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Abstract of the Dissertation
On Generalizations of the Scalar Curvature
by
Chanyoung Sung
Doctor of Philosophy
in
Mathematics

State University of New York at Stony Brook

2002

We study the scalar curvature and its generalizations in vari-
ous contexts. First, We prove the existence of infinite dimensional
families of non-Kahler almost-Kahler metrics with constant scalar
curvature on a compact Kéahler manifold of dimg > 2 with con-
stant scalar curvature and non-degenerate Futaki invariant. By
the same method we also obtain infinite dimensional families of
non-Kihler almost-Kahler metrics with s + s* constant, where s
is scalar curvature and s* is x-scalar curvature. Ixplicit exam-
ples are presented to show that there exist compact non-Kahler

almost-Kihler 4-manifolds with the property that s + s* is a neg-
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ative constant and the almost-Kéahler form belongs to the lowest

eigenspace of self-dual Weyl curvature at each point.

Secondly we consider o + s, where a'is a nonnegative constant,
K is the sectional curvature and s is the scalar curvature on a
Riemannian manifold X. It is shown that if X admits a metric
with aK + s > 0, then so does any manifold obtained from X
by éurg‘eries of codimension > 3. This implies the existence of
such metrics on certain compact simply connected manifolds of
dimension > b by using the cobordism argument. We also study
the corresponding minimal volume problem. As a corollary, we
derive that every compact simply connected manifold of dimension
> 5 and every compact complex surface of Kodaira dimension < 1

whose minimal model is not of Class VII collapse with o& + s

bounded below.
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Chapter 1

Introduction

It has been one of main interests in Riemannian geometry to study the
relations between curvature and topology. One of the great successes in this
field is that of scalar curvature. On an n-dimensional Riemannian manifold
M, the scalar curvature is a smooth function s : M — R defined as

S(p) = ZI((G%J ej)a
i
where K denotes the sectional curvature and {eq, - ,e,) is an orthonormal

basis for the tangent space at p € M. From an another view point, the scalar
curvature at a point p is a measure of how fagt the volume of the ball of radius
r around p is growing with r in compared to that of the euclidean metric ball.

More precisely,

VolB,(M,p) ., _ sp)
VolB,(Re,0)  ~ 6(n+2)

r? 4+ O(r?),




where B,(-,-) denotes the ball of radius » around the given point. Since the
scalar curvature is an average of the sectional curvatures at each point, it has
more flexibility than the sectional curvature and Ricei curvature so that it has

many implications.

The first remarkable fact about the scalar curvature is that on a compact
manifold of dimension > 3 cach conformal class of metrics has a metric with
constant scalar curvature. These metrics minimize the normalized total scalar
curvature [, sdp/ Vol'%" in their conformal classes. The metric with constant
scalar curvature as a canonical metric on a manifold with a given structure

appears in other contexts.

The classical uniformization theorem of Riemann surface says that on a
compact complex 1-dimensional manifold, each Kéhler clags can be represented
by a metric of constant curvature. In higher dimensions, Calabi [7, 8] sought
to find extremal Kihler metrics by minimizing the L?-norm of scalar curvature
over a given Kahler class. Any Kahler metric of constant scalar curvature is
extremal, but he showed that the converse is generally false. The celebrated
theorem of Aubin [1] and Yau [45] guarantees the existence of Kihler-Einstein
metric in the K#hler class of the first chern class ¢; on any compact complex
manifold with ¢; < 0. This metric is unique up to homothety. Yau [46] also

showed that in case of ¢; = 0, each Kahler class can be represented as a unique

Ricci-flat Kahler metric. In case ¢; > 0, by Tian [43] a compact complex




surface admits Kéhler-Einstein metric iff the Lie algebra of biholomorphism

group is reductive. Recently Chen [9] showed the uniqueness of Kihler metric
of constant scalar curvature in each Kahler class on any complex surface with

cp < 0orec =0.

On a smooth compact oriented 4-manifolds, one may instead fix a polar-
ization meaning a maximal linear subspace H of H*(M,R) for which the
intersection form is positive definite. A Riemannian metric is called H*-
adapted if the space of self-dual harmonic 2-forms coincides with H+. Thus
one can try to find extremal metrics minimizing the L?-norm of scalar cur-
vature among all H*-adapted metrics. For example, on a compact complex
surface of Kahler type, fixing a K&hler class [w] gives rise to a polarization
by H" = Rlw] @ ReH*® & ImH?*® where ReH?*? and ImH?Y denote the
de Rham classes represented by real and imaginary parts of holomorphic 2-
forms respectively. LeBrun [20] has shown that on a polarized 4-manifold with
a nontrivial Seiberg-Witten invariant for a spin® structure whose first chern
class has nonzero projection to H*, these extremal metrics minimizing the
L2-norm of scalar curvature are exactly Kahler metrics of negative constant

scalar curvature.

Later LeBrun [23, 24] proved similar results involving Weyl curvature.

Recall that on a oriented Riemannian 4-manifold, A?7T*M has a direct sum

decomposition AT @ A~ of self-dual 2-forms and anti-self-dual 2-forms, and




in these terms the curvature tensor R as a section of End(A*T*M) has a

decomposition

W+ ‘I‘ %IdA-}- B

Bt W_ + & 1dy-

\ /

into irreducible pieces. Iere s denotes the scalar curvature, and the self-
dual and anti-self-dual Weyl curvatures W. are the trace-free pieces of the
appropriate blocks. B can be identified with the trace-free part r — g of the

Ricei curvature. Let w be the lowest eigenvalue of W, at each point. Then

Theorem 1.0.1 (LeBrun) Let (M,H",g) be a polarized smooth compact
oriented 4-manifold with a HY-adapted Riemannian metric g. Suppose M
has a spin® structure ¢ so that Seiberg-Wilten equations have a solution for
every Ht-adapted metric. Let ¢; be the first chern class of ¢ with nonzero

orthogonal projection ¢ to Ht. Then for any constant § € [0, 1),




TR

f (1= 8)s -+ 6 - 6w)2dn > 327%(c} )2, (§1.0.1)

When 6 € [0, 5), the equality holds if and only if g is a Kihler metric of
negative constant scalar curvature and (¢ )? = (C].(M)—l—)z where ¢ (M) denotes

the first chern class of the almost complex siructure.

When d = %, the equality is equivalent to thot g s an almost-Kdhler metric
and (¢ )? = (cl(f'|/f)+)2 such that the almosi-Kéhler form belongs to the lowest
eigenspace of W at each point, and the sum s+ s* of scalar curvature and

x-scalar curvature is a negalive constant.

Hére, an almost-Kahler manifold means a symplectic manifold endowed

with the metric defined by
g('j: ) = LU(', )

for the symplectic form w and a compatible almost complex structure J. Such
a manifold is Kahler iff the almost complex structure is integrable. The *-
scalar curvature of an almost-Kahler manifold is a natural partner for the
scalar curvature, which is defined as the function s* = s + 3|VJ|%. Note that

s* exactly coincides with s on a Kéhler manifold. The Blair’s formula [4]

[ 3l = tna) - (51.0.2)




for 2n-dimensional almost-Kahler manifold M indicates that 1{s + s*) is a

more canonical quantity than s alone on an almost-Kahler manifold.

Any Kahler metric of negative constant scalar curvature clearly attains
the equality in §1.0.1 when ¢ = % The question thus arises whether such
a almost-Kahler metric saturating the inequality in case of ¢ = % can be
strictly almost-Kahler in the sense that the almost complex structure is not
integrable. Another natural question is whether the estimate of these can
be extended to § > % We will present an example that answers both of
the questions. Morcover we will show that on a compact Kéhler manifold
of dimg > 2 with constant scalar curvature and non-degenerate linearized
Futaki invariant has an infinite dimensional family modulo diffeomorphisms of
strictly almost-Kahler metrics with constant s -+ s*. In the same way we can
also obtain an infinite dimensional family modulo diffeomorphisms of strictly

almost-Kahler metrics with constant scalar curvature.

The next topic we are going to discuss originates from the question ” Which
manifolds admit metrics of positive scalar curvature?” First of all it is easy
to see that every compact manifold of dimension > 3 admits a metric with
negative scalar curvature. On a compact orientable 2-dimensional manifold

M, the Gauss-Bonnet theorem

/ syt = Amx (M),
M

where x(M) denotes the Euler characteristic of M gives a complete answer




to the question. In higher dimensions, a-genus turned out to be the relevant
topological quantity. It was Lichnerowicz (28] who first realized that a com-
pact spin 4n-manifold with non-vanishing A-genus cannot admit a metric of
positive scalar curvature. Noting that A-genus can be extended to the ring ho-
momorphism « from the spin cobordism ring (257" onto K O.(pt), Hitchin [14]
proved that any compact spin manifold M admitting a metric with positive
scalar curvature has a(M) = 0. The converse is also true if we further assume
X ig simply connected and of dimension > 5 by the works of Grotmov and Law-
son [13], Rosenberg [36], and finally Stolz [38]. In case of non-spin manifolds,
Gromov and Lawson [13] proved that any compact simply connected non-spin
manifold of dimension > 5 admits a metric of positive scalar curvature. All
these existence results of positive scalar curvature are based on the following
main lemma of Gromov and Lawson [13] which was also proved independently
by Schoen and Yau [37] : If a manifold M admils o melric of posilive scalar
curmﬁma, then any manifold oblained from M by surgeries of codimension

> 3 also admits a metric of positive scalar curvature.

Of course this lemma is generally false for the sectional curvature in which

case much is still unknown. As an interpolating case between scalar curvature

5 and sectional curvature K, we can consider 1 (& + n(ns_l)) where the bottom

sectional curvature K is defined as the minimum of sectional curvatures over

all 2-planes at each point and n is the dimension of the manifold, or more

generally MK + (1 — )\)er_ﬁ where A € [0,1) is a constant. Actually it




turns out that AKX -+ (1 — A)ﬁu(f:ﬁ with XA € [0,1) behaves in the same way
as s in many respects. Indeed we will prove that if M admits a metric with
AK+(1-X) woogy > 0, then so does any manifold obtained from M by surgeries
of codimension > 3. This implies that any compact simply connected non-spin

manifold of dimension > 5 and any compact simply connected spin manifold

M of dimension > § with o(M) = 0 carry a metric with AK 4 (1—2) 8= > 0.

Our main surgery lemma cnables us to compute the minimal volumes for
many classes of manifolds. Consider minimal volume invariants of a compact
manifold as a way of quantifying the degree to which some negative curva-
ture might be an inevitable feature of all possible geometry on the manifold.

