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ABSTRACT. This thesis consists of two sections, connected by a
thread. The symplectomorphism group of a 2-dimensional surface
S is homotopy equivalent to the orbit of a filling system of curves
on S. In the first section, we give a generalization of this statement
to dimension 4. The filling system of curves is replaced by a de-
composition of M into a disjoint union of an isotropic 2-complex L
and a disc bundle over a symplectic surface ¥. This decomposition
is due to Paul Biran. We show that one can recover the homotopy
type of the symplectomorphism group of M from the orbit of the
pair (L,Y). This allows us to compute the homotopy type of cer-
tain spaces of Lagrangian submanifolds, for example the space of
Lagrangian RP? C C'P? isotopic to the standard one.
In the second section, we consider the product of two n-manifolds: ¥ x

I', each equipped with a volume form oy and or. We show that
there is a homotopy equivalence between Y. s— the space of sections
S of this product fibration such that the product form nfos +
mior|s is a volume form — and NS2K+a — spaces of maps ¥ — T
with constrained numbers of pre-images. This allows us to com-
pute various identities between the spaces X g for different volume
forms. In the case that n = 2, these sections are the symplectic
sections of the product fibration. Finally we compute NS2K+ for
certain cases.

1. MOTIVATION

From one point of view, the geometry and topology of a 2—dimensional
surface S is dominated by the study of simple closed curves on S. If S
is equipped with a symplectic structure w, these curves are Lagrangian
submanifolds of S.
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It is becoming increasingly clear that the study of higher dimen-
sional symplectic manifolds is also dominated by the structure of their
Lagrangian, and more generally isotropic, submanifolds. In the first
part of this thesis, we will explain a generalization of one facet of sim-
ple closed curves on a surface to the theory of isotropic submanifolds
of a 4—dimensional symplectic manifold.

We say that a system {v;} of simple closed curves on S fills S if
S\{7i} consists solely of discs. In this case, the symplectmorphism
group of S, Symp(.9), is homotopy equivalent to the orbit of {7;} un-
der the action of Symp(S). For if we examine the stabilizer of {v;}
in Symp(S) we find that it consists of the symplectomorphisms of a
disjoint union of discs, fixing their boundaries. This is a contractible
set. One proves this by applying the well-known Alexander trick.

Paul Biran [1]recently showed that every Kahler manifold M whose
symplectic form lies in a rational cohomology class admits a decompo-

sition
M=1L ]_[ E

where L is an embedded, isotropic cell complex and E is a symplec-
tic disc bundle over a hypersurface ». We will argue that a Biran
decomposition of a symplectic 4—manifold should be regarded as the
4—dimensional analogue of a filling system of curves. In the case that
M is a surface: L is a filling system of curves on the surface, X is a
union of points -one in each disc inside M\L and E is the union of
discs.

We will, at least in dimension 4, provide the necessary “symplectic
Alexander trick”. We will reduce the homotopy type of Symp(M) to
the orbit of pairs (L,Y) under that group. All this is explained in
greater details in the next section. Our argument will rely heavily on
the relatively mature field of J-holomorphic spheres in sphere bundles
over surfaces. Through this theory, which we owe to Gromov, Lalonde
and McDuff 2, 3, ?|, we will reduce the 4—dimensional theory to a
parametric Alexander trick.

In the second part of this thesis, we consider n—manifolds I" and X
endowed with volume forms or and osx. We then consider the homotopy
type Maps(X,T") such that the restriction of 7&os, + mfor to the graph
of the map f is again a volume form.

One can combine the arguments of the first section with those of
the second to show that, even for symplectic fibrations of S? x S? by
spheres, the homotopy type of the spaces of symplectic sections must
sometimes change (at least for certain homology classes) as one deforms
the fibration. However this matierial is not included here.
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Part 1. A Symplectic Alexander Trick
2. SUMMARY OF RESULTS
Definition 2.1. A smoothly embedded cell complex is

(1) An abstract smooth cell complex C' - the interior of each cell is
endowed with a smooth structure.
(2) A continuous map

1:C—=M

which is a smooth embedding when restricted to the interior of
each cell in C.

We say that a smoothly embedded cell complex is isotropic with respect
to a symplectic structure w, if i*(w) = 0 on the interior of each cell

Definition 2.2. Let (M,w) be a symplectic manifold. Let J be an
almost complex structure compatible with w. Let X, a symplectic hy-
persurface of M Poincare dual to Aw, and such that:

(1) There is a smoothly embedded, isotropic cell complex L, dis-
joint from 3. In what follows we will call this cell complex an
Isotropic Spine of M.

(2) M — Ly is a symplectic disc bundle E over ¥, such that the

fibers have area % with respect to w. This bundle is symplecto-

morphic to the unit disc bundle in the normal bundle to ¥ with

symplectic form:
1
Twls + Xd(vga)

where r is the radial coordinate in the fiber, and « is the con-
nection 1 form coming from the hermitian metric w(-,J,-) on
the normal bundle. « is normalized so that its total integral
around the boundary of a fiber is %

We call such a configuration (Ly, E — 3,) a decomposition of M.
Theorem 2.3. (Biran [1]) Let M be a Kahler manifold with a sym-
plectic, holomorphic hypersurface ¥y Poincare dual to \w. Then there
is a decomposition (Ly, E — Xy).

When combined with the following theorem of Kodaira and Donald-
son one sees that every Kahler manifold whose symplectic form has a
rational cohomology class admits a decomposition.

Theorem 2.4. (Kodaira/Donaldson [1|) Let M be a symplectic man-
ifold whose symplectic form w has an integral cohomology class. Then
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there is a A\g € Z T such that for all X > Xy in there is a symplectic hyper-
surface 3y Poincare dual to Aw. If M is Kahler with integral compatible
complex structure J this surface can be made J- holomorphic.

While Theoreom 2.3requires that M be Kahler, and the surface X
be holomorophic, Biran states that his proofs can probably be general-
ized to all symplectic manifolds, with e—holomorphic hypersurface X,.
He makes his assumptions only for technical facility, and the confidence
of familiar surroundings. It is probably safe to expect that every sym-
plectic manifold whose form has a rational cohomology class admits a
decomposition.

In this paper we will work with spaces of germs of mappings. A
germ does not have a specified domain, and as a result most natural
topologies on spaces of germs have unwanted pathologies. To avoid
these, we will work at times in the category of Kan complexes, simplicial
sets that satisfy the extension condition. |5|

We will call the germ of a neighborhood of a set a framing, and we
will call a set along with its framing a framed set. If a set is denoted
X, X with its framing will be denoted X*".

Let (L, E — X)) be a decomposition of M.

Definition 2.5. Let X be a topological space. By A(X) we denote
the Kan complex of continuous maps

A" — X

If ¢ is a continuous map, we denote the corresponding map of Kan
complexes by ¢2. If Y is a Kan complex, T(Y) denotes its geometric
realization. If ¢ is a map of Kan complexes, we denote the correspond-
ing continuous map by ¢7.

Definition 2.6. Denote the space of unparamaterized symplectic sur-
faces abstractly symplectomorphic to > and disjoint from a set X C M
by Ex.

Definition 2.7. Denote by £ the Kan complex of embeddings
¢:LF - M

such that ¢*w vanishes on L. We now describe the simplices in £. An
n-simplex in £ consists of the following data:

(1) A neighborhood U of L in M.

(2) A continuous map ¢ : A" :— Symp(U, M), where Symp(U, M)
denotes a symplectic embedding of U into M, which admits an
extension to a symplectomorphism of all of M.
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Two such pairs (U, ¢1) and (Us, ¢2) are equivalent if there
exists a neighborhood Uj of L such that Us C Uy, U3 C U, and

b1lus = P2lus

The degeneration maps to the faces are given by restricting ¢
to the faces of A",

Definition 2.8. Denote by Ly the following Kan complex :
an n-simplex consists of a triple (U, ¢, 1) where:

(1) U is a neighborhood of L in M.
(2) A continuous map ¢ : A" :— Symp(U, M)
Two such pairs (Uy, ¢1) and (Us, ¢2) are equivalent if there
exists a neighborhood Us of L such that Us C Uy, U3 C U and

D1lus = P2|us

The degeneration maps to the faces are given by restricting ¢
to the faces of A”™.
(3) A continous map ¢ : A" — ¥ such that for all x € A", Y(z) €

Yo(z)(L)

Note that Symp(M) acts on Lyx. For any symplectomorphism will
carry LY to another such spine, and will preserves the the homology
class of ¥ as it is Poincare dual to A[w].

This paper is devoted to the proof and application of the following
theorem:

Theorem 2.9. Let (M,w)be a Symplectic 4—manifold with decompo-
sition (Ly, E — X)) such that [$,] - [Xa]is even. Then A(Symp(M))is
weakly homotopy equivalent to Ls.

We do not require that M be Kahler, only that it has decomposition.
However we do restrict ourselves to dimension 4, and to decompositions
where the self intersection of ¥ is even.

The assumption on the self intersection of X is technical, made
mostly for the sake of clarity, and we hope to remove it shortly. It
is made only to ensure that when the disc bundle E is compactified
fiberwise, the resulting sphere bundle is trivial.

One should note however that every Kahler manifold with rational
symplectic form admits a decomposition where the self intersection of
Y. is even. For as

ZJ2)\0 . 22/\0 - 42)\0 . E)\O

one can always, by theorem , find a hypersurface with even self inter-
section. Biran’s theorem then provides a decomposition.
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That we require M to be dimension 4 may well prove more resistant.
Some aspects of the theory of J-holomorphic curves still apply; however
some do not, and the proof will require some reorginization. I have not
done a serious analysis of this case.

Proposition 2.10. The map 7 : Ly, — L which forgets the hypersur-
face is a Kan fibration. The fiber of m is A(Xy).

One can compute this fiber by passing to a compactification of the
disk bundle E. The details of this are somewhat technical (see Section
3), however it allows us to separate the problem of understanding the
topology of the symplectomorphism group into two parts: embeddings
of Lagrangian spines up to symplectic equivalence, and a “universal”
problem about symplectic embeddings in S? x X. If ¥ is a sphere this
problem admits a complete solution - the fiber of 7 is contractible. In
these cases the symplectomorphism group also admits a complete com-
putation. This allows us to compute spaces of symplectically equivalent
Lagrangian spines in these cases:

Theorem 2.11. The space of Lagrangian embeddings of RP? — C P?
isotopic to the standard one is homotopy equivalent to Symp(CP?).

By work of Lalonde and McDuff, symplectic structures on rational
surfaces are classified by their cohomology class. We establish the
following convention:

Definition 2.12. By 5% x 33, ,we will denote S? x ¥ with the following
symplectic structure: Let 7,y,and tsdenote fixed volume forms on S?
and Y respectively such that each form has total integral 1. Then
endow S? x Y with the symplectic structure amg,, Tsph + b5, s, where
msprand 7y denote the projection onto the respective manifold.

Theorem 2.13. The space of Lagrangian embeddings S* <—S* x S
isotopic to the standard embedding of the diagonal is homotopy equiv-
alent to the identity component of Symp(S* x 57 ) ~ SO(3) x SO(3).

3. SCAFFOLDING OF PROOF

3.1. Statement and introduction to proof. We henceforth con-
sider a symplectic 4-manifold (M, w) with Biran decomposition (L, E —
Y)), such that ¥ has even self intersection k. We embark on the proof
of:

Theorem. 2.9 Let (M,w) be a Symplectic 4—manifold with decompo-
sition (Ly, E — X) such that k = [£,]-[2,] is even. Then Symp(M )is
weakly homotopy equivalent to Ls.
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Note that both Symp(M,w) and Ly are invariant under scaling the
symplectic structure by a constant factor. Thus we safely replace w by
Aw and reduce to the case that the class of ¥ and the symplectic form
are Poincare dual, and E’s fibers have area 1.

One should not confuse this “scaffolding” for a sketch: the core geo-
metric ideas of the proof of Theorem 2.9 lie in Section 4. This Section
will seek only to perform a series of reductions, transforming Theorem
2.9 into a pair of Propositions (3.12 and 3.13 ) about the action of the
symplectomorphism group of a rational surface on symplectic curves.
This rational surface appears as the fiberwise compactification of the
disc bundle M — L¥ into a sphere bundle over ¥. .The proofs of Propo-
sitions 3.12 and 3.13 proceed by applying the ample resources of the
theory of J-holmorphic spheres in rational surfaces to this compactifi-
cation. They are contained in Section 4.

3.1.1. Conwventions: Throughout this paper we will be computing and
comparing the stabilizers of the action of various groups on various
geometric objects. To keep our heads straight it will be helpful to
adopt a few notational conventions.

o Symp(M,w) denotes the diffeomorphisms of M which preserve
w. If either M or w is clear they will be omitted.

G s denotes the elements in the group G which preserve the set
S.ie:{geG:g(S)C S}

G'p(s) denotes the elements in the group G which preserve the
set S, and a parametrization P(S). These are {g € G : g(s) =
s,Vs € S}.

G p(grydenotes the elements in the group G which preserve the
set S, and a parametrization of a framing of that S,P(ST).
These are {g € G : 3 neighborhood Ng D S : g(s) = s,Vs €
Ng}. We endow G pgrywith the direct limit topology.

If we fix or preserve more than one set we will denote this by
seperating the two with a comma. Eg: Gx py) denotes the
elements in G which preserve X and fix Y.

These are only notational guidelines, we will at each turn define each
object considered. As such we will not treat them as sacrosanct, we
will often use this notation with spaces “G” which are not groups, but
which act like them for the purposes of our paper, in the hopes that
this will cause more suggestion than confusion. Moreover not every
use of subscript denotes a group preserving something. For instance Ly,
defined above, is not a group at all. However as the “groups” considered
will always have either Symp or Dif f embedded in their notation this
practice should not cause confusion.
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3.2. Restatement of Theorem 2.9 in terms of Sympp(.r). In this
section we will consider the action of Symp on various geometric ob-
jects. In each case, we denote the orbit map:

¢ € Symp — ((x)

Proposition 3.1. ¢ 1) : A(Symp(M)) — Ly is a homotopy equiv-
alence if ¢y : Symppry — X i a homotopy equivalence.

