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Abstract of the Dissertation

Weierstrass Representations of
Minimal Real Kihler Submanifolds

by

Peter Hennes

Doctor of Philosophy
in

Mathematics

State University of New York
at Stony Brook
2001

Since the nineteenth century, Weierstrass representations have been
used to investigate minimal surfaces in Euclidean 3-space. In the last two
decades, it emerged that minimal K&hler submanifolds of Euclidean spaces
share many of the features of minimal surfaces. In this dissertation, we try
to find similar representations for these minimal real Kahler submanifolds.

First, we modify a method developed by M. Dajczer .and D. Gromoll

to give a simple way of describing minimal real Kéhler hypersurfaces. As an

i




application, we are able to give local examples of superminimal surfaces in
the 4-sphere.
Then, based on the formulae for the classical Weierstrass representa-

tion, we find a coordinate system for the homogencous space of all isotropic

complex planes in arbitrary complex vector spaces of dimension at least 5.

We utilize this coordinate system to give a local cha.ré,cterization of minimal
real Kéhler surfaces (of real dimension 4) in Euclidean spaces.

Finally, using this characterization, we are able to give a complete local
classification and construction methods for a:ll minimal real Kahler surfaces
in Euclidean 6-space, at least away from certain isolated singularities. Em-
ploying these construction methods, we also give some explicit néw examples

for such submanifolds.
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1 Introduction

The study of minimal surfaces is one of the classical areas of geometry,
both for its beauty and its applications to other arcas of Mathematics and
Physics. Minimal surfaces are those surfaces in Euclidean 3-space that min-
imize the area compared to all other surfaces with the same boundary curve.

Already since the nineteenth century, it is known that there is an
intimate relationship between the structure of these surfaces and complex
analysis. Namely, let f = (fi, fo, f3) : U — R?® be a parametrization of
a minimal surface by so—called isothermal coordinates (z, y) € U, defined
in some region U in the plane; this means that the partial derivative vectors
of f with respect to these coordinates z and y have the same length and
are orthogonal at every point of the surface. (For the existence of such
coordinates and proofs of the following results, see e.g. [S], p.387-397, or
any classical treatment of minimal surfaces, as in [O]). Then the component
functions f; are harmonic functions with respect to these coordinates, i.e.
they satisfy the Laplace equation

&f;
');3, for j=1,2,3.

Oy
But by complex analysis, this means that the f; are locally the real parts of
holomorphic functions Fj : V — C, where V is some subset of U, viewed as
a region in the complex plane C with its complex coordinate z = x + iy.
Thus, for every minimal surface in Euclidean 3-space, we can (locally) find
a holomorphic map F : V — C3, the so—called holomorphic representative
of f in the given isothermal coordinates, such that

f=+v2Re(F) .

Here, the factor +/2 is commonly introduced to make F isometric to f.if
both are regarded as immersions from V' (with the by f induced metric) into
C® = RS, for R® & R® x {0} ¢ R® (compare also page 3).

But we have even more structure. If we take the complex derivative of '
F with respect to z, we can observe that ¢ = %f € C3 is a so-called isotropic
vector of C3, which means the following. Taking the standard symmetric
inner product in C3, ie.

& f;
Omﬁfj=8—a§'+

3
vows=Y vyw; for v,w eC?
puu




(NO complex conjugates!), and writing v?:=v-v, we find that

But it is fairly easy to describé (almost) all vectors X € C? that are isotropic
in this sense. Namely, if A is any non—zero complex number, and £ any other
complex number, it is easy to check that

_ 1—¢2 1+
oor (5,28 ) 8

is isotropic. On the other hand, if ¢ = (1, p2,ps) is isotropic, and if
for the first two coordinates we have (1 # iy, then we can always find &
A # 0 and a £ as above such that ¢ has the form of (1); namely, simply
take ) := @1 — i and € := 5. The map p as in (1) is called the (local)
complex Gauss map of our minimal surface with respect to the given
isothermal coordinates.

We will show later (Lemma 1.3) that, by slightly rotating the minimal
surface, we can always achieve @1 + iy, at least locally. Summarizing, we
thus have the following result: :

Locally and up to isomelry, every minimal surface con be parametrized
with respect to isothermal coordinates (z,y) in the following way:

1—

2
25 dz

fl(w,y)=~/ﬁﬂejx
folz,y) = V2 Rejm-l—ig—idz

fa@,y) = V2 Re [Agdz

where z =z + 1y, and A and § are certain holomorphic functions i z.

Conversely, it is not hard to show that, for any two holomorphic
functions & and A (the latter nowhere zero ), the above formulas give a
minimal surface in Buclidean 3-space.

This parametrization is called a Weierstrass representation of the mini-
mal surface. In fact, one does not have to rotate the surface to avoid points z




where we might have A{z) =0, if we allow £ to be meromorphic, with poles
precisely at the points where A has zeroes, and their order being exactly half
of the order of the zeroes of X (see [S], page 395). However, we will later
avoid this more general description.

Another phenomenon of minimal surfaces in Euclidean 3—space is that
they always allow so—called associated families, which are also called “isomet-
ric deformations”. These are one-parameter families of minimal isometric
immersions from some two—-dimensional parameter manifold into R3 that
are not congruent to each other, but all have the same (real) Gauss map.
Using Weierstrass representations, they are extremely easy to describe. We
have that if F is a holomorphic representative of a minimal isometric immer-
sion f with respect to an isothermal coordinate system (as desribed above),
then the associated family {fs|8 € R} to f = fo is given by
fo = V2Re(e’ F) .

k]

The classical example of such an associated family is the isometric deforma-
tion of the helicoid into the catenoid. (For a nice picture of this deformation
see the June/July 1999 issue of the Notices of the American Mathematical
Society, Volume 46, Number 6, page 649.) :

The associated family {fs |6 € R} of a minimal isometric immersion
f:U - R? also gives a very simple way to express a holomorphic represen-
tative F of f without reference to an isothermal coordinate system; namely,
we can write '

1 .
P (f®fap) ™ -—% (F+Fars)

where we identify R® @ R3? = C3, with respect to the standard complex

structure J(u, v) = (—v, u) on R3®@ R3; see e.g. [L], page 143"

As mentioned above, associated families of minimal surfaces are the
classical counterexamples to the fact that the Gauss map of an isometric
immersion f: M — RY (i.e. the map that assigns to each point p € M the

1There, F is defined to be 715 (a2 f) & "5—5 (frs2 + 4 f), which means that we

would have f = +/2 Im(F). This differs from our holomorphic representative simply by a
multiplicative factor of 1.




image of its tangent space f.T,M in Euclidean space) does, in general, not
determine its image f(M) up to congruence. In 1985, M. Dajczer and D.
Gromoll asked the question if there are other examples of this kind. In [D-G],
they prove that there is, in fact, a wider class of isometric immersions which
display this behavior, namely circular Kéhler manifolds, i.e. isometric
immersions f : M — @V from a Kihler manifold M into a space of constant
curvature whose second fundamental form « satisfies

AJX, V) =a(X, JY)

for all vector fields X and Y on M, J being the complex structure on M. It .

is easy to see that “f circular” always implies “f minimal”, which in general
means that the second fundamental form « of f has vanishing trace, i.e.

n

tr{e) =Y o(X;, X;) =0
i=1
for every orthonormal basis frame Xy,..., X, on M. Dajczer and Gromoll
show that circular immersions always allow associated families, defined at
least on any simply connected open subset of M. More explicitly, we have
that for any fixed point py € M, fs is given by the line integral

fo(p) =fpif*°Je,

where Jg 1= cos8 I+sind J (I being the identity tensor on TM; see D-Gy),
formula (1.15) on page 17). Note that, in particular, we have that

(Fompphe =—FeoJ . (2)

Then Dajczer and Gromoll are able to prove that essentially all local examples
of non—congruent isometric immersions with the same Gauss map are of this
kind.

In this dissertation, we will focus on the Euclidean case, i.e. on so-
called minimal real Kihler submanifolds. These are minimal isometric
immersions f: M — R¥ from a Kéahler manifold into an Euclidean space.
As M. Dajczer and L. Rodriguez show in {D-R4], for these immersions “cir-
cular” and “minimal” mean exactly the same thing, whereas for immersions
into spaces of constant, non-zero curvature, “circular” is far more restrictive
than “minimal”; namely, M has to be & surface for f to be circular in this
case (see Proposition 1.8 on page 16 in [D-G]).




" In even codimension, it is particularly easy to find examples for mini-
mal real Kahler submanifolds. Asshown in [Ds), page 139, every holomorphic
isometric immersion f : M** — C¥ from a Kéhler manifold M (of com-
pler dimension n) into a complex vector space CV will become a minimal
real Kihler submanifold, if we view CN = R*V as Euclidean 2N-space.
This means, of course, that f will have even real codimension 2(N — n).
But one can also find minimal real Kahler manifolds in odd codimensions;
in fact, in the same article [D-G;} mentioned above, Dajczer and Gromoll
classify all real Kahler hypersurfaces, i.e. in real codimension one, minimal
and non-minimal. For more on real Kahler hypersurfaces, see Chapter 2.

Allowing associated families is not the only phenomenon that min-
imal real Kahler submanifolds and minimal surfaces in Euclidean 3-space
have in common. As with minimal surfaces, minimal real Kahler immersions
f: M — RY always have (local) holomorphic representatives F' : U/ — Cc¥,
where U is a suitable, usually simply connected open subset of M. They can
be defined using the associated families {fy : U — R¥ |8 € R} of f dis-
cussed above, namely:

F = 1 L j 3
_\/i(feaf—w/Z)—\/i(f+'Lf—w/2) . ()

(see e.g. [D-Gy), formula (1.17)%). Again we identify RN @ RY > CV | with
respect to the standard complex structure J(u, v) = (—v, u) on RVoRN .
And in fact, the analogy goes further. As with minimal surfaces, the com-
plex Gauss map for a minimal real Kéhler submanifold will be a holomorphic,
isotropic map; we will clarify in Theorem 1.1 below exactly what we mean
by that. This will, at least in principle, allow us to find “Weierstrass rep-
resentations” for minimal real Kéhler submanifolds in general. In [D-Gy]
for instance, Dajczer and Gromoll used such representations to describe the
structure of complete minimal real Kihler submanifolds in codimension two.
(For more on this case see the remarks below, and also Chapter 2.)

2Note: In most articles on these topics, we find that F' is taken to be % (f +ifns2)-
However, the image of the (complex) Jacobian F, of F would then consist of anti~
holomorphic vectors, whereas we want to work with holomorphic vectors here. Compare
the remarks and the footnote after Theorem 1.1.

e
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In the years after 1985, several articles were published concerning the
structure of real Kihler submanifolds, in particular in low codimensions.
Many of these results rely on the fact that, unless the submanifold is the
image of a holomorphic map as described above (with respect to some com-
plex structure on the Euclidean space), it usually has “plenty of (relative)
nullity”. Recall that the (relative) nullity space A, of an isometric immer-
gion f: M — RN at a point p € M is the degeneracy space of the second

fundamental form o of M in the tangent space T,M at p:
Dp = {ve Tlea('vv'“) =0}.

[ts dimension is called the indez of (relative) nullity: v (p) = dimA, . This
index is locally constant, and on every open gubset U of M where it is
constant, {A,]p € U} is a subbundle of TM. Moreover, it is well-known
that on such an open set U, A forms an involutive distribution whose leaves
are totally geodesic submanifolds of M, and furthermore that f maps these
Jeaves into affine subspaces of RY; see e.g. [Da], pages 67 to 70. For real
Kahler submanifolds, A is often rather high—dimensional, if the map is not
alreacly holomorphic in the above mentioned sense. For example, Takahashi
showed in [T] (see also {A]) that for & (not necessarily minimal) hypersurface
immersion f : M2 — R¥! of a Kihler manifold M, we must have that
v(f) = 2n—2 for all p € M, which is as large as possible if f is not flat at

Perhaps the strongest result of this kind for codimension two was
published by Dajczer in [D1], where he uses the theory of flat bilinear forms
developed by Moore (see [M]) to prove that if the nullity of a (not necessarily
minimal) isometric immersion f : M** — R2*+2 from a Kihler manifold M
into Fuclidean (2n -+ 2)-space is everywhere less than 2n —4, then f must be
holomorphic with respect to some complex structure on R2%*+2, This means
that if such an immersion is non—holomorphic, then it must locally be an
affine vectorbundle of rank at least 2n — 4 over an at most four—dimensional
Kahler submanifold of M.

Shortly afterwards, Dajczer and Rodriguez where able to analyze the
structure of such isometric immersions with vp(f) = 2n —4 forall p € M
in codimension two, given that they are minimal and that the underlying
Kihler manifold M is complete; see [D-Rp]. The key to their result is
that for complete M, one can always find one more “complex direction”
in which M is ruled. This means that a complete isometric immersion




f: M2 — R¥+? will either stem from a holomorphic map; or that f is
a cylinder, i.e. f= fi X idgam-+, where fy: M 4, RS is a minimal isomet-
ric immersion from a Kahler submanifold M of M into Euclidean 6-space; or
~that f is completely complex ruled, i.e. M is an affine vectorbundle of rank

20 — 2 over a two-dimensional Kéhler submanifold M of M, and f maps the
rulings into affine subspaces of R*™+2, But then the image of the submanifold
M of M under f is nothing but a minimal surface in R?**+2 and as Harvey
and Osserman demonstrated in [H-O), most results concerning the structure
of minimal surfaces in 3-spaces can be generalized verbatim to those in an
arbitrary Euclidean space of dimension larger than 3; sec also [L]. Finally, in
[D-G] Dajczer and Gromoll use this idea to give Weierstrass representations
for all minimal isometric immersions f : M?" — R**? where M is complete
. and f is irreducible (i.e. not a cylinder) and non—holomorphic. Their method
allows the explicit construction of examples for such immersions.

However, some questions remain open. For instance, it is not clear
how non—holomorphic isometric immersions f : M*® — R2**+? may look
locally if M is not complete. And our nullity condition v,(f) = 2n — 4 telis
us nothing if M is four-dimensional (n = 2), i.e. in the case of a minimal
:sometric immersion f: M* — RS. In fact, to the knowledge of the author,
only a few examples in this case were known up to this point; see [F| and
[D-Gg). Very recently, Arezzo, Pirola, and Solci were able to give entire series
of examples (see [A-P-S]). But a classification of those submanifolds had not
been established until this time.

The main goal of this dissertation is exactly to give a complete local
classification of four—-dimensional, minimal real Kdhler submanifolds in codi-
mension two, at least away from certain isolated “singularities” in the mani-
fold. This will be established in Chapter 4, where we utilize a parametrization
for two—dimensional isotropic subspaces in C¥ that is based on “Weierstrass
formulas” very similar to the one in (1). The latter will be developed in
Chapter 3. Chapter 2 contains an “addendum” to Dajczer and Gromoll’s
work [D-Gg], namely that the methods developed in this article can be used
almost verbatim to explicitly construct minimal Kéhler hypersurfaces. One
interesting consequence of this is that we will be able to explicitly write down
formulas for so—called “superminimal surfaces” in Euclidean spheres, a topic
that was first studied by E. Calabi in 1968 (see [C}) and is still an active area
of research in algebraic geometry.




