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Abstract of Dissertation

Algebraic Cycles on Real Varieties and Z,-Equivariant
homotopy theory

by
Pedro Ferreira dos Santos
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1999

In Chapter 1 of this dissertation we study spaces of algebraic cycles on a
Real projective variety X. We consider these spaces with the Zg-action induced
from the Real structure on X. When X is Pg these spaces are products
of classifying spaces for Zs-equivariant cohomology with coeflicients in the
constant Mackey functor Z. We prove this by establishing an equivariant
version of the classical Dold-Thom theorem. We also propose a version of
Lawson homology for Real varieties and compute it in some examples. In

Chapter 2 we relate Zy-equivariant cohomology with Z coeflicients to certain

Galois-Grothendieck cohomology groups which are invariants frequently used

in real algebraic geometry.
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CHAPTER 1

Cycles on Real Varieties




1. Introduction

The Chow varieties of a projective variety X are classical objects of al-
gebraic geometry that are casy to define but rather difficult to deal with in
general. A major breakthrough in the understanding of these objects was
achieved by Lawson in the fundamental paper [15] where he computed the
homotopy type of the space Z,(IP%) of algebraic p-cycles on PL. The computa-
tion rests on his algebraic suspension Theorem — the suspension of a variety
X in Pg is the subvariety of ]P’{{frI whose points lie on the lines joining the
points of X and (0:«--:0:1) € P& — PZ. The suspension Theorem asserts

that the suspension map
L1 2,(B) = Zp (P

is a homotopy equivalence. The results and techniques of Lawson’s paper
led to the definition by Friedlander and Lima-Filho of a homology theory
for quasi-projective varieties: Lawson homology. For a p'rojective variety
X the Lawson homology groups of X are the homotopy groups 7.(Z,(X)).
This theory has exact sequences, satisfies excision (in the appropriate sense)
and comes equipped with a cycle map which takes values in the homology of
X with integer coefficients. These features make it into a theory in which
computations are often possible.

Now, Pg¢ has more structure; namely, it is a Reral variety in the sense
that it has an anti-holomorphic involution given by complex conjugation of
its homogeneous coordinates. This involution carries algebraic varieties into
algebraic varieties and gives a continuous Zg-action on the space of algebraic
cycles Z,(Pg). It is natural to ask if Lawson’s techniques can be applied to
study Z,(Pg) with this additional structure.

The first steps in this direction were taken by Lam who proved that Law-

son’s suspension Theorem holds equivariantly [14]. More accurately his work
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shows that the suspension map (which is easily seen to be equivariant) is a
Zy-homotopy equivalence. This was then used to compute the homotopy type

of the space of reduced cycles

ZP:R(PCE) = Zp(PC)Zz/Zp(P%)m:
where Z,(P2)*™ = {c+7-c|c € Z,(P¢)}.
More recently Lawson, Lima-Filho and Michelsohn have computed the ho-
motopy type of Z,(PE)*2; [16]. Moreover, using the suspension map ¥ :
Zy(PR) — Zp41(PET) and the natural inclusions Z,(PR) — Z,(PE™) they

considered the Zy-space of stabilized cycles

ZY lim Z,(P)

n,p— 00

and computed the ring structure induced on the homotopy groups of Z%:
by the operation # of joining cycles — given varieties V, W in ]P‘% and P,
respectively, their join is the subvariety of PLT™+! = PRALPT = P(CrHm2)
whose points lie on the lines joining points of V and W in BE™™+*. This
naturally extends to an operation on cycles which is equivariant.

We continue the study of Z,(P%) with the additional structure given by
the Zs-action and compute its full Z,-homotopy type. In the non-equivariant

case Lawson used the suspension Theorem to reduce to the case of zero cycles.

The Dold-Thom Theorem then gives
mZo(PE) = Hy(Pg; Z).

