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Abstract of the Dissertation,

Relative Parametric Gromov-Witten
Invariants and Symplectomorphisms

by
Olguta Buse
Doctor of Philosophy
in
Mathematics
State University of New York
at Stony Brook

2002

We study the symplectomorphism groups Gy = Symp,(M,w,) of
an arbitrary closed manifold M equipped with a 1-parameter fam-
ily of symplectic forms w, with variable cohomology class. We
show that the existence of nontrivial elements in 7, (A, A"), where
(A, A") is a suitable pair of spaces of almost complex structures,
implies the existence of nontrivial elements in 7,_;G,, for i = 1 or
2. Suitable parametric Gromov Witten invariants detect nontrivial
elements in 7, (A4, A"). By looking at certain resolutions of quotient

singularities we investigate the situation

il



(M,wy) = (S?*xS?x X, 01D NopDwy), with (X, ws) an arbitrary
symplectic manifold. We find nontrivial elements in higher homo-
topy groups of GY, for various values of \. In particular we show
that the fragile elements wy previously found by Abreu-McDuff in

T10(GY: ) do not disappear when we consider them in S? x $% x X.

v



To Rodrigo and to my parents



Contents

Acknowledgments viii
1 Introduction 1
1.1 Aim ..o 1
1.2 Background and earlier results . . . . . ... ... ... 3
1.3 Outline of the main results . . . . . .. ... ... ... ... Y
2 Relative parametric GW invariants 12
2.1 General setting . . . . .. ... Lo 12
2.2 Definition and properties of PGW . . . . .. ... ... ... 14

2.3 More on the relation between PGW and almost complex struc-

tures . . . .. 18

2.4 Computability of PGW . . . . . ... 0.0 19
2.4.1  Parametric regularity . . . . ... .. ... ... 20

2.4.2  Compactness . . . . . . . . . v v 28

3 Resolutions of singularities and relative PGW 30
3.1  Quotient singularities; the local picture . . . ... ... ... 30

vi



3.2

3.3

Quotient singularities; the compactified
global picture . . . . .. ... ... oo

A parametric regular family of almost complex structures on

3.3.1  The description of the family . . . . . . ... ... ..

3.3.2 A computation of PGW . . . .. ... ... ... ...

Almost complex structures and symplectomorphism groups

4.1
4.2
4.3

4.4

The main fibration . . . .. ... .. ... .. ... ......
Structural and stability results for the case M = S? x S? . . .
Almost complex structures and

symplectomorphisms; deformations along compact subsets
The relation between almost complex

structures and symplectomorphism groups . . . ... ... ..

Appendix A: A criterion of parametric regularity

Bibliography

Vil

33

41
41
43

47
47
49

50

54

59

70



Acknowledgments

Very special thanks to my advisor Dusa McDuff. Her boundless energy and
inspiring ideas, as well as her patience and enthusiasm were key in the making
of this thesis. Further I would like to thank her for the generous guidance on
how to give a talk and write a paper. Her careful editing of the thesis was
crucial in bringing it up to the final form.

To Dennis Sullivan, many thanks for his inspiring spring classes in Stony
Brook, for the opportunity of attending his CUNY seminars, and for the sug-
gestions he gave me on many occasions.

I would also like to thank Siddhartha Gadgil for the several discussions he
had with me that helped me clear up my ideas on the topological aspects of
my thesis. To Sorin Popescu, thanks for talking with me about the section in
Algebraic Geometry.

A great debt of gratitude I owe to my parents Luca and Cecilia Buge. They
invested countless efforts and sacrifices in supporting my education. They
always had faith that in its worth. My warmest thanks to them, to my brother
Lucian, and to Gina and Stefan Buge, for being there for me, at the other end
of the phone, and making sure that I set the mark high.

Also, to my friends in the Mathematics or Physics Department who, at



various times in Grad School, discussed with the thorny math and non-math
problems I had to solve. Among them I would like to mention Rares Ras-
deaconu, loana Suvaina, lonut Chiose, Andrew Mclntyre, Joe Coffey, Owen
Dearricott, Dan Moraru, Lee-Peng Teo, Irina Mocioiu and Radu Roiban, and
many many others, since this list cannot be either ordered or complete. Many
thanks to all of them.

Last but not least, my deepest thanks to my husband Rodrigo Pérez whose
love and continuous support makes my life beautiful. I want to thank him for

believing in me even when I did not believe myself.



Chapter 1

Introduction

1.1 Aim

Consider (M?",w) a 2n dimensional compact symplectic manifold. A sym-
plectomorphism is a diffeomorphism that preserves the symplectic form. A
basic invariant which distinguishes among different symplectic structures on
M is the group of symplectomorphisms, Symp(M,w). This is an infinite di-
mensional group endowed with a natural C*> topology.

Two natural questions arise in relation with Symp(M,w) namely

(1) What can be said about the topological type of Symp(M,w)?

(2) How does the topological type change as w varies?

Any symplectic manifold admits a large set of almost complex structures.
Among those, we are interested in those that are tamed by w in the following

sense:

Definition 1.1. We say that an almost complex structure J is tamed by the

symplectic form w if w,(v, Jv) > 0 for any vector field v on M, nonzero at

1



x e M.
We denote by Ay, the space of almost complex structures that are tamed

by some symplectic form that is isotopic ! to w.

Moser showed that the identity component Diffy (M) of the group of diffeo-
morphisms acts transitively on the space S|, of symplectic forms isotopic to w.

As we will see in 4.1, this implies that the following fibration, first introduced

by Kronheimer [9] and used in McDuff [13], exists:

Symp, (M, w) — Diffo(M) —— Ay (1.1)

where Symp, (M, w) = Symp(M,w) N Diffy(M).

Our strategy will be to define suitable pairs (A4,.A") of spaces of almost
complex structures, such that information on nontrivial homotopy groups in
(A, A’) extends to information on Sympy(M,w). We develop a version of
relative GW invariants in family which detects such nontrivial elements in
(A, A").

Research regarding the symplectomorphisms groups has been by various
authors [Abreu [2], Le-Ono [11], McDuff [12], Seidel [18]]. Their methods as
well as ours use modern tools of symplectic geometry such as J-holomorphic
curves. In the next section we will outline some relevant definitions and some

earlier results that are relevant for our work.

'We say that two symplectic forms are isotopic if they can by joined by a path of coho-
mologous symplectic forms



1.2 Background and earlier results

Definition 1.2. Consider a closed manifold (M,J) and a Riemann surface
(3,7), both endowed with almost complex structures J and j respectively. We
say that a smooth map f : X — M is J-holomorphic if its derivative

dfy : ToX — TyyM satisfies

dfy © Ju = Jf(:c) o dfy

Roughly speaking, Gromov-Witten invariants are symplectic invariants of
M that count J-holomorphic curves with given topological constraints.

We investigate the above mentioned questions by defining relative paramet-
ric GW invariants, which are sensitive to the topology of appropriate spaces of
almost complex structures. Our method has been inspired by P. Kronheimer’s
work [9], as well as by the work of D. McDuff [12].

In [9], for situations with dim M =4, Kronheimer uses parametric Seiberg-
Witten invariants, to exhibit some nontrivial families of symplectic structures.
Roughly speaking, he discusses certain analytic families X,, part of whose
specific properties will be described in chapter 3, that arise as the fibers of
amap p: X — U with U an open set in C™ ! and such that all fibers X,
are smooth and diffeomorphic, except for Xy which has a special type of quo-
tient singularity at a point zg. This family admits an embedding in CPY x U
through which the fibers X, inherit symplectic forms from CPY. His result is

the following:



Theorem 1.3. (Kronheimer)

Suppose p is as above, let v € U \ {0}, and consider the fiber X, as
a symplectic manifold as above. Let Diff and Symp be its group of diffeo-
morphisms and symplectomorphisms respectively. Then o, 3(Diff /Symp) is

nonzero, provided that b (X,) is greater than 2m — 1.

Other results regarding homotopy type of the symplectomorphism groups
appear in the situations when M is a ruled surface or a product of CP"’s.

We first set the notation

G := Sympy(M, wy)

To serve our purposes, we will only exhibit those results that were found in [7],
3], [13] for the situation when (M,wy) = (S? x S? or ® Aop), where o, 0p
are forms on the fiber S% x pt and base pt x S? respectively, of total area 1,

and A > 1. For this particular manifold we will adopt the notation

G%' = Symp,(S? x S% or ® \og).

The first one to look at this groups was Gromov [7], who found that, in the
case A = 1, GY* deformation retracts to the Lie group SO(3) x SO(3). He
also pointed out a new element of infinite order that appear in G, when A
increases past 1.

Later Abreu-McDuff in [3] and [13] found natural maps G%' — G%', _, well

Ate?

defined up to homotopy, and proved:



Theorem 1.4. (Abreu-McDuff)

(i) The homotopy type of Gﬁt is constant on all the intervals (¢ — 1, ¢| with
¢ > 2 a natural number. Moreover, as A passes an integer ,{ > 2 the groups
mi(GY),i < 40— 5, do not change.

(ii) There is an element wy € 7r4g,4(G§t) X Q when £ —1 < XA < { that

vanishes for A > (.

As it will be explained later, we will extend their results and techniques to

obtain information on the symplectomorphism groups of $% x S% x X.

1.3 Outline of the main results

In chapter 2 we will define the invariants as follows:

Consider a smooth family of symplectic forms (wy)aer, where the parameter
A varies in the interval [ in R in such a manner that the cohomology classes
[wx] may also vary along a line L inside H?(M,R). For convenience we denote
by Ay := Ay, Consider D € Hy(M,Z) and let ASp, C Ay consist of those
almost complex structures J which do not admit J—holomorphic stable maps

in the class D. Further define

AI = UA)\a

Ael

and similarly let A7 ;, be its subset given by

c _ c
I.D = U A/\,D

Ael



By Prop 4.2 below, ( see [13]), A; is homotopy equivalent with (J,.; S,
and hence is connected. We will assume that there is a special almost com-
plex structure * = Jygsepoine that belongs to all the spaces AK’D. Consider a
family of almost complex structures (Jpg, Jop, *) that represent an element in

T (Ar, A7 p, *). We will define a homomorphism

k
PGWg{é(’iB,aJB) : @Hui(M, Q)k N Q (1.2)

1=1

by counting Jy-holomorphic stable maps in class D, for all b € B. This is well
defined because the class D is never represented as a J,-holomorphic stable

maps if b € 0B. We have the following

Theorem 1.5. (On relative parametric Gromov- Witten invariants)

i) The invariants PGWL];{()%B’MB) are symplectic deformation invariants
and depend only on the relative homotopy class of the triple (Jg, dJpg, *).

ii) For a fized choice of k, D and «; the map

@U,k,al,---,ak © Tk (Afa A?,Da *) - Q7 given by
Oty ([(T5,0T5)] = PGWHLE (0, )

1s a homomorphism.

