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Abstract of the Dissertation

Hyperbolic 3-manifolds and Geodesics in
Teichmiiller Space A

by

Kasra Rafi i
Daoctor of Philosophy
in
Mathematics
State University of New York
at Stony Brook

2001

We are interested in studying the geometry of hyperbolic 3-manifolds
homotopy equivalent to a given compact 3-manifold M. When M
is a surface bundle over a circle, or when M is an interval bundle
over a surface, one can associate to such a hyperbolic 3-manifold a
geodesic in 7(.5), the Teichmiiller space of the surface S. The inter-
play between the geometry of hyperbolic 3-manifolds and geodesics
in the Teichmiiller space is the basic subject of our study. More
specifically, our goal is to predict the behavior of geodesics in 7(S)
based on their end points, then apply the results in studying the

geometry of hyperbolic 3-manifolds, Our results are, in summary:
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. A hyperbolic 3-manifold has bounded geometry if and only

if the corresponding Teichmiiller geodesic stays in the thick

part of 7(5).

. In general, every curve that is short in a hyperbolic 3-manifold
is also short for some metric in the corresponding Teichmiiller

geodesic.

. The converse of the second statement above is not true,
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Chapter 1

Introduction

Let M be a hyperbolizable compact 3-manifold with incompressible bound-
ary. Define h{M) to be the space of complete hyperbolic structures on the
interior of M. Elements of h(M) are infinite volume hyperbolic 3-manifolds
homeomorphic to the interior of M. We call the intersection of N € h{M)
with a sufficiently small neighborhood of a boundary component of M an end
of N. The end of NV corresponding to the boundary component S of M is
homeomorphic to S x (0, 00). To this end one can assign an invariant vg in an
enlargement T(S ) of the Teichmiiller space of S, related to Thurston’s com-
pactification of the Teichmiiller space. If an end is geometrically finite, that
is if the conformal structure on S x {t} stabilizes as ¢ approaches infinity, vg
is defined to be the limiting conformal structure on S, i.e., it is a point in
7(S). The subset of h(M) containing all hyperbolic 3-manifolds whose ends
are geometrically finite is well understood through the work of Ahlfors, Bers,
Kra, Marden, Maskit and others (e.g., [1], [2], [12] and [14]). If an end is
simply degenerate, vs is a geodesic lamination on S. The existence of end

invariants for geometrically infinite ends is due to Bonahon and Thurston ([3],




29]). Thurston’s ending lamination conjecture states that these invariants are

sufficient to determine the hyperbolic 3-manifold V.

Conjecture 1.1. (Thurston) The topological type of N and its end invariants

determine N up to isometry.

The main theorem
For simplicity, we restrict our discussion to the case where M = S % [ is
a product of a surface and an interval and N € h(M) has no geometrically

finite end. With each such N we associate the following objects:

1. Tts end invariants v, and v_. Since M has two boundary components
homeomorphic to S, both these invariants are laminations on S. We

often write (N, v,,v_) to emphasize the end invariants.

2. The geodesic g : R — 7(S) in the Teichmiiller space of § connecting
v, and v_, where 'TA'(S) is equipped with the Teichmiiller metric. We

represent this geodesic by (g, vy, v_).

3. The universal curve Uy over this geodesic. Uy is a 3-manifold homeomor-

phic to S x R where for every t € R, S x {¢} is isometric to g(t).

4. A coefficient dy (v, v_) to every isotopy class of an essential subsurface
Y of S. This coeflicient measures the relative complexity of vy and v_

restricted to Y (see [16] for definition and discussion).

We say N has bounded geometry, if there exists a universal lower bound

on the injectivity radius of NV, and we say ¢ has bounded geometry if there

S ————— YTt
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exists an € such that g does not intersect the e-thin part of the Teichmiiller
space (see chapter 5 for definition of e-thin part of 7(S)).

In the case when v, and v_ are stable and unstable laminations of a pseudo-
Anosov homeomorphism, both N and g have bounded geometry; in fact Can-
non and Thurston ([7]) showed that U, is quasi-isometric to N. We would
like to compare the geometry of N and the universal curve U, in the general
case, to exatmine whether NV and U, have the same set of short curves. Our
vehicle for making this connection is the combinatorial machinery introduced
by Masur and Minsky ([16]), and the subsurface coefficients dy (v, v_) (see

chapter 2).
Theorem 1.2. The following are equivalent:
1. N has bounded geometry.
2. g hos bounded geometry.
3. U,, the universal cover of Uy, ts bi-Lipschitz to H>.

4. There exists K such that for every essential subsurface Y of S we have

dy(y_l_,V_) < K.

In [22] and [25] Minsky has shown that 1 = 2,1 = 3 and 1 & 4,

Theorem 1.3. (Minsky [22], [25]) N has bounded geometry if and only if the
collection of surface coefficients {dy(vy,v..)} 4s bounded above. Moreover, in

this case the universal curve U, is quasi-isometric to N.




Note that this theorem in particular proves the ending lamination conjec-
ture in the case of bounded geometry, since if N7, Ny € h(M) have the same
end invariants v, and v_, then Ny and N, are both quasi-isometric to the
same universal curve Uy, and therefore to each other. A theorem of Sullivan
{[28]) implies that N, and N; are isometric,

To complete Theorem 1.2, we prove 2 < 4 (Chapter 6) and 3 = 2 (Chap-
ter 8) (see also, [20]).

Short curves in 3-manifolds and Teichmiiller geodesics

In the case that the geodesic ¢ does not have bounded geometry, we would
like to have a description of short curves in g. Such a description is available
for hyperbolic 3-manifolds. The following theorem states that the short curves
in (N, vy, v_) are exactly the boundary components of subsurfaces of § where

dy(vy,v ) is large.
Theorem 1.4. (Minsky [26]) Let (N,v,,v_) € h(M).

1. For every € > 0 there exists a K > 0 such that if Y is o subsurface of S
and o is a component of the boundary of Y, then dy (v, v_) > K implies

In{a) <e.

2. Conversely, for every K > 0 there exists € > 0 such that if « is a curve
on S and the length of « in N is less than €, then there exists a subsurface

Y of 8§ with a C Y such that dy (v, v ) > K.

In the case when § is the one-punctured torus, the “same” curves are

short in both N and g. This allows for a canonical construction of a model

manifold for N which implies the ending lamination conjecture in this case (see




Minsky [23], McMullen [17]). It is reasonable to try to prove an analogue of
Theorem 1.4 for geodesics in 7(S), i.e., to prove that the same combinatorial
condition would predict which curves are short in the geodesic g.

We have proved the following theorem, which is an analogue of the first
part of Theorem 1.4, Let (g, vy, v_) be a geodesic in 7(S), ¥ be a subsurface
of 5, and & be a component of the boundary of Y. Define

ly(a) = Igl&};l o ()

to be the shortest hyperbolic length of & over all hyperbolic metrics on g.

Theorem 1.5. For every ¢ > 0, there exists o K > O such that, if (g,v4,v )
s a geodesic in the Teichmiller space of S and if Y is o subsurface of X
with dy (vy,v_) > K, then there exists t € R such that for each boundary

component « of Y, Iy () < e.
The following is a corollary of the previous theorem and Theorem 1.4:
Corollary 1.6. Curves that are “short” in N are also “short” in g.

We construct a counterexample to show that the converse of the above

corollary, an analogue of Theorem 1.4 Part 2, is not true:

Theorem 1.7. There exist sequences of manifolds (N,,, v}, v™), corresponding

Teichmuiller geodesics g; and a curve v in S such that

Inn(v) =2 ¢>0 as N — o0, (1.1)




but

lo(7) =0 as  n-—oo. (1.2)

We are, however, able to prove the following weaker version of the converse:

Theorem 1.8. For every K, there exists € > 0 such that, if (g,vy,v_) is a
geodesic in the Teichmiller space of S, and if « is a curve in S with (o) < e

for somet € R, then there exists a subsurface Z of S disjoint from o such that

dz(vy,v-) > K.

Outline of the paper

We begin in chapter 2, by introducing the subsurface coeficients dy (v, v._)
and recalling some of their properties. In chapter 3 we discuss the geometry
of the quadratic differential metric on a Reimann surface. The describion of
the e-dicomposition of the quadratic differential metric is given in chapter 4.
This is analugous to the thick—thiﬁ decomposition of the hyperbolic metric
of a Reimann surface. As a corollary we drive an estimate for the quadratic
differential length of intersecting curves. This estimate is used in an essential
way in the proof of 2 & 4 in the main theorem ,Theorem 1.2, which is given
in chapter 6. The counter example, Theorem 1.7, is proven in chapter 7. In

chapter 8 we finish the proof of Theorem 1.2 by provin 2 = 1.