The following theorem contains the clarification promised on page 5,
and is the backbone of the Weierstrass representation for minimal real Kihler
submanifolds. It is well-known in the literature and can be proven in a
straightforward (if tedious) fashion, e.g. by expressing all given conditions
in a complex chart of the Kéhler manifold. In their recent article mentioned
above, Arezzo, Pirola, and Solci have given a very elegant proof of this the-
orem, using differential forms (see [A-P-8]).

Theorem 1.1: Let f: M*™ — RY be a minimal isometric immersion
from a Kéhler manifold M into Euclidean N-space. Furthermore, let
(#1,..-+ #) be a complex chart of M on some open (and without loss of
generality simply connected) subset U of M, and define the maps @5 *
U—=C¥forj=1,...,n by

—yz 2 _1 (of .Of
""f"ﬁazf\/‘z‘(awj ‘ayj)’

where z; = x; + ty;. Then these @; satisfy the following conditions:

(a). For each point p € U, the vectors ¢1(p), ..., @a(p) are linearly
independent in CV ; :

(b) ; is holomorphic for j =1,..., n;
(c) span{®1,..., ¢n} is an isotropic subspace of CV, i.e.

WJ"P’G:O fOTGH ].Sj,ksn:

where “- 7 is the standard symmetric inner product in CV;
N
(vi,..oy on) (w1, ., wN) =) v ws
J=1
a()oj alpk . « T s »
d) s==—5—forall1<j, k<n (“Integrability Conditions”).

62{; - 6.2_,'

Furthermore, if F : U — C¥ is a holomorphic representative of f on U
as described in (3), then we have

aF

ézj.z(pj forall g=1,...,n. (4)




Conversely, let U be a simply connected open subset of C", and
©15--+, ¢n : U — CN be maps that satisfy conditions (a) through (d) as
above. Then there is a holomorphic map F : U — CV such that (4) is
satisfied, and if f: M — RV is defined by

f:=V2Re(F),

then M := (U, f*<,>) is a Kihler manifold and f is a minimal iso-
metric immersion from M into Fuclidean N-space whose holomorphic
representative is F.

The map ¢ =span{yi,..., pn} from U into the complex Grassman-
nian Gr,(C¥) of all complex n-spaces in C¥ is more correctly what one calls
the complex Gauss map?® of the Kihler manifold M over U. It is indepen-
dent of the choice of the complex chart of M, and thus a holomorphic map
on all of M. Note that we always have

o(p) = F. T,M = f, T,M0 (5)

since 5‘—2: ey a;:n is a basis for the subspace of all holomorphic vectors in
(T,M)® = T,M ®g C. Therefore, (a) means exactly that the holomor-
phic representative F' of our immersion f is itself immersive, regarded as a
holomorphic map between complex manifolds.

To see how the factor +/2 behaves in these formulas, let us briefly
check (4). Using (2) and (3), we find
9F _ 1 (af .af_w,a)

oz 2 \o5 T o

- (Ll (2o 2))
(o5~ (a5,

_ L (of _ofN_
"\/i(am,- Zt"?‘:u:i)d_soj'

L

3 Again, usually one looks at the antiholomorphic Gauss map ¢ = spa.n{-g% ey %

= fuT,M®? here. But since we will later work with this map quite extensively, we will
prefer having a holomorphic Gauss map.
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We will use Theorem 1.1 shortly to give simple examples of how to
construct minimal real Kéhler submanifolds. However, before we do this, we
want to investigate isotropic subspaces in C¥ 4 little closer.

First, in general we say that a subvectorspace V' of C¥ is isotropic
if we have V2 :=V -V = {0}, which, of course, means that

N
vow=Y viwy =0
=1
for all v={(vy,...,vn), w= (w,..., wy) € V. Geometrically, the most
important property of isotropic subspaces in C¥ is that they are exactly the
ones that “stem from orthonormal systems in R¥”. More exactly, we have:

Lemma 1.2: Let V be an n—dimensional complex subvectorspace of CV.
Then we have that

1 1
7= —(X iY1),..., Zn=—7= (X, +1iY,
1 ﬂ( 1+1i1), \/5( +1Yy)

(with X;, Y; € RN} is an isotropic, Hermitean orthonormal basis of V if
and only if X1,-.., Xa, Yi,..-, Yo is a Buclidean orthonormal system
in RV, '

Note that this lemma immediately implies that the maximal dimension
of an isotropic subspace of C¥ is [¥], where [z] is the largest integer less
than or equal to x.

Proof: If Z1,..., Z. is an Hermitean orthonormal system, and if we denote
the regular Hermitean product on GV by < .,. >, we have that

S = <Zj, Zx>=12Z; Zy ,
= M<X;, Xe> + <Y, Yi>) + £ (— <X, Vo> + <Y;, Xi>) .
On the other hand, if V' is isotropic, we have
0=2;-Zp = 1(< Xy, Xp> — <Y, Ya>)+5 (< X;, V> + <Y}, Xo>).

Adding these equations and then separating real from imaginary parts gives
<X;, Xg>=8y and <Yj, Xp>=0, whereas subtracting leads to
<Y;,YVi>=4dz and <X;,Y,>=0,1ie X1y Xy, V1,000, Y, 18 a0 or-
thonormal system in RY. The converse is clear from the equations above.
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Another fact that we will need later is that congruent minimal real
Kihler immersions have congruent holomorphic representatives:

Lemma 1.3: Let f and f : M® — RY be two minimal real Kdhler
smmersions from M into Euclidean N -space, and let F' and F.U->CN
be (local) holomorphic representatives of f and f, respectively. Assume
that f and f are congruent, i.e. f=Aof+b foran A€ O(N) and
be RY. Then we have F = Ao F + ¢, where we view A as a complex
N x N-matriz, and where ¢ € GV .

Proof: QObviously, it suffices to show that F, = Ao F,. By (3), we have
that F = Js (f +4f-x2), and thus by (2) that F, = 25 (fi—ifioJ),
and-analogously for . But since fo = Ao f., we have

. 1 ;=
F*="\/_§ (f,—zf*oJ):AoF*.

We will end this chapter with the promised simple examples of how
we can use Theorem 1.1 to construct minimal real Kéhler submanifolds.

Example 1.4: For some fixed integers m > n > 1 and N = 2m, choose

a basis Xi,..., X, of some fizred m—dimensional isotropic subspace of
CN. Let Co € CV be another constant vector. For j =n+1,...,m,
let gi(z1,..., Zn) : U — C be some holomorphic function in the n complex

variables z] ..., 2, defined on some open subset U of C7, and define the
map F : U — C¥ by

F(ZI:'--,zn) :=szxk- + E gk(21,..-.,zn)Xk + Gy . (6)
k=1

k=n-1
Then we have that for j=1,..., n,

oF i agk

— =X, + ——(21,... Xk s

323- 3 k:Zn:_H azj (21 ) zn) k

and it is easy to see that the ;= gf:f indeed satisfy conditions (a) through

{d) in Theorem 1.1. Therefore, f := V2 Re(F) : M — RY , where the mani-
fold M := (U, f*<,>) has real dimension 2n, is a minimal real Kéhler
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.immersion. Since we can view I as the “graph” of the holomorphic map
(gne1s-- - Gm) “with respect to the isotropic basis Xy, ..., X", we will say
that such an immersion f is generated by an isotropic graph.

It is interesting to note that in even codimensions, we have basically
only rediscovered the examples for minimal real Kéhler submanifolds that
we encountered on page 5, since we have the following

Proposition 1.5: Let M** be a Kihler manifold, and f : M — RV
be an isometric immersion that is also a holomorphic map with respect
to some compler structure on RN (so by the remarks on page 5. f is,
in particular, a minimal émmersion). Then for each point in M, there
is a neighborhood U of this point and a complez chart (z1,..., 2z,) on
U such that with respect to this chart, flu is generated by an isotropic
graph. _

Conversely, every minimal real Kahler immersion f : M® — RN
that is generaled by an isotropic graph in even codimension is holomor-
phic with respect to a suitably chosen complex structure J on R2Y.

Proof: The main tool of this proof is a fact that Calabi discovered first

for minimal surfaces in even-dimensional Euclidean spaces (see [C], or [L],
~ page 165), and that Rigoli and Tribuzy generalized for minimal real Kahler
immersions (see [R-T], Theorem 4 on page 517)*:

A minimal isometric immersion f : M? — R2Y is holomorphic with
respect to some complez structure J on R2N if and only if there is a fixed
isotropic subspace V of C*N such that the image of the complex Gauss
‘map of [ is contained in V, i.e.

LMY cV foralpe M.

Now assume that f is holomorphic with respect to some complex struc-
ture J on R2Y, Let V be the isotropic subspace of C¥ mentioned above,
and let m denote the (complex) dimension of V' (so: n < m < N)}. Taking
an Hermitean orthonormal basis X;,..., X,, of V, we obviously can write
any holomorphic representative F' : W — C?N of f in any given complex
coordinate system (Z;,..., Z,) on W C M as

‘In their article, Rigoli and Tribuzy work with the antiholomorphic Ganss map
FoT,M©®1) | 50 their theorem had to be slightly adapted here
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P, 5) =30 G5, r ) X5+ Flp), )

J=1
where the g; are certain holomorphic functions defined on W, and where py H
is some fixed point in W. But since F' is immersive (see (5)), the rank of the , *"
|

map G = (1,-.., §m) : W — C™ is also equal to n everywhere. Given a
fixed point p in W, we can thus find indices j1,...,Jn € {1,..., m} such
that the n x n-matrix

ok (P)) |
( 0% fik=1,.7 !

has rank n. Assume without loss of generality that 5 = 1,..., j. = n. Now
set ' “
(I):=(§1,...,§n)_l, ¥
and let the domain of ® be some open set I € C” that & maps biholomor- i f‘l{
phically onto some open neighborhood U of p in W (the existence of such {
an open set is guaranteed by the “holomorphic” Inverse Mapping Theorem; :i:'
see e.g. [G-R], page 17). Thus, &' : I/ — U is a complex chart for M, and ' |?;‘
~ changing coordinates to (21,..., z,) € U, we see that

éo¢(zl,...,zn)=(g’l(@(zl,...,zn)),...,(_c";m(@(zl,...,zn)) . :’
=(21:'“3znagn+1(zly~--:zn),---agm(zla"wzn)): "‘ !

for the holomorphic functions g; :== 3,0 ® (j = n+1,..., m). Inserting i
them into (7), we see that in the “complex coordinate system” (z1,..., z,), !|:‘ii
the holomorphic representative of f has the same form as in (6), which proves ]
the first part of our claim. ‘ ’

Conversely, if f is given as in Example 1.4, then the complex subspace , ii
V = span{Xy,..., X,,} of C*V is isotropic, and by (5) and (6) it is clear !
that the image of the Gauss map of f always liesin V. Thus f is holomorphic
with respect to some complex structure on R?" by the criterion given above. ||i

Another way to construct simple examples is to look at “isotropic i _
cylinders” in the following sense: 1R

Example 1.6: Take a fired isotropic subspace V of C of dimension n < [4]. N
Further, take a basis X;,..., X, of V. Denote the “isotropic orthogonal I
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complement” of V by V1", where A1*B for A, B € C¥ means by defini-
tion that A- B = 0 with respect to the standard symmetric inner product in
C¥. Note that it is clear from the general theory of bilinear forms that since
“.% is non—degenerate, the dimension of VL' is N —n. However, since V'
is supposed to be isotropic, in our case we always have that V c V4" .
Now choose any complement W of Vin V1" sothat VL =V g W,
and take any nowhere zero isotropic map Z : U — W which is holomorphic
in the one complex variable w € U < C. (It is not hard to show that
any subspace of CV¥ of dimension at least two contains non-zero isotropic
vectors, and that by our assumption on the dimension of V, dim W has
to be at least two.) Then it is easy to check that the partml derivatives

©; gf and @ni1 = 5L of the map

F(z,.. ,zu,'w)_-Zz_.,X + fZ(w

i=1

satisfy conditions (a} through (d) in Theorem 1.1, and thus that the map
f=+2Re(F): M:=(C"xU, f*<,>) » R" is a minimal real Kihler
immersion. Because F' has a similar structure as a cylinder in a Euclidean
space (where all coordinates and functions would be real), we will say that
such an immersion f is generated by an isotropic cylinder.

Note that since we cannot assume that the X; and Z are always con-
tained in a fized isotropic subspace of C¥, we may very well obtain non—
holomorphic immersions here (see the criterion in the proof of Proposition
1.5). For the same reason, Lemma 1.2 implies that we also cannot expect
that f itself will split as a cylinder in RY.

The real reason why we introduce Examples 1.4 and 1.6 is that they
will later reemerge naturally as special cases in our classification of four—
dimensional minimal real Kahler submanifolds of RS,
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2 Minimal real Kahler hypersurfaces

Locally, any real Kihler hypersurface in R?*! which is nowhere flat
can be described through its Gauss parametrization ¥ : A — R2* given
by _
Bz, w) = (b g+ VVR)(2) +w, (1)

where A is the normal bundle along a psendoholomorphic isometric immer-
sion g : V? — S from a surface V into the 2n-sphere, h: V — R some
support function on V, and VY its gradient in V' (see [D-Gy], formula (2.4)
and Theorem 2.5). The reasen that we can find such a parametrization is
that for every such hypersurface which is nowhere flat, the index of relative
nullity must be constant and equal to 2n— 2 (as we mentioned on page 6), or
— which is the same ~ that its Gauss map must have constant rank 2. In fact,
V is nothing but the “Gauss image” of our hypersurface. If the hypersurface
is to be minimal, we must require that, in addition, A is an eigenfunction of
the Laplacian of V for the eigenvalue —2 ([D-G;], Corollary 2.6):

%) minimal <= AYh+2h =0 in V.

Of course, it is neither very easy to find pseudoholomorphic surfaces in
5% — which were first studied by Calabi [C] — nor to determine the eigenfunc-
tions of the Laplacian of V. So the question arose if one could use techniques
analogous to those in [D-Gy] to find examples of minimal real Kihler hy-
persurfaces via the Weierstrass representation, similar to the classical case
of minimal surfaces in R2. In fact, this is easily possible by only slightly
modifying the methods in [D-Gy], as we will now show. _

Let f: M2 — R?+1 be a minimal isometric immersion of a K#hler
manifold M into R2"™!, which is also assumed to be nowhere flat. As men-
tioned above, the relative nullity bundle A of f must have rank 2n — 2
everywhere. Since this bundle is the kernel of the Jacobian of the (for us)
holomorphic complex Gauss map of f (see page 9), it is in fact a holomorphic
subbundle of the tangent bundle TM of M (compare [D-Gs], page 240). As
mentioned on page 6, each leaf of A in M is totally geodesic, and furthermore,
f maps any such leaf into an affine subspace of R#"?.