One difficulty in counting Gromov-Witten invariants is to make sure that
among the J-holomorphic curves that we can see we only count the ones that
do not disappear under small perturbations of the almost complex structure.
Those are called regular curves. Roughly speaking, this is equivalent to the

fact that a certain linearized Cauchy-Riemann operator is surjective. We adapt
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these considerations to the family setting and call parametric reqular those Jy-
holomorphic curves that do not disappear under small perturbations of the
whole family (J,)pcp of almost complex structures. In chapter 2 we introduce
the following criterion of parametric regularity, which applies to families that

appear in a fibered setting (in a sense that will be explained later):

Theorem 1.6. Let (J,,w,).ccm be a family of pairs of almost complex struc-
tures and symplectic forms arising as the restrictions to the fibers m1(2)=M

of the pair (j,fu) of a symplectic fibration (M, J, w)

M~ (1.3)

Suppose that f : ¥ — M is a Jy holomorphic map and consider the
composite map

f=iof f:Y— Mx0CM

which s j—holomorphic. If f is reqular then f is (J,) parametric regular.

Moreover, if ¥ = S? then the reverse statement holds.

The proof of this theorem is contained in Appendix A.

In chapter 3 we will exhibit some examples of nontrivial PGW. There
we consider the case when (M,w) is S? x S? x X, where X is an arbitrary
symplectic manifold, w = w) ® wy, with w, as before given by wy = op & Ao
and with wy an arbitrary symplectic form on X. The families (Jp,0.Jp) of
almost complex structures are provided for S? x S? in [9] and then further

investigated in [3]. One has to look at a quotient singularity, C?/Cy, where

7



Cy is the cyclic group of order 2¢ acting diagonally by scalars on C2?. The
deformation space for the canonical resolution of this singularity provides a
40—2 family (Jp,,0Jp,) C (Ajre1q, Ae) for which suitable PGW are nontrivial.

The link between these examples and the corresponding groups of symplec-
tomorphisms will be explained in chapter 4. It will be there where we explain
the extent to which the known homotopy properties (see [3]) of

G’;\t = Symp,(S? x 5%, w,) are reflected in the higher homotopy groups of

G = Symp,(S? x S? x X, wy ® wy).

To be able to give any answers related to the two questions posed in the
beginning, one has to establish first a more precise language in which they
make sense. One of the difficulties is that when we deal with a general manifold
M we no longer have either direct maps G, — Gy, or maps defined up to
homotopy, as in the M = S? x S? case.

To get around the fact that there is no map G, — G, we show that for
any compact K C G, the inclusion 0 x K C G, extends to a map h that fits

into the following commuting diagram:

h:[—€¢ x K —— G :=J(G) x \) C Diffy(M) x R (1.4)
pri1 pr2
[—6, 6] incl (—OO, OO)

Moreover, for any two such maps h and A’ which coincide on 0 x K, there is, for
¢’ small enough, a homotopy between them H : [0, 1] x [—€, €'] x K — G which

also preserves the fibers of the natural projections. We therefore see that, for

8



any cycle p in G there are extensions p. in G, which, for e sufficiently small,

are unique up to homotopy. Hence they give well defined elements in 7,G ) .
It will therefore make sense to ask what will become of an element p € 7,.G)

inside m,G ¢, for small €. In this language we say that an element 6, € 7,.G,

is fragile if any extension 6y, is null-homotopic in m,(Gy.) for € > 0. Also,

we say that a family 7, € m.Gy1,0 < € is new if there is no 7, € 7.G, whose

extension is 7y... We consider the space A,+ roughly given by

Apt = (Nocece, Arre) U Ae (for the precise definition see (2.3)).

We say that an element o € m,( A+, Ay) is persistent if it has nonzero im-

age under the map m,(Ag+, Ar) = m(Apetd, Ae). The content of our main

theorem is the following:

Theorem 1.7. (On Symplectomorphism groups) Assume that we have a per-
sistent element 0 # By € 7 (Ap+, Ag,x) Then we can construct an element
0, € m_oGp such that either:

A) The element 0, € mp_sGy is a non-zero fragile element.

or

B) 0, = 0 and then there is an ¢, > 0 such that we can construct a family

of new elements 0 # Mpre € Tr_1Grie, 0 < € < €.

Any fragile element is null homotopic when viewed inside Diffy(A/). We
should point out that our methods do not allow us to decide in general whether
the image of 7y, in m_Diffy(M) is zero or not.

We show that the hypothesis of the theorem is verified when
M = 8?x5?x X. We consider D = A—(F. Since [0p®lopPwy](A—LF) =0

we get that A, C Afl 4D In this situation the 4¢ — 2 dimensional elements

9



(By, 0By) obtained in section 3 are detected as nontrivial in my_o( A+, A¢) and
are persistent. In fact in general PGW invariants detect persistent elements.
By varying the value of the integer ¢ we obtain infinitely many values of A
for which higher order homotopy groups of G are nontrivial and also make
a more detailed discussion regarding the stability of the elements w, provided
by theorem 1.4 inside G := Symp,(5? x S? x X, wy@ws). This is the content

of the following:

Corollary 1.8. For any natural number £ > 1, exactly one of the statements
below holds.

A) We can construct a non-zero fragile element w) € my_sG3, which
can be identified with w, X id.

B) There exists an €, > 0 for which we can construct a family of new

elements 0 # 17, € Tae-3G7,0 < € < .

In particular this shows that the fragile elements obtained by Abreu-McDuff
for £ > 1 do not disappear when we consider them inside S? x S? x X. Either
0 # wy X id € Ty_4(GY) as in (A) or, if wy X id = 0 then it yields the asso-
ciated new 4¢ — 3 dimensional elements 0 # 7}, in my_3G7,, f or small € > 0
(case (B).

For general X and for ¢ = 1 it is known by work of Le-Ono that B takes
place and moreover 0 # i,(n..) € mDiffy(S? x S? x X). Also, for X = pt
and ¢ > 1 from the work of Abreu-McDuff we know that A takes place. We
do not have examples when case B takes place and i, (1) = 0 € 7, Diffo(M).

Similar work has been done in this direction by Le-Ono in [11]; by looking

at related but slightly different parametric GW invariants they get results

10



about 7;(Sympy (5% x S? x X, w; ® wy)) when i = 1,3. In chapter 3 we could
consider C? /Cy,,; instead and by carrying out similar arguments get the same

type of results for (CP?#CP?) x X.

11



Chapter 2

Relative parametric GW invariants

2.1 General setting

Consider a compact manifold B with boundary and a smooth map i : (B,0B) —
(A7, A7 p). Although the invariants can be defined in this generality, for the
applications we have in mind we will consider B to be an n-ball such that ¢
represents a relative homotopy class in m.(As, A7 p, *). We will often write
Jy = i(b) and Jp = im(i), and refer to imB in A; as Jg. Consider also a
smooth family of symplectic forms (wp)pep Where wy tames J,. We point out
that the wy, need not be cohomologous, as the taming condition is an open
condition. Our goal here is to show how we can define parametric GW invari-
ants relative to the boundary d.Jg, which count .J, holomorphic maps for some
b € B. These will not depend either on deformations of the family wg or on

the representative (Jp,0.Jp) of a relative homotopy class in (A;, A ).

Definition 2.1. We say that f : ¥ — M s simple if it is not the composite of
a holomorphic branched covering map (X,7) — (X', 5') of degree greater than
1 with a J-holomorphic map X' — M.

12



Consider /’\Zgyk(M, D, (Jg,0Jp)) the space of tuples (b, f, xq, ..., x;) where
f: 8% — M is a simple Jy,-holomorphic map in class D, for some b € B and

x; are pairwise distinct points on S%. We will consider
S,k(MJ D, (J37 aJB)) = Mva,k(Mv D, (JB= 8JB))/G

where G = PSL(2,C) acts on the moduli space by reparametrizations of the
domain. Denote the elements of Mg, (M, D, (Jp,0Jg)) by [b, f,21,. .., z¢].

In the best scenario, for a good choice of (Jg, d.Jp), the following hold:

(1) /f\/lv’gyk(M, D, (Jp,0Jp)) is a manifold of dimension 2n+2¢; (D)+2k+dim B

and
(2) M, = Mg, (M, D, (Jp,0Jp)) is compact.

Then the image of the map
ev: Mg (M, D, (Jp,0JB)) — M* (2.1)

with

61)([[), faxla s ;xk]) = (f(xl); e ;f(xk))

will provide a cycle ev.(Mg,) in MP* which, by intersection with homology
classes of complementary dimension in M?*, gives the parametric Gromov-

Witten invariants.

13



2.2  Definition and properties of PGW

As we will see in the regularity discussion below, (1) can always be achieved
by Sard-Smale theorem. However, even in the situations when (1) holds, (2)
is seldom true. In order to compactify Mg (M, D, (Jg,0Jp)) we need to add

the following

Definition 2.2. [10] A stable smooth rational map is given by a tuple
(f, 2, x1,...,x%) satisfying:

1) ¥ =%, X is a connected rational curve with normal crossing singu-
larities and x, ...,z are distinct smooth points in X

2) [ is continuous and each restriction fis, lifts to a smooth map from the
normalization X; to M;

8) If fix, is constant then 3; contains at least three special points. Here, a

special point is either a singular point or a marked point.

The compactification Mo (M, D, (Jg, 8Jp)) of Mj (M, D, (Jg,dJp)) con-
tains both stable J- holomorphic maps and nonsimple curves which we some-
times call multiple cover curves. These nonsimple curves could potentially
produce boundary strata of high dimension in the compactification
Mok (M, D, (Jp,dJp), and hence this space would not necessarily carry a fun-
damental class.

In the situation that B = pt there are various procedures [Li-Tian ([10]),
Ruan ([17]), Fukaya-Ono ([5]) to build up a theory which would provide @ vir-
tual moduli cycle, that is, an object which carries a fundamental class required

for the definition of the invariants.

14



Roughly speaking, locally one needs to consider here all the stable holo-
morphic maps as well as small perturbations of these. There are then various
procedures to pass to a global object with the required properties. These go
through without essential changes if one considers parameter spaces with no
boundary [see Leung-Bryan([4]), Ruan([17])]

In our situation we need to make sure that the boundary causes no prob-
lem. In what follows denote by [f, 3, x1, ..., zx] the equivalence class of a stable
map (f, %, x1,...,xx), where two maps are equivalent if they differ by an auto-
morphism of the domain. Then the elements of M (M, D, (Jg,dJp)) consist
of such equivalence classes. The following lemma basically states that if we
consider an appropriately small open neighborhood of My (M, D, (Jg,0Js))
consisting of almost holomorphic stable maps, then its projection onto .Jg stays

away from 0.Jp.