Notation

To simplify our presentation we use the notations O, = and = (defined




below) whenever the constants involved depend on the topology of S only.
That is, for a function f, O(f) represents a function that is bounded above by
C f for a constant C' depending on the topology of S only. For two function

fandg,f>—gmeansf2cga.ndfxgmea.nscfggng,whereOa,nd

¢ depend on the topology of S only.




Chapter 2

Simple Closed Curves

In this chapter we will introduce and study several structﬁres involving simple
closed curves on a surface S. Let S be an orientable surface of finite type
excluding sphere an torus. We define the complexity of S as £(5) = 3g+p,
where ¢ is the genus of S and p is the number of boundary components of S.

By a curve we mean a non-trivial, non-peripheral, simple closed curve in
5. 'The free homotopy class of a curve « is denoted by [¢]. By an arc w we
nean a norn-trivial arc with endpoints on the boundary of §. Here non-trivial
means that w cannot be pushed to the boundary of S. In case S is not an
annulus, {w] represents the homotopy class of w relative to the boundary of S.
When S is an annulus, [w] is defined to be the homotopy class of w relative to
the endpoints of w. |

Define C(.5) to be the set of all homotopy classes of curves and arcs on the
surface S. We equip C(S) with the following metric. For curves o and 8 on S,
let ds(c, B) be equal to one, if [¢] % [8] and [o] and [] have representatives
that are disjoint from each other (for two arcs, being disjoint means having

disjoint interior). Let the metric in C(S) be the maximal metric having the




above property. That is, ds{e, 8) = n il & = ag, oy, ... , &, = J is the shortest

sequence of curves on S such that «; 1 is distance one from o, ¢ =1,... ,n.

Theorem 2.1. (Masur and Minsky, [15]) For £(S) # 0,1 or 8, C(S) has the

following properties:
1. The diameter of C(S) is infinite.
2, As a metric space, C(S) is d-hyperbolic in the sense of Gromov.

A curve system I is a non-empty set of elements of C(S) that are pairwise
disjoint from each other. Let CS8(S) be the space of all curve systems on S.
For two curve systems I['; and ['; we define dg(I';,I's) to be the minimum
distance in C(S) between members of I'y and I'y. This defines a pseudo-metric
on CS(S}. For any isotopy class of a subsurface Y of .5, we define a projection
map

my + C8(S) = CS(Y) U {0}

as follows: First assume Y is not an annulus. Let I' = {[w],...,[]} be a
curve system on S. Fix a hyperbolic metric on S and consider the geodesic
representatives of 4; and boundary components of Y. We define #(I") to be the
union of homotopy classes of components of ; restricted to ¥, i =1,... , &,
Since the ~; are pairwise disjoint from each other, the resulting set is in fact
a curve system in Y. If I' does not intersect Y, 7y is defined to be the empty
set.

Since curves in an annulus are defined up to homotopy fixing the end points,
we need a special definition for wy in the case where Y is an annulus. Fix a

hyperbolic metric on §. Let S be the annular covering of S corresponding to




Y and let 4; be lifts of +; intersecting the core of § non-trivially. Changing
7v; homotopically in S does not change the end points of %;; therefore 4; is
a well defined element of C(Y). Now we define 7y (I') to be the union of 4,
1=0,...,n.
i One can also define the projection of a lamination A onto a subsurface Y.
Choose a hyperbolic metric ¢ on S and restrict the o-representative of A to the
subsurface in the homotopy class of ¥ with o-geodesic boundary, Then the
projection of A onto ¥ will be the set of homotopy classes of closed curves and
compact arcs in the restriction of A to Y (the projection cannot be defined
for leaves that intersect the boundary of ¥ only once). To define 7y for a
measured foliation one can use the projection of the corresponding geodesic

lamination instead.

Subsurface coeflicients

For curves o, 8 € C(S) that intersect a subsurface Y non-trivially, we call

the distance in (V') between the projections my () and my (3) the Y -coefficient

of ¢ and 8 and denote it by dy (e, 3), that is

dy(a’, ﬁ) = dY(']TY(a): ’Il'y(ﬁ))

Also, i(e, 3) denotes the geometric intersection number between o and 3.
The intersection number between two curves gives a bound on all their subset

coefficients.

Theorem 2.2. For o, € C(S) we have

dy (0, 8) < 2 x if0r, B) + 1.

10




Conversely, a bound on all subset coeficients gives a bound for the inter-

section number between two curves.

Theorem 2.3. For every K > 0 there exists D > 0 such that Jora, B e C(S),
if i(a, B) > D, then there exists q subsurface Y of S such that

dy(ﬂi, ﬁ) > K.

11




Chapter 3

Quadratic Differentials

In this chapter we review the geometry of quadratic differentials. For detailed
discussion, see [21] and [27)].

Tet X be a Riemann surface with the conformal structure given by charts
{(Ugy ha)}. A (meromorphic) quadratic differential g on X i3 a set of mero-
morphic function elements g, in the local parameter zq = ho(P) for which the

transformation law

Qo (za)dzg = qp(2p )dzg

holds whenever 2, and z3 are parameter values which correspond to the same
point P of X. The quadratic differential is called holomorphic if all the g, are
holomorphic.

While it clearly does not make sense to speak of the value of a quadratic
differential ¢ at a point P € X (since it depends on the local parameter near
P), it does make sense to speak of the zeroes and poles of ¢. In fact, the order

of a zero or a pole is invariant under change of parameter.

Definition 3.1. The critical points of a quadratic differential ¢ are its zeroes

12




and poles. All other poinis of X are called reqular points of ¢. Poles of the
first order and zeroes of any order will be called finite critical points, and poles

of order greater than or equal to two infinite critical points.

For the rest of this section let X be a compact Riemann surface and let
g #Z 0 be a meromorphic quadratic differential on X with finite critical points
only. Also assume that the set of critical points of ¢ is a finite discrete set.

The surface X punctured at poles P; of ¢ is denoted by X = X\ {P}.

Theorem 3.2. In a neighborhood of every regular point P of ¢ we can intro-
duce a local parameter w, in terms of which the representation of q is identicolly

equal to one. The parameter is given by the iniegral

w:Q(z):/\/(Tz)dz.

1t is uniquely delermined up to a transformation w — tw + const and it will

be called the natural parameter near P.

The length of a rectifiable curve can be computed by means of the differ-

ential dw = /q(z)dz in terms of an arbitrary local parameter on X,

Definition 3.3. The differential |dw| = |/|¢(z)||dz| is called the length el-
ement of the g-metric. The length of a curve - in this metric is denoted by

lo(7) and is computed by

w) = [ vl = [ Vi@l

The corresponding area element is dA(q) = |¢(2)|dz dy; it is also invariant

under a change of parameter. The total area of the Riemann surface X in this

13




metric is the L'-norm of ¢:
Xy = lall = [[ daw).
X

Horizontal and vertical foliations
A straight arc is a smooth curve v whose image under the map @ is a

straight line, that is, a curve along which
arg du® = arg g(z) dz® = 260 = const, 0< 8 < .

A maximal such straight arc is called a @-trajectory. A straight arc connecting
two critical points in (X, ¢) is called a siraight segment.

Through every regular point of ¢ there exists a uniquely determined 8-
trajectory, m > 6 > 0. In particular, two @-trajectories never have‘ a common
point, unless they coincide. A trajectory is called a critical trajectory if at least
one of its ends tends to a critical point. The total g-area, of critical trajectories
is zero; in fact, there are only finitely many critical trajectories.

For each 8, the #-trajectories foliate the set of regular points in X. Tn a
neighborhood of a finite critical point of degree n, n > —1, this foliation has
one of the forms shown in Fig. 3.1.

The foliation corresponding to 8 = 0 (respectively, & = m/2), is called the
horizontal foliotion (respectively, the vertical foliation) and is denoted by v_
(respectively, v4.).

For any closed curve or arc vy, the horizontal length of v is defined to be

14
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=

Figure 3.1: Local pictures of a foliation by trajectories

the infimum

() = int [ IRela)),

where 4 ranges over all curves or arcs homotopic to vy in X.

The vertical length of -y is defined similarly and is denoted by v,(7v}. Let -y
be an arc that is transverse to the horizontal foliation. It is easy to see that
the vertical length of 4 does not change after a homotopic change through
arcs that are transverse to the horizontal foliation and with end points on the
same leaves as «y (this is because the vertical length of a horizontal arc is zero).
Therefore the horizontal length defines a transverse measure on vy ; similarly,
the vertical length defines a transverse measure on v_, making v, and v_ into

measured foliations.