Now, let F: M — C»*! be a holomorphic representative of f as in
formula (3) in Chapter 1 (so we either assume M to be simply connected,
or we restrict ourselves to local considerations). The fact that f maps leaves
of A into affine subspaces of R***! means that F will map these leaves into
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complex (n — 1)-dimensional subspaces of C**** and will, thus, be holomor-
phically ruled. This implies that locally we can find complex coordinates

(Z, Wi, Wr-1) O some open subset U x W ¢ C »x C*1 such that
H*F
0, 1<j, k<n—1
6‘w_.; Qwy =J ="
(recall that, by (4), g% = /2 gf; for each complex coordinate system
(Z1,.+-; %) OD M). Furthermore, we know from Theorem 1.1 that the Ja-
cobian of F' spans an isotropic subspace in C2tl e
OF OF
OF 0f g 1<j,k<n,
dz; Oz 1S3, 50

for each complex coordinate system on M. As in [D-Gg), we see that this
means that the Jacobian of F' must be a (2n + 1) x n matrix of rank n that
has the form

F, = (6(2) +2 w;73(2) 71(Z),---,’Yn—1(2)) ; (2)

where 7'(z) = &, and where B,v:U— 2+ gre holomorphic in z and
satisfy the additional constraint that

span {B, T, Yh---» Tne1s Ya-1} 18 isotropic. (3)

Now, as noted on page 10, the largest possible dimension of an isotropic
subspace in C2**! is n, and by (2) and (3) the holomorphic subbundle

E:=span{yi,- s W} CU X Ccnt

is isotropic and already has rank n—1. This means that its osculating bundle
E =span{y;, ;|1 <i<n- 1}, which by (3) is also isotropic, can only
have rank < n. But then Lemma 1 in [D-G,] (page 239) tells us that either
E contains a parallel subbundle (which means that § is reducible), or that
there is a unique holomorphic line bundle L ¢ E such that L2 the
(n— 2)™ osculating bundle of L, equals E. More explicitly, if in the latter
case v : U — C?*1 is a nowhere zero section in L, then

E = L9 = spaa{y(2), 7 (&), 7"} (4)
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From now on we will assume that f is irreducible, so in particular we
have (4). Note that, in this case, we can conclude further that rank E' =n,

and we have
E =L0D = span{y(z), 7¥(2),..., 7(”"1)} X

Thus, (3) gives us that we always have § € E; i.e. we can always find
holomorphic functions by, ..., by—1 : U — C such that

8(2) =Z: b(2) 19(2) | 5)

where b,_; is never 0. (Note: By [D-Gg] (9), this shows that an irreducible f
can never be completely ruled, so in particular that an drreducible, nowhere
flat minimal real Kahler hypersurface can never be complete. In fact, this is
also true for non-minimal Kahler hypersurfaces, and was first proved by Abe
[A]; see also Corollary 2.7 in [D-G]). With this 3, (2) now becomes

K= (3:;6 bj(z) 7(‘7)('2) +§ Wy 'Y(j)(z): 7(2)1 ’}/(Z) 1er ey 7(”—2)(3)) '

and we have that

n-1

Flz,wi,..., Wn-1) = z_%}(/ bi(z) YY) (z) d,z) -+ E w; Y(z), (6)

J=1

and f(z,un,..., Wpe1) = V2 Re(F). Writing w; = uy + vy, we thus
obtain '

T flz e e, V1 Vp—1)

n—1 . n—1 . ) (7)
= Re( Z/ b;(2) Y9 (z) dz) + 3 (ujRe A (2)—v;Im 7(3'1)(z)) .

§=0 =

This is a (local) Weierstrass representation of the minimal real Kéhler
hypersurface f.

Comparing this parametrization of f with the Gauss parametriza-
tion in (1), we see that, in these coordinates, the first term in (7) corre-
sponds to (k- g+ Vk)(2) , and the second term to a normal vector to g in
52 Thus, if we have a convenient way to find such Weierstrass representa-
tions — i.e. maps « as in (4) — we can also easily find (local) examples for




18

pseudoholomorphic maps g : U — 52 they are simply the normal vectors
to span{Re Y9(2), Im 79 (2) |0 < j < n —1} in R™!, viewed as a func-
tion of z = z +iy ¥ (z, y), which represent isethermal coordinates on U
(compare page 1).

Now it is in fact rather easy to find such a . We only have to mimic
the construction on page 237 in [D-Gg). Thus, let U be any simply connected
domain in C. Start with any non—zero holomorphic function® o : U — C,

and let ¢g := fap(z)dz (or just start with any non-constant holomorphic
o). Assuming that the maps o, ¢, : U — C*"*! have been defined for
some 0 < r < n — 1, choose any nowhere zere function p,y; : U — C, and

set
1- 42
2

Qg1 '= et L-4¢f | ,and grir o= _/a.,,+1(z) dz , (8)
2

dr

where ¢2 = ¢, - ¢, with respect to the standard symmetric inner product in
C?+1, Then,
Y= O

is the section of L for which we are looking; i.e. if we use it in (7) above,
then the so defined f will be a minimal isometric immersion from the Kahler
manifold M := (U x W, f*<.,.>) into R**1, where W is some open subset
of the origin in C"! and <.,.> is the standard Euclidean metric in R?**1,

The proof that this method works is ezactly the same as for the case
of codimension 2 described in [D-G.]. In fact, it is not hard to show that
every minimal real Kahler hypersurface must locally be of this form (up to
renurnbering the coordinates in R2™+1), '

Note that the first step in (8) is ezactly the classical way to find mini-
mal surfaces in R? via their Weierstrass representation (compage page 2).
Thus, if we simply “continue this construction to higher dimensions” (a8
given in (8)), what we obtain are exactly minimal real Kéhler hypersurfaces.

1The only difference to the procedure in [D-Gg] is that there, ap is a function with

values in C2. Also, note that if ap = 0, we could choose all integration constants in (8) to
be zero, and the hypersurface would be part of R*" x {0}, and thus flat (and reducible).

R T
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Let us now consider two examples, both in the simplest possible case
of a minimal real Kahler hypersurface in R, so that n = 2.

Example 2.1; Start with g := 1, and thus ¢g = z , if we set the integra-
tion constant equal to zero. Now choose g := 6, and obtain

1— g 3—327
a=E1i+ed) | =| 80+ |,
2(?50 6z

and by integrating (and setting all integration constants equal to zero),
3

32—z

b1 ’—”fﬂfl(z)dz: i(3z+ 2%
322

For the next step, we need to calculate
¢2=Bz-22P+2B2+ 22 + (32 =3,

Setting pte 1= 2, we obtain (since here n = 2)

14324
1—¢2 i (1—32%)
")’:azm%?- il+¢3) | =] 62—22°
2¢1 {62z +22°%)
6 22

If in (6) and (7) we now choose by := 0 and by := 1, we see that
£z wn) = V2 Re [ 1-7/(2)dz - 7(2)) = VE Re((1-+un)-7(2)) (9)

(setting yet another integration constant equal to zero), and if we write
z2=z4+iy and wy =w =u+1v, we finally obtain that

f(:c,y?u,v)=\/§(1+u)Re'y(m+z’y)—\/§v Im y(z+iy)

14324 -182%y% + 3% 12283y — 1229°
1243y — 1221° 1—32z%+182%y% — 3¢
= /21 +u) - 6z — 2% +6xy° —2v- By — 627y +29°
—6y— 6z y+2y° 6z +22° ~ 6z y>
622 — 64° 122y
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is & minimal real Kéhler hypersurface in R®, defined for all (z, ¥, u, v) in
some neighborhood U x W of the origin in R* (U, W open in R2).

We can also use this example for f to obtain an example for a pseu-
doholomorhic surface g : U -+ 8% in the 4~sphere.? Note that since here

fTz,0U = span{Rey(2), Im7(2}, Rev'(2}, Im7'(2) },

- we only need to calculate 4/(2) and then determine a normal vector to f at
: (z, 0). We have '

| 228
—2iz%
¥ (z) = 1—-22 |, and thus
(1 + 22) '
2z
22 ~ 6y’ 622y — 293
6xly — 243 ~223 + 6z ?
iReY(z,y)=| 1-2+y* |, tlm~/(z,¢)= 22y
—2zy 14 a2 — ¢
2% 2y

To find the required normal vector, one probably wants to use a computer

algebra system (or otherwise plenty of time and patience). In any case, one
finally arrives at the result

2(z? —®) (a+3)

dzy(a+3)

9(z, y) = . 2% (3a2 —1)
’ a*+9a?+a+1

2y (3a*-1)

@ —9a%—a+1
where a:1=2°+19° = ||z, '9’)”2-.

2 Actually, for a minimal surface in the 4-sphere, being pseudoholomorphic is equivalent
to being superminimal. See [Loo|, page 8, or [D-G1], page 18.
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Remark: Once that we have a candidate for a pseudoholomorphic map
g: U - 82" it is not too difficult to check if it is indeed pseudoholomorphic.
Ifo=3(L—1i %), where (z, y) are isothermal coordinates on U, then
according to Calabi [C] - or better: [Loo], page 7 - we only need to check that
dg-8g =0 for 1 <j < n. The author did, in fact, use a computer algebra

system to successfully double-check our g above for pseudoholomorphicity.

Example 2.2: Here, we start with ap = —;-e'zi, and thus ¢y = e¥ and
¢2 = e” (setting this and all following integration constants equal to zero
again). Choosing p := 2, we find

1— 2 1—e*
oc1=y2—1 i(1+@2) | =} i(1+€%)
2¢g 2€§
Integrate to obtain
2z —e*
gbl--:[al(z)dz: i(z+e*) |,
ded

so that ¢? = (z— e*)2 +2(z+€*)® + (def)2 = 16€* — 427, ‘Setting po =2
gives
1—-16e*+4z¢e*

1—¢?2 i(1+16e* —4ze”)
fyzagz% i(l+¢3) | = 2z-2¢*
2 i(2z+2¢?)
8el

.Again, we choose by := 0 and b = 1, and have the same general form of
f as in (9). Finally, we obtain another example for a minimal real Kéhler
manifold in RS, namely

T e . i =




fle,y,u,v) = V2(1+u) Rey(z+iy) —v2 v Im Yz +iy)

1+4e® cosy(dx ~16) —4ye” siny
4ye® cosy + €° siny (4x — 16)
=x/§(1+u)- 2z — 2€% cosy
—2y— 26" siny
8eZ cos (¥)

4ye” cosy -+ €® siny (4z — 16)
1-e®cosy(dz — 16} +4ye” siny
—v2uw- 2y—2€% siny
2z+ 26" cosy
8 €% sin (¥)

As in Example 2.1, this f gives rise to another example of a pseudoholomorhic
surface g : U — S* in the 4-sphere. We have

—~12e* + 4 z€*
1(12e* — 4 z¢*)
Y (2) = 2—2e :
i(2+ 2¢%)
det

and thus

e® cosy (4 — 12) — 4y e® siny
4ye® cosy + € siny (4z — 12)
Re ¥z, y) = 2 —2¢€% cosy
—2¢” siny
4ef cos (%)




and

4ye® cosy+ e siny (4dz - 12)
—e® cosy (4z — 12) + 4y e” siny
Im 'z, y) = —2¢® siny
2+ 2€" cosy
4e% sin (¥)
It appears somewhat daunting to try to find the normal vector to the space
span{Rey(z), Imy(z), Rey(z), Imy(2) }, but one can make this task

slightly easier (even for a computer algebra system) by doing some linear
algebra on this basis, thereby finding the following new basis vectors:

1—4¢€” cosy —4 €” siny 2z —6 2y
4 e® siny 1+4€" cosy 2y —-2z+6
2x—2 s 2y , | =1+ e®cosy |, —e™* siny
-2y 22—2 e ?siny 14e™ cosy
4e% cos(¥) de sin (%) 2¢7% cos(¥) —2¢7% sin(¥)

Again, we employ a computer algebra system to calculate the normal vector,
and find '

( 2 cos(¥) (e + z — 2) ~ 2y sin(}) )
2y cos(¥) + 2 sin(¥) (¢* +z ~ 2}

@29) = '
I Y= Lt v emb(z, y) + 1

cos(¥) (4ze” —8e” —.l) +4ye” sin(¥) | »

+sin(¥) (4ze” —8e* ~ 1)

—4ye” cos(¥
\ % e % (
where b(z,y) 1= 4z + 4y® — 162 + 17. As in Example 2.1, the author

double-checked that &g - &g = 0 for j = 1,2. Actually, it took & fairly
fast computer system several minutes to complete this task.

)
4e* — e®b(z,y) + 1) /
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3 Minimal real Kihler surfaces and their
Welierstrass representations

One key feature of the Weierstrass representation for minimal surfaces
in RY is that it uses & simple parametrization for isotropic vectors in C¥ (see
[H-O)). If one wants to find a similar representation for isometric immersions
of a Kihler manifold M?® into R¥, one could, thus, try to first construct
a similar parametrization for isotropic n-dimensional complex subspaces of
CN. We will in fact do this for n = 2, i.e. for isotropic complex planes in
CN (for N > 5), and will then find a local characterization for all minimal
(complex) Kihler surfaces in RN (so: of real dimension 4). This character-
ization corresponds to the Weierstrass representation of s minimal surface
(=complex curve) described on page 2. It is not only interesting in its own
right, but also because all isometric immersions f : M** — R2*2 in codi-
mension 2 that are not holomorphic with respect to some complex structure
in R2"2 must locally be affine vector bundles of (real) rank 2n — 4 over a
A-dimensional Kihler manifold M* (see our remarks on page 6). And the
complex Gauss map of such an f restricted to M can be viewed as a map
from M into the space of all isotropic complex planes in C*"+2,

~In general, denote the space of all isotropic complex n-subspaces in
CV by L(CV), or I¥ for short. It is well-known (see e.g. [R-T]) that I is
a compact complex homogeneous space, namely

. SON
L,(C") = ( )/ (Un) x SO(N ~2n))

This implies for the (real) dimension of this manifold

dim, (I,(CY)) = (g) —(n? + (NEZ"‘)) =2Nn—-3n*-n (
=n.-2N-3n-1).

In fact, as a complex submanifold of the Grassmannian Gr,(C"), which is

a Kihler manifold with its standard (Fubini-Study like) metric (see [K-N],

pages 133-134 and pages 160-161), I is itself & Kéhler manifold. However,
we will not use this last fact here.

We will now give a complex coordinate system for IY, whose complex
dimension is, by (1), 1-2- (2N —-3.2—1) =2N —7. Note that since IV is
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homogeneous and since we will be mainly interested in local considerations,
any “small” coordinate system of I suffices for our purposes.
We will write the complex coordinates in C*¥~7 as (¢, ¢, X), where

E = (61:---) N—~4) and C = (Cl?"": CN-—4) are in CN—4 and A is a Complex
number. Then set
X = (. §,%), where X = A (55, 15, 6),
and (2)

Y = (-X-Y,iX'Y,Y), whereY = (%Q,Z"lizci? ¢}

Here, X -Y is the standard symmetric inner product in C¥=2, and £ = ¢+ ¢
and (2 = ( - ( refer to the analogous inner product in CV~* (see page 10). It
is easy to check that X.and Y span an 4sotropic subspace of C¥, and that X
and Y are isotropic vectors in CV—2. However, in general X and ¥ will not
span an isotropic subspace of CV~2. Now, define the map ® : C*¥~7— I
by ,
(I)(fs ¢, A) = Spa'n{XvY} )

with X and Y defined in terms of (¢, ¢, A) as in (2). Note that this map
is well-defined, i.e. that span{X,Y} isin fact always 2-dimensional; for let
us assume that there were complex numbers « and 8 such that .