Lemma 2.3. For any compact set Jp € Ar such that 0Jp C Afp 3 ad >0
and €(0) > 0 for which there is no stable map (f,%,x1,...,x) such that

d;f = v, when d(J,0Jp) < & and v € LP(A" @, f*TM) with |v| < €(6).

Proof: We will prove this by assuming the opposite. Assume that we have a
sequence .J;, v; and f; such that d(.J;,0Jp) — 0, |v;| = ¢, — 0 and each f; is a
stable map in class D with the property that 9, f; = v;. Since Jp is compact
we find a convergent subsequence .J;, whose limit .J, is in 0.JJz. But this would
lead to a contradiction because by the Gromov compactness theorem there is
a subsequence of f; which converges to a J,, stable holomorphic map in class

D. This will contradict the fact that Jo, € dJp C Af p. O

With this lemma one shows as in [10], that every moduli space

15



B x Myx(M, D, (Jg,0Jg)) carries a virtual fundamental cycle
[M]m’r = [B X ﬂoyk(M, D, (JB, aJB))]”"

of degree r = 2¢;(D) + 2k + 2n — 6 + dim B.
Moreover if we consider two homotopic maps i : (B, 9B, x) — (A, A7 p, *)
and i' : (B',0B', x) — (A, Af p, *) that represent the same element in

7. (A, A5, %), then the corresponding fundamental cycles given by

[B x Myx(M,D,(Jp,dJp))]" and [B' x My (M, D, (Jg,0Jp))]"" are ori-
ented cobordant and hence the virtual fundamental class [M]*" is indepen-
dent of the choice of (Jp,wp, *) within the same class in 7. (A7, A7 p, *). We
denote by Fp(M,0,k) the space of all equivalences classes of stable maps
[f, 2, x1,...,x,] with total homology D. To define relative parametric Gromov-

Witten invariants we consider: ev; : B x Fp(M,0,k) — M given by

B’Ui(b, [fa 2,1‘1, R 7l‘k]) = f(xl)
We then can define
k

PGWg{()(,iB,(?JB) : @Hui(M, Q)k —~Q

=1

PGW,%{(’)%B’MB)(al, o) = evi(ag) AL A evp (o) [M]TT

16



which are zero unless

k
> a; =2¢1(D) + 2k + 2n — 6 + dim B (2.2)

=1

We should also point out that if one changes the orientation of B we obtain
the same invariant but with a negative sign.

We have the following theorem:

Theorem 2.4.

(i) The invariants PGWg{(’)%B’aJB) are symplectic deformation invariants
and depend only on the relative homotopy class of (Jg,0Jp).

(ii) For a fived choice of k, D and a; the map Og jay,...a; * T (A1, Af p, ¥) —

Q, given by

o ([(J5, 0T5)] = PGW Y8 (a )

.....

is a homomorphism .

Proof: Point (i) follows from the properties of PGW listed above.

The fact that the morphism Oy o, .. q, in (ii) is well defined also follows

from properties of PGW listed above. To show that it is a homeomorphism
we choose (By, 0By, ), and (Bsy, 0By, *) representing two maps from the stan-
dard n-ball with boundary to (Ar, A7 p,*), that give 2 elements 3, and f3,
inside 7, (A, A% ). We choose them such that by their concatenation we rep-

resent the element (3, + (, by a map j : (B,0B,x) — (Ar, Aj p,*) with
j(B\OB) = (B:\0B)) J(B2\0B,), such that j~'(A;\Af ) is included in the

Lexcept the case of w1 (Ay, A§ p*), which is not a group.
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disjoint union of two open subdiscs in B. We can therefore see that the new
virtual cycle corresponding to the classes (3, + (3, will be a disjoint union of
the virtual neighborhoods corresponding to 3, and ;. But this implies that
the parametric invariants corresponding to the new class 3; + [; are the sum

of the PGW corresponding to 3, and 5. Therefore © is a homomorpism. [

2.3 More on the relation between PGW and
almost complex structures

In this subsection we will explain that PGW detect only certain kinds of
relative homotopy classes of almost complex structures. As before, we refer to

Ay = A,,. Denote by
Apr ={J | thereisane; >0s.t. Je€ Ay forall 0 <e<e;} (2.3)

Then A, C Ay+ by lemma 4.6 below. Note that A,+ may not be connected,
but A, is and we will consider our base point * = Jyusepoint € Ae.

Definition 2.5. Consider a nontrivial element 3y € m.( A+, As). We say that
B¢ is a persistent element if its image under the natural morphism

iy s T (A, Ay %) = T (Ao, Ar, *) (2.4)

s monzero for any € arbitrary small.

Assume that there is an £ such that no J in A, has a J-holomorphic curve
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in the class D. Then we have the following proposition

Proposition 2.6. Assume that no J in A, admits J- holomorphic stable maps
in class D. Consider an element 0 # (B¢ € m( A+, Ay, %) obtained by count-
ing nontrivial parametric Gromov-Witten invariants in class D. Then (3 s a

persistent element.

The proof is quite evident from the manner in which the element (3, arises.
Namely, since (8¢, 90;) C (Aje1q,Ae), then by hypothesis we can apply The-
orem 2.4. We obtain that

oc ([(Be, 0Be)] = PGW 002500 (0, ) # 0. (2.5)

k‘,Oél,...,Oék

Therefore 0 # i5(08;) € m(Ape+q; Ar, ¥) and hence by the relation 2.4, 3, is

persistent. [

2.4 Computability of PGW

We will now get back to the two conditions we posed in the beginning of the sec-
tion, sufficient to yield that the image of the map (2.1) is a cycle. In what will
follow we will provide sufficient hypothesis on the parameter space (Jg, 0.J3, *)
and on the class D such that (1) and (2) are satisfied, as well as a criterion how
to check one of the hypothesis. It will then follow for such a family (Jg, 0.Jp, *)
the invariants PGW defined above are integer valued and can be obtained by
intersecting the image of the cycle ev, (ﬂ;yk(M, D, (Jp,0Jp))) with the classes

(PD(cv),...,PD(ay)) in H,(M)*. Moreover, they can be obtained by count-
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ing the number of J;, holomorphic maps in class D with k£ marked points which

intersect generic cycles representing (PD(ay),..., PD(ax)) in f(z).

2.4.1 Parametric regularity

In this subsection we will show that the D-parametric reqular families (Jg, 0.Jp)
are the ones for which (1) from 2.1 is satisfied. We begin by explaining what
is D-parametric regularity and contrast it with the usual D-regularity for J

(see [14]). For this we need to introduce the following facts.

Definition 2.7. We say that a map f : ¥ — M is somewhere injective if

df(z) #0, f1(f(2)) = z for some z € &.

Observation: A simple J-holomorphic map is somewhere injective (see
Proposition 2.3.1 page 18 in [14]).

Let X = Map(X, M; D) be the space of somewhere injective C*° smooth
maps f : X — M representing class D. This is an infinite dimensional manifold
with Ty X = C®(f*I'M). We will next consider the following generalized
vector bundle £ — Bx X, whose fiber at (b, f) is the space &, f = Qg;l(f*TM)
of C*° smooth J, antilinear forms with values in f*I"M . In this vector bundle

we consider a section ® : B x X — &, given by
1 .
@b, f) = 5(df + Jyodf o) (26)
The zeros of @ are precisely .J, holomorphic maps and thus the moduli space

M o(M, D, (Jp,8J5)) = & 1(0),
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is the intersection of im® with the zero section of the bundle. Since we would
like /f\/lv’gyk(M, D,(Jg,0Jp)) to be a manifold we require that ® is transversal
to the zero section. This means that the image of d®(b, f) is complementary
to the tangent space T, B ® T X of the zero section. But for any f which is J,

holomorphic, d® is given by
de(b, f) : T, B® C®(f'TM) — T,B®TiX ® &
If we consider now the projection onto the vertical space of the bundle:
proje : ThyBOTiX © Eyp — &g
the above transversality translates into the fact that
d®(b, f) o projy : T,B & C™(f*TM) — Q} (S, f*TM) (2.7)

is onto. We will make the notation D®(b, f) = d®(b, f) oprojs. We then have:

Definition 2.8. We say that a J, holomorphic map fis Jg parametric reqular

if D®(b, f) is onto.

Observation: The linearized operator is well defined if there is no pair (b, f)
with f a J, holomorphic and b € OB. This is precisely the condition we

imposed on (Jp, d.Jp) to give a relative cycle in (A7, A7 p).

Definition 2.9. Consider (Jp,wp) as above. We say that (Jg, Jop) is an D-
parametric regular family of C'*° smooth almost complex structures if any Jy

holomorphic map in class D is parametric reqular. We denote by Jpreq(D) the
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set of all D-parametric regular families (Jp, 0Jp) C (Ar, Af p).
We have the following:

Theorem 2.10. If (Jp,0Jg) € Tpreg(D), then the moduli space
N’[;’O(M, D, (Jg,0Jp)) is a smooth open manifold of dimension 2n+ 2c¢,(D) +

dim B, with a natural orientation.

Moreover, if one considers ./f\/lv’g,O(M, D, (Jp,d8Jp)) x (S*)F and takes away
all the diagonals of the type ./K/lvao(M,D, (J,0Jg)) x diag; ;, what we ob-
tain is precisely /f\/lv’gyk(M, D, (Jp,0Jp)). This will therefore be a manifold of
dimension 2n + 2¢, (D) + dim B + 2k, when (Jp,0Jp) € Tpreg(D).

The proof of theorem 2.10 is based on the following characterization of
parametric regularity.

We write Mvé,o(M, D, A) for the universal moduli space consisting of pairs
(f,J) where J € A; is a C*° smooth almost complex structure and f is a .J

-holomorphic map.
Proposition 2.11. Consider the diagram
Mio(M, D, Ay) (2:8)

II

(BaaB) L (Ab ?,D)

Then Jg € Tpreg(A) iff @ th 11

Proof: For simplicity we will denote by Dy, = D®(b, f)coo(s+@m). By

(2.7) the surjectivity of D®(b, f) is then equivalent with the surjectivity of the
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following linear operator
D¢|TbB :1yB — cokerDbyf

We will denote i(b) = J. The tangent space 1,4, to A; consists of all sections
Y of the bundle End (7'M, J) whose fiber at p € M is the space of linear maps

Y : T,M — T,M such that Y'J + JY = 0; we will consider the map
R:TyA — QYN (%, f*TM)

given by R(Y) = Y odf o j. The map

-2
dIl : Ty My o(M, D, Ar) — TrA;

is given by dII(£,Y) = Y, where the pair (£,Y) is in Tfyj/f\zao(M,D,AI) if
and only if
Dyy(§) + R(Y) =0 (2.9)

From this one can see that imD;, = R(im(dll)). Since D, is elliptic and
ker R C imdII, it follows that cokerdll has finite dimension. If we consider the

map

F:X X A[ — & ,f(f, Jb) :a](f) (210)

then (see Prop 3.4.1 in [14]) the linearization at a zero (f, J) with f simple is
onto. That is

DF(f, J)(&Y) = D& + R(Y) (2.11)

23



is onto.This implies that cokerDy; is covered by R. Therefore there is an
induced map

R : cokerdll — cokerDy

which is isomorphism. The proof of the proposition then follows easily.
Doy, 5(Y) = Rodi, so we have i h Il < di — cokerdIl onto <

Rodi — cokerD, ; onto. OJ

Sketch of proof for theorem 2.10

Due to the similarity of the proof to the one of Theorem 3.1.2 in [14], we
will only sketch the proof. We begin by making the following remarks:

i) As we will explain below, proofs of various statements involving regu-
larity and transversality requires one to use results regarding elliptic (hence
Fredholm) operators whose domains and targets are Banach manifolds. There-
fore, rather than working with Fréchét manifolds consisting on C* objects,
we must consider their completions under suitable Sobolev norms.

