)X,Y 〉µ+
∫
M

〈∇Y∇pXX , Y 〉µ

−
∫
M

〈∇YX,∇YX〉µ+
∫
M

〈P(∇YX),P(∇YX)〉µ
(56)

Now the first three terms of equation (56) are bilinear in Y . We can write∫
M

〈R̃(Y,X)X,Y 〉µ =
∫
M

〈Y,A(Y )〉µ+
∫
M

〈P(∇YX),P(∇YX)〉µ

where the tensor A is given in index notation by the following formula:

Aij = Rjkl
iXkX l +∇j∇ipXX − gkl∇jX

k∇iX l (57)

This formula involves the Hessian of the pressure function pXX corresponding
to the fluid flow. Although we don’t have an explicit formula for the Hessian of
the pressure, we do have an explicit formula for the Laplacian, which is the trace
of the Hessian. (See the definition in formula (41).) This suggests computing
the trace of the tensor A. The result is quite illuminating, if one can tolerate
the index debauchery.
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Ai
i = Rikl

iXkX l +∇i∇ipXX − gkl g
mi∇iX

k∇mX
l

= Rikl
iXkX l −∇i(Xj∇jX

i)−∇iX
k∇iXk

= Rikl
iXkX l −∇iX

j∇jX
i −Xj∇i∇jX

i −∇iX
j∇iXj

= Rikl
iXkX l −∇iX

j∇jX
i −Xj(∇j∇iX

i +Rijk
iXk)−∇iX

j∇iXj

= −∇iX
j∇jX

i −∇iX
j∇iXj

= −gik gjl∇iXj∇lXk − gik gjl∇iXj∇kXl

To simplify this further, let Sij = ∇iXj+∇jXi, and ωij = ∇iXj−∇jXi. Sij
are the components of the deformation tensor LXg, while ωij are the components
of the vorticity 2-form dX[. We find

Ai
i = −gik gjl(∇iXj)Skl

= − 1
2g
ik gjl(Sij + ωij)Skl

= − 1
2g
ik gjlSijSkl

since
gik gjlωijSkl = gjl gikωjiSlk = −gik gjlωijSkl,

so this term vanishes.
At any point p, we may choose coordinates such that gij

∣∣
p

= δij . Then at p,

Ai
i = − 1

2

n∑
i=1

n∑
j=1

S2
ij

In particular, if Sij 6= 0 at any point, then Tr A < 0 at that point, and thus A
must have at least one negative eigenvalue at that point. Using

〈〈R̃(Y,X)X,Y 〉〉 =
∫
M

〈Y,A(Y )〉µ +
∫
M

〈P(∇YX),P(∇YX)〉µ (58)

we see that the curvature will be negative as long as we can find a Y that is
concentrated near an eigenvector of A with negative eigenvalue, and such that
the positive second term is very small. The method below is due to Rouchon.

Lemma 5.1. If A and B are two linear transformations of Rn, with A sym-
metric and Tr B = 0, then there is a w ∈ Rn such that 〈w,w〉 = 1, 〈w,Aw〉 ≤
1
nTr A, and 〈w,Bw〉 = 0.

Proof. Let S be the symmetric part of B; then clearly 〈w,Sw〉 = 〈w,Bw〉 and
Tr S = Tr B. Thus we can assume B is symmetric.

Choose an orthogonal basis {vi} such that B = diag(λ1 · · ·λn), with λ1 +
· · ·+ λn = 0 by assumption. Consider the set of 2n vectors

J =
{

1√
n

(ε1v1 + · · ·+ εnvn)
∣∣ ε2i = 1, ∀ i

}
=
{

1√
n

ε
∣∣ ε ∈ {−1, 1}n

}
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Then for each w ∈ J , we have 〈w,Bw〉 =
∑n
i=1 λiε

2
i = 0.

We compute the sum of 〈w,Aw〉 over all w ∈ J :

∑
w∈J

〈w,Aw〉 =
1
n

∑
ε∈{−1,1}n

n∑
i,j=1

aijεiεj =
1
n

n∑
i,j=1

aij
∑

ε∈{−1,1}n

εiεj (59)

The sum
∑

ε∈{−1,1}n εiεj is easy to work out. If i 6= j, it is 2n−2((−1)(−1)+
(−1)(1) + (1)(−1) + (1)(1)) = 0. If i = j, then it is 2n−1((−1)2 + (1)2) = 2n. So

∑
w∈J

〈w,Aw〉 =
1
n

n∑
i=1

aii2n =
2n

n
Tr A

and therefore the average value of 〈w,Aw〉 over J is 1
nTr A. So at least one

element of J must have 〈w,Aw〉 ≤ 1
nTr A.

Theorem 5.2. Let M be any manifold, with or without boundary. If X is any
divergence-free vector field, tangent to the boundary, such that (LXg)(p) 6= 0 at
some point p, then there is a divergence-free vector field Y , with support in a
neighborhood of p, such that 〈〈R̃(Y,X)X,Y 〉〉 < 0.

Proof. If LX(g) is not zero at p, then Tr A < 0 as we computed above. By
Lemma 5.1, we can find a vector W ∈ TpM such that 〈W,W 〉 = 1, 〈W,AW 〉 < 0,
and 〈W,∇WX〉 = 0. Let V = ∇WX ∈ TpM , and a = ||V ||. Choose normal
coordinates in a neighborhood Ω of p such that ∂1

∣∣
p

= W , ∂2

∣∣
p

= 1
aV , gij

∣∣
p

=
δij , and Γkij

∣∣
p

= 0. (Thus we are simply using Gaussian normal coordinates,
rotated so that the first two directions point the way we want.)

Let ε be a small positive number. Let ψ : [0,∞) → [0,∞) be a C∞ func-
tion positive on [0, 1) and zero elsewhere. Let ξ : M → [0,∞) be defined in
coordinates by

ξ(x1, x2, x3, . . . , xn) = ψ

((x1

ε

)2

+
(x2

ε2

)2

+
(x3

ε

)2

+ · · ·+
(xn
ε

)2
)

on Ω and 0 elsewhere on M . Note that the dependence on x2 is different from
the dependence on x1 and x3, . . . , xn. Let Ω0 be the inverse image of (0,∞)
under ξ. Ω0 is open, and x ∈ Ω0 implies x1 < ε, x2 < ε2, x3 < ε, . . . , xn < ε.

Define Y to be
Y =

1√
det g

ε2 (−∂2ξ ∂1 + ∂1ξ ∂2)

Then clearly divY = 0, and Y is zero outside Ω0.
By our use of normal coordinates, we have gij = δij + O(|x|2) near p. So

inside Ω0, gij = δij + O(ε2). Thus, det g = 1 + O(ε2), and
√

det g = 1 + O(ε2)
as well. So we can write Y as

Y =
2ψ′(ρ2)

1 +O(ε2)

(
− 1
ε2
x2 ∂1 + x1 ∂2

)
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where ρ2 =
(
x1
ε

)2 +
(
x2
ε2

)2 +
(
x3

ε

)2 + · · ·+
(
xn

ε

)2. The term 1
ε2x2 is o(1) in Ω0,

while the term x1 is O(ε) in Ω0. So to first order in ε, we can write

Y = −2ψ′(ρ2)
1
ε2
x2 ∂1 +O(ε)

Then we compute ∇YX, only to lowest order in ε:

∇YX = −2ψ′(ρ2)
x2

ε2
∇∂1X +O(ε)

= −2ψ′(ρ2)
x2

ε2
(∇WX +O(ε)) +O(ε)

= −2ψ′(ρ2)
ax2

ε2
∂

∂x2
+O(ε)

We now construct a function which gives, to first order in ε, an approximation
of the function pXY used for computing the projection P(∇YX). Let

σ(x1, . . . , xn) = aε2ψ(ρ2)

Then

∇σ = 2aψ′(ρ2)
(
x1∂1 +

x2

ε2
∂2 + x3∂3 + · · ·+ xn∂n

)
+O(ε2)

= 2aψ′(ρ2)
x2

ε2
∂2 +O(ε)

Therefore we have

P(∇YX) = P(∇YX +∇σ) = P(O(ε))

and so∫
M

〈P(∇YX),P(∇YX)〉µ =
∫

Ω0

〈O(ε), O(ε)〉µ = O(ε2)vol(Ω0) = O(εn+3)

On the other hand, the other term in equation (58) is of a lower order than
this. Since

Y = −2ψ′(ρ2)
x2

ε2
∂1 +O(ε) = −2ψ′(ρ2)

x2

ε2
W +O(ε)

we have
A(Y ) = −2ψ′(ρ2)

x2

ε2
A(W ) +O(ε)

Therefore

〈Y,A(Y )〉 = 4(ψ′(ρ2))2
x2

2

ε4
〈W,A(W )〉+O(ε)

and ∫
M

〈Y,A(Y )〉µ = 〈W,A(W )〉
∫

Ω0

4(ψ′(ρ2))2
x2

2

ε4
µ+O(ε)

This quantity is an integral of a function which is o(1) over a volume Ω0, and
therefore it is o(vol(Ω0)) = o(εn+1). In particular it is of lower order than
the term

∫
M
〈P(∇YX),P(∇YX)〉µ. Since 〈W,A(W )〉 was chosen to be strictly

negative, we find that by taking ε sufficiently small, 〈〈R̃(Y,X)X,Y 〉〉 < 0.
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The converse to Theorem 5.2 is much easier, and consists merely of showing
that the curvature is nonnegative when X is a Killing field. We use formula
(54). First, we show that if X is Killing, then it is always a steady solution of
the Euler equations. We know that if X is Killing, then LXg(U, V ) = 0 for any
vector fields U and V , and that this is equivalent to

〈∇UX,V 〉+ 〈∇VX,U〉 = 0

Now we have, for any vector field Y ,

〈∇XX,Y 〉 = −〈∇YX,X〉
= − 1

2Y 〈X,X〉
= 〈− 1

2∇〈X,X〉, Y 〉

Therefore,
∇XX = − 1

2∇〈X,X〉

so X is a solution of the Euler equation with pXX = 1
2 〈X,X〉. In particular, we

have P(∇XX) = 0.
Thus, the first and third terms of formula (54) vanish, and we have

〈〈R̃(Y,X)X,Y 〉〉 =
∫
M

〈P(∇YX),P(∇YX)〉µ

which is obviously nonnegative. (As we will see, it is often zero in many direc-
tions, and in certain situations it is zero in all directions.)

Thus we have the following general criterion for a geodesic in Dµ to have
nonnegative curvature in all plane sections along it which contain the tangent
vector.

Theorem 5.3. If γ : (−ε, ε) → Dµ is a geodesic, with a possibly time-dependent
velocity field X, then the sectional curvature K̃(X,Y ) is nonnegative for every
divergence-free vector field Y if and only if γ(t) is an isometry for all t.

The implication of this is that we cannot expect to use the Rauch Com-
parison Theorem to determine whether a fluid motion is stable (in the sense
of having all solutions of the Jacobi equation remaining bounded). The best
we can achieve is an estimate of growth linear in time, and even this is only
in the case of isometries. Thus true Lagrangian stability seems impossible for
incompressible fluids.

An alternative question is which fluid flows have nonpositive curvature in all
directions. If one could actually get strictly negative curvature in all directions
(bounded away from zero, for example), then the Rauch Comparison Theorem
would tell us that all solutions of the Jacobi equation grow exponentially. Such
flows would, for example, be useful in mixing, since the particles in the fluid
would tend to separate from each other very quickly.
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From formula (55),∫
M

〈R̃(Y,X)X,Y 〉µ =
∫
M

〈R(Y,X)X,Y 〉µ

+
∫
M

〈∇Y∇pXX , Y 〉µ−
∫
M

〈∇pXY ,∇pXY 〉µ

we see that a sufficient condition that the curvature be nonpositive for all di-
rections Y is that the first two terms be nonpositive in Y . In other words, at
every point, the operator Y 7→ R(Y,X)X + ∇Y∇pXX should be nonpositive.
This happens, in particular, when the pressure function pXX is constant and
the curvature of M is nonpositive. This was first noticed by Misio lek [10], who
called such flows “pressure-constant.”

In fact, it seems that all of the known examples of fluid flows with nonpositive
sectional curvature in every direction are pressure-constant flows on flat spaces.
Arnol’d’s original example (cited in Arnol’d-Khesin [2], Theorem IV.3.4) is a
steady zero-pressure flow on the torus T2, while the example of Nakamura-
Hattori-Kambe [11] is a steady zero-pressure flow on the three-torus T3.

It is natural to ask whether there are any other fluid flows for which the
curvature of the diffeomorphism group is nonpositive in every section containing
the flow field, with either pXX or R(·, X)X nonzero. Although one can obtain
some results on nonpositive curvature using formula (54), there is nothing as
complete as Rouchon’s Theorem 5.2 for nonnegative curvature. We leave this
question for future research.