$-pX-Y
0=aX+fY=|i2+ifX.Y
aX+3Y
Dividing the second component by i and adding it to the first component
gives a = 0, so that in particular we must have 8Y = 0. But looking at the

form of Y as in (2), we see that the first and the second component of ¥’ can
never be zero simultaneously. Thus, 8 must also be zero.

We will have to restrict the domain of ® to obtain the (inverse of the)
coordinate system for which we are looking. Thus, let

Go:={(¢, ¢, NeC™ A~ #0}.
Note that the condition in this definition is equivalent to XY # 0, since

A((l—ﬁz(l—cz)+@.2(1+£2L(1+c2)+5.g)

A
—§(§—§)2#0-

XY =
(3)
=A(-38-43+e() =
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Thus, span{X , Y} will, in fact, never be an isotropic subspace of C¥~2 as
long as (£, ¢, A) € G®. Obviously, G® is an open set in C2¥-7 and it is
easy to see that G® is connected. Then we have

Lemma 3.1: The map &: G® — I¥
(€, ¢y A) — span{X, Y},

where G® == {(£,{, A) € CV-T | X (€~ ()? # 0}, and X and Y are
given by (2) as

(1) [ 2e-07 )
3 —2 (- )
X = ,\1_—2& , and Y = 1—‘§§E ,
iyt i 1
\ A )

is an injective holomorphic immersion between complex manifolds of the
same (complex) dimension 2N — 7, and thus (the inverse of) a coordinate
system for IY . '
We call the inverse chart ® as in Lemma 3.1 a Welerstrass coordinate
system for IY.

Proof: First, we prove that & is injective on G®. Thus, suppose that
span{X, Y} = span{X, ¥},
which means that there are complex numbers «, 3, 7, and § such that

X = aX+8Y, | } | @

Y =9X+40Y.

By (2), the first equation means

3 2 _BX.Y
3 |=|ig+ifX-Y
X aX+8Y
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Dividing the second components by 4 and adding them to the first compo-
nents on either side gives a = 1, whereas subtracting these components gives
28X-Y =0. Since we are in G®, we have by (3) that X-Y # 0, and thus
that § = 0. So, we have found that X = X, and thus, in particular, that
X = X. By the second equation in (4) and by (2), we have

-X.Y 1-6X-Y
iX-Y | =|if+idX- Y
g X +38Y

Again, dividing the second components by i and adding them to the first,
we immediately have 7 = 0, and thus ¥ = §Y. But according to (2), this
means. that the first two components of ¥ and §Y give -

1= 1-¢? 1+ 14¢
Adding these equations gives § = 1, and thus ¥ = Y. By (2), this obviously

means that the coordinates (£, ¢, A) and (£, ¢, X) generating the subspaces
with which we started have to be the same. Thus, ® is injective on G®.

We will now show that ® is holomorphic and immersive on G®. For
~ this, we need a complex chart for IY. Since I is a compact complex submani-
fold of the Grassmannian Gra(CV), its topology is the subspace topology of
Gra(CV), and thus it suffices to use a complex chart @, of Gro(C¥) as in
the following diagram:

<I>
G — ¥ «—  Gry(CY) = Mat((N —2) x 2, C)

(€. ¢, A) — span{X,Y},— span{X, Y} —  pa{span{X, Y})
X,Y as in (2)

It is clear that if we can show that the map
®a: G — Mat{(N-2)x2,C) 5
(€. ¢ A) —  pa(span{X,Y})

is & holomorphic immersion, then the same has to be true for ®. Of course,
we need an explicit formula for ,. We will use the one described in Example
2.4 in [K-N], page 133 (where p = 2 and p + ¢ = N). Thus, if (z,..., 2,)
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is the standard complex coordinate system in CV, consider the z; 8s lin-
ear maps C¥ — C, and choose a set o := {a;, as} of integers such that
1< a; <oy <N. Let U, be the subset of all complex planes § ¢ C¥ such
that za, |S and 2,,|S are linearly independent; i.e. they form basis of the dual
space of 5. Write the other coordinates as 2a; , - - ; Za,,, where {03,..., @, }
is the complement of & in {1,..., N}, written in increasing order. Then,
we can find complex numbers s; such that

2
Zak’S:ZSkj(ZajIS) for k=3,..., N,
=1

and the complex chart for which we are looking is given by

Cat Ua — Mat((NV - 2) x 2, C) .
S — (S’ﬁj)k=3,...,N-
3=1,2
Actually, it is not hard to see how we can write this chart in terms of a
basis vy, vz € C¥ of the given complex plane S, namely in the following
way. Define the two projections F, : Mat(N x 2, C) — Mat(2 x 2, C) and
Qo : Mat(N x 2, C) — Mat (N —2) x 2, C) by

Qa, a Qag, 1 6[.03’2
Fa ((akj) "=1l---’N) = ( o a1,2) and QQ((akj)k?l....éN) . 5 :

§=12 Oag,1 Qog,2 i=1,
147 w1 a‘aN,2
Then it is not hard to show that if vy, vy is a basis of S € Gry(C"), Sisin U,
exactly if det (P,(v1,v2)) # 0 (where (v;, vp) is regarded as the N x 2-matrix
whose columns are the components of vy and v, respectively). Furthermore,
one can easily show that we have

#alS) = Qalvr, %) - (Palvr,v)) (6)

which is the form of ¢, with which we will work. Note that, in particular,
this formula does not depend on the choice of the basis v, vs for S € U,.

We will now use the above formulas in the special case o = {1, 2} and
for the complex planes that are given by our map ®. Substituting vy = X
and v, =Y, we see that

det(Pa(X,Y))=det(. ' )ziX-Y,

bl
}

>

r.<

1 X Y

bofes
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which is different from zero ezactly if span{X,Y} € G® (see (3)). This
means that our map ®, = ®; 5 in (5) is defined on all of G®, and it is clear
by (2) and (6) that its components are rational functions in the complex
variables (£, ¢, A) € G®, and thus that @, is a holomorphic map.

It remains to be shown that ®, is smmersive on G®. To establish this,
we have to explicitly calculate how @, looks in terms of (£, ¢, A):

(I)a(f, C, )\) = Qa(XaY) ’ (Pa(X’Y))—l

|

-1 1 XY XY
=|XY |- t. ,

since & = {1, 2}. Multiplying these matrices and substituting the expressions
for X and Y according to (2) and for X-Y asin (3), we obtain

®alé, €, N = (X - gy | ~iX - pipY)

1=+ pgr (1-0) —2 (1= &)+ g (1= )
| 20Ot a4 048 - g (14 E)
A+ e ¢ | ~EAL+ 5 ¢

We will now determine the partial derivatives of @, in terms of the complex
coordinates (£1,..., én-4, {1y.- -, CN—4, A). Note that since

C=8+...+&,, C=G+...+&,,

and (- =E—-Q)+...+ (Ev-a— (v-a)?,
we have that, forall 1 < j, k<N ~4,

08 _ge, 28 _ 0¢_,  0¢
TR TR TAL L AR
- ()2 - ¢)?

8(5 C) :2(6_7"'—(:;?)3 and M=—2(Ek—gk)-

ag; 0 Gk
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Also, it will be convenient to write

E—-¢):= ((5 - C)2)2 = ((51 =)+ (En-a CN—4)2)2 ,

and to denote the j** coordinate vector in C¥— by e; . Using these notations,
we obtain forall 1 < j, k< N —-4:

. =& i 6 —¢, 1-¢2 i(1-¢?)
g M| 6 & | T ow(eooe | 1A+ a3,
e; —iey 2¢ 2i¢
T=a ) =7 ”
ko 1 T €k — Gk o=
Aol R Yl AR
er  iey 2¢ 24
) =::'.3’k ’ ) =2 ”
and finally
1€ —i(1-¢% 1-¢ i1-¢7)
8%, 1| 1
5% — 5 | ((1+E) 1+¢ | — TNEOR i1+ -+
2¢ ~24¢ 2¢ 24
) =E ’ ) =Z

Now, if we can show that the (N — 2) X 2-matrices A; (1<j<N-4),
B, (1<k<N-4),E, and Z defined as above are linearly independent in

' Mat((N —2) x 2,C) whenever (£, ¢, A) is in G®, then the same has to
be true for the partial derivatives of ®,. For assume that we have complex
numbers a;, b; (1 <j< N ~4),and ¢ such that

N4, 50, 6<I>a) ca%
ox '

0=2, (“" ag, Y5

=1
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Replacing the partial derivatives of @, as above and ordering the résulting
terms, one¢ finds that

L some

0= EAGJA +E A€ - C)zB + 5+ (Iargesum)z

j=1
Since we assume that the A;, B;, =, and Z are linearly independent, we
have, in particular, that ' »

b;
T AP
Since we are in G®, where A (£ —¢)? (and thus A) is never zero, this means
that all the a;, b;, and ¢ must be zero, and thus that @, is indeed immersive
on all of GQ.

To show that the A;, B;, E, and Z are linearly independent, we
assume that there are complex numbers a;, b; (1< j< N —4),c¢,and d
such that

Aaj = =0 (1<j<N-4), and ¢c=0.

N—4
0= Z (Gj.Aj"i‘bij) + c= + az .
=1
Combining the e; and the b; to the vectors

=(ay,...,ay_,) and b:=(b,...,b,_,) €CY*,

and using the definitions of our matrices, we can rewrite the above equation
in terms of the entries of the matrices:

(1,1)-entry: 0= —a-£-b-C+c(1-)+d(1~¢H (a)
(1,2)-entry: 0=z'(a-gwb-g—c(l—52)+d(1~—cg)) (b)
(2,1)-entry: O=i(a-£+b-C+ec(l+E)+dA+¢))  (9)
(2,2)-entry:  O=a-£-b-(+c(l+&)—d(1+) (d)
rest of 1#* column: 0=a+b+2cf+2d¢ (e)
rest of 2" column: 0= i{~a+b-2cé+2d{) ()

Dividing (f) by i and adding it to () gives, after dividing by 2, b= -24d(,
whereas subtracting gives a = —2c&. Dividing (b) by 4, adding it to (a),
and using the formula for b we just obtained gives
0=-2(-2d¢)-(+2d-2d¢?* =2d+2d(®,
_ >
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whereas subtracting and using the formula for a results in
0=—-2(-2¢ct) - £+2¢c~2c = 2e42c€2.

Performing similar operations on (c) and (d) gives
0=2¢c—2cf and 0=2d—2d¢2,

and adding the corresponding equations for ¢ and d obviously givesec = d = 0.
Thus, we also have that @ = b = 0, which is what we set out to prove.
This finishes the proof of Lemma 3.1.

Before we proceed, a few more remarks about Weierstrass coordinate
systems ¢ as in Lemma 3.1 are in order. First, we have that ® is actually
holomorphic as a map from all of C*¥=7 into 2.

[ To see this, note that if (£, ¢, A) ¢ G@®, ie. according to (3) that
X-Y =0 (with X and Y as in (2)), then the first two components of Y as
in (2) are zero, ie. Y =(0,0,Y). But since the first two components of
Y are never zero mmulta,neously, we find that either

X; Y, 190 1 1
det =det| 2 —Yi=>01-+#£0,
e(X3 Ys) e(xl Yl) 5 1= (=)

or that

X; Y, 1
det =det| 2 =
) (X4 Y4) ’ (Xz Yz)

This means that in a neighborhood of any point in C?¥~7 — G®, we can
repeat the procedure on pages 28 and 29 with a = {1,3} or a = {1,4},
and we see that, again, we will obtain a map from this neighborhood to
Mat({(N - 2) x 2, C) all of whose component functions are rational, and
which, thus, is holomorphlc This makes ® holomorphic in this nelghbor-
hood. ]

On the other hand, we cannot assume ® to be immersive at points
that are not in G®.

[ To see this, note e.g. that whenever A = 0 and ( is fixed, any ¢
will give the same isotropic plane in I under ®. Thus, ® will not be locally
injective in any neighborhood of such a point, and thus cannot be immersive
there. ]

Y2=%(1+62)#0-

[ SR
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The next Pi‘oposition gives the promised local characterization of mini-
mal real Kdihler surfaces (so: of real dimension 4} in Euclidean spaces:

Proposition 3.2: Let f: M* — RY be a minimal isometric immersion
from a (real) 4~dimensional Kéhler manifold M into RN (where N > 5),
and let p € M be ony point in M. Further, let F: W — C¥ be a holo-
morphic representative of f, defined in a neighborhood W of p in M (see
page 5). Then we can find a neighborhood U of p in W, a complex chart
(u, v) of M defined on U, and holomorphic maps £, ( : U — CN=* and
A:U — C such that on all of U

ME-CP#0, (7)

and such that, up to isometry in RN, we have that on all of U

o= (1030, whore X A (5.,

v

F, = (-1,i,Y), where Y= p (52,88 ¢), ¢ ©)

In particular, we have that the complex Gauss map ¢ = im(F,) of f
(as defined on page 9) factors on U as

p=00(,(,A). (9)

Proof: Let {21, 23) be some complex chart of M, without loss of generality
defined on W. By Theorem 1.1, we know that ¢(g) is an isotropic complex
plane in CV for every ¢ € M. Let ® denote the Weierstrass coordinate
system for IY as in Lemma 3.1. If we have that o(p) ¢ ®(G®) for the
chosen point p, we can find an A € SO(N) such that A{p(p)) € &(G®),
since I} is homogeneous. Note that by Lemma 1.3, AoF is the holomorphic
representative of Ao f: M - RY | which is congruent to f in RY. Thus,
we can assume from now on that, without loss of generality, ¢(p) € ®(G®).
Now, the Gauss map ¢+ ¢(g) = span{F;, (g), Fi,{q)} is easily seen
to be a holomorphic map W — IY (compare the arguments on pages 28
and 29). Let V ¢ W be a simply connected neighborhood of p such that,
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forall g€V, ¢(q) € ®(GP). Then the map &' op: V — C*N-T g also
holomorphic; i.e. with respect to the given chart (z1, 23) restricted to V,
we have holomorphic functions £, ¢, and A as in Proposition 3.2 such that
(9) is true on all of V. Also, by the definition of G®, we know that (7) is
satisfied on all of V.

Let now X, Y, X and Y (instead of “Y™) be defined in terms of £, ¢,
and A as in (2); in particular, they are all bolomorphic on V. Since we thus
have

-X-V
iX-Y , (1
14

Pof,(,A)=span{X,Y} =span

b

P CIEN I

by (9) there must be holomorphic functions &, 3, 7y, 6 : V — C such that
Fy, =aX + 0Y a B
and det 0. 11
F, =X 4+ 48Y } (7 é # (11)
Using the integrability condition (F,, ), = (Fu )z in (11), we obtain

(F?1)22 = ( %_ﬁx'?)zz: i(%“}‘ﬁx'?)zg: (CYX'}';B?)zQ)
l
(F)a = (= 6X-¥)s, i(F+6X-V), (1 X +67)s,) .