More precisely, one should to work with spaces consisting of almost complex
structures of class C¢,and also with X*P where kp > 2, the space of maps

whose k-th derivatives are of class LP. One should also use the completion
EF =WFIPAT*S @, f*TM))

rather than QS’I(E, f*TM). The tangent space to the space X*P at a point
f will now be the space W*P(f*T'M) of WP sections of the bundle f*TM.
This will replace the space C*°(f*T'M) of C* sections in f*T'M.

ii) We should point out that the kernel and the cokernel of a smooth elliptic
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operator are independent of the smoothness of the functions in the domain and
in the range. This is a consequence of elliptic regularity (see Prop 3.2.2 [14]).
This is the reason why we can state Prop 2.11 for the C* case.

For instance, if we consider elements in Jg of class ¢, and the operator
D®(b, f) : ToyB ® WEP(f*TM) — WP (A T*Y @, f*TM)  (2.12)

then its kernel and cokernel do not depend on the choice of £ and p as long as
kE<l+1.

iii) A proof of theorem 2.10 involves the use of the infinite dimensional
version of the implicit function theorem. ([14]). More precisely, the surjec-
tivity of the operator D®(b, f) defined on space of C'*° sections implies the
surjectivity of the operator D® defined as in 2.12 on the Banach spaces com-
pletions. Denote by (A¢, A;lD) paired spaces of almost complex structures of

class ¢, and by
Mgzg(MaD;Al) = {(f,J) € X%2 x Al0,(f) =0}

with p > 2 and 1 < k£ < /. Due to elliptic regularity this is independent
of k and p. We will now apply proposition 2.11 for the operator II* now
defined on Banach manifolds , IT¢ : /f\Z[*):g(M, D, A7) — (A, A?’%) and obtain
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transversality for the following diagram:

Mo (M, D, Ar) (2.13)
HZ

(B,0B) —— (A}, A7Y)

Then one applies the infinite dimensional implicit function theorem, which
says that, given a C* Fredholm operator P : X — Y, transversal to a
C'" imbedding g : A — P, dimA < oo, then the preimage P~'(g(A)) is
(indexP + dimA)- dimensional manifold provided that ¢ > indexP + dimA.

Elliptic regularity again gives the result for the C* category. U

Remark 2.12. In the proof of proposition 2.11 we use the fact that the lin-
earization DF(f, J,)(€,Y) = Dyp& + R(Y') of the operator F defined in 2.10
is surjective for any zero (f,.J,). To see this we complete its image and range

under suitable Sobolev norms; we obtain the following operator defined on

DF(f, Jy) : WEP(f*T M) x C*(End(TM, Jy)) — WE (A TS @, f*TM)),

(2.14)
as in [14]. Afterwords one uses Hahn-Banach theorem to show that its range,
which is closed because it is the range of a Fredholm operator, is also dense.

Elliptic regularity then provides the surjectivity result for the C'> operator
Df(fa Jb)

Definition 2.13. We will say that (Jp,0.Jp) satisfies hypothesis H, if it

15 a D-parametric reqular family of almost complex structures.
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There are few key points to be noticed here. Notice that parametric regu-
larity is a generalization of the usual regularity. Indeed, if we consider J, = J
to be constant for b in a neighborhood around by then the regularity of an
almost complex structure J simply says, following the diagram above, that dIl
is surjective. If we now regard J within an arbitrary family Jp, this no longer
needs to be the case. It will then suffice that the cokernel of dII is covered by
the variation of J in the direction of B.

In fact, when we count rational maps, the criterion of parametric regularity
described below reduces the problem to the usual regularity in some suitable
ambient space.

More precisely, note that the regularity of a holomorphic map is a local
statement within B and it is directly related to the almost complex structure
data rather than to the symplectic structure data. Therefore, for each b €
IntB we can restrict our attention to a neighborhood of b, and without loss of
generality the following discussion can be made for smoothly trivial fibrations.
We say that the family (J,wp) descends from a fibration M — M — B if M
comes with an almost complex structure J such that the restriction to each
fiber M x b is an almost complex structure .J,. Moreover M admits a closed
two form w which restricts on each fiber M x b to a symplectic form w;, that
tames J,. Here we chose a trivialization of the fibration such that smoothly
M =B xM and 7 is just the projection on the first factor. In fact, every
family (Jy)pep, locally around a point by, descends from a fibration. In the
following theorem we consider the family of parameters B to be a subspace of

C™ and we denote by z the parameters in C™.
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Theorem 2.14. Let (J,,w,).ccn be a family on M descending from the sym-
plectic fibration (M, J, w)

7 —

M—= 1 (2.15)

(Cm
Suppose that f : ¥ —> M is a Jy holomorphic map and consider the composite
map

f=iof,f:S—Mx0CM

which s j—holomorphic. If f 8 j—regular, then f is (J,) parametric regular.

Moreover, if ¥ = S? then the reverse statement holds.

For the proof of the theorem see Appendix A.

2.4.2 Compactness

Even in those situations when (1) from section 2.1, when is easily achieved
using Sard-Smale, (2) is seldom true. However, (2) is true when £ is ei-
ther 0 or 1, and the class D is J, indecomposable for any b € B. This
means that no .J, holomorphic map in class D can decompose into a con-
nected union of .J, holomorphic spheres C = C*|JC?{J...lUCN, with N > 1
such that each C! represents the class D; # 0 and D = Dy + ... + Dy.
Then as a consequence of Gromov’s compactness theorem it follows that

ok = MG (M, D,(Jp,0Jp)) is compact and hence in this situation the

image of ev : Mg (M, D, (Jp,dJp)) — M" is a cycle.

Definition 2.15. We will say that the hypothesis H, is satisfied by (Jz, 0Jp)
and D if the class D is J, indecomposable for every b € B.
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Note that if D is J, indecomposable and k£ > 2 then in order to compactify
the image of the evaluation map, one only needs to include the limits of se-
quences of J-holomorphic maps for which two distinct marked points converge
to each other. Hence ev(MgG,) will have boundary of codimension 2 or more

and hence it will carry a fundamental class.
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Chapter 3

Resolutions of singularities and relative PGW

3.1 Quotient singularities; the local picture

In this subsection we will give an overview of work of Kronheimer [9] and
Abreu-McDuff [3] on how to construct special families of almost complex struc-
tures arising from the study of the total spaces of deformations for some quo-
tient singularities. In the end of the section we will explain how these families
serve our purpose of counting nontrivial PGW. The local picture is as follows
(see Kronheimer [9)):

We consider the particular type of Hirzebruch-Jung singularity Yy = C? /Cy,
given by the diagonal action by scalars of Cyy on C?, where Cy, is the cyclic
group of order 2¢. This admits a resolution oy : }70 — Y, where % is the total
space of the line bundle O(—2() of degree —2¢ over CP'. The exceptional
curve of the resolution, we will call it E, is a curve of self-intersection —2¢ and
is the zero section of Yy. This resolution admits a 2¢ — 1 complex dimensional
parameter family of deformations ,Y;, ¢ € C2~1. The total space ¥ = U Y, of

this family of deformations is the total space of the vector bundle O(—1)%.
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With the exception of the case ¢ = 2, this coincides with the versal space of
deformations of the cone over the rational curve of degree 2¢ in CP%. When
¢ = 2, the versal space of deformations has two components, one in complex
dimension 3 and another one of dimension 1, which intersect transversally
(see Pinkham [16]). The total space of the bundle O(—1)% coincides with the
3-dimensional component.

More precisely, we consider the exact sequence of bundles

O(=20) — oO(-1* 5 0! (3.1)

where r is given by evaluating at 2¢ — 1 generic sections of the dual of 57,
Y* = O(1)%. Since holomorphically ©%! is trivial, we can project it to
its fiber C***! and hence we obtain a submersion ¢ : O(—1)% — C?**! with
Y; = ¢ L(t). Also it can be seen that Y is diffeomorphic with Y5 x €2~ and
a choice of trivialization provides a fiberwise diffeomorphism

0:7 = T,xC (3.2)
where Yj is the total space of the bundle O(—2¢).

One way of seeing Y is to identify the base CP" of the bundle O(—1)% —
CP! with the set of all directions in C?>. Then any element in the total space
Y of the bundle, which is not on the zero section, will be a 2/-tuple of vectors
in C? that have the same direction given by the base point z € CP'. This
viewpoint can be formalized as follows:

Consider 4/ sections in the dual Y*. Here the space of holomorphic sections
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is given by H°(C'P', O(1))*. Denote by Y the subspace of (C?)* consisting
of 2¢ -tuples of vector in C? which span either zero or a line. By evaluating all

the 4/ section we obtain a map

oY Y CcC

which contracts E to a point vy = o(E). Moreover, 7, is the only singular
point of Y. and the morphism is one to one outside £. We also define as in 3.1
the map ¢ : Y — C?*~! by evaluating at the original 2¢ — 1 generic sections.

The following diagram commutes

y ——Y (3.3)

FoL

-1 id -1

Remark 3.1. Consider 7,; the standard Kihler form on C*. By restriction,
this gives a Kéhler form on Y. If we denote by (vy,...,v) an element in

Y C (C?)%, we can consider the S* action S x Y — Y given by
X (vy, ..., v90) = (€™, .., €2 Tuy).

It follows that this is a hamiltonian action with respect to the form 7 on Y.
In particular the form 7, is S' invariant.

Similarly, we can give a fiberwise S! action on Y by multiplying with
e?™ the 2¢ dimensional vectors in each fiber. It is then immediate that the

holomorphic map o commutes with the S! action. Via o* we pullback the
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form 7,; and obtain a closed S invariant form Ty = 0'Tg O Y which restricts
to a Kihler form 7, on each fiber Y, if ¢ # 0 but degenerates along E when
t = 0. E is contained in the fixed point set for the action on Y. If we further
push forward through 6 defined in 3.2, these forms can be seen as a family of

forms on the manifold }70.