This completely determines the homotopy type of Zo(PE) because this space
is a topological abelian group, and so, by a result of Moore, it is homotopy

equivalent to a product of Hilenberg-Mac Lane spaces. Thus

Z,(P2) = Z,(PeP) 2 K(Z,0) x K(Z,2) X -+ x K(Z,2(n — p)).
3




Actually this splitting can be made in a canonical way. For each m < n one

constructs group homomorphisms
Zo(Pg) = Zo(P7)/ 2P ™) = AG(FE /PE™) = K(Z,2m)

using the homeomorphisms PZ =2 SP™(PL). Here SP™ denotes the m-fold
symmetric product and AG denotes zero cycles of degree zero. These maps

assemble into a group homomorphism

(1.1) Zo(PL) — ﬁAG(S%)

k=0
which is a homotopy equivalence; see [8]. This splitting has the following
important property. Denote by i,,, the inclusion Z4(PE) ¢ 2Z5(P2) induced
by P2 C P& and by jm.n the inclusion of [}, AG(5%) in [],_, AG(S%) as
the first m factors of the product. Then the diagram

Z(ER) 0 Z(PR)

! !

TTAc(s™) 2225 T] Ac(s™)

k=0 k=0
comimutes up to homotopy.

In the Zj-equivariant case one can still reduce to zero cycles by using
Lam’s result. The main obstacles are then the non existence of generalizations
of the Theorems of Moore and Dold-Thom in a form thatl immediately allows
the identification of the equivariant homotopy type of Z3(IP%). There are
however some tools available: The group homomorphisms used to construct
the splitting (1.1) are equivariant if one considers P¢ with the Z,-action given
by complex conjugation. Now, ag a Zy-space, the quotient PZ/P7™" is the
sphere S™™ ; where $®" = R™* U {oco} and R™"ig R?*" with the Zj-action

given of multiplication by —1 in the last n coordinates. In [18] it is proved
4




that the equivalence (1.1} is a Zs-homotopy equivalence

£(#%) = [ AG(S™).

E=0
Also, Lima-Filho has an equivariant version of the Dold-Thom Theorem

(see [23]) which says that, for a finite group G and a G-CW complex X,

(1.2) m(AG(X)) = HE (X, Z)

Here HC (X;Z) is the Bredon G-equivariant (reduced) homology of X with
coefficients in the Mackey functor Z. The definition of Bredon homology is
similar to homology with local coefficients: A G-C'W complex is a space built
up of spaces of the form D™ x G/H for H < G — called equivariant cells.
A {(covariant) coefficient system M is a functor that assigns to each orbit
space G/H an abelian group and to each G-map f : G/H — G/K a group
homomorphism M(G/H) = M(G/K). An n-chain with coefficients in M is
a weighted sum of cells Y, w;D™ x G/H; where the weighﬁs w; elements of
M(G/H;). The value of M on morphisms is used to define a differential on this
chain complex. The functor Z is a (covariant) coefficient system which assigns
the group Z to all orbits G/H . There is a corresponding version of this for
cohomology which uses contravariant systems instead. The functor Z is also
a contravariant functor, 4.e. given a G-map f : G/H — G/K it also assigns
a morphism Z{(G/K) — Z(G/H). Moreover, there are some compatibility
conditions between the contravariant and the covariant functors defined by Z.
Functors with these properties are called Mackey functors. A precise definition
will be given in Section 2.

Lima-Filho’s result (1.2) brings us very close to our objective. For example,
together with Spanier-Whitehead duality, (1.2) can be used to compute the
homotopy groups 7, (AG(S™")%2) which were in computed in [16] by a direct

method. Following Lima-Filho ([23]) we consider the equivariant prespectrum
b
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AG(8°°5%) defined by the correspondence
Vs AG(SY)

where V runs over the finite dimensional G-submodules of a complete G- ‘
universe UAN. We denote by Z(S) the G-spectrum associated to this G-
prespectrum. Our first result is the identification of the the homotopy type of
Z(S):

PropPOSITION 1.1. The G-spectrum Z(S) is an Eilenberg-Mac Lane G-
spectrum K (0,Z), where Z is the Mackey functor constant at Z.

Thus the G-spectrum Z(S) represents equivariant cohomology with coefli-
cients in the Mackey functor Z.

For any based G-space X and any G-module W there is a G-map
eV AQ(X) = OV AG(SY A X)
obtained as the adjoint of the natural map
¥ S A AG(X) — AG(SY A X),

It is well-known that € is a non-equivariant homotopy equivalence. We prove

that ¢ is also an equivariant homotopy equivalence.
THEOREM 1.1. For any based G-CW complex X the natural inclusion
AG(X) = colimy QY AG(S™ A X)

is a G-homotopy equivalence. Here W runs through the finite dimensional

G-submodules of a complete G-universe UN.

