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Abstract of the Dissertation,

Canonical variation and positive sectional
curvature

by
Owen James Dearricott
Doctor of Philosophy
in

Mathematics

£

State University of New York
at Stony Brook

2002

Tn this dissertation we display several metrics of positive sectional
curvature as canonical variation metrics. We find some novel new
metrics of positive curvature and are able to recast old examples

in this framework.
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Introduction

In the long history of differential geometry relatively few manifolds of positive
sectional curvature have been discovered. Initial examples can be constructed
in rather classical fashion as either spheres embedded in Fuclidean space or as
submersion metrics on Hopf bundles.

For the most part geometers have turned to representation theory as the
source of examples. Berger [Bl] classified the normal homogeneous spaces of
positive sectional curvature. Those are the spaces G/ K with thé Riemannian
submersion metric induced by taking a biinvariant metric on G. Tt is worth
noting that is but a handful more examples here than above. Aloff, Wallach
[AW], [W] and Berard Bergery [BB] discovered and classified the remaining ho-
mogeneous examples, modulo a confusion patched by by Wilking [Wi]. Again
notable is that the new examples occur in few dimensions.

More recent years have seen the discovery of inhomogeneous examples aris-
ing from submersions metrics of free isometric group actions on Lie groups with
left invariant metrics [F1-4|,[Ba). Again these have been in few dimensions; 7,
13 and 6. In odd dimensions the number of discoveries have been countably

infinite and in even dimensions finite.

These examples all rely on the curvature nonnegativity of a biinvariant
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metric on a compact Lie group and the curvature nondecreasing property of
Riemannjan submersions. (This property can be seep a5 a consequence of the
structure equation of (’Neill [ON] or argued synthetically as Samelson [S].)

The left invariant homogeneous metrics of Wallach (W}, [AW], [BB], are of
considerable interest to us here, The metrics of Wallach can be understood to
be the canonical variations of normal homogeneous metrics on homogeneous
bundles over complex, quaternionic and Cayley projective planes.

This links into another important problem as to when a metric can be
deformed to one with positive sectional curvature. Strake [St] addressed this
to some degree in theory, though not a great deal has been done in practice
in this regard, and the Wallach examples constituted the first real success
with deformation. Some negative results in this direction have been obtained
by Bourguignon, Deschamps and Sentenac [BDS] as well as more recently by
Spatzier and Strake [SS]). We have more recently become aware or the work of
Derdzinski, Chaves, Rigas [DCR], where they discuss masters closely related
to those in this dissertation. '

The first inhomogeneous metrics of positive curvature were constructed by
Eschenburg on the orbit spaces of certain free isometric group actions (the
biquotients). These examples were not far from the Wallach examples but
were not canonical variations of the induced metric, since that does not sit
well in the highly Lie algebraic treatments of Eschenburg [E1], [E2], [E3].

Tn this dissertation we break this mold a little and return to a more classical

approach involving spheres in the search for examples. This approach draws on

recent developments in the mathematics associated with the theory of strings.




Given a 3-Sasakian orbifold S one may construct an associated diagram of

Riemannian submersions.

/

A

.

O
where Z, is the twistor space, S the Konishi bundle and O is a quaternionic
Kéhler orbifold.

Of particular interest in this article is the case where the base quaternionic
Kahler orbifold is of positive sectional curvature. If we restrict to the case
where () is a smooth manifold this class is extremely restricted. Berger [B2]
showed that in dimensions 4n where n > 2 the only quaternionic Kéhler
manifolds of positive curvature are the quaternionic projective spaces HFP™. In
dimension 4, Hitchin showed that the only two quaternionic Kéhler manifolds
were HP! = §* CP? with their standard symmetric metrics which are both
of positive curvature. The Konishi bundle over HLP™ is S™# with its standard
metric. The Konishi bundle over CP? is the more interesting case.

This bundle is a homogeneous 3-Sasakian manifold. Bielowski (cf [BG1])
showed that one could attain the normal homogeneous metric from the 3-
Sasakian homogeneous metric by scaling the metric in the fibre SO(3) by a
factor of % 3-Sasakian bundles are fat, with totally geodesic positively curved

spaces as fibres, in this case the base is a rank 1 symmetric space, so a theorem

of Wallach paraphrased by Eschenburg shows scaling the normal homogeneous




metric in the fibre with ¢ < 1 gives positive sectional curvature. Now these
particular homogeneous metrics with ¢ < 1 are act}lally the normal homoge-
neous metrics of Wilking [Wi]. So scaling the original 3-Sasakian metric by
t< % will give positive sectional curvature on the Konishi bundle in this case.