3.2 Quotient singularities; the compactified
global picture

In this section we will compactify the local picture, as follows:

We consider the following associated exact sequence
o(=20) &% Oo(-1)*qp0 8 o*-1g0 (3.4)

By taking the projectivization of the second and third term in the sequence,

we obtain a map
PO’ ®0) ———> PO*'g0) (3.5)

which is defined everywhere except at those points in each fiber

P(O(-1)* @ 0), that belong to the kernel of 7. These points describe a
section Ey, := [i(O(=20)), : 0],ecpr, to which we will refer from now on as
the section at infinity. Let us consider the image of the zero section £ in the
projectivizations of the bundle O(—1)%, [0, : A],ccpr. We will denote it by Ej

and refer to it as to the zero section of P(O(—1)*®0©),. We now blow up each
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fiber P(O(—1)* @ O), at the point [i(O(—2()), : 0], and in this manner we
obtain a fibration P(O(—1)% & O) — CP" with fibers CP*#CP?. We will
denote by D, the exceptional divisor of the blow up. This will be a CP?~!.

We hence produce a morphism 7 that extends the morphism 7; We have:

PO p0) L PO*1g0) (3.6)

Basically, on each fiber, the map 7, is equal to the map 7, outside the
exceptional divisor D,. We will denote by [A; :...: Ag 1 : Ag], a point in the
fiber of P(O%~! @ O) over z. With this notation we have that

P s s, 2) Bs aline Liy,. oy, ) \ 00 in P(O(=1)*@0),. Each

z LML eose s ANAE—1IA9yp [2) P ALY AL

will define Fz(p) == [)\]_ O )\2[,1 : )\QE]z-
As in the local picture, we can project onto a fiber CP?*~! of the trivial

bundle P(O%*~1 @ 0)=CP?*-! x CP! and obtain a submersion
i: P(O(-1)*®0) - CcpP*!

with the fibers are diffeomorphic to S? x S?. Moreover, each fiber naturally
inherits a holomorphic structure. It is a classical result that the only complex
structures on S? x S? are the ones which will give the manifolds the structure

of a Hirzebruch surface. We remind the reader that a Hirzebruch surface H,,
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is a complex manifold given by :

As a particular note, the Hirzebruch surfaces H,, of even order are diffeo-
morphic to S? x S2, and all the Hirzebruch surfaces of odd order Hy, | are
diffeomorphic to CP?#CP? (see [6]). The next result shows that the fibers of

¢ '(t) are Hirzebruch surfaces Hs,, with n < £ if ¢t # 0.

Proposition 3.2. For q as above, the following hold:

(i) Yo:=q¢g 4([0:...:0:1]) = P(O(~2() ® O) = Hy,
i) Ift=[A1:...: A= : 1] #[0:...:0: 1], we have that
Yii=q¢ (M ... Age 11 1)) = Hy, for some n < L.

Proof: (i) Since 7([i(O(—=2¢)), : A]) = 7([i(O(=2¢)), : A] for A # 0, we can
easily conclude that ¢='([0 : ... : 0 : 1]) contains all the points of the type
[i(O(—=20)), : A,ecpr for nontrivial A\. The section at infinity described as
[i(O(=20)), : 0],ecpr appears by adding all the points on D,, with z € CP!,
whose image through 7 is precisely [0 : ... : 0 : 1]. The conclusion follows, that
g H[0:...:0:1]) = P(O(-20) ® O).

(ii) Throughout this proof, we will denote by t = [A; : ...t Ay @ 1].
From the construction of ¢ we can see that ¢1() is a holomorphic CP! bundle
over CP'. The associated integrable almost complex structure .J; is obtained
as a restriction from the complex structure on P(O(—=1)% @ O) using the
holomorphic map ¢. Moreover, as we have already mentioned, all the fibers of

q are diffeomorphic to S? x S?, and hence J; gives the fiber the structure of a
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Hirzebruch surface Hs,.

In order to show that n < ¢, we will show that ¢~!(¢) does not contain any
J; holomorphic curves of self-intersection —2p < —2/.

In order to do so, let us first notice that we can extend the S' action
described in 3.1 on Y to a S! action on the total space of the bundle
O(—1)"2* @ O by acting on the trivial bundle O also by multiplication in the
fiber by €27, Moreover, if we denote the coordinate on the fiber O, by ), we
can extend 73, the S* invariant form on Y (see Remark 3.1) to O(=1)"2* @ O.
We do so by taking

T:T;,erA/\dX.

It follows that 7 is also a closed S' invariant form, such that 7 is 0 when
evaluated on vector fields tangent to sections of the type (0,,A),ccpt and
nondegenerate everywhere else.

Finally, let us point out that associated to the hamiltonian S* action on
Y C C* there is a moment map given by H : Y — R,

H(vy ..., vy) = —7|v]?

Consequently, we obtain a map H: O(=20) ® O — R, given by
H = o*(H) — 7|\

If we consider the level set ﬁ’l(w) then this is invariant under the S' action.
If we consider the quotient H(r)/S?, then this will be diffeomorphic with

P(O(-1)"% @ O). Moreover, the effect of taking the quotient is to provide a
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simultaneous symplectic reduction in each fiber (O(—2¢)® O), which will now
be a symplectic CP?*. In fact the closed S' invariant 2 form 7 restricts to the
level set H () and can be pushed forward to the quotient H*(r)/S*. We
will denote by 7 the 2-form obtained on the quotient space.

Exactly as in the symplectic reduction (see McDuff-Salamon [15] Lemma
5.2), for any point p € H~'(r) which is not on the submanifold
((0,,A\),ecpt, |A] = 1) we obtain nondegeneracy of the form 7,. Moreover, the
closed 2 form 7 degenerates along Ej, the “zero section” of the projectivized
bundle.

In conclusion, this construction provides us with a closed 2-form on
P(O(—2¢) ® O) that only degenerates along the zero section E,. We have
constructed P(O(—2¢) & O) by blowing up P(O(—2¢) & O) along the section
at infinity Eo. It easily follows that the form 7 pulls back to P(O(—2¢) & O),
to a closed 2-form which also degenerates only along the zero section Ej. For
simplicity we will denote it by 7 as well.

Let us also notice that the forms 7; are compatible with the complex struc-
ture J; since they are obtained by pulling back via a holomorphic map. Since
the fiber ¢ 1(t),t # 0, is disjoint from Ey C ¢ *(0), it follows that it is in fact
a Kihler manifold (Y, .J;, 7;) diffeomorphic to S? x S2,

Since the forms 7; are obtained by restricting the closed form 7 to fibers
of ¢ it is immediate that they are all in the same cohomology class. Moreover,
since [To)ja—er = (To) g, = 0 we obtain that Vt # 0, [7;] = [w¢| = [oF @ lop].

Suppose now that we have a .J; holomorphic curve f of self-intersection

—2p < 20 in Y, =S?% x S%. This would be then in the class A — pF', and since is
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Ji- holomorphic, we would have that 7;([¢mf] > 0. But this is contradicted
by the fact that 7,([imf] = [T4]([A — pF| = [or ® log|([A —pF]|) =(—p < 0.
U

Remark 3.3. What we shall use from what we proved about the structure of
the fibers of ¢ is that for t = [A; 1 ... A1 2 1] £ [0: ... : 0 : 1], the space
Yii=q¢ (M :... 0 Age_y 2 1]) is a Kihler manifold (Y, J;,7) diffeomorphic
to S? x S?, that doesn’t admit any .J; holomorphic curves of self-intersection
—2p < —2/. This implies that there are no J;- holomorphic stable maps in the
class A — (F. Indeed, if there was any, then its irreducible components would
be J, - holomorphic curves f; : PY; = S? — Y,,with the homology classes
given by [fi] = A — pF and [f;]iz1 = myF, such that p > ¢ and m; > 0. But
this contradicts the fact that the self-intersection of fi, equal to —2p, has to

be greater than —2/¢.

In what follows we will give a direct proof of the fact that the fibers g~ (¢)
are Hirzebruch surfaces, for the case ¢ = 1. The reader may skip and go

directly to section 3.3.

Proposition 3.4. If we consider the sequence

0(-2) - O(-1)e0(-1) & 0 (3.7)

and follow the compactification procedure described above, then the following
hold:
(i) ¢([0:1]) = P(O(-2) ® O) = Hy
(i) ¢ '([a: 1]) = P(O® O) = H,
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Proof: As before, we identify Y, the total space of the bundle O(—1)®O(—-1)
with the the zero section collapsed to a point, with the subset of C? x CZ,
consisting from pairs (o1, v3) of colinear vectors in C?. Consider e and & to
be the standard vectors (1,0) and (0, 1) in C2.

We will define the map r on Y C Y by
(U1, T3) =< €1,01 > + < &,0; >, (3.8)

where < .,. > is the standard hermitian product on C?. This map naturally
extends to Y = O(—=1) & O(—1) by taking the value 0 for points on the zero
section. This extended map provides a morphism of bundles which satisfies
the properties of 3.7.

Consider now (U, z) and (U’,2') the two coordinates charts on the base
CP!, where 0 € U, oo € U'" and 22’ = 1. We can now describe the bundle
O(—1) ® O(—1) in coordinate charts as follows:

The coordinates over the open set containing zero are given by
(2,61,6)0 € U x C x C, and the coordinates over the open set containing
infinity are (2, &}, &) € U' x Cx C, with the change of coordinates satisfying

the relations:
1

2=y
& = ¢ (3.9)
& = 2§

With this coordinates charts, the vectorial description of any point on Y given
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in the coordinates is:

(2,61,&)0 = ((&12, &), (§22,62))

(3.10)
(ZIJ 517 gé)oo = ((517 Z,é-i)v (6&7 Z,§2),)
Combining 3.8 and 3.10 we obtain:
r(2,61,6)0 = &z +& (3.11)

r(#,€, )0 = & +&7

It is obvious from 3.9 that the two definitions agree on the intersection U [ U".

These definitions extend immediatly to define the map

T:P(O(-)a0(-1)®0)————->P(Oa0) (3.12)

given by:
(261 :&: Ao = (262 +&:A)
([ & A ) = (2,6 + 621 A))

(3.13)

These formulas yield the following descriptions for

¢ Ha:1])=q¢ ([Ma: A]), forany A #0,(2,) e U x C, (2',¢&) e U' x C:

g Ha:1]) = (2, [& a)—wiyz: AN])o
= (¢, [aA = &2 1 6 A ])oo),

(3.14)

where now we will allow A = 0 as a reflection of the fact that the preimages
of 7 lie in P(O(—1) ® O(—1) ® O) rather that in P(O(—1) ® O(—1) ® O).