Proof. The action of Symp(M) on L results in the Kan fibration:

A(S?JWUMD(LF)) — A(Symp) — L
Forgetting the hypersurface X results in another Kan fibration:
AXp) — Ly — L

The action of Symp on Ly, gives a morphism of these two fibrations:

A(Symppry) — A(Symp) — L
L ¢, Loy | (id)
A(EL) — EZ — E

This yields a morphism of the associated exact sequences of Kan ho-
motopy groups.|| Thus, by the 5-Lemma (Lemma 10.12), to show that
é(L,x) is a homotopy equivalence (Theorem 2.9 ) it is sufficient to show
that

Cb(Az:) 1 A(53/77”L171>(LF)) — A(Xp)
is a (weak) homotopy equivalence. By theorem 16.6 in [5], it is sufficient
to show that the map on the underlying spaces

(/5(2) : SympP(LF) — X
is a homotopy equivalence. O

Unfortunately it is difficult to translate the reduction of Proposition
3.1 to an amenable statement on a compactification of M — L = E
(see Remark 3.5). Instead we must consider a distinguished system of
neighborhoods L D L and compactifications of their complements.

E is the unit disc bundle in the normal bundle to >, Ny. Denote by
Ei_. C Ethe {x € E : ||z|| < 1—¢}, and denote its complement M\ E*
by L. We will end this section by reducing “¢(x) : Symppry — X is a
homotopy equivalence” to a statement which admits a ready translation
to a compactification of E;_..
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Definition 3.2. Denote by Y. the space of unparameterized, embed-
ded symplectic surfaces S in M\ L€ which are abstractly symplectomor-
phic to .

Proposition 3.3. ¢ : SymppLry — X s a homotopy equivalence
if o) SympP(LEF) — Yre 18 a homotopy equivalence for every 0 <
e < 1.

Proof. Every ¢ € Symppry fixes some neighborhood Ny of L. Ny D
L¢ for some € > 0. Thus ¢ € SympP(LEF). Thus the direct system:

SYmp o) = Symp,,

Pt @ty
has limit Sympp(;ry. Similarily every embedding of n : ¥ — M which
misses L, also misses L for some € > (0. Thus the direct system:

ELél — ZLGQ — ...

has limit >;,.
We consider the action of each Symppe) on Y. The resulting
orbit maps v; yield a morphism of direct systems

SympP(Leﬂ — SympP(Leg) — .. = Sympprr)
L 1 ¥ |
ELel — ELEQ — ... — ELF

Finally note that any compact family Ny C Sympp(rry lies in Sympp(r)
for some €, and any compact family NV, C X, lies some Ye. Thus if
each 1; is a (weak) homotopy equivalence, 1) must also be a (weak)
homotopy equivalence. O

We now begin with a discussion of our compactification:

3.3. Compactification of F;_. via Symplectic Cutting (a la Ler-
man). We apply the Lerman’s Symplectic Cutting [4] to achieve our
compactification.

Consider £ C M as the unit disc bundle in the normal bundle to 3,
Ny. Denote by Ey_ C E'the {xr € E: ||z]] <1 —¢€}.

Lemma 3.4. There is a surjective C*° map ¥ : By, — EI_E where
Ei_.isa symplectic sphere bundle over Y. Topologically 1 is given by
the collapse of the boundary circle in each fiber of the disc bundle. :
(1) is a symplectomorphism on the interior of Ey_.,
(2) maps the boundary of E1_. to a symplectic section Zy,of this
bundle whose self intersection is —k,
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(3) maps the zero section of Ey_. to a symplectic section Zy whose
self intersection is k.

(4) The symplectic form w on Ey_. has cohomology class (1—e) PD([Zo])+
¢k PD([F]) where [F]denotes the class of the fiber of Ej_..

Proof. The bundle F — ¥ is given as the unit disc bundle in Ny in
the hermitian metric induced from that on M. Place the following co-
ordinates on the fiber of E = D?: r, is a radial coordinate r = |w|, and
the angular coordinate ¢ lies in [0,1], (i.e. ¢ = ) Then the symplectic
structure on E is given by:

Wy + d(|Jwra)

where o = dt. This structure is invariant under the circle action S(t)
given by the Hamiltonian function p = |w|?.
We now consider the S! action P(¢) on the product:

(ExCiweT)

where C denotes the complex numbers and 7 denotes their standard

complex structure, scaled by the constant factor % The action is given
by:

P(t)(m, z) = (S(t)m, e*™"2)
P(t) is Hamiltonian with function:

¢ = p+ Izl
Let Ey_cbe the symplectic reduction of ((F x C,w @ 1), P(t)) along
the level set ( =1 — €. The level set

CGoe:={(m,2):((m,z) =1—¢€}

has the following structure:

Cloe = {(m,z) cpu(m) < 1—eand z = ™\ /pu(m) — (1 — 6)} H{(m, 0):u(m)=1-—¢}

Where both members of the disjoint union are invariant under the S*
action. The map i : E;_. — E x C given by:

i+ (m) = (m, /(1= ) — j(m)
is a symplectic embedding, whose image is contained in the level set
(1_. I claim that the composition of ¢ with the quotient of (;_. by
P(t):

mQ : Gie = (1-¢/S" = E1_.
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gives a map:
w = 7-‘-Qi : Elfe - Elfe
with the properties above.
Symplectomorphism on int(E;_.): i(int(E;_.)) is transverse to
the S action P(t) on ¢;_.. Thus composition with the quotient by this
action:

TQ - Cl—e - Cl—e/Sl - ElA—e
yields a symplectic embedding into the symplectic reduction:

mgoi:int(Eyi_.) — Fy_.

Maps boundary to symplectic section Z_; E,_ is a sphere
bundle: We now examine the restriction of mgi to the boundary
(0E)_).

OF1_c={m:pu(m)=1-—¢}
Thus 0FE;_.is the level set py_.. T
i(0E) = {(m,0) : pl(m) = 1— ¢}
P(t) then preserves i(0F_.), and its action there is that induced by pu.
Thus )
TQ 01: (5E1,6 — E1,6
maps 5E1A—e to an embedded copy of the symplectic reduction of ;.
within E;_.. This then is a symplectic submanifold. The action in-
duce by u is S(t), given by the rotation in each fiber of E.. S(t) acts
transiatively on each disc’s boundary, and thus m¢ o4 collapses each of
these.

Zy and 7, have correct self intersection: As v is a symplecto-
morphism near >:

Zo- Ly = XX
= k
Denote by [F] the homology class of the fiber of E, . AsE, _isa
sphere bundle over 3, Hy(E;_.) is generated by [F| and [Zy]. Thus:

Zoo = CLZ() + bF
As [Zo]-F=1,a=1. As [Zy]-[Zo) =0, b = —k. Thus

Zoo - Zoo = (Zo — kF) - (Zy — kF) = k — sk = —k
[w] has cohomology class (1—¢)PD([Z])+ekPD([F]): The classes
PD([Zy]) and PD([F)) span H*(E;_.). Thus:

w] = aPD([Z]) + bPD([F])
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for some a and b.
W((F) =1
and thusa =1 —e.

w([%l]) = [%]-[Z0] =k

as the symplectic form on M was Poincare dual to X, and ¢ = i o mg
is a symplectomorphism near . As

w([Z]) = 1—ek+b
b = ¢k

End Lemma 3.4 O

Remark 3.5. Why € can’t be 0: Note that for cohomological reasons any
compactification p : F — E of the entire disc bundle E cannot map 0F
to a symplectic section. To understand the symplectomorphisms of M
fixing I we must understand Symp(E)sp((;E), the symplectomorphisms
of the compactification which fix p(§F). This is possible only if p(dE)
is adapted to the symplectic form in some way. Moreover some adap-
tations are superior: the condition “p(dE) symplectic” is much more
pliable than “p(0F) Lagrangian”, at least for the arguments we will
propose.

This compactification ¢ : Fy_, — E;_g thus serves two roles: it al-
lows us to play in the more comfortable compact terrain, and it converts
the problem of computing the stabilizer of an isotropic object to that of
a symplectic object. For this dual service we pay a price: we cannot
compactify all of M — L, and must be satisifed with compactifying the
complement of a neighborhood L¢ = M —int(E;_.) of L.

3.3.1. E;_Eis a trivial bundle over ¥. In this subsection we show that
if k=2X-Xis even, F;_.s a trivial bundle over X:

Lemma 3.6. There are exactly 2 topological S? bundles over any sur-

face 3. Ei_. is the trivial bundle iof k is even and nontrivial if k is
odd.

Proof. Bundles over ¥ are in bijection with mo(Maps(3, BSO(3)). Let
~ be a one skelton of X, which gives > a cell decomposition with only
one 2-cell. Then there is a natural fibration:)

Which induces the following maps on g:

.. — mo(Maps(S?, BSO(3))) — mo(Maps(X, BSO(3))) — mo(Maps(y, BSO(3))
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We first show that mo(Maps(vy, BSO(3)) is trivial. Maps(vy, BSO(3))
fibers over BSO(3) with fiber the based maps Maps(y, BSO(3)).. As
BSO(3) is connected it is sufficient to show that these based maps
are connected. 7 is a bouquet of circles. Thus Maps(y, BSO(3)), =
[T Maps(S', BSO(3)).. As m(BSO(3)) = m(S0(3)) is the trivial
group, this last space is the product of connected spaces, and thus
connected.

We next show that Maps(S?, BSO(3)) has 2 components. Again it
fibers over S0(3) with fiber the based maps Maps(S?, BSO(3)).. This
fibration induces the following exact sequence of homotopy groups.

.. (BSO(3)) — mo(Maps(S?, BSO(3)),) — mo(Maps(S?, BSO(3))) — m(BSO(3))

Again since BSO(3) is both connected and simply connected, the
connected components of based and unbased maps coincide.

mo(Maps(S?, BSO(3))) = mo(Maps(S?, BSO(3))), = ma(BSO(3)) = 71(SO(3)) =2 Z,

Thus we have:

o — Zy — mo(Maps(X, BSO(3))) — pt
S and thus there are 2 S? bundles over X.

I claim that these two bundles are distinguished by the parity of the
self intersection of their sections. That is

(1) If S; and Sy are two sections of a sphere bundle P over ¥ then
Sl : Sl = 52 : Sg(mOdQ)
(2) This parity is 0 for the trivial bundle, and 1 for the non trivial
bundle.
For if we denote the homology class of the fiber of the bundle by [F]
we have:
[Sa] = [S1] + K[ F]
Thus
[S2] - [8] = [S1] - [Sa] + 2k([Su] - [F] + K*[F] - [F] = [S1] - [Su] + 2k

To see the second claim it is enough to note that the trivial bundle
admits a section with self intersection 0. And that one can construct
Hirzebruch surfaces of any genus with sections whose self intersection
is odd.

O

Proposition 3.7. Fy_.is symplectomorphic to S® x Xy ek (1o
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Proof. By Lemma 3.6, it is diffeomorphic to S? x 3. Symplectic struc-
tures w on S? x ¥ are classified by their cohomology class. The propo-
sition thus follows from condition 4 in Lemma 3.4. 0

3.4. Translation of Theorem 2.9 to Compactification. In sub-
section 3.2 we reduced Theorem 2.9 to the following Proposition:

Proposition 3.8. For each 0 < € < 1, Symp(M)P(LSF) is homotopy
equivalent to Xpe.

In this subsection we translate both sides of Proposition 3.3 to state-
ments within the compactification E;_.. Denote the elements of Symp(FE;_)
which fix ZZ by Symp(E1_¢)pzr) -

Lemma 3.9. For each 0 < e < 1, Symp(M)P(LEF) is homeomorphic
to Symp(E1_c) p(zr) -

Proof. Restricting to F,_, gives a homeomorphism from Symp(M)P(LEF)
to Symp(E1_¢)spr -the symplectomorphisms of E;_which fix both the
boundary and a framing of that boundary. I claim the compactifica-
tion W : Ei_, — EI_E described i{l Lemma yields a homeomorphism
V.. 0 Symp(E1-e) pispry —Symp(E1—-)p(zE) -

Let ) € Symp(E1—c)pspry- Then define ¥, (n) = Un¥— on E;_\Zs,
, and extend W, (n) to be the identity on Z,. As

Uity — F1-c\Zoo

is a symplectomorphism and as 7 preserves the interior of F;_., Un¥~! lint(Er_0)
is a well defined map in Symp(FE;1_\Zs,). As 1 is the identity near
§(E,_.), ¥nU~! is the identity near Z,, and this extension is smooth
and in Symp(EI_E)p(ch) . The inverse map is defined in the same
way: U l(n) = U~n¥ on int(F,_.) , and extend ¥ 1(n) to be the
identity on 0F;_.. As 7 is the identity near Z,, UnW¥~! is the identity
near 6 /1. and thus this extension is smooth and in Symp(E1_c) pspr).
End Lemma 3.9

O

Definition 3.10. Denote by X%  the pairs of disjoint symplectic curves

(Zo, Z) in Ey_. where Z is a curve abstractly symplectomorphic to Z,
and Z,, denotes the fixed curve at infinity.

Lemma 3.11. ¥ — (Z V(X)) gives a homeomorphism ¥, : ¥ —
Zeo

Proof. U|yr_re — (E1_\Zs) is a symplectomorphism. O
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Finally Proposition 3.3 is equivalent to the combination of the fol-
lowing two propositions about the action of Symp on symplectic curves
in E1,€Z

Proposition 3.12. For each 0 < € < 1Symp(E£_E)P(Z§O) acts transi-
tively on X% .

Proposition 3.13. For each 0 < e < 1 Symp(E;_e)p(Zgo)ZO is con-
tractible.

For armed with these we have a fibration:

SYmppzE) zo — SYmppzey — X7
with contractible fiber, and thus the following chain of homotopy equiv-
alences.

Sympp(LeF) =(3.9) Sympp(zgo) = (fibration) E%w ~(3.11) LLe

The proofs of Propositions 3.12 and 3.13 will occur in 4.4 and 4.5
respectively.

4. CURVES AND FIBRATIONS IN E{,e

4.1. J-holomorphic curves and rational surfaces. In this sub-
section we supply the necessary background from the theory of J-
holomorphic curves on symplectic sphere bundles over surfaces. The
main geometric ingredient in our proof is the following Proposition:

Proposition 4.1. (Gromov-Mcduff|?|) Consider ¥ x S* with a sym-
plectic form w. Then if either:

(1) X is not a sphere.

