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Abstract of the Dissertation,

Relative Parametric Gromov-Witten

Invariants and Symplectomorphisms

by

Olgut�a Bu�se

Doctor of Philosophy

in

Mathematics

State University of New York

at Stony Brook

2002

We study the symplectomorphism groups G

�

= Symp

0

(M;!

�

) of

an arbitrary closed manifold M equipped with a 1-parameter fam-

ily of symplectic forms !

�

with variable cohomology class. We

show that the existence of nontrivial elements in �

�

(A;A

0

), where

(A;A

0

) is a suitable pair of spaces of almost complex structures,

implies the existence of nontrivial elements in �

��i

G

�

, for i = 1 or

2. Suitable parametric Gromov Witten invariants detect nontrivial

elements in �

�

(A;A

0

). By looking at certain resolutions of quotient

singularities we investigate the situation
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(M;!

�

) = (S

2

�S

2

�X; �

F

���

B

�!

st

), with (X;!

st

) an arbitrary

symplectic manifold. We �nd nontrivial elements in higher homo-

topy groups of G

X

�

, for various values of �. In particular we show

that the fragile elements w

`

previously found by Abreu-McDu� in

�

4`

(G

pt

`+1

) do not disappear when we consider them in S

2

�S

2

�X.
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Chapter 1

Introduction

1.1 Aim

Consider (M

2n

; !) a 2n dimensional compact symplectic manifold. A sym-

plectomorphism is a di�eomorphism that preserves the symplectic form. A

basic invariant which distinguishes among di�erent symplectic structures on

M is the group of symplectomorphisms, Symp(M;!). This is an in�nite di-

mensional group endowed with a natural C

1

topology.

Two natural questions arise in relation with Symp(M;!) namely

(1) What can be said about the topological type of Symp(M;!)?

(2) How does the topological type change as ! varies?

Any symplectic manifold admits a large set of almost complex structures.

Among those, we are interested in those that are tamed by ! in the following

sense:

De�nition 1.1. We say that an almost complex structure J is tamed by the

symplectic form ! if !

x

(v; Jv) > 0 for any vector �eld v on M, nonzero at

1



x 2M .

We denote by A

[!]

the space of almost complex structures that are tamed

by some symplectic form that is isotopic

1

to !.

Moser showed that the identity component Di�

0

(M) of the group of di�eo-

morphisms acts transitively on the space S

[!]

of symplectic forms isotopic to !.

As we will see in 4.1, this implies that the following �bration, �rst introduced

by Kronheimer [9] and used in McDu� [13], exists:

Symp

0

(M;!)

//
Di�

0

(M)

//
A

[!]

:

(1.1)

where Symp

0

(M;!) = Symp(M;!) \ Di�

0

(M).

Our strategy will be to de�ne suitable pairs (A;A

0

) of spaces of almost

complex structures, such that information on nontrivial homotopy groups in

(A;A

0

) extends to information on Symp

0

(M;!). We develop a version of

relative GW invariants in family which detects such nontrivial elements in

�

�

(A;A

0

).

Research regarding the symplectomorphisms groups has been by various

authors [Abreu [2], Le-Ono [11], McDu� [12], Seidel [18]]. Their methods as

well as ours use modern tools of symplectic geometry such as J-holomorphic

curves. In the next section we will outline some relevant de�nitions and some

earlier results that are relevant for our work.

1

We say that two symplectic forms are isotopic if they can by joined by a path of coho-

mologous symplectic forms

2



1.2 Background and earlier results

De�nition 1.2. Consider a closed manifold (M;J) and a Riemann surface

(�; j), both endowed with almost complex structures J and j respectively. We

say that a smooth map f : �!M is J-holomorphic if its derivative

df

x

: T

x

�! T

f(x)

M satis�es

df

x

� j

x

= J

f(x)

� df

x

Roughly speaking, Gromov-Witten invariants are symplectic invariants of

M that count J-holomorphic curves with given topological constraints.

We investigate the above mentioned questions by de�ning relative paramet-

ric GW invariants, which are sensitive to the topology of appropriate spaces of

almost complex structures. Our method has been inspired by P. Kronheimer's

work [9], as well as by the work of D. McDu� [12].

In [9], for situations with dim M=4, Kronheimer uses parametric Seiberg-

Witten invariants, to exhibit some nontrivial families of symplectic structures.

Roughly speaking, he discusses certain analytic families X

u

, part of whose

speci�c properties will be described in chapter 3, that arise as the �bers of

a map p : X ! U with U an open set in C

m�1

and such that all �bers X

u

are smooth and di�eomorphic, except for X

0

which has a special type of quo-

tient singularity at a point x

0

. This family admits an embedding in C P

N

�U

through which the �bers X

u

inherit symplectic forms from C P

N

. His result is

the following:

3



Theorem 1.3. (Kronheimer)

Suppose p is as above, let u 2 U n f0g, and consider the �ber X

u

as

a symplectic manifold as above. Let Di� and Symp be its group of di�eo-

morphisms and symplectomorphisms respectively. Then �

2m�3

(Di�=Symp) is

nonzero, provided that b

+

(X

u

) is greater than 2m� 1.

Other results regarding homotopy type of the symplectomorphism groups

appear in the situations when M is a ruled surface or a product of C P

n

's.

We �rst set the notation

G

�

:= Symp

0

(M;!

�

)

To serve our purposes, we will only exhibit those results that were found in [7],

[3], [13] for the situation when (M;!

�

) = (S

2

� S

2

; �

F

� ��

B

), where �

F

; �

B

are forms on the �ber S

2

� pt and base pt � S

2

respectively, of total area 1,

and � � 1. For this particular manifold we will adopt the notation

G

pt

�

= Symp

0

(S

2

� S

2

; �

F

� ��

B

):

The �rst one to look at this groups was Gromov [7], who found that, in the

case � = 1, G

pt

1

deformation retracts to the Lie group SO(3) � SO(3). He

also pointed out a new element of in�nite order that appear in �

1

G

1

when �

increases past 1.

Later Abreu-McDu� in [3] and [13] found natural maps G

pt

�

! G

pt

�+�

, well

de�ned up to homotopy, and proved:

4



Theorem 1.4. (Abreu-McDu�)

(i) The homotopy type of G

pt

�

is constant on all the intervals (`� 1; `] with

` � 2 a natural number. Moreover, as � passes an integer `; ` � 2 the groups

�

i

(G

pt

�

); i � 4`� 5, do not change.

(ii) There is an element w

`

2 �

4`�4

(G

pt

�

) � Q when ` � 1 < � � ` that

vanishes for � > `.

As it will be explained later, we will extend their results and techniques to

obtain information on the symplectomorphism groups of S

2

� S

2

�X:

1.3 Outline of the main results

In chapter 2 we will de�ne the invariants as follows:

Consider a smooth family of symplectic forms (!

�

)

�2I

, where the parameter

� varies in the interval I in R in such a manner that the cohomology classes

[!

�

] may also vary along a line L inside H

2

(M;R). For convenience we denote

by A

�

:= A

[!

�

]

. Consider D 2 H

2

(M;Z) and let A

c

�;D

� A

�

consist of those

almost complex structures J which do not admit J�holomorphic stable maps

in the class D. Further de�ne

A

I

=

[

�2I

A

�

;

and similarly let A

c

I;D

be its subset given by

A

c

I;D

=

[

�2I

A

c

�;D

5



By Prop 4.2 below, ( see [13]), A

I

is homotopy equivalent with

S

�2I

S

[!

�

]

and hence is connected. We will assume that there is a special almost com-

plex structure � = J

basepoint

that belongs to all the spaces A

c

�;D

. Consider a

family of almost complex structures (J

B

; J

@B

; �) that represent an element in

�

�

(A

I

;A

c

I;D

; �): We will de�ne a homomorphism

PGW

M;(J

B

;@J

B

)

D;0;k

:

k

M

i=1

H

a

i

(M;Q )

k

! Q (1.2)

by counting J

b

-holomorphic stable maps in class D, for all b 2 B. This is well

de�ned because the class D is never represented as a J

b

-holomorphic stable

maps if b 2 @B. We have the following

Theorem 1.5. (On relative parametric Gromov-Witten invariants)

i) The invariants PGW

M;(J

B

;@J

B

)

D;0;k

are symplectic deformation invariants

and depend only on the relative homotopy class of the triple (J

B

; @J

B

; �).

ii) For a �xed choice of k;D and �

i

the map

�

0;k;�

1

;:::;�

k

: �

�

(A

I

;A

c

I;D

; �)! Q , given by

�

k;�

1

;:::;�

k

([(J

B

; @J

B

)] = PGW

M;(J

B

;@J

B

)

D;0;k

(�

1

; : : : ; �

k

)

is a homomorphism.

One di�culty in counting Gromov-Witten invariants is to make sure that

among the J-holomorphic curves that we can see we only count the ones that

do not disappear under small perturbations of the almost complex structure.

Those are called regular curves. Roughly speaking, this is equivalent to the

fact that a certain linearized Cauchy-Riemann operator is surjective. We adapt

6



these considerations to the family setting and call parametric regular those J

b

-

holomorphic curves that do not disappear under small perturbations of the

whole family (J

b

)

b2B

of almost complex structures. In chapter 2 we introduce

the following criterion of parametric regularity, which applies to families that

appear in a �bered setting (in a sense that will be explained later):

Theorem 1.6. Let (J

z

; !

z

)

z2C

m

be a family of pairs of almost complex struc-

tures and symplectic forms arising as the restrictions to the �bers �

�1

(z)e=M

of the pair (

e

J; e!) of a symplectic �bration (

f

M;

e

J; e!)

M

i //
f

M

�

��
C

m

(1.3)

Suppose that f : � �! M is a J

0

holomorphic map and consider the

composite map

e

f = i � f;

e

f : � �!M � 0 �

f

M

which is

e

J-holomorphic. If

e

f is regular then f is (J

z

) parametric regular.

Moreover, if � = S

2

then the reverse statement holds.

The proof of this theorem is contained in Appendix A.

In chapter 3 we will exhibit some examples of nontrivial PGW. There

we consider the case when (M;!) is S

2

� S

2

� X, where X is an arbitrary

symplectic manifold, ! = !

�

� !

st

, with !

�

as before given by !

�

= �

F

� ��

B

and with !

st

an arbitrary symplectic form on X. The families (J

B

; @J

B

) of

almost complex structures are provided for S

2

� S

2

in [9] and then further

investigated in [3]. One has to look at a quotient singularity, C

2

=C

2`

, where

7



C

2`

is the cyclic group of order 2` acting diagonally by scalars on C

2

: The

deformation space for the canonical resolution of this singularity provides a

4`�2 family (J

B

`

; @J

B

`

) � (A

[`;`+�]

;A

`

) for which suitable PGW are nontrivial.

The link between these examples and the corresponding groups of symplec-

tomorphisms will be explained in chapter 4. It will be there where we explain

the extent to which the known homotopy properties (see [3]) of

G

pt

�

= Symp

0

(S

2

� S

2

; !

�

) are re
ected in the higher homotopy groups of

G

X

�

:= Symp

0

(S

2

� S

2

�X;!

�

� !

st

):

To be able to give any answers related to the two questions posed in the

beginning, one has to establish �rst a more precise language in which they

make sense. One of the di�culties is that when we deal with a general manifold

M we no longer have either direct maps G

�

! G

�+�

, or maps de�ned up to

homotopy, as in the M = S

2

� S

2

case.

To get around the fact that there is no map G

�

! G

�+�

we show that for

any compact K � G

�

, the inclusion 0�K � G

�

extends to a map h that �ts

into the following commuting diagram:

h : [��; �] �K

//

pr

1

��

G :=

S

(G

�

� �) � Di�

0

(M)� R

pr

2

��
[��; �]

incl //
(�1;1)

(1.4)

Moreover, for any two such maps h and h

0

which coincide on 0�K, there is, for

�

0

small enough, a homotopy between them H : [0; 1]� [��

0

; �

0

]�K ! G which

also preserves the �bers of the natural projections. We therefore see that, for

8



any cycle � in G

�

there are extensions �

�

in G

�+�

which, for � su�ciently small,

are unique up to homotopy. Hence they give well de�ned elements in �

�

G

�+�

.