Geodesics and almost geodesics in (X,q)

The g-geodesic representative of a curve v is a curve in the free homotopy
class of v with the shortest g-length and is denoted by [y]g. If X has no
punctures, the g-metric is complete and the geodesic representative always
exists. In the case that there are poles, the g-metric on X is not complete,

since the finite poles are finite distance from interior points of X; however, the

15




metric on X is complete. Therefore in this case we allow 7]y to pass through
the poles of X, That is, [7]q is defined to be the shortest curve in X which is
a limit of curves in X in the homotopy class of v. The same definition works
where « is an arc; here by homotopy class we mean homotopy class relative to

end points of . Note that if y is simple, [7], is the limit of simple curves in

X.

Theorem 3.4. (see, [21], [27]) For (X, q) as above, we have

1. Let«y be an arc joining two given points x and y of X ; then the g-geodesic

representative of v exists and is unique.

2. Let vy be a loop on X which is nol contractible to a point or o punctured
disk; then the q-geodesic representative of v exists and is unique, ezcept
Jor the case where it is one of the continuous family of closed Fuclidean

geodesics in a flat annulus (see Page 19 for definition of o flat annulus).

A geodesic is composed of straight segments which meet at critical points
of X, making an angle of at least 7 on either side. When a geodesic passes

through a finite pole, it makes at least a full turn around the pole.

Proposition 3.5. (see, [27]) Let v be a curve or an arc in X. Then the

horizontal length of v is realized by its g-geodesic representative, that is,

ha() = f[ Bela(e)h)

Note that part 1 of Theorem 3.4 implies in particular that the geodesic

representatives of disjoint curves do not cross each other. However, they might

16




be tangent to each other, that is, their geodesic representatives might have a
geodesic arc in common (also, a geodesic representative of a simple curve 5|»‘
might have self-tangencies). As a result of this, the homotopy type of v might
not be retrievable from the image of its geodesic representative. To avoid 11

this problem we construct an embedded curve that is a union of straight arcs

in X and approximates [v], as closely we like. In fact, we make a general
construction for a curve system I' =" {v,... v} on X (that is, a set of
essential disjoint simple closed curves in X). Let [I'], be the union of [v],. i
As a subset of X, [[]; can be considered as a graph in X with vertices on
the critical points of X and straight segments as its edges. The sequence of ! R
simple closed curves in X approximating +; gives rise to an immersion of a
circle into [}, for ¢ = 1,...k. For a straight segment w in [T}, connecting ‘
critical points P and @ that has been traversed by these circles n times, we
replace w with n disjoint segments parallel to w in a small neighborhood of
w. Then we connect these arcs in a neighborhood of P and a neighborhood of

¢} such that the incoming and outgoing arcs match in the correct order. This

results in an embedded piecewise smooth representation for I' which we call .
the almost geodesic representative of I' and denote by {I'},. For every ¢ > 0,

{T'}, can be chosen such that {I'}, stays in a é-neighborhood of [I'], and

L({7}e) < (14 8)a([7]0).

Subsurfaces of X
A subsurface Y of X is a connected open subset of X with piecewise-smooth

boundary. Let o be a boundary component of ¥. The curvature of v with

17
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respect to Y, k(vy), is well defined as a measure with atoms at the corners (that
is, (w — 6}, where  is the interior angle at the corner). We choose the sign to
be positive when the acceleration vector points into V. If v is curved positively
(or negatively) with respect to ¥ at every point, we say it is monotonically

curved with respect to Y.

Theorem 3.6. (Gauss-Bonnet) Let Y be a subsurface of X with boundary
components 01, ... ,0,; also let Py,..., P be the critical points in' Y. Then

we have
T

k
6(05) = 2m (x(¥) + 3 _ deg(P));

where deg(P;) is the order of the critical pint F;. In particular, for every i, we

have

K(;) < 27 (1 — x(X)).

Given a subsurface Y, it is often desirable to define a representation for the
isotopy class Y with g-geodesic boundary. This is not always possible since the
geodesic representatives of boundary components of ¥ can be tangent to each
other or themselves. Therefore we define Y to be a subsurface in the homotopy
class of Y with almost geodesic boundaries. That is, for I' = {dy,... , Ok}, let
{T'}, be an almost geodesic representative of I'. We denote the open set in the
complement of {I'}, homotopically equivalent to ¥ by Y, and the boundary

components of Y, by 83.

Modulus of primitive annuli in X
Let A be a closed annulus in X with boundaries 8, and ;. Suppose both

boundaries are monotonically curved with respect to A. Further, suppose that

18




the boundaries are equidistant from cach other, and that «(8y) < 0. We call
A a regulor annulus. If x(8) < 0, we call A ezpanding and say that 8y is the
inner boundary and & is the outer boundary. If the interior of A contains no
zeroes, we say A is a primitive annulus, and we write k(A) = —x(8y). When
k(A) = 0, A is a flat annulus and is foliated by closed Buclidean geodesics

homotopic to the boundaries.

Lemma 3.7. For a reqular annulus A we have the following inequality for the

distance between the boundaries of A:
d(ao, 61) 2 MOd(A)ﬂq(ao)

Proof. Let |g| be the Euclidean metric on A4, dA(q) be the corresponding area
form, « be the free homotopy class of the core of A, and d be the distance
between boundaries of A. For 0 < £ < d define oy to be the equidistant curve
from & with d(d,0y) = t. Define a new metric gy as follows: For a point P

in g,

9= 5.
’ (o)

We have g (o) = 1; therefore the area of A in the new metric is

1 ¢ dt ¢ at

Area A:/*———dA :/l a——:f—.

5’0( ) Alg(at) (q) . yo( ﬁ)lq(at) 0 Iq(aa)
Let A; be the annulus bounded by 8, and o;. The Gauss-Bonnet theorem
implies that x(ay) + #(d) > 0. Since k() < 0, s(cy), the curvature of ¢
with respect to Ay, is positive. Therefore £{,(cs) = r(ay) > 0 and [,{c;) is an

increasing function of ¢. In particular, {,(e) > 1,(8). Therefore

19




4 g d
Areay (A 5/ = .
g( ) 0 5q(040) zq(ao)

On the other hand, by definition,

1 HE))

Mod(A) ~ 3" Areay(A)’

where the supremum is taken over all metrics g in the conformal class of |g|.

Since iy, (o) = 1, we have

1 S Ego ()
Mod(A) — Area,,(A)

That is,

d > Mod(A)l,(8)

By a similar method one can also show the following (see [21]).

Lemma 3.8. For g primitive annulus A, if k = k(A) > 0, then

" ModlA) (8y) = d(By, B).




For k(A) =0 we have
MOd(A)lq(ao) = d(ag, 31)

Theorem 3.9. (Minsky [21]) If A C X i3 any homotopically nontrivial an-

nulus with Mod(A) > m, then A conlains o primitive annulus B such that
Mod(B) > aMod(A) — b,

where m, a end b depend only on the topology of X.
We also recall the following theorem of Maskit.

Theorem 3.10. (Maskit, [13]) Let q be o quadratic differential with area I,
and let o be the hyperbolic metric in its conformal class. Then for every L > 0

there exist L' > 0 such that for every curve o on X we have:

lo(a) < L = l(a) < L/
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Chapter 4

Thick-thin Decomposition for a Quadratic

Differential Metric on a Surface

Here we describe a decomposition of (X, ¢) into pieces similar to the thick-thin
decomposition of X with respect to its hyperbolic metric. Some components
are flat, possibly degenerate, annuli. To a component Y that is not an annulus,
we associate a number Ay called the size of Y. In Theorem 4.3 we give upper
bounds for the diameter and the area of Y using its size, justifying the use
of the term size for Ay. Then we show that two neighboring component have
one of the following properties. Either they have very different sizes, or their
common boundary is significantly shorter than the size of each of them or
they are connected through a long flat annulus. Although the existence of this
decomposition is interesting in itself, the only result that is going to be useful
later is Corollary 4.7, which is an analogue of the collar lemma, in hyperbolic
geometry,

For a fixed ¢, let {a,...,®,} be the set of geodesics in the hyperbolic

metric of X with hyperbolic length less than ¢, and let Yi,...,Y,, be com-




ponents of the complement of ;. For ¢ = 1,... ,n, let A; be the largest flat

annulus (in the g-metric) whose core is homotopic to oy and let [oy]™ and [o;]~
be the boundary components of A; ([;]* and [o;]” may be identical). For
each ¥;, j = 1,...,m, let 7; be an essential curve in Y; with the shortest
g-length A; = l,([y;],) among all essential curves in Y;. Since a; and <y; form
a curve system, [o;] and [v;], have no essential crossings; therefore, one can
represent them simultaneously with d-almost geodesics. Let Y; be the subsur-
face corresponding to ¥; with almost g-geodesic boundaries. Note that {v;},
is an embedded curve in ¥7. One should think of ); as an indication of how
large Y; is. In Theorem 4.3 we show that the area and the diameter of Y; are
bounded by constants depending on A;. We call A; the size of Y;. We denote
the almost geodesic representatives of [oa,-]qjE by ;.