(2) w(Z x pt]) = w(lpt x S?])
then for every almost complex structure J tamed by w, there is a J-
holomorphic fibration by spheres in class [pt x S?].

We do not reproduce the proof of this Proposition here.

Lemma 4.2. Consider ¥ x S? with a symplectic form w, satisfying
the hypotheses of Proposition 4.1. Let {S;}be a collection of symplectic
curves such that [S;]-[S* x pt] = 1, J a tamed almost complez structure
which preserves each curve. Then there is a J- holomorphic fibration
by 2 spheres F in the class of [S* x pt| which is transverse to each
curve, and such that each fiber meets each curve in exactly one point.

Proof. By Proposition 4.1 there is a unique J-holomorphic fibration
F by 2 spheres in class [S? x pt]. As J is tamed this fibration is
symplectic. By positivity of intersection each fiber must meet each
curve transversely, and precisely once. End Lemma 4.2 0
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Remark 4.3. The curves {5;} are then symplectic sections of F.

4.2. A softening of the symplectomorphism group. In this sub-
section we will construct a large open neighborhood of Symp(ElA_E)
within its diffeomorphism group. This neighborhood will have the same
homotopy type as Symp(FE;_.), but it will be far easier to work with.
In particular, it will be much easier to understand the “action” of this
neighborhood on various objects.

Our compactification E1_. comes equipped with a symplectic fibra-
tion by 2-spheres, we denote this fibration by F' and we consider the
triple (Fy, Zy, Z~) where Zy and Z,, are the symplectic sections dis-
cussed in Lemma 3.4.

Definition 4.4. Denote the diffeomorphisms of EIA_E which fix Hs by
Dif f?.

Definition 4.5. Denote the orbit of (Fy, Zy, Z,) under Dif f? by F&°.
Denote the triples such that each member is symplectic by SF3°. The
orbit map fibers Dif % over F5°. Consider the restriction of this fibra-

tion to SF°and denote the induced total space by Dif f(SFs°). These
are the elements which take (Fyz, Zy, Z~) to another triple in SFg°.

Lemma 4.6. Symp(E;_g) CDif f(SF§°)

Proof. If v € Symp(ElA,E) it is clear that each member of the triple
(v(Fz),7(Zo, )v(Zw)) is symplectic. What is required then is to show
that Symp(E{,e) cDiff% Each v € Symp(ElA,e) preserves w, and
thus also the cohomology class

[w] = (1 = e)PD([Z0o]) + ekPD([F1)
Thus, as [w] is Poincare dual to
(1 = e)([Zo]) + ek([F])

v preserves this homology class as well. As [Zy] and [Fy| together
span H2(E;_.), it is enough for us to show that ~ preserves [Fy]. By
Proposition 3.7 E1_. is symplectomorphic to ¥ x Sf—e,%(l—&-f)’ thus [F]
is characterized by the following properties:

(1) [F] is spherical.

(2) [Fz] - [Fz] = 0.

(3) w([Fz]) < w(lpt x 57))

Thus v must fix [Fy].
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Definition 4.7. Denote the space of closed 2-forms which restrict to
symplectic forms which agree with the orientation induced by w on
each member of the triple (Fyz, Zy, Z») by P. Denote the symplectic
members of P which induce the same orientation as w by Psyy,. Finally,
denote those forms in P with cohomology class [w] by P¥, and let
P¢,, C P be the symplectic members of P*.

Definition 4.8. Denote by 7p : E;_E — 3 the map induced by the
leaves of F; .

Proposition 4.9. Pg,  is weakly contractible.

Proof. This argument is more or less the same as one of the argu-
ments that Lalonde-McDuff use to classify symplectic structures on
ruled surfaces|3|. We simply do it with more parameters.

We remind the reader that

[w] = (1 — €)PD([Zo]) + ekPD([F])
To lighten our notation in the calculations ahead, we let

a = 1—c¢€
b = €k

Then,
w] = aPD([Z]) + bPD([Fz])

Note that every form in Pg,,, induces the same orientation on the
ambient manifold, as well as the fibers of Fz. Thus they also induce the
same orientation on Ng the normal bundle to the fibers of Fz. Choose
a volume form oy on ¥ such orientation induced by 75 (o) on Np
agrees with that of Psy,.

To construct our contraction of spheres in Pg,, we will require the
following properties of the affine flow given by 6, : @ — a + ki (ox).

Lemma 4.10. The affine flow on 2-forms, given by ©, : o — «a +
kih(os), satisfies the following conditions:

(1) For any compact family T' C P there is a £ > 0 such that the
entire family ©,,(I') C Psym,

(2) © preserves Psym: If I' C Psymthen ©4(T) C Psym,

(3) © preserves P: If I' C P then ©,(I') C P

(4) If we denote the convex hull of a set X by Conv(X): Conv(©(I))
©(Conu(T)).
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Proof.
O(r)(@) NO(r)(a) = (a+krp(on)) Ao+ wrp(ox))
= aAa+2kaATh(os) + TR (os) ATh(os)
aNa+2ka A 1h(oy)

Let a € P. Let {vy, v, hy, ha} be an oriented basis of the tangent
space to a point such that {v;,ve} span the tangent space to Fiz. If n is
closed two form, nAn(vy, ve, hy, he) is positive if and only if 7 is symplec-
tic, and induces the same orientation as w. Thus aAa(vy, ve, hy, hy) > 0
if and only if a € Pgyp,. I claim that o A 75(0x)(v1, v2, ke, ho) > 0. As
this second term dominates for large x this will show both claim 1 and
claim 2.

a A W;‘<02)(U17 Vg, hla h?) = E,LLES4OC<:L“)17 :LLUQ)W;’(UE)(/'I’}“? /th)SZgn(ﬂ)

The only non-vanishing pairings in this sum are those of the form:

a(vy, ve)mr(ox)(hy, he)
for m}.(ox) vanishes on any pair of vectors which contains a vertical
vector v;. Terms of this form are strictly positive due to our choice of
sign of oy, and «’s positivity on Fz. As 75 (ox) is positive on both Zj
and Z,,0 preserves P (claim 3). © preserves convex hulls (claim 4) as
it is affine. End Lemma 4.10 U

Let ¢ : 8" — Pg,,, be a sphere of symplectic forms based at w. (For
the sake of this argument we define the (-sphere to be the boundary of
the 1-disk, that is the union of 2 points, one specified as the basepoint).
Let s be such that ©,Conv(¢(S™)) C Psym. Begin by homotoping ¢
so that it is constant in a neighborhood U, of the basepoint b. Let

x:S"—10,1]

be a continous function on the sphere such that a(b) = 0, and o = 1
outside U,. We introduce y to insure that we preserve the basepoint of ¢
throughout the homotopy. It plays no essential role in the construction.

We follow with the homotopy given by Wg(z,t) = Oyu)(d(x)) as t
travels from 0 to k. The image of Wg in H? is a line of classes [w] +
tk PD([F]). Compose this homotopy with the contraction of ©,(¢(S™))
within Conv(¢(0,5™). As Conv(¢(0,5")) = ©,Conv(4(S™)) C Psym
this is also a contraction within Pg,,,. Denote the resulting homotopy
by ¢r.

The cohomology classes of the forms ¢;(x) lie on the line [w]+tx[F].,
where PD(-) denotes Poincare duality. We will now alter the homotopy
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¢ by adding a sufficient multiples of a Thom class of the section for
each value of ¢t so that the form ¢,(S™) is Poincare Dual to [w] =
aPD([Zy]) + bPD([Fy]). This process is called inflation. Its earliest
appearance came in the papers of Lalonde-McDuff on the classification
of symplectic structures on ruled surfaces. The version we will use is
more refined:

Lemma 4.11. (McDuff) Let (M,w) be a symplectic 4-manifold with a
compact family of tamed almost complex structures (5 : ' — J, which
make a symplectic curve C with C - C > 0 holomorphic. Then for
each 3 > 0 there is a compact family of closed 2 forms . : I' — Q2 |
supported in an arbitrarily small neighborhood of C', and such that the
form w + ((7y) is symplectic, tames (;(v) and has cohomology class

[w] +BPD([C])!

The proof of this Lemma is in [|. We content ourselves with its appli-
cation: Consider the normal bundle to ¥ given by Ny with symplectic
structure o. By Weinstein’s symplectic neighborhood theorem we can
find a family of embeddings

w.’L'ES",tEI . NE — M

of the normal bundle to X, which map the zero section Sy of Ny, to 2,
and such that

(4.1) Uri((2)) = 0

on some neighborhood U, ; of Sy. As the family v, , is compact, we can
find a single neighborhood U, of the zero section such that Equation
4.1 holds restricted to Uy for all z and t. ¢ (F, Z) is then a family
of fibrations on U,. By Proposition 10.9 we can find a family of

C]ZS”XIHJ(Uw.O')

of almost complex structures on U, which are tamed by o and such
that ¢, { (F, Zy) is (;(x,t) holomorphic.
We then apply McDuff’s Lemma above with:

(1) M = (Uy,0)
(2) C= So
3) 8=

(4) CJ = CJ

IThis is actually a good bit more refined than what we require. Mcduff achieves
positivity on all holomorphic planes, while we require only positivity on fibration
and section. Still it suffices, and there doesn’t seem to be a need to populate the
literature with weaker inflation lemmas.
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This provides us a family of forms ¢, : S™ x I — Q?(Uy), such that
o + (- (z,t) tames (j(z,t). The set of forms taming a given almost
complex structure is convex. Thus as ¢ and o + (,(x,t) both tame
Cs(x,t) so does o + t(, (x,t) for t € [0,1]. We obtain a set of forms
o+t (x,t) such that:

(1) o+t (x,t) = o outside the neighborhood of Sj.
(2) ¥ i (F, Zp) is symplectic with respect to the form o + (;(z,t).

Transporting back to N we gain a family of forms (¢ ;)*(t¢,(z, t)) such
that the form

¢r(x) + (V)" (G, (w, 1))
is symplectic and positive on the triple (Fyz, Zy, Zo).
Thus the homotopy ¢;:

G (x) = dula) + x(@)t(W5s) (G (1))

lies in Pgy,,. Moreover:

[0¢(2)] = [ou(@)] + x(2)t[(101) (¢ (2, 1))]
= aPD([Zo]) + bPD([Fz]) + x(x)tPD([Fy]) + X(x)t%PD([ZO])

(14 XD pD((20)) + bPD((FA))

- 1+

Thus we have moved our homotopy to one which takes place only in
classes which are multiples of [w]. One can then rescale each part of
the homotopy by the appropriate constant factor to obtain a homotopy
of our sphere within the original cohomology class:

[0} (z)] = W (6e(@) + x(@)t(V51) (G (1))
¢2(x) is then constant outside Uy, and maps U, to the line of forms:

1

(1 + nxéx)t )

and one can complete the homotopy by retracting this line down to its
base point. End Proposition 4.9 O

(w + x(@)trmp(os) + (¥5,) G (x(@)1))

Proposition 4.12. The inclusion Symp(Ey_.) — Dif f(SF) is a
weak deformation retract.
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Proof. Let ¢ : D" — Dif f(SFg°) such that ¢(6D") C Symp(Fi_.).
We will produce a retraction of ¢ to a disc of symplectomorphisms,
while fixing its boundary.

Consider the disc of symplectic forms ¢*(w) = (Jyecpn ¥*(d)(w). As
¥ (d) is a symplectomorphism for d € §D", this disc is a sphere based
at w once we quotient out its boundary. As

U(d)((Fz, Zo, Zs)) € SFG°

for each d € S™ = D™/§ , each form in ¢*(w) makes each member of the
triple (Fz, Zy, Zo) symplectic. As Dif f(SFs°) C Dif f? each form in
¥*(w) has cohomology class [w]. Thus ¥*(w) C Pg,,,. By Lemma 4.9
Pg,,, is weakly contractible, and thus that we can find a contraction of
¥5(0) to the constant sphere. Moser’s Lemma then yields:

My, : D" x 1 — Diff
such that: O

(1) My, (d)*(w) = ¥j(w)

(2) Mlb,o(d) =1id

(3) My+(dD) =id
MJ%(d)w(d) : D" x I — Dif f(SF§®) then yields a retraction of ¢ into
Symp as t travels from 0 to 1.End Proposition 4.12

4.3. Application to the action of Symp on geometric objects.
We now characterize SF°:

Lemma 4.13. SF5° = 2y, the space of all triples (Fs, Sy, Seo)
where (S, Seo) € Zo0cand Fs is a symplectic fibration by two spheres
in class [F| which makes each of the symplectic curves Sy and S into
symplectic sections of Fg.

Proof. Each element in Dif f? preserves homology class of each member
of the triple. Thus SF7° C 2y p. To show the reverse inclusion we
must construct a diffeomorphism ¢ carrying the triple (Fz, Zo, Zs)
to any other triple (Fs, So, Sx) € Zo00r. By Proposition (77) in
[Mcduff] there is a diffecomorphism taking any symplectic fibrations by
2-spheres with fiber in class [F] to any other. Let ®r € Dif f such that
$p(Fz) = Fs As the fibrations we consider are all product fibrations
it is sufficient to show that:

Lemma 4.14. Let F be the product fibration on ¥ x S?. There is a
fiber preserving diffeomorphism n which transforms any pair of sections
(31, 21) to any other (33,%2,).



22 SYMPLECTIC ALEXANDER TRICK AND SPACES OF SYMPLECTIC SECTIONS

Proof. Sections in class [¥;] are given by graphs of deg k maps from X
to S2.As all such maps are homotopic we can find an isotopy between
3; and XZ. We can then find a fibration preserving path of diffeo-
morphisms which induces this isotopy. Denote the end of this path by
no- Then no(X1, X1,) = (X2, 170(X1,)). Denote the sections of F' which
miss X7 by Sy. These are sections of the disc bundle F—X%. Thus S, is
contractible, and we may can find an isotopy of sections from (X! ,)
to 32, lying in S;. This isotopy may then be induced by a path of
diffeomorphims which preserve both F' and X%. Call the end of this
path of diffeomorphims 15°. Then ni°no (X1, X,) = (32, %2,), so we
can take 7 = ng°ny. End Lemma 4.14 0

n® ris then a diffecomorphism carrying (Fz, Zy, Zo) into (Fg, So, Soo)-
End Lemma 4.13
O

Denote by Zj . the space of pairs (Sp, So) of symplectic curves in
Ey_c such that [Sy] = [Zo] and [Ss] = [Zao]. Then the pair (Zy, Zy) €
ZO oco-

We remind the reader that 3¢, is defined as the pairs of disjoint sym-
plectic curves (Z.., Z) such that Z is abstractly symplectomorphic to
Zy.