'This links into the celebrated hyperquotient construction [BGM]. An action
of a Lie group G of 3-Sasakian isometries on a 3-Sasakian manifold S induces
a 3-Sasakian moment map p. The level set N = u~*(0) is a variety in 5
and N/G is a 3-Sasakian manifold with its submersion metric and its 3 vector
fields defined by the projection of the restriction of the 3 vector fields of 5.
Taking the fundamental 3-foliation once again gives an orbifold fibration over
a quaternionic Kéhler orbifold.

In the case of regular circle actions, 0 is a regular value of the moment
map, éonsequently N is a smooth manifold. In the case where the action is
fixed point free the quotient N/G is a smooth manifold. In particular consider
the case of a circle action on 8%+ C H™!. If we take the action as just
multiplication by a unit complex number on the left N becomes the Stiefel
manifold of unitary 2-frames in complex n + 1 space {not with the normal
homogeneous metric) and the quaternionic orbifold is a Wolf space and is just
the Grassmannian of complex 2-planes in C**! (standard symmetric space
metric).

Now if one takes a canonical variation metric on $4** — HP™ to be-
gin with N has a new metric and induces another metric on the 3-Sagsakian

manifold. This metric is just the canonical variation over the base quater-

nionic Kéhler orbifold which is a weighted Grassmannian. So scaling the
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original metric down by { < 2, in the n = 2 case will induce positive cur-

vature on the homogeneous example and hence on quotients of deformations
of V{JQ — 8 — CP? are sufficiently close in the equivariant Hausdorff sense
[CI'G]. That is a relatively cheap way to see inhomogeneous examples, these
metrics are new albeit the spaces are not new since nearby the Alofl-Wallach
space examples are known to have Eschenburg type metrics of positive curva-

ture as well.

This situation is no coincidence, In this dissertation we prove the theorem.

Theorem 1 Let S — O be the canonical 3-foliation of a 3-Sasakion manifold
S and O have positive sectional curvature, then S has a canonical variation

metric of positive sectional curvature for sufficiently small t.
Also we prove the proposition important for applications

Proposition 2 Many of the quaternionic Kahler orbifold associated to the 8-

Sasakion reduction of a circle action on S have positive sectional curvature.

In particular this means many Konishi bundles over the Galicki-Lawson

[GL] examples discussed in Boyer et al [BGM)| have canonical variation metrics
of positive sectional curvature.

'There also is an equally interesting result in the case of Sasakian manifolds.

Theorem 3 Let S — Z be the canonical foliation of a quasi-regulor Sasckion
manifold S and Z have positive sectional curvature, then S haes o cononical

variation metric of positive sectional curvature for sufficiently small t.

In particular this puts familiar Sasakian metrics (up to homothety) of non-

constant positive sectional curvature on S° over CP2,
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Chapter 1

The structure equation of a canonical variation

Let m : M — B be a Riemannian submersion {(see [ON] for basic notions). Let
X,Y and U,V be basic and vertical vector flelds throughout. We have that

the metric, {,} splits up as

(X +UY +V) = (X,Y)+ {U,V)

The canonical variation {,); is the Riemannian metric defined by

(X +UY +V), ={X, Y)Y+ H{U,V)

Let X, Y. denote the fields on B corresponding to the basic fields X, Y, {, ).
the submersion metric induced on B and K, K* be the unnormalised sectional
curvatures of (,) and (, }, respectively.

Let T and A denote the second fundamental form and O’Neill tensor of

the submersion respectively.

Let SpF = H(VgF — VxY). Provided we restrict to F, F' which project,

we have S is a symmetric tensor.




‘The S tensor is given by

]
SEF = TUv + AXV =+ AYU

Theorem 1.1 The full curvature tensor, R, of the canonical variation, {, )i,

of the Riemannian submersion, 7 : M — B, is given by

Rt(E, F G, H) = tR(E, F.G, H) + (1 - '.’;)R*(X*,K, Ly Zi)
-|—i(1 — fi)((SEH, SFG>) — <SEG, SFH))
Proof.
RE,F,G, H) = E{(V.G,H), - F(VLC, H),
(VG ViH) + (V5G, ViH)

Note the following two important points

ViYF = VgF + (t — 1)SgF

(E,FY, = (X,Y)+tU,V)
= (1-t{X,Y)+H{X +UY +V)
= (1 - {X,Y) +UE, F)




"