5.6 General properties of the Jacobi equation

The Jacobi equation is the linearization of the geodesic equation. It is a second-
order equation, whose initial conditions are usually given as Y (0) = 0 and DY

dt =
V0. With these initial conditions, solutions to the Jacobi equation describe the
approximate behavior of geodesics which start at the same point as a given one,
with an infinitesimal angle between them. This will be the case we are interested
in when studying geodesics in Dµ: geodesics will always start at the identity,
but the tangent vectors will be different (corresponding to limited knowledge of
the initial velocity field).

In general the Jacobi equation on any Riemannian manifold may be written
as

D2Y

dt2
+R(Y,X)X = 0 (60)

where X is the (time-dependent) tangent vector to the geodesic. If the sectional
curvature is a constant κ0, then solutions to the Jacobi equation will generally
look like

Y (t) =


1

√
κ0

sin
(√
κ0t
)
V0 κ0 > 0

t V0 κ0 = 0
1√
|κ0|

sinh
(√

|κ0|t
)
V0 κ0 < 0
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If the sectional curvature is not constant, but is bounded above or below by
some constant, then the Rauch comparison theorem tells us that solutions to
the Jacobi equation are bounded above or below by one of the corresponding
constant-curvature solution (at least until the first conjugate point).

In the case of incompressible fluid dynamics, the solutions to the Jacobi
equation approximately represent the propagation of small errors in the initially-
measured velocity field of the fluid. If the curvature is everywhere negative, then
we expect exponential growth of solutions, and therefore that small errors are
propagated exponentially. Thus prediction of the paths of individual particles is
impossible for long times, because of inevitable errors in the initial conditions.
Arnol’d famously used this principle to demonstrate heuristically why weather
prediction is impossible: since the curvature of the diffeomorphism group is
negative in many directions, errors will typically grow exponentially, and after a
couple of weeks one’s predictions are meaningless. (See [2] for a recent exposition
of these ideas.)

However, without strict curvature bounds, one cannot make this conclusion
rigorous. The only known tool for using curvature along the geodesic to estimate
rates of geodesic spreading is the Rauch Comparison Theorem. But this theorem
requires uniform curvature bounds in every direction along the geodesic. As we
have seen in the previous section, uniform bounds are nearly impossible to find
on the diffeomorphism group. The only geodesics with everywhere nonnegative
curvature along them are the isometries, and these always have directions of zero
curvature along them. So the best lower bound one can obtain on curvature is
zero, and even this is rare.

In addition, there are no known examples of fluid flows where curvature is
negative in all directions (or bounded away from zero). So although there are
some steady flows where the curvature is nonpositive in all directions (such as
the pressure-constant flows of Misio lek [10]), even this only gives us an upper
bound of zero on the curvature. So instead of guaranteeing exponential growth
of solutions of the Jacobi equation, the Rauch Theorem only guarantees linear
growth of solutions. Thus, comparison methods cannot be relied upon to prove
exponential growth of solutions.

However, we are fortunate in that the metric on Dµ is right-invariant. The
implication of this is that the nominally second-order Jacobi equation can be
split into two first-order linear differential equations, one of which is uncoupled
from the other, just as on finite-dimensional Lie groups. In the simplest cases,
we can solve these equations explicitly. One of these linear equations is the well-
known linearized Euler equation, which has been studied extensively. We simply
use the known explicit solutions of this equation to obtain explicit solutions of
the Jacobi equation. The solutions we present have the peculiar property that
even when the curvature is everywhere nonpositive or everywhere nonnegative,
the solutions to the Jacobi equation grow linearly in time. Without having
many other explicit solutions, it is difficult to tell whether this is a general
phenomenon or whether it is unique to these examples. However, it does tell us
that negative curvature in most directions does not necessarily imply any kind
of exponential growth of small perturbations, and thus gives a counterexample
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to Arnol’d’s argument on weather prediction.

5.6.1 Splitting of the Jacobi equation

The reason the Jacobi equation can be decomposed into first-order equations is
because the same is true of the geodesic equation itself. Recall that the geodesic
equation

P
(

D
∂t

∂η

∂t

)
= 0

is equivalent to the two equations

∂η

∂t
= X ◦ η

∂X

∂t
+ P(∇XX) = 0

(61)

The reason the second equation does not involve η explicitly is precisely because
of the right-invariance of the metric on Dµ.

If we consider a family of solutions to the equations above, depending on a
parameter s, then we can differentiate the equations above with respect to s.
Suppose that time-dependent vector fields Y and Z are defined so that

∂η(t, s)
∂s

∣∣
s=0

= Y (t) ◦ η(t, 0)

∂X(t, s)
∂s

∣∣
s=0

= Z(t)

Then the field Y (t) is the variation of the geodesic η, while Z(t) is the variation
of the velocity field X(t).

The Euler equation, the second equation in formula (61), is easy to differen-
tiate with respect to s, and we obtain at s = 0 the linearized Euler equation

∂Z

∂t
+ P(∇ZX) + P(∇XZ) = 0 (62)

The first equation in (61) is a bit more delicate because of the composition. We
have

∂

∂s

∂η

∂t
=

∂

∂s
(X ◦ η)

∂

∂t
(Y ◦ η) =

∂

∂s
(X ◦ η)(

∂Y k

∂t +Xj∂jY
k
)
◦ η ∂k =

(
Zk + Y j∂jX

k
)
◦ η ∂k

Thus, taking s = 0 and composing with η−1, we get

∂Y

∂t
+ [X,Y ] = Z (63)
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We now compare these equations with the usual Jacobi equation, obtained
by applying the formulas (42) and (53) in the formula (60). We have DY

∂t =
∂Y
∂t +∇XY , and so

D̃Y
∂t

= P
(

DY
∂t

)
=
∂Y

∂t
+∇XY +∇pXY

Thus the second covariant derivative is

D
∂t

P
(

DY
∂t

)
=

∂

∂t

(
∂Y

∂t
+∇XY +∇pXY

)
+∇X

(
∂Y

∂t
+∇XY +∇pXY

)
=
∂2Y

∂t2
+
∂

∂t
(∇XY ) +∇

(
∂pXY

∂t

)
+∇X

(
∂Y

∂t

)
+∇X∇XY +∇X∇pXY

Projecting this onto the space of divergence-free vector fields, we get

D̃
∂t

D̃Y
∂t

=
∂2Y

∂t2
+ P

(
∂

∂t
∇XY +∇X

∂Y

∂t
+∇X∇XY +∇X∇pXY

)
From formula (53) we recall

R̃(Y,X)X = P
(
R(Y,X)X +∇Y∇pXX −∇X∇pXY

)
Thus the Jacobi equation is

∂2Y

∂t2
+P

(
∂

∂t
∇XY +∇X

∂Y

∂t
+∇X∇XY +R(Y,X)X +∇Y∇pXX

)
= 0 (64)

Note that what we have effectively done here is to right-translate the vector
field Y , which is properly thought of as a vector field along the geodesic η, back
to the identity. This is how we obtained the explicit formula for the covariant
derivative D̃Y

∂t . It is more typical when analyzing the Jacobi equation to instead
parallel-transport the vector field Y back to the starting location. For theoretical
purposes this is useful, but it can almost never be done explicitly, and certainly
not on Dµ.

We have separately derived the linearized geodesic equations

∂Y

∂t
+ [X,Y ] = Z

∂Z

∂t
+ P(∇XZ) + P(∇ZX) = 0

(65)

and if we use the first equation here to eliminate Z from the second equation,
it is easy to check that we end up with equation (64).
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5.6.2 Asymptotic growth of Jacobi fields

The second equation in (65) is fairly well-understood, at least for simple types
of steady flows X. On the other hand, the full Jacobi equation does not appear
to have been studied with the goal of finding explicit solutions. Thus simply
solving the first equation in (65), given a solution Z of the second equation,
already gives us a good deal of new information about the geometry of Dµ.

For a steady flow X, we can choose coordinates in some neighborhood such
that X = ∂

∂xn . Then the first equation becomes the n equations

∂Y k

∂t
+
∂Y k

∂xn
= Zk

for the components Y k of Y . These are thus uncoupled first-order PDEs, and
their solution can be written down explicitly. With the initial condition Y (0) =
0, we get

Y k(t, x1, . . . , xn−1, xn) =
∫ t

0

Zk(s, x1, . . . , xn−1, xn + s− t) ds

What this shows is that for steady flows, Lagrangian stability analysis (that is,
of the solutions of the Jacobi equation) is essentially no more difficult than Eule-
rian stability analysis (that is, of the solutions of the linearized Euler equation).
Misio lek [10] pointed out that the two forms of stability were generally distinct,
in the sense that flows which are stable in the Eulerian sense could have ev-
erywhere nonpositive sectional curvature along them. He conjectured that such
flows actually had exponential growth of Jacobi fields, so that they were ex-
ponentially unstable in the Lagrangian sense. However, the precise connection
between the two has not been studied in detail.

We can obtain some rigorous information about the growth of Jacobi fields
if X is a steady rotational flow on a two-dimensional annulus with rotationally
symmetric metric. In this case, the metric is of the form ds2 = dr2 + ϕ2(r) dθ2

and the volume element is of the form µ = ϕ(r) dr dθ. The fluid is described by
the steady vector field X = u(r) ∂θ. We can then compute a bound on ||Y || in
terms of ||Z||, and if the norm of Z is bounded (i.e. if X is a stable fluid flow
in the Eulerian sense) then Y cannot grow exponentially.

Theorem 5.4. Suppose X = u(r) ∂θ is a steady flow on a two-dimensional
manifold M defined by the inequality a ≤ r ≤ b with metric ds2 = dr2 +
ϕ2(r) dθ2. Let A = sup

a≤r≤b
|ϕ(r)u′(r)|. Then if Y and Z are solutions of equation

(65) with Y (0) = 0, then

||Y (t)|| ≤
∫ t

0

√
2
(
1 +A2(t− s)2

)
||Z(s)|| ds

Here ||U || denotes the L2 norm of a vector field U . In particular, if the L2

norm of Z is bounded, then the L2 norm of Y grows at most quadratically in
time.
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Proof. Given a solution Z = Z1(t, r, θ) ∂r + Z2(t, r, θ) ∂θ of equation (62), we
can write equation (63) in components as

∂Y 1

∂t
+ u(r)

∂Y 1

∂θ
= Z1

∂Y 2

∂t
+ u(r)

∂Y 2

∂θ
= Z2 + u′(r)Y 1

The first of these equations is easily solved, with initial condition Y 1(0):

Y 1(t, r, θ) =
∫ t

0

Z1
(
s, r, θ + u(r)(s− t)

)
ds (66)

The solution of the second equation can be written in terms of Y 1:

Y 2(t, r, θ) =
∫ t

0

Z2
(
s, r, θ + u(r)(s− t)

)
ds

+ u′(r)
∫ t

0

Y 1
(
s, r, θ + u(r)(s− t)

)
ds (67)

Inserting equation (66) into equation (67) and simplifying, we obtain

Y 2(t, r, θ) =
∫ t

0

Z2
(
s, r, θ + u(r)(s− t)

)
ds

+ u′(r)
∫ t

0

(t− s)Z1
(
s, r, θ + u(r)(s− t)

)
ds (68)

Now we simply compute the norm of Y (t) using these formulas:∫
M

〈Y (t), Y (t)〉µ

=
∫
M

∫ t

0

∫ t

0

[
Z1
(
s, r, θ + u(r)(s− t)

)][
Z1
(
σ, r, θ + u(r)(σ − t)

)]
+ ϕ2(r)

[
Z2
(
s, r, θ + u(r)(s− t)

)
+ u′(r)(t− s)Z1

(
s, r, θ + u(r)(s− t)

)]
·
[
Z2
(
σ, r, θ + u(r)(σ − t)

)
+ u′(r)(t− σ)Z1

(
σ, r, θ + u(r)(σ − t)

)]
dσ ds µ

First we interchange the order of integration.∫
M

〈Y (t), Y (t)〉µ

=
∫ t

0

∫ t

0

∫
M

[
Z1
(
s, r, θ + u(r)(s− t)

)][
Z1
(
σ, r, θ + u(r)(σ − t)

)]
+ ϕ2(r)

[
Z2
(
s, r, θ + u(r)(s− t)

)
+ u′(r)(t− s)Z1

(
s, r, θ + u(r)(s− t)

)]
·
[
Z2
(
σ, r, θ + u(r)(σ − t)

)
+ u′(r)(t− σ)Z1

(
σ, r, θ + u(r)(σ − t)

)]
µdσ ds
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Now we use the Schwarz inequality on the volume integral, so that we can
separate the s and σ parts.

||Y (t)||2 ≤
∫ t

0

∫ t

0

ξ(σ)ξ(s) dσ ds (69)

where

ξ(s)2 =
∫
M

[
Z1
(
s, r, θ + u(r)(s− t)

)]2
+ ϕ2(r)