Lemma 4.15. X5 C 2y

Proof. We must show that if Z is a symplectic curve in Ef_e\Zoo, ab-
stractly symplectomorphic to Z, then [Z] = [Zy]. As [Z] and [F] span
HQ(EIA—E)

[Z] = a[Zo] + b[F]
I claim that b = 0. For as Z misses Z.:

0 = [Z]-[Z«]
= (a[Zo] + b[F]) - [Zs]
= al[Zo] - [Zoo] + B[F] - [Zsc]
= 0+
Moreover as the Z and Z, are abstractly symplectomorphic
wlZ] = wlZ]
awl[Zy] = w([Z]

and thus
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thus [Z] = [Zy], and X} C Zj . O

Proposition 4.16. The forgetful map 7 : SF3° — Zy 5 a fibration
with contractible fiber.

Proof. The proof of this Proposition will rely heavily on the results in
the Appendix on almost complex structures.

We begin by showing that 7 is a fibration. 7 is surjective, for as
the curves in (Zy, Z,,) are disjoint from one another we can find a
tamed almost complex structure J which makes each curve holomor-
phic. Lemma 4.2 then provides a fibration F' so that (F, Zy ) € SFg°.

I claim that 7 has path lifting: Let B be a polyhedron. We consider
¢ : B xI — Zy, along with a lifting @, : B x 0 — SF°. We
aim to extend ®4 to all of B x I. By Proposition 10.11 there is
a® . BxI — J,, such that ®(b,t) is ®/(b,t) holomorphic, and
®y;44(b,0) is ®7(b,0) holomorphic. Applying Lemma 4.2 we gain a
family of fibrations, ®; (b, t) extending our original lifting on B x 0.

Finally we show that 7 has contractible fiber. Denote by Jy . the
tamed almost complex structures which make both Z; and Z. holo-
morphic. It is enough to show that the map

p:xy(),oo - 7"-_1(Z07Zo<>)
IO<J> = (FvZOvZOO)

where F'is the unique J-holomorphic fibration determined by Lemma is
a fibration with contractible fiber. For then p will be a weak homotopy
equivalence, and as Jy . is also contractible by Proposition 10.8, so
must 77 (Zy, Zs) be contractible. We commence with this task.

We first show that p is a fibration on its image, i.e. that it has path
lifting: Let B be a polyhedron. Consider ® : B x [ — 77 1(Zy, Z,),
along with a lifting @, : B X 0 — Jo.o0 such that ®(b,0) is $y;4,(b, 0)
holomorphic. Then Proposition 10.10 allows us to extend ®; to all
of B x I.

Let (F, Zo, Zoo) € 7 (Zo, Z). Then p~(F, Zy, Zos) = JTrge the space
of almost complex structures making each member of the triple holo-
morphic. I claim that Jge is nonempty and contractible. Thus p will
be surjective with contractible fiber.

That Jrge is nonempty is immediate from Proposition 10.10. To see
that it is also (weakly) contractible it is enough to show that any map
o7 . S — Jrge admits an extension to the n + 1 ball Bt We apply
Proposition10.10 with

1) B = B™"! the n + 1 ball.

(1)

(2) ®: B — SFy° the constant map ®(b,t) = (F, Qo, Qoo)-
(3) @=29"
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O
Proposition 4.17. Symp acts transitively on Zj .

Proof. 1t is enough to show that there is a symplectomorphism car-
rying (Zy, Zs,) to any other pair (Z},ZL) in Zy.. Let J be an
almost complex structure leaving both 7, and Z. invariant. Ap-
ply Lemma 4.2 and denote the resulting fibration by F. Then by
Lemma 4.13 there is a ay € Dif f(SFg°) which carries (F, Zy, Z,) into
(F', Z}, Z1). Since Symp — Dif f(SF$°) is a deformation retract by
Proposition 4.12, there is an isotopy oy through Dif f(SF§°) to a sym-
plectomorphism «g. Applying this isotopy to (Zy, Z) vields a path
of pairs of curves a;(Zy, Zs,) which begins at a1(Zy, Zoo) = (Z5,ZL)
and ends at ag(Zy, Zs) within the orbit of (Zy, Z.) under Symp.
One can then induce this path «;(Zy, Z.) by a path of symplecto-
morphisms ¥,.constructed by an easy application of Moser’s Lemma.
Then W a0(Zy, Zoo) = (23, ZL). O

4.4. Proof of Proposition 3.12. We combine the background from
subsection 4 to prove Proposition 3.12:

Proposition. 3.12For every 0 < € < 1, Symp(E;_e)p(Zgo) acts tran-
sitively on X% .

Proof. By Proposition 4.17 Symp acts transitively on Zj . By Lemma
415,59 C Zyeo. Symp(E1_¢)pzr) are then precisely the symplecto-
morphisms which preserve X7, and act transitively on this space. [

4.5. Proof of Proposition 3.13. In this subsection we will leverage
the background developed in 4 to complete the proof of Proposition
3.13:

Proposition. 3.13For every 0 < € < 1, Symp(E;_g)p(Zgo)’ZO s con-
tractible.

Henceforth we will suppress the E;_. from our notation of symplec-
tomorphism groups.

Denote by Sympz._ z, the symplectomorphisms that preserve both
Zoo and Zy. Denote by Dif f(SF§®)z.. z, the diffeomorphisms in Dif f (SF§°)
which do the same.

Proposition 4.18. Sympz._ 7, — Dif f(SF;°)z..z, is a homotopy
equivalence.

Symp acts transitively on Z o, by Corollary 4.17. Thus the orbit
map ¢ : Symp — 2y~ 1s a fibration.
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Consider
n:Dif f(SFS®) — SF° — 20
The first map Dif f(SF5°) — SF§© is a fibration by Definition 4.5.
The second SF — 2 is a fibration by Proposition 4.16 . Thus so
is 77 -the composition of the two. The fiber of n is Dif f(SF§°) 2. .z

The inclusion Sympz. . — Dif f(SF$°)z,, yields a morphism of fi-
brations:

Sympzoo,zo 4 Diff(Sf(())o)ZwZo

! !
Symp > Dif f(SF)
1o | In
ZO,oo (Z_d)) ZO,OO

io and (id) are homotopy equivalences, thus so is i; by the 5-Lemma
(Lemma 10.12).

Proposition 4.19. Dif f(SFG°)z.. 2,5 homotopy equivalent to Dif frse,
the diffeomorphisms which preserve the fibration Fy and both sections
Zy and Z

Proof. Denote the subset of SF§° given by triples (F, Sy, Se) where
So = Zy and S, = Zoo by F(Zy, Zs). Restricting the fibration of
Dif f(SFg°) — SF§° to F(Zy, Zs) yields a fibration:

Diff(ngo)ZomZo - f(Zov ZOO)

As F(Zy, Z) is the fiber of the forgetful fibration 7 : SF$* — Zj
it is contractible by Lemma 4.16. U

Next we aim to calculate the symplectomorphisms which preserve
Zy and fir Z,,. We compare these to DiffF(f(w) - the diffeomorphisms
preserving Zy, firing Z., and preserving Fz - a space that admits
ready computation. Again we proceed by constructing a morphism
of fibrations. However it is not easy to do this directly, and we will
find it easier to reintroduce the Dif f(SF;°)z. .z, and their newest
incarnation: Dif f(SFS®)p(z..),z, the diffeomorphisms in Dif f(SFg°)
which fix Z., and preserve Z.

Proposition 4.20. Sympp(z..).z, = Dif f(SF°)p(z.).20 < DiffFé)(oc)
are each homotopy equivalences
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Proof.
Symppz.),z0 — Dif f(SF)piz.0),2 > DiffF(f"“)
! ! !
Sympz..z, —  Dif f(SFG°) 2.2 — Dif free
Lo In L
Symp(Zss) = Diff(Z) — (1d) Diff(Zs)

7 is a group homomorphism, and thus a fibration on its image. More-
over it is surjective- given a diffeomorphism of Z., we lift it to Dif free
in the following way: First use the product structure to lift 6 € Dif f(Z)
to a diffeomorphism g which preserves F; (but may not preserves the
sections). Then compose us with a diffecomorphism ¢ which preserves
the fibration and takes p5(Zs) to Zo and ps(Zy) to Zy. As ( preserves
the fibration, the composition ( - us still induces 0 on Z.

n is surjective as m is its restriction to Dif free. If ¢ 1 P x [ —
Diff(Z) is a family of paths with an initial lifting ¢y : P x 0 —
Dif f(SF5°) ...z, we can extend this lifting by endowing the original
triple (Fz, Zy, Zs) with a connection for which both Z,and Z, are
parallel. Then we use the diffeomorphisms given by ;¢ to induce a
connection on each fibration ;s (p)(Fz). Finally we use these connec-
tions to lift each path of diffeomorphisms ¢ (p,t) to those preserving
the fibration ¢y; 1 (p)(Fz).

To see that ¢ is surjective on my note that both Symp(Z.) —
Diff(Zw) and Sympyz_, 7z, — Dif f(SF§°)z...z, are homotopy equiv-
alences, and thus isomorphisms on m,. Thus, as the above diagram
commutes, and 7 is surjective on 7y, so n must also be surjective on
connected components. To see that it has path lifting: If v : P x [ —
Symp(Zs) is a family of paths with an initial lifting ¢y : P X 0 —
Sympz.. z,, first extend ;4 to a symplectic automorphics of the nor-
mal bundle to Z.,, and then to a diffeomorphism in a neighborhood
of Zy. Near Z, the forms ¥ (p,t)*w remain in a convex neighbor-
hood of w, one can thus use Moser to adjust ¥ (p,t) to be a family of
symplectomorphisms near Z.,. Then, as the embedding of Z,, — M
is injective on Hy, Ho(M) — Ho(M, Z,,) is surjective. Thus we may
apply the symplectic isotopy theorem to extend the lifting to the rest
of the manifold. As Z and Z; are disjoint one can arrange this cut off
so the resulting lifting preserves Zj.

Finally we note that all of the maps between total spaces and base
spaces are homotopy equivalences thus, by the five lemma both of the
outer fibers must be homotopy equivalent to the inner one, and thus

to each other.
O
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Finally we aim to calculate the symplectomorphisms which preserve
Zo, and fix both Z, and its normal bundle. These we denote by
Sympp(z..)r,z,- Denote the fiber preserving diffeomorphisms which
preserve Zg, and fix both Z  and its normal bundle by D'iffF(f)(oo)F.

Proposition 4.21. Sympp(_\r z, 1 homotopy equivalent to DiffFP<OC>F.
0

Proof. First we fiber each space Sympp(z..y.z, = Dif f(SF°)p(z.0),20 <
Dif f.r@e) over the automorphisms of the normal bundle to Z,. They
0

fit together in the following morphism of fibrations:

SYMPp(2,.0),P(Nz )20 — Diff(SFGO)P(2o) P(N2) 20 DiffF(f’<oo),N<oo>

| | |
SympP(Zoo),ZO — Diff(SFE))O)P(ZOO),ZO «— DiffFéD(x)
1o In L
Sp(NZoc) — GL+(NZOC) — (Zd) GL+(NZOO)

where Sp(Ny_) consists of the symplectic automorphisms of Ny
and GL1 (N, ) consists of the orientation preserving automorphisms.
Each map is a group homomorphism, thus it is enough to show that
each is surjective. This follows by standard arguments for the right
two maps — one can use the exponential of a metric for which F' is
totally geodesic lift an path of automorphisms of the normal bundle
to a path of diffeomorphisms v; in a neighborhood of Z,,, which pre-
serve the fibration F'. One can then use a bump function y, supported
in a neighborhood of Z,, to obtain a path of diffeomorphisms v,y
supported near Z,,, which preserve F'. This shows that m and thus n
is surjective. To show that ¢ is surjective we apply the same Moser
argument from the previous lemma.

Finally we note the commutative diagram:

Sympp(zoo%P(Nzoo%Zo - Diff(Sf(c))O)P(Zoo),P(NZOC),ZO — -DiffFOP(oo),N(oo)

7 7 T
Symppzr) z, — Dif f(SF§°)p(zE),z = Diffrer

Again the right two vertical inclusions are homotopy equivalences by
standard arguments, and the left inclusion follows by an application of
Moser. 0

Proposition. 3.13 Sympp(zr) z,is contractible.

Now follows from combining the above Proposition 4.21 with the
following “parametric Alexander trick”:
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Lemma 4.22. Dz’fpr(oo)F 18 contractible.
0

Proof. As the elements in Dz’fpr(m>F fix the section Z,,, they must

0
carry each fiber of F into itself. Thus Diff p.r consists of
0

Maps(E, Dif f(5%)o0r)

where Dif f(S?)gor consists of the diffeomorphisms of S? which fix a
point 0 and the neighborhood of another point co. This is a contractible
set, thus Maps(X, Dif f(S?)g0or) is also a contractible set. O

5. COMPUTATION OF X9
Proposition 5.1. If X is a sphere ¥9_ is contractible.

Proof. Denote by J.the set of tamed almost complex structures on
E;_ which make Z. holomorphic. Denote by JZ the space of pairs(.J,9)
where J € J and S = (Z,Sy) € X%_ such that both curves are J-
holomorphic.

In the following two lemmas 5.2 and 5.3 we will show that both J
and ¥%_ are homotopy equivalent to JZ2. Thus as J, is contractible,
this will show that X% must also be contractible. U

Lemma 5.2. The projection ms, : J3 — Y5 _is a fibration with con-
tractible fiber, and thus a homotopy equivalence.

Proof. The fiber of my is the set of tamed complex structures which
make both Z and Sy holomorphic. As Z,and Sy form a disjoint pair
of symplectic curves this is a contractible set. U

Denote the 2 disc by D2

Lemma 5.3. The projection 7y : JS — Js is a fibration with con-
tractible fiber and thus a homotopy equivalence.