The proof of the proposition is now quite obvious, once we recall the following
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result from Kodaira [8]:

Lemma 3.5. (Kodaira)
Consider a holomorphic fibration P over CP' with the fiber CP', given by

the change of coordinates:

z = L

¢ (3.15)
n o= ()" +a(z)*

where k < m/2 and n,n' C C()oo = CP'. Then E is biholomorphic to H,, if

a =0 and to H,,_ o otherwise.

To conclude our proof, we take m = 2 and £ = 1 in the lemma above and
we get a biholomorphism between P and ¢ '([a : 1]) by taking (z,7), into
(2,&1) and (2/,7)s into (2',—&}), and then plug in the formulas 3.14. One
checks that this morphism commutes with the change of coordinates in the

two manifolds.

3.3 A parametric regular family of almost

complex structures on S? x S? x X

3.3.1 The description of the family

Let B*~2 be the unit ball in C*~'. With the proposition 3.2, we have provided

a family (Y, Jf, Tt) e pae—2, where each (Y, Jf,7¢),t # 0 is a Kihler manifold
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diffeomorphic with S? x S?, and, (Y, J¢{) is a complex manifold, also diffeo-
morphic with S? x S? and 7, degenerates along A — ¢F. The total space of

the family has the following properties:

a) The space Y = U,cpgu—2Y is smoothly diffeomorphic with S? x S$? x B2,
Moreover Y is a complex manifold with a complex structure J¢ which
restricts to each fiber Y, to the complex structure Jf. Also, Y has a
closed (1,1) form 7 which is satisfies all the properties of a Kéhler form

outside the zero fiber and restricts at each fiber to the forms, 7; .

b) The form 7 restricted to Y, degenerates along the exceptional curve A —¢F

Moreover, Vt € B¥*~2 [F] = [w].
From (a) we see that there is a holomorphic projection m : Y — S2 x B2,
This is because every Y, is a ruled surface therefore it fibers over S?. If we

denote by o the area form on S? we can construct a two form
=7+ (A= 0O1"(a)

For A > / these forms are Kihler forms and moreover they restrict to each Y,
to symplectic forms in the class [wy]. This proves that any Jf (including J¢)
is tamed by a form isotopic with w) as long as A > ¢. We now follow a similar
procedure to construct a family of symplectic forms w;,t € B*~2 such that
each w; tames Jf. We will now change the forms 7, by perturbing with a a
positive factor of 7*(«) only around ¢ = 0 and smooth with a cut-off function.
By this procedure we obtain symplectic forms w; with variable cohomology
classes.
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In conclusion, we have pairs (S? x S?, Jf, w;);c g2 where w; is a symplectic
structure on S% x S? that tames J{. Moreover [w;],cgae—s = [we]. This gives a
family of almost complex structures which we denote by abuse of notation By
such that (By,dBy;) € (Aesq, Ae) for any € > 0. More importantly, only J§
admits the exceptional curve in the class A — (F.

We will then obtain a family of almost complex structures on (5% x §% x X)
by taking (Jf x Jy), and by abuse of notation, we will call this family also B,.
Therefore we just produced on (S* x 5% x X) pairs (By, 0By) C (Ajrese, Ar),
with € > 0 that represents an element 3y in 7, (A e1q, A¢). Moreover each
By C Ay for any small € > 0.

From the choice of the J’s we know that the only structure which admits

A —CF curves is Jy X Jg.

3.3.2 A computation of PGW

Here we prove that (H;) and (Hy) are satisfied for the family (B, 0By),
and therefore the invariant is integer valued and can be obtained by counting
holomorphic maps intersecting generic cycles of appropriate dimension.
Claim 1. The family (B, 0By) satisfies H; .

Proof of claim 1: For the proof, we need the following

Lemma 3.6. (McDuff-Salamon)
Assume that J is integrable and let f : CP' — M be a J-holomorphic
curve. Suppose that every summand of f*T'M has Chern number ¢, > —1.

Then Dy is onto.

From the sequence (3.1) we have that the map E, which is Jt holomorphic
43



has the normal bundle O(—1)?* and therefore we can apply the above lemma
for the integrable almost complex structure J. If follows that E is J* regular
inside Y. If we consider now Y x X and J? x Jst, the curve E lies entirely inside
Y and therefore the normal bundle inside Y x X is O(—1)% + trivial, and
therefore the curve is is J* x Js regular. This splitting and therefore regularity
use the fact that the map E is of genus zero. Theorem 2.14 implies parametric

regularity and therefore (H;) holds. O

Claim 2. The family (B, 0By) satisfies (Hs) .
Proof of claim 2: This is proved by inspection. Only J§ x J,; admits A—(F
stable maps, and the only maps in this class are copies of the imbedded map
E in any fiber S% x S? x pt. Hence there are no decomposable J, holomorphic
maps. We should point out that for other almost complex structures J on
S? x S? x X one could have decomposable J-holomorphic maps in the class
A —[(F.

O

Observation: For an example of a situation when one could have decompos-
able J-holomorphic maps, we can consider M = S?x S? x CP",w = w1 Pwg.
If we denote by H the hyperplane class in CP", we can take wy such that
w(A — F — H) > 0 and one can get a symplectic embeding of S? into M, in
the class A — F — H. We can choose an w tamed almost complex structure J
on M which fibers over the base S? x S? and such that the class H has a J
holomorphic representative. Then the class A — F is J decomposable where
the decomposition is given by a C' with C' = C,|JCy with [C1]=A—-F - H
and [Cy] = H. O
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We can therefore conclude that the invariants

k
PGW3 s PP Ay HO (5% x §% x X,Q)F — Z

=1

are integer valued. We have two situations. First, if X = pt then the moduli
space of unparametrized curves has dimension 0 so we would count isolated
curves. This follows immediately from the fact that ¢;(A — (F) = —4¢ + 2

(adjunction formula) and therefore

dim M (5% x S*, A — (F, (B, 0B,)) =2 x 2+ 2¢;(A — (F) + dim B — 6

=4 -4 +44+44-2-6=0.

2 2
Moreover, the invariant PGWijS OXOX’(BZ’aBZ)([pt]) = 1 because it counts E,

the only (Jy)pepe parametric holomorphic map in the class A — (F.

In the situation that dim X = 2n > 0, we will count maps with one marked
point. ¢;(A—¢F) will be the same since the holomorphic maps in class A —(F
will be copies of the curve E and hence will have the image entirely in the

fibers S% x S? x pt C S? x S? x X. We therefore have

dim M, (S* x S* x X, A — (F, (B, 0By)) = 2 x (2+n) + 2c1(A — (F) + dim B*

—6+2=2n+2

We will consider a cycle in the homology class F' which will lie in a fiber
5% x 5% x pt inside S? x S? x X. It easily follows that the only .J,, holomorphic

map with one marked point which intersect this cycle transversely is a copy
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of the map E inside the fiber S? x S? x pt. We obtain that
PGW 50y ) (PD(F)) = 1

where the sign depends on the orientation of the parameter space B,. Applying
theorem 2.4 we obtain that the morphism © in both situations is nontrivial

and therefore there is a nonzero element
B € 7T4g_2((./4[g7g+6}, Ag) foralle >0 (3.16)

that is represented by the cycle (By, 0B¢) C (Arye; Afycp)-
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Chapter 4

Almost complex structures and

symplectomorphism groups

In the next two sections we explain the fibration (1.1), and discuss some known
facts on the symplectomorphisms groups and the spaces of almost complex
structures for the situation when M = S? x S2. The results here are ei-
ther standard facts in symplectic topology or they come from work of Abreu,
McDuff,[13] and Kronheimer [9]. Then we introduce the notions of fragile and
new elements of the symplectomorphism groups as w varies, and discuss some

of their properties.

4.1 The main fibration

Consider as before S, to be the space of symplectic forms w' that can be
joined to w through a path of symplectic cohomologous forms (w)scpo,1]- First

recall:
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Theorem 4.1. Moser’s stability theorem

Let M be a closed manifold, and suppose that wy is a smooth family of

symplectic cohomologous forms on M. Then there is a family of diffeomorphism

o1 of M such that ¢y = id, Pjw; = wy.

This implies that the group DiffgM acts transitively on Sy, via the action

Hence, we have the following fibration (see [9]):

—1 0
Symp, (M, w) — Diffy (M) b= = S[u)

Later, McDuff observed the following
Proposition 4.2. S|, is homotopy equivalent to Ay,.

In order to prove this she considers the space of pairs

Xy ={(W', J) € S x Apy|w' tames J}

The maps Xj,) — S|,y and Ay, — Ay, are fibrations with contractible fibers,

and hence homotopy equivalences and the conclusion follows.

This proposition allows one to conclude that there is the following fibration

in homotopy (see [13])

Symp, (M, w) — Diffy (M) —— Ap.
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4.2 Structural and stability results for the case
M = 5%x S?

If one considers the situation when (M,w)) = (S* x S?, 0p @ Aop), Abreu-
McDuff 3], and McDuff [13] provide extensive information regarding the struc-
ture of the spaces A, and G, as well as about the variation of their homotopy
type as A varies.

More precisely, we have:

Proposition 4.3. Consider, as above (M,w,) = (S% x S?, 0 ® Aop), and

A>1. Then Ay C Ayxyc for any € > 0.
As a corollary of the above results, one gets

Proposition 4.4. For A > 1,e > 0, there are maps Sy — S);. and

Gt — GY

\pe that are well defined up to homotopy and make the following

diagrams commute

G} —— DiffyS? x §? —— S, (4.3)

‘/_

GI;\I;E I ]:)Iffos2 x §% — S)\+e

and

e —— Y, (4.4)

AN

G?'

Ate+e

Moreover, the investigation in [13] is based on a detailed description of the

spaces A,. Some of the results are collected in the following
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Proposition 4.5. The spaces Ay are stratified spaces where the strata Ay g,
0 < £ < X\ consist of almost complex structures tamed by wy and that admait
almost holomorphic curves in the class A — (F. FEach stratum is a Fréchét

suborbifold of Ay of codimension 40 — 2.

We should point out that in particular the homotopy type of A, only

changes as A passes an integer.

4.3 Almost complex structures and
symplectomorphisms; deformations along
compact subsets

In this section we will get back to the situation when M is an arbitrary closed
manifold. The aim here is to describe what can be said about the behavior of
spaces of almost complex structures and about the symplectomorphism groups
as the symplectic form varies along the line L.

If L happens to be a ray Aw, A > 0 then G, is independent of . It will
therefore make sense to consider L # ray.