Following LeBrun [24] we define Gromov minimal volume as
Volg (M) = inf { Vol(M,g) | K, > 1},

9

and Yamabe minimel volume as

Vol, (M) := inf { Vol(M, g) ‘ Hﬁsg——n > —1}.

where n is the dimension of the manifold. In contrast to Gromov minimal
volume which is difficult to compute in general, Yamabe minimal volume is
much sirﬁple. Indeed Petean {34 proved that any compact simply connected
‘manifold M of dimension > 5 has Vol,(M) = 0, in other words it collapses
with scalar curvature bounded below. LeBrun [21] has computed it on 4-

manifolds with nontrivial Seiberg-Witten invariant and it turned out to be

highly nontrivial. We expect similar results in case of the A-mized minimal




volume for 0 < A < 1 which is defined [24] as

Vol g s(M) := inf { Vol(M, g) ‘ MK, + (1 — A)n(:—il) > *1} i

g

Indeed we will show that the surgery in codimension > 3 does not increase

the mixed minimal volume. This will lead to the conclusion that every com-
pact simply connected manifold of dimension > 5 and every compact simply
connected complex surface of Kodaira dimension < 1 whose minimal model is

not of Class VII collapse with AKX + (1 — /\)m bounded below.




Chapter 2

Preliminaries

2.1 Notations and conventions

Let E be a smooth real vector bundle endowed with a metric on a compact

‘veal m~dimensional Riemannian manifold M. Then I(E) denotes the real
Banach space of sections of E whose first & derivatives have bounded L?-
norms. The Sobolev imbedding theorem states that if £ > 2 +1, then IZ(E) C
CHF), the space of continuous sections whose derivatives of order up to [, are
continuous. When E is a trivial line bundle, it is usually denoted as L (M) or
more briefly L%, which is a Banach algebra for & > %. Throughout this paper,

k > 2 will be assumed. Finally by L (M)/R, we mean the quotient Banach

10




g

11

space of LY(M) by the closed subspace of constant functions. By abuse of .

notation, any element of L2 (M) /R will be denoted with or without [-], e.g. [}

or . .




Chapter 3

Almost-Kihler metric with constant scalar

curvature

3.1 Seiberg-Witten theory

Let M be a smooth compact oriented Riemannian 4-manifold and Pso)
be the principal SO(4) bundle of orthonormal frames. The group Spin®(4) is
(ST(2) x SU(2) x U(1))/{£1}, where SO{4) = (SU(2) x SU(2})/{=1}. A
spin® structure on M is by definition an equivalence class of lifts of Pgp to
a principal Spin¢(4) bundle P — M. P can be viewed as a double cover of
Psoqay X Pyqy. Thus the Levi-Civita connection on M and a connection A on

Py induces a connection V4 on F.

12




A spin® lift has two canonical associated €2 bundles V.. on M coming from

the two homomorphisms of Spin©(4) to U(2) = SU(2) x U(1)/{=*1}. V.. are

distinguished by the fact that the projective bundles P(Vy) are the unit sphere
bundles S{A%) respectively, and their determinant line bundles are both equal

to the associated line bundle L of Pyy).

The Seiberg-Witten equations [44]

Dg® =0

FAF = (‘I’@’(D*)o

are cquations for an unknown Hermitian connection A on L and an unknown
section & of V. Here D, is the Dirac operator coupled to A which is defined
as the composition of Clifford multiplication with the covariant differentiation
by V4. FJ denotes the self-dual part of the curvature 2-form of A and ar

denotes the trace-free part.

Now suppose that 3 has an almost complex structure on 7'M under which
the metric is invariant. Then there is a canonical spin® structure coming from
the almost complex structure so that V, = COK ' and V. = (T*M)™", where
C is the trivial complex line bundle and K~ = A?2(7*M)%!. Counsider 1 as a
section of C with a unit norm and let Ay be a unique connection on K~ such

that V41 € T*M ® K. On an almost-Kahler manifold the Seiberg-Witten




equations for the canonical spin® structure can be written more concretely.

Dot +0,3=10

2 2 — el
pi il 4 81, , @ 2 of

where (o, 8) is a section of V., and 9, denotes the anti-holomorphic part of

d o+ A_QAO.

Here we present two theorems which will be used later.

Theorem 3.1.1 Suppose M is an almost complex 4-manifold with a hermition
metric. Let e, eq = J(e1),es,eq = J(es) be a local orthonormal frame of TM
and (94;) be the connection 1-form of the Levi-Civita connection on TM. Then

Ag = i(091 + Dus).

Proof. Let (f1,---, f4) be the dual coframe field. The connection form (w;;)

is given by Cartan structure equations
df? =~ A f

and V4, is given by

a+ 2 +Z%¥c5(ﬁ A ).

2 <]
Here ¢l{) denotes Clifford multiplication defined by

al(v) -y = V2" Ay ~1(v1))




forv e T"M ®C and v € V, @ V_, where v denotes the (p, ¢g)-component of

v, and 2 is the interior product. Let m; : ¥, = C® K~! — C be the projection

map. Then
0=m(VP1) = %ng%cl(fI/\fz)~1—|—Qﬂ—§3—c£(f3/\f4)-1
Ao | O, O

e ]

Theorem 3.1.2 Let M be an almost compler 4-manifold with o hermitian
metric. Suppose A and ® € C°(M) be a solution of Seiberg- Witlen equations
for the canonical spin® structure such that |®| is a nonzero constani and VA® €

T*M & K~1. Then
2
4|VAD| ot

* ‘i+:
V*VF ap

where V denotes the Levi-Ciwita connection,

Proof. From the Weitzenbock formula
0=4D4D,® = 4(VA) V4D + sb - D[,

where s denotes the scalar curvature. Taking the inner product with @ gives

0 = 2A8 + 4|VAD]® + 8|2 + |B|* = 4| VA" + 5|®|* + |®[*.

15
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Fix £ € M and choose a local orthonormal tangent frame field (e, -, e4)

with the property that (Ve;)_ = 0 for all . Then we have at the point z that

: 3|
VIVEF = (V' Ve e e - %m)
= Y —VAVAE QT + D8V, ")
k

= (VA'Ve et -2 VAo (VLE) +2a (V) V)
k

S+|(I)|2 * / *
= oy 0ed —2) VL0 ® (VD)
k
s+ | |®° S o @ P*
— 2P e Elpg) -2V (1d - ——
D|* o d @ P*
_ _,3+2|I’| Fr— (—|VA[* + 2140 Id + 2| VAD [ E';

REaL 2|vAD|®
9 A |(I’|2

q?
(P ® O — %Id)

—(s + 0|0 + 4VAD]®
2|®|2 FA

A|VAD|?

2f*




3.2 Extremal almost-Kahler 4-manifold

Let M be a smooth 4-manifold ¥ x T% where 7% denotes a torus and X
is any compact Riemann surface of genus bigger than 1. We consider it as a
torus bundle over 3. Define a metric g = gz % gg2 on M, where g;= is the flat
metric and gy; is a metric of constant curvature. With the compatible complex

structure M is a Kidhler manifold of negative constant scalar curvature.

To get our desired metric, we want to perturb the metric on each fiber by
rescaling the longitude and the meridian keeping the volume unchanged. In a

focal coordinate, the perturbed metric looks like

dz? +dy* 1 5 4. 5 :
an = _W_ + @dz + h*du (§321)

where —¢? is the Gaussian curvature of g5, and {dz, du} forms a global parallel
frame for g2, and our perturbing function b is any non-constant smooth fune-
tion on ¥ with C%norm ||A — 1||¢» sufficiently small. By adjusting the almost
complex structure on each fiber, g, can be also made to be almost-KK&hler with

The almost complex structure J has to be as follows:

0 0 0 0
J(é}) - 5;: (a_y) - _%:
d 10 10 )

17




Then the first chern class ¢;{M) of the almost complex structure and its self-
dual harmonic projection ¢;(M)" does not change by the above perturbation

and is nonzero.

Note b (M) > 1. By Witten’s computation [44] on Kéhler surfaces
or more generally Taubes’ result [41] on symplectic 4-manifolds, M has the
nonzero Seiberg-Witten invariant for the canonical spin® structure. So M with
the canonical spin® structure has a solution of Seiberg-Witten equations for
any metric. But it’s noteworthy that (M, gn) actually has a solution which

is the same as that of (M, go). Let (eq, es,e3,e4) denote a local orthonormal

8 18
5

-+ 5 ), and (¥ be the corresponding connection

frame field (|ey| 3%, eyl 4, b

1-form of the Levi-Civita connection on T'M.

Theorem 3.2.1 Let aqy be the connection 1-form of the Levi-Civita connec-

tion on (X, gg). Then for (M, gn) above,
A=1ay, (a,08)=(V2c0)

8 o solution of Seiberg- Witten equations for the canonical spin® structure.

Proof. The direct computation using Carfan structure equations shows that
P91 = ay; and P43 = 0. By theorem 3.1.1, A = iay; is the connection on K !

which makes VA1 belong to K~ and hence Da(v/2¢?) = 0. Let wy be the

18




Kihler form of (3, gs).

FY = (iday)™ = (icPwg)’

Jof — 8] @B —of
% 1 w -+ 5 )

Now we prove our main theorems.

Theorem 3.2.2 Let M =X x T? with the genus of ¥ > 1. Then M admils

a non-Kahler almost-Kahler metric such that
2 2 2 12
(§S+ 2w) dp = 327 (e (M) )7,
M

where ¢y (M) is the self-dual harmonic part of the first chern class ¢ (M) of
the almost complex structure. Moreover, the moduli space of such metrics on

M modulo diffeomorphisms is infinite dimensional.

Proof. The ansatz for the metric is g, defined above. We will show that the
almost-Kahler form w belongs to the lowest eigenspace of W.. at each point,

and s 4 s* is a negative constant.

On a local coordinate the curvature tensor R is computed by using the

19
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formula

Rl = Oy — &;T% + TR, — ToT
where
Ty = % ;gkt(az‘gﬂ + 091 — Oigi5)-

Using a coordinate expression (§3.2.1), all nonzero Christoffel symbols are

computed as follows:

1 c2y?h
ng = Fgm - m;’ L3, = h3 m: I, = *Czyzhhma
. 1 AyPhy

lgm = —ng = 59 ng = A3 y) lﬂu = _czyzhhyr

Py

qu = FZ.’L‘ = _P:zcz = _ij = _f-b—,

% % h"y

[y, =T, = —T5, = —T%, = =L

With respect to the orthonormal frame (e1, e, e3,e4) previously defined, all

the nonzero components of K are as follows:

—hyh+2R2 R
—:_E + _y),
h yh

V) 2 2
Rige =¢, R1313:cy(

2.2 _
Ret = S (haa - % hayh+ 2hohy B

h2 y_h)’

): Riz9s = Czyg(

cy? h —hyyh + 202 R
Rig = —2(hyy + —2), Rogpg = Py (—2—— " ¥ _ ¥
1424 3 (hay + ” )y Rasos = cy*( 12 h’
c2y? h, c?y?
Rogoq = ;—:‘(h'yy + j); Rz = —h—;’(hi + h2),

where h, denotes the partial derivative of h with respect to z etc.