For the rest of this section, let Y be one of these Y, v = 7; and A = A;.

Lemma 4.1. Let A be an annulus in Y with one of its boundary components

in Y. Then
area,(A) = O(1,(84)%) and  diamg(A) = O(1,(0A)).

Proof. Denote the boundary components of A by 8y and &, where 0; C 8Y.
Let A, be the complement in A of a neighborhood of the boundary of A,
Ay = A — N,(0A). For small r, A, is still an annulus. For r in some interval
[0,70), A has one connected component that is an annulus whose boundary
components we denote by 87 and &5, and possibly some connected components
that are topological disks. At r = rq, the boundaries of the annulus component

of A, touch each other, and, for r > rg, all components of A, are disks. Finally,
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let 7 = 7, be the infimum of the set of values of r for which A, is empty. Since
x(4;) > 0, the Gauss-Bonnet theorem implies that the total curvature of the
boundaries of A,, x(84,), is non-negative. Also, %ZQ(GA,") = —x({0A,), and
therefore [,(0A,) is a decreasing function of r.

First we try to find an upper bound for ry. Forrg > r > § (note that
there might not be such r, but in that case ¢ is an upper bound for o}, the
curvature of d7 with respect to A, is negative. This is because 8, is d-close to
the boundary of A;, and for r > 6, 8] is disjoint from A;. The Gauss-Bonnet
theorem applied on the annulus component of A, implies that the curvature
of 85 should be positive, but the curvature of a curve in X is always a multiple
of 7; therefore,

d

@) = —r(@}) < .

Hence

lq(D2)

i

ro— 6 < = O(1,(8,)).

For ry > r > 1y, A, has only disk components, and it must have at least
one since otherwise it would be empty. Using the Gaugs-Bonnet theorem, we

have £1,(8A™) = —x(8A,) < --2m. But 1,(85) is positive; hence

WO4n) 4B _ o0 5

™ — g <
L = =T

Therefore, 7, = O(,(6A)), and

diam,(A) < 2ry + max(ly(81),4,(8:)) = O(1,(8A4)).
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Also, we have the following bound for the area of A:

area,(A) = /:l 14(04;) < rilg(8:A) = O(1,(8A)).

Using a similar argument, we can show

Lemma 4.2. Let D be a disk or a punctured disk in X with 8D as its bound- b

ary; then

area,(D) = O(L,(8D)*)  and  diamy(D) = O(1,(8D)).

Theorem 4.3. There exists R > 0, depending on e and the topology of X,
such that

1. If ey is a boundary component of Y, then 1,(8]") = O(RA). Ly |
2. diamgy(Y) = O(RM). i
3. area,(Y) = O(R?*)?). :;

Proof. Define N, to be the open r-neighborhood of a point in {7}, in Y, and -

let Z, be the union of N, with all the components of ¥ - N, that are disks,

punctured disks or annuli parallel to Y. Let 87,...,0 be the boundary

components of Z,, and let J, be the union of the &%, Also, let r = # be the

infimum of the set of values of r such that Z,. =Y. |-
First observe that [,(d,) and area,(Z,) are differentiable functions of r

almost everywhere and are continuous except at finitely many points where we
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add a disk, a punctured disk, or an annulus parallel to a boundary component
of Y. For differentiable points we have £1,(8,) < x(8,) (the inequality is
there because Z, does not grow beyond Y). At any r = r, where we add a
disk or a punctured disk D,, the value of [,(8,) decreases by the length of the
boundary of D,, ¢,. Also, adding an annulus parallel to the boundary of ¥
replaces a boundary component 8¢ with the almost geodesic representative of
d;, therefore magnifying the value of {,(8%) by at most a factor of (1+4) {note
that each &] is magnified by (1 + ) at most once). We have the following

inequality.

Lg(0r)

1+0) = f (9) dp - ZC“'
Using the Gauss-Bonnet theorem, we have

K(9p) < 2m (1 — x(4,)) = O(1);

hence

L4{(8:) =O(r) = ) cu. (4.1)

To find an upper bound for area,(Z,) we observe that

d
- —areaq(Z,) < 1,(8,).

Also, at any r = r, where we add a disk or a punctured disk, areay(Z,)

increases by O(3(c,)) (Lemma 4.2), and replacing a boundary component
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of Z,, &, by a boundary component of Y increases area,(Z,) by O(I2(8}))

(Lemma 4.1). Therefore,

areay(Z;:) < /OT 1,(0.) dr + Z O(c2) + ZO(Zq(aﬁ)z)
< [[100)- Yedar + Y0+ Y060

<O+ 0(d)

<OE) + [ 0(e)]”

But Equation 4.1 implies
3w =0
u

therefore,
areag(7Z:) = O(F?). (4.2)

We claim that # < AR for some R depending on ¢ and the topology of
S only. Note that, assuming the claim, Equation (4.1) implies part 2 of our
theorem and Equation (4.2) implies part 3. Also, part 1 follows from the fact
that
diamg(Y) < 2f.

Let 74,...,r; be the points where the topology of Z, changes or a critical
point of X is added to Z,. All boundary components of Z, that are not
boundary components of Y are essential in X. Therefore, for any such curve,

3,2, and (‘iﬁj ., bound an essential primitive annulus A. In particular, the core
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of A is not homotopy equivalent to any of the ;. But the «; are all the curves

with hyperbolic length less than €; therefore, the modulus of A is bounded by

some M depending on € only. Lemma 3.8 implies

1 Tijpl — 75
Mod(A) > = log(-L 14y,
od( )_m og( 1(07) )

But [,(8,) = O(r); therefore,
Yig1 — Ty = e MO(T‘j).

This implies that the ratio between consecutive r; is bounded. Also, I is
bounded by the topology of X, and that gives a bound on the ratio ff; But
71 < A and r; = 7; therefore there exists R depending on ¢ and the topology
of X such that # < RA. : O

Lemma 4.4. Let A be a primitive annulus with 8, and 8y as its boundary

components and k(A) > 0. Then
1. dist,(81,05)% < areag(A).

8. 1,(3))? = O(gressal).

Proof. Similar to that of Lemma 4.1. O

Lemma 4.5. For every C > 0 there exists e > 0 such that, in the e-decomposition
of X, if A; is the annulus connecting Y and Y' and if A and X' are the sizes of

Y and Y', respectively, then one of the following holds.

1. A>CL(Eh.

28




2. XN > Cl,(5).

3. disty(8},8;) > Cl,(8F).

T 1

Proof. Let A be the primitive annulus corresponding to e; given by Theo-

rem 3.9, that is,
1
Mod(A) > alog(=) - b.
€
We know that [og]) and [o;]; are disjoint from the interior of A. Therefore,
A is a subset of either A;, Y or Y'. In the first case, Lemma 3.8 implies that

(BF) < Mod(A)dist, (6, 8]).

[ 2 ]

If A is a subset of Y, we have that the length of any boundary component of

A is at least %%i)l. Part 2 of Lemma 4.4 implics

area,{A) R2)?

(0)? < 1g(81A) = O(m) = O(W)-

A similar inequality holds if A is a subset of Y'. Since Mod(A) approaches

infinity as € approaches zero, the above inequalities prove our lemma. U

Lemma 4.6. For given C let € be as in Lemma 4.5. Consider the e-decomposition

of X. Let Y be a component of this decomposition and let 8] be one of its
boundary components. Then there ezists an annulus B; with 8 € 8B; such

that.
1. Mod(B;) > log(C).