[
Z2
(
s, r, θ + u(r)(s− t)

)
+ u′(r)(t− s)Z1

(
s, r, θ + u(r)(s− t)

)]2
µ

(70)

The integrand in (69) is a function of s multiplied by a function of σ, and
therefore the double integral is simply a product of two integrals, which are
identical. Taking the square root of both sides, we have

||Y (t)|| ≤
∫ t

0

ξ(s) ds (71)

Now we change variables in the expression ξ(s) and let ψ = θ+u(r)(s− t). The
limits remain from 0 to 2π, and the volume element is also unchanged, so we
obtain

ξ(s)2 =
∫
M

[
Z1(s, r, ψ)

]2 + ϕ2(r)
[
Z2(s, r, ψ) + u′(r)(t− s)Z1(s, r, ψ)

]2
µ (72)

Now we want to bound the integrand by 〈Z,Z〉:[
Z1(s)

]2 + ϕ2
[
Z2(s) + u′(t− s)Z1(s)

]2
≤ [Z1(s)]2 + 2ϕ2[Z2(s)]2 + 2ϕ2u′2(t− s)2[Z1(s)]2

≤ 2
(
1 + ϕ2u′

2(t− s)2
)[
Z1(s)2 + ϕ2Z2(s)2

]
≤ 2
(
1 +A2(t− s)2

)[
Z1(s)2 + ϕ2Z2(s)2

]
= 2
(
1 +A2(t− s)2

)
〈Z,Z〉

Inserting this into equation (72), we get

ξ(s)2 ≤ 2
(
1 +A2(t− s)2

) ∫
M

〈Z,Z〉µ

and therefore from equation (71) we obtain

||Y (t)|| ≤
∫ t

0

√
2
(
1 +A2(t− s)2

)
||Z(s)|| ds

as desired.
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So if ||Z(s)|| ≤ C for all s, then

||Y (t)|| ≤ C

∫ t

0

√
2
(
1 +A2(t− s)2

)
ds

=
C√

2

(
t
√

1 +A2t2 +
1
A

ln (At+
√

1 +A2t2)
)

For large values of t, this is O(t2), as was to be shown.

If the velocity field is not stable in the Eulerian sense, then the typical
situation is that we have some number λ with positive real part and some
eigenfield ζ such that the solution of the linearized Euler equation (62) is

Z(t, r, θ) = eλtζ(r, θ)

Expanding this in a Fourier series

Z(t, r, θ) = eλt
∞∑

n=−∞
ζn(r)einθ

and using equations (66) and (68) to construct the Jacobi field, we obtain

Y (t, r, θ) =
∞∑

n=−∞

1
λ+ inu(r)

[
(eλt − e−inu(r)t)

(
ζ1
n(r) ∂r + ζ2

n(r) ∂θ
)

+ u′(r)
(

1
λ

(eλt − 1) +
1

inu(r)
(e−inu(r)t − 1)

)
∂θ

]
einθ

So in particular, the Jacobi field also grows exponentially in time at each point,
as we expect.

The quadratic growth estimate of the L2 norm in Theorem 5.4 is, in general,
the best possible. To see this, we construct the following example. Let M be
the torus T2, with a metric given by ds2 = dr2 +ϕ2(r) dθ2 with ϕ(r) a periodic
function of r (e.g. ϕ(r) = c+ d cos r for |c| > |d|). Let

X =
1

ϕ2(r)
∂

∂θ

and
Z =

1
ϕ(r)

∂

∂r

Then divX = 0 and divZ = 0, and since

∇XZ +∇ZX = 0

Z is a steady solution of the linearized Euler equation (62).
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By equations (66) and (68), the corresponding Jacobi field is

Y (t, r, θ) =
t

ϕ(r)
∂

∂r
− t2ϕ′(r)

ϕ4(r)
∂

∂θ
(73)

Thus the Jacobi field grows quadratically in time at each point. We conjecture
that this happens because Z is harmonic. In the case where Y and Z can be
expressed as skew gradients, growth seems to be typically linear in time. (See
Theorem 5.5 in the next section.)

Regardless, the important point is that growth is polynomial in time: we
have ruled out exponential growth of the Jacobi fields unless the perturbed
velocity field also grows exponentially in time. Arnol’d and Khesin [2] discussed
the relation between Eulerian stability and Lagrangian stability (Chapter IV,
Section 4). There, they conjectured that negativity of the curvature corresponds
to exponential divergence of nearby fluid paths, even if the fluids are stable in
the Eulerian sense. We have seen that for rotational flows in two dimensions,
this is generally not true.

Arnol’d and Khesin used the example of a sinusoidal flow on a torus, for
which the pressure is constant and the curvature is nonpositive in all directions,
to demonstrate the impossibility of long-term weather prediction. However,
it is known that a sinusoidal velocity profile of the form X = sin y ∂x on a
torus T 2 = [0, a] × [0, 2π] is actually stable in the Eulerian sense if a ≤ 2π.
(See Arnol’d-Khesin [2], Chapter II, Section 4.) Therefore on a “short” torus,
nonpositive curvature gives at worst quadratic growth of perturbations. In such
a situation it is clearly much easier to predict the fluid motion than if the growth
were exponential.

5.7 Explicit solutions of the Jacobi equation

In certain special cases, we can solve the linearized Euler equation

∂Z

∂t
+∇XZ +∇ZX = −2∇pXZ (74)

explicitly. Here we will work in two dimensions only, for simplicity.
We have seen that we can express any divergence-free vector field Z in the

form Z = sgrad h + W , where h is a function which vanishes on the boundary
of M , and W is a harmonic vector field, with divW = 0 and curl W = 0.
Computing the curl of equation (74), and using formulas (40), we get

∂

∂t
∆h+ curl (∇ZX) + curl (∇XZ) = 0 (75)

We can make this more explicit if we assume that X is a rotational flow on a
rotationally symmetric manifold. Then the metric is ds2 = dr2 +ϕ2(r)dθ2, and
the vector field can be written as X = u(r) ∂

∂θ . Let us assume for simplicity that
M is an annulus. Thus it has a one-parameter family of harmonic vector fields
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tangent to the boundary, spanned by W = 1
ϕ2

∂
∂θ . We then have an explicit

formula for Z:

Z = − 1
ϕ(r)

∂h

∂θ

∂

∂r
+

1
ϕ(r)

∂h

∂r

∂

∂θ
+

c

ϕ2(r)
∂

∂θ

We compute the covariant derivative in equation (75):

∇ZX = −u
′(r)
ϕ(r)

∂h

∂θ

∂

∂θ
− ϕ′(r)u(r)

ϕ2(r)
∂h

∂θ

∂

∂θ

− ϕ′(r)u(r)
∂h

∂r

∂

∂r
− c

ϕ′(r)u(r)
ϕ(r)

∂

∂r

The curl of this is

curl (∇ZX) = − 1
ϕ(r)

d2

dr2
(
ϕ(r)u(r)

) ∂h
∂θ

− u′(r)
∂2h

∂θ ∂r

We also have

∇XZ = u(r)
∂Z

∂θ
− ϕ′(r)u(r)

ϕ2(r)
∂h

∂θ

∂

∂θ
− ϕ′(r)u(r)

∂h

∂r

∂

∂r
− c

ϕ′(r)u(r)
ϕ(r)

∂

∂r

so that

curl (∇XZ) = u′(r)
∂2h

∂θ ∂r
+ u(r)

∂

∂θ
∆h− 1

ϕ(r)
d

dr

(
ϕ′(r)u(r)

)∂h
∂θ

Putting these expressions in equation (75) and simplifying, we obtain

∂

∂t
∆h+ u(r)

∂

∂θ
∆h− 1

ϕ(r)
d

dr

[
1

ϕ(r)
d

dr

(
ϕ2(r)u(r)

)] ∂h
∂θ

= 0 (76)

This tells us how the skew-gradient part of Z evolves in time.
To find out how the harmonic part evolves, we compute the inner product of

equation (74) with the harmonic field W = 1
ϕ2(r)

∂
∂θ . We get dc

dt = 0, since every
other term vanishes (we obtain integrals of functions of the form ∂J

∂θ , which
vanish since all of our functions are periodic). So c(t) = c(0), and the harmonic
part of Z always remains constant.

Now we demonstrate how to solve equation (63). If Y = sgrad g + b
ϕ2(r)

∂
∂θ

then we have

[X,Y ] = −u(r)
ϕ(r)

∂2g

∂θ2
∂

∂r
+
u(r)
ϕ(r)

∂2g

∂r ∂θ

∂

∂θ
+
u′(r)
ϕ(r)

∂g

∂θ

∂

∂θ

= sgrad
(
u(r)

∂g

∂θ

)
So we get the equation

sgrad
(
∂g

∂t
+ u(r)

∂g

∂θ

)
= sgrad h
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or more simply,
∂g

∂t
+ u(r)

∂g

∂θ
= h

So, if Y (0) = 0, the skew-gradient part is generally found from the formula

g(t, r, θ) =
∫ t

0

h
(
s, r, θ − u(r)(t− s)

)
ds (77)

We obtain the equation for the harmonic part of Y by computing the inner
product of equation (63) with the harmonic field 1

ϕ2 ∂θ. We obtain the equation
db
dt = c(t) = c(0). Thus the harmonic part of Y always grows linearly: b(t) =
c(0)t.

As for the skew-gradient part of Y , we can derive the following analogue
of Theorem 5.4. It describes the growth of the H−1 norm of the Jacobi field,
whereas Theorem 5.4 describes the growth of the L2 norm.

Theorem 5.5. If g is given by formula (77), then the L2 norm of g (that is,
the H−1 norm of Y ) is bounded in terms of the L2 norm of h (that is, the H−1

norm of Z) through√∫
M

g2(t, r, θ)µ ≤
∫ t

0

√∫
M

h2(s, r, θ)µds (78)

In particular, if the H−1 norm of Z is bounded, then the H−1 norm of Y grows
at most linearly.

Proof. The proof uses the same technique as Theorem 5.4, but it is much sim-
pler. Using equation (77), we have

∫
M

g2(t, r, θ)µ

=
∫ t

0

∫ t

0

∫
M

h
(
s, r, θ − u(r)(t− s)

)
h
(
σ, r, θ − u(r)(t− σ)

)
µds dσ

≤
∫ t

0

∫ t

0

√∫
M

h2
(
s, r, θ − u(r)(t− s)

)
µ ·

·

√∫
M

h2
(
σ, r, θ − u(r)(t− σ)

)
µ ds dσ

≤

[∫ t

0

√∫
M

h2
(
s, r, θ − u(r)(t− s)

)
µ ds

]2

≤

[∫ t

0

√∫
M

h2
(
s, r, ψ

)
µ ds

]2
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So obviously if √∫
M

h2
(
t, r, ψ

)
µ ≤ C

for all t, then √∫
M

g2(t, r, θ)µ ≤ Ct

for all t.

We can solve equation (76) explicitly in two cases: when X is a Killing field
(u(r) ≡ 1), and when X is a Couette field (u(r) = C

ϕ2(r)

∫
ϕ(r) dr). In these

solutions, we find that the Jacobi field typically grows linearly, in the H−1 norm,
the L2 norm, and the L∞ norm.

5.7.1 Killing field flow

We first consider the case where X is a Killing field. Then u(r) is constant, and
we can assume u(r) = 1. Then equation (76) simplifies to

∂

∂t
∆h+

∂

∂θ
∆h− 2

ϕ′′(r)
ϕ(r)

∂h

∂θ
= 0

We can compute that for a rotationally invariant metric, the Gaussian curvature
is given by κ = −ϕ′′(r)

ϕ(r) . Thus this equation will be simplest when the curvature
κ is a constant. So we have

∂

∂t
∆h+

∂

∂θ
∆h+ 2κ

∂h

∂θ
= 0 (79)

The eigenfunctions of the Laplacian are of the form φk,n(r, θ) = ψk,n(r)einθ,
with ∆φk,n = −λk,nφk,n. Suppose the curvature κ is constant. If we write

h(t, r, θ) =
∞∑
k=1

∞∑
n=−∞

hk,n(t)φk,n(r, θ)

then equation (79) decomposes into

−λk,n
dhk,n
dt

− inλk,nhk,n + 2inκhk,n = 0

whose solution is

hk,n(t) = hk,n(0)e
in
(

2κ
λk,n

−1
)
t

So this tells us the skew-gradient part of Z for all time.
Now, to solve equation (63), we expand g in a series of eigenfunctions of the

Laplacian,

g(t, r, θ) =
∞∑
k=1

∞∑
n=−∞

gk,n(t)φk,n(r, θ)
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Therefore, using formula (77), the explicit solution with gk,n(0) = 0 is

gk,n(t) =


λk,nhk,n(0)

2iκn
(
e
in
(

2κ
λk,n

−1
)
t − e−int

)
κ 6= 0 and n 6= 0

hk,n(0)te−int κ = 0 or n = 0

So there is always at least one component that grows linearly (the one corre-
sponding to n = 0, that is, the vector fields that point in the same direction as
X).