It will therefore make sense to ask what will become of an element � 2 �

�

G

�

inside �

�

G

�+�

, for small �. In this language we say that an element �

`

2 �

�

G

`

is fragile if any extension �

`+�

is null-homotopic in �

�

(G

`+�

) for � > 0. Also,

we say that a family �

`+�

2 �

�

G

`+�

; 0 < � is new if there is no �

`

2 �

�

G

`

whose

extension is �

`+�

. We consider the space A

`

+

roughly given by

A

`

+

:= (

T

0<�<�

0

A

`+�

)

S

A

`

(for the precise de�nition see (2.3)).

We say that an element � 2 �

�

(A

`

+

;A

`

) is persistent if it has nonzero im-

age under the map �

�

(A

`

+

;A

`

) ! �

�

(A

[`;`+�]

;A

`

). The content of our main

theorem is the following:

Theorem 1.7. (On Symplectomorphism groups) Assume that we have a per-

sistent element 0 6= �

`

2 �

k

(A

`

+

;A

`

; �) Then we can construct an element

�

`

2 �

k�2

G

`

such that either:

A) The element �

`

2 �

k�2

G

`

is a non-zero fragile element.

or

B) �

`

= 0 and then there is an �

`

> 0 such that we can construct a family

of new elements 0 6= �

`+�

2 �

k�1

G

`+�

; 0 < � < �

`

.

Any fragile element is null homotopic when viewed inside Di�

0

(M). We

should point out that our methods do not allow us to decide in general whether

the image of �

`+�

in �

k�1

Di�

0

(M) is zero or not.

We show that the hypothesis of the theorem is veri�ed when

M = S

2

�S

2

�X. We consider D = A�`F . Since [�

F

�`�

B

�!

st

](A�`F ) = 0

we get that A

`

� A

c

[`;`+�];D

. In this situation the 4`� 2 dimensional elements

9



(B

`

; @B

`

) obtained in section 3 are detected as nontrivial in �

4`�2

(A

`

+

;A

`

) and

are persistent. In fact in general PGW invariants detect persistent elements.

By varying the value of the integer ` we obtain in�nitely many values of �

for which higher order homotopy groups of G

X

�

are nontrivial and also make

a more detailed discussion regarding the stability of the elements w

`

provided

by theorem 1.4 inside G

X

�

:= Symp

0

(S

2

�S

2

�X;!

�

�!

st

). This is the content

of the following:

Corollary 1.8. For any natural number ` � 1, exactly one of the statements

below holds.

A) We can construct a non-zero fragile element w

X

`

2 �

4`�4

G

X

`

, which

can be identi�ed with w

`

� id.

B) There exists an �

`

> 0 for which we can construct a family of new

elements 0 6= �

X

`+�

2 �

4`�3

G

X

`+�

; 0 < � < �

`

:

In particular this shows that the fragile elements obtained by Abreu-McDu�

for ` > 1 do not disappear when we consider them inside S

2

�S

2

�X. Either

0 6= w

`

� id 2 �

4`�4

(G

X

`

) as in (A) or, if w

`

� id = 0 then it yields the asso-

ciated new 4`� 3 dimensional elements 0 6= �

X

`+�

in �

4`�3

G

X

`+�

f or small � > 0

(case (B).

For general X and for ` = 1 it is known by work of Le-Ono that B takes

place and moreover 0 6= i

�

(�

`+�

) 2 �

1

Di�

0

(S

2

� S

2

� X). Also, for X = pt

and ` > 1 from the work of Abreu-McDu� we know that A takes place. We

do not have examples when case B takes place and i

�

(�

`+�

) = 0 2 �

�

Di�

0

(M):

Similar work has been done in this direction by Le-Ono in [11]; by looking

at related but slightly di�erent parametric GW invariants they get results

10



about �

i

(Symp

0

(S

2

� S

2

�X;!

1

� !

st

)) when i = 1; 3: In chapter 3 we could

consider C

2

=C

2`+1

instead and by carrying out similar arguments get the same

type of results for (C P

2

#C P

2

)�X.

11



Chapter 2

Relative parametric GW invariants

2.1 General setting

Consider a compact manifoldB with boundary and a smooth map i : (B; @B)!

(A

I

;A

c

I;D

). Although the invariants can be de�ned in this generality, for the

applications we have in mind we will consider B to be an n-ball such that i

represents a relative homotopy class in �

�

(A

I

;A

c

I;D

; �). We will often write

J

b

:= i(b) and J

B

= im(i), and refer to imB in A

I

as J

B

. Consider also a

smooth family of symplectic forms (!

b

)

b2B

where !

b

tames J

b

. We point out

that the !

b

need not be cohomologous, as the taming condition is an open

condition. Our goal here is to show how we can de�ne parametric GW invari-

ants relative to the boundary @J

B

, which count J

b

holomorphic maps for some

b 2 B. These will not depend either on deformations of the family !

B

or on

the representative (J

B

; @J

B

) of a relative homotopy class in (A

I

;A

c

I;D

).

De�nition 2.1. We say that f : �!M is simple if it is not the composite of

a holomorphic branched covering map (�; j) ! (�

0

; j

0

) of degree greater than

1 with a J-holomorphic map �

0

!M .

12



Consider

f

M

�

0;k

(M;D; (J

B

; @J

B

)) the space of tuples (b; f; x

1

; : : : ; x

k

) where

f : S

2

! M is a simple J

b

-holomorphic map in class D, for some b 2 B and

x

i

are pairwise distinct points on S

2

. We will consider

M

�

0;k

(M;D; (J

B

; @J

B

)) =

f

M

�

0;k

(M;D; (J

B

; @J

B

))=G

where G = PSL(2; C ) acts on the moduli space by reparametrizations of the

domain. Denote the elements ofM

�

0;k

(M;D; (J

B

; @J

B

)) by [b; f; x

1

; : : : ; x

k

].

In the best scenario, for a good choice of (J

B

; @J

B

), the following hold:

(1)

f

M

�

0;k

(M;D; (J

B

; @J

B

)) is a manifold of dimension 2n+2c

1

(D)+2k+dimB

and

(2) M

�

0;k

:=M

�

0;k

(M;D; (J

B

; @J

B

)) is compact.

Then the image of the map

ev :M

�

0;k

(M;D; (J

B

; @J

B

))!M

k

(2.1)

with

ev([b; f; x

1

; : : : ; x

k

]) := (f(x

1

); : : : ; f(x

k

))

will provide a cycle ev

�

(M

�

0;k

) in M

k

which, by intersection with homology

classes of complementary dimension in M

k

, gives the parametric Gromov-

Witten invariants.

13



2.2 De�nition and properties of PGW

As we will see in the regularity discussion below, (1) can always be achieved

by Sard-Smale theorem. However, even in the situations when (1) holds, (2)

is seldom true. In order to compactifyM

�

0;k

(M;D; (J

B

; @J

B

)) we need to add

the following

De�nition 2.2. [10] A stable smooth rational map is given by a tuple

(f;�; x

1

; : : : ; x

k

) satisfying:

1) � =

S

m

i=1

�

i

is a connected rational curve with normal crossing singu-

larities and x

1

; : : : ; x

k

are distinct smooth points in �

2) f is continuous and each restriction f

j�

i

lifts to a smooth map from the

normalization �

i

to M;

3) If f

j�

i

is constant then �

i

contains at least three special points. Here, a

special point is either a singular point or a marked point.

The compacti�cationM

0;k

(M;D; (J

B

; @J

B

)) ofM

�

0;k

(M;D; (J

B

; @J

B

)) con-

tains both stable J- holomorphic maps and nonsimple curves which we some-

times call multiple cover curves. These nonsimple curves could potentially

produce boundary strata of high dimension in the compacti�cation

M

0;k

(M;D; (J

B

; @J

B

), and hence this space would not necessarily carry a fun-

damental class.

In the situation that B = pt there are various procedures [Li-Tian ([10]),

Ruan ([17]), Fukaya-Ono ([5]) to build up a theory which would provide a vir-

tual moduli cycle, that is, an object which carries a fundamental class required

for the de�nition of the invariants.

14



Roughly speaking, locally one needs to consider here all the stable holo-

morphic maps as well as small perturbations of these. There are then various

procedures to pass to a global object with the required properties. These go

through without essential changes if one considers parameter spaces with no

boundary [see Leung-Bryan([4]), Ruan([17])]

In our situation we need to make sure that the boundary causes no prob-

lem. In what follows denote by [f;�; x

1

; : : : ; x

k

] the equivalence class of a stable

map (f;�; x

1

; : : : ; x

k

), where two maps are equivalent if they di�er by an auto-

morphism of the domain. Then the elements ofM

0;k

(M;D; (J

B

; @J

B

)) consist

of such equivalence classes. The following lemma basically states that if we

consider an appropriately small open neighborhood ofM

0;k

(M;D; (J

B

; @J

B

))

consisting of almost holomorphic stable maps, then its projection onto J

B

stays

away from @J

B

.

Lemma 2.3. For any compact set J

B

2 A

I

such that @J

B

� A

c

I;D

9 a � > 0

and �(�) > 0 for which there is no stable map (f;�; x

1

; : : : ; x

k

) such that

�

@

J

f = �, when d(J; @J

B

) < � and � 2 L

p

(�

0;1




J

f

�

TM) with j�j � �(�).

Proof: We will prove this by assuming the opposite. Assume that we have a

sequence J

i

, �

i

and f

i

such that d(J

i

; @J

B

)! 0, j�

i

j = �

i

! 0 and each f

i

is a

stable map in class D with the property that

�

@

J

i

f

i

= �

i

. Since J

B

is compact

we �nd a convergent subsequence J

i

, whose limit J

1

is in @J

B

. But this would

lead to a contradiction because by the Gromov compactness theorem there is

a subsequence of f

i

which converges to a J

1

stable holomorphic map in class

D. This will contradict the fact that J

1

2 @J

B

� A

c

I;D

. �

With this lemma one shows as in [10], that every moduli space

15



B �M

0;k

(M;D; (J

B

; @J

B

)) carries a virtual fundamental cycle

[M]

vir

:= [B �M

0;k

(M;D; (J

B

; @J

B

))]

vir

of degree r = 2c

1

(D) + 2k + 2n� 6 + dimB.

Moreover if we consider two homotopic maps i : (B; @B; �)! (A

I

;A

c

I;D

; �)

and i

0

: (B

0

; @B

0

; �)! (A

I

;A

c

I;D

; �) that represent the same element in

�

�

(A;A

c

D

; �), then the corresponding fundamental cycles given by

[B �M

0;k

(M;D; (J

B

; @J

B

))]

vir

and [B

0

�M

0;k

(M;D; (J

B

0

; @J

B

0

))]

vir

are ori-

ented cobordant and hence the virtual fundamental class [M]

vir

is indepen-

dent of the choice of (J

B

; !

B

; �) within the same class in �

�

(A

I

;A

c

I;D

; �). We

denote by F

D

(M; 0; k) the space of all equivalences classes of stable maps

[f;�; x

1

; : : : ; x

k

] with total homologyD. To de�ne relative parametric Gromov-

Witten invariants we consider: ev

i

: B �F

D

(M; 0; k)!M given by

ev

i

(b; [f;�; x

1

; : : : ; x

k

]) = f(x

i

)

We then can de�ne

PGW

M;(J

B

;@J

B

)

D;0;k

:

k

M

i=1

H

a

i

(M;Q )

k

! Q

by

PGW

M;(J

B

;@J

B

)

D;0;k

(�

1

; : : : ; �

k

) = ev

�

1

(�

1

) ^ : : : ^ ev

�

k

(�

k

)[M]

vir
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which are zero unless

k

X

i=1

a

i

= 2c

1

(D) + 2k + 2n� 6 + dimB (2.2)

We should also point out that if one changes the orientation of B we obtain

the same invariant but with a negative sign.

We have the following theorem:

Theorem 2.4.

(i) The invariants PGW

M;(J

B

;@J

B

)

D;0;k

are symplectic deformation invariants

and depend only on the relative homotopy class of (J

B

; @J

B

).

(ii) For a �xed choice of k;D and �

i

the map �

0;k;�

1

;:::;�

k

: �

�

(A

I

;A

c

I;D

; �)!

Q , given by

�

k;�

1

;:::;�

k

([(J

B

; @J

B

)] = PGW

M;(J

B

;@J

B

)

D;0;k

(�

1

; : : : ; �

k

)

is a homomorphism

1

.

Proof: Point (i) follows from the properties of PGW listed above.