For M an arbitrary symplectic manifold we no longer have either inclusion
of Ay in Ay, or the maps G\ — G, or the stratification exhibited in the
previous section. Nevertheless, as a consequence of the fact that taming is an
open condition, we are able to establish the following proposition, which we

use in the proof of the theorem 2.14.
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Proposition 4.6. i) Let K' to be an arbitrary compact subset of Ay. For G as
in (1.4), there is an exr > 0 such that K' is contained in Ay, for |e| < exr.

ii) Consider K an arbitrary compact set in Gy. Then there is an €x > 0

and a map h : [—eg, ex] x K — G, such that the following diagram commutes
h:[—exg,ex] x K——Gp, (4.5)
pri pr2
[—€x, €x] mel (—00, 00).

Moreover, for any two such maps h and h' which coincide on 0 X K, there
exists, for an 0 < € small enough, a homotopy H : [0,1] x [—€,€'] x K — G|,

between them which satisfies

H:[0,1] x [—€,€] x K gL (4.6)
pri Lpra
[—€, €] nel (—00, 00).

Proof: Subpoint (i) is an immediate consequence of the openness of the
taming condition.

For the proof of (ii), let’s first notice that, since the symplectic condition
is an open condition, there is a convex open neighborhood U of w, inside the
space of 2-forms such that any closed w’ in U is still symplectic.

Moreover, there is an €(K) > 0 such that for any gy € K,
grwrte € U, forall 0 <e < e(K).

This claim can be proved by contrapositive as follows. Assume that there

is a sequence {e(k;)} — 0 and a sequence {gx,} C K for which g; ws,) is in
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the complement of U. Since K is compact, we can assume, if necessary by
passing to a subsequence, that {g,} is convergent.
Then {g; Wek)} = Glimiswr = wa € U, which is impossible, since U is open.

We will construct the elements h(e, k) as follows. For ¢ € [0,1] the forms

w/f;,)w#e = thCU)\+E + (]. — t)w/\+€

are symplectic since both gjwyi. and wy, are inside the convex set U. More-
over, since K C G, C Diffy(M), any g is smoothly isotopic to the identity
and hence [gfwxy] = [wate]. Therefore the forms wj . are cohomologous as
we vary t. We now apply Moser’s argument for the one parameter family of
symplectic forms w,i’ ase and obtain a family of diffeomorphisms & » 4. with the
property that & \ Wi yyc = Wate. We will now define h(e, k) := gi 0 &k ater-
Then A has the required properties.

For an arbitrary h : [—¢, €] X K satistying (4.5) we take the homotopy

F:[0,1] x [—¢,¢] x K — R x DiffoM

given by F(t, e, k) := (¢, h(te, k)).

This gives a homotopy between h and hg : [—¢€, €] x K — R x Diffp M, where
ho(€', k) = h(0,k). We similarly obtain a homotopy F’ between h' and ho,
where h' also satisfies (4.5). By concatenating one homotopy with the opposite
of the other we obtain a homotopy between A and A" which we call

G : [0,1] x [—€1,€e1] x K — R x DiffM. Denote by g, ., := G(s,€,k). We

will now follow the same procedure as before. Namely, we restrict to a short
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interval [—€', €] such that, if we call

t o *
We kb Ate *— tgs,e,kw)\-i-f + (1 - t)w)\-i-f

then these are symplectic, V0 < |e| < € and Vt,s € [0,1]. This is possible be-
cause wﬁyk,)\ = wy. Again, the diffeomorphisms g,  , are smoothly isotopic with
the identity and hence, as above, we apply Moser’s argument to the isotopic
forms wﬁ,ky)\ +. and we obtain diffeomorphisms &y x4¢,¢ With the property that
f;‘,kyHe,th,k,Hey = wyye. We will now define H (s, €,k) := gk 0&s krte1. Then

H has the required properties. O

Definition 4.7. Let p: B — G, be a cycle in G). An extension p¢ of p is
a smooth family of cycles p° : B — Gy, defined for |e| < ¢y such that p° = p

and satisfying (4.6). Using 4.6 (1) every cycle p has an extension.

Observation : Consider two extensions p$,0 < |e| < € and p5,0 < |e] < €.
By (4.6) there is an ¢ > 0 and a homotopy between p{ and p§ defined for all
0 < e < €. Hence any extension provides well defined elements in G for
small values of €. Therefore each [p] € m,(G3 ) has an extension [p] € m,.(G3,,)

whose germ at € = 0 is independent of the choices of p.

Definition 4.8. We say that a smooth family of elements [p¢] € TG e,

0 < € < €, is new if it is not the extension for e > 0 of any element [p| € m.G).

Definition 4.9. We say that an element [p| € m.G is fragile if it admits a

null homotopic extension to the right 0 = [p¢] € .G ye, for € > 0.

In the next section we will use the same letter p to refer both to cycles as

well as to the homotopy class they represent.
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4.4 The relation between almost complex
structures and symplectomorphism groups

In this section we use the fibration (4.2) and standard methods in algebraic
topology, to study how persistent elements in the relative homotopy groups
of almost complex structures affect homotopy groups of symplectomorphisms.

Our result is the following:

Theorem 4.10. (On Symplectomorphism groups) Assume that we have a per-
sistent element 0 # By € (A, Ag, %) Then we can construct an element
0, € m_oGy such that either:

A) The element 6, € m; oGy is a non-zero fragile element.

or

B) 0, = 0 and then there is an ¢, > 0 such that we can construct a family

of new elements 0 # Mpye € T 1Gpie, 0 < € < €.

Proof: We will consider the long exact sequence of relative homotopy groups

of the pair (Ag+, Ay)

= 7Tk./44+ = Wk(AH, .Ag) —_— Wk,lAg = 7Tk,1¢4g+ —_—

Since by construction §; € m(Ag+, Ay) is nontrivial, then one of the two
following cases can happen:
Case 1 G, — v #0 € mpe_1 Ay
Case 2 3; — 0 € m,_1.Ap. In this situation, there is an element 0 # oy € mp A+

where oy — .
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We will do the analysis case by case for our situation:
Case 1 If we are in this case then we consider the fibration (4.2), that yields

Gy

- Diffo (M) —— A,
We consider the long exact sequence in homotopy

- —— 71 (Gy) — 71 Diffy (M) ———

= g1 Ap ——— oGy 7o Diffg (M) —— - -

Again, there are two possibilities:

i) 7% — 0y # 0 € mp_2Gy. In this situation, we have a nontrivial element
0, € mp_2Gy, such that 0y — 0 € 7, _,Diffg(M). Then we are in case A.

This element is fragile. This can be proved by contrapositive. Assume that
0, can be extended by 6,,. which yields nontrivial classes in 7;_oGyy.. Then
Oric — 0 € m_oDiffo(M) as well. Therefore it appears as a boundary of an
element vy, € mr_1. A which is homotopic with ~,. But by construction
and lemma (4.6), we know that ~, is a contractible cycle inside Apy.. This
contradicts the existence of ;..

ii) 7.+ 0 € mr_2Gy. Then v, is in the image of the morphism

m—1Diffo(M) — m,_1.As, and therefore there is an element, v, € 7,1 Diffy(M)
such that 0 # v, — 7.

In this situation, we can choose a cycle S C A, representing v, € ;1 (Ap),
and, using lemma (4.6), there is an €5 > 0 such that for any e such that
0<e<es,SC Arre. We make the following
Claim (1) 0 = [S] € 71 Apre.

By hypothesis S is the boundary of a cycle B, such that B, C Ay, for
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all small ¢ > 0. Therefore we have a k£ dimensional ball inside 4,,. whose

boundary is .S, which proves the claim. We therefore have:

e — [S]=0€m1An

e kal(GlJre) - kalDiﬂ.O(M) = kalAH»e I 7Tk72(G1+e)

A

~ o1 (Gy) — w1 Diffo (M) —— m_1 Ay N (e Juu—
Yo — Ve € Te1Apse

Here, from the first row, since «; is in the kernel of the map
m_1Diffo (M) — mr_1As1, it has to be in the image of the map
Tk-1(Geye) = mp_1Diffg (M), and therefore we are able to produce an element
0 # Neyre € Tr—1(Geye) such that 7, persists in the topology of the group of
diffeomorphisms. Thus we are in case B.

The elements we obtain here are new. This follows easily by assuming the
opposite. That is, if we consider that there is an element 0 # 1, € m,_1Gy
whose germ is given by 7., then the image of 1, in Diffy(A/) has to be ;.
But this contradicts the fact that v, — v, # 0.

Case 2. In this situation we have a nontrivial element oy € 7, Ap+. We then
have the following :

Claim (2) There is an € such that for 0 < ¢ < ¢, the element «, has a
representative C' inside Ayys, 0 # [C] € mpAgys. The proof of this statement
follows from the construction of «, from a persistent element and from the
definition of Ay+.

Namely, since 3y — 0 € 714, we conclude that there exist a k-dimensional
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disk D inside A, whose boundary is 0By; by lemma (4.6) (i) this can be viewed
inside Ay, s for small 6. Moreover By C Ay, s for small ¢, which follows from
2.3. We can now glue By, and D along their boundary 0B,. In this manner
we get a cycle C' C Ay s which represents the class ay Moreover, C does not
contract inside Ay, 4, for small §. This follows basically from the fact that G, is
persistent. Namely, since (3, maps to a trivial element in 7,_;.4,, and since the
relation 2.4 implies that the i%(/3,) is nontrivial then i°(3,) has to lift also to
a nontrivial element i°(cy) in kAt Moreover, from its construction, the
cycle C we have built also represents the element i2cy. If C were to contract
inside A5 then that would imply that it contracts inside A ¢44 and it would
mean that i%qy is trivial which is false.

We can therefore consider again the sequence

e — Wk(Gl+§) > ﬂ'leﬁ.o(M)

~ T Ay - Tk-1Gets - 1 Diffg (M) —— - -

Claim (3) [C] doesn’t lift to m;Diffy(M).
Proof of claim (3): We should first make the observation that there is a
map

. Diffo (M) — mp Ay (4.7)

for any A and moreover as A varies this maps are homotopic in A;. If C' did lift,
the map m;Diffy (M) — 7.4y would produce a cycle [B] € Ay, which by means
of lemma (4.6) can be viewed inside all Ay, for small € and which moreover is

homotopic with C inside A}y 1. Therefore [C] would map to 0 € mx(Ap+, Ap),
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which would contradict its definition. O

Since [C] cannot be in the image of the map m;Diffo(M) — 7 Apps, we
know that [C] must have nonzero image [C] — 145 # 0 in 7 1Grys. Moreover
from the obvious properties of exact sequences again, 7,15 — 0 through the
natural inclusion map 7y Gyys — 71 Diffg(M). The fact that this elements
are new follows again by assuming the opposite. If they were the extension of
an element 7, in 7,_1 Gy, then 7, would also be null homotopic inside Diffy (M)
so it would therefore come from a class [C'] in 7.4, Moreover, C' would be
homotopic with C inside Ay ¢4 therefore also in (A ¢4}, A¢) which is false
given that C has to yield a nontrivial element in 7, (A ¢4, Ae). Thus we are
in the case B of the theorem.