E(VLGL Y, = E(VeG, H)+ (t — DE(SrG, 2%
— B(ViG,H) + (t — VE(SpG, Z) ;
— R(VRG, HY + (1 ) EMHY G, 2 — (1 - ) E{SpG, Z) |
= tE(VpG, H) + (1 — Y E(HV G — SpG, Z')
e tB(VRG, H) + (1~ ) E(HVy Z, 2')
= tBE{(VeG H) + (1 - ) X{HVYZ, Z') ‘
= tE{(VpG, I+ (1 — ) Xu{VV. Zx, Z0)s

(V4G VY = (VpG+ (t— 1)SpG, Vil + (t — 1)SpH)
— (VrQ,VsH) + (t ~ D){SpG, VeH),
Lt = 1){(VG, SuH): + (¢ — 1)2(SzG, SpH),
= (VpG, VgH) + (t — 1){SpG, HV g )
(it — WHV G, SpH) + (t — 1)2(SpG, SpH)
= HVpG,VeH)+ (1~ t){(HVsG, HVgH)
(1 = ){SpG, HY gH) — (1 — t){HV G, SpH)
+(1 — £ 8pG, Spl)
= 4{VpG, VH) + (1 — t){HV pG — SpCG, HV gl — SpH) |
_(1 = )(SFQ, SgH) + (1 — £)2(SpC, SgH) fi
= H{VpG,VeH)+ (1 -){HVyZ, HVxZ')

—t(l — t)(SFG, SEH)
= t(VFG, VeH)+ (1 — t)(V{/*Z*, V*X*Zi)*
b1 — £(SpG, SpH) 5




(Vg mG H)e = (VignG H)y+ (t - l)iS[E,F]G, HYy
= H{VgmnG H) + (1) {HV@EnG, Z"
—(1 = t)}{SEn G, 4
= VG, H) + (1 - ){HVyEnZ, Z)
? = {VpmG, HY + (1~ t){(HVux 2, Z')

| ' = UVEnG, H) + (1 = t){Vix, v, %0 Z)s

w_ Collecting like terms we get the desired result.[]

1 9o for the unnormalised sectional curvature we get the following resuls.

‘ 2 Corollary 1.2 The unnormalised sectional curvature, K, of the canonical

variation, (, Y, of the Riemannian submersion, w1 M - B, is given by

KB, F) = tK(E, F) + (1 - )K*(X., ¥2) + (1 — )((SpF, SpF) — |SuFI®)




Chapter 2

Previously known examples

Let us begin by reworking some know results in this framework. We will
reprove the results of [W], [AW]. An elegant proof of these results has already
been accomplished by Eschenburg using Riemannian submersions on normally
homogeneous metrics on Lie groups [E4]. Eschenburg reposited the work of

Wallach in the following theorem.

Theorem 2.1 Let H C K C G and @ be a bignvariont melric on g. Assume
thot the following three conditions are satisfied:

o G/K is a rank 1 symmetric space, i.e. [m,m] C ¢ where m = &',

o The normal metric induced by Q on K/H has positive sectional curvature,
i.e. forp=bht Nt lu,v] #£0 for u,v € p linearly independent

o Fatness, i.e. [z,u] #0 forz em,u&p notl

then the homogeneous metric on G/H given by Qs = tQ|p + Q| has positive
sectional curvature for and 0 < t < 1. Moreover if in addition K/H is a

symmetric space, ¢y with 1 <t < % has positive sectional curvature.

10




Eschenburg was able to prove the main part of the above theorem without
calculation. The second part however can not be proven this way and requires
a calculation.

The proof we shall give will be computational.

Proof. Throughout let the lower case letter denote the corresponding ele-

ment of g.

K(E,F) = ille flal> -+ 3)le, Alel® + 2les s
= e, Ml + e, o] + [, ] + Glle, ol

K (X0, V) = gl ol 1 [, 6l = [z,

For a bundle with totally geodesic fibres Spf’ = A xV 4+ AvU. The element

of g corresponding to SgF is hence
1
SeF = S(le,u] + [y, o)
Hence SpF = [z,u] and SpF = [y,v].

(S68, Se) — SaF | = (e, o)) ~ o] = sl

(o, [y, o) = (@[ [y, 0l
= (&, [y, v, ull) - {z, [v; [, y]])
= (& [y, [, o]} — ([, 0l; [, )
= (fz, 9}, [, v]) — {[=,v]; [, y])

11
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(S, SpF) — |SpFI* = ([z,y), [u,v]) ~ {lz,2], [w,u]) = 3l v] — [u, y]?
= ([l y), [w, 1) — [z, 0] o [w, 9]
= [z, 4}, [, v]) — glle, flul®