20
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e;. Then

Let K;; denote the scctional curvature of the planc generated by e; and

= 2 Rigor + Raas + Riga + Rosso -+ Roass + Raaaz)

s=2y Ky =
i<j
el
and
5 = 2R(w,w) = 2R(e;Aeyteshes,erAhextesh €1)
= 2(Ripa1 + Rioas + Raazr + Maans)
—2¢% + 2%;&

So s + & = —4¢? is a negative constant. And since
an|’
h?

IVJ)? =2(s* —5) =8

is not identically zero, J is not integrable.

From
R(w,e; Aeg —es Aeg) = Rigz — Rioas + Ragzr — Faaar =0

and

R{w,e1 Aey+ ey Aes) = Ripn + Rigs + Hasar + Haan = 0,
we deduce that w belongs to the eigenspace of W, and for a sufficiently small

perturbation the eigenvalues have to be still lowest at each point by Lemma

3.2.1 below.




it s o s R A R il il Sl el B 50

it 1 e R DR i e v

e i

Recall that the space of metrics M on M is a Hilbert manifold. At any
g € M, the tangent space T, M is the space of symmetric bilinear forms on
TM, and is endowed with the inner product induced from g so that it has an
orthogonal splitting /md; & Kerd, where §, means the divergence and &, is its
formal adjoint. Note that /md; represents exactly the direction for the orbit
of g by the diffeomorphisms on M. Consider the smooth 1-parameter family

of our perturbations
Getr = go +1(—2fdz ® dz + 2fdu @ du) + o).

Since f is constant on each fiber,

Sp{—2fdz @ dz + 2fdu® du) = —(Q%dz + Q%du) = 0.

So the tangent space at gy to the space of our metrics modulo diffeormorphisms

is isomorphic to C°(X) /R which is infinite dimensional. O

Lemma 3.2.1 Let (M, J, g) be a Kihler manifold of real dimension four, ori-

ented so that the Kahler form w is self-dual. Then

8 b
Wyw) = zw, and Wiln) =15

for any self-dual 2-form n orthogonal to w.

Proof. See [3]. O

22
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Remark. (Alternative Proof of Theorem 3.2.2) From theorem 3.2.1, f
we know w = —2% /. So w belongs to the cigenspace of V*V by theorem 3.1.2.

Now recall the Weitzenbtck formula [5]

Ag = V'VE = WL (E) + 56,

for any self-dual 2-form £. Then it follows that w belongs to the eigenspace of

W.. From theorem 3.2.1 and theorem 3.1.2, we also have

s+8 = s+2Rw,w)= s+2W+(w,w)—|—-§

1
= s+ (AWt V'Vt gw,w)

1 ek

2 = ~8+0+——|V2| -2+§-2 :
0 3 | P} 3
25| + 8|vAe” !
|’

=20/ |
i e b
= 4

Remark. It is also noteworthy that the projection map « : (M, gn) — (X, gx)
is a Riemannian submersion with the vanishing O’Neill tensor, i.e. the horizon-

tal distribution is integrable. Moreover each fiber is a minimal submanifold, i.e

the trace of its second fundamental form is identically zero, because h% and

—};% are killing fields. In this case the scalar curvature can also be computed

using the formula 9.37 in [3]. Let & be the scalar curvature of (X, gn), and 3 be




the scalar curvature of the fiber with the induced metric. Denote the vertical

component of a vector v € T'M by 9. Then

o . —— . 2 T — 2 e—. 2 . 2
s = Som—+48— ([Veell +[Vaerl +[Veea +|Veeo| )
h2 B2 h2 h?
— 22 40-— (02y2h2 + chy? hg + Pyt hg + Py hg)
B 2 o ldhl*

Theorem 3.2.3 Let (M, g,) be as above. Then there exists a constant & > %

such that

/ (1= 8)s -+ 6 - 6w)2dp < 327> (cr (M)’

for & € (%,5’).

Proof. Since we already know that w belongs to the lowest eigenspace of W,

*

1 s 8
w = §W+(UJ,UJ) = Z —_ 1—2
Hence
¢ 3
/ (1= 8)s+5- 6w)dy = f (125 By
dh
= (—2¢ +2(35 )|h2|)d,u




for a sufficiently small 36 — 1 > 0. Considering the case of go which is a Kahler

metric of negative constant scalar curvature --2¢2, we have

/}\'4(—2c2)2d,u = 392 (M),

thus proving the theorem. (]

For any metric 6w > —+/24|W..|, simply because W, is trace-free. So the

estimate (§1.0.1) leads to
(1 8)|sl| + 6] V24W, || > 4v/2a|ct | (83.2.2)

for any constant & € {0, 3], where || - || denotes L?-norm. Finally let’s check

the optimality of this estimate for our (M, gx).

Theorem 3.2.4 Let (M, gy,) be as before. Then the estimate in (§3.2.2) for

e, = ¢ {M) is true for any ¢ € [0,1].

Proof. Since
Isll > llsgoll = I1V24W, || = 4v2m|ei (M) 7],

where s, and W, 4, are the scalar curvature and the self-dual Weyl curvature

of the metric go respectively, it is enough to show that ||[W4i| > [|[Wigl)-




With respect to the orthonormal frame (ey, eq, €3, €4), the Ricci curvature

is as follows:

2%y hy 2cy%h,?
m”_g__ﬁfa’m:_gffﬁf%
Ah  |dR|? 26y hah,
Fas =TT T G e TR AT T

and all others are zero.

Let h = 1+ £f. Then by the generalized Gauss-Bonnet formula

/|W+|2du = 4?2y + 37) — /—d,u+f 2% du
M

2(g 2 3
_ 4%2(2x+3'r)—/ 4t 4+ 2 (8¢ |df|)+o(t)d,u
o 24
4 2 2 2 2 3
+/ ¢t + 17 (22| df | ;Q"MIHO(“@
M

22 |df |*
[ Wbt [ CEE AP o)
M M3
Since f is not a constant function, for a sufficiently small ¢ 5 0

[ W [ gl
M M

completing the proof. W
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3.3 Existence of almost-Kahler metrics with

constant scalar curvature

We will now consider the deformation problem of constant scalar curvature
almost-Kéhler metrics on compact Kahler manifolds. Let (M, gq,wo, Jo) be
a compact Kéhler manifold of complex dimension dimg(M) = n > 2 with
constant scalar curvature. We will vary the metric gy in a family of almost-
Kihler metrics g, o, in 3 parameters, (i, &, 1) to be explained below, such that

go = Goo,0. We shall explain how to vary go in three steps.

Step I : Before we actually vary the metrics, here we pre-fix some data,
which consist of p, U, f*, f2,--+, f™ ay, a9, -+ ,an. We shall explain these

Iow.

Choose any point p € M. Take any trivializing neighborhood U 3 p of
the tangent bundle 7'M and a local orthonormal frame {f*, f2, ..., f*"} for
(TM, go) on U such that Jo f% ! = f#fori=1,- - ,n. Then take any smooth
functions aq, @, - -+ ,a, on M compactly supported in U satisfying a generic
condition which invelves only go, p, U, f*. Indeed the condition is exactly that

the quantity of (§3.3.3), appearing below in the proof of Theorem 3.3.1, is

nonzero. (For instance one may choose a;’s to satisfy that a; (p) = aa(p) = 0

and f*(a1)(p) # 0.)
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Step II : We fix Jy and deform the metric and the Kéhler form. We
denote the space of real wy-harmonic (1, 1)-forms by #*'. For [¢] € L}, /R
and o € HY! with sufficiently small norms, w,, = wo + @ + 180 is also a

Kahler form with respect to Jy. Let g, o be the corresponding metric.

Step I1I : We fix the form w,,, and deform the almost complex structure

and the metric to get gy at-

Now to define g, q, we need an orthonormal frame { f_(},,a, cee 'g?a} for
oo o0 U compatible with Jy Le. Jof2i! = f2,. Take f}, = W and
3 3 : @,

2 0= Jofp o Let /3 be the orthogonal projection of f2 to the (n—2)-plane or-

thogonal to f§ s for i < 3, i.e. = ;,_o)gw.a FIRER S A 0 PO
Now define, f2, = an?ﬂT; and fi, = Jof8,. Other fi,’s are defined induc-

tively. For a real number ¢ define

S et (fASN @ (fAZNY et (f2 ) @ (f,) on U

P, P,
Geot = 9

elsewhere,

G,
\

where ( j),a)* denotes the dual of fi,,a. Since a;’s are compactly supported

in U, gpas is a Lz p-metric on M. An orthonormal frame field for gy .+ on

coop2i1 g % 4 Soen .
Uis fous =€ 7 [ga and f%a,t = etz fo, t=1,2, , M. Thus gyt is

almost-Kahler with almost-Kéhler form wy, o, and the almost complex structure
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Jy defined by

Jt( 2@’—1) — {2 Jt(.:zz‘ ): g2l on U

@t @t [N @t

Jy=Jy elsewhere,

for4=1,---,n. This finishes the step III.

We claim that a deformation of this type produces strictly almost-Kahler

metrics of constant scalar curvature.

Theorem 3.3.1 Let (M, go, wo, Jo) be a compact Kihler manifold of dimg = 2
with constant scalar curvature. Suppose that the linearized Futaki invariant is

non-degenerate at the cohomology class [wo].

Then near (go, wy, Jo) there exist strictly olmost Kihler metrics of constant
scalar curvature, which are Kdhler away from any small open subset of M.

They form an infinite dimensional family of melrics modulo diffeomorphisms.

Proof. Let (ﬂgﬂ,t) be the Riemannian connection form of the metric g, q 4
with tespect to the frame f}, .-+, for,, defined above. Consider the map

between Banach spaces given by

FiLEJRXHXROV — Li/RxR
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(], s t) v (S(e, o 1), wlep, @, 1)),

where V is a sufficiently small neighborhood of ([0],0,0}, S(g,a,t) is the
scalar curvature mod constants of gy o4, and w(yp, @, t) is defined as [(¥3%, , ~
021, ) (f")]e=p, Where [];—, means the evaluation at z = p. This w(p, q,t)
map is designed to detect the non-integrabilty of the corresponding almost
complex structure J; of gy a4 In fact, for any Kihler metric (g,w, J) with the

Riemannian connection V, (¥¥) and a J-compatible frame {e!,-.-,e?},

1913 . ,1924 — g(Ve3, el) _ g(ve4, 82)
= g(Véde!) — g(VJe, Jeb)
= g(Veé,e') — g(Jve?, Je')

= 0.