The fact that the morphism �

0;k;�

1

;:::;�

k

in (ii) is well de�ned also follows

from properties of PGW listed above. To show that it is a homeomorphism

we choose (B

1

; @B

1

; �), and (B

2

; @B

2

; �) representing two maps from the stan-

dard n-ball with boundary to (A

I

;A

c

I;D

; �), that give 2 elements �

1

and �

2

inside �

�

(A;A

c

D

�): We choose them such that by their concatenation we rep-

resent the element �

1

+ �

2

by a map j : (B; @B; �) ! (A

I

;A

c

I;D

; �) with

j(Bn@B) = (B

1

n@B

1

)

S

(B

2

n@B

2

), such that j

�1

(A

I

nA

c

I;D

) is included in the

1

except the case of �

1

(A

I

;A

c

I;D

�), which is not a group.
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disjoint union of two open subdiscs in B. We can therefore see that the new

virtual cycle corresponding to the classes �

1

+ �

2

will be a disjoint union of

the virtual neighborhoods corresponding to �

1

and �

2

. But this implies that

the parametric invariants corresponding to the new class �

1

+ �

2

are the sum

of the PGW corresponding to �

1

and �

2

. Therefore � is a homomorpism. �

2.3 More on the relation between PGW and

almost complex structures

In this subsection we will explain that PGW detect only certain kinds of

relative homotopy classes of almost complex structures. As before, we refer to

A

�

= A

!

�

. Denote by

A

`

+

= fJ j there is an �

J

> 0 s.t. J 2 A

`+�

for all 0 < � < �

J

g (2.3)

Then A

`

� A

`

+

by lemma 4.6 below. Note that A

`

+

may not be connected,

but A

`

is and we will consider our base point � = J

basepoint

2 A

`

.

De�nition 2.5. Consider a nontrivial element �

`

2 �

�

(A

`

+

;A

`

). We say that

�

`

is a persistent element if its image under the natural morphism

i

�

�

: �

�

(A

`

+

;A

`

; �)! �

�

(A

[`;`+�]

;A

`

; �) (2.4)

is nonzero for any � arbitrary small.

Assume that there is an ` such that no J in A

`

has a J-holomorphic curve
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in the class D. Then we have the following proposition

Proposition 2.6. Assume that no J in A

`

admits J- holomorphic stable maps

in class D. Consider an element 0 6= �

`

2 �

�

(A

`

+

;A

`

; �) obtained by count-

ing nontrivial parametric Gromov-Witten invariants in class D. Then �

`

is a

persistent element.

The proof is quite evident from the manner in which the element �

`

arises.

Namely, since (�

`

; @�

`

) � (A

[`;`+�]

;A

`

), then by hypothesis we can apply The-

orem 2.4. We obtain that

�

�

k;�

1

;:::;�

k

([(�

`

; @�

`

)] = PGW

M;(i

�

�

�

`

;@i

�

�

�

`

)

D;0;k

(�

1

; : : : ; �

k

) 6= 0: (2.5)

Therefore 0 6= i

�

�

(�

`

) 2 �

�

(A

[`;`+�]

;A

`

; �) and hence by the relation 2.4, �

`

is

persistent. �

2.4 Computability of PGW

We will now get back to the two conditions we posed in the beginning of the sec-

tion, su�cient to yield that the image of the map (2.1) is a cycle. In what will

follow we will provide su�cient hypothesis on the parameter space (J

B

; @J

B

; �)

and on the class D such that (1) and (2) are satis�ed, as well as a criterion how

to check one of the hypothesis. It will then follow for such a family (J

B

; @J

B

; �)

the invariants PGW de�ned above are integer valued and can be obtained by

intersecting the image of the cycle ev

�

(M

�

0;k

(M;D; (J

B

; @J

B

))) with the classes

(PD(�

1

); : : : ; PD(�

k

)) in H

�

(M)

k

. Moreover, they can be obtained by count-
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ing the number of J

b

holomorphic maps in class D with k marked points which

intersect generic cycles representing (PD(�

1

); : : : ; PD(�

k

)) in f(z

i

).

2.4.1 Parametric regularity

In this subsection we will show that the D-parametric regular families (J

B

; @J

B

)

are the ones for which (1) from 2.1 is satis�ed. We begin by explaining what

is D-parametric regularity and contrast it with the usual D-regularity for J

(see [14]). For this we need to introduce the following facts.

De�nition 2.7. We say that a map f : � ! M is somewhere injective if

df(z) 6= 0; f

�1

(f(z)) = z for some z 2 �.

Observation: A simple J-holomorphic map is somewhere injective (see

Proposition 2.3.1 page 18 in [14]).

Let X = Map(�;M ;D) be the space of somewhere injective C

1

smooth

maps f : �!M representing class D. This is an in�nite dimensional manifold

with T

f

X = C

1

(f

�

TM). We will next consider the following generalized

vector bundle E �! B�X , whose �ber at (b; f) is the space E

b;f

= 


0;1

J

b

(f

�

TM)

of C

1

smooth J

b

antilinear forms with values in f

�

TM . In this vector bundle

we consider a section � : B �X �! E , given by

�(b; f) =

1

2

(df + J

b

� df � j) (2.6)

The zeros of � are precisely J

b

holomorphic maps and thus the moduli space

f

M

�

0;0

(M;D; (J

B

; @J

B

)) = �

�1

(0);
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is the intersection of im� with the zero section of the bundle. Since we would

like

f

M

�

0;k

(M;D; (J

B

; @J

B

)) to be a manifold we require that � is transversal

to the zero section. This means that the image of d�(b; f) is complementary

to the tangent space T

b

B�T

f

X of the zero section. But for any f which is J

b

holomorphic, d� is given by

d�(b; f) : T

b

B � C

1

(f

�

TM) �! T

b

B � T

f

X � E

b;f

If we consider now the projection onto the vertical space of the bundle:

proj

2

: T

b

B � T

f

X � E

b;f

�! E

b;f

the above transversality translates into the fact that

d�(b; f) � proj

2

: T

b

B � C

1

(f

�

TM) �! 


0;1

J

b

(�; f

�

TM) (2.7)

is onto. We will make the notation D�(b; f) = d�(b; f)�proj

2

. We then have:

De�nition 2.8. We say that a J

b

holomorphic map f is J

B

parametric regular

if D�(b; f) is onto.

Observation: The linearized operator is well de�ned if there is no pair (b; f)

with f a J

b

holomorphic and b 2 @B. This is precisely the condition we

imposed on (J

B

; @J

B

) to give a relative cycle in (A

I

;A

c

I;D

):

De�nition 2.9. Consider (J

B

; !

B

) as above. We say that (J

B

; J

@B

) is an D-

parametric regular family of C

1

smooth almost complex structures if any J

b

holomorphic map in class D is parametric regular. We denote by J

preg

(D) the
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set of all D-parametric regular families (J

B

; @J

B

) � (A

I

;A

c

I;D

).

We have the following:

Theorem 2.10. If (J

B

; @J

B

) 2 J

preg

(D), then the moduli space

f

M

�

0;0

(M;D; (J

B

; @J

B

)) is a smooth open manifold of dimension 2n+2c

1

(D)+

dimB, with a natural orientation.

Moreover, if one considers

f

M

�

0;0

(M;D; (J

B

; @J

B

))� (S

2

)

k

and takes away

all the diagonals of the type

f

M

�

0;0

(M;D; (J

B

; @J

B

)) � diag

i;j

, what we ob-

tain is precisely

f

M

�

0;k

(M;D; (J

B

; @J

B

)). This will therefore be a manifold of

dimension 2n+ 2c

1

(D) + dimB + 2k, when (J

B

; @J

B

) 2 J

preg

(D).

The proof of theorem 2.10 is based on the following characterization of

parametric regularity.

We write

f

M

�

0;0

(M;D;A

I

) for the universal moduli space consisting of pairs

(f; J) where J 2 A

I

is a C

1

smooth almost complex structure and f is a J

-holomorphic map.

Proposition 2.11. Consider the diagram

f

M

�

0;0

(M;D;A

I

)

�

��

(B; @B)

i //
(A

I

;A

c

I;D

)

(2.8)

Then J

B

2 J

preg

(A) i� i t �:

Proof: For simplicity we will denote by D

f;b

= D�(b; f)

jC

1

(f

�

(TM)

. By

(2.7) the surjectivity of D�(b; f) is then equivalent with the surjectivity of the
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following linear operator

D�

jT

b

B

: T

b

B ! cokerD

b;f

We will denote i(b) = J . The tangent space T

J

A

I

to A

I

consists of all sections

Y of the bundle End(TM; J) whose �ber at p 2 M is the space of linear maps

Y : T

p

M ! T

p

M such that Y J + JY = 0; we will consider the map

R : T

J

A

I

! 


0;1

J

(�; f

�

TM)

given by R(Y ) =

1

2

Y � df � j: The map

d� : T

f;J

f

M

�

0;0

(M;D;A

I

)! T

J

A

I

is given by d�(�; Y ) = Y , where the pair (�; Y ) is in T

f;J

f

M

�

0;0

(M;D;A

I

) if

and only if

D

f;b

(�) +R(Y ) = 0 (2.9)

From this one can see that imD

f;b

= R(im(d�)). Since D

b;f

is elliptic and

kerR � imd�, it follows that cokerd� has �nite dimension. If we consider the

map

F : X �A

I

! E ;F(f; J

b

) =

�

@

J

(f) (2.10)

then (see Prop 3.4.1 in [14]) the linearization at a zero (f; J) with f simple is

onto. That is

DF(f; J

b

)(�; Y ) = D

f;b

� +R(Y ) (2.11)
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is onto.This implies that cokerD

f;b

is covered by R. Therefore there is an

induced map

e

R : cokerd�! cokerD

f;b

which is isomorphism. The proof of the proposition then follows easily.

D�

jT

b

B

(Y ) = R � di, so we have i t �, di! cokerd� onto ,

e

R � di! cokerD

b;f

onto. �

Sketch of proof for theorem 2.10

Due to the similarity of the proof to the one of Theorem 3.1.2 in [14], we

will only sketch the proof. We begin by making the following remarks:

i) As we will explain below, proofs of various statements involving regu-

larity and transversality requires one to use results regarding elliptic (hence

Fredholm) operators whose domains and targets are Banach manifolds. There-

fore, rather than working with Fr�ech�et manifolds consisting on C

1

objects,

we must consider their completions under suitable Sobolev norms.

More precisely, one should to work with spaces consisting of almost complex

structures of class C

`

,and also with X

k;p

, where kp > 2, the space of maps

whose k-th derivatives are of class L

p

. One should also use the completion

E

p

f

= W

k�1;p

(�

0;1

T

�

�


J

f

�

TM))

rather than 


0;1

J

(�; f

�

TM). The tangent space to the space X

k;p

at a point

f will now be the space W

k;p

(f

�

TM) of W

k;p

sections of the bundle f

�

TM .

This will replace the space C

1

(f

�

TM) of C

1

sections in f

�

TM .

ii)We should point out that the kernel and the cokernel of a smooth elliptic
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operator are independent of the smoothness of the functions in the domain and

in the range. This is a consequence of elliptic regularity (see Prop 3.2.2 [14]).

This is the reason why we can state Prop 2.11 for the C

1

case.

For instance, if we consider elements in J

B

of class `, and the operator

D�(b; f) : T

b

B �W

k;p

(f

�

TM) �!W

k�1;p

(�

0;1

T

�

�


J

b

f

�

TM) (2.12)

then its kernel and cokernel do not depend on the choice of k and p as long as

k � `+ 1.

iii) A proof of theorem 2.10 involves the use of the in�nite dimensional

version of the implicit function theorem. ([14]). More precisely, the surjec-

tivity of the operator D�(b; f) de�ned on space of C

1

sections implies the

surjectivity of the operator D� de�ned as in 2.12 on the Banach spaces com-

pletions. Denote by (A

`

I

;A

c;`

I;D

) paired spaces of almost complex structures of

class `, and by

M

�;`

0;0

(M;D;A

I

) = f(f; J) 2 X

k;p

�A

`

I

j@

J

(f) = 0g

with p > 2 and 1 � k � `. Due to elliptic regularity this is independent

of k and p. We will now apply proposition 2.11 for the operator �

`

now

de�ned on Banach manifolds , �

`

:

f

M

�;`

0;0

(M;D;A

I

) �! (A

`

I

;A

c;`

I;D

) and obtain
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transversality for the following diagram:

f

M

�;`

0;0

(M;D;A

I

)

�

`

��

(B; @B)

i //
(A

`

I

;A

c;`

I;D

)

(2.13)

Then one applies the in�nite dimensional implicit function theorem, which

says that, given a C

`

Fredholm operator P : X �! Y , transversal to a

C

0

imbedding g : A �! P, dimA < 1, then the preimage P

�1

(g(A)) is

(indexP + dimA)- dimensional manifold provided that ` > indexP + dimA.