KJ(E,F) = tK(E,F)+ (1 -)K*X,,Y.)
+t(1 = t)((SeE, SpF) — |SeF|?)
= t(3le, Sl + Lz ) + [, 0]+ E[fe, F12)
(1 = £)|[z, ]2+ 61— ({2, yl, [u,v]) — Hle, flal?)
= Zlle, flml® + e, 15

4z, gl + [u, vl + (0= Bz, 1> + 21 = £){[x, ], [u, o))

2l 9] + [ ][+ (1= )| [z, ] + £(1 = ([, o, [, )
= §(ll=yll* + 2z, y], [, o]} + [, 0]17) + (U= &) gl + 21 — ) ([, 0], [, 0])
= G+ 0=z yll” + Flw o)+ (§ + 60— 1)) {{z, y), [w, o))
= (1= Pz ll® + gl o] + 25 — 1){z, v [, v])
= (L= ) = 4G — Oz, ]l + (G = Oz, + 3lu, 0]
= (1=t yl* + (1~ £z, 5] + 3le, 1ol

Ki(B,F) = %l flul? + $lle, /15"
(1 - e, gl + ({1 - Bz, y] + 5le, fle?

If 0 < ¢ < 1 the end term is zero if and only if [z,y] = [u,v] = 0. But
by two of the conditions this would make z,y linearly dependent and u,v
linearly dependent, If e, f are linearly independent then this means [e, f], is &

nonzero multiple of [z, %] which is nonzero. Hence the expression for K (E, F)

12




is positive.
Now assume that K/H is a symmetric space then [u,v] € . We rewrite

K(E,F) as

K(E,F) = glle, flnl®+ lle, filol? + Ile, fol”

= e, flal* + Hiz, gl + |z, vl + [w, 9]

K* (X, V) = [z, 9l = [lo, ol + [, gol”

K(E, F) = tK(E,F)+ (1 - {)K*(X,,Y,)
+t(1 - )Y({SpE, SpF) — [SpF|?)
. = t(3lle, Flul® + Hlo, ylol? 4 Ll vl + [2,2]]?)
(1 = ), ylol? + 7. )
(1 = 6)(f2, ylps [, 0]) = §1les S1l?) ‘
= Zlle, flal?+ (1§l i

\
+llz, e + ol + (L= Qe 15+ 0= (gl ) I
\

iyl + [ o]+ (1 — 8, g2 + £ = £){[e, i, b, ) ;
=t s ? + 20| ylpy [ ) + ey o][) + (1~ £}, ]l "
(1 = [, ylyy [y o))
= [l g l? + Alu, ]2+ (3 — 0)z, iy, o))

Kf(EJF) = %He: f]mlz + (1 - %)Hx:y]lﬂlz
+Hm1y]h|2 + t‘[uav]lz + t(S - t)([may]ha [U’:UD

13




Now suppose 1 < ¢ < 531-

]

2'([37»'9']1}7 [’M,’U]H
<l gl sl

<, ylof? -+ ¢l ol

t3 = t)|([z, ylp [, o))

A

A

This gives positive curvature reasoning along the same lines.t]

Theorem 2.2 Let G/K be a rank 1 symmetric space ond consider a free iso-
metric biguotient action of U on . is a commuling diagram of Riemeonnion
submersions then the canonical variation on G, {, ) of the metric {,), on G,
induces nonnegative sectional curvature under submersion onto the biquolient
G/JU for0 <t < 1.

Let E, F be hovizontal vector fields with respect to p and e = z+u, f=y+v '

be the corresponding elements in the Lie algebra g = m @ € then the curvature b

vanishes only if fu,v] = 0,[e, f] = 0.

| Proof. ;

The sectional curvature, K, of {,) is given by |.'4

. L
s- K(E,F) = %lle, flul* +3|4cF[
|

+(1 = £z, )+ (1 — )z, v] + 5le Slel

This completes the proof. U ;

This recaptures the examples of Eschenburg and Bazaikin. Note that if

t > 1 that (1 — ¢)* becomes negative and the conditions [w,v] =0,[e, f] =0
where e, f are horizontal are sufficient but not necessary for zero curvature. A f

priori the curvature might even become negative in places.

14 L




Eschenburg has illustrated that when ¢ < 1 the Gromoll-Meyer sphere has
positive curvature almost everywhere. When ¢ > 1 hig analysis also implicitly
shows the existence of zero curvature plane. It would be interesting to know
if the sectional curvature is almost positive for £ > 1. Note the question
is unresolved when ¢ = 1 despite the prevalent misconception that Mandell
showed this. Analogous statements are true of those Eschenburg spaces having

zero curvature planes when ¢ < 1.

15




Chapter 3

New metrics of positive curvature

To look at some new metrics it will be necessary to review some contact
geometry, we apologise for any glaring omissions. Where we are lacking we

refer the reader to the excellent survey of Boyer and Galicki [BG1].