Dividing the second components on each side by ¢ and then adding or sub-
tracting them from the first ones, respectively, gives

Gz = Y and (JB (X i}))zg = (J(X ?))31 .

Since we chose V' to be simply connected, the complex version of Poincaré’s
Lemma (see e.g. [W], page 49) tells us that we can find two holomorphic
functions u,v:V — C_ such that

du=oades+vdz and dv=(8(X -V))dzey+(6(X-V))dz.

This means, in particular, that

Qv _Ou
—831’7_87,2’

, and (5(}‘(-}“")=——a—1i

62:1

144




Thus, we obtain that

Su  Bu ‘ t
det | 92 92 | =det * . T =Xy det [ b £0,
(az1 .aa") (ﬂ(X'Y) S(X-Y) v 8
by (3), (7), and (11). This means that in some neighborhood U C V' of p
in M, the map (w, v) is a local biholomorphism from U onto an open set in
C2. Thus, {u, v) is a complex chart of M on U 2 p. Changing to these new

coordinates u and v, we find

du dv ' -
le—a—gi'Eu+—a~;;Fv—aFu+ﬁ(X'Y)Fv,
and | '
F, = a”F-}-av F,=~F,+8(X-Y)F,
0z d 2y

By (11), this means that if we express F, and (X- Y) F, on one hand, or X
and Y on the other hand, in components of the basis F,, and F, of mnF,,
then the corresponding components will be the same, namely the entries of
the inverse of the matrix in (11). Thus, we have that

F,=X and szﬁ?Y.
Together with (10), this means that we have proved (8), by setting

R N ¥ 2 -2 2 - -2 . 2
Y= 2 V= —yd (55,180, ¢) =u (52, 45, ()

where we used the éxpression for ¥ according to (2) (recall that we used “ym
here in place of “¥Y™ in (2)). This completes the proof of Proposition 3.2.

Remark: Note that in the (u, v)-coordinates, Proposition 3.2 gives
Flu,v)=(~v+C1,i(3+v+Co), Falu,v),..., Fwlu, v))

for some constants Cy and Cy. Thus, after a translation in the first two
coordinates, Proposition 3.2 essentially describes F' locally as the graph of a
map over the fixed “parameter plane”

span{%(l,z’,0,...,0)—!—’0(-—1,@,0,...,0)]u,vGC}CCN.
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The next step is to give a procedure for how one can utilize Proposition

3.2 to construct local examples of minimal real Kéhler suifaces. Since the
maps (3, 5, X) and (1, i,Y) asin (8) always span an isotropic plane in
C2, by Theorem 1.1 one only needs to find suitable holomorphic maps ¢, ¢,
and A as in (8) such that, in addition, it is guaranteed that (1, £, X) and
(~1,4,Y) form the “gradient” of a map F with respect to some complex
chart (u, v) . By the complex Poincaré Lemma, this is obviously equivalent

to requiring that, with respect to these coordinates, we have
Xo=Y,. (12)
Let us write this relation in terms of £, ¢, and . Since by (8)
X=A(S2, 8L, ) wd ¥ =u(5,i5E,Q),
the integrability condition (12} can be rewritten as

(A5, i)y, 08 = (52, i (EE)u, (10) -

By comparing components, we obtain

Ao = (A€ = pu— (P,
Ao+ A€y = pru+ (1¢)
and (A&)y = (uC)a-
By adding or subtracting the first two equations, respectively, we derive the

following 'three equations, which are equivalent to the integrability condi-
tions for F":

Ay = (1,
Ay =y, (13)
and (A&)y = (1)

Summing up the results we have obtained so far, we have the following

Proposition 3.3: Let f : M* — R¥N be a minimal isometric immersion
from a (real) 4—dimensional Kihler manifold M into RN (where N > 5),
Then every point in M has a neighborhood U with a complex chart (u, v)
defined on U such that the holomorphic representative of f on U is deter-
mined by (8), where the holomorphic maps X and Y satisfy X, = Y,,
or equivalently, where £, ¢, X, and i1 as defined in (8) satisfy (13).
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Conversely, if the holomorphic maps &,¢:U — CN™* and
A: U — C are defined on a simply connected open subset U of C?, and
if they satisfy (7) and (13) on all of U (with p. defined as in (8)), then
the C¥ ~valued 1-form

1 1
L -

W= % du+| & | dv
X Y

with X andY asin (8) isexact on U, and if F: U — C¥ s a holomor-
phic map such that dF = w, then f = V2 Re(F): M — R" is a mini-
mal isometric immersion from the Kahler manifold M == (U, f*<,>)
into RV .

We will call the triple of maps ((w,v), X,Y) that describes the local
representation of a minimal real Kéhler surface as given in this proposition
a Weierstrass representation of the complex surface.

In the next chapter, we will use this local characterization of minimal
real Kahler surfaces to give an explicit local construction method for such
manifolds in codimension 2, i.e. in RS. But before we conclude the present
chapter, let us first give two lemmata that work in all codimensions. The first
one asserts that the “scaling function” X in the Weierstrass representation
is actually uniquely determined, up to a constant multiple, by the maps £
and ¢. The second lemma shows that one can switch the roles played by
the maps X and Y in 3.3 (at least up to a factor 2) by reparametrizing and
reflecting the minimal real Kéhler surface at a hyperplane.

Lemma 3.4: Let£,(:U—=C"and A : U — C be holomorphic maps,
defined on some simply connected open set U c C?; write the complez
coordinates in C? as (u, v). Assume that, on oll of U, A({~ )2 +#£0,
and thus that the holomorphic function

2

N7 LT

AE—¢)

is well defined on all of U. Furthermore, assume that these maps satisfy
the following partial differential equations:
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('\ £)v = (ﬂ' C)u ) (13.&) .
Ay = fy (13.b) e -
| and (A€, = (1¢%)u - (13.c) i
Then we have that, on all of U (which is simply connected !), '
2
1 = —_ (-}
d(log A) E=0) (€—¢)-d¢

(= ‘z;;l(si —GP jZ:;(‘ff -6)ds;).

Proof: Expanding (13.a) and using (13.b) gives _ '

)\vg'{_A‘gu“_“#ug‘i_#Cu:AvC'i"#Cu:

which is equivalent to |

A~ =pu— A& -

Taking the symmetric inner product of the last equation with (£ + () and il
(€ — (), respectively, gives :

M@= =pl Gutpl-G—A&— A& (14)

and

ME-CP=pE—C G-AE-() & (15)
Expanding (13.c) and using (13.b) gives

M+ A26-6) =0+ u(2¢-G), b

which is equivalent to ' i

M(E =) =280 G-20E 6

Subtracting the last equétion from (14) and reordering terms results in l

pE=0 - G=-2¢-¢-&- (16)
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And using this last equation in (15) and dividing by (€ - ¢)? {which is never
0 by hypothesis) gives
2
Ay =~ (€= () - £y - 17
(5_02(‘5 )¢ (17)

Now, by defintion of g, we have that Ay (€ —¢)? = 2, 5o that differentiating
this equation with respect to u results in

0=Dup (€= +AmlE~ P +22u(E- Q) -G

Utilizing (13.b) again to replace 1, by A, using formula (17) for A,, and
replacing p (£~ ()¢ by the right-hand side of (16), the last equation gives
us that '

0= s =0 25 (€06 (=042 0k G062 ¥ (601,

As one sees, the second and fourth term on the right hand side cancel each
other, so that after reorganizing and dividing by (€ — ¢)2 (which by hy-
pothesis is never zero) we obtain

: 2
)\u——"m(ﬁ"@'fw

Since A is never zero and U simply connected, we have that

Au ' A
(log A}y = 3 and (logA), = 3o

which together with (17) and the above equation for ), proves Lemma 3.4.

Lemma 3.5: Let f: M*— RN be a minimal real Kéhler tmmersion,
and let ((u,v), X,Y) be a Weierstrass represeniation of f that is
defined on some open subset U of M. Furthermore, let A : RN — RN
aenote the reflection at the hyperplane given by all but the first coordinate
in RY; i.e. the matriz of A is

~1
1
€ O(N).
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Let f be the to f congruent isometric immersion f := Ao f: M -+ RV,
Then the functions @ := 2v and ¥ := $u form a complex coordinate
system on U (as an open submanifold of M), and the Weierstrass re-
presentation of f with respect to the chart (i, ¥) on U is given by the
mops B :

' X=%Y and Y =2X;

i.e., j{ and Y can be written in terms of suitably chosen holomorphic
maps &, C: U - CN™* and X\: U — C as in (8).

This is the precise sense in which we may “switch X and Y in the Weierstrass
representation of a minimal real Kéhler surface”, if we wish.

Proof: Let F be the holomorphic representative of f on U that is giveh
by ((u,v),X,Y). Then by Lemma 1.3, F := Ao F is the holomorphic

representative of f on U. Furthermore, we have by (8) that

1
E ~ aF ou OF Ov OF 1
i | =Fi=dog=A(G 50t 55 a0) "2 P
X g o7

1 1 L 2

= - ) = r
2 2
1 Y 5Y

Comparing components, we see that we have

Z=1y. (18)
2
Similarly, we obtain that
-1 -1
i =F~1ﬁ=A0"%§=2AOFu= i )
Y 2X

and thus _
V=2X. (19)
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It remains to show that we can indeed express X and ¥ in terms of €, ¢, and
A as in (8) to establish that they do represent the Weierstrass representation
of F in the complex chart (%, ©}. To this end, set

-~ 7 1
=C, (=¢, and A==~ ——— |
£i=¢, {=¢ 2 =0
With these definitions, we obtain
12 1=¢
1 ke b e 1 v
M =g i =gV =X
3 ¢
where we used (18) in the last step. Next, according to Proposition 3.2, we
have to set
. 2
AE-0?7
which by definition of £, ¢, and X leads to
. 2 ()?
R =
Using this last equation and (19), we obtain, in a similar fashion as above,
that )
1-¢ 1-&
7. 2 _
Bl |=2a 88 [ =2x=7.
¢ £

This finishes the proof of Lemma 3.5.
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4 Minimal real Kihler surfaces in RS

Tn this chapter, we will use the Weicrstrass representation for minimal
real Kahler surfaces that we described in the last chapter to give a classifica-
tion and a local construction method in the special case of codimension 2, i.e.
when the ambient Euclidean space is R5. The classification will consist of
two non—trivial cases, which will be distinguished by the rank of the second
osculating bundle F" of the holomorphic representative F of the minimal
real Kahler surface. Here,

aF O F

Fﬂ' P il
span { 0 2§ ’ az_,' 6‘zk

1£j,k52}

for any complex chart (z, z2) on M. Note that F” is independent of the
choice of the complex chart. In fact, since ' basically consists of vectors that
define the complex Gauss map of f and its “first derivatives, it is also inde-
pendent of the choice of F', and thus an invariant for our minimal real Kéhler
jmmersion f. In terms of a Weierstrass representation ((w,v), X,Y) of f
(compare page 37 and Proposition 3.2), we obtain

1 -1 0 0 0\ [0
F" = span S, 6 (. 0] 0 =101, 0 ,
X Y Xy Xy Y. Y,

and by Laplace’s determinant criterion, it is clear that we have
rank F" = 2 + dim span{X, , X, = Yu, Yo} . (1)

Since F and thus X and Y are holomorphic (and M without loss of generality
connected), this rank is, therefore, constant on M, perhaps except for some
isolated points. For this reason, it makes sense to talk about “the rank” of
the second osculating bundle of F.

The case rank F” = 2 is trivial, since this means that M is simply
a (piece of a) 4-plane in RS. We will see soon that we must always have
rank F” < 4, and that the “generic case” is rank F” = 4, since all these
minimal real Kahler surfaces in R® will (locally) emerge from the same con-
struction method. The only remaining case, rank F" = 3, will lead to three
classes of minimal real Kéhler surfaces, one of which are the ones generated
by isotropic cylinders (as in Example 1.6) with one fixed isotropic direction
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X1, and another class being all the immersions f : M — RS that are holo-
morphic with respect to some complex structure on R®. Note that since
the maximal dimension of an isotropic subspace of C® is 3, the criterion
mentioned on page 12 (by [R-T]) implies that the second osculating bundle
of such an holomorphic map must necessarily have rank < 3. Thus, our
“generic case” will always lead to non—holomorphic maps.

To establish that the case rank F” = 4 is indeed “generic”, we need
the following proposition, which explores the case that the integrability con-
dition X, =Y, is trivially satisﬁed in detail.

Proposition 4.1: Let f: M* — RS be a minimal real Kéhler surface,
and let ((u,v), X,Y) be a Weierstrass representation of f that is
defined on some open subset U of M (compare page 37 and Proposition
3.2). Furthermore, assume that

Xe=Yy=0.

Then, f is holomorphic with respect to some complez structure on RS, or
f is generated by an isotropic cylinder (see Example 1.6). In the latter
case, we have more ezactly that for each point p in U, we can find a
neighborhood V of p in U, a coordinate system (z1, w) on V, a fived
non-zero isotropic vector X, in C%, and a holomorphic map 2 = Z(w)
with values in a complementary subspace to X in the isotropic orthogonal
complement of Xy, such that we have on all of V that

flz1, w) =2 Re(21 X; + /Z(w) d'w) + by

for some fized vector by € RS,

Proof: If X = (Xi,..., Xy—3), then we have by Proposition 3.2 that
A=X1—iX, and £ = ;(Xs,..., Xn—2). Therefore, our hypothesis
implies

Av=0 and & =0;
i.e. A and £ are functions “in u alone”. Similarly, we find that p and ¢ are
functions “in v alone”; i.e.

=0 and ( =0.
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SO: we have ((‘5 - Oz)u = 2 (6 - C) ) gur and thus ((E - C)z)w = —2 fu : Cv .
Using that we always have p= *TEEHC? , we see that

-2

L) =266,

(Au)w fué
and noting that A, =0 and g, =0, we find

B@ e e

Here, we have to distinguish two cases: either we have that A or 4 is constant,
and thus that &, - ({, =0; or we have that A, #0, u, #0,and & ( #0
almost everywhere (except perhaps at some isolated points).

Case 1: X or p is constant, and &, - {, = 0. We will show that in this case,
f is generated by an isotropic cylinder.

First, we will prove that it suffices to show that either X or Y is
constant, which by our hypothesis X, = Y, = 0 is equivalent to showing
that X, = 0 or Y, = 0. For assume e.g. that X is constant. Then, by
0 =X, = (Fu)y = (Fo)u = Yu, Y is a function “in v alone”. And by
integrating, we obtain that '

Flu,v) =uX+Y(w)+Cy

for some map Y = Y(v) and a constant vector Cop € CP. But then
F, =4, and hence

%(x-?):_x-m,:&-m:o.