Proof. Let J € J. Fix k+1 distinct points z; on Z,,. By Proposition4.1
there is a unique J-holomorphic curve F; in class [F] which passes
through x;.

As both Sy and the F; are J-holomorphic they must intersect posi-
tively. Thus Sy meets each F; in precisely one point o;. As Sy misses
Zoo, 0; € Fy—x; ~ D?. Lemma 5.4 below shows that for any k+ 1-tuple
in Hi:l..k+1 F; — x; there is a unique such curve Sy: O

We remind the reader that by 4.15 [Sp] = [Zy].

Lemma 5.4. Let J € Jy. If ¥ = S2, then there is a unique, smooth
J-holomorphic curve in Zy through any k + 1 points in Ey_\Z.
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Proof. For a generic J the moduli space of J holomorphic curves through
g points has dimension:

4+ 2¢,(T(Fr—0))([Zo]) 4+ 2¢ — 6 — ng

201 (T(Er—e))([Zo]) = 2(x(Z0) + [Zo) - [Zo]) = 4 + 2k
so for the dimension to be 0 we need:

g=k+1

The Gromov Witten Invariant for this class is 1. Thus there is a J-
holomorphic curve © through any £+ 1 points. I claim that this curve
is unique. Let ©;and ©, be two curves through these k& 4 1 points.
Then these two curves must coincide by positivity of intersection as
(Zo] - [Zo] = k.

I claim that © is always smooth and irreducible. For as the set of
generic almost complex structures is dense one can always approximate
J by a sequence of complex structures J,, so that the .J, holomorphic
curve through these ¢ points ©,, is smooth. The sequence of curves 6,
then converges to ©, and © is thus controlled by Gromov compactness.
It consists of a union of J-holomorphic spheres, which meet in points.
In Lemma 5.5 below, we will now show that the need to:

(1) Intersect the curves in class [F] positively. (Curves in class [F]
exist for every J tamed by w by Proposition 4.1.)

(2) Intersect Z,, positively. (J € J, and thus Z, is a J, holo-
morphic curve.)

eliminate all such nodal curves, save those of the form:

'
Zoo\JF:
i=1

where the F; are (possibly repeated) spheres in class F'. However curves
of this last form are eliminated as well. They have only k fiber curves
F;, they cannot pass through all k£ + 1 points. For I remind you that
each point lies off Z, and in a distinct J-holomorphic fiber.

O

Lemma 5.5. Fvery nodal curve © consist of:

k
Zo\JF:
i=1

where the F; are (possibly repeated) spheres in class F'.
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Proof. We begin by proving a weaker statement, namely that © must
consist of:

(1) A curve in class [Zy] — I[F] for | € Z,1 > 0.
(2) A collection of curves which are fibers for the .J- holomorphic
fibration by 2-spheres.

The second homology of E;_. is spanned by [Zo] and the fiber class
[F]. The class of each irreducible component ©; of a curve may thus
be written a;[Zy] + b;[F]. Each a; > 0 as a; = [3;] - [F] and each of the
classes are represented by a holomorphic curve.

The union of these components lies in class [Zp] thus:

Yi(ai[Zo] + biF]) = [Z]

As all the a; are positive integers, the only possibility which remains
is that one a; = 1 and the rest vanish. Moreover for all i such that
a; = 0, b; must be positive, as w evaluated on each component must be
positive. Thus we have reduced ourselves to:

(1) A curve in class [Zy] — [[F] for l € Z,1 > 0.

(2) A collection of curves in class b;[F] b; > 0 such that ¥;b; = [.
Since there is a unique curve through each point in class [F] these
curves of “type 2” must be unions of fibers in F. we will now show that
the only J-holomorphic curve in class [Zy] — I[F] (I > 0) is Z, with
l=k.

Denote another such J-holomorphic curve by Z,pe.. Distinct J-
holomorphic curves must intersect each other positively. Since J €
Zothere is a J-holomorphic curve in class [Z]. But:

[ZOO] ) ([Zother]) = ([ZO] - Z[F]) . ([ZO] — k;[FD = [ZO]Q —k—1l=0-1

which is negative. Thus Z,per = ZooS
O

Corollary 5.6. If 3 is a sphere, Sympp(ry is contractible.

Proof. By Propositions 3.3 and 3.8, ¢(x) : Symppry — X is a homo-
topy equivalence. Y r is give by the direct limit:

ELfl — ELGQ — ... EL
as each Y. is contractible by Proposition 5.1, so must > be con-
tractible. ]
6. APPLICATIONS TO SPACES OF LAGRANGIAN EMBEDDINGS

6.1. Getting rid of framings.
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Definition 6.1. Let (M,w) be a symplectic 4-manifold with the de-
composition (L, E — ¥) such that ¢ : L < M is a smooth submanifold
of M. Then we denote by Ly, the space of pairs (¢, S) where

(1) ¢ : L — M is a Lagrangian embedding of L symplectically
equivalent to ¢.

(2) S is a symplectic embedded unparamaterized surface which is
abstractly symplectomorphic to ¥ and disjoint from ¢ (L).

If the spine of the decomposition L is a smooth submanifold, and L
satisfies suitable cohomological assumptions, one does not have to in-
troduce Kan complexes. The situation is much simpler. In this section,
we will show that in this case Symp(M) is homotopy equivalent to Ly

Proposition 6.2. Let L — M be a Lagrangian submanifold. Suppose
that Hy(M) ® R — Hy(M, L) ® R is surjective. Then Symppry —
Sympp(r) 18 a homotopy equivalence.

Denote by Sympp(r),pn,) the symplectomorphisms which fix both
L and act trivially on its normal bundle.

Lemma 6.3. Suppose that Hy(M) @ R — Hy(M, L) ® R is surjective,
then Symppry — Symppr),p(ny,) 18 a deformation retract.

Proof. We will deform any family in Symppr) pv,) into Sympp(ry.
As a neighborhood of L is symplectomorphic to 7L and we will per-
form our deformation there. If Hy(M)®R — Ho(M, L)®R is surjective
we can then apply the isotopy extension theorem [?] to extend it to all
of M.

Denote by A multiplication by A in the fibers of 7*L. This multi-
plication scales the symplectic structure by A. Thus conjugation by A
takes symplectomorphisms into themselves. We consider the conjuga-
tion of elements in Symppr) by A 1) — %7,0)\, as A tends from 1 to
00.

Near the zero section we can write any symplectomorphism in Symppr) p(v,)
as a Taylor series whose linear term is the identity map:

Id + quadratic + cubic...

The quadratic, cubic and higher order terms tend to zero under this
conjugation. More specifically for the nth degree term:

1

n n

s v g
Where X denotes the nth degree term of ¢)'s taylor series, and X -1, 5denotes
the nth degree term of the conjugated symplectomorphism. Thus in
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the limit A\ — oo these higher order terms tend to zero and A=\ €
Sympprr.- O

We complete the proof of Proposition with the following Lemma:
Lemma 6.4. Every symplectomorphism in Sympy, also fizes Ny,
This follows from the corresponding linear statement:

Lemma 6.5. Let (V,w) be a symplectic vector space. Let L — V be a
Lagrangian subspace. Then the only sympletic linear map which fizes
L s the identity map.

Proof. We first note that v : v — w(v, -) gives an identification of V/L
with the linear functions on L. 1) is well defined on the quotient V/L
as L is Lagrangian, and thus for any | € L w(v+1,-) = w(v, -). Further,
the image of v seperates vectors in L. For if [ € L, thereisa v € V
such that w(v, () is non zero. As L is lagrangian, this v cannot lie in L.
Thus if we denote its image in V/L by v the functional w(7,-) is also
nonzero on l. Thus ¢(V/L) seperates vectors and so 1 is surjective.
As the dimensions of V/L and L* coincide the map is an isomorphism.
Further any linear map n which preserves both L and the symplectic
form must also preserve this identification- the induced map on V/L is
the adjoint of n|;. Thus if n|; is the identity, so is the induced map on
V/L. O

Theorem 6.6. Let (M,w) be a symplectic 4-manifold with the decom-
position (L, E — %) such that ¢ : L — M is a smooth submanifold
of M, and such that Hy(M) @ R — Hy(M, L) ® R is surjective. Then
Symp(M) is homotopic equivalent to L.

Proof. We apply our machinery to this decomposition. We consider
the fibration:

Symppy — Symp — L7
L o) Lows) | (id)
EL — ﬁg — L~
where Symp;, denotes the stabilizer of L. T claim that ¢ is a ho-
motopy equivalence. The theorem will then follow from the 5-Lemma,
Lemmal0(.12.
Consider the following commutative diagram:

Symppry < Symppr)
| ¥z | o)

EL — EL
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By Proposition 6.2, the inclusion ¢ is a homotopy equivalence. By
Propositions 3.3 and 3.8 gb’(z) is a homotopy equivalence. Thus by the
commutivity of the diagram, ¢y is also a homotopy equivalence. U

Corollary 6.7. Let (M,w) be a symplectic 4-manifold with the decom-
position (L, E — X) such that ¢ : L — M is a smooth submanifold
of M, Hy (M) @ R — Hy(M, L) ® R is surjective, and X is a sphere.
Then the space Ly of Lagrangian embeddings isotopic to ¢ is homotopy
equivalent to the identity component of Symp(M).

Proof. We re-examine the fibration:
Sympp(r) — Symp — L~

As X is a sphere, Corollary 5.6implies that Sympp(r) is contractible.
Thus Sympp(z) is also contractible, and Symp(M) is homotopy equiv-
alent to L~. Moreover if Hy(M) ® R — Hy(M, L) ® R is surjective
one can induce any isotopy of the embedding ¢ : L — M by a path of
symplectomorphisms. O

6.2. Applications to spaces of Embeddings. We now apply Corol-
lary 6.7 to compute spaces of Lagrangian submanifolds in cases where
we know the homotopy type of the symplectomorphism group of the
ambient manifold M.

Corollary 6.8. Lpp2, the space of Lagrangian embeddings of RP? —
C P? isotopic to the standard one is homotopy equivalent to Symp(C P?).

Proof. We note the following proposition

Proposition 6.9. (Biran [1]) There is a decomposition of CP* with :

(1) ¥ a quadric (and thus a sphere).
(2) L the standard RP? — CP?.

Hy(RP?) is torsion, thus Hy(M) @ R — Hy(M, L) @ R is surjective,
and we can apply Corollary 6.7
U

Corollary 6.10. Lg:the space of Lagrangian embeddings S? —S? x
Sil 1sotopic to the standard embedding of the diagonal is homotopy
equivalent to the identity component of Symp(S* x S7,) ~ SO(3) x
SO(3).

Proof. We note the following proposition

Proposition 6.11. (Biran[1|) There is a decomposition of S* x S},
with :
(1) X the diagonal
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(2) L the antidiagonal

H,(S?) vanishes, thus Hy(M)®R — Ho(M, L) ®R is surjective, and
we can apply Corollary 6.7
O

Part 2. Positive Sections
7. INTRODUCTION AND SUMMARY OF RESULTS

We consider the product of two n-manifolds ¥ x I'. We endow each
factor with a volume form given by oy and or respectively. These
volume forms induce a product n-form on > x I':

o = T50x + o

Denote the space of C! sections of 7y in class [3 x pt] + a[pt x T| by
Y.

a

Definition 7.1. We will call the sections S € ¥, such that o|g is a
volume form the positive sections.

Products of volume forms such as o are determined by their volume
on each factor, up to diffeomorphism which preserve the product struc-
ture, and thus the fibration mx. This is an immediate consequence of
Moser’s Lemma. The space of positive sections of 7y, depends only on
the ratio Z‘;i((?;, as it is invariant under scaling the form oby a con-
stant factor. We denote this ratio by K, and we denote the positive
sections in X, by PYX. When n = 2 the positive sections will be the
symplectic sections with respect to o.

Denote the degree a, C' maps from X to ' by C}(3,T'). There is
a canonical homeomorpism @ : Y5 — C!(X,T) given by considering
the section S € Yp,as the graph of a map ®(S) € C}(X,T) . We will
reserve @ throughout this paper to denote this identification.

Definition 7.2. A C! map f: ¥ — I is called non (Q—Surjective if
there is an open ball in U C I'" such that every x € U has less than @)
pre-images. If () is 1 this is the space of non-surjective maps.

Denote the space of C'! smooth deg a, non Q—surjective maps 3 — T’
by NSY Here a € Z, and Q € R. However, NS¢ = @ if Q < |a|.
Moreover N.S9 changes as a function of Q only at discrete intervals:

Lemma 7.3. NS = NS@ if LQE—QJ = LQQ;IJ'
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Proof. Let f € NS? . Let U C T be an open ball such that every
x € U has less than ) pre-images. Let © € U be a regular value of f.
As T and ¥ are both compact, the set of regular values of f is open.
Let U,4 be a neighborhood of x consisting of regular values of f. Then
for every y in U, f~!(y) has the same cardinality.

Card(f'(y)) =a+20<Q

for [ a positive integer. The claim follows. O

The main Theorem of this section is the following:

Theorem 7.4. ®(PXE) ¢ NS2E+a and the inclusion ® : PYE —
NS2E+a 45 q deformation retract.

Note that neither PXE nor NS25%¢ ig changed if we scale o by a
constant factor so that vol(I') = 1. For simplicity of exposition we do
so. K henceforth denotes vol(X%).

Theorem 7.4 has the following corollaries:

Corollary 7.5. PYXf = Pyl 4f | K| | = | Ky

Proof. This follows immediately by combining Theorem 7.4 with Lemma
7.3 U

Corollary 7.6. Suppose that I' admits a degree —1 diffeomorphism ¢,
then PYK is homotopy equivalent to py.kra,

Proof. ¢ determines a homeorphism:

¢* . N512K+a N NSzK—i—a

a — ¢o«
By Theorem 7.4 we have homotopy equivalences:

Pyl ~ NGt
PYEre ~ NSt

combining these with the homeomorphism ¢ yields the Corollary. [

Remark 7.7. In a later paper, we will combine this result with identi-
ties in the spaces of symplectic embeddings in S? x S? to show that
the homotopy type of the space of sections of a fibration must change
(in certain classes) as the fibration moves in the space of symplectic
fibrations.

We now commence with the proof of Theorem 7.4. It will carry us
through the next two sections.