The squared L2 norm of Y is

∫
M

〈Y, Y 〉µ = c(0)2t2
∫
M

1
ϕ2

µ+ t2
∞∑
k=1

λk,0|hk,0(0)|2

+
∞∑
n=1

∞∑
k=1

λk,n

(
1− cos 2κn

λk,n
t
)(λk,n

κn

)2

|hk,n(0)|2

if κ 6= 0, and∫
M

〈Y, Y 〉µ = t2

(
c(0)2

∫
M

1
ϕ2

µ+
∞∑
k=1

λk,0|hk,0(0)|2 + 2
∞∑
n=1

∞∑
k=1

λk,n|hk,n(0)|2
)

if κ = 0. In particular, if the curvature is nonzero, then the norm of Y grows
linearly with time unless c(0) = 0 and hk,0 = 0 for all k. If the curvature is zero,
then the norm of every solution grows linearly. We know already that Y could
grow at most linearly, using Theorem 5.4 with A = 0. But it is interesting that
on spaces of positive or negative curvature, there are bounded solutions of the
Jacobi equation along a rotation, while on flat space there are none.

The reason is that on a flat two-dimensional space, where ϕ(r) = r, the
curvature along a rotation is actually zero in all directions. This is because
∇YX is always a gradient, so P(∇YX) = 0 and thus all terms in formula (54)
vanish. Thus the fact that every solution of the Jacobi equation grows linearly
is expected there. It is interesting that in fact the curvature is greater along a
rotation in hyperbolic space (κ = −1) than in flat space. This is the intuitive
reason that some Jacobi fields in hyperbolic space remain bounded, while none
in flat space do.

The important conclusion to draw from these computations is that even in
the best possible case, when the curvature is positive in nearly all directions, the
solutions to the linearized geodesic equations are still typically not bounded in
time. Thus if one defines linear stability of a geodesic to mean boundedness of
all solutions of the Jacobi equation (as Misio lek [10] did), then one could never
actually expect any geodesic in Dµ to be linearly stable.

On the other hand, even if all geodesics are unstable in this sense, one can
still distinguish between differing rates of growth. In Arnol’d’s model of the
weather, small-scale weather is considered a time-dependent perturbation of a
large-scale rotational steady flow, namely the tradewind currents around the
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earth. Clearly one could still predict the weather to a good precision if one
knew that perturbations grew linearly in time, although predictions would be
effectively impossible if errors grew exponentially in time. However, as we will
see in the next section, flows with negative curvature in almost every direction
can have the same order of growth as flows with positive curvature in almost
every direction. Thus curvature computations in Dµ must be considered of very
limited usefulness when studying the stability of steady fluid flows, at least
among rotational flows.

5.7.2 Couette flow

The equation (76) has two terms involving the Laplacian of h and the third term
which is obviously of a very different nature. Couette flow can be considered as
the special case in which the third term vanishes. The formula for Couette flow
is thus found by solving the equation

1
ϕ(r)

d

dr

[
1

ϕ(r)
d

dr

(
ϕ2(r)u(r)

)]
= 0

The solution is easy to write down:

u(r) =
C

ϕ2(r)

∫
ϕ(r) dr

The general formula involves two arbitrary constants: C is one, and the other is
obtained from the indefinite integral. For example, if ϕ(r) = 1 (corresponding
to a flat cylinder), then plane parallel Couette flow is u(r) = Ar+B. If ϕ(r) = r,
then Couette flow is u(r) = A

r2 + B (this is only defined if M is an annulus).
We suppose for this section that M is the annulus 0 < a ≤ r ≤ b.

For Couette flow, the linearized Euler equation is

∂

∂t
∆h+ u(r)

∂

∂θ
∆h = 0

The explicit general solution to this equation was first given by Orr [13] for the
case ϕ(r) = 1. We repeat his method; the only new addition is to integrate this
solution to find Y .

First, we can immediately write the solution as

∆h(t, r, θ) = F (r, θ − u(r)t)

for some function F . Using the fact that h
∣∣
∂M

= 0, we can solve this Dirichlet
problem for h in terms of F . We know that F (r, θ) = ∆h(0, r, θ). Let us expand
h in a Fourier series in θ: then

h(t, r, θ) =
∞∑

n=−∞
hn(t, r)einθ
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Letting ∆n denote the operator

∆nf(r) =
1

ϕ(r)
d

dr

(
ϕ(r)

df

dr

)
− n2f(r)

ϕ2(r)

we have

∆h(t, r, θ) =
∞∑

n=−∞
[∆nhn(t, r)]einθ

Since

F (r, θ − u(r)t) =
∞∑

n=−∞
Fn(r)e−inu(r)teinθ

we match up the Fourier coefficients to obtain

∆nhn(t, r) = e−inu(r)tFn(r) (80)

with Dirichlet boundary conditions for hn(t, r). Since the Laplacian on M has
a unique inverse, each of the operators ∆n has a unique inverse. So we know
we can always find a unique solution of equation (80). Explicitly, we can use
the Green’s function Gn(r, ρ), given by

Gn(r, ρ) =
1

n sinh
(
nξ(b)

)
sinh

(
nξ(ρ)

)
sinh

([
ξ(b)− ξ(r)

])
ρ ≤ r

sinh
(
nξ(r)

)
sinh

([
ξ(b)− ξ(ρ)

])
ρ ≥ r

(81)

so that the solution of the Dirichlet problem (80) is

hn(t, r) = −
∫ b

a

Gn(r, ρ)e−inu(ρ)tFn(ρ)ϕ(ρ) dρ

Using equation (77), we can get a useful formula for gn:

gn(t, r) =
∫ t

0

e−inu(r)(t−s)hn(s, r) ds

= −
∫ t

0

∫ b

a

e−inu(r)(t−s)Gn(r, ρ)e−inu(ρ)sFn(ρ)ϕ(ρ) dρ ds

= −e−inu(r)t

∫ b

a

Gn(r, ρ)Fn(ρ)ϕ(ρ)
∫ t

0

ein[u(r)−u(ρ)]s ds dρ

= −e−inu(r)t

∫ b

a

Gn(r, ρ)Fn(ρ)
ein[u(r)−u(ρ)]t − 1
in[u(r)− u(ρ)]

ϕ(ρ) dρ

so that finally we have

gn(t, r) =
1
in

∫ b

a

Fn(ρ)Gn(r, ρ)
e−inu(r)t − e−inu(ρ)t

u(r)− u(ρ)
ϕ(ρ) dρ (82)
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If n = 0, this formula is not valid, and instead we have

g0(t, r) = −t
∫ b

a

G0(r, ρ)F0(ρ)ϕ(ρ) dρ

Although the explicit computation gets a bit messy, we remind ourselves
that

Y = − 1
ϕ(r)

∂g

∂θ

∂

∂r
+

1
ϕ(r)

∂g

∂r

∂

∂θ
+
c(0)t
ϕ2(r)

∂

∂θ

We know already that the harmonic part, if any, grows linearly in time. Looking
at the formula (82), we see that dependence on time is only through terms like
ein(θ−u(r)t). Differentiating with respect to θ will produce time-dependencies
like ein(θ−u(r)t), which is pointwise bounded in time. Thus the r-component of
Y remains bounded in time. On the other hand, differentiating this term with
respect to r produces time-dependencies like u′(r)tein(θ−u(r)t), which increases
linearly with time at each point.

Thus we can say in general that for Couette flow, the Jacobi field Y always
increases at most linearly with time at each point, and thus in the L2 norm as
well. This is in fact slower growth than the general quadratic estimate one has
from Theorem 5.4, and leads one to expect that in fact linear growth may be
the most typical case for the solutions of the Jacobi equation, when the solution
of the linearized Euler equation is bounded.

In general the pattern seems to be that one can only obtain exponential
growth in solutions of the Jacobi equation if one already obtains exponential
growth in the solutions of the linearized Euler equation. Thus Eulerian stability
analysis is equivalent to Lagrangian stability analysis for steady flows, at least in
the special cases we have discussed. As we have found, even in the best cases one
cannot expect that Lagrangian perturbations are bounded in time (i.e., stable
in the sense of Lyapunov), unlike Eulerian perturbations. Therefore we should
instead distinguish between polynomial and exponential rates of growth as our
stability criterion for the Lagrangian motion of a fluid.

6 Stability of the motion of a compressible fluid

Once we interpret the Lagrangian motion of incompressible fluids as geodesics
on the group of volume-preserving diffeomorphisms, it is natural to take a sim-
ilar approach to studying the Lagrangian motion of compressible fluids. For
barotropic fluids (that is, compressible fluids for which the internal forces de-
pend only on the density of the fluid), the appropriate picture is of a Newtonian
system on the group of all diffeomorphisms. As we have seen, it is easier to do
computations on the group of all diffeomorphisms than on the group of volume-
preserving diffeomorphisms, and thus in some sense it is easier to study the
Lagrangian motion of compressible flows than of incompressible flows.

Much of the modern approach to the study of Lagrangian motion of com-
pressible flow was initiated in the late 1970s. N. Smolentsev [16] used a potential
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energy function and a Maupertuis principle to describe the equations of com-
pressible fluid mechanics as a geodesic equation on the group of diffeomorphisms.
Here the metric is not the usual kinetic energy metric but the Jacobi metric,
which is conformally equivalent to it. Geodesics of this metric correspond to
solutions of Newton’s equations after a reparametrization. The geometry of the
Jacobi metric is fairly complicated; the curvature tensor, for example, is difficult
to compute explicitly. It therefore seems preferable to simply study the Newton
equation directly rather than to force the strict geometric analogy. Hence we
will avoid the Maupertuis approach.

D. Ebin [6] derived the equations of barotropic compressible flow from a
Lagrangian minimization principle. He showed that when the potential energy
is multiplied by a sufficiently large parameter, the solution of the barotropic
equations is close to the solution of the incompressible equations, in the C1

sense. Thus positions and velocities of particles will be close in the two models;
accelerations in general will not be close, however. (The same thing happens in
finite-dimensional Newtonian systems; see [6] for an example.) Since the theory
of Lagrangian linear stability involves the deviation of acceleration, we would
not necessarily expect stability properties of compressible flow to be similar to
those of incompressible flow.

In what follows we first present Ebin’s derivation of the Euler equations of
barotropic flow. Then we compute the Hessian of the potential energy function,
which appears in the linearized Newton equation and plays the same role as
the Riemann curvature tensor does for incompressible fluid mechanics. Next we
show how the linearized equations for unsteady one-dimensional flow may be
solved explicitly for a special case, and we compute a stability result for this case.
Finally we study two-dimensional steady flows, and present explicit solutions of
the linearized equations about steady plane parallel and rigid rotational flow.

6.1 Derivation of the Euler equation

Once again it will be convenient to keep in mind the distinction between the
domain and range of the diffeomorphisms; that is, between the home of the par-
ticles and the physical space. We remind the reader that for any diffeomorphism
η : N →M , the density ρ : M → R is defined by the formula

ρµ = (η−1)∗ν

where µ is the volume form on M defined by the Riemannian metric and ν is the
volume form on N which represents the masses of the particles. The Jacobian
J(η) : N → R of η is defined by the formula

J(η) ν = η∗µ

and we have the general formulas

J(η) =
1

ρ ◦ η
and ρ =

1
J(η) ◦ η−1
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If F : R → R is any function of one variable, we define a potential energy
function Q : D(N,M) → R by the formula

Q(η) =
∫
N

F
(
J(η)

)
ν

The assumption that the potential energy depends only on the Jacobian of
η is characteristic of fluid mechanics. By allowing a more general form of the
potential energy, we could also incorporate many other situations, such as elastic
motion of solids and fluids with surface tension. The computations we will
perform would be essentially the same; we set up an integral on N and use the
Lie derivative on M to determine formulas for the gradient and the Hessian.

We recall that the dust metric on D(N,M) is given by

〈〈U,V〉〉η =
∫
N

〈U ◦ η, V ◦ η〉 ν =
∫
M

ρ 〈U, V 〉µ

where U and V are tangent vectors in TηD(N,M) which are given by U = U ◦η
and V = V ◦ η for some vector fields U and V on M .