2. Area,(B;) = O()\?).
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3. distq(alB@-,agBi) = A

Proof. The previous lemma shows that a large neighborhood on at least one
side of &;" is still in the form of an annulus; therefore one can choose an
annulus B; which satisfies part 3 of our lemma. Now part 3 of Lemma 4.5 and

Lemma 3.7 together imply that B, satisfies part 1 of our lemma, and part 2

of Lemma 4.4 shows that B; satisfies part 2 also. [
Let ¢ be the hyperbolic metric on X,

Corollary 4.7. For every I, > 0, there exists Dy such that if a and 3 are two
stmple closed geodesics in the hyperbolic metric of X intersecting non-trivially
with (o) < L, then

Dyty([8lg) = 1,([cdy)-

Proof. First assume « is different from a1 =1,...,n Let A, bé a tubular

neighborhood of a. For some m and ¢ depending on L only, one can choose

this neighborhood such that A, is an annulus of modulus larger than m and

Aq is disjoint from the ¢-thin part of X. Let ¢ > ¢ > 0. Consider the

decomposition of (X, q) corresponding to e, Since « is disjoint from all ;, it ;;I.:. '
is an essential curve in some Y;. 3

We claim that, for an appropriate choice of ¢ and K depending on L only, b |
lf{@) < KX;. For every boundary component 9 of Y;, let B; be a regular e
annulus as in Lemma, 4.6, and let o; be the complete hyperbolic metric on B;. b
By choosing e appropriately, we can make the modulus of B; large enough so
that the o;-length of &;, the oi-geodesic core of By, is less than ¢/, The Schwarz J

lernra implies that /, (@) is also less than €', Therefore A, is disjoint from &;. q‘e |
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Let B} be the annulus connecting 8;" to é;, and let \7j be the union of Y,

with all such B}, Using Theorem 4.3 and Lemma 4.6 we have
areay(¥;) < areay(Y;) + > areay(B;) = O(R*)2).

Since « is homotopic to a curve in Y;, Ay should either be a subset of \A/j
or intersect one of its boundary components. But A, is disjoint from &; and

therefore stays in f’; By the definition of modulus, we have

2(a) 1 1
—
area,(Y;) Mod(Ay) " m

hence

which proves our claim.,
To finish the proof we have to show that L([Bly) = A;. If B is an essential
curve in Y, then /,([8];) > A. Otherwise since 3 intersects o non-trivially, 4

has to intersect some B; essentially. Lemma 4.6 implies that
l‘!([ﬁ]q) 2 diStq(ale', BQBZ) = )\J

In the case o = «; for some 1, assume o; is a boundary component of a
subsurface ¥ and B; is the annulus given by Lemma 4.6. Since in this case Jo}

has to intersect B;, we have {,([8],) < A\. But Theorem 4.3 implies that

ly(ledy) = (5 = O(RA).
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Therefore {,{[a],) = O(RL,([B],))-
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Chapter 5

The Teichmiiller Space of S

The Teichmiiller space of S is the space of conformal structures on S , where two

structures are considered to be equivalent if there is a conformal map between

them isotopic to the identity. There are several natural metrics defined on
T(5), all inducing the same natural topology. We work with the Teichmiiller

metric, which assigns to X, ¥; € 7(S) the distance
1
dT(S) (21, Ez) = 5 log(K),

where K is the smallest dilatation of a quasi-conformal homeomorphism from i
3,1 to Xy that is isotopic to the identity. l

Geodesics in the Teichmiiller space of S, T(S), are determined by the
quadratic differentials. Given ¢ holomorphic for some Riemann surface ¥ € i
T(S), for any ¢ € R we consider the conformal structure obtained by scaling
the horizontal foliation of ¢ by a factor of e, and the vertical by a factor i
of e7*. The resulting family, which we denote by g,(t), is a geodesic in 7(S) r

parametrized by arclength. The corresponding family of quadratic differentials
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ts denoted by ¢.
Lemma 5.1. Let « be a curve in S and g be g geodesic in T(S). The hori-
zontal and vertical lengths of o vary with time as Jollows:

hgy () = hy(a)e? (5.1)
and

g, () = (), (5.2)

For a fixed e, there is a decomposition of T(S) into its thick part and its
thin part. The thick part of T(S) is the set of hyperbolic metrics on S where
the length of every closed geodesic is greater than ¢, and the thin part of T(S)
i3 the complement of this set. Given a Teichmiiller geodesic g, we denote
the length of the geodesic representative of a curve « in g(t) by {y(c). The

infimum over all t € R of iy () is denoted by lo(a).
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Chapter 6

Subsurface Coefficients and Teichmiiller

(zeodesics

In this chapter we prove Theorem 1.5 and Theorem 1.8. Note that 2 & 4 in
Theorem 1.2 is a corollary of these two theorems.

Let X be a Riemann surface homeomorphic to S, and let g be a holomorphic
quadratic differential on X with poles of order at most 1 on punctures of X and
with v, and »_ asits horizontal and vertical foliations. Let ¥ be a subsurface of
X and Y; be the corresponding subsurface with §-almost g-geodesic boundary.
We denote the boundary components of ¥ by 4, ... , 0 and the union of the
0; by 8Y,. Define

k

1 (0Y;) =) 14(8),

=1

k

he(0Yq) = Z hq(8:)
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and

vy(0Y,) = Z vg(0;)-

Definition 6.1. Let f : [0, 1]x(0,1) — Y, be an embedding of the unit square

in ¥, with the following properties:
1. For s = 0,1, f maps {s} x (0,1) into JY,.
2. Yor t € (0,1), f maps [0,1] x {¢} into a horizontal leaf of q.

Note that the image of f does not contain any critical point of g. We call
R = f([0,1] x (0,1)) a horizontal strip. We say a horizontal strip is mazimal
if it is not a proper subset of any other horizontal strip. The width w(R) of
a horizontal strip R is defined to be the vertical length of a transverse arc in

the form f({t} x I,
| w(lt) = v, (F({t} x 1)).

Vertical strips and magzimal vertical strips are defined similarly. The width of

a vertical strip R is the horizontal length of an arc transverse to R,

Lemma 6.2. Any two mazimal horizontal (respectively, vertical) strips in Y,
either have disjoint interiors or are identical. Furthermore, there are only
finitely many distinct mazimal strips, and the union of all mazimal strips

covers Yy except for a measure zero set.

Proof. If the interiors of two horizontal strips intersect non-trivially, their
union is also a horizontal strip. But if they are both maximal, the union

cannot be larger than either of them; therefore they are identical. To see the
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second part, note that for a generic point P Y, the horizontal leaf passing
through P restricted to Y; is compact and non-critical. ‘Therefore a neigh-
borhood of this leaf is also free of critical points, which implies that P is an
interior point of some horizontal strip. Also, each maximal strip has a critical
point on its boundary (otherwise one could extend it to & larger strip), and
each critical point P of degree n can appear on the boundary of at most n + 2
maximal strips. But the sum of the degrees of the critical points in X is fi-
nite, and so is the number of maximal strips. The proof for vertical strips is

similar. O

Corollary 6.3. Let Ry, ... » Ry be the decomposition of Y into mazimal hor-
izontal (respectively, vertical) strips. Then the sum of the widths of the R;,

le w(Ry), is equal to the total vertical (respectively, horizontal) length of the
boundary of Y.

If Y, had geodesic boundary, then the restriction of a horizontal leaf to ¥,
would either lie on the boundary of Y, or be an essential arc in Y, This is
because the g-geodesic representative of an arc connecting two points is unique.
Since Y, has almost geodesic boundary, some of our horizontal strips might
be parallel to the boundary of Y,. But since dY, is d-close to its g-geodesic
representative, the total vertical length of strips parallel to the boundary of Y,
is less than 6[,(9Y;). We call the strips that are not parallel to the boundary
of Yy non-trivial strips. Therefore, if R, . .. , i, are the non-trivial horizontal

strips, then
P

D w(Ri) = (1 - 6)v,(8Y,). (6.1)

=1
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A similar inequality holds for the vertical strips.

Let o be the hyperbolic metric on X.

Theorem 6.4. For every L, there erists Cy depending only on L and the
topology of X, such that, if « is a curve in X intersecting a boundary compo-

nent of Y non-trivially and I,(a) < L, then
min (dy (e, vi),dy(a,v_)) < €y,

Proof. First assume that Y is not an annulus. Since o intersects a boundary

component of ¥, Corollary 4.7 implies that
lq([edg) < Dpl,(8Y,). (6.2)

Also, we know that [,(8Y;) < v,(8Y,) + he(0Yy). Without loss of generality

we can agsume that the boundary of Y, is mostly vertical, that s,
L(0Yy) < 2u,(0Y,). (6.3)

Let & be a component of the restriction of ey to Yy, {Ri,...R,} be the
set of non-trivial maximal horizontal strips on Y, and & be the number of
times & crosses the strip R;. Note that & can have partial intersection with at

most two strips, which we do not count as crossing. We have

vg(&) 2 sz:w(Ri). (6.4)
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Now let & be the minimum of the b;, and let R be the corresponding strip.
We have

b w(R;) < Zbiw(Ri)

i=1
< v, (&) Equation (6.4)
< ly(lady)
< D1, (8Yy) Equation (6.2)
< 2Dpu,(8Y,) Equation (6.3)
2D &

1—(5%,:1

w(f;)  Equation (6.1)

Therefore, & can cross R at most % times. This means that there exists a
leaf of the horizontal foliation that intersects & a bounded number of times,
where the bound depends only on L and on the topology of S. A bound on
this intersection number gives a bound on the distance in ¢ (Y) between & and
the horizontal foliation (see, Lemma 2.2).