Definition 3.1 A Riemannian manifold S is said to be Sasakian if it has a

unit Killing field £ satisfying the equation

Given such a characteristic vector ¢ we define a (1,1)-tensor ¢ to be given by
$(X) = Vxé and the characteristic 1-form 1 to be given by n(X) = (X, &).
Altogether we call the triple (£,7,¢) a Sasakian structure.

Notable here is Sasakian manifolds must be of odd dimension, since in even
dimensions there are no nonvanishing vector fields [B2],

For calculations it is important to know the following rudimentary propo-

sition

Proposition 3.2 Let S be a Sasakian manifold with Sasakian struclure (&, )

16




and X, Y a pair of vector fields on S

¢ (X) = =X +n(X)¢

$(£) =0 n(¢(X})) =0

() + (H(X),Y) =0 ((X),¢(Y)) = (X,Y) —n{X)n(Y)
dn(X,Y) = 26(X),Y)  Ne(X,Y) = dn(X,Y) ®¢

where No(X,Y) = [6(X), (¥} + (I, ¥]) — o([X, 6]} — ${[6(X), Y]) 4

the Nijenhuis tensor.

A manifold is said to be 3-Sasakian if it has a triple of Sasakian structures,
so characteristic vector fields &', £2, €% are an orthonormal frame and induce a
Lie algebra isomorphism when mapped to 4, , & € sp(1). Such manifolds are
automatically Einstein and have positive constant scalar curvature. We have

the following properties of the structure.

Proposition 3.3 Let S be 3-Sasakian with 3-structures (&m ™, ") wheren =
1,2,3 then

nmEn) = o

Pm(En) = —€mPEP

™o " —EM @ = —mPPT — ™"id
We calculate the curvature of the canonical variation of the 3-Sasakian folia-
tion. We start by computing the curvature of the canonical variation of the

3-Sasakian foliation. We start by computing the sectional curvature of the

17




ke S R
3-Sasakian metric. i
K(E,F) ~ (RE,F)F,B) "
= (R(E,V)F,E)+ (R(E,Y)F, E) F

= (R(E,V)F,B)+ (R(V,Y)F,E)
HR(X,Y)F, E) ;

— (R(E,V)F, B) + (R(V,Y)F, B}
HR(X,Y)F,U) -+ (R(X,Y)F, X) ﬂ

— (R(E,V)F,E)+ (R(V,Y)F, E) E
HRX,Y)F,U) + (R(X,Y)V, X) i

# HR(X, VY, X) .J*l
= (R(B,V)F,E) - (R(Y,V)F, E)
HR(F,U)X,Y) — (R(X,V)X,Y) |

HR(X, Y)Y, X)

= (V,F)(E, By — (E,F)(V,E) — (V, F){Y, E) + (Y, F){V, E) 4

0

LU, X)E Y — (F, X){U,Y) — (V, X}{X, V) + (X, Y}V, Y)

VK(X,Y) |

— WPIVE = U, V)2+ [XPIVE + YPIUR = 20, V(XY i

+K(X,Y)

i

Let U = w1 + upé? + ugl®, V = 01" + 028? + 0a€?
SoF = AxV + AyU !‘Té

1SEFP = |AxV|? + |AyUP + 2(AxV, AyU) %

= |XPIVIE+ YU+ 2{AxV, AvU)

‘

18 t:.‘-
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S = 245U, SpF = 2AyY
(SEE, S}«F) = 4<AxU, AyV)x

(AxU, AvV) = 30 o umvnld™(X), ¢"(Y))
(2 UmWm) (X, Y) + 3 m¥n(F7 (67(X)), Y)
= (U, V)(X,Y) = (IU, V], AxY)

(SpE,SpF) —|SgF|? = 4((U, VX, Y} + (3[U, V], AxY))
—(IXPIVP + Y RO+ 20, VX, Y)
+2([U, V], AxY)

= 6(L[U, V], AxY)
—(IXPIVP + Y PIUI = 2(0, V)X, Y))

K(X,Y) = K*(X,,Y,) ~ 8| AxY ]

Substituting all of this into the curvature formula and collecting like terms we

get

K(E,F) = t3[U,VIP + 2OXPIVE+ Y PUP - 20, V)(X,Y))

+6¢(1 — ) (3 [U, V], AxY) + K*(X,, Y.) — 3t|Ax Y2

= LU V] +8(1 - AxY > — 9(1 — £)?|AxY]?
HR(XPIVE + [YRIUP - 2(U, V)X, Y))
+K*(X,,Y,) — 3tlAxY|?