The Lagrangian of barotropic fluid mechanics is then

L(η, η̇) =
∫
N

(
1
2 〈η̇, η̇〉 − F (J(η))

)
ν

and Newton’s equation on D(N,M) is

D
dt

dη

dt
= −∇Qη(t) (83)

Proposition 6.1. The gradient of Q is given by the formula

∇Qη = −1
ρ
∇F ′

(
1
ρ

)
(84)

Proof. Let X be a vector field on M , and φt be its flow on M . If M has a
boundary, then we assume X is tangent to the boundary of M . Let X denote
the vector field defined by Xη = X ◦ η. Let Φt : D(N,M) → D(N,M) denote
the flow of X, which satisfies

Φt(η) = φt ◦ η

Then
〈〈∇Qη,Xη〉〉 =

d

dt

∣∣∣
t=0

Q(Φt(η))
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So we have

〈〈∇Qη,Xη〉〉 =
d

dt

∣∣∣
t=0

∫
N

F
(
J(Φt(η))

)
ν

=
∫
N

F ′
(
J(Φ0(η))

) d

dt

∣∣∣
t=0

(J(φt ◦ η) ν

=
∫
N

F ′
(
J(η))

d

dt

∣∣∣
t=0

[(
φt ◦ η

)∗
µ
]

=
∫
N

F ′
(
J(η)) η∗

[
d

dt

∣∣∣
t=0

φ∗tµ

]
=
∫
N

F ′
(
J(η)) η∗[LXµ]

=
∫
N

F ′
(
J(η)) η∗[divXµ]

=
∫
N

F ′
(
J(η))

(
divX ◦ η

)
η∗µ

=
∫
M

F ′
(
J(η)) ◦ η−1 divX µ

=
∫
M

F ′
(

1
ρ

)
divX µ

=
∫
M

div
(
F ′
(

1
ρ

)
X
)
µ−

∫
M

〈
X,∇F ′

(
1
ρ

)〉
µ

= −
∫
M

ρ
〈
X, 1

ρ∇F
′( 1
ρ

)〉
µ

The desired formula follows.

Using this formula in equation (83), we obtain the Euler equation for barotropic
compressible flow:

DX
dt

=
1
ρ
∇F ′

(
1
ρ

)
Using equation (24) and defining the function p by the formula p(x) = −F ′

(
1
x

)
,

we can write this function in the more usual form

∂X

∂t
+∇XX = −1

ρ
∇p(ρ)

Defining a function h by the formula h′(x) = 1
x p

′(x), we can also write this
equation in the form

∂X

∂t
+∇XX = −∇h(ρ) (85)

For our purposes, this will be the most convenient form.
The function F must still be specified in order to have a complete system.

Typically one specifies the pressure function p instead; in terms of p, F is given
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by the formula

F (x) =
∫ 1/x

1

p(s)
s2

ds

For example, if the fluid is polytropic, i.e. if p is given by p(x) = Axγ , then

F (x) =
A

γ − 1
(x1−γ − 1)

and the potential energy is given by

Q(η) =
A

γ − 1

(∫
M

ργ µ−
∫
M

ρµ

)
In this case, the function h is given by

h(x) =
Aγ

γ − 1
xγ−1

If we compute the time derivative of the equation

η∗t (ρµ) = ν

we obtain

η∗t

(
∂ρ

∂t
µ

)
+ η∗t

(
LX(ρµ)

)
= 0

η∗t

(
∂ρ

∂t
µ+X(ρ)µ+ ρdivXµ

)
= 0

Composing with (η−1
t )∗, we see that this equation implies

∂ρ

∂t
+ div (ρX) = 0 (86)

This equation is called the equation of continuity and is generally considered
one of the fundamental equations along with (85). In our approach, it is auto-
matically satisfied and can be considered a consequence of the equation

dη

dt
= X(t) ◦ η(t) (87)

6.2 Linearization of the Euler equation

In general, the procedure for linearizing the Newton equation on a Riemannian
manifold is to construct a vector field Y along the curve. We assume that
Y = ∂

∂s for some coordinate s, and that the curve parameter t can also be used
as a coordinate in a neighborhood of the curve γ. Then since coordinate vector
fields commute, we have

D

∂s

dγ

dt
=
DY

∂t
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If we compute the derivative of the Newton equation D
dt
dγ
dt = −∇U ◦ γ(t) with

respect to s, we then obtain

D

∂s

D

∂t

dγ

dt
= −D

∂s
∇U ◦ γ

Using the curvature operator to interchange the order of differentiation, and the
fact that D

∂sV = ∇∂sV if V is the restriction of a vector field, we have

D2Y

dt2
+R(Y, γ̇)γ̇ +∇Y∇U ◦ γ = 0 (88)

Equation (88) is a generalization of the usual Jacobi equation on a Rieman-
nian manifold, and we might call it the potential-Jacobi equation. One could
expect that the role of the expression

〈R(Y, γ̇)γ̇, Y 〉+ 〈∇Y∇U, Y 〉
〈Y, Y 〉

(89)

is analogous to the role of the sectional curvature in Riemannian geometry. Note
that the Hessian of U is positive-definite iff U is convex, so on a flat manifold
the expression (89) is positive iff the potential energy is convex. Since convexity
of potential energy implies stability of stationary solutions, we might expect in
general that it is also related to stability of nonstationary solutions.

To study the linearized Euler equation on the diffeomorphism group, we
must first compute the Hessian of the barotropic potential Q. To do this, we
use the general formula

〈∇Y∇U,X〉 = 〈∇X∇U, Y 〉 = X
(
Y (U)

)
−∇XY (U)

and a technique similar to the proof of proposition 6.1 above.

Proposition 6.2. At a vector Y ◦η ∈ TηD(N,M), the Hessian of the barotropic
potential Q is given by the formula

∇Y ◦η∇Q =
[
−∇

(
h′(ρ) div (ρY )

)
+∇Y∇h(ρ)

]
◦ η (90)

Proof. Let X and Y be vector fields on M , tangent to the boundary of M .
Let X and Y denote the right-invariant vector fields on D(N,M) defined by
Xη = X ◦ η and Yη = Y ◦ η. Let φt denote the flow of X on M , and let Φt
denote the flow of X on D(N,M), satisfying Φt(η) = φt ◦ η. We have

〈〈∇Y∇Q,X〉〉 = 〈〈∇X∇Q,Y〉〉 = X
(
Y(Q)

)
−∇XY(Q)

Since (∇XY)η = ∇XY ◦ η by formula (23) for right-invariant vector fields, we
already know what the second term is from proposition 6.1:

∇XY(Q) =
∫
M

ρ 〈∇XY,∇h(ρ)〉µ
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We can rewrite this expression in terms of the Hessian of h(ρ) as

∇XY(Q) =
∫
M

ρ 〈∇XY,∇h(ρ)〉µ

=
∫
M

ρX
(
Y (h(ρ))

)
µ−

∫
M

ρ 〈Y,∇X∇h(ρ)〉µ

=
∫
M

ρX
(
h′(ρ)Y (ρ)

)
µ−

∫
M

ρ 〈X,∇Y∇h(ρ)〉µ

Now we have to compute the term XY(Q). As we computed in proposition
6.1, we have

Yη(Q) =
∫
N

F ′
(
J(η)

)
η∗[LY µ]

Thus applying X to this function, we obtain

Xη

(
Y(Q)

)
=

d

dt

∣∣∣
t=0

Yφt◦η(Q)

=
d

dt

∣∣∣
t=0

∫
N

F ′
(
J(φt ◦ η)

)
(φt ◦ η)∗[LY µ]

=
∫
N

d

dt

∣∣∣
t=0

F ′
(
J(φt ◦ η)

)
η∗[LY µ]

+
∫
N

F ′
(
J(η)

)
η∗
[
d

dt

∣∣∣
t=0

φ∗t (LY µ)
]

=
∫
N

F ′′
(
J(η)

) d

dt

∣∣∣
t=0

J(φt ◦ η) η∗[LY µ]

+
∫
N

F ′
(
J(η)

)
η∗[LX(LY µ)]

=
∫
N

F ′′
(
J(η)

)
divY ◦ η J(η)

d

dt

∣∣∣
t=0

J(φt ◦ η) ν

+
∫
N

F ′
(
J(η)

)
η∗
[(
X(divY ) + divXdivY

)
µ
]

=
∫
N

F ′′
(
J(η)

)
divY ◦ η J(η)2 divX ◦ η ν

+
∫
N

F ′
(
J(η)

) (
X(divY ) + divXdivY

)
◦ η J(η) ν

=
∫
M

(
1
ρF

′′( 1
ρ

)
divY divX + F ′

(
1
ρ

) (
X(divY ) + divXdivY

))
µ

We can write F ′
(

1
ρ

)
= −p(ρ) and

1
ρ
F ′′
(

1
ρ

)
+ F ′

(
1
ρ

)
= ρp′(ρ)− p(ρ)

and obtain

Xη

(
Y(Q)

)
=
∫
M

[
ρp′(ρ)− p(ρ)

]
divY divX µ−

∫
M

p(ρ)X(divY )µ
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Then we integrate by parts to obtain

Xη

(
Y(Q)

)
= −

∫
M

X
([
ρp′(ρ)− p(ρ)

]
divY

)
µ−

∫
M

p(ρ)X(divY )µ

= −
∫
M

X
(
ρp′(ρ)− p(ρ)

)
divY µ−

∫
M

ρp′(ρ)X(divY )µ

= −
∫
M

ρp′′(ρ)X(ρ)divY µ−
∫
M

ρp′(ρ)X(divY )µ

= −
∫
M

ρX(ρh′(ρ)divY )µ

Finally we combine these formulas to obtain

〈〈X ◦ η,∇Y ◦η∇Q〉〉 = X
(
Y(Q)

)
−∇XY(Q)

= −
∫
M

ρX
(
ρh′(ρ)divY

)
µ

−
∫
M

ρX
(
h′(ρ)Y (ρ)

)
µ+

∫
M

ρ 〈X,∇Y∇h(ρ)〉µ

= −
∫
M

ρX
(
h′(ρ) div (ρY )

)
µ+

∫
M

ρ 〈X,∇Y∇h(ρ)〉µ

=
∫
M

ρ 〈X,−∇
(
h′(ρ) div (ρY )

)
+∇Y∇h(ρ)〉µ

=
〈〈
X ◦ η,

[
−∇

(
h′(ρ) div (ρY )

)
+∇Y∇h(ρ)

]
◦ η
〉〉

Since X was arbitrary, formula (90) follows.

The Hessian of the barotropic potential on D(N,M) is therefore quite sim-
ple; it is merely the Hessian of the function h(ρ) on M , added to an nonnegative
operator that looks like a Laplacian on the divergence-free vector fields. The
following is easy to prove, using a simplified version of the technique in Rou-
chon’s Theorem 5.2. The assumption on the pressure function is the standard
one in compressible fluid mechanics.

Proposition 6.3. Suppose the pressure function ρ 7→ p(ρ) is nondecreasing
and the dimension of the manifold is n ≥ 2. Then the Hessian of the barotropic
potential Q is nonnegative iff the Hessian of the function h(ρ) is nonnegative at
every point.

Proof. It is easy to check that the term −∇
(
h′(ρ) div (ρY )

)
is nonnegative; we
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have ∫
M

ρ 〈−∇
(
h′(ρ) div (ρY )

)
, Y 〉µ

−
∫
M

ρ Y
(
h′(ρ) div (ρY )

)
µ

= −
∫
M

div
(
h′(ρ) div (ρY ) ρ Y

)
µ+

∫
M

h′(ρ)
(
div (ρY )

)2
µ

=
∫
M

1
ρ
p′(ρ)

(
div (ρY )

)2
µ

and this is nonnegative since p′(ρ) ≥ 0 for any function ρ. So if 〈∇Y∇h(ρ), Y 〉
is nonnegative for any p ∈M and any Y ∈ TpM , then clearly

〈〈∇Y ◦η∇Q, Y ◦ η〉〉 ≥ 0

for any vector field Y on M .
Now for the converse, we suppose that there is some point p and some vector

V ∈ TpM such that 〈∇V∇h(ρ), V 〉 < 0. As in the proof of Rouchon’s Theorem
5.2, we construct a divergence-free vector field which is concentrated near p and
is close to V , in coordinates.

So we again construct coordinates x1, x2, . . . , xn in a neighborhood Ω of p,
such that ∂

∂x1

∣∣∣
p

= V . Let ε be a small positive number and let ψ : [0,∞) →
[0,∞) be a C∞ function positive on [0, 1) and zero elsewhere. Let ξ : M → [0,∞)
be defined in coordinates by

ξ(x1, x2, x3, . . . , xn) = ψ

((x1

ε

)2

+
(x2

ε2

)2

+
(x3

ε

)2

+ · · ·+
(xn
ε

)2
)

on Ω and 0 elsewhere on M .
Again, let Ω0 be the inverse image of (0,∞) under ξ, so that x ∈ Ω0 implies

x1 < ε, x2 < ε2, x3 < ε, . . . , xn < ε. Define Y to be

Y =
1

ρ
√

det g
ε2 (−∂2ξ ∂1 + ∂1ξ ∂2)

Then div (ρY ) = 0, and Y is zero outside Ω0. As before, we can write, to first
order in ε,

Y = −2
ρ
ψ′(ρ2)

x2

ε2
∂1 +O(ε)

with ρ2 =
(
x1
ε

)2 +
(
x2
ε2

)2 +
(
x3

ε

)2 + · · ·+
(
xn

ε

)2
Inside Ω0, we have

〈∇Y∇h(ρ), Y 〉 =
4
ρ2
ψ′(ρ2)2

x2
2

ε4
〈∇V∇h(ρ), V 〉+O(ε)
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and therefore∫
M

ρ〈∇Y∇h(ρ), Y 〉µ =
∫

Ω0

[4
ρ
ψ′(ρ2)2

x2
2

ε4
〈∇V∇h(ρ), V 〉+O(ε)

]
µ

= 〈∇V∇h(ρ), V 〉
∫

Ω0

4
ρ
ψ′(ρ2)2

x2
2

ε4
µ+O(εn+2)

Since the quantity
∫
Ω0

4
ρψ

′(ρ2)2 x
2
2
ε4 µ is o(εn+1) and 〈∇V∇h(ρ), V 〉 < 0, it follows

that ∫
M

ρ〈∇Y∇h(ρ), Y 〉µ < 0

for sufficiently small ε. Since the term ∇(h′(ρ)div (ρY )) vanishes by construc-
tion, we know

〈〈∇Y ◦η∇Q, Y ◦ η〉〉 < 0

for sufficiently small ε as well.