This means that X-Y is constant, which implies that X - (¥ ~ Y (v)) =0,
if we fix vp for some point pg € U such that v(py) = vp. Since we can write

Flu,v)=uX+ (Y () — ¥ () + (¥ (vo) + Co) ,

we can thus assume, without loss of generality, that Y and Cj are chosen in

a way such that .
X:Y=0 onalofU.

"This means that Y is always in the “isotropic orthogonal complement” of
X in CS%, which is 5—dimensional (since “-” is non—degenerate). Denote this
complement by x4+ (compare page 14).
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Now, XL1° obviously always contains X. Thus, by choosing an com-
plementary subspace W to X in X+° , we can write

Y(v) = n(v) X + Z(v) ,

where 7(v) is a holomorphic function and Z(v) a holomorphic map with
values in the fized subspace W. This means that F can be written as

Flu, v) = {u+9(v)) X+ Z(v) + Cy .

Changing coordinates to z; := u+ n{v) and w := v, writing Z := ?.% Z
(which obviously takes values only in W), and adjusting the domain V of
this new complex chart for M, if necessary, obviously gives us the desired
form of f as in Example 1.6.

To establish our claim for Case 1, it remains to be shown that we
indeed have that X, = 0 or ¥, = 0. By our case assurmnption, we know
that either A or u is constant, and by Lemma 3.5 we can, without loss of
generality, assume that 4 is constant. By our hypothesis X, = Y, = 0, we
obviously have that

do=0, & =0, and {, =0. | (3)

Since p is defined by p = “(E‘—CV’ the first of these equations implies that
we also have 5 o)

e e @

If we write £ = (£, 52) and ¢ = ({1, ¢3), our case assumption furthermore
gives that

0=&u-Go=(&)u{C)o + (&)u(C)o -

Now assume that {(3), # 0. Then, we can rewrite the last equation

(C1)
(fo)u = — (G (€1)u -

But (3) means in particular that £ is a function “in u alone”, whereas (isa
function “in v alone”. Thus, the last equation implies that %%f must be a
constant C € C. It then follows that

(62)11 = C(&l)u and (Cl)'u == (4-2)1; )




46

which implies that there are two more constants A, B € C such that
bo=Ct+A and G=-CG+B.

Using these equations, we can calculate that

- =E-GP+E-0P=EG+00- B4+ (Coa+A—-G)?

= @+ C?E+B2+206L—-2B&-2BCG
+CUEH A2+ B +2AC06H 2086 —-2A¢

= (1+C?) (2 +(2)+2(AC — B) & — 2(BC + A) 2 + (A* + BY).
Inserting this expression into (4) gives (since & = 0, by (3))
0=20+0C)& () +0—2(BC+ A G)+0
= 2(C)o (1 +C? G — (BC + 4)) .

But since we assumed that ({)» # 0, and thus not constant, this implies
that the term in parenthesis must be zero. This, in turn, would mean that
(2 is constant, unless ‘

1+C?*=0 and BC+A=0.

So, we obtain that (C =i and A= ~iB) or (C=—i and A=iB). In
either case, we have that

A2+ B2=0 and AC—B=0.

But this would mean that (£ —¢)? = 0, which is impossible for a Weierstrass
representation.

Thus, we must have that ({2}, = 0, and since ¢ is a function “in v
alone”, this means that  is constant. Using this in (4), we obtain

0= g’—v(ﬁ - ==2(& - &) (G)w

So, either ((1)e =0 or & = (i, which after differentiating with respect to
v, and by (3), also gives ((1)y = 0. In any case, (; is also constant, which
makes ( constant. Since we assumed that u is constant, this means that ¥
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and thus also Y in the Weierstrass representation of f is constant, which is
what we claimed in Case 1.

Case 2: A, #0, p, #£0, and £u- G # 0 almost everywhere. We will show
that in this case, f is generated by an isotropic graph (see Example 1.4},
and is thus, by Proposition 1.5, holomorphic with respect to some complex
structure on R,

To simpify notation, write the components of £ and ¢ as ¢ = (s, %)
and { = (p, g). Also, write

1 1
/™. 4 o=

so that, after multiplying by @ and b (which by case assumption are almost
never zero), equation (2) now reads

l=ab (E'u - Cu) = ab(supv + ¢, Qv) = (a'su)(bpv) + (atu)(bQU) . (5)

Q=

Note that in the last term, all the factors in parenthesis are either functions
in u alone or functions in v alone, respectively. Taking the partial derivative
with respect to u gives, after dividing by b, '

0= (a su)upu + (a tu)u Qv .

Now assume that we have (@tu)u # 0 almost everywhere. Then the

last equation gives that

_ (asu)y
QU (a tu)u pu .

But since g, and p, are functions in v alone, 1(2%:)%‘ must be constant. So
there is & C € C such that :
% =Cp,.

Taking the derivative with respect to v in (5) gives, after dividing by a,
0=s, (bpv)v + 1, (b Qv)v = 8y (bpu)u + £, (b Cp-u)v = (Su + Ctu) (bpv)v .
Again assuming that almost everywhere (bp,), # 0, we obtain

sy = -Ct, .




But this would result in

U o

o G = (iu) . (gv) msup'a}'l'tuqy:“Otupv+ctupv50;

in contradiction to our case assumption.

Thus, we must have that (af,), =0 or that (bp,), = 0. By (5), this
implies in the first case that we also have that (as,), =0 or that p, =0,
and in the second case that we also have that (bg,), = 0 or that t, = 0.
But if e.g. p, = 0, then (5) gives 1 = (at,)(bgy), 50 that (bgy), = 0 and,
of course, (bp,)y =0. In any case, we find that

Sy 1 . Dy 1 :
= hat b -
a ( £ ) am. & I8 cor.zsta.nt, or that ( ) ) . (v is constant,
and by Lemma 3.5 we may, without loss of generality, assume that the
former is the case. Thus, there is a constant vector & € C2? such that
u = (1/A)u &1, which implies that there is another constant vector & € C2
such that

E=tw) =T+, |
With this form of £, (2) gives (1/A)y (1/1)e = (1/A)y &1+ ¢y, and since

Au 7 0, this means
&1 G = ("i")v .

Furthermore, substituting the form of ¢ as above into (£ —¢)? = -:%, we
obtain ‘

Z=(a+6-0) ' =5Hg+26-G-0+&—-0*. (6

Taking the partial derivative with respect to v and then substituting the
expression we found for & - ¢, results in

2 (1 2
D) (E)ﬁ‘: 626~ G,

=(1/p)v '

or, after simplifying,

0=2(t0~¢) o= o (60— P
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But this means that (& — ¢)* is constant.
Now, taking the partial derivative with respect to « in (6) leads to

2 Au 2)\1,; 2’\11.
E'Xg=-—x"3"'€:f——)\‘2—§1'(§o—0-

Since A, # 0 almost everywhere, this can be simplified to
1 1,
” +& - (Go—¢)= Y &1 - (7)

Taking the derivative with respect to u again gives 0 = %% £2 ., and since
Ay # 0, we must have that £ = 0, and thus that & is isotropic in C?. But
the only isotropic vectors in C? are of the form (1,4t for some & € C.
Thus, we have found that ¢ must have the form '

) = 57 (ii)+£o,

where k € C and & € C? are constant.

For (7), this means & - (§ — () = —-‘1;, and using all these relations

in {6) gives
Z=26G-O+E-P=2+&-(?.

Thus, (& —¢)? = 0; i.e. & — ¢ is also isotropic in C?, and we can find &
holomorphic function 7 = n{v) such that

' 1
((v) = n(v) (f;,) +&p -
On the other hand, we need

——3=£1-(£o——0=£1- (—n(‘v) (L)) = —rn(v) (:l:lz) ' (ilz) '

Since this expression can never be zero, k cannot be zero, and we always
must have the opposite signs in £; and (, so that we find, without loss of
generality, that

me(2) om0 (1) 6




This means that

1 1 1 2y | )
;=fsn(v)(ﬂ)-(n)=ﬁn(1—2)~2ﬁn,

ie. n(v) = 5—;;—(—5 , and we have found that

with the same & # 0 and & as above for €.
Let us now insert these expressions for £ and ¢ into X and Y.

& = (e, ), then we have
£2=?A—”(a:tw)+£3 and ¢* = —i—(wima&.

Inserting this into X and Y gives, after some reordering,

1-¢2 —k{a+if)
X =) zﬁiﬁ ik{a=+if)
2 K
% ik
and
1-82. —5= (@Fif)
2 i -
Y=p |t || 2:@Fi0)
: 3k
£o T
Finally, for F,, and F, this means
oy [ &)
0 3
Fo=w | 5 |4 | ~r@*i0)
1he ik{axif)
i K ,
RSV G

(. s

=:X3 T

If
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Note that X;, X, and X3 are constont in C% and a straightforward calcu-
lation shows that they indeed span an isotropic subspace of C®. Integrating,
we thus obtain

Flu, v) = uXs +0X + ([ Mu)du + f@(v)dv) Xs+Co

for sorme constant vector Cp € C, and thus by Example 1.4 that f is gen-
erated by an isotropic graph, which is what we had to show in Case 2. This
finally finishes the proof of Proposition 4.1.

Note that if X = F, or Y = F, is constant, we immediately have
that rank F” < 3. The same is trivially true when f is holomorphic (see
Remarks on page 43). Thus, the last proposition and Lemma 3.5 give us the
following corollary, which we will need to establish our main result about the
“generic case”:

Corollary 4.2: Let F:V — C% be a (local) holomorphic represen-
tative of a minimal real Kihler surface f:M*— R® . If the second
osculating space F" of F has rank at least 4 at a point p € V', then there
is o Weierstrass representation ((u,v), X,Y) on some neighborhood
U of p in V such that the map X : V — C* has rank 2; i.e. X, ond
X, are linearly independent everywhere on V.

We will now start to describe the generic case, i.e. that rank 7" > 4.
Working in a given Weierstrass representation ({u, v), X, Y) of F, we first
obtain that, since X and Y are isotropic maps (i.e. X? = Y? = 0),

X X=X X,=Y . Y,=Y .Y,=0.
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But we have that X - Y = 1, and so, since X, = Y,,, the above equations
imply

X Y=-XYy=-X -X,=0 and X Y,=-X, - Y=-Y,-Y=0.
Therefore, all these equations together mean that
span{X,, Xy =Y,, Yo} L*span{X, Y}, (8)

where AL*B for A, B € C" means by definition that A - B = (0 with re-
spect to the standard symmetric inner product in C*. But since X and Y are
isotropic and X Y =1, X and Y must be everywhere linearly independent,
and thus span{X, Y} always a non-degenerate 2-dimensional subspace of
C*. Since the standard symmetric inner product in C* is non-degenerate,
this means that its orthogonal complement in C*, {X, Y}-", must also be
2-dimensional and non-degenerate. Since (8) says exactly that

Spa'n{Xu: Xy =Yy, Y;:} C {Xa Y}J_. )

* we have shown by (1) that for the holomorphic representative F of a minimal

real Kéhler submanifold in RS, we must indeed have that
rank F” < 4.

Having established that the “generic case” is rank F” = 4, the last
corollary tells us that we may assume that we have a Weierstrass represen-
tation of ' on an open set U ¢ A such that

X, snd X, € C* are linearly independent on all of U .
By (8), this means exactly that
span{ X, , Xy} = épan{Xu, Xo=Y,, Y,}={X, Y} . (9)

As we will show presently, this proves to be equivalent to saying that X, X, ,
and X, are linearly independent of all of UU. This, in turn, is equivalent to
saying that

£, and &, € C? are linearly independent onallof U. (10)




The reason for this is the following., Write, as in Proposition 3.2,

1-¢2 _1_1_'52 )

2 2

X=X (—-~——, ?
where £ is a map from U into C2 Differentiation with respect to % and v

gives )
Xu=FX+A(~ it 6),

and, likewise,
' Ay .
Xo=TXHA~E-6,i66,8).
Now, it is clear that X, and Xy are linearly independent if X s Xu, and
X, are. Next, assume that X, and X, are linearly independent, and that
Béu +v& = 0 for some complex numbers 3 and . Then, by the above
formulas for X, and X,, we have ‘

DY A _5'(/8§u+'}’£v)
ﬁXu'f")’X 2(167?""}’_/\2)){"'")‘ i&-'(ﬁgu'f'"}'gv) B
B+

and the last term vanishes by our hypothesis. Taking the symmetric product
of the resulting equation with X, and X, respectively, we obtain by (9) that

BX2+vX,-X,=0 and BXi-Xy+vX2=0,

XE, Xu'Xu :6 =
X X, X2 vl

But the matrix in this equation is the Gram matrix of the vectors X, and
X, with respect to the symmetric inner product “.”, and it is well~known
that the determinant of such a matrix is zero evactly if span{X,, X,} is not
2~dimensional or is degenerate, neither of which we know to be the case here.
Thus, we must have g = Y =20, and so &, and £, are linearly independent.

Finally, assume that £, and & are linearly independent, and that for
some o, 3, v € C,

or equivalently

0=aX+ﬁXu+fyX,,.
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Using the forms of X, X, , and X, as above, this means that

e —£- & —£- &,
0—(aA+ﬁA Fah) LR T4 BA | igg, | +ya | i
—-o:" 6 &u Ev

But dividing the second components by i and adding the resulting equation
to the one given by the first components of these vectors immediately gives
« =0, so that we necessarily must have that 8&, +v¢&, = 0, and thus that
B = v = 0. This, in turn, implies that o must also be zero, and we have
proven the clalmed equivalences.

Now, £ is a holomorphic map from the complex 2-dimensional man-
ifold U C M into C?, which implies that our assumption (10) means that
¢ is & local biholomorphism on U. If we thus make U slightly smaller, if
necessary, we may assume that £ : U — C? is a biholomorphism on all of
U, and hence a complex chart of M on U. For convenience, we will write the
component functions of this chart £ as

s:=§& and t:=§&,

and will now write X and ¥ “in the new coordinates (s, t)”; ic. we are
looking at the maps X o£~! and Y o£~1, for which we will use the “classical”
notation

X(s,t)=)\(s,'t)(1_322"t2,z‘1+322+t2,3 t) \
and | ¢ (11)

— 2 2 .
(o, )= o, 1) G el 66y, ae.n).

Remark: This change of coordinates essentially amounts to the following.
Our assumption (9) means that the map X : /' — C* is an immersion
whose “Gauss map” span{X,, X,} is basically identical to the complex
Gauss map of f on U. Since X is also isotropic, we have the following




commutative diagram:

X

U — C'—{0}
x|l . L
Qs — CP3

where Q2 = {n(Z)|Z* = 0} is the complex quadric in complex projective
3-space CP3, and m : (C*—{0}) — CP? the canonical projection. Since our
assumption that X, and X, are linearly independent is equivalent to X s X,
and X, being linearly independent, we have that X is also an immersion,
and since the (complex) dimension of Qs is 2 (thus the index), this implies
that X is a local biholomorphism. It is well-known that our £ is nothing
but a parametrization for Q; (see e.g. [H-O]), so that X corresponds exactly
to our coordinate system £ = (s, t). Thus, X(s, t) and Y (s, t) “represent -
our mininal real Kihler submanifold in (complez) Gauss map coordinates”.
This corresponds to the classical case where one takes the Gauss map of a
minimal surface in 3-space to find isothermal coordinates for the minimal
surface (see e.g. [S], page 385 and 386).