= LU, V] + 3(1 — ) Ax Y2
+E(XPIVE+YPIUP - 2(0, VX, YD)
+E*(X,,Y.) = 3t(1+ 3(1 — )?)|AxY|?

19




We have [AxY|* < |X AY|? and for positively curved O, K*(X,,Y.) > LI X A
Y|?. For sufliciently small ¢, L — 3¢(1 + 3(1 — £)2) > 0 so for sufficiently small
¢ the only way the last line can vanish is if X,Y are linearly dependent. But
then U AV = 0s0 U,V are linearly dependent, The middle term vanishing in
addition is what forces the linear dependence of &, F'. We conclude that for
sufficiently small ¢ the canonical variation metric on S is of positive sectional
curvature.

Consider 3-Sasakian manifold given by the Hopf fibration §'1 — HP2,
Consider an action on 8 by a free 3-Sasakian isometric circle action.

This moderate amount of information is adequate to conclude much about
the curvature of the quaternionic orbifold given by the 3-foliation of the 3-
Sasakian reduction, though interpreting the computations can be difficult. To
illustrate how this works we restrict to the case where the Killing field & defines
a Sasakian structure. This is a rather restrictive assumption, in fact among
the examples of [BGM] it restricts us to S(1,1,1) — CP?, but at the end we
will see how the story differs when we remove it. Recall N = {p € 8"'|u? =
(£,&™), == 0,n = 1,2,3}, this is just a variety in S*!, so we can easily calculate

normals to V.

(Vur, E)y = Eu"
= &)
= (VE&EM) +{, Vet
= ~(Vend, B) — (V£ E)
= —(Vel" B) — (Ve E)
= (—2¢"(8), L)

20




Hence V™ = —2¢™(£).

(—26™(€), —26"(©)) = A{F™(€),$™(E))

—_ 45mn

Hence {¢"(£)} form an orthonormal basis for the normal bundle of N,

We now turn our attention to the second fundamental form,

(VoF,¢"(€) = —{F Ve (©)

~(F, (V™) (€) + (V)

= —(F,R(B,&)() + ¢"(Ve))
&%, VB, F) + (B, ) (F,€") — (6"(8(E)), F) |’
E

= (B, (P, &) + ($(E), ¢™(F)) {

For E, F perpendicular to &, i.e. horizontal with respect to ¥V — 9

o = 368 9" Z

Now consider X, Y orthonormal and horizontal to the 3-foliation

TV = T,((X), 6" (1)
= B — ($(X), V)2
= 1 (), Y)? i

Kn(X,Y) = Ka(X,Y)+{TxX,TyY) — [TxY|? 5
= 14+ Y ($(X), o (XONSY), " (V) + (¢(X), ¥)? — 1 ;;i
= S AX), M X)NA(Y), 9"(Y)) + ($(X), V) |

21 i




(VeF,&) = —{F Vgt

=~

Hence |[ASY 2 = {¢(X),Y)2 H‘:
|

Kg(X,)Y) = Kpn(X,Y) +3|A5Y 2

= 2000, " CONB(Y ), (¥ ) + 4$(X), V)? i

AQY = (7)Y =1 f},’

Ko(X,Y) = Ks(X,Y)+3JAQYP ;

= 34 L 00(X), " (XY, (¥ ) + 4p(X), Y )?

Put 2 = (9(X), "(X)) and g = ($(¥), 4*(¥)} then

D06, 8} = :

I :‘f

Note N

D@ =g =1, (") =

n

3o finding the minimum of the second term is a simple constrained optimisation

\

problem. The minimum occurs for 2" = —4™ and makes the term 1. -T

Hence it follows that Ko > 2. ; ‘

The assumption that £ was Sasakian was only imposing the additional -13‘:;
condition that ¢ is of unit length. Generally speaking this is not the case. The Li :

i

difficulty of the computations is not really increased by this but it does make
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estimates more difficult. Tn that case we get

Ko(X,Y) = 44 gu(E,({p(X), "(XN{e(¥), 6" (Y))
—(¢(X), (Y )?) + 3(¢(X), Y)?)

A subtle analysis is required to see when this is positive. The initial 4 however
should provide a large amount of space for the other terms to misbehave
without making the expression negative. If not all of possible orbifolds have
positive sectional curvature a good portion of them do.

Now one of the main distinctions between the case where £ is of unit length

and of variable length is in what space H(X) lies.

(qb(X)s §> — <VX£}§>
s X(1€1%)

In the case where ¢ is of constant length this is 0 and ¢{X) lies in the horizontal
H of the submersion S —» @. Otherwise it is merely orthogonal to £, £2, £3,

To understand this better we should decompose Hep(X).