We may also be interested in the quantity that appears in equation (88),

∇Y∇Q + R(Y,X)X

for some given vector field X. Once again we have an easily-verified criterion
for nonnegativity of this expression.

Corollary 6.4. Suppose the pressure function ρ 7→ p(ρ) is nondecreasing and
the dimension of the manifold is n ≥ 2. If X is a vector field on M and X the
corresponding right-invariant vector field on D(N,M), then the operator

Y 7→ ∇Y∇Q + R(Y,X)X

is nonnegative iff the operator Y 7→ ∇Y∇h(ρ) + R(Y,X)X is nonnegative at
each point.

Proof. The proof is exactly the same as the proof of Proposition 6.3 above, since
Rη(Y,X)X = R(Y,X)X ◦ η.

The construction above of divergence-free vector fields, which coincide with
a given vector at a given point and vanish outside a neighborhood of that point,
depends essentially on having two dimensions in order to use the skew-gradient
construction. In one space dimension, things change drastically.

Proposition 6.5. If n = 1 and the pressure function ρ 7→ p(ρ) is nondecreasing,
then the Hessian of the barotropic potential energy Q is always nonnegative.

Proof. The proof is based on a simple computation. Let us use θ as a coordinate
on M , with the standard flat metric 〈∂θ, ∂θ〉 = 1. Write Y = y(θ) ∂θ. Then we
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have

∇Y∇Q = −∇
(
h′(ρ) div (ρY )

)
+∇Y∇h(ρ)

= − d

dθ

(
h′
(
ρ(θ)

) d
dθ

(
ρ(θ)y(θ)

))
+ y(θ)

d2

dθ2
h
(
ρ(θ)

)
= −h′′(ρ)

dρ

dθ

d

dθ
(ρy)− h′(ρ)

d2

dθ2
(ρy) + yh′′(ρ)

dρ

dθ

dρ

dθ
+ yh′(ρ)

d2ρ

dθ2

= −h′′(ρ)ρ
dρ

dθ

dy

dθ
− 2h′(ρ)

dρ

dθ

dy

dθ
− h′(ρ)ρ

d2y

dθ2

= −dy
dθ

1
ρ

d

dθ

(
ρ2h′(ρ)

)
− ρh′(ρ)

d2y

dθ2

= −dy
dθ

1
ρ

d

dθ

(
ρp′(ρ)

)
− p′(ρ)

d2y

dθ2

= −1
ρ

d

dθ

(
ρp′(ρ)

dy

dθ

)
Therefore we have

〈〈∇Y∇Q, Y 〉〉 = −
∫
M

y(θ)
d

dθ

(
ρp′(ρ)

dy

dθ

)
dθ

=
∫
M

ρp′(ρ)
(
dy

dθ

)2

dθ

≥ 0

for any choice of functions y and ρ, as long as p′(ρ) ≥ 0.

We have seen, of course, that the Jacobi equation for incompressible fluid
flows may be split into two decoupled first-order equations. The natural ana-
logue for compressible flows yields a similar kind of splitting, although the equa-
tions are no longer decoupled. We find that the potential-Jacobi equation (88)
is equivalent to the two equations

∂Y

∂t
+ [X,Y ] = Z

∂Z

∂t
+∇ZX +∇XZ = ∇

(
h′(ρ)div (ρY )

) (91)

If we take the alternative approach of directly linearizing the Euler equations

∂ρ

∂t
+ div (ρX) = 0

∂X

∂t
+∇XX = −∇h(ρ)

(92)

using the variations Z =
∂X

∂s

∣∣
s=0

and σ =
∂ρ

∂s

∣∣
s=0

, we obtain the linearized
Euler equations
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∂σ

∂t
+ div (ρZ) + div (σX) = 0

∂Z

∂t
+∇ZX +∇XZ = −∇

(
h′(ρ)σ

) (93)

The two sets of equations are reconciled by the fact that

σ = −div (ρY ) (94)

Because the linearized Lagrangian equations (91) are equivalent to the linearized
Eulerian equations (93), under the transformation (94), we do not expect com-
pressible flow to exhibit substantially different stability phenomena between the
Eulerian and Lagrangian approach. The only difference that can occur is if the
divergence-free part of Y grows in time.

We can prove an analogue of Theorem 5.4 in the compressible case. Suppose
we have a rotational steady velocity field X = u(r) ∂θ on a manifold with metric
ds2 = dr2 +ϕ2(r) dθ2. Then the density function is determined by the condition

h
(
ρ(r)

)
=
∫
u2(r)ϕ(r)ϕ′(r) dr

up to some arbitrary constant. We can prove the following.

Theorem 6.6. Let M be a two-dimensional manifold defined by the condition
a ≤ r ≤ b. Suppose X = u(r) ∂θ, and the metric on M takes the form ds2 =
dr2 +ϕ2(r) dθ2. For a given vector field Z, let Y be the solution solution of the
equation

∂Y

∂t
+ [X,Y ] = Z

with Y (0) = 0. Let A = sup
a≤r≤b

|ϕ(r)u′(r)|. Then

||Y (t)|| ≤
∫ t

0

√
2
(
1 +A2(t− s)2

)
||Z(s)|| ds

In particular, if ||Z(t)|| is bounded, then Y grows at most quadratically.

Proof. The proof of this theorem is exactly the same as that of Theorem 5.4; the
only difference is that the norm now involves an integral over volume element
ρµ rather than simply µ. But since ρ is a function of r alone, this does not
change anything about the proof.

Just as in the example after Theorem 5.4, we can find an example of a steady
compressible flow for which Jacobi fields grow quadratically. Again, let

X =
1

ϕ2(r)
∂

∂θ
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on the torus T2. In order for X to be a steady flow, we must have d
drh(ρ) = ϕ′(r)

ϕ3(r)

so that
h(ρ) = A− 1

2ϕ2(r)

Then the pair

Z =
1

ϕ(r)
∂

∂r
, σ ≡ 0

is a solution to the linearized Euler equations (93). The explicit solution for Y
is exactly the same as (73), so we see that potential-Jacobi fields can also grow
quadratically in time.

There is one final thing to say in general, before studying specific examples.
Suppose we ignore the equation of continuity, and the fact that the density func-
tion ρ evolves based on the velocities of the fluid particles. Let us instead assume
that ρ(t) is some given time-dependent function on M . Then the particles in a
barotropic fluid move according to the law

D

dt

dη

dt
= −∇h

(
ρ(t)

)
◦ η (95)

That is, they move as though they were individual Newtonian particles subject
to the time-dependent potential energy U = h(ρ).

If an individual particle in this surrogate Newtonian system (95) were per-
turbed, the perturbation Y (t) would satisfy the potential-Jacobi equation

D2Y

dt2
+R

(
Y (t), η̇(t)

)
η̇(t) +∇Y (t)∇h

(
ρ(t)

)
= 0 (96)

rather than the actual barotropic potential-Jacobi equation (88). We note that
the “effective curvature” in the barotropic potential-Jacobi equation is identical
to that of the surrogate system, except that it exceeds the latter by the term

−∇
(
h′(ρ)div (ρY )

)
which is a nonnegative operator of similar form to the wave operator.

So we intuitively expect that, in going from the surrogate Newtonian sys-
tem (95) to the actual barotropic fluid, we have gained greater stability, since
the effective curvature is larger. The problem with this line of thinking is that
increasing curvature only reduces the size of Jacobi fields up to the first conju-
gate point; because of the wave operator, a Newtonian curve in D(N,M) with
the barotropic potential would be expected to have infinitely many conjugate
points, densely distributed along the curve. So standard techniques of compar-
ison theory could not be hoped to apply here. The relationship, if any, between
the stability properties of barotropic flow and the surrogate Newtonian flow re-
mains unclear, although we will compare the two in the explicit examples we
have below.
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6.3 An explicit solution in one dimension

Unlike incompressible flow, which is trivial in one dimension (the only volume-
preserving flows on the circle are isometries), compressible flow already exhibits
many interesting features in one dimension. In very special cases, we can obtain
explicit solutions of the Euler equations for barotropic flow, and therefore also
for the linearized equations as well. We will illustrate with the simplest example,
the case of a polytropic fluid where γ = 3.

We assume that N and M are diffeomorphic to the circle S1, and let θ be
the coordinate on M . If the velocity field is written as X = x(θ) ∂θ, then the
Euler equations (92) become

∂ρ

∂t
+

∂

∂θ
(ρx) = 0

∂x

∂t
+ x

∂x

∂θ
= −h′(ρ)

∂ρ

∂θ

(97)

In the polytropic case, where p(ρ) = Aργ , explicit solutions can be obtained
in the special cases where

γ =
2k + 1
2k − 1

for some positive integer k. The exact solution is written down implicitly in
Courant-Friedrichs [5], Chapter III, Section 38. The simplest case is k = 1,
corresponding to γ = 3. We may rescale ρ so as to assume that A = 1

3 , without
changing the Euler equations (since the equation of continuity is linear in ρ).
Thus in this case h′(ρ) = ρ, and the Euler equations can be written as

∂ρ

∂t
+ ρ

∂x

∂θ
+ x

∂ρ

∂θ
= 0

∂x

∂t
+ x

∂x

∂θ
+ ρ

∂ρ

∂θ
= 0

If we add and subtract these equations, we obtain the two equations

∂

∂t
(x+ ρ) + (x+ ρ)

∂

∂θ
(x+ ρ) = 0

∂

∂t
(x− ρ) + (x− ρ)

∂

∂θ
(x− ρ) = 0

These equations are now decoupled, and the solution of each is given implicitly,
in terms of the initial data x0(θ) = x(0, θ) and ρ0(θ) = ρ(0, θ), by the formulas

x(t, θ) + ρ(t, θ) = x0

(
θ − t

[
x(t, θ) + ρ(t, θ)

])
+ ρ0

(
θ − t

[
x(t, θ) + ρ(t, θ)

])
x(t, θ)− ρ(t, θ) = x0

(
θ − t

[
x(t, θ)− ρ(t, θ)

])
− ρ0

(
θ − t

[
x(t, θ)− ρ(t, θ)

])
(98)

In general, this is the best we can do; the solution for other values of γ
quickly becomes much more complicated. It should also be pointed out that
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these equations generally can only be solved locally near t = 0. Singularities
(shocks) are a characteristic feature of such equations when these solutions break
down, and in fact are a subject of intense current research. We, however, will
only be interested in the (possibly very short) interval of time before the first
shock occurs, when the solutions remain smooth and classical.