Elliptic regularity again gives the result for the C

1

category. �

Remark 2.12. In the proof of proposition 2.11 we use the fact that the lin-

earization DF(f; J

b

)(�; Y ) = D

f;b

� + R(Y ) of the operator F de�ned in 2.10

is surjective for any zero (f; J

b

). To see this we complete its image and range

under suitable Sobolev norms; we obtain the following operator de�ned on

DF(f; J

b

) : W

k;p

(f

�

TM)�C

`

(End(TM; J

b

))!W

k�1;p

(�

0;1

T

�

�


J

b

f

�

TM));

(2.14)

as in [14]. Afterwords one uses Hahn-Banach theorem to show that its range,

which is closed because it is the range of a Fredholm operator, is also dense.

Elliptic regularity then provides the surjectivity result for the C

1

operator

DF(f; J

b

).

De�nition 2.13. We will say that (J

B

; @J

B

) satis�es hypothesis H

2

if it

is a D-parametric regular family of almost complex structures.
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There are few key points to be noticed here. Notice that parametric regu-

larity is a generalization of the usual regularity. Indeed, if we consider J

b

= J

to be constant for b in a neighborhood around b

0

then the regularity of an

almost complex structure J simply says, following the diagram above, that d�

is surjective. If we now regard J within an arbitrary family J

B

, this no longer

needs to be the case. It will then su�ce that the cokernel of d� is covered by

the variation of J in the direction of B.

In fact, when we count rational maps, the criterion of parametric regularity

described below reduces the problem to the usual regularity in some suitable

ambient space.

More precisely, note that the regularity of a holomorphic map is a local

statement within B and it is directly related to the almost complex structure

data rather than to the symplectic structure data. Therefore, for each b 2

IntB we can restrict our attention to a neighborhood of b, and without loss of

generality the following discussion can be made for smoothly trivial �brations.

We say that the family (J

B

; !

B

) descends from a �bration M !

f

M ! B if

f

M

comes with an almost complex structure

e

J such that the restriction to each

�ber M � b is an almost complex structure J

b

. Moreover

f

M admits a closed

two form e! which restricts on each �ber M � b to a symplectic form !

b

that

tames J

b

. Here we chose a trivialization of the �bration such that smoothly

f

M = B �M and � is just the projection on the �rst factor. In fact, every

family (J

b

)

b2B

, locally around a point b

0

, descends from a �bration. In the

following theorem we consider the family of parameters B to be a subspace of

C

m

and we denote by z the parameters in C

m

.
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Theorem 2.14. Let (J

z

; !

z

)

z2C

m

be a family on M descending from the sym-

plectic �bration (

f

M;

e

J; e!)

M

i //
f

M

�

��
C

m

(2.15)

Suppose that f : � �!M is a J

0

holomorphic map and consider the composite

map

e

f = i � f;

e

f : � �!M � 0 �

f

M

which is

e

J-holomorphic. If

e

f is

e

J-regular, then f is (J

z

) parametric regular.

Moreover, if � = S

2

then the reverse statement holds.

For the proof of the theorem see Appendix A.

2.4.2 Compactness

Even in those situations when (1) from section 2.1, when is easily achieved

using Sard-Smale, (2) is seldom true. However, (2) is true when k is ei-

ther 0 or 1, and the class D is J

b

indecomposable for any b 2 B. This

means that no J

b

holomorphic map in class D can decompose into a con-

nected union of J

b

holomorphic spheres C = C

1

S

C

2

S

: : :

S

C

N

, with N > 1

such that each C

i

represents the class D

i

6= 0 and D = D

1

+ : : : + D

N

.

Then as a consequence of Gromov's compactness theorem it follows that

M

�

0;k

:= M

�

0;k

(M;D; (J

B

; @J

B

)) is compact and hence in this situation the

image of ev :M

�

0;k

(M;D; (J

B

; @J

B

))!M

k

is a cycle.

De�nition 2.15. We will say that the hypothesis H

2

is satis�ed by (J

B

; @J

B

)

and D if the class D is J

b

indecomposable for every b 2 B.
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Note that if D is J

b

indecomposable and k � 2 then in order to compactify

the image of the evaluation map, one only needs to include the limits of se-

quences of J-holomorphic maps for which two distinct marked points converge

to each other. Hence ev(M

�

0;k

) will have boundary of codimension 2 or more

and hence it will carry a fundamental class.
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Chapter 3

Resolutions of singularities and relative PGW

3.1 Quotient singularities; the local picture

In this subsection we will give an overview of work of Kronheimer [9] and

Abreu-McDu� [3] on how to construct special families of almost complex struc-

tures arising from the study of the total spaces of deformations for some quo-

tient singularities. In the end of the section we will explain how these families

serve our purpose of counting nontrivial PGW. The local picture is as follows

(see Kronheimer [9]):

We consider the particular type of Hirzebruch-Jung singularity Y

0

= C

2

=C

2`

,

given by the diagonal action by scalars of C

2`

on C

2

, where C

2`

is the cyclic

group of order 2`. This admits a resolution �

0

:

e

Y

0

! Y

0

where

e

Y

0

is the total

space of the line bundle O(�2`) of degree �2` over C P

1

. The exceptional

curve of the resolution, we will call it E, is a curve of self-intersection �2` and

is the zero section of

e

Y

0

. This resolution admits a 2`� 1 complex dimensional

parameter family of deformations ,

e

Y

t

; t 2 C

2`�1

. The total space

e

Y =

S

e

Y

t

of

this family of deformations is the total space of the vector bundle O(�1)

2`

:
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With the exception of the case ` = 2, this coincides with the versal space of

deformations of the cone over the rational curve of degree 2` in C P

2`

. When

` = 2, the versal space of deformations has two components, one in complex

dimension 3 and another one of dimension 1, which intersect transversally

(see Pinkham [16]). The total space of the bundle O(�1)

2`

coincides with the

3-dimensional component.

More precisely, we consider the exact sequence of bundles

O(�2`) ! O(�1)

2`

r

! O

2`�1

(3.1)

where r is given by evaluating at 2` � 1 generic sections of the dual of

e

Y ,

e

Y

�

= O(1)

2`

. Since holomorphically O

2`�1

is trivial, we can project it to

its �ber C

2`�1

and hence we obtain a submersion eq : O(�1)

2`

! C

2`�1

with

e

Y

t

= eq

�1

(t). Also it can be seen that

e

Y is di�eomorphic with

e

Y

0

� C

2`�1

and

a choice of trivialization provides a �berwise di�eomorphism

� :

e

Y

C

1

e=

e

Y

0

� C

2`�1

(3.2)

where

e

Y

0

is the total space of the bundle O(�2`).

One way of seeing

~

Y is to identify the base C P

1

of the bundle O(�1)

2`

�!

C P

1

with the set of all directions in C

2

. Then any element in the total space

e

Y of the bundle, which is not on the zero section, will be a 2`-tuple of vectors

in C

2

that have the same direction given by the base point z 2 C P

1

. This

viewpoint can be formalized as follows:

Consider 4` sections in the dual

e

Y

�

. Here the space of holomorphic sections
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is given by H

0

(CP

1

;O(1))

2`

. Denote by Y the subspace of (C

2

)

2`

consisting

of 2` -tuples of vector in C

2

which span either zero or a line. By evaluating all

the 4` section we obtain a map

� :

e

Y ! Y � C

4`

which contracts E to a point 


0

= �(E). Moreover, 


0

is the only singular

point of Y . and the morphism is one to one outside E. We also de�ne as in 3.1

the map q : Y ! C

2`�1

by evaluating at the original 2` � 1 generic sections.

The following diagram commutes

e

Y

� //

eq

��

Y

q

��

C

2`�1

id //
C

2`�1

(3.3)

Remark 3.1. Consider �

st

the standard K�ahler form on C

4`

. By restriction,

this gives a K�ahler form on Y . If we denote by (v

1

; : : : ; v

2`

) an element in

Y � (C

2

)

2`

, we can consider the S

1

action S

1

� Y �! Y given by

e

2�i


� (v

1

; : : : ; v

2`

) = (e

2�i


v

1

; : : : ; e

2�i


v

2`

):

It follows that this is a hamiltonian action with respect to the form �

st

on Y .

In particular the form �

st

is S

1

invariant.

Similarly, we can give a �berwise S

1

action on

e

Y by multiplying with

e

2�i


the 2` dimensional vectors in each �ber. It is then immediate that the

holomorphic map � commutes with the S

1

action. Via �

�

we pullback the
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form �

st

and obtain a closed S

1

invariant form �

e

Y

= �

�

�

st

on

e

Y which restricts

to a K�ahler form �

t

on each �ber

e

Y

t

if t 6= 0 but degenerates along E when

t = 0. E is contained in the �xed point set for the action on

e

Y . If we further

push forward through � de�ned in 3.2, these forms can be seen as a family of

forms on the manifold

e

Y

0

:

3.2 Quotient singularities; the compacti�ed

global picture

In this section we will compactify the local picture, as follows:

We consider the following associated exact sequence

O(�2`)

i

! O(�1)

2`

�O

r+id

! O

2`�1

�O

(3.4)

By taking the projectivization of the second and third term in the sequence,

we obtain a map

P (O(�1)

2`

�O)

�r

��� > P (O

2`�1

�O)

(3.5)

which is de�ned everywhere except at those points in each �ber

P (O(�1)

2`

� O)

z

that belong to the kernel of �r. These points describe a

section E

1

:= [i(O(�2`))

z

: 0]

z2CP

1

, to which we will refer from now on as

the section at in�nity. Let us consider the image of the zero section E in the

projectivizations of the bundle O(�1)

2`

, [0

z

: �]

z2CP

1

. We will denote it by E

0

and refer to it as to the zero section of P (O(�1)

2`

�O)

z

. We now blow up each
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�ber P (O(�1)

2`

� O)

z

at the point [i(O(�2`))

z

: 0], and in this manner we

obtain a �bration

e

P (O(�1)

2`

� O) ! C P

1

with �bers C P

2`

#C P

2`

. We will

denote by D

z

the exceptional divisor of the blow up. This will be a C P

2`�1

.

We hence produce a morphism ~r that extends the morphism �r; We have:

e

P (O(�1)

2`

�O)

~r

! P (O

2`�1

�O)

(3.6)

Basically, on each �ber, the map ~r

z

is equal to the map �r

z

outside the

exceptional divisor D

z

. We will denote by [�

1

: : : : : �

2`�1

: �

2`

]

z

a point in the

�ber of P (O

2`�1

�O) over z. With this notation we have that

�r

�1

z

([�

1

: : : : : �

2`�1:�

2`

]

z

) is a line L

[�

1

:::::�

2`�1

:�

2`

]

n1 in P (O(�1)

2`

�O)

z

. Each

point p on the exceptional divisor D

z

is uniquely determined by its property

of being the point at in�nity for precisely one of the lines L

[�

1

:::::�

2`�1

:�

2`

]

. We

will de�ne ~r

z

(p) = [�

1

: : : : : �

2`�1

: �

2`

]

z

.

As in the local picture, we can project onto a �ber C P

2`�1

of the trivial

bundle P (O

2`�1

�O) ~=C P

2`�1

� C P

1

and obtain a submersion

eq :

~

P (O(�1)

2`

�O)! C P

2`�1

with the �bers are di�eomorphic to S

2

� S

2

. Moreover, each �ber naturally

inherits a holomorphic structure. It is a classical result that the only complex

structures on S

2

� S

2

are the ones which will give the manifolds the structure

of a Hirzebruch surface. We remind the reader that a Hirzebruch surface H

n
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is a complex manifold given by :

H

n

= P (O(�n)�O)

As a particular note, the Hirzebruch surfaces H

2k

of even order are di�eo-

morphic to S

2

� S

2

, and all the Hirzebruch surfaces of odd order H

2k�1

are

di�eomorphic to C P

2

#C P

2

(see [6]). The next result shows that the �bers of

~q

�1

(t) are Hirzebruch surfaces H

2n

, with n < ` if t 6= 0.

Proposition 3.2. For ~q as above, the following hold:

(i) Y

0

:= eq

�1

([0 : : : : : 0 : 1]) = P (O(�2`)�O) = H

2`

(ii) If t = [�

1

: : : : : �

2`�1

: 1] 6= [0 : : : : : 0 : 1], we have that

Y

t

:= eq

�1

([�

1

: : : : : �

2`�1

: 1]) = H

2n

for some n < `.