[HH(X)|? = 2+ Z ), (V)

Ko(X,Y) = 4+ gu(E,({@(X), e"(X)(d(Y), ¢"(Y))
—[HO(X)? + 4{$(X),Y)?)

Note that since £ is Killing (Vx&, X} = 0. Tt follows that

[HYX)|* =Y (p(X), ¢"(X))?

i
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Note that [H¢(X)|? is actually independent of the tangent unit vector X.
This can be seem from the symmetry of the curvature tensor. We thus have

|[Ho(Y)1? = [H@(X)|2. So we can rewrite the curvature

Eo(X,Y) = 4+ ga(~5 L, {e(X), (X)) — ((Y), $*(¥)))* + 4{(X), Y)?)

The negative term is at worst when (¢(X), " (X)) = —{p(Y), o"(Y)) In that
case

Ko(X,Y) = 4+ ga(=2[H¢(X)P +4{(X),Y)?)

I:c‘ is possible now to see quite a broad range of the quaternionic Kéhler orbifolds
have positive sectional curvature.

Consider the circle action on 8™ given by zo(qy, ga, g3) = (2P ¢1, 272 g9, 2P q3).
The Killing field is then & = (ip1q1,ipage, 1p3g3). In H? the covariant derlvar
tive computed against the horizontal tangent vector X = (z1, 2, 23) is just
(ip1218paa, ipsws). Since X is orthogonal to &, we immediately see the covari-
ant derivative is orthogonal to (qi, g2, q3). Hence ¢(X) = {iprx1ipaza, ipszs).

For now let us make a very crude estimate |¢(X)|? < max{p;}?, [¢]* >

min{p;}?. Requiring v2min{p;} > max{p;} will ensure

and the curvature is positive.

Let us digress. The essential comparison is

|§|2|Hd>( WP >0
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Note that thig is only dependent on the point p € N and independent of the

choice of horizontal unit tangent vector X. The requirement that p € N is
just that p and & are orthogonal in the quaternionic Hermitian sense. The
requirement that X is horizontal is just that the X is quaternionic Hermitian
orthogonal to both p and £. This is quite a remarkable situation, unfortunately
we were unable to complete this discussion by the defence date, promising
though it is.

We now turn our attention to an Sasakian reduction in the case where £ is
Sasakian. Note that on the sphere our free circle action generates an associated
characteristic vector field & defining a Sasakian structure on S'. Note also the
3-Sasakian structure on S gives rise to a free action of Sp(1) and these two
actions commute. This Sp(1) action acts by Sasakian isometries on S*! so we
may preform a Sasakian reduction [GO]. The level set of the moment fnap of
this reduction coincides with N by definition. Further quotienting NV by the
action of Sp(1} induces a Sasakian structure on the quotient N/Sp(1), where
the characteristic field is given by the projection of the restriction of £ This
now induces a Kahler structure on the orbifold of leaves, which coincides with
@, since the two actions commute.

So we make the observation that the base carries a metric which is simul-
taneously quaternionic Kahler, Kihler and of positive sectional curvature.

We now consider the canonical variation of a quasi-regular Sasakian man-

ifold.

K(B,F) =V X[* + n(UPY)? — 20U (VX Y) + K(X,Y)
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K(X,Y) = K*(X,Y,) -3|4xY|? f
= K*(X,Y.)—3{¢(X),v)*" |

SpF = AxV + AyU
= n(V)$(X) +n(l)s(Y)

SpE = 2(N(X) SpF = 2(V)p(Y)

(SpB, Spl) = 1Spk[* = 4(n(U)¢(X),n(V}e(Y)) — In(V)$(X) + n(U)$(Y}I?
= —n(VPXP —nUPY ]+ 2U)n(VIX,Y)

Substituting all of these into the canonical variation formula and collecting

like terms we get |

KB, F) = 22X P +a)?Y 2 - 2U)n(V)(X,Y)) .
FE*(X,, Y,) — 3t{$(X), Y)? |

Manifestly if £ < % then the above expression is positive unless of course F, F
are linearly dependent in which case it is 0.