We now show that F is a smooth map between Banach spaces. For (g, o, 1)
in V, S(p, &, t) can be written as H(z, 8, o, t), 2 € M,|3| < 4, where H is a
smooth function defined on the range of (x, 3¢, o, t). Note that here o can be
considered as a real parameter in R*"" ~ #U. Clearly the linear map f +— 8f
is a smooth map from L7,,/R to L. By [31] it follows that S is a smooth
map. The other map w(yp, o, t) is written as the composition of the evaluation
map eval, : L? — R and H(z,0%¢,a,t),2 € M,|5| < 3, where H is also a
smooth function defined on the range of (z,8”, ¢, a, t) with « considered again

as a real parameter in R ~ #L1, The evaluation map f — f(p) is bounded

linear and hence a smooth map from Z? to R. Thus w is also smooth.




Let’s compute the Fréchet derivative DF of F at ([0], 0, 0). First, DS|o,0,0)
was already computed by LeBrun and Simanca in [26]. Let £ : L ia/ R —
L}/R be the differential operator —3(A2 4 ricy, Vg, V) where Agy, Tic,,
and V,, are the Laplace-Beltrami operator, the Ricci tensor, and the Rieman-
nian connection of gy respectively. Then DS|i)00) may be expressed as a

1-by-3 matrix:
DS'([O],O’O} = £ _2(‘0? ‘>90 * 3

where p is the Ricci form of go. They showed [25] that DS |([0],0,0) is surjective

when the linearized Futaki invariant is non-degenerate at [wy).

For Dw|(o),0,0), we claim that

Dulon=|{ 9 0 b |-

where b is a real number which is nonzero for our generic choice of a;’s {in step
I). The first two entries are obviously zero because g, . is still Kéhler with
the complex structure Jy. Let V* be the Riemannian connection of gg ., and

define

B e dgoozlﬂ _ Zam sz 1 fh 1) (f?’i)* & (fzz'.)*_

Note that

: , - _tay _ia
WSS (F) = gops( Vi foow foos) = €V go(Vin(e™™ 1) e )
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,, tag tay
nglo,t(fl) = QU,O,t(V}lfal,o,ta foz,o,a) = eimlgﬂgvﬁfl(e 3 f4): e? fQ)
_i{n1—ag)
= € 2 2 go(v_t;:lf‘i,fz).

Recall the formula in [3]

1
90o(Vx V)i, 2) = G{(VER)(Y, 2) + (Vi R) (X, Z) = (VZR) (X, Y)}.
For clarity’s sake, let (%) be the Riemannian connection form of go. Then

ouw d
E‘([%O;U) - [Elﬂ(ﬁtl)i),t - 19%;40,5) (.fl)]a:;ﬂ
a1 — &

= [ ' 2 2gﬂ(v5‘}’1f31f1)

LR, 1) + (VRR) ) — (T £

(IS (VR 1) |
LR ) + (T, 1) = (V) (' ) o

which is computed to

B0 + %{ff‘(h(fl, 1) = (V5 % £1) = B, Vi1
a; — G2ﬂ24(f1) _ %{—h(V01f4, f2) - h(f4’ v.?tlfz)

2
—h(Vaf, 12) = Y V52 + (V5 f £ 4 RO Vi £ Hamp

= (Mg + %fa(al) + %{2@11912(f4) ~ (a1 + a2)0"(f*) Ha=p,

2
(§3.3.3)

where f3(-) denotes the directional derivative in the direction of f*. Thus

%%([0],0,0) is nonzero for generic a; and ay, (already chosen so in step I).




Summarizing the above, we now have

L *2(p>'>90 *
DF|qop0,0) = ,

which is surjective. From the choice of our ¢; functions it is easy to see that
it has hM'-dimensional kernel. Applying the Implicit Function Theorem, for a
sufficiently small neighborhood V of \(_], FA[0]} x R={([0],0)}) MV gives a
(h4! + 1)-dimensional submanifold consisting of strictly almost-Kahler L_ -

metrics of constant scalar curvature.

To show the smoothness of these metrics, we resort to the elliptic regular-
ity. Consider the smooth 4-th order non-linear differential operator S smoothly

parameterized by 7 = (ry, -+, Th11) € R and t € R
g.r2 ' 2
¢ — the scalar curvature of gy 5> r,o, .t

where V is a sufficiently small neighborhood of 0in L7 4, and {c, -+ , 0.} 18
a basis for #1!. The derivative at 0 when 7 = t = 015 —~5{A2 +ricy, - Vg, V)
which is elliptic. Observe that S = S(x,8%¢,r,1), || < 4 is smooth in all its
arguments. Since § is elliptic at 0 € L2 e G4, S is also elliptic at ¢ when
lelizz,, + I r|| -+ |¢| is sufficiently small by Lemma 3.3.1 below. Then the

elliptic regularity theorem 6.8.1 in [30] gives the smoothness of our solution

satisfying S(p) = constant.
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Now let us show that these metrics form an infinite dimensional family
modulo diffeomorphisms. First, denoting the space of Riemannian metrics
on M by M, we recall from [3], Chapter 4 that at any g € M the tangent
space Ty M is the space of symmetric 2-tensor fields and is endowed with the
metric induced from g so that it has an orthogonal splitting I'mdy; & Kerd,
where J, means the divergence and & is its formal adjoint. Note that the
image of &;, fmdy, represents exactly the directions for the orbit of ¢ by the

diffeomorphisms on M.

Let ¢4(t) = (1a(t), aa(t), £) € Li /R x HY! x R be any smooth curve in
FH{[0]} xRy ¥ with the property that ¢,(0) = go and c,(t) ¢ F~'{([0],0)}
for t # 0. Here the subscript a represents the n-tuple a1, a2, ++ , an. Let hy be
the tangent vector at gy to the image of ¢,(t) under the obvious smooth map

L3 /R x HY x R — M. Then

ha = %o(iag%(ﬁ) Faa®)( I+ a((FP) @ (T = () e (1)),

i=1

We are going to show that by varying a we can produce infinitely many lin-
early independent f,’s modulo Imdy . For a natural number m, let hair § =
1,--+,m be the tangent vectors at gy corresponding to o/ = (af’{, &b, al),
i =1,---,m respectively. For simplicity we let a"g =0forj=1,---,m and
i=2,---,n (Then e.g. ai(p) = 0 and f3(al)|s=p # 0 will be enough to en-

sure our restriction on @’ for 5 = 1,-++ ,m). Consider the linear combination

h = Z?;l thaj, Cj € R.
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By definition, we have that i & Imd; iff (k, R)r» # 0 for some symmetric
92-tensor field 2 with the property that 690?}, — (). We choose h to be a nonzero
Jo-anti-invariant symmetric 2-tensor field on M such that b,0h = 0. Tts exis-
tence comes from the under-determined ellipticity of d,, and the result of [6].
Note that (f1)*® (1) — ()" ®(f%)" is a Jp-anti-invariant symmetric 2-tensor
field on /. By redefining p, U, f* if necessary, it is not hard to see that we may
assume the function {(f1)* & (f1)* — (f2)* ® (J2)", k)4, to be never-zero on U.

Since 4 0(100p4(t) + e (t)) (s Jov) is Jo-invariant for any a,
7 eihas, e = (O el (P @ (7 = (1) @ (F4)7) s
=1 =1

We can choose al’s so that the above is nonzero for any nontrivial linear
combination. This implies that ke, -+ , hem are linearly independent modulo

Imdéy,,. Since m is arbitrary, we proved the infinite dimensionality.

The last statement is obvious, since J; = J; is integrable outside UU. This

finishes the proof of Theorem 3.3.1. l

In the argument above to prove the infinite dimensionality one can vary

a effectively in uncountably many ways.

Lemma 3.3.1 Let E and F be smooth vector bundles of the same dimension

on a compact manifold M. Let G(z, 0%, 1), 18] < kit € R™ be a smooth
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map of all of its arguments so that G : C®(F) — C®(F) defines a smooth m-
parameter family of smooth differential operator of order k, Suppose Gz, 8%, 1)
is elliptic at ¢ € CF. Then for ¢ € C* and t € R™ with ||o — @|lcx + ||t — £

sufficiently small, G(x,8%¢,1t) is also elliptic at .

Proof The linearization at  is the linear operator P{y)) = %\OG(% 8% (i +
s1)),1). To corupute the symbol o¢(P;z) : B, = Fpatx € M andfor§ € 17 M,
choose a smooth function ¢ satisfying that g is zero at z and dg{x) = £. Then

for ¢ € C*°(E) with ¢(z) =v #0,

k i* d s s
-P(g w)lfﬂ — —_|0G("‘C78 ((p+8g ¢)1t)‘$7

?;k
e(Piajr =g = &lds

K

which is also nonzero when | — @||os + ||t — £|| is sufficiently small, Since M

is compact, the symbol is invertible for all z € M. U

If a stronger condition is assumed, we can get almost-Kéahler metrics of

constant scalar curvature without changing the given symplectic form:

Corollary 3.3.1 Let (M, go, wo, Jo) be a compact Kéihler manifold of complex
dimension dimg(M) > 2 with constant scalar curvature, where every global
holomorphic vector field is parallel. Then near (go,wo, Jo) there exists an in-
finite dimenstonal family, modulo diffeomorphisms, of strictly almost-Kahler

metrics of constant scalar curvature with the same symplectic form wy.
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Proof. First, we are going to find such metrics with the symplectic form in
the same cohomology class [wy|. Consider the deformation without #™! and
the corresponding map denoted by the same symbol 7 : Lﬁ_i_zl /RXxRDV —

Li/R x R. Then

DF o0y =

By [26], £ is an isomorphism when every global holomorphic vector is parallel.
So DF|(oy,0) is an isomorphism and the Inverse Function Theorem says that
(F {0} x Ry V) — {([0],0)} is a smooth 1-dimensional submanifold con-
sisting of strictly almost Kéhler metrics with the symplectic form in the class
[wo]. Of course they are smooth metrics by the elliptic regularity. Let this fam-
ily be (g1, wo+i00¢y, J1), t € R—{0}. Note that wy+id8yp, = wo—l—d(i‘”—f;b.—g‘ﬂi).
Now by Moser’s argument in [29], there exists a family of diffeomorphisms ¥,
such that ¥y*(wy + d(g%"i—gﬂ)) == wo. Thus (W, gs,wo, U4"J;) is our desired
metrics. The infinite dimensionality of the metrics modulo diffeomorphisms

follows from the proof of Theorem 3.3.1 U

By refining the map F, we show the existence of ‘prescribed’ constant-
scalar-curvature almost-Iihler metrics in the next Corollary to Theorem 3.3.1.

This is useful in particular to get zero scalar curvature metrics, see Example

2 below.
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Corollary 3.3.2 Let (M, go,wo, Jo) be a compact Kihler manifold of complex
dimension dimg(M) = n > 2 with constant scalar curvabure ¢, where every
global holomorphic vector field is parallel and the first Chern class ¢y is not
a constant multiple of [wo]. Then there exists an infinite dimensional family,
maodulo diffeomorphisms, of strictly almost-Kihler metrics g of constant scalar

curvature near (gg, wy, Jo), with the property that

fM SgUflg _ fM Cdfhgy
1 nel>
(VOZQ) § (Voﬂgo) "

where s, s the scalar curvature and Vol, denotes the volume.