Proof: (i) Since ~r([i(O(�2`))

z

: �]) = �r([i(O(�2`))

z

: �] for � 6= 0, we can

easily conclude that eq

�1

([0 : : : : : 0 : 1]) contains all the points of the type

[i(O(�2`))

z

: �]

z2CP

1

for nontrivial �. The section at in�nity described as

[i(O(�2`))

z

: 0]

z2CP

1

appears by adding all the points on D

z

, with z 2 C P

1

,

whose image through ~r is precisely [0 : : : : : 0 : 1]. The conclusion follows, that

eq

�1

([0 : : : : : 0 : 1]) = P (O(�2`)�O).

(ii) Throughout this proof, we will denote by t = [�

1

: : : : : �

2`�1

: 1].

From the construction of eq we can see that eq

�1

(t) is a holomorphic C P

1

bundle

over C P

1

. The associated integrable almost complex structure J

t

is obtained

as a restriction from the complex structure on

e

P (O(�1)

2`

� O) using the

holomorphic map eq. Moreover, as we have already mentioned, all the �bers of

eq are di�eomorphic to S

2

� S

2

, and hence J

t

gives the �ber the structure of a
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Hirzebruch surface H

2n

.

In order to show that n < `, we will show that eq

�1

(t) does not contain any

J

t

holomorphic curves of self-intersection �2p � �2`.

In order to do so, let us �rst notice that we can extend the S

1

action

described in 3.1 on

e

Y to a S

1

action on the total space of the bundle

O(�1)

�2`

�O by acting on the trivial bundle O also by multiplication in the

�ber by e

2�i


. Moreover, if we denote the coordinate on the �ber O

z

by �, we

can extend �

e

Y

, the S

1

invariant form on

e

Y (see Remark 3.1) to O(�1)

�2`

�O.

We do so by taking

� = �

e

Y

+ d� ^ d�:

It follows that � is also a closed S

1

invariant form, such that � is 0 when

evaluated on vector �elds tangent to sections of the type (0

z

; �)

z2CP

1

and

nondegenerate everywhere else.

Finally, let us point out that associated to the hamiltonian S

1

action on

Y � C

4`

there is a moment map given by H : Y ! R;

H(v

1

: : : ; v

2`

) = ��jvj

2

Consequently, we obtain a map

e

H : O(�2`)�O �! R, given by

e

H = �

�

(H)� �j�j

2

:

If we consider the level set

e

H

�1

(�) then this is invariant under the S

1

action.

If we consider the quotient

e

H

�1

(�)=S

1

, then this will be di�eomorphic with

P (O(�1)

�2`

�O). Moreover, the e�ect of taking the quotient is to provide a
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simultaneous symplectic reduction in each �ber (O(�2`)�O)

z

which will now

be a symplectic C P

2`

. In fact the closed S

1

invariant 2 form � restricts to the

level set

e

H

�1

(�) and can be pushed forward to the quotient

e

H

�1

(�)=S

1

. We

will denote by � the 2-form obtained on the quotient space.

Exactly as in the symplectic reduction (see McDu�-Salamon [15] Lemma

5.2), for any point p 2

e

H

�1

(�) which is not on the submanifold

((0

z

; �)

z2CP

1

; j�j = 1) we obtain nondegeneracy of the form �

p

. Moreover, the

closed 2 form � degenerates along E

0

, the \zero section" of the projectivized

bundle.

In conclusion, this construction provides us with a closed 2-form on

P (O(�2`) � O) that only degenerates along the zero section E

0

. We have

constructed

e

P (O(�2`)�O) by blowing up P (O(�2`)�O) along the section

at in�nity E

1

. It easily follows that the form � pulls back to

e

P (O(�2`)�O),

to a closed 2-form which also degenerates only along the zero section E

0

. For

simplicity we will denote it by � as well.

Let us also notice that the forms �

t

are compatible with the complex struc-

ture J

t

since they are obtained by pulling back via a holomorphic map. Since

the �ber eq

�1

(t); t 6= 0; is disjoint from E

0

� eq

�1

(0), it follows that it is in fact

a K�ahler manifold (Y

t

; J

t

; �

t

) di�eomorphic to S

2

� S

2

.

Since the forms �

t

are obtained by restricting the closed form � to �bers

of eq it is immediate that they are all in the same cohomology class. Moreover,

since [�

0

]

jA�`F

= (�

0

)

jE

0

= 0 we obtain that 8t 6= 0; [�

t

] = [!

`

] = [�

F

� `�

B

].

Suppose now that we have a J

t

holomorphic curve f of self-intersection

�2p � 2` in Y

t

e=S

2

�S

2

. This would be then in the class A�pF , and since is

37



J

t

- holomorphic, we would have that �

t

([imf ] > 0. But this is contradicted

by the fact that �

t

([imf ] = [�

t

]([A� pF ] = [�

F

� `�

B

]([A� pF ]) = `� p � 0.

�

Remark 3.3. What we shall use from what we proved about the structure of

the �bers of eq is that for t = [�

1

: : : : : �

2`�1

: 1] 6= [0 : : : : : 0 : 1], the space

Y

t

:= eq

�1

([�

1

: : : : : �

2`�1

: 1]) is a K�ahler manifold (Y

t

; J

t

; �

t

) di�eomorphic

to S

2

� S

2

, that doesn't admit any J

t

holomorphic curves of self-intersection

�2p � �2`. This implies that there are no J

t

- holomorphic stable maps in the

class A� `F . Indeed, if there was any, then its irreducible components would

be J

t

- holomorphic curves f

i

: P�

i

= S

2

�! Y

t

,with the homology classes

given by [f

1

] = A � pF and [f

i

]

i 6=1

= m

i

F , such that p > ` and m

i

> 0. But

this contradicts the fact that the self-intersection of f

1

, equal to �2p, has to

be greater than �2`.

In what follows we will give a direct proof of the fact that the �bers eq

�1

(t)

are Hirzebruch surfaces, for the case ` = 1. The reader may skip and go

directly to section 3.3.

Proposition 3.4. If we consider the sequence

O(�2) ! O(�1)�O(�1)

r

! O

(3.7)

and follow the compacti�cation procedure described above, then the following

hold:

(i) eq

�1

([0 : 1]) = P (O(�2)�O) = H

2

(ii) eq

�1

([a : 1]) = P (O �O) = H

0
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Proof: As before, we identify Y, the total space of the bundle O(�1)�O(�1)

with the the zero section collapsed to a point, with the subset of C

2

� C

2

,

consisting from pairs (v

1

; v

2

) of colinear vectors in C

2

. Consider e

1

and e

2

to

be the standard vectors (1; 0) and (0; 1) in C

2

.

We will de�ne the map r on Y �

e

Y by

r(v

1

; v

2

) =< e

1

; v

1

> + < e

2

; v

2

>; (3.8)

where < :; : > is the standard hermitian product on C

2

. This map naturally

extends to

e

Y = O(�1) � O(�1) by taking the value 0 for points on the zero

section. This extended map provides a morphism of bundles which satis�es

the properties of 3.7.

Consider now (U; z) and (U

0

; z

0

) the two coordinates charts on the base

C P

1

, where 0 2 U , 1 2 U

0

and zz

0

= 1. We can now describe the bundle

O(�1)�O(�1) in coordinate charts as follows:

The coordinates over the open set containing zero are given by

(z; �

1

; �

2

)

0

2 U � C � C , and the coordinates over the open set containing

in�nity are (z

0

; �

0

1

; �

0

2

)

1

2 U

0

�C �C , with the change of coordinates satisfying

the relations:

z =

1

z

0

�

1

= z

0

�

0

1

�

2

= z

0

�

0

2

(3.9)

With this coordinates charts, the vectorial description of any point on Y given
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in the coordinates is:

(z; �

1

; �

2

)

0

= ((�

1

z; �

1

); (�

2

z; �

2

))

(z

0

; �

0

1

; �

0

2

)

1

= ((�

0

1

; z

0

�

0

1

); (�

0

2

; z

0

�

2

)

0

)

(3.10)

Combining 3.8 and 3.10 we obtain:

r(z; �

1

; �

2

)

0

= �

1

z + �

2

r(z

0

; �

0

1

; �

0

2

)

1

= �

0

1

+ �

0

2

z

0

(3.11)

It is obvious from 3.9 that the two de�nitions agree on the intersection U

T

U

0

.

These de�nitions extend immediatly to de�ne the map

r : P (O(�1)�O(�1)�O)���� > P (O �O) (3.12)

given by:

r(z; [�

1

: �

2

: �])

0

= (z; [�

1

z + �

2

: �])

r(z

0

; [�

0

1

: �

0

2

: �])

1

= (z

0

; [�

0

1

+ �

0

2

z

0

: �])

(3.13)

These formulas yield the following descriptions for

eq

�1

([a : 1]) = eq

�1

([�a : �]), for any � 6= 0; (z; �) 2 U � C ; (z

0

; �

0

) 2 U

0

� C :

eq

�1

([a : 1]) = (z; [�

1

: a�� xi

1

z : �])

0

= (z

0

; [a�� �

0

2

z

0

: �

0

2

: �])

1

);

(3.14)

where now we will allow � = 0 as a re
ection of the fact that the preimages

of eq lie in

e

P (O(�1) � O(�1) � O) rather that in P (O(�1) � O(�1) � O).

The proof of the proposition is now quite obvious, once we recall the following
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result from Kodaira [8]:

Lemma 3.5. (Kodaira)

Consider a holomorphic �bration P over C P

1

with the �ber C P

1

, given by

the change of coordinates:

z =

1

z

0

� = (z

0

)

m

�

0

+ a(z

0

)

k

(3.15)

where k � m=2 and �; �

0

� C

T

1 = C P

1

. Then E is biholomorphic to H

m

if

a = 0 and to H

m�2k

otherwise.

To conclude our proof, we take m = 2 and k = 1 in the lemma above and

we get a biholomorphism between P and eq

�1

([a : 1]) by taking (z; �)

0

into

(z; �

1

) and (z

0

; �

0

)

1

into (z

0

;��

0

2

), and then plug in the formulas 3.14. One

checks that this morphism commutes with the change of coordinates in the

two manifolds.

�

3.3 A parametric regular family of almost

complex structures on S

2

� S

2

�X

3.3.1 The description of the family

Let B

4`�2

be the unit ball in C

2`�1

:With the proposition 3.2, we have provided

a family (Y

t

; J

`

t

; �

t

)

t2B

4`�2
, where each (Y

t

; J

`

t

; �

`

t

); t 6= 0 is a K�ahler manifold
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di�eomorphic with S

2

� S

2

, and, (Y

0

; J

`

0

) is a complex manifold, also di�eo-

morphic with S

2

� S

2

and �

0

degenerates along A � `F . The total space of

the family has the following properties:

a) The space Y = [

t2B

4`�2
Y

t

is smoothly di�eomorphic with S

2

�S

2

�B

4`�2

.

Moreover Y is a complex manifold with a complex structure

e

J

`

which

restricts to each �ber Y

t

to the complex structure J

`

t

. Also, Y has a

closed (1; 1) form � which is satis�es all the properties of a K�ahler form

outside the zero �ber and restricts at each �ber to the forms, �

t

.

b) The form � restricted to Y

0

degenerates along the exceptional curve A�`F

Moreover, 8t 2 B

4`�2

; [�

`

t

] = [!

`

].

From (a) we see that there is a holomorphic projection � : Y ! S

2

�B

4`�2

.

This is because every Y

t

is a ruled surface therefore it �bers over S

2

. If we

denote by � the area form on S

2

we can construct a two form

�

�

= � + (�� `)�

�

(�)

For � > ` these forms are K�ahler forms and moreover they restrict to each Y

t

to symplectic forms in the class [!

�

]. This proves that any J

`

t

(including J

`

0

)

is tamed by a form isotopic with !

�

as long as � > `. We now follow a similar

procedure to construct a family of symplectic forms !

t

; t 2 B

4`�2

such that

each !

t

tames J

`

t

. We will now change the forms �

t

by perturbing with a a

positive factor of �

�

(�) only around t = 0 and smooth with a cut-o� function.

By this procedure we obtain symplectic forms !

t

with variable cohomology

classes.
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In conclusion, we have pairs (S

2

�S

2

; J

`

t

; !

t

)

t2B

4`�2 where !

t

is a symplectic

structure on S

2

� S

2

that tames J

`

t

. Moreover [!

t

]

t2S

4`�3 = [!