We see in formula (11) that changing to the new coordinates (s, t)
determines X up to the scaling factor A(s, £). We will find that YV is also
completely determined by A(s, t) alone! Observe that by (11), X, and X;
simply have the form '

X,:%X-{-_a\(—s,is,l,O) and Xt=-,}\£X+)\(——t,it,0,1). (12)
But by (9), we still have
_ ou v
X, Y =X, Y+ 2 X, Y=0,
3SX +63X'" Y=0

and likewise X;-Y = 0. Replacing the expressions for X, and X, as above,
and the expression for Y in (11) gives (remembering that X -¥ = 1)

— 2 2 .
0:Xs'YZ}fX°Y+AI“’(-SjiS;1aO)‘(1 2C ’Zl-;C :41,42)

As —s+ 8¢t —s5—5¢? As

it

A+Aﬂ( 5 +<1)=-A-+Au(<1—s),
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and in a completely analogous fashion we find that

As

)\ + A ((:2 - t) =
Using that
-2 -2

Rl vy Rl Per oy EN A

we obtain .
(5= 25 (G4 @t s Gt = 2 (G ot (G b))

Multiplying the first equation by ), the second by A, , and then subtracting
these equations from each other results in

M=)~ A (2—1t)=0. (13)

Now, note that A cannot be constant, since otherwise A\, = A\; = 0, and in
this case the above equations give that { = (s, ) = £, which cannot happen,
since for a Weierstrass representation we have that (¢ —¢)? # 0. Therefore,
we may assume, without Joss of generality, that A, is not identically equal to
zero, and thus, as a holomorphic function, only zero at some isolated points
" in U. By (13), we then have at all places where A, # 0 that

G—t=— (Cl 8}
and inserting this expression into the one for ¢; — s gives
A 9 Y, X+
G 3_2,\((1—5) (14-7\? = (G —9)?.

But if {; —s =0 at some point where A, # 0, then by (13) we also would
have that (» — ¢ = 0, which again would lead to (£ — ¢)* =0, and is thus
impossible. Consequently, we can divide by (; — s (almost everywhere),
which leads to the following result:

A has no singularities in U, and we have

2 A, PV (14)
C1~8+A§+At2 and Cg—t-l-m.

e

= T farm nara i S
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Note that these formulas are still true at the isolated points ¢ € U
where Aq{g) = 0; by what we showed above, we must then necessarily have
that Au(g) # 0. These are the promised formulas that give ¢ in terms of A
alone. Now we can also calculate u in terms of A alone:

~ -9 _ -2 ()\3 + )\?)2
FTXG-ar+E=am T X @ T AN

which gives

A2+ A2

——SyE : (15)

For later reference, we also need to calculate Y, and ¥; in terms of

A alone. This can be done directly by using the formulas above, but the

following approach is much shorter. By our assumption (9), we know that Y

and Y; are always in the span of X, and X,, so that we can find holomorphic
functions a, b, ¢, and d such that

Y;=aX,+b0X; and Y, =dX,+cX,.

Taking the symmetric inner product of either equation with X, and X, and
recalling that ¥ . X, =0 and Y - X; = 0, we obtain the equations

Yoo Xy = ~Y Xy = aX2+b X, X; ,
YorXe = ~Y Xy = a X, - X;+bX2,
~Y Xy =dX24c X, X,
' Xe = ~Y Xy = d X, - X;+c X2 .

(16)

=
s
I

Let us calculate the expressions for X2, X2, and X, - X;. By (12), and since
X+ X, =0, we have

X2 = (%X +X\(~s,is, 1,0))-X,

8

= A(=s,15,1,0)- [, (g2 jlles o t)+A(—s,is,1,0)]

= A, (-—a+sa+st22—s-33—st2 +3) + )2 (32 -2 1)
=2,
and in the same way we find

X2 =)2,




Further,

Xo-Xe = (3 X+ M—s, is, 1,0))-X,

= A(—s,4s,1, 0)- [,\t (ln_g?_tz ; L2

2 ) 2

— AAt (-—8+83+st22—-s—s3—st2 +3)'+ )2 (St _ St)

=0,

By (16), these equations immediately give that

, Y'Xss 'Y'-Xat
a —-T » bzd:_T s

Furthermore, we have that

A

and ¢= —

, 8, 1)+ A(~t,it, 0, 1)]

V. Xy
L

',\s A
Koo = (—_) X+sz+/\a("'3:i3: 1, O)+)‘(—'l’ i,0,0)-

Taking the symmetric inner product of X, with Y, and remembering that

X-Y=1and X,-Y =0, results in

Xes Y = (%\«)sx-y+§=xs-y

+A8-("5:i3:110)'” (l:zﬁ,il_‘gg, C17C2)

+A(=1,4,0,0) p (52,

zl_-%d: Cls C2)

= (-)_)‘\a.)s +#As (*S+S§22—\s——sg2 o+ CI) + )\u -—1+£22—1-_g2

f

(af)s + 1 (A (G —5) - ) .

But by (14) and (15), ¢; — s and #¢ in the second term can be replaced, to

give
X ¥ = (%), - 550 (220 -2) =

_ 22 A =322 4 02
- 272 '

2hgs A=2)2

222 (A2+22)

(17)

252

252
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Completely analogously, one will find that
2X A+ A2 — 3 )2

. Y f—
-Xtt 2A2
Finally, since
)\3 As "-
X3t= - X"i‘-——Xt—l-)\t("—S,@S,l,U),
X, T

we find that
Xa'Y = (3) X-Yi2x,v

T A(s,ds, 1,0) 4 (55,088 ¢, )

Mt A=A h A2+ 22
o __ Ast 5 A t Ay 5
= (%) rna-9= X T T aw A2+ N7

_ 22ag A —4x )

- 222 4
Using these expressions in (17) gives us a, b, and c, and hence Y, and Y;, in
terms of A alone, namely:

We have Y, =a X, +bX, and Yi=bX,+cX,, where )
g 2R A+3N A po 22 A+AA N
- 2 M4 S 224 ’ v (18)
_ )2 2
and e 2,\t¢)\2)\i\s+3/\t . J

Note that we have just shown that i “(s, t)-coordinates”, X and Y
are essentially determined by A alone. The question remains whether every
function A is possible. We will see shortly that this is basically the case, the
only essential restriction being that A has no singularities (cf. (14)).

To this end, note that our integrability condition X, = Y, in (u, v)-
coordinates looks as follows in (s, t)-coordinates, if we use (18) (and write

Sy = gﬁl, ete.):

Os ot Os ot
Xy = EEX3+E;Xt=Yu=5£}G+5&K

= (a 8y +bty) X, + (bsy + ctu) X, .




60

Since in our generic case X, and X, must be everywhere linearly independent,
this leads to the following condition, which is equivalent to the integrability
condition X, =Y, :

Sy =as,+bt, and ¢t,=bs,+ct,. (19)

But recall that we have (in “classical notation”) (s, t) = &(u, v), and thus
{u, v) =& Ys, t)}. By virtue of the Inverse Mapping Theorem, this gives

-1
(_“*’ “‘) =d(£‘1)=(d£)*1°£"‘=(:“ t) 0g

Vg U
- 1 t, —S, o ‘f"l
det(d£) \ ~t, s, ’

and comparing the entries of these matrices gives
sy = det(d€) (wof) , s, = ~det{(d) (uz 0 &)
te = —dot(d€) (v, 08) , #, = det(de) (uy of) |
Replacing these expressions in (19) leads to
~(det(d€) 0 £ ur = (det(d€) o £1) (ay — buy)
and

(det{d€) o £V, = (det(d&) o £71) (b, — cs)

so that canceling the common (non-zero) factor results in the following inte-
grability condition in terms of (s, t)-coordinates :

Us = —Cvy + by
Xy =Y, <<= and (20)
' U = by, — av.

Note that the coefficients a, b, and ¢ are determined by A(s, t) alone as in
(18), and that the equations in (20) determine (as a function in (s, t)-
coordinates) in terms of v alone, up to a constant. But for the equations in
(20) to be (locally) integrable, they in turn need to satisfy the integrability
condition (u,); = (w),; i.e. by (20):

(Us)t = —C Vs — CVst + by v Fhuy = (ur)s = by vy + bug — a,v; — a Vgt




or equivalently:

bugs + (¢~ @) Vst — bvg + (b + ) vs — (B + as) v = 0. (21)

This is a second order linear homogeneous partial differential equation in v (as
a function in (s, £)-coordinates} whose coeflicients are holomorphic in (s, t)
and completely determined by A as in (18). By the Cauchy-Kowalewski
Theorem (see [HG|, pages 348 to 350), such a partial differential equation
always has (local) solutions, where we even have the freedom to choose func-
tions in one complex variable along certain complex curves, the so—called
“characteristics” of the equation (see our Example 4.4 below).

Since all the necessary conditions for the integrability of the functions
involved are locally sufficient, we have, therefore, proven the following

Theorem 4.3: Let A : V — C be any nowhere zero holomorphic func-
tion in the two complex variables (s, t) on an open subset V of CZ,
and assume that A has no singularities on V. Define the holomorphic
functions a,b,c: V — C by

- —2Xs A+ 322 — X2 b “2Aa A4,
o 2 )4 T 2 M ’
Y. Y _ 132 32
ind o T2owA=X 3N
2 X4

Nezt, sobve the secorid order linear homogeneous partial differential equa-
tion

bUsy + (c— @) vg — b + (b + &) vs — (b + @) v =0
on some simply connecled open subset V of V. Then there is a function
u:V — C such that

U =—CUs+bvy and wy=bv,—av.

At some fived point in V where the map (u,v) : V — C? has

_ (complex) rank 2, calculate the inverse map & = £(u, v) of the map
(u, v) = (u(s, t), v(s, t)) , which is defined on some open, simply con-
nected subset U of C?, and view & = (&, &) as ¢ map in the two
complex variables (u, v) €U C C2. Define A:=Ao€, and view ) as o
function in the two complex variables (u,v) € U ¢ C~
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Now, define the following maps: ¢ := ({1, () : U — C2 ; where

G =6+ (?“’ )og and =+ (i\_"t_g) o,
) t

N+ X X2+
—2 5\2+I\§)
B V7Y Rl R+ U - C,
PEXE- o ( 3 A
and further
X = (%$%1X), where X = )\(l:zi?_??:l-;@,é_)’
and

Y = (-1,71,Y), where Y := p,(l—‘iﬁ, z'l—';ﬁ, ).
Then the C8~valued 1-form .
w:=Xdu+Ydv

is exact on U, and if F:U —C® is a holomorphic map such that
dF =w , then f:=+v2Re(F): M — RS is a minimal isometric im-
mersion of the Kahler manifold M = (U, f*<,>) into RS.

Conversely, if F : W — C® is g holotnorphic representative of
a minimal isometric immersion f : M* — R® from a 4-dimensional
Kahler manifold M into R, and if p.is a point in M where rank F" = 4,
then we can find o complex coordinate system (w,v) such that in a
neighborhood U of pin M, X = F, and Y = F, are given, up to
wsometry, in terms of a function )\ : U — C without singularities as
described above. '

Example 4.4: Let 3
‘ Als, t):=1t.

Then, we have A, =0 and }, = 1, and all second partial derivatives of X
vanish. By (18), we obtain :

0+3-0-12 1 0+4-0-1
a(s, t) = 2 44 :"2?54? b(s, t) = 544 =0,
0-0+3-12 3
and C(S,t)-—— 2t4 _ﬁ




Thus, (21) collapses to

3 1 3 L
o () (o () o (o ()

_ 2

t4"-’st“t—5‘”3201

which is equivalent to the partial differential equation
('Us)t = “t— Ug .

If z = v, is not constantly Zero, we can separate this equation to Z_ %,
z

or equivalently
(log 2), = (3 logt); = (logt?), .

Integrating this gives that for every function g = g(s) in s alone,
z = g(s)t3
is a solution for the partial differential equation given above. Choose
g(s) = &7,

where C' is a constant that will be determined later. Since then z = U, =
e** 13, integrating with respect to s (and setting the integration constant
equal to zero) gives

v(s, t) =t

Using this function in (20) leads to the following “gradient” of u:

3 3
U =——cs 0-'[) = ———— s+ct3=~—-—— s+C
s Vs + s 34 e 7 e ,
1 3
= .y — _— s+C 22 _ O
= 0-v, —av, —2t43e t “Etzes
Integrating the first equation gives u(s, t) = —£ e**C L h(t) with a function

h in t alone. Inserting this into the second equation results in

3 §+C' ! 3 s
7 Th)= g5,
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which means that h(t) = 0; i.e.  is constant, Choosing this constant to be

zero, we thus find 3
t) = —-= "0
u(s, t) 57 ¢

One can easily check that the Jacobian of (#, v) as a holomorphic map in
(s, t) is never zero (since we must have that ¢ #0).

We now have to find the inverse of this map; i.e. we have to express
s and ¢ as functions of 4 and v. To this end,

v 13 estC 24
w  —3 0 T T
7 37 € 3

Using the function zi = exp(i log z) on some branch of the complex loga-
rithm gives
—3u\1
t=§2(u, ‘U) = ('“Z—H—-) .
Thus, we have that

1
68+C= ___.?_tu-— ....2'. (_30)4 U,

3“32u

or, taking the logarithm on both sides,

2y 1
§=—C+log (—5) -+ 1 [log (—g—) +logw -—logu] + logwu .

Choosing C in a way such that all constant terms in this expression cancel
out, we finally obtain

s=&(u, v) = i- log(vu?) .

Note also that we have

. A=5\o(s(u, v}, Hu, v)) = t(u, v) = (—_2%2)2 ,

and by (14) and (15), we obtain

2t-0 1
C1=S+W=s=zlog(vu3),




2t-1

—3u\i
G=t+g o =3t=3 (‘"‘m) ,

and .

It SO P PO
Y =—§(2u) '
Inserting these maps £ = (&, &), (= (G, (2}, A, and g into our equations
for X and Y gives, according to Theorem 4.3, the (complex Gauss map of
an) isometric immersion from a minimal rosl Kahler manifold with respect

to the complex chart (u, v) into RS.

We will now investigate the remaining case that rank 7 = 3. If we
exclude the case that f is holomorphic or generated by an isotropic cylinder
(as in Proposition 4.1), then we can assume that for ajl p €U (staying away
from some isolated points),

Z(p) = Xy(p) = Yu(p) £ 0.

Since by (1) X, and Y, have to point in the same complex direction as 2 ,
we can find holomorphic functions & and B:U — C such that

Xye=aZ and Y,=82.
Using the integrability conditions for X and Y, we must have
(Xu)u = (05 Z)u = Z+G!ZU = (Xv)u = Z.u

and
(n)u=(ﬁz)u=ﬁuz+ﬁzu=(Kn)u::zv .