With this, we have exhausted all the possible cases given by the nontrivial

PGW. U

Now consider the manifold (S? x S? x X, wy) @ wg). As explained in (3.16)
the cycles (B* 0BY) satisfy the definition (2.3), so they give by Prop (2.6)
persistent elements in 7y o( A+, Ap).

Therefore theorem (4.10) applies and so the following corollary holds:

Corollary 4.11. For any natural number £ > 1, exactly one of the statements
below holds.

A) We can construct a non-zero fragile element wg( € 7T4g,4G2;{, which
can be identified with wy X id.

B) There exists an €, > 0 for which we can construct a family of new

elements 0 # 17, € Tae-3G,,0 < € < .

o8



Appendix A: A criterion of parametric

regularity

In this appendix we give a proof of the regularity criterion stated in theorem

2.14, namely:

Theorem 4.12. Let (J,,w,).ccm be a family on M descending from the sym-

plectic fibration (M, J, w)

M——77 (4.8)

Suppose that f : ¥ — M is a Jy holomorphic map and consider the

composite map

f=iof,f:S—Mx0CM

which s j—holomorphic. If f is reqular then f is (J,) parametric regular.

Moreover, if ¥ = S? then the reverse statement holds.

Let 7} M be the tangent space along the preimage of 0 € C™. We

—1(0)

will denote by H the subbundle of T|F O)M which is w orthogonal to the fiber

1
{0} x M. We would like H to coincide with the horizontal space of TM with

respect to the trivialization 7 and to be J invariant. This can be arranged by
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deforming the form w so that near the zero fiber {0} x M it is given by
w= wo + " (Ubase);

where op45¢ 1S a standard symplectic two form on the holomorphic base B.
Throughout this deformation process J is still & tamed.

Let go be a metric on My and V be the Levi-Civita connection on M
associated with it. V* will be the standard Levi-Civita connection on C™. We
will denote from now on V = V x V4t the product connection on M ~CrxM.
The regularity of f: Y — M is by definition, equivalent to the fact that Dy

is surjective, where Djf; is the linearization of 0,
Dy : C®(f*TM) — Q[}’l(E, f*TM).

Using the connection V we will derive formulas for Djf; and express them in
terms of the linearization D®.

Since M ~ C™ x M and ime {0} x M, we have the following relations:
7 (TM) — (TJ'\ZW(O)) — F*(H & TM) = triv® f*(TM)

where by triv we denote the trivial m-dimensional complex bundle over .
This gives
C®(f*TM) = C®(triv) ® C®(f*TM) (4.9)

Given that each fiber is J invariant, and that H is J invariant along 771(0),
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we obtain

Q%N(S, FrTM) ~ Q) (3, f*TM) @ Q%(3, H) (4.10)

From (4.9) and (4.10) we obtain
Dy : C*(triv) & C(f*TM) — Q5! (S, f*TM) & 0% (S, H)

and by considering the appropriate restrictions we obtain the following oper-

ators

Diyers:  C®(triv) — Q9N (%, f*TM)
. 00 ; 0,1

Dipor i C®(triv) — Q2 (X, H)
Dypert 2 C®(f*TM) — QY (, f*TM)

Dopor i C®(f*TM) — Q% (3, H)

We will sometimes use Dy, = (D pert, Dipor), K =1,2.

To compute the formulas for these operators we will use the following

general method (see [1]).
Consider £ € C*°(3, f*T'M) and ﬁg :0,1] x ¥ — M given by

Fe(t,x) = expy ) (t(x)).

for £ sufficiently small. Let s : ¥ — TY be a section and s its lift to
T ([0,1] x X). We denote 2 the vector field in 7' ([0, 1] x X) corresponding to
the parameter in [0, 1]. Define ﬁ(x) = ﬁ'f(t, x). For any x € ¥, define the path
36 1 [0,1] — M given by

Afylg(t) = ﬁg(t,x),
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the image under E of [0,1] X z in M. By the definition of ﬁg, 7% is a geodesic
path in M relative to the connection V.

Denote by Tf,x : T%(t)ﬁ — T%(O)M the parallel transport in M along the
curve v, := ~5. To compute D#(&)(s) in general, one needs to consider the
expression %fo(dft(s) + Jdf,(js)) and take its derivative with respect to t at
t=01e.

1 8 £ irs T a7
DHENS) = 53¢ (76 (dfils) + Tafi(is) (4.11)

l¢=0

We define Const to be the subspace of C'*(triv) made out of constant sec-
tions. For the proof of the theorem, we are particularly interested in computing
D jor and the restriction of Dy e to Const.

In order to simplify the notation, we denote by x the coordinate on ¥ and
write the points in C™ x M as (21, ..., 2m,y) where z; = w; + iv; and so on.
For simplicity we denote the vector field in Const by % = Oy, and so on.
Since we are going to work with an arbitrary choice of wy and vy we will refer

to them simply as 0, unless we need to be more specific.

Lemma 4.13. The following relations hold:

i) Dy por =0

i1) Dayere = Dy

iii) Dy por (&) = Oon (€),VE € C®(triv), where dom is the delbar operator in
cm.

V) (D1ert) 0:)(5) = 32(J(2)) o df () for 9, a typical vector field in
Const C C*®(triv).

Proof: Since f = foi C {0} x M we can naturally view any & € C*°(f*T'M)
as an element in COO(fV*TM ) with values in the vertical direction tangent to
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{0} x M. We have that

Fe(t,x) = exp,, () = expy,y (£6),

with imF C {0} x M. This implies that the df(s) are also vertical vector fields
supported in {0} x M and, since J keeps T({0} x M) invariant, we have as
well that the Jdf,(js) are vertical vector fields in {0} x M. Similarly, Fggt i

a vertical section in TM supported in {0} x M and parallel transport along

f(x) with respect to V is the same as parallel transport with respect to V.

A direct application of (4.11) is that

(Df§> (s) =

which proves (i). Relation (ii) follows immediately from the formula above,

Q’)|Q)

(o) + i T Gs)) = (D7) (),

t=0

N | —

taking into account that fo = Dy yert(€), and that
imD oo perar C Q' (S, fTM).
For the proofs of (iii) and (v) we now consider £ € C*®(triv). We can

assume & = ¢(x)0d,, where ¢ : ¥ <— C™. In this situation,

Ff(t x) = expf (t0w) = (¢(2)t,0,...,0, f(z))

[t then follows that the paths v, are straight lines in C* x f(x) C M and
therefore the parallel transport along v, 74 : T(tyf(x))ﬁ — Toyf(x))M is the
identity. We are also going to consider the coordinates x € X of the type

x = 1 + 1x9, and do our computations for s = 9, .
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If J(t) is the almost complex structure at 75(¢) then

~ A 0
By J

with respect to the product structure C™ x M. Moreover along 7 1(0) we have

Therefore %j () preserves the fibers, the same as J(t) does. Moreover, along
{0} x M, J(0) preserves the splitting into 7'M and H. As we have seen parallel
transport along 75(¢) is just the identity.

Considering local coordinates on X given by x = x;+ix, and taking s = 0,,,

we have:

Dipor(600)(00)) = Sprojuy (rfedfu(0r) + 378, Tdfi(00))
= Lprojul (dfi(0x) + %fdﬁ(&m))' )

= 120, (6(x))t,0,...,0),_, + projud (J;) df (90,)+

lt=0

%pTOjH:]VO% (8902 (¢($))t, 07 M 07 df(ff))\tzo

where, as mentioned before, ¢ : ¥ — C™. But here the middle term vanishes

0

because df(0,,) is a vertical vector and Ej preserves fibers so we get that

2 (ﬁ) o df (0,,) is also a vertical vector. Then

£00,0(2) + 3. Jon (21,)6(2) (1.12)

Dl,hor (¢aw) (8131 ) - 2
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For the last expression we have to use that along 7~'(0), Jo preserves the
horizontal space H, so projg o jg = j(Cm o projg. Therefore, the conclusion
follows that

Dl,hor - 8@’”

To prove point (v) of the theorem we need to consider now £ = 9, that is

& € Const. Under this assumption we have Tt(?;“ dft = dfy. Thus

0 ~
aTﬁ;ﬂ dft(S) =0.

As before, s is a just a section in T'3. We then have

Diert(Du)(s) = projv s (iPedfuls) + kv Jdfi(is)
= Lprojvd (rsdfi(s))
|t=0

+iprojyd (Gl dfijs))

lt=0

+Lprojv g (e d(l) ) df(s)

t=0

= SDrojy (6% j) df (js)

lt=0

where we denote by projy the projection onto the fibers. Recall that %jtakes

vertical vector fields into vertical vector fields. Therefore

I GS)

DN |

1 L= v
ipm]VVaw Jdf (js) =

precisely because df(js) is a vertical vector field and because the covariant
derivative along horizontal vector fields was chosen to be the standard connec-

tion in C™. Applying the same reasoning for 10, we see that

() el is)

DO | —

(Dl,vert) (8z) (8) =
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It is worth to point out that 2 (J(2).—0 = diyj(2).

Proof of the theorem:
Implication “="”
Using lemma 4.13, point (v) we get the commutativity of the following

diagram

dy

TO(Cm = TJA[ (413)
1 R
Dl,’UE’V‘t 0.1
Const - Q7 (3, f*T'M),

where i : ToC" — Const C C*(triv) is the natural identification map and

1 is the morphism from the parameter space to the space of almost complex

structures. R is, as mentioned before, given by R(Y) = %Y odfoj.

Since D7 is surjective by the hypothesis of this implication, this means that

D, & D, is surjective. We therefore have, by lemma (4.13) (i),(ii),

— . 00 ; _ 0,1
Dy = (D1 yerts Dipor) = C(triv) cokerD; @ Qj (X, H) (4.14)

is surjective. Since the kernel of the dcm operator on C™ consists precisely of
constant sections, lemma 4.13 (iii) implies that Dy, ,.(0) = Const. Therefore
we have that the operator
(Dl,vert)loonst : Const —— cokerDy is surjective. But this will imply that
Dieryy,,,, , 0@+ ToC" —— cokerDy . But as we saw in the proof of 2.11, R

induces an isomorphism R : cokerdIl — cokerD, and moreover the diagram

4.13 will be still commutative if we restrict d¢» and D e to cokerdll and
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cokerD, respectively. Therefore di : T;C"* ~ cokerdll. 1s surjective. By

proposition 2.11, this yields exactly the parametric regularity.
For the inverse implication, we notice that since D jq, is Ocm , it will cover
the space 9%1(2, H) when X = S?. By hypothesis we have that

di . ToC" —— cokerdIl. is surjective and the above observation implies that

Dl = (Dl,vert;Dl,hor) : Coo(triv) - COkeer 87 Q%l(EJH) (415)

is also surjective. Therefore Djf; is a surjective operator. 0
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