36 SYMPLECTIC ALEXANDER TRICK AND SPACES OF SYMPLECTIC SECTIONS

8. PROOF OF THEOREM 7.4

Definition 8.1. Let a be an n-form on an oriented n-manifold ¥.
Denote by Dgn(«) C X the x € ¥ such that a(x) < 0, where this sign
is determined by the orientation of M. Denote by Neg(a) D Dgn(«)
the x € ¥ such that a(z) < 0.

If f:Y¥ — I'and or is a volume form on on I' we will sometimes
denote Dgn(f*or) and Neg(f*or) by Dgn(f) and Neg(f) respectively,
for these sets depend only on f, and not on the choice of volume form
or.

8.1. Definition and Basic Properties of Negative Area.

Definition 8.2. Define the negative area of an n-form a denoted
NA(a) tobe — [y ).

If f:¥ — T we will denote NA(f*or) by NA(f).
For regular values of f : x € reg(f) C I' denote by u¢(z) the cardi-
nality of f~'(z) N Neg(f) Then:

Lemma 8.3. Let n be a volume form onT'. Then NA(f*n) = freg(X) pr(x)n

Proof. f|neg(s) is a covering map over each connected component of
reg(z), the regular values of f in X. This may be the empty cover
over certain components - some regular x may have no negative preim-
ages. Thus

FInegtpns—1x:)
is a cover. ps(x) is constant for x € X;, and gives the number of sheets
in this cover. Thus

/ I'n=pys(x) / 1
Neg(H)Nf~1(X:) X;

We gain the Lemma by integrating over each Xj;. U

Lemma 8.4. Lety € Dif f(X), a be ann-form on 3. Then NA(y*«a) =
NA(a)

Proof. Neg(v*a) =~y 1(Neg(a)). Then

/ Y a :/ are :/ «
Neg(v*a) ¥ 1Neg(a) Neg(a)

End Lemma 8.4 O

Lemma 8.5. NA : Q"(X) — R is continuous in the C° topology on
forms.
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Proof. Let o € Q"(¥). Let 3 be Close to a. Then [ |o— 3| <9,
where we can take ¢ to be as small as we like by moving (3 closer to a.
Then

/ a—/ a</ oz—ﬁ</|oz—ﬁ|<5
Neg(a)UNeg(8) Neg(a) Neg(a)uNeg(B8)\Neg(c) z

Similarily:

/ - ﬁ</ ﬁ—a</|a—6|<6
Neg(a)UNeg(B) Neg(8) Neg(a)UNeg(B)\Neg(a) z
Finally
| a- | o< | o= <6
Neg(a)UNeg(B) Neg(a)UNeg(B) Neg(a)UNeg(B)
Thus
/ o — / Gl < 30
Neg(a) Neg(B)

End Lemma 8.5 0

Definition 8.6. Denote by NAXthe space of degree a maps f €
CY(%,T) such that NA(f*or) < K.

8.2. Symplectic Sections are a Deformation Retract of Maps
with Bounded Negative Area. This section is devoted to the proof
of the following proposition:

Proposition 8.7. ®(PYE) ¢ NAEK and the inclusion ® : PYE —
NAKis a deformation retract.

We first note that ® : PXE C NAE. For if S € PXE the following
equation holds for any domain U in S :

[o= [ o+ [ mion) >0

holds for integration over any subset of the section. If we take this
domain to be the subset Dgn(®(5))

/ (o) — NA®D(S)) > 0
Dgn(®(S))
and thus

NA(®P(S9)) < / (o) < [0](¥) = K

Dgn(®(5))
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Now consider a disc p of non-surjective maps with boundary in
d(PYEY:
p: (D", 6D") — (NAK, &(PEL))
We will construct a retraction of this disc into the positive sections
O(PYE). ie. we will construct a homotopy of pairs

pi: (D" x I,6D" x I) — (NAK &(PxE))
such that:
(1) po(d) =p
(2) pi(D") C B(PEK)
(3) ptlspn = plspn for all ¢

Denote the space of volume forms on ¥ by Vol(X). Denote those in
class [ox] by Vol(X),,;. We will construct p; by constructing a family

G (D™,0D™) — (Vol(|X) [0, 0%)

Then using Moser’s Lemma we will provide a family of diffeomorphisms
¢ of 2. ¢y x 1d will then be a family of diffeomorphisms of ¥ x I which
will induce p;.

Lemma 8.8. Let p : D™ — NAEK be a disc of maps, such that
p(0D™) C ®(PZK). Then there is a continuous map ¢, : D™ —
Vol(X) such that:
a With respect to the form mjor + 15(,(d) the section ®~(p(d))
18 positive.
b For all d in the family [(,(d)] = [ox)]
¢ G(0D™) = oy

Proof. We first note that if one restricts 7*or to the section ®~*(p(d)),
and then uses 7y to identify ®~1(p(d)) with X, the resulting form is
p(d)*(or). Thus Condition (a) can be rephrased as: “the form

p(d)*(or) + ¢p(d)

is a volume form on >.”

Denote p(d)*(or) by or(d) to lighten our notation. We begin by
adding a positive form to oy where or(d) + ox is (nearly) degenerate.
Let 6 € Vol(X). We will think of § as small, and we will specify how
small shortly. Let

Us = (U Neg((or(d) + o5 — 6) x d)

dey

Claim 8.9. Us is open, and § — or(d) > 0|y;.
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Proof. Let (x,d) € Us. Trivialize the tangent bundles of ¥ and T’
in neighborhoods U, of = and U, of p(d)(x) respectively. Use
these trivializations to identify T, with T, and T, with T,
for (x,d) € U, x Uyayw). Then, for (xo,dy) near (z,d) the anti-
linear n—forms or(dy) = p(dy)*(or)o are near the antilinear n—form
p(d)*(or), = or(d). J, is also near d,,. Thus as op(d), < J, so must
or(dy)z, < 0z,- The second statement is immediate from the defini-
tion. U

Let ¢1 : ¥ — R be a function such that:

(1) ¢1(z) > 0 for x € Us
(2) ¢1(x) =0 for z € X\Us

The map:

¢, (d) = 61(0 = (or(d) + 0%)) + 0%

then achieves condition (a), but may well fail the rest. In particular
its volume is probably not fz oy. In fact:

(8.1) é@wzéﬁ

We now aim to modify ¢} so that [, (}(d) = [, ox, and thus achieve
condition (b).
Let f be a smooth function on D™ x ¥ such that:

i f(z) =1 for x € Us (the closure of Us)
i 0 < f(z) <1 elsewhere

We now consider the map:

wm@—a@éﬁmm

As k approaches infinity the function fq approaches the characteristic
function of Us, and thus the integral [, f5(](d) approaches Jus(a) G ()

Moreover ¥(-,d) is montone decreasing in k. Thus the map gives a
diffeomorphism:

D™ x [0,00) — D™x (/U (d)<$(d),/EC§(d)]

Note that :
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[, o0 = @+ foas [ G
= (NA(p() +

where we can make ¢; as small as we like by making both § and our
neighborhoods U; small. Thus, as we assume that NA(p(d)) < [ o,
we may force ¢; to be small enough so that

1d:NA d €4 oy
[, G =apa@) e <

Combining this with 8.1 we see that the interval ([, ¢,(d). [5; ¢, (d)]

must contain [ oy.
Choose k(d) such that ¥(d, k(d)) = (d, [, ox). Then

JRAGTURY RS

G = g,

will thus satisfy (b). Moreover ¢ will still satisfy condition (a) as
S =1 on Us, and thus ¢? = ¢} there.

The only condition on ¢, which remains is (c). By assumption p(dD)
is symplectic with respect to our original form o = 7for + 75,05 . The
condition of positivity is open, thus there is some neighborhood Usp of
dD™ such that mfor + 5oy makes each map p(Usp) positive. Let ¢sp,
®int be a partition of unity subordinate to the cover given by Usp and
a slightly smaller interior disc D;,; C D™. Then, as both conditions
(a) and (b) are convex. :

and

Cp = Psp0s + ¢z’nt§;2;
provides our ¢, satisfying each condition. End Lemma 8.8
O

8.3. ¢, to a retraction of p via Moser’s lemma. We now use this
family of forms (, to construct our isotopy of sections. Consider the
homotopy:

Ct = tO‘E + (1 — t)Cp
where oy, denotes the constant map D™ — ox. (; is a homotopy of ¢,
to oy, which fixes § D™ throughout. Moreover
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[Gi(d)] = tlos] + (1 = 1)[¢p(d)] = [os]
as [(,(d)] = [ox] by Lemma 8.8 condition 2. Thus Moser’s Lemma
applies and so if we denote the diffecomorphisms of ¥ by Dif f(X) we
obtain:

M : (D™ x I,6D x I) — (Dif (%), Id)
such that M (d, 1)*(ox) = (,(d).
Let
Pt = p(d)M{l(d, t)
By Lemma 8.4:
NA(p(d)M; ' (d, ) = NA(p(d)) < K

Thus ps(d) € NAK. T claim that ®=!(p;(d))is symplectic with re-
spect to our original form o = n&ox + mrop. For @7 !(p;(d)) is given
by the graph of p(d):

(Mc(d, V), p(d)(x)) € £ x T

This section is the same as that obtained by applying (M.(d, 1) x Id)
to @ 1(p(d)). That is:

(Mc(d, 1) x Id)(®(p(d)) = (Mc(d, 1)z, p(d)(x))
Thus
Olo-1(pay = (Mc(d,1) x Id)*ole-1(5a))
= (o1 + G(d)]o-1(p(ay)

which is everywhere nondegenerate by condition (b) of Lemma 8.8 .
End Proposition 8.7

8.4. Maps of bounded negative area are a weak deformation
retract of non Q-surjective maps. For f € C'(X,T') denote by
pr(z) the cardinality of f~*(z) N Neg(f).

Lemma 8.10. Let f be a degree a map in CH(X,T)\NS2E5+4 then
pe(x) > K for all reqular points x € X.

Proof. If a > 0: Then z has (at least) 2K “excess” pre-images. Half of
these must be negative.

If a < 0: Then z has (at least) 2K — 2|a| “excess” pre-images. Again
half of these must be negative. We also have |a| negative pre-images
coming from the degree of the map. This again yields K in total. [J
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Proposition 8.11. NAX is contained in NS?>5%¢ and the inclusion
i NAK — NS2K+a js g weak deformation retract.

Proof. We first show that NAX c NS2K+a Tet f be a degree a map
in CY(X,T) — NS25+a. T claim that f is not in NAX. For by Lemma
8.10 f must cover a dense set X C I' at least (2K + a) times.

Clatm 8.12. By Lemma 8.3,

NA(f) = /(f)ufa

reg(f)nX

> K o
reg(f)NX

= K

Thus f is not in NAX and NAK ¢ NS?K+e We will show that this
inclusion is a weak deformation retract. Consider then a map of pairs:

¢: (D", 6D) — (NS+e N AK)

Our strategy is the same as before. Denote the volume forms on I' by
Vol(I"). We will construct a map 7,

ng : (D",0D) — (Vol(I') (4, 01)

such that
NA(¢(d), ny(d)) < K

We will then contract 74 to the constant map D" — op. Moser will
then yield a family of diffeomorphisms. Post composition with these
diffeomorphisms will contract our disc of maps to those with negative
area < K, while fixing the boundary.

Lemma 8.13. Let ¢ : (D", 6D) — (NS25+e. NAKY) There is a contin-
uous function 1y : (D", 0D) — (Vol(I'){s), or) such that

NA(¢(d), ns(d)) < K

Proof. First we construct a form 7. such that for a fixed d the map
¢(d) has NA(¢(d),n.) < K:

Partition the sphere into a set X_ with less than 2K + a pre images,
and its complement X>. As ¢ : (D") C NS2K%e X _ has nonempty
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interior. We may thus find a volume form 7, such that makes X_ very

large:
/ Ne = I—e
X<

[ e
X>

We may further require that
GO

or(z)
for all x € X>where C(¢) > 0 is a constant which can be made as small

as we like for small e.
Now x € X_ has < 2K + a pre images under a map and thus:

and Xsvery small:

fo(a)(x) < K =6

for z € X, and some definite § > 0, given by the difference between K
and the next lowest integer. By Lemma 8.10:

NA(G(d)|g(ay-1(x2),Me) = /X Ho(d) (T)7e
<

< (K- (5)/ Ne
X<
< (K =9)(volx_).
On X> we have the following bound:

NA(G(d) Nl g1 (x»)) < Cle) (NA(G(d) orga)-1(x2)))
As:

NA(o(d) ne) = NA(O(d) el gay-1(x-)) + NA(S(d) Nelp(ay-1(x5))
We have:

NA(G(d)ne) < (K = 8)(1 =€) + C(e) (NA(G(d) orlp(a-1(x2)))
which approaches K — § as € — 0. It is thus less than K for small e.
By Lemma 8.5, NA(-,n.) : C'(3,T) — R is continuous, thus there is
some neighborhood of d denoted U, such that for d; € Uy NA(dy,n.) <

K. Let
Ut
d;
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be a covering of int(D™) by open sets Uy, with forms 7’ such that
for d € Uy, NA(¢(d)*n') < K. Let Usp be a neighborhood of the
boundary such that NA(¢(d)*n,) < K for d € Usp. Finally let {;, 75}
be a partition of unity subordinate to the covering of D" given by the
Uy, and Usp. Then, as both NA(f,:) < K and having cohomology
class [or] are convex conditions:

N = Ysor + Liin,

satisfies each condition. End Lemma 8.13 O

8.5. nsto a retraction of ¢ via Moser’s lemma. We now use this
family of forms 7, to construct our isotopy of sections. Consider the
homotopy:

= tos + (1 —t)n,
where os, denotes the constant map D" — oy. (; is a homotopy of 7,
to oy which fixes 0 D" throughout. Moreover

[e(d)] = tlos] + (1 = 1) [ne(d)] = [o5]
as [14(d)] = [ox] by Lemma 8.8 condition (b) Moser’s Lemma applies
and so if we denote the diffeomorphisms of ¥ by Dif f(X) we obtain:

M, : (D" x I,6D x I) — (Dif f(%), Id)
such that M, (d,1)*(ox) = ne(d). Let
Pi(d) = M, (d, t) o ¢(d)

Clearly p; remains in NSX:postcomposing a map with a diffeomor-
phism doesn’t change its ()-surjectivity.
I claim that
NA(¢1(d) or) < K

For ¢ (d) = M,(d, 1) o ¢(d). Thus ¢:(d)*or = ¢(d)* M, (d,1)*or. So

NA(g1(d)or) = NA(¢(d)"M,(d, 1) or)
= NA(¢(d)'ny(d)) < K
End Proposition 8.11

Combining Propositions 8.7 and 8.11 we achieve Theorem 7.4
End Theorem 7.4
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9. 52 - §?