Although we can write down and solve the linearized equations (93) in this
case, it is easier to simply use the exact solution (98). Suppose we have a family
of such solutions which depends smoothly on a parameter s. We differentiate
equations (98) and set s = 0, using

z ≡ ∂x

∂s

∣∣∣
s=0

and σ ≡ ∂ρ

∂s

∣∣∣
s=0

We obtain the formulas

z + σ =
z0
(
θ − t[x+ ρ]

)
+ σ0

(
θ − t[x+ ρ]

)
1 + t

(
x0
′
(
θ − t[x+ ρ]

)
+ ρ0

′
(
θ − t[x+ ρ]

))
z − σ =

z0
(
θ − t[x− ρ]

)
− σ0

(
θ − t[x− ρ]

)
1 + t

(
x0
′
(
θ − t[x− ρ]

)
− ρ0

′
(
θ − t[x− ρ]

)) (99)

This can be simplified. If we differentiate the first of equations (98) with
respect to θ, we obtain

∂

∂θ
(x+ ρ) =

(
x0
′(θ − t[x+ ρ]

)
+ ρ0

′(θ − t[x+ ρ]
))(

1− t
∂

∂θ
(x+ ρ)

)
from which we find

1

1 + t
(
x0
′
(
θ − t[x+ ρ]

)
+ ρ0

′
(
θ − t[x+ ρ]

)) = 1− t
∂

∂θ
(x+ ρ)

The same trick can be performed on the second equation in (98). Inserting these
expressions in (99), we get

z + σ =
(
1− t ∂∂θ (x+ ρ)

) (
z0
(
θ − t[x+ ρ]

)
+ σ0

(
θ − t[x+ ρ]

))
z − σ =

(
1− t ∂∂θ (x− ρ)

) (
z0
(
θ − t[x− ρ]

)
− σ0

(
θ − t[x− ρ]

))
Then we can finally solve for z and σ to find

z = 1
2

(
1− t ∂∂θ (x+ ρ)

) (
z0
(
θ − t[x+ ρ]

)
+ σ0

(
θ − t[x+ ρ]

))
+ 1

2

(
1− t ∂∂θ (x− ρ)

) (
z0
(
θ − t[x− ρ]

)
− σ0

(
θ − t[x− ρ]

))
σ = 1

2

(
1− t ∂∂θ (x+ ρ)

) (
z0
(
θ − t[x+ ρ]

)
+ σ0

(
θ − t[x+ ρ]

))
− 1

2

(
1− t ∂∂θ (x− ρ)

) (
z0
(
θ − t[x− ρ]

)
− σ0

(
θ − t[x− ρ]

))
(100)
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We are interested in the Jacobi field Y (t) = y(t, θ) ∂θ, defined by the equation
(94), which on S1 is

∂

∂θ

(
ρ(t, θ)y(t, θ)

)
= −σ(t, θ)

If we are mainly interested in the case where Y (0) = 0, as we have been so far,
then we can assume that σ0 ≡ 0, and we obtain the very simple formula

y(t, θ) =
1
2ρ

∫ θ−t(x−ρ)

θ−t(x+ρ)
z0(ψ) dψ (101)

We therefore easily derive the following pointwise bound on Y in terms of the
supremum of ||Z(0)||. It depends on the condition that

∫ 2π

0
z0(θ) dθ = 0, which

is equivalent to the requirement that the initial average velocity
∫ 2π

0
x0(θ) dθ

is known exactly. Since the average velocity
∫ 2π

0
x(t, θ) dθ is conserved by the

Euler equations, this is not too drastic a requirement. If this requirement were
not posed, Jacobi fields could grow linearly (for example, if z0(θ) = 1 then
y(t, θ) = t).

Proposition 6.7. If Y (0) = 0 and
∫ 2π

0
z0(θ) dθ = 0, then for any t and θ,

|y(t, θ)| ≤ 1
2ρ(t, θ)

∫ 2π

0

|z0(ψ)| dψ

Proof. Since
∫ 2π

0
z0(θ) dθ = 0, we can write any integral of the form

∫ v
u
z0(θ) dθ

as ∫ v

u

z0(θ) dθ =
∫ vmod 2π

umod 2π

z0(θ) dθ

Therefore we can say∣∣∣∣∫ v

u

z0(θ) dθ
∣∣∣∣ =

∣∣∣∣∣
∫ vmod 2π

umod 2π

z0(θ) dθ

∣∣∣∣∣ =

∣∣∣∣∣
∫ θ2

θ1

z0(θ) dθ

∣∣∣∣∣
where 0 ≤ θ1 ≤ θ2 ≤ 2π. Thus∣∣∣∣∫ v

u

z0(θ) dθ
∣∣∣∣ ≤ ∫ θ2

θ1

|z0(θ)| dθ ≤
∫ 2π

0

|z0(θ)| dθ

Therefore

|y(t, θ)| =
1

2ρ(t, θ)

∣∣∣∣∣
∫ θ−t(x−ρ)

θ−t(x+ρ)
z0(ψ) dψ

∣∣∣∣∣ ≤ 1
2ρ(t, θ)

∫ 2π

0

|z0(ψ)| dψ

This result gives us pointwise-boundedness of the Jacobi fields in terms of
the L1 norm of the initial perturbation. The drawback is of course that we

73



don’t necessarily have a bound on the function 1/ρ. However, if the density
actually approaches zero somewhere, then the flow has become singular, and the
Lagrangian solution is no longer a diffeomorphism. So while it may continue to
exist in a generalized sense, it is out of the realm of our approach. So we can say
that as long as a solution exists in the diffeomorphism group, the minimum of ρ
is bounded away from zero and thus the maximum of y is bounded. Given the
fact that singularities are generic features of nonsteady flows, we cannot expect
more than this.

We note that on the circle, the operator Y 7→ ∇Y∇Q is nonnegative, by
Proposition 6.5. ∇Y∇Q vanishes if and only if Y = c ∂θ for some constant
c; with the exception of this one-parameter family, Y 7→ ∇Y∇Q is a strictly
positive operator. We also note that except for a one-parameter family of so-
lutions of the Jacobi equation, solutions to the Jacobi equation are bounded in
the L∞ norm, for as long as the solution exists in the diffeomorphism group. It
seems plausible to guess that these phenomena are related: that positivity of
the Hessian of the potential is related to the boundedness of Jacobi fields.

6.4 Explicit solutions in two dimensions

In higher dimensions, we are less interested in the stability of general fluid flows
and more interested in the stability of steady flows, that is, those that satisfy
the steady Euler equations

∇XX = −∇h(ρ)
div (ρX) = 0

Because of the term ∇
(
h′(ρ)div (ρY )

)
that appears in the Jacobi equation (91),

it is very difficult to obtain solutions to it except in the simplest cases. We
present two simple cases here: plane parallel flow at constant velocity, and
rotational flow at constant angular velocity.

6.4.1 Plane parallel flow

Plane parallel flow occurs when M = T2, the flat torus. We suppose the steady
flow is given by ρ ≡ 1 and X = u ∂x, where u is constant. Since ρ is constant,
we can write p′(ρ) = c2 (c being the speed of sound).

Proposition 6.8. On the torus T2, suppose X = u ∂x and ρ ≡ 1. If the initial
data Z0 is smooth and σ0 ≡ 0, then the solutions Z and σ of the linearized Euler
equations (93) are pointwise bounded for all time. Thus the flow is stable in the
Eulerian sense.
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Proof. Letting Z = f ∂x + g ∂y, the linearized equations (93) take the form

∂f

∂t
+ u

∂f

∂x
+ c2

∂σ

∂x
= 0

∂g

∂t
+ u

∂g

∂x
+ c2

∂σ

∂y
= 0

∂σ

∂t
+ u

∂σ

∂x
+
∂f

∂x
+
∂g

∂y
= 0

We transform these equations into something simpler by making the coordi-
nate change

τ = t, α = x− ut, β = y

We obtain the new equations

∂f

∂τ
+ c2

∂σ

∂α
= 0

∂g

∂τ
+ c2

∂σ

∂β
= 0

∂σ

∂τ
+
∂f

∂α
+
∂g

∂β
= 0

(102)

(The reason u has to be constant to obtain an explicit solution is that otherwise,
the coordinate transformation would result in unwieldy equations.)

We readily find that σ satisfies the wave equation

∂2σ

∂τ2
= c2

(
∂2σ

∂α2
+
∂2σ

∂β2

)
Assuming that σ(0) = 0 (i.e. that the Jacobi field Y vanishes at t = 0), we
obtain the general solution

σ(τ, α, β) =
∞∑

j=−∞

∞∑
k=−∞

ajk sin
(
c
√
j2 + k2τ

)
eijαeikα

for some constants ajk. From this, we can integrate the first two of equations
(102). Using the initial conditions

f(0, α, β) =
∞∑

j=−∞

∞∑
k=−∞

fjke
ijαeikβ

g(0, α, β) =
∞∑

j=−∞

∞∑
k=−∞

gjke
ijαeikβ
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we can obtain the general solution

f(τ, α, β) =
∞∑

j=−∞

∞∑
k=−∞

[ j

j2 + k2
(jfjk + kgjk) cos

(
c
√
j2 + k2τ

)
+

k

j2 + k2
(kfjk − jgjk)

]
eijαeikβ

g(τ, α, β) =
∞∑

j=−∞

∞∑
k=−∞

[ k

j2 + k2
(jfjk + kgjk) cos

(
c
√
j2 + k2τ

)
− j

j2 + k2
(kfjk − jgjk)

]
eijαeikβ

(103)

Using τ = t, α = x − ut, and β = y, we can readily put these expressions
in terms of the original variables. We see that the time-dependence of the
coefficients is oscillatory. Since the initial data is smooth, these series converge
absolutely, and thus Z1, Z2, and σ are all pointwise bounded in time.

However, the Jacobi fields generally grow linearly in time. Once again,
we have a system which is stable in the Eulerian sense, but unstable in the
Lagrangian sense (but not exponentially).

Proposition 6.9. Under the circumstances above, all Jacobi fields with Y (0) =
0 grow pointwise linearly in time, unless curl (Z0) = 0.

Proof. To obtain the Jacobi field from equation (103), we use the first of equa-
tions (91), which in these coordinates is

∂Y

∂τ
= Z

Thus we have

Y (τ, α, β) =
∞∑

j=−∞

∞∑
k=−∞

[(
j

c(j2 + k2)3/2
(jfjk + kgjk) sin

(
c
√
j2 + k2τ

)
+

k

j2 + k2
(kfjk − jgjk)τ

)
∂α

+
(

k

c(j2 + k2)3/2
(jfjk + kgjk) sin

(
c
√
j2 + k2τ

)
− j

j2 + k2
(kfjk − jgjk)τ

)
∂β

]
eijαeikβ (104)

Recalling that τ = t, equation (104) tells us that the Jacobi field grows
linearly with time at each point of T2. The only exception is the case where
kfjk = jgjk for all j and k, which is equivalent to the condition that

∂f0
∂y

=
∂g0
∂x
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or, in other words, curl (Z0) = 0.

By way of comparison, the Jacobi equation for the surrogate Newtonian
system (95) is given in these coordinates by

∂f

∂τ
= 0

∂g

∂τ
= 0

∂σ

∂τ
+
∂f

∂α
+
∂g

∂β
= 0

The corresponding Jacobi field is

Ysurr(τ, α, β) = τ

∞∑
j=−∞

∞∑
k=−∞

(
fjk ∂α + gjk ∂β

)
eijαeikβ

which always grows linearly.

6.4.2 Rigid rotational flow

A more geometrically complicated flow arises from the motion of fluid in a disc,
where the steady flow is a rigid rotation. We work with the polytropic model,
where p(ρ) = Aργ . We assume γ = 2, so that h(ρ) = c2ρ, c being the (constant)
speed of sound. This model arises as the simplest nonlinear approximation of
the equations of shallow water waves on a surface, where the vertical motion is
assumed to be negligible. See Courant and Friedrichs [5], Chapter I Appendix
(Section 19) for a full derivation.

We consider, then, the motion of shallow water waves in the disc D2 =
{(r, θ)

∣∣∣ r ≤ 1}, equipped with the flat metric. We assume the steady velocity
field is given by X = ω ∂θ for some constant angular velocity ω. Then the
density is determined by the formula

ω2∇∂θ
∂θ = −c2∇ρ

which can be solved to yield

ρ(r) = 1 +
ω2r2

2c2
(105)

under the assumption ρ(0) = 1.

Proposition 6.10. If X = ω ∂θ with ρ given by (105) in the shallow water
model, then the components of the field Z and the function σ remain pointwise
bounded for all time. Thus, this steady flow is stable in the Eulerian sense.

77



Proof. In polar coordinates, the linearized Euler equations (93) become

∂Z1

∂t
+ ω

∂Z1

∂θ
− 2ωrZ2 + c2

∂σ

∂r
= 0

∂Z2

∂t
+ ω

∂Z2

∂θ
+

2ω
r
Z1 +

c2

r2
∂σ

∂θ
= 0

∂σ

∂t
+ ω

∂σ

∂θ
+

1
r

∂

∂r

(
rρ(r)Z1

)
+ ρ(r)

∂Z2

∂θ
= 0

(106)

The trick for simplifying this is to write

Z =
1
ρ

(
grad f + sgrad g

)
or more explicitly,

Z1 =
1
ρ

(
∂f

∂r
− 1
r

∂g

∂θ

)
Z2 =

1
ρ

(
1
r2

∂f

∂θ
+

1
r

∂g

∂r

) (107)

Using the change of coordinates τ = t, ψ = θ − ωt, plugging equations (107)
into (106), and performing some simplifications, we find that f and g satisfy the
equations

∂∆f
∂τ

− 2ω∆g + c2div (ρ∇σ) = 0

∂∆g
∂τ

+ 2ω∆f + ω2 ∂σ

∂ψ
= 0

∂σ

∂τ
+ ∆f = 0

(108)

This is almost a system with constant coefficients; the only problem is the
operator σ 7→ div (ρ∇σ). However, we can simply expand all the functions in a
series of eigenfunctions of the form φ(r)einψ of this differential operator, where
φ(r) satisfies the Sturm-Liouville equation

d

dr

(
rρ(r)

dφ

dr

)
− n2

r
ρ(r)φ(r) = −λrφ(r) (109)

with the boundary conditions φ(1) = 0 and |φ(0)| <∞.
We can construct the eigenfunctions fairly explicitly under the assumption

that the flow is everywhere subsonic. If we expand φ(r) in a power series as

φ(r) =
∞∑
j=n

ajr
j
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then we quickly find, plugging formula (105) into equation (109) that aj satisfies
the recursive equation

(j2 − n2)aj +
(
ω2

2c2
[
j(j − 2)− n2

]
+ λ

)
aj−2 = 0

This power series converges for r ≤ 1, for any λ, as long as ω2

2c2 < 1. This
criterion is equivalent to the condition that the speed of the fluid is less than
the speed of sound, that is,

rω < c

√
1 +

ω2r2

2c2

for all r ≤ 1. The eigenvalues λ are determined implicitly by the condition that
φ(1) = 0. (Note that if ω = 0, this equation reduces to the standard Bessel
equation and that the eigenvalues are therefore the squared zeroes of Jn(r).) Of
course, the eigenvalues and eigenfunctions exist even if the flow is supersonic,
but this power series is nonconvergent in the supersonic region.