`

]. This gives a

family of almost complex structures which we denote by abuse of notation B

`

such that (B

`

; @B

`

) 2 (A

[`;`+�]

; A

`

) for any � > 0. More importantly, only J

`

0

admits the exceptional curve in the class A� `F .

We will then obtain a family of almost complex structures on (S

2

�S

2

�X)

by taking (J

`

t

�J

st

), and by abuse of notation, we will call this family also B

`

.

Therefore we just produced on (S

2

� S

2

�X) pairs (B

`

; @B

`

) � (A

[`;`+�]

; A

`

),

with � > 0 that represents an element �

`

in �

�

(A

[`;`+�]

; A

`

). Moreover each

B

`

� A

`+�

for any small � > 0.

From the choice of the J's we know that the only structure which admits

A� `F curves is J

0

� J

st

.

3.3.2 A computation of PGW

Here we prove that (H

1

) and (H

2

) are satis�ed for the family (B

`

; @B

`

),

and therefore the invariant is integer valued and can be obtained by counting

holomorphic maps intersecting generic cycles of appropriate dimension.

Claim 1. The family (B

`

; @B

`

) satis�es H

1

.

Proof of claim 1: For the proof, we need the following

Lemma 3.6. (McDu�-Salamon)

Assume that J is integrable and let f : C P

1

! M be a J-holomorphic

curve. Suppose that every summand of f

�

TM has Chern number c

1

� �1.

Then D

f

is onto.

From the sequence (3.1) we have that the map E, which is

e

J

`

-holomorphic
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has the normal bundle O(�1)

2`

and therefore we can apply the above lemma

for the integrable almost complex structure

e

J . If follows that E is

e

J

`

regular

inside Y : If we consider now Y �X and

e

J

`

�J

st

, the curve E lies entirely inside

Y and therefore the normal bundle inside Y � X is O(�1)

2`

+ trivial, and

therefore the curve is is

e

J

`

�J

st

regular. This splitting and therefore regularity

use the fact that the map E is of genus zero. Theorem 2.14 implies parametric

regularity and therefore (H

1

) holds. �

Claim 2. The family (B

`

; @B

`

) satis�es (H

2

) .

Proof of claim 2: This is proved by inspection. Only J

`

0

�J

st

admits A�`F

stable maps, and the only maps in this class are copies of the imbedded map

E in any �ber S

2

�S

2

� pt. Hence there are no decomposable J

b

holomorphic

maps. We should point out that for other almost complex structures J on

S

2

� S

2

� X one could have decomposable J-holomorphic maps in the class

A� `F .

�

Observation: For an example of a situation when one could have decompos-

able J-holomorphic maps, we can considerM = S

2

�S

2

�C P

n

; ! = !

1+�

�!

st

.

If we denote by H the hyperplane class in C P

n

, we can take !

st

such that

!(A � F � H) > 0 and one can get a symplectic embeding of S

2

into M , in

the class A� F �H. We can choose an ! tamed almost complex structure

~

J

on M which �bers over the base S

2

� S

2

and such that the class H has a

~

J

holomorphic representative. Then the class A � F is

~

J decomposable where

the decomposition is given by a C with C = C

1

S

C

2

with [C

1

] = A� F �H

and [C

2

] = H. �
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We can therefore conclude that the invariants

PGW

S

2

�S

2

�X;(B

`

;@B

`

)

A�`F;0;k

:

k

M

i=1

H

a

i

(S

2

� S

2

�X;Q)

k

! Z

are integer valued. We have two situations. First, if X = pt then the moduli

space of unparametrized curves has dimension 0 so we would count isolated

curves. This follows immediately from the fact that c

1

(A � `F ) = �4` + 2

(adjunction formula) and therefore

dimM

�

0;0

(S

2

� S

2

; A� `F; (B

`

; @B

`

)) = 2� 2 + 2c

1

(A� `F ) + dimB

`

� 6

= 4� 4`+ 4 + 4`� 2� 6 = 0:

Moreover, the invariant PGW

S

2

�S

2

�X;(B

`

;@B

`

)

A�`F;0;0

([pt]) = 1 because it counts E,

the only (J

b

)

b2B

` parametric holomorphic map in the class A� `F .

In the situation that dimX = 2n > 0, we will count maps with one marked

point. c

1

(A�`F ) will be the same since the holomorphic maps in class A�`F

will be copies of the curve E and hence will have the image entirely in the

�bers S

2

� S

2

� pt � S

2

� S

2

�X. We therefore have

dimM

�

0;1

(S

2

� S

2

�X;A� `F; (B

`

; @B

`

)) = 2� (2 + n) + 2c

1

(A� `F ) + dimB

`

� 6 + 2 = 2n+ 2

We will consider a cycle in the homology class F which will lie in a �ber

S

2

�S

2

�pt inside S

2

�S

2

�X. It easily follows that the only J

b

`

holomorphic

map with one marked point which intersect this cycle transversely is a copy
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of the map E inside the �ber S

2

� S

2

� pt. We obtain that

PGW

S

2

�S

2

�X;(B

`

;@B

`

)

A�`F;0;1

(PD([F ]) = �1

where the sign depends on the orientation of the parameter space B

`

. Applying

theorem 2.4 we obtain that the morphism � in both situations is nontrivial

and therefore there is a nonzero element

�

`

2 �

4`�2

((A

[`;`+�]

; A

`

) for all � > 0 (3.16)

that is represented by the cycle (B

`

; @B

`

) � (A

`+�

;A

c

`+�;D

):
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Chapter 4

Almost complex structures and

symplectomorphism groups

In the next two sections we explain the �bration (1.1), and discuss some known

facts on the symplectomorphisms groups and the spaces of almost complex

structures for the situation when M = S

2

� S

2

. The results here are ei-

ther standard facts in symplectic topology or they come from work of Abreu,

McDu�,[13] and Kronheimer [9]. Then we introduce the notions of fragile and

new elements of the symplectomorphism groups as ! varies, and discuss some

of their properties.

4.1 The main �bration

Consider as before S

[!]

to be the space of symplectic forms !

0

that can be

joined to ! through a path of symplectic cohomologous forms (!

t

)

t2[0;1]

. First

recall:
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Theorem 4.1. Moser's stability theorem

Let M be a closed manifold, and suppose that !

t

is a smooth family of

symplectic cohomologous forms on M. Then there is a family of di�eomorphism

�

t

of M such that �

0

= id; �

�

t

!

t

= !

0

:

This implies that the group Di�

0

M acts transitively on S

[!]

via the action

� � ! = �

�

(!) = (�

�1

)

�

!

0

:

Hence, we have the following �bration (see [9]):

Symp

0

(M;!)

//
Di�

0

(M)

 !( 

�1

)

�

!

//
S

[!]

(4.1)

Later, McDu� observed the following

Proposition 4.2. S

[!]

is homotopy equivalent to A

[!]

.

In order to prove this she considers the space of pairs

X

[!]

= f(!

0

; J) 2 S

[!]

�A

[!]

j!

0

tames Jg

The maps X

[!]

! S

[!]

and X

[!]

! A

[!]

are �brations with contractible �bers,

and hence homotopy equivalences and the conclusion follows.

This proposition allows one to conclude that there is the following �bration

in homotopy (see [13])

Symp

0

(M;!)

//
Di�

0

(M)

//
A

[!]

:

(4.2)
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4.2 Structural and stability results for the case

M = S

2

� S

2

If one considers the situation when (M;!

�

) = (S

2

� S

2

; �

F

� ��

B

), Abreu-

McDu� [3], and McDu� [13] provide extensive information regarding the struc-

ture of the spaces A

�

and G

�

as well as about the variation of their homotopy

type as � varies.

More precisely, we have:

Proposition 4.3. Consider, as above (M;!

�

) = (S

2

� S

2

; �

F

� ��

B

), and

� > 1. Then A

�

� A

�+�

for any � > 0.

As a corollary of the above results, one gets

Proposition 4.4. For � > 1; � > 0, there are maps S

�

! S

�+�

and

G

pt

�

! G

pt

�+�

that are well de�ned up to homotopy and make the following

diagrams commute

G

pt

�

��

//
Di�

0

S

2

� S

2

=

��

//
S

�

��
G

pt

�+�

//
Di�

0

S

2

� S

2 //
S

�+�

(4.3)

and

G

pt

�

""❋
❋

❋

❋

❋

❋

❋

❋

❋

//
G

pt

�+�

��

G

pt

�+�+�

0

(4.4)

Moreover, the investigation in [13] is based on a detailed description of the

spaces A

�

. Some of the results are collected in the following
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Proposition 4.5. The spaces A

�

are strati�ed spaces where the strata A

�;`

,

0 < ` < � consist of almost complex structures tamed by !

�

and that admit

almost holomorphic curves in the class A � `F . Each stratum is a Fr�ech�et

suborbifold of A

�

of codimension 4`� 2.

We should point out that in particular the homotopy type of A

�

only

changes as � passes an integer.

4.3 Almost complex structures and

symplectomorphisms; deformations along

compact subsets

In this section we will get back to the situation when M is an arbitrary closed

manifold. The aim here is to describe what can be said about the behavior of

spaces of almost complex structures and about the symplectomorphism groups

as the symplectic form varies along the line L.

If L happens to be a ray �!; � > 0 then G

�

is independent of �. It will

therefore make sense to consider L 6= ray.

For M an arbitrary symplectic manifold we no longer have either inclusion

of A

�

in A

�+�

or the maps G

�

! G

�+�

, or the strati�cation exhibited in the

previous section. Nevertheless, as a consequence of the fact that taming is an

open condition, we are able to establish the following proposition, which we

use in the proof of the theorem 2.14.
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Proposition 4.6. i) Let K

0

to be an arbitrary compact subset of A

�

. For G as

in (1.4), there is an �

K

0

> 0 such that K

0

is contained in A

�+�

, for j�j < �

K

0

.

ii) Consider K an arbitrary compact set in G

�

. Then there is an �

K

> 0

and a map h : [��

K

; �

K

]�K ! G

jL

such that the following diagram commutes

h : [��

K

; �

K

]�K

//

pr

1

��

G

jL

pr

2

��
[��

K

; �

K

]

incl //
(�1;1):

(4.5)

Moreover, for any two such maps h and h

0

which coincide on 0 � K, there

exists, for an 0 < �

0

small enough, a homotopy H : [0; 1]� [��

0

; �

0

]�K ! G

jL

between them which satis�es

H : [0; 1]� [��

0

; �

0

]�K

//

pr

1

��

G

jL

pr

2

��
[��

0

; �

0

]

incl //
(�1;1):

(4.6)

Proof: Subpoint (i) is an immediate consequence of the openness of the

taming condition.

For the proof of (ii), let's �rst notice that, since the symplectic condition

is an open condition, there is a convex open neighborhood U of !

�

inside the

space of 2-forms such that any closed !

0

in U is still symplectic.

Moreover, there is an �(K) > 0 such that for any g

k

2 K,

g

�

k

!

�+�

2 U; for all 0 � � < �(K).

This claim can be proved by contrapositive as follows. Assume that there

is a sequence f�(k

i

)g ! 0 and a sequence fg

k

i

g � K for which g

�

k

i

!

�(k

i

)

is in
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the complement of U . Since K is compact, we can assume, if necessary by

passing to a subsequence, that fg

k

i

g is convergent.

Then fg

�

k

i

!

�(k

i

)

g ! g

�

limit

!

�

= !

�

2 U , which is impossible, since U is open.

We will construct the elements h(�; k) as follows. For t 2 [0; 1] the forms

!

t

k;�+�

:= tg

�

k

!

�+�

+ (1� t)!

�+�

are symplectic since both g

�

k

!

�+�

and !

�+�

are inside the convex set U . More-

over, since K � G

�

� Di�

0

(M), any g

k

is smoothly isotopic to the identity

and hence [g

�

k

!

�+�

] = [!

�+�

]. Therefore the forms !

t

k;�+�

are cohomologous as

we vary t. We now apply Moser's argument for the one parameter family of

symplectic forms !

t

k;�+�

and obtain a family of di�eomorphisms �

k;�+�;t

with the

property that �

�

k;�+�;t

!

t

k;�+�

= !

�+�

. We will now de�ne h(�; k) := g

k

� �

k;�+�;1

.

Then h has the required properties.

For an arbitrary h : [��; �]�K satisfying (4.5) we take the homotopy

F : [0; 1]� [��; �]�K ! R � Di�

0

M

given by F (t; �; k) := (�; h(t�; k)).