Now assume Y is an annulus and 7 is its core. Let A be the annular
covering of X with respect to v; We represent the core curve of A by «v again.
Let ¢ be the lift of quadratic differential q to A, [v], be the g-geodesic core of
A, [@], be the geodesic representative of a lift of & to A intersecting [+], non-
trivially. Also let h (respectively, v) be a leaf of the horizontal (respectively,
vertical) foliation of § intersecting [y], non-trivially. To prove the theorem in
this case we have to show that [&], intersects one of A or v a bounded number

of times, with bound depending on L only. Let B be the maximal flat annulus
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in A, and let B; and By, be the two annuli in the complement of B in A, Since

By, and By are expanding annuli, the Gauss-Bonnet theorem implies that A
and v intersect [&]¢ at most once in B; and Bj. Let sy, s, and s be the slopes
of h, v and [&], in B, respectively (consider B as a vertical cylinder). Since 4
and v are perpendicular to each other, one of |s,| and |s,| (say |s3]) is larger
than or equal to 1. Let w be the restriction of [6], to B. Since the projection

map from A to X maps B into X injectively,

ly(lode) > ig(w).

On the other hand, Theorem 4.7 implies

Therefore |s| > L-. The number of intersection points between A and w is

Dy,
bounded by

dist(@lB, agB) ’ 1 1

L) | < Mod(B)(Dy, + 1).

s s
But 7 intersects o, and I,(a) < L therefore, the hyperbolic length of v is
bounded below by a constant depending on L, and that gives an upper bound
for the modulus of A. But, Mod(B) < Mod(A); hence Mod(B) is bounded
by a constant depending only on I,. Therefore we have a upper bound for the
intersection number between A and w, and hence, for the intersection number

between A and [@],. O
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Theorem 6.5, Let (9,v4,1.) be a geodesic in the Teichmiiller space of S.
For every subsurface Y and I, > 0, there exists M > 0, depending on Y, g,
L and the topology of S, such that, if a curve B intersects Y non-trivially and
the hyperbolic length of B is shorter than I, ot some lime t > M (respectively,
t<—=M), then

dY(ﬁa V+) =1

(respectively, ay (B,v_) = 1).

Proof. Tix a time ¢y, let X, = 9(to), and let ¢ be the corresponding quadratic
differential on X,. Let Yo be a subsurface of X in the isotopy class of ¥ whose
boundaries are d-almost geodesics in gy, and let J; be a boundary component
of Yo. Let R be a non-trivial horizontal strip in Y with a vertical widih of
d. Fort € R, the g-area of X equals 1. Also, the hyperbolic length of 8
at time ¢ is less than L. Theorem 3.10 implies that the ge-length of 3 is less
than L' for some I/ depending on 7. Therefore, the gg-vertical length of 3 is
less than L'efo~t, By choosing ¢ large enough, we can make this quantity be
less than d. Therefore, # does not cross R, and it is disjoint from some leaf of
the horizontal foliation. But the horizontal leaves in R are essential arcs in Y

therefore, § is distance one from the horizontal foliation. d

Now we are ready to prove Theorem 1.5,

Theorem 1.5, For every ¢ > 0, there eists o K > 0 such that, if (g, v4,v_)
is @ geodesic in the Teichmiiller space of S and if Y is a subsurface of X

with dy(vy,v_) > K, then there erists t+ € R such that for each boundary
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component ¢ of YV, lys(a) < e.

Proof. We prove the contrapositive of the above statement. Let ¢ be such that
for every t € R there exists a boundary component o, of ¥ with Ly () > e
We have to find an upper bound for dy (vy,v_). For every ¢, since Loy () > ¢,
there exists a curve ,, intersecting o non-trivially, whose hyperbolic length
in ¢(t) is less than L, for some L > depending on ¢ only. By increasing the
value of I, (say doubling the value of L) we can assume that the hyperbolic
length of 3, is less than [, in a neighborhood of ¢, Therefore, we can find 3
covering of R with intervals [ti, tiy1] and a sequence of curves f; such that the
f; intersect a non-trivially and, for ¢ € [ti, tiva], Lo (Bi) < L.

For C}, as in Theorem 6.4, we have that each §; is Cy, close to either Vi or
v—. Assume dy (v,,v_) > 20}, (otherwise we are done}. Then f; cannot be ¢},
close to vy and v_ at the same time. Define I (respectively, I_) to Be the set
of all integers 4 such that dy (8, v4) < Cy (respectively, dy (Bi,v.) <Cp). I,
and I_ are disjoint and non-empty (Theorem 6.5), and Z = I, UI_. Therefore
there exists j € I_ such that j -1 I, (or we could have j — 1 ¢ Iy). We
have

dy (8;,v_) < Cy, and  dy(B41,v.) < Oy

Also, at ¢;44, both £ and #;41 have hyperbolic length less than L. Hence

dy (B, Bi41) = O(1).

The combination of the above inequalities gives an upper bound on dy (vy,v.)

and therefore provés the theorem. (I
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Theorem 1.8. For cvery K , there exists ¢ > 0 such that, if (g,v4,v_) is o
geodesic in the Teichmiiller space of S, and if o 4s o curve in S with by (@) < e

Jor somet € R, then there ezists g subsurface Z of § disjoint from o such that

dz(bq_, V%) > K.

Proof. Let t be as above, Xi = g(t), and ¢ be the corresponding quadratic
differential on X;. Also, let ¥V = § \ @, and let Y, be the corresponding
subsurface with almost geodesic boundaries. We claim that there exists a
horizontal arc A and a vertical arc o with endpoints on the boundary of ¥, such
that v and h intersect each other D times, where D is a constant depending
on € and D — oo as ¢ —+ 0. Since A and v are elements of C(Y"), if we choose D
large enough, then Theorem 2.3 implies that ¥ has a subsurface 7 such that
the distance between the projections of A and v to C (Z) is larger than K + 9.

But Y = 9\ o therefore, Z is disjoint from a, and we have
dg(vi,v-) 2 dg(h,v) — 2 > K.

Now we prove the claim. Since the hyperbolic length of o at g(t) is less
than ¢, o has an annular collar A with M od(A) > log(L). Theorem 3.9 implies
that there exists a primitive annulus B in X having boundary components 8,
and 0y, with £(8) < 0, such that the core of B is homotopy equivalent to
and

Mod(B) > aMod(A) — b.
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For any D' we can pick ¢ small enough such that

Mod(B) > alog(l) —b> D

€
Theorem 3.7 implies that

400, 81) = Mod(B) x 1,(3h) > D' 1, ([a],).

Since £(d) < 0, we can assume that the interior of B is disjoint from [a,
(otherwise we would have a disk with boundary curvature less than 27 or an
annulus with negative total boundary curvature, which contradicts the Gauss-
Bonnet theorem). Let w be a vertical arc connecting the boundaries of B (w
might not exist if B is a flat annulus foliated by closed vertical loops. In this
case, let w be a horizontal arc; then a similar proof still works). The ‘length of
w is larger than D'l ([o],). Let {R;,... ; Iy} be the set of maximal horizontal

strips in Y. We have (sce, Equation 6.1)

YR > (1 - 6)20,((al,),

By the pigeonhole principle, w has to cross some R; af least D = 2(1 — D/
times (note that since trivial strips are parallel to the boundary, w can intersect
a trivial strip at most once; therefore the strip with large intersection is non-
trivial). Let A be a horizontal arc in R; and v be the vertical arc in Y, that
includes w. We have h and v intersecting each other at least D times, which

was our claim. ]
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Chapter 7

A Counterexample

In this chapter we will describe a sequence of geodesics (gn, v}, V™) in the
Teichmiiller space of 5. They all start in a neighborhood of a given poing
X € T(S), but each g, penetrates deeper and deeper into the thin part of
a fixed cﬁrve . On the other hand we show that the subsurface coefficients
dy (v},v"), where Y is any subsurface with « as a boundary component, are
bounded above; in fact the bound is 3. This proves that the converse of
Theorem 1.5 is not true. Then we study the sequence of hyperbolic 3-manifolds
Ny, with end invariants g, (0) and g,(2n), and we will show that the hyperbolic

length of v in N, is bounded below, which proves the following theorem.