Proof. Let n be the orthogonal projection of ¢; to the orthogonal comple-
ment of R - wp in H'*. Then consider the deformation gy, 7 € R and the

corresponding map F(e,r,t) = (S, f,w)

L2 JRXRxROV — LI/RxRxR,

where f(p,rt) = Jas S(‘P’T’t)mi“’;?'t ~ Cd”,fé. Note that f is also a smooth
(Vozglp,f‘y],t) " (Volgg) ™

map. Since the deformation by ¢ alone produces Kahler metrics with the same

volumes, by applying Blair’s formula (§1.0.2)

5
%lm,o,c) = 0.
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On the other hand,

6f o 1 WOnul n—1
or ‘([01’0’0) - (V()lgn)g(nﬂ 1} {(/It\/f B ( >Godu90 / (ﬂ _ 1) 77) (Vo?go)

- / cdpigy "L (Voly,)F
M

f 2<2"T619 77>god:U’90(VOl 0) "
__l
(Volg,) =

is nonzero and let it be a. Noting that %k[%o,g) =0,

L % %
DF|q@e0)= 1| 0 o «
L0 0 b

is an isomorphism. Again the elements in (F *({[0]} % {0} x R)NY) —
{{[0],0,0)} are our desired metrics. The smoothness of these metrics and
the infinite dimensionality follow in the same way as in the proof of Theorem

3.3.1. O

We prove the following (s + s*)-versions of Theorem 3.3.1 and Corollary

3.3.1.

Theorem 3.3.2 Let (M, go,wo, Jo) be as in Theorem 58.3.1. Then there exists

an infinite dimensional family, modulo diffeomorphisms, of strictly almosi-

Kihler metrics with constant s + s* near {(go, wo, Jo)-
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Proof. We only describe the map to be considered and its derivative. The
rest of the proof will be similar to that of Theorem 3.3.1. To ensure constant
s+ s* instead of s in this case, we define F = (S,w) : L2, /R x H'Y xR D
V — L2/R x R, where the w map is same as before. S(p, o, t) is & times the
sum of the scalar curvature and the x-scalar curvature of g, . mod constants.
Note that S is a smooth map. Since s and s* coincide in a Kahler manifold,

Dﬁk[o],g,o) is of the same form, i.e.

N L _2<p:'>§u *
DF (o000 =

Corollary 3.3.3 Let (M, go, wo, Jo) be as in Corollary 3.8.1. Then near (go, wo, Jo)
there exists an infinite dimensional family, modulo diffeomorphisms, of strictly

olmost-Kihler metrics of constant s + s* with the same symplectic form wy.

Proof. With the modified map F, the proof will be similar to that in Corollary

3.3.1. g

Remark. By applying the same methods as all above, we can also prove

analogues of Theorem 3.3.1 and Corollary 3.3.1 for the *-scalar curvature s*.




Remark. The linearized Futaki invariant is non-degenerate if for example,

every global holomorphic vector field is parallel, which is not quite a strong
restriction, because the existence of a nonzero parallel holomorphic vector field
would not only force the center of the fundamental group to contain Z @ 7,
but also dictate that the universal cover of the manifold be biholomorphic to

C cross a complex manifold of lower dimension [26].

Example. As the primary application of Theorem 3.3.1 or Corollary 3.3.1, we
get infinitely many strictly almost-Kahler metrics with constant scalar curva-
ture near most of the Kéhler Einstein metrics whose existence were generally
shown by Yau [46] and near most of constant-scalar-curvature Kahler metrics
in [17, 25, 27]. In particular such metrics with negative constant scalar curva-
ture exist on complex tori or K3 surfaces. It is interesting to find the metrics
of Theorem 3.3.1 or Corollary 3.3.1 explicitly. See the following example for

some explicit metrics on complex tori.

Example. In [15], Jelonek constructed explicitly an infinite dimensional fam-
ily of strictly almost-Kahler metrics with non-positive constant scalar curva-
ture on the real 2n-dimensional torus 7" for n > 3. Let u,v € C*(R) be any
smooth real-valued functions satisfying u(1 + z) = u(z),v(1 + z) = v(z), and
() + (v")* = 1. Think of 7% as T? x T?2, On T?, define two functions
Fla,y) = etlletmy) p(g 4) = e?(2+mY) where t € R is a nonzero constant, and

l,m € Z are integer constants satisfying 2 + m? > 0. Let’s denote the flat




metric on T? by g2 and the standard metric on S* = R/Z by gs. Then for

example on 7%,

grh =g+ fgsn + f g5 + hget + R gs

gives strictly almost-Kihler metric of constant scalar curvature —2¢*({* + m?)
with the same symplectic form as that of g 1. This may be viewed as a special
case of deformations of Theorem 3.3.1: with the notation in section 3, n = 3,

U=M,a=1,¢=0.

Fxample. Kihler metrics with zero scalar curvature on compact complex
surfaces M are absolute minima of the squared L?-norm functional of the
Riemannian curvature tensor over the space of smooth Riemannian metrics
on M, [27]. Our Corollary 3.3.2 can produce infinitely many. strictly almost-
Kahler metrics with zero scalar curvature near most of Kéhler metrics with

zero scalar curvature.

Indeed, consider the Kiahler metrics with zero scalar curvature which were
found in [17, 27]. They exist on some blow-ups of minimal ruled surfaces
over any compact smooth Riemann surface and most of these ruled surfaces
have no nontrivial holomorphic vector fields. It is easy to see that ¢ is not
a constant multiple of [wy] on these. So by Corollary 3.3.2, there exists an
infinite dimensional family of strictly almost-I&hler metrics with zero scalar
curvature on these manifolds. Similar existence should generally hold in higher

dimensions.
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Chapter 4

Manifolds of positive scalar curvature

4.1 Surgery and curvature

Just for notational conveniences, let’s consider a& + s where a is a non-

negative constant.

Theorem 4.1.1 Let X be a Riemannian manifold with aK + s > ¢ where ¢
is a constant. Then any manifold obtained from X by performing surgeries in

codimension > 3 also carries a metric with aK + s > c.

The same is true of the "connected sum” along embedded spheres with




trivial normal bundles in codimension > 3.

Proof. Our proof of theorem 4.1.1 is almost parallel to that of Gromov-Lawson
[13]. First, let’s consider the surgery case. Let SP be an embedded sphere
with trivial normal bundle N of dimension > 3. 'The idea of proof is to
deform a metric on N — S? keeping aX + s > ¢ to make a cylindrical end
isometric to the riemannian product S x 877 x [0, 1] with the standard metric,
so that we can glue the riemannian product DP! x S971 with the standard
metric. Take a global orthonormal frame of NV to get a global trivialization
5P x RY of N. Define a function » : S? x R? — R by r(y,z) = [|2]|. Set
N(p) = 5? x D¥p) = {(y,z) € N : r(y,z) < p} and S” X S71(p) to be
its boundary. Choose ¥ > 0 80 that the exponential map exp : N — X is an
embedding on N (7). Pullback the metric of X to 5 x D(r) by the exponential

map. Recall the following simple observation in [13].

Lemma 4.1.1 (Gromov-Lawson) Let D be a geodesic normal coordinate on
a Riemannian manifold of dimension n > 2. Let S771(g) be the hypersurface
{z € D ||z|| = &} with the induced metric g. and let go,c be the standard metric
on the sphere of radius € in R®. Then the principal curvature of S=L{e) in

D are of the form —% + O(g) for e small, and fggs — ;%go,g = o, in the C°

topology as € — 0.




Proof. See [13] [

Consider the hypersurface S? x $¢7*(¢) in S x D?(r). Note that g; is the
outward normal frame field on 5% x S¢7*{¢). Let 71 be the second fundamental
form of S* x §97%(e), considered as a real-valued symmetric bilinear 2-form by

taking the inner product with the normal. We estimate it as follows.

Lemma 4.1.2 Let (TS ()} be the orthogonal complement of TST{(g) C
T(SP x ST Y(e)). Then for ¢ sufficiently small, TS () is the span of the
g — 1 principal vectors with principal curvatures of the form —% + O(g), and
(5515"*’_1(6))L is the span of the p principal vectors with principal curvatures of

the form O(1).

Proof. Let (y,z) € S x §97'(¢). Take a geodesic normal coordinate D"(g) of
SP x §971e) at (y,0), consisting of points with the distance from the origin
less than or equal to € and let $”(¢) be its boundary. Note that £ | (v.0) 18 8180
a unit normal vector to S™(g), and SP x S971(g) and S”(¢) are tangent to each
other intersecting at {y} x S%7'(g). Denote the second fundamental form of

S (g) by 11,

Now for a unit tangent vector v of SP x ST (g} at (y,z), write it as

¥ = G,y + asUy for some constants a; and ag, where vy € T'({y} x 5771(¢))
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and vy € (T({y} x 87(e)))" are of unit norm. By the abuse of notation, v,

and v will also denote local extensions keeping v € T({y} x S¥!(2)). Then

at (y, ),

ﬁ(?)h ’U2) =

o)
(v’ﬂzvla 5)
ﬁ(’Ul, 7)2)

(1 (v,v) — a¥11(vy,01) — G211 vy, s))

H(—1 +0() — @+ 0(e)) — a(—, +0(e))

O(e),

using a? + o = 1 at the last step. So

ﬁ(v, )

= a%ﬁ(vl, v1) + G%ﬁ(’i)g, vg) + 2a1a2ﬁ(v1, )
1 d :
= a%(—g + O(e)) + a3{V 4, v, 5) + 2a1a;0(¢)

= (-2 1 0() + &0} +Of)

Thus if v is a principal vector, then |a;| = 0 or |a1| = 1. This completes the

proof.

O

From now on we assume that ¥ also satisfies the condition of lemma

4.1.2. Being prepared with this, let’s get down to making a cylindrical end

diffeomorphic to SP x S9! x R having a metric with aX + s > ¢. Follow-

ing Gromov-Lawson [13|, we construct it as a smooth hypersurface A of the
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riemannian product N(7) x R by the relation
M ={(y,z,1) € S x DU(F) x R: (& ||z])) € 7},

where v is a smooth curve in the (¢, 7)-plane as pictured below. The curve
v starts along the positive r-axis and ends as a straight line parallel to the

{-axis.