In particular we can conclude the Sasakian manifold N/Sp(1) has a canon-
ical variation metric of positive sectional curvature over . This is hardly |

surprising as we merely are considering S% — CP2. i
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Concluding remarks

In their paper Boyer, Galicki and Mann [BGM] show that their examples are
diffeomorphic to certain Eschenburg biquotients [12].
To be precise the 3-Sasakian manifold S(pi,pe,ps) is defined to the the

3-Sasakian hyperquotient reduction of the circle action

zo (a1, 92, 3) = (2" a1, 27 2, 2™ 03)

on S C HA.
Boyer, Galicki and Mann [BGM] show for positive {p;} that this space is

diffeomorphic to the manifold attained by quotient by the circle action
z o A = diag(zP, 272, 27*) Adiag(1, 1, zP17Pe+ps)~1

on SU(3).
Eschenburg {F2] shows using techniques from the theory of Lie algebras
that a free circle action on SU(3) where one takes a suitable left invariant

metric, induces positive sectional curvature on the quotient of the action

zo A= diag(z™, 22, 20) Adiag(2™, 2™, 2)™!

27




provided that all b; lie outside the interval [min{a;}, max{a;}).
Note that if all p; are positive then S(py, p2, ps) has an Eschenburg metric of !
positive sectional curvature. Boyer, Galicki and Mann [BGM] show the Weyl 3-
Sasakian isometries on S' induce isometries between spaces with interchanged
signs in p;, so in fact all of their examples actually have positive curvature with
an Eschenburg metric. So we can discover no new spaces of positive curvature
among their examples.

We would now like to make some special remarks about S(p1, pa, pa) when

p3s = p1 + pz. We must admit these examples fall outside the rough range for
which positive sectional curvature with the variation metric is established.

%‘ Let us hypothetically assume techniques of this dissertation induce positive |
curvature on such @ then on the orbifold Z with a canonical variation metric
on the orbifold submersion 7 — @, since § — Z with the new variation
metrics remains a Riemannian orbifold submersion.

Boyer and Galicki {BG2] state that the space Z(p1, pa, p3) is diffeomorphic

to the quotient of the torus action

(z,w) 0 A = diag(2P, 2%, 2") Adiag(w, @, 7" T2 trs) 1

on SU(3). E
Note however that this action of SU{(2) is taken on the left instead this is

equivalent to

(z,w) o A = diag(wzP*, @27, 7™ )Adiag(1, 1, 2P+ HP2tes)—1 ‘
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Set @ = w2, b = w2 then ab = 2 and (ab)? = zPtP2+7 This action is

equivalent to the torus action :
(a,b) o A = diag(a, b, ab) Adiag(1, 1, (ab)*) ™"

‘This torus action is free and gives the twisted flag manifold of Eschenburg
[E3-4,[Z]. The Eschenburg space S(p1, pe, p3) occurs as a circle bundle over it.

Similarly, O(p1,pa,ps) is diffeomorphic to the quotient of the action of
U(1) x SU(2) by

-1

A
(z,B) 0 A = diag(2", 272, 27*) Adiag(1, 1, g 1P 7)1

If this action is allowed to pass from right to left the action is converted to a

free action of U(2)

C
CoA= Adiag(1, 1, detC*)™!
detC

whose quotient is diffeomorphic to CP2%. Hence O(py,ps, p3) is converted to
CcP2

The spaces M (p1, pa,pa) = N{p1,p2,p2)/Sp(1) for positive py, p2, ps are all
diffeomorphic to S° [BGM]. The action on SU(3) is simply multiplication by
SU(2) on the right and acting on the left leaves the quotient as S°.

The physicists have a terminology for these pairs of fibrations in terms of

their Kazula-Klein theories. The bases are said to be spontaneous compacti-
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fications {the idea being that crushing the fibres gives the hase and crushing

along distinct fibrations yields different bases).

Ziller [Z] has raised the question whether the twisted flag manifold has
symplectic forms corresponding to the Euler class represented the Eschenburg
spaces as a circle bundles in the hope for such or similar metrics to be de-
formable to metrics of positive sectional curvature.

This and related issues are currently being studied by LeBrun’s student
Résdeaconu using techniques from algebraic geometry.

Of particular interest to Ziller was to induce natural metrics of positive
sectional curvature on the Eschenburg spaces which are not of positive curva-
ture with Eschenburg’s natural metric by thinking of them as circle bundles
over the twisted flag manifold.

It would be interesting to establish a link between these issues on the
twisted flag manifold and the twistor spaces above.

Each twistor space has a natural Kéhler-Einstein metric. One might hope
the spontaneous compactification yields another metric on the Eschenburg

‘space associated to a companion theory for the twisted flag manifold over
CP?,

Certainly in dimension 4 quaternionic Kihler orbifolds are particularly
good candidates to have metrics of positive sectional curvature and should the
Konishi bundles over them be smooth manifolds, i.e. resolve the singularities,
one has found 7-manifolds of positive sectional curvature. This provides fur-
ther reason for the ample supply of metrics of positive sectional curvature in

dimension 7.
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