Theorem 7.1. There exist sequences of S-manifolds N, corresponding Te-

ichmiiller geodesics g, ond a curve v in S such that

In,(v) >c>0  forall n, (7.1)
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lo, (7} — 0 as  nm— oo, (7.2)

Our example is constructed on g compact surface of genus 2. At the end
of this chapter we will explain how similar examples exist for every surface of

finite type.

Construction of the example
Let n be a positive integer, € = ¢, = e~ and } be the unit square equipped
with the usual Euclidean metric (see Fig 7.1). Define the horizontal foliation
" to be the foliation of () with straight lines of slope € and the vertical foliation
v} to be the perpendicular foliation with straight lines of slope —%. Note that
the Euclidean metric on () defines a transverse measure on vt and 1/"”“‘ turning
them 1nto measured foliations; therefore we can talk about the vertical and
horlzontal length of a segment transverse to these foliations. Now, let w, be a
segment passing through the center of ¢}, with horizontal length and vertical
Iength (note again that horizontal and vertical length are measured with
respect to vy and v_). Also let Q' be a second copy of & with a segment w/ and
horizontal and vertical foliations, We construct a singular Euclidean metric on
a surface of genus 2 as follows, Identify the parallel edges of @ and ' to make
them into two Euclidean tori. Then cut open arcs wy, and wy,, making a slit at
the middle of each of @ and @', and glue Q to @' through thege slits, gluing
the opposite sides of slits to each other. Denote the resulting Riemann surface
by Xn, also let X,, be the Riemann surface constructed as above with ¢ = 0,

Since the slits have the same angle in @ and in ', the resulting foliations
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match to give two perpendicular measured foliations on X, n, Which we denote

again by v7 and v*. These foliations define a quadratic differential ¢, on X,,.
Note that % and v have two critical points at the ends of the gluing slit with
the total angle around either critical point equal to 47.

Let « be the curve connecting the top edge to the bottom edge of (), 3 be
the curve connecting two sides of @ and v be curve going once around w,, in
Q. (sce Fig. 7.1). Let o/ and 4 be similar curves in ', note that the curve
going around w, is homotopy equivalent to v in X,,.

These curve defines a marking of X,,. Therefore, we can consider X, as a
point in the Téichmiiller space of S. We have X,, — X, in 7(S); in particular,

we have for some B > 0

dr(5)(Xoos Xn) < B. - (7.3)

5’

Figure 7.1: Quadratic differential g,,.

Let g, be the geodesic in the Teichmiiller space of S corresponding to this
quadratic differential, parameterized such that g,,(0) = ¢,. Let vi(+) and Ay(')

represent the vertical length and the horizontal length of a curve at g, (¢). At
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t =0 we have !

to(e) = 1+ O(e), v () = ¢,
hg(ﬂ!) =€,

vo(7) = ¢,

ho(B) =1+ O(e), ho(y) = 1.

Note that since v goes around the slit w, the horizontal length of v is iwice

the horizontal Iéngth of wy, therefore hy, (v} =1 not 5. The same is true also

for the vertical length of . Recall that

ul-) =€ev()  and ha(-) = ehy ().

Therefore, at ¢ = n, we have

va(0r) = = + O(1), va(f) = 1, va(7) = e,

w =

hn (@) = €, ha(B) = e+ O(%), hu(7) = e.

The Euclidean length of 8 at gn(n) is almost equal to 1. Let @ be g

perpendicular curve to 4. Since the area of Q) is still 1, the length of & is also

almost equal to 1. Let & be the similar curve in ¢’ (see Fig. 7.2). We have
(@) =€  and hu(@) =1+ O(e),

Since there is an annulus of large modulus arcund Y,

the hyperbolic length
of v at g(n)

approaches zero as n -+ oo, We claim that for every subsurface
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Figure 7.2: ¢ = n.

Y with v as its boundary component and every n,

dy(]/fr_, UE) < 3.

The subsurface Y is not allowed to be a thrice-punctured sphere because in that
case the complex of curves is trivial. There are only two other possibilities, If
Y is the annulus with core homotopy equivalent to -y, then dy (v}, ™) = 2 (this
is because there is no flat annulus whose core is v; see arguments in the proof
of Theorem 6.4). Finally, suppose Y is one of the punctured tori bounded by
. Consider the marking on Y given by 8 and & We can parameterize simple
arcs with end points on dY with pairs of relatively prime integers. A leaf
of the horizontal foliation is represented by (1, e™), and a leaf of the vertical
foliation is represented by (e™, 1). We can connect them in C (Y) with a path

of length 3 as follows:

(en? 1)? (110)7 (0? 1)? (]‘)en)'
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That is, dy (17,2} = 3. This proves our claim,

Now let ¢ = 2n; we have

(U2n(@) — 17 ’Ugn(ﬁ) = —61—’ Uy (’Y) :

)

2

€
hzﬂ(c_}.’) =€+ 0(62), hgn(ﬂ) = ¢2 + O(ES), hgn(’]/) = E‘
The Euclidean length of & at 9x(2n) is almost equal to 1. Hence, as before,

the perpendicular curve to &, which we denote by 5, has length almost equal

to 1. Let 3’ be the similar curve in '. We have the following picture (see

Fig. 7.3).

Q}

Figure 7.3: t = 2n.

We also have

a= Dlq, & = Djo

and

B=Dis,  F=Dug,

where D, denotes the Dehn twist around curve a. Let ¢, be the following

20
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clement of the mapping class of S:

$n = D DD D,

"The sequence ¢ '(9n(2n)) converges to the Riemann surface X shown in

Fig. 7.4. Therefore we can choose B such that

dr(s) (5" (9n(2n)), X1 ) < iéi_

By choosing B large enough, we can also assume

B
d7(9)(Xoo, X.)) < 7

Therefore we have

Ar(9)(bn(Xoo), 6a(21)) < B. (7.4)

?
0 Xoo
Figure 7.4: X, and X?_.

We have to show that the length of y in the hyperbolic 3-manifold N, with

9n(0) and g,(2n) as its end invariants is bounded below. To do this we compare
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that to the length of 7 in the hyperbolic 3-manifold with end invariants X, and

Pn(Xoo). First we recall a few results in hyperbolic geometry. The following

theorem is due to Bers and Thurston.

Theorem 7.2. Let M be q compact manifold with boundary. If M is as-
pherical, atoroidal, Héken and with meompressible boundary, then the space of
all geometrically finite complete hyperbolic structures on the interior of M is
parameterized by

T(OM) X ... x T(8,M),

where /M, ... 8. M are boundary components of M.

For oy € T(B1M),... 0 € T(0xM), let M(oy, ... ,04) denote the unique
hyperbolic 3-manifold homeomorphic to the interior of A/ having ; as the end
invariant corresponding to the boundary component ;M. ‘

‘The second result is a generalization of Thurston’s Dehn-filling theorem
due to T.D. Comar and K. Bromberg (see [4], [6], [9]). We adopt the notation
of [6],

Theorem 7.3. Let M be q compact 3-manifold with k torus boundary com-
ponents and assume M has a geometrically finite hyperbolic structure without

rank one cusps. We have the following:

1. For cach collection of relatively prime pairs

(P, q) = (D1, 015 - - ; Pk, @)

(except perhaps findtely many), there exists a geometrically finite hyper-

bolic metric on the (p, q)-Dehn filling M (p, q) of M with M (p, q) having
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the same end invarignts as M,

2. If X isa submarifold of M such that the complement of X is neigh-
borhood of cusps, then foalx is Ky o-bi-Lipschitz, Also, K}, 4 converges

to 1 if min(p? + 2) goes to infinity.
2

We will also need the following theorem of McMullen (see [19]). Note that
here a map is g K -quasi-isometry if the norm of its derivative is bounded from

above by K and from below by .

Theorem 7.4. Let Ny =W /1,4 = 1,2, be a pair of hyperbolic J-manifolds,
and let 9 be o K ~quasi-conformal conjugacy between Iy and Py. Then ¢ ex-
tends to an equivariant L-quasi-isometry YW — W3, where I = K 2. In

particular, N; and Ny are quasi-isometric manifolds.