Figure 4.1: Curve vy

Our main goal is to show that we can choose 7 so that the metric induced
on M has aK + s > ¢ Let 0(¢,r) be the acute angle between the normal to
M and the f-axis. Then we sce that sin@2 -+ cosf; is a unit normal. Tet
(y,z) € §? x D7) and I be a geodesic ray in §* x DU(r) from (y,0) to (y, z).
Since I x R is totally geodesic in SP x D4(F}) x R, o = M N (I x R) is a
principal curve on M. Let & > 0 be its curvature Tunction. Let's determine
other principal directions. They all belong to T'(S? x S9='(r(y,z})) C TM,
because they are orthogonal to . Note that V,(sin 82 -+ cos 9%) = sin 9\7@6%

for v € T(SPx S97L(r)). Thus by lemma 4.1.2, TS~ *(r) is the span of the g—1
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principal vectors with principal curvatures of the form (—% 4 O(r))siné, and

(TS'Q’*I(T))l is the span of the p principal vectors with principal curvatures of

the form O(1) sin #. We choose ey, -+ -, e, to be an orthonormal basis of Ty, oy M
such that e; is tangent to v and eq,- -+ , e, are principal vectors belonging to
T.S9*(r) and egy1,- - - , e, are principal vectors belonging to (TS 1(r)) ™.

The Gauss curvature equation states that the sectional curvature K (uq, ug)
of M, corresponding to the plane uy Aug for orthonormal uq, uy € T'M is given

by

B IT{uy,wy) TI(uq,ug)
K(U}_,UQ) =/ ('_U'huz) + det ‘ !

gt ey S

Tl{ug,wy)  TT{ug, us) (§4.1.1)

i ST

where K is the sectional curvature of N(7) x R and IT is the second funda-
mental form of M in N(7) x R. To estimate K we need to estimate the angle

made by t{-axis and the tangent vector of M at each point.

Lemma 4.1.3 Any unit fangent vector u to M al the point where the acute
angle between the normal and t-azis is 0, can be written as u = (cosa)H +

sinad for unit H € TN(7) and —0 < o < 0.
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Proof. We may assume —§ < o < £. Suppose o > #. Then

. 0 9] , 0 :
0 = (u,smﬂg + cos Ha) = cosasniﬂ(H, 5;) + sin a cos @

= sin(a — ) + cos asin 0({H, ; Y+ 1} >0,

T

vielding a contradiction.

Now Suppose o < —6¢. Then

(u,sin@% + cos 0%} = sin{a + 0) + cos asin 6{{H, é%) —1) <0,

vielding a contradiction too. (]

Now let u; = (cosay)H, + sin aq% and ug = {cosag)Hy + sin aQ% for
Hy, Hy ¢ TN(7) a,hd —0 < @y, 09 < 6 be orthonormal vectors in TM. We
will denote the sectional curvature, Ricci curvature, and scalar curvature of
N{7) by K¥, Ric", and sV respectively. And let R be the Riemann curvature

tensor of N(7) x R. Since 2 is parallel, R vanishes on it. Thus

—~ o~

K(ui,up) = R(u, ug, un, u1)
= cos® oy cos® ay R(H,, o, Hy, H:)

= cos? ay cos® oo I(N(Hl, Hy)

v

min(K", cos® § K¥).

With respect to the orthonormal basis ey, - , e, previously defined,

- 8 -
Rlere) = cos?6 KV (2,es), Kleies) = K¥(ewey)




for:,5 =2,

Now we want to estimate the second term det(Z/(-,-)) in the Gauss equa-

tion (§4.1.1). With respect to e;’s which are eigenvectors of I, we just have
If(e,,-,e,;) II(BZ',GJ;)
det = )\if)\j,
I(e;,e;) 1l(e;,e;)

where ); is the principal curvature corresponding to e;. In general we have the

following.

IT{ug,ur) T (uq,us)
Lemma 4.1.4 det > (1401 ))ksm@—l—O( )S”‘

II(‘U.Q, ’U,l) II('UQ, ’U;g)

Proof. Let up = > .o bie; and uy = >, ce; for some constants b; and ¢

satisfying >0 b2 =Y. ¢? = 1. Then

T (uy,w) = kb3 —|—sz —~+O('r))51n9+ Z 52 1)sin@

J=q+1
: 1
II(’U,Q,’U/Q):]CC%+Z ——+O ))sinf + Z 1)sind
=2 Jj=a+l

IT(ur,ug) = I (ug, uy) = kblcl—i—Zb e —~-—+O }) sin 6+ Z bic;O(1) sind,

i=2 J=q+1
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and hence

q

q q
det(I) = Z(blcz—cj 2sing ZbZZcz Zmme S”“Q

=1 i=1 =1
+O(1)ksin 0 -+ 0(1)8”; 6
> _4ksinf ibgzq (zq:bg Zq:C sin 9
=1 =1
+O(1)ksin g+ O(1) 22 0
> _Hhsin® + O(1)ksin® + 0(1)81112 9.

A

]
Summarizing all the above, we estimate af{ 4 s of M as follows.
g = Z K(ei, e;)
7]
. 1
= 2 Zcos%’ KN(E? ,e5) -+ 2(q — 1)(—; + O(r))ksin 8 + 2p0O{1)ksin §
j:2
1
+ > K (e e) + (g~ 1)(g ~2)(= + O())sin®6
hf 22

+2p(g — 1)O(1 )(—— +O(r)) sin® 8 + p(p — 1)O(1)?sin” 8

= — 2Ric ((,;9 (,;9) inzﬁ'—l—(—iq;—l)ﬂt()(l))ksinﬁ
" 29
Ha-1a-22 7 oL,

r

o1
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2
K > min(K", cos*é I;(_N)—l—(—% —|—O(1))k;sin€—|—0(1)sm 9.
r

Thus

oK +5 > a -min(KY, cos*0 KV) + s"
Ha- g~ 25 + Aysino
22+ q- 1)(1 O(1))k sin 6. (§4.1.2)

We now construct 7 so that a& + s > c in b steps.

STEP 0: Let 7y > 0 be a small number satisfying [O(1)] < z= < ""g for

the two O(1)’s in (§4.1.2). Then (0,7y) is going to be the starting point of -y

n (t,r)-plane. So (§4.1.2} can be rewritten as

ek +s > a-min(K", cos'd KV) +s¥

(g~ 1)(g—2) 1

k
c 2 — 1N=sind. (84.1.
+ 5 5 sin 6 —3(2a+q 1)?"81119 (§4.1.3)

STEP 1: By continuity, make a small bend of -y to an angle # =0y > 0

keeping the right hand side of (§4.1.3) greater than ¢ and satisfying

inf  (acost@y, KV + ) > ¢ 4.1.4
i ° = ) (34.14)

Let’s call the resulting radius r, for a later purpose.




STEP 2: Then owing to (§4.1.4), we can let v proceed down as long as
we want as a straight line which keeps the angle 6 unchanged and the right
hand side of (§4.1.3) greater than ¢.(Note k=0.) Let’s go down to r = ry such

that

(g —
inf (acos*® KN +sV)+ lg=ig—2) sin® @y > c. (§4.1.5)

0<0< % 4r3
{y,x)€N(ro)

STEP 3. Make a bend of v after the following prescription of the curva-

ture function k{7,) parameterized by the arc length . Here, kp,the maximum

Figure 4.2: Curvature fuention k(L)

of k, is defined as (g-Dla=2sinby ooy 4} ay

12ra(g—142a)

(q__.qu__z)sinze—3(2@+q_ 1)ESIH9 >0
A2 r

is ensured during this process. Hence, combined with (§4.1.5) it guarantees
aK + s > c. Note that -y does not cross the line r = 5 because the length of

the bend is r = % and it has begun at the radius r = ry. The amount of the
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bend Af is

_ . 12 (g—1){g—2)sinty
M—/de“‘k“ 2~ 24(g—1-+2a)

which is independent of the starting radius.

STEP 4: Repeat the step 3 with the curvature prescription completely
determined only by the ending radius of the previous process until we achieve

a total bend of Z. (([3/A8] + 1)-times is enough.)

Let 7 be the final radius and let ds? be the metric on the boundary
AM = §% x §¢7Y(7). As 7 — 0, ds? converges in C* to the metric induced on
the T-sphere bundle of N from the natural metric on N using the normal con-
nection, which is a riemannian submersion with totally geodesic fibers with the
standa;d euclidean metric of curvature ;15 Let’s call this metric h,. Consider
a smooth homotopy H(z,t) = p(t)ds? + (1 — o(t))h, for (z,1) € OM x [0, 1],
where ¢ : [0,1] = [0,1] is a smooth decreasing function which is 1 near 0 and
0 near 1. As 7 — 0, the metric H!(z,t) + dt* on M x [0, 1] converges in C*
to h, + di?, whose oK + s tends to infinity as 7 — 0 by O’Neill’s formula in
[3]. We can also homotope A, through riemannian submersions with totally
geodesic fibers to one where the metric on S? is standard and then deform the
horizontal planes to those of the product metric. Let these two homotopies be
H2(z, 1),z € 8M,t € [0,1]. Note that M x [0, 1] with the metric HZ(z, t)+dt?

is also a riemannian submersion with totally geodesic fibers S9!, Thus again

by O'Neill’s formula, it has af{ 4+ s > ¢ when 7 is sufliciently small.
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Finally we have a cylindrical end isometric to the product S? x S (r) x
[0,1] with the standard metric. Now we can glue the riemannian product
Dl % S%1 with the standard metric to get a smooth Riemannian manifold
with aX + s > ¢. The case of the "connected sumn” along S* is done in the

same way. This completes the proof. O

Remark. Note that in the above we didn’t change the original metric outside
of a arbitrarily small neighborhood N(rs) of S? where the surgery or the
”connected sum” is performed. This fact will be used in the proof of theorem

4.2.1.

Corollary 4.1.1 Any compact simply connected non-spin manifold X of di-

mension > 5 carries a metric with af 4+ 5 > 0.

Proof. In [13], Gromov-Lawson showed that if X is oriented cobordant to an-
other manifold X', then X can be obtained from X' by surgeries in codimension
> 3. So it is enough to show that there exists a set of generators for the ori-
ented cobordism ring Q8¢ each of which carries a metric with aK -5 > 0. As
in [13], let’s consider CP*, Milnor manifolds, Dold manifolds, and manifolds
of type V as generators. We know Fubini-Study metric on CP™ has positive
sectional curvature. Milnor manifolds, the hypersurfaces of degree (1,1) in

CP™ x CP™, are projective space bundles over a projective space, which is a
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riemannian submersion with totally geodesic fibers. By shrinking the metric
uniformly in the fibers, we get aK + s > 0. Dold manifolds, (S™ x CP™)/Z,
where Z5 acts by —1 on the left and conjugation the right, has a metric of
positive sectional curvature. Manifolds of type V carry a metric which is lo-
cally a riemannian product of Dold manifolds and flat R*. This completes the

proof. W

Corollary 4.1.2 Any compact simply connected spin manifold X of dimen-

sion > 5 with «(X) =0 carries a metric with oK + 35> 0.