In this section we examine the case where ¥ = I' = S2. Then
0 = m%ox + mror is a symplectic form, and the positive sections PYE
are symplectic sections for the product fibration.

Our goal will be the proofs of the following two theorems:

Theorem 9.1. PYXE is homology equivalent to S* for K € (0,1)
Theorem 9.2. PYE is homology equivalent to SO(3) for :

(1) Ke[0,1),a=1
(2) Ke[l,2),a=-1

9.1. Simplicial Approximation. Let 7T be a triangulation of I". We
consider the system of triangulations 7; of I', where T;,; denotes the
barycentric subdivision of T;.

Convention: In the arguments that follow, it will be convenient for
our triangles to have smooth boundary. We replace each triangle A in
T; by a smooth, closed neighborhood A D A which “rounds off” the
corners of A. We will abuse notation throughout; when we refer to a
triangle A in a triangulation 7; we will mean this smooth neighborhood
A.

Definition 9.3. .Denote by (NS T;) the degree a maps f € C'(X,T)
such that there is a triangle A € T; such that f~!'(A) consists of a dis-
joint discs D;, and f : D; — A is a diffeomorphism, and f maps
Y\UD; — T\A.

If a = 0 these are the degree 0 maps which miss A.

This definition is stable under refinement: If Ay C A then f~!(A;)
consists of a disjoint discs D} C D; and f restricted to these is a diffeo-
morphism, and it maps their complement to I'\A;. Thus as every trian-
gle A € T; contains several triangles in T;, (NS, T;) — (NS, T;14).
Moreover we have:

Lemma 9.4. For 0 < @ < 2, NSYHQ s the direct limit of the system

(NS;+1,T0) — (NS;H_l?TI) — (NS:;—H?T%) — (NSZ—HvT;-H) —

By Lemma 7.3 it is enough to consider the case () = 1. Moreover,
it is enough to show that f € C'(3,T) is in NS**! if and only if there
exists a disc D C ¥ such that f~(D) consists of a disjoint discs D;,
and f : D; — A is a diffeomorphism, for every such D will contain a
triangle A € T% for i >> 0. It is clear that such f lie in NSIT9. We
commence with the converse:
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If fe NSL“HQ, then there is some disc D; C I' such that every
point in D; has a pre-images. Let x € D; be a regular value of f.
Then f is a diffeomorphism in a neighborhood Uy, of each y; € f~'(x).
We may then choose our discs D] to be disjoint, lying in U,,, and
such that f(D;) C D,. Denote by D; the connected components of
D c f7*Nf(D)). Then f: D; — D is a diffeomorphism, and f maps
the complement of J, D; to the complement of D.

9.2. Coverings of (NSK T;).

Definition 9.5. Let T be a triangulation of I', Denote by {Ag, k € S}
the closed n-simplices in I'. Let Uy C (NS%T? T) be the maps such
that f~'(Ag) consists of a disjoint discs D;, and f : D; — Ay is
a diffeomorphism, and f maps ¥\|JD; — I'\Ay. Then {J, g Ur =
(NSg*e.T).

These coverings will be used to construct homology equivalences
S? — (NS2,T;), and Dif f(S?*) — (NS}, T;) via the following proposi-

tion.

Proposition 9.6. Let f : X — Y be a continuous map. Let U be
a finite covering of Y by m open sets, and denote f~1(UL) by Uk.
Suppose that the map f is a homology equivalence on each Ul and
each of their mutual intersections, then f is a homology equivalence.

Proof. Idea: Given a covering | J,., Uk of a space X, one can compute
the homology of X from the the homology of the U’ and their mu-
tual intersections via an inductive application of Mayer-Vietoris. This
proposition follows from noting that f provides a isomorphism of the
“inductive processes” resulting from the covers | J,., Uk and U, Uy
of X and Y respectively. -
Formal proof:The trick in carrying out this idea is to find an in-
ductive hypothesis of the proper strength. The following suffices:

Suppose:

<m

AU N () Ux)

i<k k<i<l
s a homology equivalence, for all k < ko then
AJ N v

i<ko ko<i<l

15 a homology equivalence.
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The conclusion of the proposition, that f : X — Y is a homology
equivalence, is the special case kg = [ = m. Note moreover that the
initial case kg = 0 follows by our assumption that:

(U = (N
i€ i€s
is a homology equivalence for each subset S C {1,..k}.
We thus proceed with the proof of the inductive hypothesis. So

that our notation does not overwhelm our argument we introduce the
following abbreviations:

Xio..ij = U U;(
i0<i<i;
X0t = ﬂ Us
i0<i<i;
loolg . g
Xpt = X, N X0
and similarly for Yi,.i; and Yo% Note that Xigio = Xio-to — Ui,-
Then:
X = (Juon () v
i<k k<i<l
= (( U ton() U;'()) ul ) U
i<k—1 k<i<l k—1<i<l

- (K Uk
We then apply Mayer-Vietoris to the covers given by (XFil-1) U

XE0 and (YEELD U (YR of X and Y respectively. The result is
( 1.k—1 Y
the following morphism of exact sequences:

H, (X752 0 (X)) = Ho (X)) @ (X9)) — B ((X750) U (X))
| fu(left) L fe @ fi(middle) | fi(right)
H (Y55 n () — HoA((X50) @ (X)) — H (55 u (vs)
We wish to show that the right morphism:
H, ((X7521) U (X5)
| f.(right)
H. (Y35 U (y*)
is an isomorphism. By the 5-lemma it is sufficient to show that the

other two maps induced by f are isomorphisms. The inductive hy-
pothesis implies that each factor of the middle map:
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H. (X34 @ (X40)
L fe @ fi(middle)
H, ((Xy750) @ (X*))
is an isomorphism, and thus so is their sum. For the left map:
H, ((X75) 0 (X51)
L fu(left)
H, ((V55) n(y*)
we note that:

(X NXSY (X)) = (| n () tn( ) Uy

i<k—1 k<i<l k—1<i<I
= (| von( ) UL
i<k—1 k—<i<l

= (Xl..k—l N Xkl)

and analogously

(Yraa V) Q) = (V)
thus our left map
H, (X155 0 (xX*)
H, (Yi35) 0 (y™)
is also an isomorphism by the inductive hypothesis.Homology equiv-
alence 5% — (NS?) -

We now restrict ourselves to the case ¥ = I' = S%2. Denote the
constant maps from S? — S? by CM. Then C'M is homeomorphic to
S2 andCOM C (NS%TZ-).

Theorem 9.7. 1: CM — NS? is a homology equivalence.
If © < j, n factors as:
n:CM — (NS§,T;) — (NS, Tj) — NS§
Moreover as,
U (s3.7) = NS
1=0..00

and as homology commutes with direct limits, it is sufficient to show
that:
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Lemma 9.8. f: CM — (NS2,T;) is a homology equivalence.

Proof. We consider the cover Up, of (NS3T;) provided by Definition .
The sets Va, := f~'(Ua,) then cover CM. I claim that

e\ Va, = [ Ua,
jes jes

is a homology equivalence for all indexing sets S C 1..m. When com-
bined with Proposition 9.6 this will show that f must be a homology
equivalence.

Njes Ua, consists of the maps S* — S* which miss (J;cg Aj. (;es Va,
consists of the constant maps S* — S* which miss [J;.gA;. Denote
S*\U,es 4 by SX. Tt may have many connected components. We
denote its kth component by (53 ) -

Fix a point = in the domain. Then over each (5% ) we have a fibra-
tion, induced by evaluating each map at x:

Maps.(S?, (S3)r)
!
ﬂjeS Ua,
1 7o
(SR )k
where Maps.(S?,(S%)x) denotes the based maps from S?to (S3),
and 7(7y) = vy(z). Evaluation at z also induces a fibration of (s Va,over

ﬂjes VAj:

pt
]
mjeS VAj
b 7o

(SR )k
the inclusion f then induces a morphism of these fibrations:

fpt —  Maps.(S?, (S%)r)

! !
[ njes Va, = mjes Ua,
l Pz l Ty
(SZ)w id (SZ)k

(S )k is either a disc, or a bouquet of circles. In either case it is a
K(m,1). For any space X,

WZ(MCLpS*<S2, X)) = 7Tl+2<X)
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Thus if X is a K(m, 1), Maps.(S?, X) is weakly contractible.
So both p, and 7, are (weak) homotopy equivalences. Thus

Fo\Va, = [\ Ua,

j€S j€s
is also a homotopy equivalence for every indexing set S. f: CM —
(NSZ,T;) itself is thus a homology equivalence by Proposition 9.6 . [

9.2.1. Homology equivalence Dif f(S?) — (NS3,T;).
Theorem 9.9. 7 : Dif f(S?) — NS? is a homology equivalence.

If © < j, n factors as:

n:Diff(S?) — (NS}, TE) — (NS}, TL) — NS}

Moreover as,

| (vs§ 1f) = NS}
1=0..00
and as homology commutes with direct limits, it is sufficient to show
that:

Lemma 9.10. n: Dif f(S?) — (NS?,T}) is a homology equivalence.

Proof. Denote the covering described in Definition by U;. We aim to
prove this Lemma (and thus our theorem) by applying Proposition 9.6
to the 1 and the cover given by U;. Thus we must show that

V=Y
jes jes

is a homology equivalence, where {V;} denotes the cover of Dif f(S5?)
given by {n~'(U;)}. As U; D Dif f(S5?), this cover is trivial: each V},
and thus all of their mutual intersections, consists of all of Dif f(S5?).

Denote (J;.g A; by A. ;e U; consists of the maps S* — S? which
are diffeomorphisms on f~!(A), and which map S?\f~'(A) to S*\A.
To remind us of its content we will denote (1;cgU; by NSa. Denote
f7HA) by 6;.

Denote the connected components of the boundary of A by K} for
h € H. Denote the connected components of S*\ J; A; by A; where

A, = D? — my discs
Note that one may have m; = m;, though k # [.
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The connected components of A have the same form. We denote
these by
B, = D?* — mg discs

Definition 9.11. Denote by C the space of orientation preserving em-
beddings g : A — S? such that if

U &
jeJCH
bound some A; then (J;c;cp 9(K;) also bound a connected set in
S*\g(A)
Lemma 9.12. There is a fibration:
m : NSy — C
m: Diff(S*) — C
where m;(f) is the embedding
A=
Proof. We begin by showing that im(m;) C C. As im(m;) C im(m) it
is enough to show this for : = 1. Let f € NSA and suppose that
K= |J K
jeJcr

bound some connected component A; of S*\A.
Both S%\@; and S\ A are complements of embeddings of A = (J¥_| B,
into S2. If ¢ is any embedding
k
o(| (B, = D*\m,discs) —
q=1
then

Sz\‘ﬁ(U By)

has ¥m, components. Thus both S%\#; and S*\A have the same
number of components. f maps S*\A to S?\0;. As f is degree 1 this
map is surjective. Thus f induces a bijection on connected components
between those two spaces. f~!(B;) is then a connected component of
S?\0;. Denote this component by C,,,. As

f:C— B

is surjective

f(6C) C 6B = K,
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thus f~1(K;) bounds C,,.

Next we show that m; is surjective. It is enough to show this for m;.
Let v € C. We seek to construct an f inducing . It is more natural
to construct f~! and this is the task we take up.

Let

fHa=n
We now aim to extend f~! over each connected component A,, of
SA\A. f71(§A,,) bound a component C; of S?\0;. C) like A, is a genus
0 surface. Both have the same number of boundary components. Thus
() is abstractly diffeomorphic to A; and moreover we can construct a
diffeomorphism

Cl—>Al

which extends f~! on JA;.

Finally, we show that each 7; has path lifting. Here we will explain
the proof for 71, the proof for mis identical except by obvious substi-
tutions. Let P be a polyhedron and let

b:PxI—C
be a family of embeddings. Let
(I)lift P x {O} — NSA

be an initial lifting of ®. We seek to extend @, to a lifting over all
P xI. Let ¢(p,t) be a family of diffeomorphims in Dif f(S?) such that

P(p,t) o (P(p,0)) = ®(p,t)
Then let
Dyii(p,t) = Prige(p,0) 0 ¢~ (p, )

This is the required lifting. To construct the analogous proof for my
replace N'Sa everywhere by Dif f(S?).

O
O
Corollary 9.13. C is connected.
Proof. This follows immediately from the surjectivity of . 0

We denote the degree 1 self maps of A; which are the identity near
the boundary by (A;, 4;)]. Then the fiber of m; is homeomorphic to

[T(AL A)s

)

Summarizing we have:
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[ (A, Ay
!
NS

lm

C
We have a similar fibration of Dif f(S?):

11 Difl"f (Ay)°
Dif f(5?)

1} m

C

Where Dif f(A;)° denotes the diffeomorphisms of A; which are the
identity near the boundary. The inclusion 7 induces a morphism of
these fibrations:

n:Hinff(Az)" —  [I;(A, Ay

|
n: Dif f(S?) — NSA
I |7

C 1d C

Moreover the induced map
n: Dif f(A)° — (A, Ay
is a homotopy equivalence. Thus
n: Dif f(S*) = NSa
is also a homotopy equivalence by the 5-lemma. Our Lemma, and thus

Theorem 9.9, then follow from applying Proposition 9.6 to n and the
cover given by the Uj.

10. APPENDIX

10.1. Tamed almost complex structures preserving sub-bundles.
In this subsection we collect the results we require about tamed almost
complex structures preserving sub-bundles. They are listed below in
order of their difficulty. The first two are classical, the last less so, and
we provide a proof of it here.

Definition 10.1. If 7 : V — B is a symplectic vector bundle, Let
7y : J(V) — B be the bundle such that 7;'(b) are the tamed almost
complex structures on 7~ 1(b). If n; C V are symplectic sub bundles,
let w7+ J(V,n1,1m2,...) — B be the (possibly locally non trivial) bundle
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where 7' (b) are the tamed almost complex structures on 7~!(b), which
preserve each 7.
The first result goes back at least to Gromov’s seminal paper.