This gives a homotopy between h and h

0

: [��; �] �K ! R � Di�

0

M , where

h

0

(�

0

; k) = h(0; k). We similarly obtain a homotopy F

0

between h

0

and h

0

,

where h

0

also satis�es (4.5). By concatenating one homotopy with the opposite

of the other we obtain a homotopy between h and h

0

which we call

G : [0; 1] � [��

1

; �

1

] � K ! R � Di�M . Denote by g

s;�;k

:= G(s; �; k). We

will now follow the same procedure as before. Namely, we restrict to a short
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interval [��

0

; �

0

] such that, if we call

!

t

s;k;�+�

:= tg

�

s;�;k

!

�+�

+ (1� t)!

�+�

then these are symplectic, 80 � j�j < �

0

and 8t; s 2 [0; 1]. This is possible be-

cause !

t

s;k;�

= !

�

. Again, the di�eomorphisms g

s;�;k

are smoothly isotopic with

the identity and hence, as above, we apply Moser's argument to the isotopic

forms !

t

s;k;�+�

and we obtain di�eomorphisms �

s;k;�+�;t

with the property that

�

�

s;k;�+�;t

!

t

s;k;�+�;

= !

�+�

. We will now de�ne H(s; �; k) := g

s;�;k

� �

s;k;�+�;1

. Then

H has the required properties. �

De�nition 4.7. Let � : B ! G

�

be a cycle in G

�

. An extension �

�

of � is

a smooth family of cycles �

�

: B ! G

�+�

de�ned for j�j � �

0

such that �

0

= �

and satisfying (4.6). Using 4.6 (i) every cycle � has an extension.

Observation : Consider two extensions �

�

1

; 0 � j�j < �

1

and �

�

2

; 0 � j�j < �

2

.

By (4.6) there is an �

0

> 0 and a homotopy between �

�

1

and �

�

2

de�ned for all

0 � � � �

0

. Hence any extension provides well de�ned elements in �

�

G

�+�

for

small values of �. Therefore each [�] 2 �

�

(G

X

�

) has an extension [�

�

] 2 �

�

(G

X

�+�

)

whose germ at � = 0 is independent of the choices of �.

De�nition 4.8. We say that a smooth family of elements [�

�

] 2 �

�

G

�+�

;

0 < � < �

�

is new if it is not the extension for � > 0 of any element [�] 2 �

�

G

�

.

De�nition 4.9. We say that an element [�] 2 �

�

G

�

is fragile if it admits a

null homotopic extension to the right 0 = [�

�

] 2 �

�

G

�+�

, for � > 0.

In the next section we will use the same letter � to refer both to cycles as

well as to the homotopy class they represent.

53



4.4 The relation between almost complex

structures and symplectomorphism groups

In this section we use the �bration (4.2) and standard methods in algebraic

topology, to study how persistent elements in the relative homotopy groups

of almost complex structures a�ect homotopy groups of symplectomorphisms.

Our result is the following:

Theorem 4.10. (On Symplectomorphism groups) Assume that we have a per-

sistent element 0 6= �

`

2 �

k

(A

`

+

;A

`

; �) Then we can construct an element

�

`

2 �

k�2

G

`

such that either:

A) The element �

`

2 �

k�2

G

`

is a non-zero fragile element.

or

B) �

`

= 0 and then there is an �

`

> 0 such that we can construct a family

of new elements 0 6= �

`+�

2 �

k�1

G

`+�

; 0 < � < �

`

.

Proof: We will consider the long exact sequence of relative homotopy groups

of the pair (A

`

+

;A

`

)

: : :

//
�

k

A

`

+

//
�

k

(A

`

+

;A

`

)

//
�

k�1

A

`

//
�

k�1

A

`

+

//
: : :

Since by construction �

`

2 �

k

(A

`

+

;A

`

) is nontrivial, then one of the two

following cases can happen:

Case 1 �

`

7! 


`

6= 0 2 �

k�1

A

`

Case 2 �

`

7! 0 2 �

k�1

A

`

. In this situation, there is an element 0 6= �

`

2 �

k

A

`

+

where �

`

7! �

`

:
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We will do the analysis case by case for our situation:

Case 1 If we are in this case then we consider the �bration (4.2), that yields

G

`

//
Di�

0

(M)

//
A

`

We consider the long exact sequence in homotopy

: : :

//
�

k�1

(G

`

)

//
�

k�1

Di�

0

(M)

//

//
�

k�1

A

`

//
�

k�2

G

`

//
�

k�2

Di�

0

(M)

//
: : :

Again, there are two possibilities:

i) 


`

! �

`

6= 0 2 �

k�2

G

`

: In this situation, we have a nontrivial element

�

`

2 �

k�2

G

`

, such that �

`

7! 0 2 �

k�2

Di�

0

(M). Then we are in case A.

This element is fragile. This can be proved by contrapositive. Assume that

�

`

can be extended by �

`+�

which yields nontrivial classes in �

k�2

G

`+�

. Then

�

`+�

7! 0 2 �

k�2

Di�

0

(M) as well. Therefore it appears as a boundary of an

element 


`+�

2 �

k�1

A

`+�

which is homotopic with 


`

. But by construction

and lemma (4.6), we know that 


`

is a contractible cycle inside A

`+�

. This

contradicts the existence of 


`+�

.

ii) 


`

7! 0 2 �

k�2

G

`

. Then 


`

is in the image of the morphism

�

k�1

Di�

0

(M)! �

k�1

A

`

, and therefore there is an element, 


0

`

2 �

k�1

Di�

0

(M)

such that 0 6= 


0

`

7! 


`

.

In this situation, we can choose a cycle S � A

`

representing 


`

2 �

k�1

(A

`

),

and, using lemma (4.6), there is an �

S

> 0 such that for any � such that

0 < � < �

S

; S � A

`+�

. We make the following

Claim (1) 0 = [S] 2 �

k�1

A

`+�

.

By hypothesis S is the boundary of a cycle B

`

such that B

`

� A

`+�

for
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all small � > 0. Therefore we have a k dimensional ball inside A

`+�

whose

boundary is S, which proves the claim. We therefore have:




0

`

�! [S] = 0 2 �

k�1

A

`+�

: : :

//
�

k�1

(G

`+�

)

//
�

k�1

Di�

0

(M)

//
�

k�1

A

`+�

//
�

k�2

(G

`+�

)

//
: : :

: : :

//
�

k�1

(G

`

)

//
�

k�1

Di�

0

(M)

//
�

k�1

A

`

//

i

jk

O

�

k�2

(G

`

)

//
: : :




0

`

�! 


`

2 �

k�1

A

`+�

Here, from the �rst row, since 


0

`

is in the kernel of the map

�

k�1

Di�

0

(M)! �

k�1

A

`+�

, it has to be in the image of the map

�

k�1

(G

`+�

)! �

k�1

Di�

0

(M), and therefore we are able to produce an element

0 6= �

`+�

2 �

k�1

(G

`+�

) such that �

`+�

persists in the topology of the group of

di�eomorphisms. Thus we are in case B.

The elements we obtain here are new. This follows easily by assuming the

opposite. That is, if we consider that there is an element 0 6= �

`

2 �

k�1

G

`

whose germ is given by �

`+�

, then the image of �

`

in Di�

0

(M) has to be 


0

`

.

But this contradicts the fact that 


0

`

7! 


`

6= 0.

Case 2. In this situation we have a nontrivial element �

`

2 �

k

A

`

+

. We then

have the following :

Claim (2) There is an � such that for 0 < � < �, the element �

`

has a

representative C inside A

`+�

, 0 6= [C] 2 �

k

A

`+�

. The proof of this statement

follows from the construction of �

`

from a persistent element and from the

de�nition of A

`

+

.

Namely, since �

`

7! 0 2 �

k�1

A

`

we conclude that there exist a k-dimensional
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disk D inside A

`

whose boundary is @B

`

; by lemma (4.6) (i) this can be viewed

inside A

`+�

for small �. Moreover B

`

� A

`+�

for small �, which follows from

2.3. We can now glue B

`

and D along their boundary @B

`

. In this manner

we get a cycle C � A

`+�

which represents the class �

`

Moreover, C does not

contract inside A

`+�

, for small �. This follows basically from the fact that �

`

is

persistent. Namely, since �

`

maps to a trivial element in �

k�1

A

`

, and since the

relation 2.4 implies that the i

�

�

(�

`

) is nontrivial then i

�

�

(�

`

) has to lift also to

a nontrivial element i

�

�

(�

`

) in �

k

A

[`;`+�]

. Moreover, from its construction, the

cycle C we have built also represents the element i

�

�

�

`

. If C were to contract

inside A

`+�

then that would imply that it contracts inside A

[`;`+�]

and it would

mean that i

�

�

�

`

is trivial which is false.

We can therefore consider again the sequence

: : :

//
�

k

(G

`+�

)

//
�

k

Di�

0

(M)

//

//
�

k

A

`+�

//
�

k�1

G

`+�

//
�

k�1

Di�

0

(M)

//
: : :

Claim (3) [C] doesn't lift to �

k

Di�

0

(M).

Proof of claim (3): We should �rst make the observation that there is a

map

�

k

Di�

0

(M)! �

k

A

�

(4.7)

for any � and moreover as � varies this maps are homotopic inA

I

. If C did lift,

the map �

k

Di�

0

(M)! �

k

A

`

would produce a cycle [B] 2 A

`

, which by means

of lemma (4.6) can be viewed inside all A

`+�

for small � and which moreover is

homotopic with C inside A

[`;`+�]

. Therefore [C] would map to 0 2 �

k

(A

`

+

;A

`

),
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which would contradict its de�nition. �

Since [C] cannot be in the image of the map �

k

Di�

0

(M) ! �

k

A

`+�

, we

know that [C] must have nonzero image [C] 7! �

`+�

6= 0 in �

k�1

G

`+�

. Moreover

from the obvious properties of exact sequences again, �

`+�

! 0 through the

natural inclusion map �

k�1

G

`+�

! �

k�1

Di�

0

(M). The fact that this elements

are new follows again by assuming the opposite. If they were the extension of

an element �

`

in �

k�1

G

`

, then �

`

would also be null homotopic inside Di�

0

(M)

so it would therefore come from a class [C

0

] in �

k

A

`

. Moreover, C

0

would be

homotopic with C inside A

[`;`+�]

therefore also in (A

[`;`+�]

;A

`

) which is false

given that C has to yield a nontrivial element in �

k

(A

[`;`+�]

;A

`

). Thus we are

in the case B of the theorem.

With this, we have exhausted all the possible cases given by the nontrivial

PGW. �

Now consider the manifold (S

2

�S

2

�X;!

�

�!

st

). As explained in (3.16)

the cycles (B

`

; @B

`

) satisfy the de�nition (2.3), so they give by Prop (2.6)

persistent elements in �

4`�2

(A

`

+

;A

`

).

Therefore theorem (4.10) applies and so the following corollary holds:

Corollary 4.11. For any natural number ` � 1, exactly one of the statements

below holds.

A) We can construct a non-zero fragile element w

X

`

2 �

4`�4

G

X

`

, which

can be identi�ed with w

`

� id.

B) There exists an �

`

> 0 for which we can construct a family of new

elements 0 6= �

X

`+�

2 �

4`�3

G

X

`+�

; 0 < � < �

`

:
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Appendix A: A criterion of parametric

regularity

In this appendix we give a proof of the regularity criterion stated in theorem

2.14, namely:

Theorem 4.12. Let (J

z

; !

z

)

z2C

m

be a family on M descending from the sym-

plectic �bration (

f

M;

e

J; e!)

M

i //
f

M

�

��
C

m

(4.8)

Suppose that f : � �! M is a J

0

holomorphic map and consider the

composite map

e

f = i � f;

e

f : � �!M � 0 �

f

M

which is

e

J-holomorphic. If

e

f is regular then f is (J

z

) parametric regular.

Moreover, if � = S

2

then the reverse statement holds.

Let T

j

�

�1

(0)

f

M be the tangent space along the preimage of 0 2 C

m

. We

will denote by H the subbundle of T

j

�

�1

(0)

f

M which is e! orthogonal to the �ber

f0g �M . We would like H to coincide with the horizontal space of T

f

M with

respect to the trivialization � and to be

e

J invariant. This can be arranged by
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deforming the form e! so that near the zero �ber f0g �M it is given by

e! = !