Proof Again by Gromov and Lawson [13], if X is spin cobordant to another
manifold X’, then X can be obtained from X' by surgeries in codimension
> 3. Tn [38] Stolz actually showed that any compact spin manifold X with
a{X) = 0 is spin cobordant to the total space of a fiber bundle with the
fiber HP? and the structure group PSp(3). Note that HP? admits a metric
of positive sectional curvature in which PSp(3) acts by isometries. So HP?
bundle is a riemannian subxﬁersiou with totally geodesic fibers and afl+s > 0
is achieved by shrinking the fibers sufficiently small. This concludes the proof.

a

In particular, every compact simply connected manifold of dimension 5, 6,

or 7 admits a metric with & + s > 0, because the spin cobordismn group in
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dimension 5,6, or 7 is trivial.

4.2 Minimal volume

Theorem 4,2.1 Let X, and X, be 'compact n~-manifolds for n > 3. Then
Voby ik o (X1#X2) < Vol go(X1) + Voby x,s(X1).

for any A € [0,1). The same is true of the "connected sum” along embedded

spheres with trivial normal bundles in codimension > 3.

Proof. Let € be any positive constant and take a metric g; on X; such that
Vol(X, g5) < Volyk,s(X;) + £ for ¢ = 1,2. We make cylindrical ends of X;
and X, with AK + (1 — )\)m > —1 following the procedure in the proof
of theorem 4.1.1. We claim that the volume of transitional region M can be
made arbitrarily small by taking ry very small .. First we can assume the length
of «; in step 1 is less than any constant, say 1. Furthermore we can take v
in step 1 to satisly 2(rq — 1) < % < siné at each point so that we have

To < 2(rg — 1) < 8infy in particular. Thus we have

Total length of 4y < 1+ %O([g/é.ﬁ] + 1)
ro, 127(q — 1 4+ 2n? — 2n)
— s 1
2([ (g —1)(g — 2)sinby J+1)
6m(g—1+2n*—2n) 1y
< 1+ o
- (- 1g—2) 2




and hence

volume of M < (lengh of ) - sup Vol{S? x S '(r), ¢:)

7<r<rg

can be made smaller than £ by taking ry sufficiently small. Obviously the |
l.l

3

volurne of the homotopy region can also be made smaller than § when 7 is

sufficiently small. Thercfore the resulting glued manifold has a volume smaller
than

Vol x,s(X1) + S+l % + Voly i, (X2) +

6 6 6 6 6

= VOI)\,K’S(Xl) -+ VOI}\,K’S(Xl) + &,

g & € I
-t ;

cornpleting the proof. O

Since S™ for n > 2 admits a metric of positive sectional curvature, we

immediately get

Corollary 4.2.1 Let X' be o compact manifold obtained from X by surgeries

in codimension > 3. Then

,
|

Vol)\,K,S(X’) < Vol,\,K,S(X) '??'5

|

\

for any A € [0,1). '

Following Petean [33], by performing ”inverse surgeries” on X' we have




Theorem 4.2.2 Let X' be ¢ n-dimensional manifold obtoined from a compact
manifold X by surgeries on spheres of dimension # 1,n — 1,n — 2 for n > 4.
Then

Vol k.s(X") = Voly g s(X)

for any A € [0,1).

Proof. If n—p —1<n-3ie p> 2, then we can perform a surgery along
OD™ P again to get back the original manifold X. In case p = 0, note that
doing (-dimensional surgery is the same ag taking the connected sum with
S1x S»1. So doing a surgery on the S in X' gives us X back. Now applying

corollary 4.2.1, we get

VO],\’K,S(X) S VO])\,K;S(X") S VOIA’K)S (X)

In [24] and [21] LeBrun proved that any compact complex surface of gen-

eral type X saftisfies

?TZ

Voly 1, (X) 2 TVol,(X) = T (),

where M is the minimal model of X and every compact complex-hyperbolic
4-manifold CH,/T saturates the equality. It is an interesting question what

else can satisfy the equality. Qur previous results can produce another sim-

ple examples. Since a blow-up of a complex surface is diffeomorphic to the




connected sum with CP? whose minimal volumes are all zero, a blown-up

manifold has the same Vol1 r (X) and Vol,(X). Thus we have

Corollary 4.2.2 Suppose X is birational to a compact complex-hyperbolic 4-
manifold. Then

2
9 e

VOZ%,I(,S(X) 1 Vol (X) = -1 (M)

where M 1s the minimel model of X.

As the case of Yamabe minimal volume in Petean [34] and Paternain and

Petean [32], we also obtain similar results.

Theorem 4.2.3 Let X be a compact simply connected manifold of dimension

> 5. Then Voly x,(X) =0 for any X € [0,1).

Proof. When X is non-spin, Vol g,.(X) = 0 by corollary 4.1.1. When X is

spin, the following proposition gives the proof. \ O

Proposition 4.2.1 Every element in the spin cobordism group Q37" forn > 1

can be represented by a connected spin manifold with Vol x ; = 0.
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Proof. Overall the proof is parallel to that of Petean [34]. When n = 1, we
have Q‘Epm o 7, and its nontrivial element is $* with the "bad” spin structure,
i.e. the disconnected 2-fold covering of S, and its trivial element is S with
the spin structure coming from the boundary of the 2-disk. When n = 2, we
also have Q5P™ = Z, and its nontrivial element can be represented by the
sorus S x S! for the nontrivial element S* € Q57" and its trivial element can
be represented by S? with its unique spin structure. When n = 3,5,6, or 7,
Q5P iy trivial and its only element can be represented by S™ with its unique

spin structure. In all these cases, obviously Vol ks = 0.

For n = 4, QP = 7 is generated by K3 surface and its trivial element

can be represented by S?.

Lemma 4.2.1 Vol g ;(K3 surface) = 0.

Proof For convenience set a = n(n — 1)12;. Let ' be the involution of a
complex torus 7% given by z — —z and T4 be a blow up of T4 at 16 fixed
points. Note Ti i diffeomorphic to the connected sum T4416CP2. The
involution I' extends to an involution on T with 16 exceptional 2-spheres
as fixed points. Put the flat metric on T4, Let X, be a cylindrical ended
manifold with aK + s > —9%%) made from T — {16 fixed points} following

the procedure in the proof of theorem 4.1.1. Let 7o be the starting radius and

+ be the final radius. Note that I' extends to an isometry on X; and 8X,/T
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is isometric to RP? with the standard metric of curvature T%

Now note that CP2 with a closed ball deleted is diffeomorphic to the
cotangent bundle 7%52% of S%. We are going to show that 7*5% admits a
metric with aK + s > 0 and a cylindrical end isometric to the quotient of
a Berger sphere by the involution z — —z. Consider S with the standard
metric of curvature 1, which is bi-invariant. Let {a!, o2, 0%} be an orthonormal
coframing where o' corresponds to the Hopf fibers. Consider a riemannian

“submersion
((0,1] x St x S dr? + ‘5341712(2?")01692 -+ [(01)2 + (02)2 —+ (03)2])

!
((0,1] x RP?, dr?® + [sin®(2r)(c"}* + (¢*)* + (e®)?)),

which is just a quotient by the isometric circle action i.e. the complex scalar
multiplication on both S* and $3. Note that these two metrics extend smoothly
up to r = 0 so that they give a riemannian submersion from R* x S3 onto
T*5?.(See lemma 4.1 in [35].) Using the formulae for the warped product in
[35], we can easily show that the sectional curvature of the plane tangent to
-2 of the riemannian product B? x §% is —%%3))—” = —8sec?(2r), and the base
manifold 7*8? has constant scalar curvature 12. Since sectional curvatures do

not decrease under the riemannian submersion, ¢K + s > 0+ 12 at the zero

section of T*52, and hence we can take ¢ sufficiently small so that oK 45 > 4

and s > 4 for (r,z) € [0, 8] x RP.




To make a cylindrical end we again use a similar method to that of theorem
4.1.1. We will adopt the same notations. First note that the induced metric
gr on X, = {r} x RP? for r > 0 gives a Berger sphere metric whose sectional
curvatures lie in the interval [sin?(2r),4 — 3sin’*(2r)]. Let e; = £, €s,€3,6€4
be an orthonormal frame dual to dr,sin{2r)c!, o2, o® respectively. Then the
second fundamental form 77 of X, with respect to a unit nofmal a% is computed

as follows:

(sin(2r))

I(ea) = - sin{2r)

ey = —2cot{2r)ey

TI(e;) = —gei =0, i=3,4
We construct the hypersurface M in the riemannian product 7%5? x {0, 1] as
M = {(r,z,t) € [0,8] x RP® x [0,1] : (r,¢) € 7},
where -y is pictured below. As before +y finishes as a straight line parallel to the
t-axis but sin 9% — €08 9% is a unit normal where @ is the acute angle between

the normal and the t-axis. The important point is that this time the curvature

k of + is non-positive!

Since the integral curve of % denoted by [ is a geodesic on T*S? this time

also, v, = MN(Ix[0,1]) is a principal curve with a curvature k. ‘The other prin-

cipal directions are tangent to X, with principal curvatures —2 cot(2r)sind,0
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Figure 4.3: Curve
and 0. Using the same notations as in the proof of theorem 4.1.1, we get
K > min(KY, cos*0K") + det(IT)

= min(K",cos* 0K — 2k cot(2r) sin 8 (bscz — bacy )

> min(K", cos® 0K ),

and
s = &N — R?JCN(:%, 58_7") sin? @ + 4k(— cot(2r) sin #)
. . H 1 "
= (- (Sslfrfé?)) _ ot 1) )in? @ + 4k(— cot(2r) sin §)
> sV — 4.
Thus M has

al + s> amin(K", cos*OKY) + sV —4 > 0

for any choice of such +.
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Let &; be the final radius. The boundary 0M is the Zj-quotient of the
Berger sphere with the Hopf fibers shrunk by sin(26,). To glue it onto 8X, /T,
first we homotope it to the standard metric of curvature 1 keeping a K + 3 > 0.

Consider a smooth homotopy
H(z,t) = (p(t)sin®(26) +1 - (i) {c")? + (6®)? + (¢*)?

for (z,t) € RP3x[0,1], where ¢ : [0,1] =+ [0, 1]is a smooth decreasing function
which is 1 near 0 and 0 near 1. By the lemma below, there exists a T' > 0
such that the metric H(x, t/T) +dt* on RP® x [0, 1] has e +s > 0. Next, we
rescale the whole thing by multiplying 7. Now we can glue 16 copies of them

to 8X, /T to get our desired K3 surface.

By taking 7 sufficiently small, we achieve Voly x,s = 0. tl

Lemma 4.2.2 Let ¢, 0 < t < 1 be a family of melrics on o compact N-
manifold X, which vary smoothly with respect to t. If g has a +s > ¢ for all
+ where ¢ is a nonnegative constant, then there exists constant ty > 0 such

that for all T = tg, the metric gyr + dt* on X X [0, T] has aK + s > c.