If we now write

∆f =
∞∑

n=−∞

∞∑
k=1

Fkn(τ)φkn(r)einψ

∆g =
∞∑

n=−∞

∞∑
k=1

Gkn(τ)φkn(r)einψ

σ =
∞∑

n=−∞

∞∑
k=1

σkn(τ)φkn(r)einψ

where div
(
ρ(r)∇

(
φkn(r)einψ

))
= −λknφkn(r)einψ, then equations (108) be-

come

Fkn
′(τ)− 2ωGkn(τ)− c2λknσkn(τ) = 0

Gkn
′(τ) + 2ωFkn(τ) + inω2σkn(τ) = 0

σkn
′(τ) + Fkn(τ) = 0

(110)

The characteristic equation of this system is

p3 + (4ω2 + c2λkn)p− 2inω3 = 0

If we let p = iq, we obtain an equation with real coefficients:

q3 − (4ω2 + c2λkn)q + 2nω3 = 0 (111)

Notice that if q = a+ ib satisfies this equation, then so does q = a− ib; therefore
if there are any non-real roots of equation (111), the coefficients Fkn, Gkn, and
σkn must grow exponentially in τ . So a necessary and sufficient criterion for
stability is that, for any n, the roots of equation (111) are real and distinct. (If
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they were real and equal, we would have linear or quadratic growth in time of
Fkn, Gkn, and σkn.) Of course, for n = 0, it is obvious that the equation has
three distinct real roots, so we can assume n 6= 0.

As is well-known, the roots of a cubic equation are real and distinct if and
only if the discriminant is negative; in this case, the discriminant is

D = −
(

4ω2 + c2λkn
3

)3

+
(
nω3

)2
which is negative if and only if

λkn >
ω2

c2
(3 · n2/3 − 4) (112)

Since we want this to be true for all k, it must of course be true for the smallest
eigenvalue λ1n.

By the Rayleigh principle, we have

λ1n = inf
φ∈C0(0,1)

∫ 1

0
n2

r

(
1 + ω2

2c2 r
2
)

[φ(r)]2 dr +
∫ 1

0
r
(

1 + ω2

2c2 r
2
)

[φ′(r)]2 dr∫ 1

0
r[φ(r)]2 dr

= inf
φ∈C0(0,1)

(∫ 1

0
n2

r [φ(r)]2 dr +
∫ 1

0
r [φ′(r)]2 dr∫ 1

0
r[φ(r)]2 dr

+
ω2

2c2

∫ 1

0
n2r [φ(r)]2 dr +

∫ 1

0
r3 [φ′(r)]2 dr∫ 1

0
r[φ(r)]2 dr

)

≥ inf
φ∈C0(0,1)

∫ 1

0
n2

r [φ(r)]2 dr +
∫ 1

0
r [φ′(r)]2 dr∫ 1

0
r[φ(r)]2 dr

+
n2ω2

2c2

The first term on the right is the usual Rayleigh quotient for the Bessel function
Jn, and so its minimum is the square of the first root of Jn. It is a standard
result that this first eigenvalue is at least n2, so that our estimate is

λ1n > n2

(
1 +

ω2

2c2

)
(113)

To obtain stability, we must verify the inequality (112), and it is sufficient
by (113) to verify the inequality

n2

(
1 +

ω2

2c2

)
>
ω2

c2
(3n2/3 − 4)

for all nonzero integers n. If we let u = n2/3, the function

χ(u) =
(

1 +
ω2

2c2

)
u3 − ω2

c2
(3u− 4)
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has a minimum at
u0 =

ω

c

1√
1 + ω2

2c2

at which

χ(u0) = 2
ω2

c2

2−
ω
c√

1 + ω2

2c2


and this is positive for any choice of ω and c.

Thus the solutions of equation (110) are oscillatory in time, and the functions
∆f , ∆g, and σ always remain pointwise bounded in time. From here, we can
solve for the components Z1 and Z2 by performing spatial integrations, which
do not affect the oscillatory time-dependence.

Proposition 6.11. In the situation above, Jacobi fields with Y (0) = 0 grow
pointwise linearly in time unless

∫ 2π

0
curl (ρZ0) dθ = 0 for any r.

Proof. Again, in our adapted coordinates, the first of equations (91) becomes

∂Y

∂τ
= Z

As we have seen, Z is a sum of terms of the form eiqτφ(r)einψ where q is a
solution of the equation (111)

q3 − (4ω2 + c2λkn)q + 2nω3 = 0

Upon integrating with respect to τ , we will always obtain an τ -dependence of
the form 1

q e
iqτ unless q = 0. We see that q = 0 is a solution of equation (111)

if and only if n = 0.
In case n = 0, the equations (110) become

Fk0
′(τ)− 2ωGk0(τ)− c2λk0σk0(τ) = 0

Gk0
′(τ) + 2ωFk0(τ) = 0
σk0

′(τ) + Fk0(τ) = 0

Letting ξ =
√

4ω2 + c2λk0, we find that the general solution of these equations
with σk0(0) = 0 is

Fk0(τ) = Fk0(0) cos (ξτ) +
2ω
ξ
Gk0(0) sin (ξτ)

Gk0(τ) =
1
ξ2
Gk0(0)

(
c2λk0 + 4ω2 cos (ξτ)

)
− 2ω

ξ
Fk0(0) sin (ξτ)

Since Z is a sum of functions multiplied by Fk0(τ) and Gk0(τ), the only way the
τ -integral of Z will not involve a power of τ is if the constant term in Gk0(τ)
vanishes for each k, and this only happens if Gk0(0) = 0 for each k.
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Now since

∆g0 =
∞∑

n=−∞

∞∑
k=1

Gkn(0)φkn(r)einψ

we have ∫ 2π

0

∆g0 dθ = 2π
∞∑
k=1

Gk0(0)φk0(r)

and so each Gk0(0) vanishes if and only if
∫ 2π

0
∆g0 dθ does as well. By equation

(107), ∆g0 = curl (ρZ), so the only way we can get all terms in Y to be
oscillatory is if

∫ 2π

0
curl (ρZ0) dθ vanishes for every r.

For the sake of comparison, we note that the surrogate potential-Jacobi
equation (96) in this case is (using the adapted coordinates τ, r, ψ)

∂Z1

∂τ
− 2ωrZ2 = 0

∂Z2

∂τ
+

2ω
r
Z1 = 0

∂σ

∂τ
+

1
r

∂

∂r
(rρZ1) + ρ

∂Z2

∂θ
= 0

The general solution Z(τ) is

Z1(τ) = Z1(0) cos (2ωτ) + rZ2(0) sin (2ωτ)

Z2(τ) = −1
r
Z1(0) sin (2ωτ) + Z2(0) cos (2ωτ)

and thus the Jacobi field Y (τ) is

Y 1(τ) =
1

2ω
(
Z1(0) sin (2ωτ)− rZ2(0) cos (2ωτ)

)
Y 2(τ) =

1
2ω

(
1
r
Z1(0) cos (2ωτ) + Z2(0) sin (2ωτ)

)
Notice that the surrogate Jacobi fields are pointwise-bounded for any initial
data, unlike the Jacobi fields in the actual barotropic problem. This suggests
that the connection between stability in the barotropic system and the surrogate
Newtonian system is subtle, if one exists at all.

We note also that the effective curvature is not only positive everywhere
but actually bounded away from zero. Because h(ρ) = 1 + ω2r2

2c2 , the operator
Y 7→ ∇Y∇h(ρ) is equal to ω2

c2 times the identity, so the effective curvature is at
least ω2

c2 .
This gives a final illustration of the paradoxical geometrical behavior of

fluids. When the curvature along an incompressible flow is nonpositive in all
directions, as for plane parallel Couette flow, the Jacobi fields can grow linearly.
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When the effective curvature along a compressible flow is strictly positive in
all directions, as in this example, Jacobi fields can still grow linearly. That
two fluids with such seemingly opposite properties can have the exact same
asymptotic behavior illustrates that there can be no simple connection between
curvature and stability.

7 Conclusion and future directions

We have found that typically curvature cannot be used to determine asymptotic
growth rates of Jacobi fields. In general, there is no short-cut to the study of
Lagrangian stability in a fluid. Rather, we have to split the Jacobi equation into
the linearized Euler equation and the linearized flow equation and study each
one separately. But the advantage of this approach is that it naturally leads to
a way of relating Lagrangian and Eulerian stability.

We have not found any fluids, incompressible or compressible, for which the
Jacobi fields remain bounded in time under any norm. We conjecture that, in
fact, there are none. Thus the search for Lagrangian stability in a fluid seems
hopeless, unless we content ourselves with very specific initial conditions such
as those in Proposition 6.11. It seems more practical to distinguish between
the orders of growth of Jacobi fields. If prediction is the primary concern, then
obviously polynomial growth of errors can be handled while exponential growth
cannot. This, then, should be the criterion we seek from Lagrangian stability
analysis.

In the examples which we have studied, it has been true that Eulerian sta-
bility leads to polynomial growth of Lagrangian perturbations, while Eulerian
exponential instability leads to exponential growth of Lagrangian perturbations.
It would be worth studying whether this is always the case: the difficulty is of
course that even Eulerian stability theory is woefully incomplete beyond the
class of rotational flows we have discussed here.

One is also curious whether the existence of the bi-invariant metric on
Dµ(M2) defined by

〈〈sgrad f, sgrad g〉〉 =
∫
M

fg µ

in two dimensions is responsible for results like Theorem 5.4. Such a metric has
no analogue in three dimensions; although a bi-invariant symmetric form has
been constructed on Dµ(M3), there is no bi-invariant positive-definite form.

It is thus still an open question whether these types of results remain valid in
three dimensions, or whether “purely Lagrangian instabilities” can be induced in
those cases. (That is, exponential growth of the Jacobi field despite boundedness
of the solution of the linearized Euler equation.) So far the only example of such
an instability is given in Chapter II, Section 5 of Arnol’d-Khesin [2], and this
works only in R3. The general question is what the nature of solutions of

∂Y

∂t
+ [X,Y ] = 0
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is on a compact manifold, with X a time-independent vector field. This question
is probably not difficult but we have not been able to address it here.

It is to be hoped that such methods as presented here could be useful in
other questions in continuum mechanics. For example, the motion of a fluid
with free boundary and surface tension can be studied by methods similar to
those presented here; the configuration space is the space of volume-preserving
embeddings and a potential energy function is given by the surface area of the
embedded boundary. We could also explore the motion of an elastic solid using
such methods, since the configuration space is again Dµ with a potential energy
dependent not merely on the density.

One of the most intriguing directions for future research is quite separate
from fluid mechanics entirely, despite the fact that the study of fluids inspired
the idea. This is the splitting of the Jacobi equation on an ordinary Rieman-
nian manifold, as described in Section 4.3. Basically the idea is to construct
a right-invariant metric on D(M), such that a geodesic of D(M) corresponds
to a family of geodesics on M . Then we can study any manifold by studying
its diffeomorphism group, using techniques of Lie groups with right-invariant
metrics. In addition, we can split the Jacobi equation along each geodesic in-
dividually, thus obtaining two first-order ordinary differential equations along
each geodesic. One hopes this would simplify the study of Jacobi fields and
perhaps tell us more about their asymptotic growth than the curvature does.

The relationship between Lagrangian and Eulerian stability in fluid mechan-
ics is interesting because of its connection between the algebraic equations in the
Lie algebra and the geometric equations in the Lie group. It also appears to be
tractable, unlike the general Eulerian stability problem or the global existence
problem. In addition, it seems possible that the study of this problem can yield
interesting insights into pure geometry. Hopefully this research has contributed
to the deeper understanding of this relationship.
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