Inserting Z,, as in the first equation into the second equation, and vice verss,
for Z,, results in '

WZ+aBZ+PL) =00 and P2+ B(anZ b ak) =7,
or equivalently
(w+afu)Z=(1-ap)Z, and ButBoy)Z=(l—-ap)Z,. (22)

At this point, we have to distinguish two cases: either that the factor l-apg
is identically zero, or that it is different from zero almost everywhere (recall
that o and @ are holomorphic).
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Case 1: af # 1 almost everywhere. In this case, (22) gives that Z, and
Zy are always linearly dependent, and thus that the map Z has rank < 1
everywhere. But then the Rank Theorem (see e.g. [B-J], pages 45-481) gives
us that, away from isolated singularities, Z can be factored as

Z(u, v)=Zoy(u, v),

where Z = Z(w) is a holomorphic map in one complex variable w, and
Y :U — C is some holomorphic function on U. Using this more specific
form of Z in our integrability conditions for X snd V results in (writing
7'= 4 7) :

dw

(Xy)u =2, = Tu (Z~I'° v) = (Xu)u = (a Z)y = ay (ZN ° ) +ay (Zf o)
and

(Y;s)v = Zy = 'Yv(zv”oﬁf) = (KJ)u = (ﬁz)u :ﬁu(ZO'Y) +)57’4(Z’o7) ’
80 that, after simplifying, |

a(Zo7) = (1 ~am)(Z0y) and Bul(Z o) = (1~ Bw)(Z' o7). (23)

Now, assume that Z and 2’ would be linearly independent on some
- open set in C. Then, by (23), we would clearly have

Oy =0 , ﬂu=01 Yu =% , and Yo = By .

The last two equations give that -y, = o[+, and Yo = a8, . But we can-
not have that -y, and -, are both zero everywhere, since in this case 7 would
be constant, and we could replace Z by a constant vector, in contradiction to
Zand Z' being linearly independent almost everywhere. But then we would
find that a8 =1 everywhere, in contradiction to our case assumption.

Thus, Z and Z' are everywhere linearly dependent. But that means
that we must have a constant, non—zero vector Z; € C* and a function
¢ = é(w) in w such that )

Z(w) = §(w) Z,

(and 4 is a solution of a certain differential equation; but we will not need to
know & in more detail here). |

1There, one can find a proof for real manifolds. However, the only tool that is necessary
is the Inverse Mapping Theorem, and this theorem is also true in the holomorphic case.




Since Xy =Y, =Z=Zoy= (6 0v) Zo , We can integrate to obtain

X=9(U,U)ZO+X0 and Yzh(u,U)Z()-i"Yi),

for some holomorphic functions g9,h: U — C, and some constant vectors
Xo, Yy € C*. Using our integrability condition once more, we find

X, = Qv Zy = Yu= o, Zy ’ (24)

80 since Zo # 0, we must have g, = h, # 0. Thus (after making U smaller if
necessary), there is a holomorphic function 1 : U —~ C without singularities
such that

9= and h=gy,.

Now, inserting X and Y into the partial derivatives for F' results in

i -1
2
F, = -;— and F, = i ,
T 2o + X . \ M Zo + Yo

and integrating these equations, we see that the holomorphic representative
F of the minimal real Kahler immersion we are looking for, in this case, must
have the form

1 -1 0
Flu,v)=u| i | 3o ; +(u, v} [ 0 |+C,
Xo/ Y Zo

for some constant vector Cy € CP. Since 9v = hy # 0 and thus g and h
non-constant, (8) and (24) immediately give that

Xo Zo=Yy-Zp=Z2=0.

And since we need X -V = 1, the equations above also give Xo Yy =1.
This means that the vectors in the formula, for F indeed span an isotropic
subspace of C°, and thus that f = /3 Re(F) is generated by the graph of
the holomorphic function n(u, v). Proposition 1.5 then says that such an
J must be holomorphic with respect to some complex structure
on RS So, Case 1 leads to our “trivial examples” for minimal real Kihler
submanifolds in RS,
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' 1
Case 2: af=1 everywhere, This means that 8= = where « can never

be zero, and since Z is {(almost) never zero either, (22) implies that

1 o,
w=-afi=—a () =aZ,

and hence that o = a(u, v) must be a solution of the (non-linear) partial
differential equation :

1
O =0y =7 (o?), . (25)

This of course restricts the choice of a greatly. Furthermore, we also have
that ' |

Xe=aZ=aX, and K‘=Z=a(?i—2)=a(,82)=a}’;;

ie. o and the component functions of X and ¥ satisty the same linegr
partial differential equation

| P = @ by . ‘

But from the theory of linear partial differential equations (seec the Proposi-

tion in the Appendix), we know that, in this case, there must be holomorphic

maps X = X(w) and ¥ = Y(w) in one complex variable w such that

X=Xoa and Y=Voqa.

Note that o is a “fundamental gystem of solutions”, since it is never zero
and non-constant (see below). Using these relations in our integrability
condition, and noting (25), we find that the former is equivalent to

Xy =Xoa),=aq, (Xoa)=Y, = (Yoa), =a, (Y 0o) = a, (a (¥'oa)),

where X’ again means Z‘f;;X ,» and where ¢, is not constantly zero since we
assumed that X, = Y, is almost nowhere zero, Therefore, we must have

that _ . ~ B
O=X’ocu——a(Y’oa)=(X’—wY’)0a',

and since X and ¥ are holomorphic, this implies that we always have

X =wY'.
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Using our knowledge about the form of X and ¥ in a Weierstrass represen-
tation, we can write this ordinary differential equation in w ag

(R’ (B 2)

2

(3555) | = w | (tazR)

& | @&y

where here ;\, b, f , and ¢ are all holomorphic functions in the one complex
variable w. Performing by now familiar operations, the last equation can be
simplified to the system ’

N=wi,
A&y = w(al?y, (26)
and  (A8) = w(al).

Note that the first of these equations determines & in terms of ), up to a
constant. _ _

Let us now write £ = (s, t) and ¢ = (p, g), where s, t, p, and ¢ are
holomorphic functions in w. Since f2 is also given in terms of }, £, and ¢ as
[L:i—(—g‘:gz);, we can write

€= = (o) + (=0 = T2 = jlw).

Note that by the last paragraph, the so—defined holomorphic function g is
actually almost entirely determined by X alone. But we know that (€ - {)2
is never zero. Thus, we can locally find a well-defined, holomorphic “square-
root” of ¢, i.e. a holomorphic function g(w) such that

(s —p)* +(t — 9)* = G(w) = g*(w) .

Since the complex trigonometric functions are surjective (see [Ah], page 47),
we can therefore conclude that, locally, there is a holomorphic function h(w)
such that we can write

s(w) = p(w)+g{w) cos(h(w)) ~ and t(w) = g(w)+g(w) sin(h(w)) . (27)
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Let us now break the last equation in (26) into first and second com-
ponents. The first components give
(AsY =XNs+Xs =w(@ip) =wip+wip |
Using the first equations of (26) and (27), this can be expanded to
Np+Xg cosh+:\p'+:\(g cosh) = Np+wiy .
Cancelling the first term on both sides and reordering, we obtain
' (wi—2)p' = (Ag cosh) .

But wg -—”:\ can only be zero at isolated points, since otherwise, we would
have that A =wj. Differentiating this and then using the first equation in
(26) would give ) 3
XN=ftwi =ji+X,

and thus i = 0, which cannot happen. Therefore, we can solve the equation
above for p’ almost everywhere; and in completely analogous fashion, we can
obtain for ¢':

Xg cosh) -~ {Agsinhk)

Note that this means that p and g, and thus by (27) also s and ¢, are (almost)
completely determined by X and % alone.

Finally, let us examine the second equation in (26). We claim that
this equation must necessarily be satisfied. To see this, we will replace £ and
¢ by their component functions, and use the relations we worked out above
in the following way. By (27), we find that :

£ = 32+t2=(p+gcosh)2+(q+gsinh)2
= p*+2pg cosh+ g2 cos?h+q2+2gg sinh 4 g2 sin?h
— 2.2 . 2
=P +q +2g(pcosh+qsink)+g2.
=62
Thus, we have

(A€ = &52-1—25&(5-5’)-!-(239@ cosh + g sinh) + X g?)' . (29)

= i




7l

Let us work on the last term on the right-hand side. Recalling (28) and the

fact that ¢% = § = -:-i— , we find that this term equals

[
2(Ag cosh)’p+2(5\gsinh)'q—l~25\g(p’ cosh+q sinh)——(—g)
= 2(w,&-—5\)p’p+2(wﬁ—-5\)q’g
+2(5\gcosh)(:\gcosh)’+(:\g sinh)(igsinh)’_ 2 !
| wi— A i

I | 5\292): (2)f
= 2wii— N (pd +ad) + 9 (2
(Wi~ X (pp +q¢) +w p

- i—A
=i N
—9faA A /
= —2X({-O)+wa () + %sze).
Wi~ A i

But the last two terms on the last line cancel each other, since, using the
first equation of (26) once more, we find that

Np=dp _wip-3§ @ _(U’
@ wi— X '

Pwi-% B \k

This means that (29) takes the form
ALY =wiC® +23(- &) - 2X(C- &) +wa (@ = w (@,
which is exactly the second equation in (26).

This finishes the investigation of the case that rankF” = 3. Summa-
rizing our results (including Proposition 4.1), we thus have proven the follow-
ing theorem, which together with Theorem 4.3 gives the promised complete
local classification of all minimal real Kihler surfaces in Euclidean 6~space,
away from the isolated “singularities” where the rank of the second osculating
bundle F* is smaller than on the rest of the manifold.

Theorem 4.5: Let F : W — C6 be g holomorphic representative of
a minimal isometric immersion f : M* — RS from a 4-dimensional
Kihler matifold M into R®, and assume that the rank of the second
osculating bundle F” of F equals three on all of W. Then [ is
holomorphic with respect to some complex structure on RS, or f is gen-
erated by an isotropic cylinder (see Example 1.6 ), or we can describe f
locally in the following way:




Let ((u,v), X,Y) be a Weierstrass representation of F in the neigh-
borhood of a point p ¢ W (sce page 37 and Proposition 3.2 ). Then in
a (perhaps smaller) neighborhood U7 of pin M, we can find a solution
a:U — C of the non-linear partial differential equation

1
= aa =2 (),

and two holomorphic functions Aw) and h(w) in one compler variable
w such that we have

X:(:\oa) (1—;52,1:_1“%5,5)0(1

and , -

: — 2 2
Y=(ﬁ°a)(1 C,z—lizi,c)oa,

2

-2

7

N X _
where i = / -a)—dw, g 8 a function such that g° =

=

H

A
x (Ag cosh)’ (A g sinh)
¢ (/ wit— A v / Wi~ A v

and L
Ei=(+g(cosh, sinh) .

Conversely, for any choice of a non—constant a, a nowhere zero :\,
and arbitrary h as above,. the map f = /3 Re(F) that we obtain
through a Weierstrass representation ((u,v), X,Y) as defined above
gives a minimal real Kihler immersion that is defined on some small
neighborhood of C2.

Remark 4.6: Note that we have found another way to construct minimal
real Kéhler hypersurfaces in R5: Simply set A := 0, and (28) gives that ¢
has to be a constant, Choosing this constant to be zero, (27) gives that ¢ also
has to be zero. Hence, the last components of X and ¥ and consequentially
also the ones of F,, and F, will be zero, which means that f = /2 Re(F)
can be considered as a map into R,
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Example 4.7: By a separation ansatz, one finds (and can easily check) that
for all constants A, B e C,

v A
u+4 B

afu, v) = —

is a solution of (25). To keep things simple, let us set ) := —1, and let us
determine h a bit later in such way that the example stays simple. Since
N =w /', this means that ji also has to be constant. Let us choose fi = 2,
since then § = %5 =1, and we can choose 9 = 1. Then, the equations

for p’ and ¢' have the form

o = (~ cos h(w) Y _ B (w) sin(h(w))
2w+1 2w+ 1

and

,_ (—sinh(w)) _ —h(w) cos(h(w))
L PP 2w+ 1 ‘
So, if we set h(w) := w? + w, then

p =sin(w? +w) and ¢ = —cos(w? + w) .

Setting all integration constants equal to zero and using (27), we finally
obtain

o9
_ f sin(w* 4 w) duw and £=¢+ cos(w? + w)
- / cos(w® + w) dw sin(w? + w)

Inserting these o, 5\, i, &, and f info the Weierstrass representation formu-
las gives the complex Gauss map of a minimal real Kihler surface whose
holomorphic representative has a second osculating bundle of rank three
everywhere,
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Appendix

In this appendix, we give the proof of a result that is well-known in
the theory of real partial differential equations, but somewhat hard to find
in the literature for several complex variables. We used this proposition on

page 68.

Proposition: Let a:U — C be a non-zero holomoarphic function that
is defined on some open subset of C?, where we denote the complez vari-
ables in C? by (u, v). Furthermore, let ¢ : U — C be a non—constant
holomorphic function that is a solution of the linear partial differential
equation
l Pu =y . ' (1)
If ¢ : U — C is another solution of this partial differential equation,
then for every point py = (uo, vo) € U where ¢ has no singularity (i.c.,
- dé{pp) # 0 ), there is a neighborhood V of po in U and a holomorphic
function h{w) in one complex variable w such that, on all of V,

PY=hodo.

Proof: Pick a point py where ¢ is non—singular, and assume, without loss
of generality, that for all points p in a neighborhood V of pg, ¢,(p) # 0.
Let C be any of the values that ¢ takes on V, say C = ¢(p1), where p; =
{u1, v1) € V. By the Implicit Mapping Theorem (see [G-R], page 16), there
is & holomorphic function ge(w) with ge(uy) = v such that

¢(u: QC('U‘)) =C

for all % in some neighborhood of ug in C. Taking the derivative with respect
to v and using (1), we obtain (with ¢’ := £ g)
0 = Zd(u, go(u) = ¢u(u, go(u)) + ¢u(, go(u)) go(u)
= ¢o(u, go(u)) [a(u, go(u)) + go(u)] .

But we assumed that ¢,(p) # 0 for all p € V, and so go(u) must sa,tlsfy
the ordinary differential equation

go(u) = —a(u, go(v)) .
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Note that this differential equation is completely independent of ¢.
Thus, if we would repeat the above considerations for our second solution 1,
we would obtain holomorphic functions G¢ that satisfy the same ordinary
differential equation with the same initial condition §a(ug) = vo. But by
the theory of ordinary {complex) differential equations, this means that close
to up, go(u) = ga(u) (see e.g. [Wal, page 110). Therefore, we have shown
that the level curves of ¢ and 1 must be the same, and thus that (locally)
there is a function h(w) such that 9 = ho¢; namely, h transforms the values
associated with the level curves of ¢ into the values associated with the level
curves of .

It remains to show that h is holomorphic. But since ¢,(uy, v1) # 0,
the function n(v) := ¢{uy, v) is invertible in a neighborhood of ©1, and the
inverse is holomorphic. Since

Ylur, v) = heur , v)) = hin(v) ,

we have

h(w) = $(w, 771 (w)),
and thus that A is holomorphic.