Proof. Equivalently we show that there exists g, such that for all 0 < & < &g,
the metric do® = e%gs + dt* on X x [0,1] has o + s > ¢C. Let (@1, " ,Tn)
be a local coordinate on X. For notational convenience we set { = Typt1, and

write do? = Y y§datda?. Fix Z = (Ty, - , Tnqt) and assume v;(Z) = 0.
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Recall the Christoffel symbols are given by

w1 8z Oy Oy
(Y = 5 L OPHGE+ o g b
1

Oz,

and the Riemann curvature tensor is given by

(Rs)zﬂc - 6 (Fg)jk: a(FE)'fak + (I‘E)Zr!; (Fs)im - (FE %(Pg)zm
So at 7 we have

Ty = D)y =0 (@) =€20(1)  (%)fnany = O(1)

(T = 0(1) . (R )ijuen) = €20(1) (R )ignavpenizy =2 O(1)
(§4.2.6)
forallé,7,k=1,--+,n

Let X be the hypersurface defined by #,.; = Z,;1. Then the second
fundamental form of X is given by ()i = £20(1) for 4,5 = 1,--+ ,n, and

hence its norm is of the form O(1). Denote the sectional curvature and the

scalar curvature of the hypersurface X with respect to the metric g, ., by Kx

and sy respectively. It follows from the Gauss curvature equation that for a
plane P belonging to T, X the sectional curvature K* of do? is given by
1

K*(P) = Kx(P) +0(). (§4.2.7)

So the scalar curvature s° of do? is

1
5° = 5%t O(1)+2 Z Jitn 1) (nt1)i

1
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at Z. Let u; = (cosay)fd; + sin cvl% and uy = (cosag)Hs + sin 0{2% for

Hy, Hy € Ty X be orthonormal vectors in 7 (X x [0,1]). Let P be the plane

generated by H; and H,. Then by using (§4.2.6) and (§4.2.7)

I{E(UI,UQ) = RE(UI}UEJUQ-:ul)

o1
= cos® oy cos® iy RE(Hy, Hy, Hy, Hy) -+ % +O(1)

1 o1
— cos® oy cos® ay (E_ZKY(P) +0(1)) + —i—) + O(1)
1 . O(1)
> 2 min(K+, 0) + -
Therefore at £ we have
O(1)

1
ak® + s > = min{aK~ + 8%, 5%) + "

Let A > 0 be the infimum of min(aKz +s%, s%) over the whole X x [0, 1].
Since X x [0, 1] is compact, we can take a constant B such that O(1) > B at

any point z € X x [0,1]. Thus at any point z € X x [0, 1]
A B
CLKE*FSE 2 —E—l__
g ¢

By taking £ very small, we achieve aK* + 5° > c as claimed. Il

Thus any element in 237", which is spin cobordant to a connected sum

of a finite number of K3 surface with S* has Vol g s = 0 by theorem 4.2.1.

For n > 8, we need to look at compact 8-dimensional manifolds with

holonomy Spin(7) constructed by Joyce [16]. These are spin and have A-genus




1, i.e. under ¢ they all get mapped to a generator of KOs (pt). As one of them,

let’s consider Jy defined as follows. Take the standard 8-torus 7° = R®/Z®

and consider involutions «, f, v, defined as
Qé(.']’}) = (_'331: —Ig, X3, — T4, L5, Te, L7, $8);

ﬁ(x) - (xla Lo, Tg, T4, —T5, —Zs, —T7, _:ES)’ "‘

1 1 1 1

v(z) = (5 R T2, T3, B4y 5 — T, 57 Tg, L7y Ts),
: 1 1 1
§(z) = (—z1, 22, 9 T3, L4, 57 Tsy Tty 5 T7,Ts)
for x = (x1,- -+ ,28) € T®. The corresponding fixed point sets are as follows:

1
Sﬂﬂ - {(p13p23p3?p47 $5?$6:$7J$8) TP = 0 or 5, x; € [O, ]_)},
1
Sg = { (w1, T2, T3, Ta, P5, P, Pr,Ps) D = 0 or 5 i€ [0,1)},
1 3 .
S’)‘ = {(Q].1q27$3:m4:q{3:g6;$7>338) TS Z or zl“, T & [O, 1)},

1 1 3
Ss = {(p1, %o, g3, T4, @5, Te, @7, Te) 1 1 = 0 OF g G =70 B €[0,1)}.

They are all digjoint except S, N Sg which is the set of 256 points. Let ' =

Ly ® Ty & T D Zy, be the group generated by , §,7,8, and 7 : T° — T°/T" be

the quotient map. i

Following Joyce [16], there are 3 types of singularities in T8/T". Note that
3 fixes S, which is 16 T, but (1, §) & (Z)* acts freely upon it. On each T, 8

has the standard action of —1. Therefore 7(S,) becomes 4-copies of T%/{=x1}

whose small neighborhood in T%/T" is of the type B*/{£1} x T*/{£1} where




B* is a 4-dimensional ball around the origin. The same is true for m(Sg).
By the free action of {v,d), m(Ss N Sg) is 64 points. A small neighborhood
of each point is of the type B*/{+1} x B*/{£1}. On S,, {o, 3,8} = (Z,)®
identifies 16 copies of 7% into 2 copies, and so a neighborhood of #(S,) is 2
| copies of the form 7% x B*/{£1}. The same thing holds for w(Ss). We want to
resolve these singularities as we did in the construction of K3 surface. For the
8 singularities of the type B*/{+1} x T/{%1}, we replace each of them with
T*5% % T*/{#1}, and for the 4 singularities of the form T* x B*/{-+1}, we
replace each with 7 x 7*S5%. Of course, by this process each of 64 singularities
of the type B1/{£1} x B*/{+1} is resolved into T*S5? x T*S*. Thus we get

our desired smooth manifold Js.

The important thing is Voly g 4(Js) = 0. Start with the flat orbifold
metric on 7% /T" coming from the flat metric on 7°°, and then the same method

of construction as that of K3 surface in lemma 4.2.1 gives this result.

Being prepared with Jg, let’s consider any class [X] € Q5P for n > 8.
Since « is surjective, we can find a compact spin manifold P of dimension n—8
such that [P] is a generator of KO,,_s(pt). By Bott periodicity, [P x Js] is a
generator of KO, (pt). So there exists a k € Z such that o[ X} = k- a[P x Jg].
By Stolz [38], [X] — k[P x Jg| is spin cobordant to the total space of a HP?

fiber bundle, and hence [X] — k[P x Js] has Vol i, = 0. Therefore [X] which

is spin cobordant to the connected sum of [X] — k[P x Jg| and k[P x Js} also
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has Vol x s = 0. This completes the proof.

Theorem 4.2.4 Let X be a compact complez surface of Kodaira dimension

< 1, which s not of Class VII. Then Voly x:(X)} =0 for any A € [0,1).

Proof Since the blow-up does not increase Vol g, by theorem 4.2.1, it is
enough to consider the minimal ones. The Kodaira-Enriques classification [2]
tells us that a minimal complex surface of Kodaira dimension < 1 is either
CP? or a geometrically ruled surface or of Class VII or deformation equivalent
to an elliptic surface. Any minimal complex surface of Kodaira dimension 0 or
1 is deformation equivalent to an elliptic surface. A geometrically ruled surface
is a CP! bundle with structure group PGL(2,C) over a Riemann surface and
hence it admits a riemannian submersion with totally geodesic fibers isometric
to Fubini-Study metric. So aK + s > 0 is achieved by shrinking the fibers,

and hence Vol g = 0.

To show that every elliptic surface has Vol g, = 0, we consider special
diffeomorphic models of minimal elliptic surfaces following LeBrun [22]. Any

minimal elliptic surface is diffeomorphic to a fiber sum of an elliptic surface

with Euler characteristic zero and copies of the rational elliptic surface. Any
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elliptic surface M with Fuler characteristic zero is an orbi-bundle over the 2-
orbifold £ with structure group equal to the isometry group of a flat 2-torus.
For any orbifold metric & on 3, we can construct a smooth metric g on M
by gluing together local product metrics using a partition of unity. Here A
is taken to be flat in the neighborhoods of fiber sum constructions. This is
a riemannian submersion with totally geodesic fibers. We can arrange that
al{ + s > —1 by rescaling and the volume is arbitrarily small by shrinking the

fibers.

For a smooth model of the rational elliptic surface CP?4#9CP? — CP',

consider the 4-orbifold V obtained from R x 7 by dividing by the involution

induced by —1 : R* = R4, and B = (R x 5')/Z, defined analogously. Let

7 :V — B be the map induced by projection R x 7% — R x S* to the first
two coordinates. Then our smooth model V is obtained from 7 : V — B by
replacing each of the 8 singular points of V with a 2-sphere of self-intersection
—2, and adding a smooth fiber at infinity. To define a metric, start with
a flat orbifold metric on V rescaled so that the neighborhood of fiber sum
congtruction is isometric to that of the above M. So the volume of V' is also
rﬁade small. And in the same way as we did in the case of the K3 surface in
lemma 4.2.1, we remove a small ball of cach of 8 singular points, and glue a
neighborhood of the zero section of the cotangent bundle 7*S? of 5%, Thus we

get the fiber sum having a metric with aX + s > —1 and an arbitrarily small

volume.

71




72

Remark. A surface of Class VII is by definition a complex surface with
Kodaira dimension —oo and the first betti number equal to 1. The complete
classification of these surfaces is still lacking. One of well-known examples is a

Hopf surface. It is diffeomorphic to S x S® and hence has Volg = Vol k. = 0. !

Remark. Paternain and Petean [32] proved that every elliptic surface has

VOlK = VOL\,K,S = 0.

Finally we remark that these minimal volumes crucially depend on the
smooth structure of a manifold. For example, let X be a simply connected

complex surface of general type and Y be a simply connected complex surface

of Kodaira dimension < 1 with the same geometric genus as X.(Such Y always

exists.) Let k be any positive integer such that ¢?(X) — ¢{(Y) + &k > 0. Then
the 4-manifolds X = X#(2(X) — S&(Y) + k)CP? and Y, = Y#kCP? are )
homeomorphic according to Freedman’s classification {11]. Buf their minimal

volumes are different. Indeed

Voly i ,(Xk) 2 E(M) > 0,

2
2

where M is the minimal model of X and Vol x(Y;) = 0 by theorem 4.2.4.

The following theorem hints that the mixed minimal volume invariant is sig-
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nificant as a smooth invariant rather than a purely topological invariant.

Theorem 4.2.5 Assume the 11/8-conjecture is true and let A € [0,1). Then
every smooth compact simply connected 4-manifold is homeomorphic to one

which has Voly g =0

Proaof. As suggested in {32], we have to rely on Freedman’s [11] and Donald-
son’s [10] well-known results on the classification of smooth compact simply
connected 4-manifolds. Connected sums of CP? and CP? realize all odd inter-
section forms and all definite intersection forms. The 11/8-conjecture implies
every even indefinite intersection form can be realized by taking connected

sums of K3 surfaces and $? x $2. All these building blocks have been proved

to have Vol g, = 0, hence the theorem follows. O
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