Corollary 7.5, Let N, = M{o1,... ,01) and Ny, = M(r,...,7) be two hy-
perbolic manifolds. For every B > 0 there exists g constant C' > 0 such that,
if

dresylos, 1) < B t=1,...k,

then, for every closed curpe v in M,

1
ot (7) <l (7) < Cly, ().

For the rest of this section, let M = S x I where S is g hyperbolic surface
of finite type. We denote S x {0} as %M and S x {1} as &, M. Also let
Uyeo sty € [0,1] be an increasing sequence of distinct numbers in the unit

interval, and for { = L...,n, let a; be 3 simple closed curve in S with the
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property that if § is different from Jy @; and «; are not frecly homotopic to e

R
each other. Define
M:M\UO@ X {ti}-

Theorem 7.6. M is hyperbolizable.

Proof. Using Thurston’s geometrization theorem, it is sufficient to show that *: '
M is aspherical, atoroidal and Hiken. A7 ig clearly Hiken since it has a non- i
spherical boundary. We denote a; X {t;} by a.

M is aspherical: Assume M contains an essential sphere; then, by the

sphere theorem, M containsg an embedded essential sphere, X. Since M is

homotopy equivalent to S, m(M) is trivial. Therefore 3 bounds a 3-ball,
B, in M. We know that ¥ does not intersect any of ¢, hence either the
intersection of B with &; is empty or B containg ;. But B is contractible;
therefore it can not contain any of &; which are non-trivial in A, Hence B

misses all oy, and therefore 3 ig not essential,

M is atoroidal: We have to prove that any essential torus in M can
be pushed off to the boundary. Let f : 72 — M be essential. Using the
torus theorem we can assume [ is an embedding. Since M does not have any

essential tori, f(7) bounds a solid torus, K, in M. Since f (7?) is disjoint

from @;, either K N @; is empty or K contains @;. The annulus connecting
b0 i x {0} intersects f(72) (after pushing off the trivial intersections) in a
simple closed curve. Therefore a; can be pushed to a curve in F(T?), that is,
@; is not knotted in X, Let ¥ be a curve in § homotopy equivalent to the core

of K. Since &; is non-trivial in M , 1t i3 non-trivial in X also; therefore &, is

homotopy equivalent to a power of 7. But «; is a simple curve in S; hence it
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is in fact homotopy equivalent to v ttself. This implies that &; is homotopy

equivalent in X to the core of K, and therefore the F(T?) can be pushed off

to ;. [

Embedding M ¢ M gives a homotopy equivalence between the two bound-
aries of M O M and M. We identify the Teichmiiller spaces of the boundary
components of M using this homotopy equivalence and denote it by 7(S). For

Dehn-filling coefficients

(Pas @a) = (1,m;1,7; . .. ;1,m),

M, =M (P, Q) is homeomorphic to M. Therefore there is a natural homeo-
morphism ¢,, between boundary components of M,. Since §,M and MM are
identified, we can think of Pn i M = O M as an element of the mapplng
class group of S. It ig easy to see that

$n=Dj 0...0D2 oDn

23

where D, represents the Dehn twist around the curve o and

& = D" oD% o DP

0—'91—1 g

Therefore, for o € T(S), Mp(o,0) = M (0, ¢ ().

Going back to our example, let S be a surface of genus two, and a;, ... , ay
be respectfully a,d, 8 and #'. Define M, M, M, and ¢n as above and let
No = M(gn(0), g,(2n)). Note that the above definition for ¢, maiches our
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previous definition. Also recall (Equations (7.8) and (7.4)) that

A7(5)(Xo0, 9n(0)) < B and d7(5) (P (Xoo), gn(2n)) < B. (7.5)

Proposition 7.7. The length of v in Ny, is bounded below by a constant in-

dependent of n,

Proof. Theorem 7.3 shows that Af (Xoos (X)) = M, (¢,0) converges to the
cusp manifold M(Xy, X)) as 7 -3 oo (note that ~ is not one of the cusp
curves); therefore there is a lower bound for the length of v in My (Xoo, Xoo).
On the other hand, Equation (7.5) and Corollary 7.5 imply that the ratio of
the length of v in &V, and in M, (o,0) is bounded by a constant independent
of . This proves that there is a lower bound, independent of n, on the length

of v in N,,. dJ
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Chapter 8

The Universal Cur\}e and the Hyperbolic

3-space

In this chapter we prove 2 = 1 in Theorem 1.2. Let (g, V4, v_) be a geodesic in
the Teichmiiller space of .§ and g be the corresponding quadratic differentia]
on ¢(t). Define Uy, the universal curve over g, to be the 3-manifold S x R

equipped with metric dp* defined by the equation
dp® = g, + dt?.
For each £ € R we denote the surface § x {t} equipped with the meiric la:| by

X;. Let U, be the universal cover of U,.

Lemma 8.1. If ﬁg is bi-Lipschitz to 13, then U, is bi-Lipschitz to a hyperbolic

S-manifold N with vy and v_ as its end invarignts,

Proof, Consider the action of @ = m1(S) on ffg. Comnjugating this action by
the bi-Lipschitz map between [79 and H? generates an action of G on H? by bi-

Lipschitz maps, and therefore a quasi-conformal action on C. By a theorem of
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Sullivan [28], one can conjugate this action by a quasi-conformal map of ¢ to

an action of G by a Mébius transformation on € and therefore by isometries
on B, Let I' denote this group of isometrics of B, and let N — /L.
Note that & is bi-Lipschitz to Us. Therefore short curves in ¥ are also short
in U, (Corollary 1.6). Any end invariant of V is a limit of a sequence of
short geodesics in exiting on that end of AV ; therefore N has the same end

invariants as ¢ does. O

Lemma 8.2, Let (9,vy, v_) be a geodesic in the Teichmiiller space of S and
(N vy, v_) be a hyperbolic S-manifold with the same end invarignts as g such

that U, and N are bi-Lipschitz. Then N has bounded geometry.

Proof. Let f: U, — N be the K -bi-Lipschitz map between Uy and N, Assume
N does not have bounded geometry, therefore, for every ¢ > 0 there exists a
curve o in .S such that the hyperbolic length of o in IV is less than ¢, in fact, by
making ¢ smaller we can assume | n(a) = €. Denote the geodesic representative
of @ in N by é. Let M be the Margiilis tube corresponding to & The distance
between @ to the boundary of M is ry, = log(¥2}, where €3, is the Margiilis
constant for dimension 3. For r < To, the r neighborhood of & in N Vir) is

inside M and
voly (V(r)) < r’(e — 1). (8.1)

Let £ € R be the time at which the gr-length of o is the shortest; Let o
be the geodesic representative of a in Xg. If @ has more than one geodesic
representative, choose o to be one of the boundary components of the flat

annulus in X; corresponding to . Since U, and N are K -bi-Lipschitz, we
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have £ < ¢, Ao < Ke, therefore, the length of f () is less than or equal to
K?¢. Hence

flag) C V(K?). (8.2)

Let W(R) be the R-neighborhood of ag in Uy. Using (8.2) we have

FW(R) C V(K R+ K26, (8.3)

Let A; = A x {t} be the largest regular annulys in Xy with 0, 4; = ap and
©(81 A7) > 0. Let R, be the g-distance between the boundary components
of Az. The closure of Az in Xz contains a nop- trivial curve that is different,
form o otherwise A; would not be maximal. Therefore f(Ag) has to exit the
Margiilis tube corresponding to & because a nop- trivial curve in M is homotopy

equivalent to @. Now (8.3) implies

KRy+K?e >, (8.4)

Therefore for R < Ry =% — K¢ we have

FW(R)) ¢ M.

Let By = Bx {f} be the intersection of the &_neighborhood of o in Xy with A,
Since By is expanding area,, (By) =< R}, For € small enough and ¢ € [f—1,#+1],
= B x {t} is in R, neighborhood of oz (the distance between a point in

B and o is at most el &4 1). Also we have areag, (B;) = R? therefore
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voly, (W (R,)) = R2. But FOV(Ry)) € M therefore

Vol (M) > _T’_‘{ltf_g(f{V_Z(_lfl_)l.

Also Ry = ry. Using Equation (8.1) we have

But as ¢ approaches zero, the above inequality can not remain true, The

contradiction proves our lemma, O

Theorem 8.3. If [}g is bi-Lipschitz to P, then any hyperbolic 8-manifold N

with end invariants vy and v has bounded geometry.

Proof. Lemma 8.1 states that Uy is bi-Lipschitz to some (N, vy, v_). Lemma 8.2
implies that N has bounded geometry. Now, since N and N have the same
end invariants and N has bounded geometry, Theorem 1.3 (Minsky) proves

that N also has bounded geometry, O
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