Lemma 10.2. Let Let (V,w) — B be a symplectic vector bundle over a
polyhedron B. Then p: J(V) — B is a bundle with contractible fibers.

Next we consider almost complex structures preserving a given plane
field. This is also a classical result:

Lemma 10.3. Let (V,w) — B be a 4 dimensional symplectic vector
bundle over a polyhedron B. Let v CV be a 2 dimensional symplectic
sub-bundle of V.. Then p: J(V,9) — B is a bundle with contractible
fibers.

Let Q C B be a sub-polyhedron of B. Then given a section ¢g
of p: J(V,¥) — @, Lemma allows to construct a section ¢ of p :
J(V,9) — B extending ¢q.

Finally we will need to consider the tamed almost complex structures
preserving 2 plane fields. Preserving 2 planes requires a good deal more
work than preserving one, as pairs of symplectic planes have moduli.
This, while probably not new, is much less well known and we include
a proof of it here.

Proposition 10.4. Let (V,w) — B be a 4 dimensional symplectic
vector bundle over a polyhedron B. Let 91,95 C V be 2 dimensional
symplectic sub-bundles of V', such that v1,0, intersect transversely in
each fiber, and the the symplectic orthogonal projection w5 : 91 — U,
is orientation preserving. Let () C B be a sub-polyhedron, and let ¢g
be a section of p: J(V,01,92) — B, defined over Q.

Lemma 10.5. Then: There is a section ¢ of p which extends ¢q.

Proof. Constructing ¢ is equivalent to constructing a section of ¢! @ ¢?
of J(¥1) @ J(V2) such that the resulting almost complex structure is
tamed by w. Denote by gbz? the sections such that

bo = b4 ® dp
Constructing ¢, alone is fairly simple, for by Lemma:
is a bundle with contractible fibers. Thus this bundle admits a section
¢! extending ¢g,. We now proceed with the problem of constructing ¢
extending ¢5.

Our main tool in will be the following Lemma in Linear Algebra,
which provides the almost complex structures satisfying our conditions
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with (something resembling a) convex structure. This will allow to use
partitions of unity to construct ¢?.

Lemma 10.6. Let V, P be 2 symplectic planes in R* with symplectic
structure w. Let | : P — V= denote the symplectic orthogonal pro-
jection. Suppose that m, is orientation preserving. Fiz an w—tame
complex structure Jp on P, and sy € V,s1 # 0. Denote the space of
almost complex structures Jy on V' such that J = (Jp @ Jy) is w-tame
by jv.

Then: @4, : Jy — V given by Jy — Jy(s1) gives a homeomorphism
of Jv onto a convex set.

The proof of this Lemma is involved, and we defer it to the end
of this subsection. For now we concentrate on its application to our
argument. It has the following immediate consequence

Lemma 10.7. Let s be a section of U9 ,non vanishing over a set X, C
B. Then there is a section ¢* € J(V2) such that ¢* extends qz% and
ot @ @? is tamed by w over X,.

Proof. As s is non-vanishing, « is determined by its action on s. Lemma
10.6 tells us that the set of allowable choices for a(s) form an open,
convex set. As X, is paracompact, so we can use a partition of unity
to construct a section s, of ¥, over X, so that for

P’ s — s,
A Sq — —S§
the almost complex structure ¢! @ ¢? is tamed by w. O

Proposition 10.4 then follows by applying a partition of unity to a
covering X, coming from a finite set of sections {s;} of ®*(n) such
that [J, X,, = X x P.

U

10.1.1. Proof of Linear Algebra Lemma. In this subsection we provide
the proof of the promised linear algebra lemma.

Lemma. 10.6Let V, P be 2 symplectic planes in R* with symplectic
structure w. Let | : P — V= denote the symplectic orthogonal pro-
jection. Suppose that m, is orientation preserving. Fiz an w—tame
complex structure Jp on P, and sy € V,s1 # 0. Denote the space of
almost complex structures Jy on V' such that J = (Jp @ Jy) is w-tame
by Jv.

Then: @, = Jy — V given by Jy — Jy(s1) gives a homeomorphism
of Jv onto a convex set.
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Proof. We begin by establishing some useful coordinates. Let 7 : P —
V' denote the symplectic orthogonal projection.

Let
peT (s))CP
Then
p=wi;+ 51
where w, € V*.
Jpp = wy + S

where wy € V+, 59 € VL.
Then
J’LUl = Wy + Sg — val
Applying J to both sides of this equation we compute Jws:

JIUQ = —Ww1 — vag — 51
Throughout this lemma we will suppress w and just denote the pairing
of two vectors p and ¢ by (p, q).
7, is orientation preserving. Thus as (7 (s), Jm,(s)) > 0 their pro-
jections to V1 must pair with the same sign, and so (wy,wy) > 0 as
well. To lessen our burden of constants: scale s; so that

(w1, ws) =1

This scaling in turn dilates the image of ®,,, and thus does not affect
its convexity.
As P is symplectic (wy,ws) + (s1,52) > 0 and thus

(10.1) (51,82) > —1

We now commence in earnest. Let w +v € V+ @&V = R What
must we require of Jy so that (w + v, J(w + v)) > 0 for all such pairs
w and v ?

(w+v, J(w+v)) = (w,Jw)+ (w, Jv)+ (v, Jw) + (v, Jv)
w, Jv) =0 as J must preserve V. And we have:
(w, Jv) = 0 as J V. And we h
(w, Jw) + (v, Jw) + (v, Jv)

(v, Jw) = (v,q) where ¢ is the projection of Jw to V. This term
may well be negative. We seek to bound its absolute value in terms
of the other 2 (positive) terms. We replace v by —Jv throughout the
equation. As we seek a bound for all pairs w,v this has no effect on
our task. Moreover as (v, Jv) = (—JJv, —Jv) this has no effect on the
third term. As Jy has determinate 1, it preserves wl|y, thus (-, Jy-) is
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a (symmetric) inner product on V. The second term (v,q) becomes

—Jvv,q) = (v, Jvq).
We seek to show that:

(v, Jvq)| < (w, Jw) + (v, Jv)

Note that the right-hand side of the inequality depends only on the
magnitude of v and not its direction. Cauchy-Schwartz then implies
that:

(v, Jva)| < (v, Jva) (g, Jva)?
If v = kq this bound is achieved. Thus the tamed Jy are precisely those
such that:

(10.2) (v, Jy0) (¢, Jva)® < (w, Jw) + (v, Jo)
We now unpack this inequality. Write w as aw; + bws. Then
(w, Jw) = (aw; + bws, J(aw; + bwy))
= (aw; + bwy, a(wy + s9 — Jys1) + b(—wy — Jy sy — 1))
a®(wy, wy) — b*(ws, wy)
= a’+ b

(¢, Jvq) = (asy —adysy —bJysy — bsy,adysy + asy + bsy — bJysy)

Expanding the right hand side creates 16 pairings, however some of
them are 0, and the 4 “ab” terms all cancel. Upon summing we are left
with:

(¢, Jva) = A(s1,Jvs1) 4+ A(s2, Jysa) — 2A(s1, 82)
where we denote (a® + b%) by .
Our inequality 10.2 then reads:
(v, Jyv)2(A(s1, Jys1) + A(s2, Jysa) — 2A(s1,82))2 < A+ (v, Jyv)

If v = 0 the inequality places no restriction on Jy. Thus we may assume
that v is not zero. Since the condition (w+wv, J(w+wv)) > 0 is invariant
under scaling by a positive constant, we may scale the vector v 4+ w so
that (v, Jyv) = 1, if we assume that Jy tames w on V. We do so, are
left with one free parameter A > 0.

N

()\(81, JV31> + )\(82, vag) — 2)\(51, 82)) < A+1

squaring both sides yields:
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)\‘(81, J\/Sl) -+ (52, JVsQ) — 2(81, SQ)’ < )\2 + 22 +1
This may be achieved, for all \ if and only if:

(103) ’(81, J\/Sl) + (Sg, vag) — 2(81, 82)| < 4
At this point our proof bifurcates into two cases:

Case 1. rk(m = 2))

(I)s(JV) = Jysi
(104) JVSI = c¢S81 + d82
where ¢,d € R.

We now describe the constraints that 10.3 places on ¢ and d. We can
compute Jy so by applying Jy, to both sides of equation 10.6. We get:

1
Jysg = —=(c* 4+ 1)s; — csy

d
Substituting into 10.3 we get:
A+1
d

Jv’s tameness restricted to V' 2 translates to d having the same sign
as (s1,s2). Thus (d + C%“l) and —2(sy, s9) have opposite sign, and our
inequality is equivalent to:

A +1

|(d +

— 2(81, 82)| <4

|(d +

)| <4+ 2(s1,8)

If we denote 4 + 2(s1,s2) by 7, the set of whose solutions of this in-
equality form disc, centered at

Y
(Ca d) = (07 5)

Since (s1,82) > —1 by 10.1 , v > 2, and this

(SIS

with radius (% —1)z.

disc is nonempty.
Case 2. rk(m) =1
Write s as
s = asi;+ [s3

where «, 5 € R, and s3 € V, such that (s1,s3) = 1. We introduce s3
because s; and sy are linearly dependent.

2we assumed this when we scaled v so that (v, Jv) = 1
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Then if
Jys1 = csy + dss

we have that

1
JV83 = —3(02 + 1)81 — CS3
(I)S(Jv) = va
(105) va = aJV81 + ﬁJng
(10.6) = (ac+ —g(c2 +1))s1 + (ad — Besy)

As sy = ksy, the constraints that 10.3 places on ¢ and d are much
weaker. Substituting into 10.3 we get:

4
14 k2
and no condition on ¢. Jy’s tameness restricted to V ? translates to

d having the same sign as (si, s3), and thus the image of ®; are the
vectors
g

(e + _E( >4+ 1))s; + (ad — Besy)

d| < ko=

where c is free, o and (3 are fixed constants one of which must be
non-zero, and

<d
0= <1+k2

These vectors form a convex set. In fact the map
(c,d) — (ac+ —5(02 +1),ad — Be)
gives a diffeomorphism of the strip,
{(c,d) : 0 < d < ko}
onto the region in the plane to the convex side of the parabola:
(¢,d) : (e + —5(02 + 1), akg — Be)
0
The case 3 = 0 is degenerate and yields the band
(c,d):0<d<4

Case 3. rk(m) =0

3we assumed this when we scaled v so that (v, Jv) =1
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This case actual requires no proof at all, for here the two planes are
orthogonal. Thus for any Jy tamed by w|y, Jy @ Jp is tamed by w,
and im(®y) is a half plane.

O

10.2. Applications. In this subsection we collect some immediate con-
sequences of the Lemmas in the previous subsection. FEach follows
quickly from the lemmas in the previous section.

Let {S;} be a collection of disjoint symplectic curves. Denote the
tamed almost complex structures preserving the tangent space to each
curve by J,.

Proposition 10.8. J, is contractible.

Proposition 10.9. Let N be a symplectic 4-manifold, let P be a poly-
hedron, and let ® : P — SF* be a family of symplectic fibrations with
symplectic section. Then there is a family ®’ : P — J of tamed almost
complex structures such that ®(p) is ®’(p) holomorphic. Moreover if
Q is a sub polyhedron of P and ®'|gmakes ®|g holomorphic, we can
extend ®”|g to such map on all P.

Proposition 10.10. Let P be a polyhedron. Let ® : P — SF5°. There
is a map ® : P — J such that ®(p) is ®’(p) holomorphic. Moreover
if Q is a sub polyhedron of P and ®’|gmakes ®|g holomorphic, we can
extend ®”|g to such map on all P.

Proposition 10.11. Let ® : B X I — Z o, along with a lifting @4,
Bx0— SF. Thereis a ® : BxI — J, such that ®(b,t) is ®/(b,t)
holomorphic, and ®;4(b,0) is ®7(b,0) holomorphic.

10.3. A non-Traditional 5 Lemma. The 5-Lemma is usually pre-
sented in the context of chain complexes, and as such it is usually stated
as a Lemma about abelian groups. However its usual proof actually
applies in much more generality. As we will require it we present the
more general statement here. The proof is the standard one, which
we reproduce from Spanier, with cosmetic changes due to the different
language.
Lemma 10.12. Let

Y5 1 Yol Y3l Yol 7l

Hy 5 H 2 o0 B H, B OH

be a diagram of pointed sets, with each row exact. Suppose that G3
and Go are groups, v; makes H; a G;-set, and the morphisms az and
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(B3 respect this structure. Suppose further that vi, Y2, Va4 and 75 are
bijections then v3 is a bijection.

Proof. Denote the base point of each set by e. For (G5 this is also the
identity element. We first show that 73 is an injection. It is enough
to show that ’)/3_1(6) = e, as 73 is a morphism of G3 sets. Suppose

v3(g3) = e. Then ypa3(gs) = F373(g3) = e. Thus az(g3) = e, as v, is
injective. Thus, by exactness, there is a g4 € G4 such that ay(g4) = g3.
Then [47v4(91) = 73(93) = e. Thus there is an hs € Hs such that

Bs(hs) = v4(g4), and so g4 = as(gs). Therefore g3 = asas(gs) = e.
Next we show that ~3 is surjective. Let hy € Hs. There is a go €
Gosuch that v9(g2) = B3(hs). Then vy as(ge) = B203(hs) = e. Therefore
as(ge) = e, and there is g3 € G such that as(gs3) = go. Then
Ba(hs-7s(g57)) = Balhs) - v2(as(gs) ™)
= Bs(hs) - 72(g: "))

(&

and thus there is an hy € Hy such that B4(hy) = hs - 13(g5"). Let
gs € G4 be such that v4(g4) = hs. Then ay(g4)gs € Gz and

Y3(a(ga)gs) = Ba(ha)ys3(g3)

hs - 3(g5 ') s(g3)
hs - v3(g3) " - 73(g3)
— hy

O

Remark 10.13. To prove that 73 is injective we needed only that v, and
v, are injective, and yswas surjective. We also needed only that G3 was
a group and that Hs was a G3 set. We did not need the structures on G4
and H,. To prove that v3 was surjective we needed that y,and ~, were
surjective, and that ~; was injective. However the above statement is
general enough for our purposes.
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