0

+ �

�

(�

base

);

where �

base

is a standard symplectic two form on the holomorphic base B.

Throughout this deformation process

e

J is still e! tamed.

Let g

0

be a metric on M

0

and r be the Levi-Civita connection on M

associated with it. r

st

will be the standard Levi-Civita connection on C

m

:We

will denote from now on

e

r = r�r

st

; the product connection on

f

M ' C

m

�M .

The regularity of

e

f : � �!

f

M is by de�nition, equivalent to the fact that D

e

f

is surjective, where D

e

f

is the linearization of

�

@;

D

e

f

: C

1

(

e

f

�

T

f

M)

// //



0;1

e

J

(�;

e

f

�

T

f

M):

Using the connection

e

r we will derive formulas for D

e

f

and express them in

terms of the linearization D�.

Since

f

M ' C

m

�M and im

e

f � f0g �M; we have the following relations:

e

f

�

�

T

f

M

�

=

e

f

�

�

T

f

M

�

�1

(0)

�

=

e

f

�

(H � TM) = triv � f

�

(TM)

where by triv we denote the trivial m-dimensional complex bundle over �.

This gives

C

1

(

e

f

�

T

f

M) ' C

1

(triv)� C

1

(f

�

TM) (4.9)

Given that each �ber is

e

J invariant, and that H is

e

J invariant along �

�1

(0),
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we obtain




0;1

e

J

(�;

e

f

�

T

f

M) ' 


0;1

J

(�; f

�

TM)� 


0;1

e

J

(�; H) (4.10)

From (4.9) and (4.10) we obtain

D

e

f

: C

1

(triv)� C

1

(f

�

TM)

// //



0;1

J

(�; f

�

TM)� 


0;1

e

J

(�; H)

and by considering the appropriate restrictions we obtain the following oper-

ators

D

1;vert

: C

1

(triv) �! 


0;1

J

(�; f

�

TM)

D

1;hor

: C

1

(triv) �! 


0;1

e

J

(�; H)

D

2;vert

: C

1

(f

�

TM) �! 


0;1

J

(�; f

�

TM)

D

2;hor

: C

1

(f

�

TM) �! 


0;1

e

J

(�; H)

We will sometimes use D

k

= (D

k;vert

; D

k;hor

); k = 1; 2.

To compute the formulas for these operators we will use the following

general method (see [1]).

Consider � 2 C

1

(�;

e

f

�

T

f

M) and

e

F

�

: [0; 1]� � �!

f

M given by

e

F

�

(t; x) = exp

e

r

e

f(x)

(t�(x)) ;

for � su�ciently small. Let s : � �! T� be a section and es its lift to

T ([0; 1]� �) : We denote

@

@t

the vector �eld in T ([0; 1]� �) corresponding to

the parameter in [0; 1]: De�ne

e

f

t

(x) :=

e

F

�

(t; x): For any x 2 �; de�ne the path

e


�

x

: [0; 1] �!

f

M given by

e


�

x

(t) =

e

F

�

(t; x);
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the image under

e

F

�

of [0; 1]� x in

f

M: By the de�nition of

e

F

�

; e


�

x

is a geodesic

path in

f

M relative to the connection

e

r:

Denote by �

�

t;x

: T




x

(t)

f

M �! T




x

(0)

f

M the parallel transport in

f

M along the

curve 


x

:= e


�

x

. To compute D

e

f

(�)(s) in general, one needs to consider the

expression

1

2

�

�

t;x

(d

e

f

t

(s) +

e

Jd

e

f

t

(js)) and take its derivative with respect to t at

t = 0 i.e.

D

e

f

(�)(s) =

1

2

@

@t

�

�

�

t;x

(d

e

f

t

(s) +

e

Jd

e

f

t

(js))

�

j

t=0

(4.11)

We de�ne Const to be the subspace of C

1

(triv) made out of constant sec-

tions. For the proof of the theorem, we are particularly interested in computing

D

1;hor

and the restriction of D

1;vert

to Const:

In order to simplify the notation, we denote by x the coordinate on � and

write the points in C

m

�M as (z

1

; : : : ; z

m

; y) where z

1

= w

1

+ iv

1

and so on.

For simplicity we denote the vector �eld in Const by

@

@w

k

= @

w

k

and so on.

Since we are going to work with an arbitrary choice of w

k

and v

k

we will refer

to them simply as @

w

, unless we need to be more speci�c.

Lemma 4.13. The following relations hold:

i) D

2;hor

= 0

ii) D

2;vert

= D

f

iii) D

1;hor

(�) =

�

@

C

m

(�); 8� 2 C

1

(triv), where

�

@

C

m

is the delbar operator in

C

m

:

iv) (D

1;vert

)(@

z

)(s) =

1

2

@

@z

(J(z))

jz=0

(df(js) for @

z

a typical vector �eld in

Const � C

1

(triv).

Proof: Since

e

f = f � i � f0g�M we can naturally view any � 2 C

1

(f

�

TM)

as an element in C

1

(

e

f

�

T

f

M) with values in the vertical direction tangent to
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f0g �M: We have that

e

F

�

(t; x) = exp

e

r

e

f(x)

(t�) = exp

r

f(x)

(t�);

with im

e

F � f0g�M: This implies that the d

e

f

t

(s) are also vertical vector �elds

supported in f0g �M and, since

e

J keeps T (f0g �M) invariant, we have as

well that the

e

Jd

e

f

t

(js) are vertical vector �elds in f0g �M: Similarly,

e

F

�

�

@

@t

is

a vertical section in T

f

M supported in f0g �M and parallel transport along

e

f(x) with respect to

e

r is the same as parallel transport with respect to r:

A direct application of (4.11) is that

�

D

e

f

�

�

(s) =

1

2

@

@t

�

�

�

t;x

d

e

f

t

(s) + �

�

t;x

e

Jdf

t

(js)

�

j

t=0

= (D

f

�) (s);

which proves (i). Relation (ii) follows immediately from the formula above,

taking into account that D

e

f

� = D

2;vert

(�), and that

imD

e

f

j

C

1

f

�

TM

� 


0;1

J

(�; f

�

TM).

For the proofs of (iii) and (v) we now consider � 2 C

1

(triv): We can

assume � = �(x)@

w

where � : � C

m

. In this situation,

e

F

�

(t; x) = exp

e

r

e

f(x)

(t@

w

) = (�(x)t; 0; : : : ; 0; f(x))

It then follows that the paths 


x

are straight lines in C

n

� f(x) �

f

M and

therefore the parallel transport along 


x

; �

t;x

: T

(t;f(x))

f

M �! T

0;f(x))

f

M is the

identity. We are also going to consider the coordinates x 2 � of the type

x = x

1

+ ix

2

, and do our computations for s = @

x

1

.
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If

e

J(t) is the almost complex structure at e


�

x

(t) then

e

J(t) =

0

B

@

A

t

0

B

t

J

t

1

C

A

with respect to the product structure C

m

�M: Moreover along �

�1

(0) we have

e

J(0) =

0

B

@

J

C

m

0

0 J

t

1

C

A

Therefore

@

@t

e

J(t) preserves the �bers, the same as

e

J(t) does. Moreover, along

f0g�M ,

e

J(0) preserves the splitting into TM and H. As we have seen parallel

transport along e


�

x

(t) is just the identity.

Considering local coordinates on � given by x = x

1

+ix

2

and taking s = @

x

1

,

we have:

D

1;hor

(�@

w

)(@

x

1

) =

1

2

proj

H

@

@t

�

�

�

t;x

d

e

f

t

(@

x

1

) +

1

2

�

�

t;x

e

Jd

e

f

t

(j@

x

1

)

�

j

t=0

=

1

2

proj

H

@

@t

�

d

e

f

t

(@

x

1

) +

1

2

e

Jd

e

f

t

(@

x

2

)

�

j

t=0

=

1

2

@

@t

(@

x

1

(�(x))t; 0; : : : ; 0)

j

t=0

+

1

2

proj

H

@

@t

�

e

J

t

�

jt=0

df(@

x

2

)+

1

2

proj

H

e

J

0

@

@t

(@

x

2

(�(x))t; 0; : : : ; 0; df(x))

jt=0

where, as mentioned before, � : �! C

m

. But here the middle term vanishes

because df(@

x

2

) is a vertical vector and

@

@t

e

J preserves �bers so we get that

@

@t

�

e

J

t

�

jt=0

df(@

x

2

) is also a vertical vector. Then

D

1;hor

(�@

w

)(@

x

1

) =

1

2

@

x

1

�(x) +

1

2

J

C

m

(@

x

2

)�(x) (4.12)
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For the last expression we have to use that along �

�1

(0),

e

J

0

preserves the

horizontal space H, so proj

H

�

e

J

0

=

e

J

C

m

� proj

H

: Therefore, the conclusion

follows that

D

1;hor

=

�

@

C

m

To prove point (v) of the theorem we need to consider now � = @

w

, that is

� 2 Const. Under this assumption we have �

@

w

t;x

d

e

f

t

= df

0

. Thus

@

@t

�

@

w

t;x

d

e

f

t

(s) = 0:

As before, s is a just a section in T�. We then have

D

1;vert

(@

w

)(s) =

1

2

proj

V

@

@t

�

�

@

w

t;x

d

e

f

t

(s) +

1

2

�

@w

t;x

e

Jd

e

f

t

(js)

�

j

t=0

=

1

2

proj

V

@

@t

�

�

@

w

t;x

d

e

f

t

(s)

�

j

t=0

+

1

2

proj

V

@

@t

�

�

@

w

t;x

e

J(�

@

w

t;x

)

�1

�

j

t=0

df(js)

+

1

2

proj

V

e

J

0

�

@

@t

�

@

w

t;x

d

e

f

t

(js)

�

j

t=0

=

1

2

proj

V

�

e

r

@

w

e

J

�

df(js)

where we denote by proj

V

the projection onto the �bers. Recall that

@

@t

e

J takes

vertical vector �elds into vertical vector �elds. Therefore

1

2

proj

V

e

r

@

w

e

Jdf(js) =

1

2

@

@w

(J(z))(df(js))

precisely because df(js) is a vertical vector �eld and because the covariant

derivative along horizontal vector �elds was chosen to be the standard connec-

tion in C

m

. Applying the same reasoning for i@

v

we see that

(D

1;vert

)(@

z

)(s) =

1

2

@

@z

(J(z))

jz=0

(df(js))
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It is worth to point out that

@

@z

(J(z)

jz=0

= d 

�

0

(

@

@z

).

�

Proof of the theorem:

Implication \)"

Using lemma 4.13, point (v) we get the commutativity of the following

diagram

T

0

C

m

d //

i

��

T

J

A

I

R

��

Const

D

1;vert //



0;1

J

(�; f

�

TM);

(4.13)

where i : T

0

C

n

! Const � C

1

(triv) is the natural identi�cation map and

 is the morphism from the parameter space to the space of almost complex

structures. R is, as mentioned before, given by R(Y ) =

1

2

Y � df � j.

Since D

e

f

is surjective by the hypothesis of this implication, this means that

D

1

�D

2

is surjective. We therefore have, by lemma (4.13) (i),(ii),

D

1

= (D

1;vert

; D

1;hor

) : C

1

(triv)

//
cokerD

f

� 


0;1

e

J

(�; H)

(4.14)

is surjective. Since the kernel of the

�

@

C

m

operator on C

m

consists precisely of

constant sections, lemma 4.13 (iii) implies that D

�1

1;hor

(0) = Const: Therefore

we have that the operator

(D

1;vert

)

j

Const

: Const

//
cokerD

f

is surjective. But this will imply that

D

1;vert

j

Const

� i : T

0

C

m // //
cokerD

f

: But as we saw in the proof of 2.11, R

induces an isomorphism

e

R :

^

cokerd� �! cokerD

2

and moreover the diagram

4.13 will be still commutative if we restrict d and D

1;vert

to cokerd� and
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cokerD

2

respectively. Therefore d : T

0

C

n //
cokerd�:

is surjective. By

proposition 2.11, this yields exactly the parametric regularity.

For the inverse implication, we notice that since D

1;hor

is

�

@

C

m

, it will cover

the space 


0;1

e

J

(�; H) when � = S

2

. By hypothesis we have that

d : T

0

C

n //
cokerd�:

is surjective and the above observation implies that

D

1

= (D

1;vert

; D

1;hor

) : C

1

(triv)

//
cokerD

f

� 


0;1

e

J

(�; H)

(4.15)

is also surjective. Therefore D

e

f

is a surjective operator. �
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