In particular, AG(X) is an equivariant infinite loop space. When we spe-

cialize to X = S we get




CoROLLARY 1.1. The G-prespectrum AG(S°SY) is an Q-G-prespectrum,
i.e. the maps €™ 1 AG(SV) — QW AG(SYWY) are equivariant homotopy equiv-

alences.

The problem of identifying the homotopy type of Z(S) was first addressed
by Lima-Filho in {23]. Our result, which is proved using mainly the techniques
of [23] is a correction to Lima-Filho’s original answer. We also prove the

following RO(()*-graded version of Lima-Filho’s result (1.2) :

COROLLARY 1.2. If X is a G-CW-complez and V' is a G-module then
my (Z0(X)) £ [SY, Z5(X)]e = HE(X; ).

The results above also identify the spaces AG(S™") as classifying spaces
for equivariant cohomology groups with Z coefficients in dimension R®" (recall
that Zg-equivariant cohomology is RO(Z,)-graded). Using these facts we see |
that Z is a weak product of classifying spaces for Zs-equivariant cohomology
with Z coeflicients in the non-integral dimensions RV, R®2 ... R™" ...,
This was conjectured by Daniel Dugger and it was this conjecture that led us
to the identification of Z(S). These dimensions are precisely the ones in which
the equivariant Chern classes for Real bundles live. As in the non-equivariant
case, £ comes with a natural {equivariant) map BU — Z. The following
Theorem summarizes the results concerning the space Z that we prove in

Section 3.

THEOREM 1.2. The space Z has the Zy-homotopy type of a weak product

of classifying spaces
z= ] x@R).
n=>0

The natural map BU — Z classifies the total equivariant Chern class for

Real vector bundles.




The product
ENE = Z

induced by the join of varieties, classifies the cup product in Zq-equiveriant

cohomology with coefficients in the constant Mackey functor Z.

This Theorem is the natural Zg-equivariant version of the main results of
[18]; see Section 3 for the Definition of equivariant Chern classes for Real
vector bundles. '

Having obtained a complete description on the Zy-homotopy type of Z,(F¢)
and of the effect of the join map we propose a definition of Real Lawson
homology for Real quasi-projective varieties. For a projective Real variety
X these are invariants defined in terms of equivariant homotopy groups of the
Zg-spaces Z,(X). Using the techniques developed by Friedlander and Lima-
Filho, we establish the existence of exact sequences, excision and a cycle map
which takes values in the Zo-equivariant homology of X with Z coefticients. In
the definition of the cycle map we make use of the RO(Z,)"-graded version of
Dold-Thom mentioned above. Our analysis of Z,(IP%) gives us, in particular,
the Real Lawson homology groups of affine space A" = Pg — P%‘l, with its
standard Real structure, and computes the effect of the cycle map. Excision
and exact sequences then allow us to compute these invariants for a class of
examples: Real varieties with a Real cell decomposition. This class includes,
for example, the Grassmannians G,(C*) (with the Real structure induced by
sending a complex plane to its complex conjugate plane) and P% x P2 with
the product of the standard Real structures on Pg and F{.

By considering different Real structures we can produce lots of different
examples of Real varieties for which the non-equivariant Lawson homology
groups are known. Examples of this are P§ x Pg with the action 7 (z,y) =

(4, ), the Real quadrics and the the Quaternionic spaces, Pe(H"). These have
8




a Real structure induced by multiplication of the homogeneous coordinates by
the imaginary quaternion j. The Real Lawson homology groups of some of
these examples are computed here and we expect that they should all be
possible to compute. In the case of the Quaternionic spaces the homotopy
groups of the Real cycles have been computed in [17] by a highly non-trivial
technique. We expect that the spaces of cycles in Pe(H™) should be related
to some fundamental construction in Zs-homotopy theory, as is the case with
the cycles in P¢ with the standard Real structure.

We point out here that the knowledge of the Real Lawson homology groups
of a Real variety X completely determines, in particular, the homotopy type
of the spaces of Real cycles on X, i.e., the cycles fixed by the involution,

Z,(X)P.

2. The G-equivariant Dold Thom Theorem

We start by recalling the definitions of some topological functors used by

Lima-Filho in [23]. For the most part we follow the notation of this paper.

. DErFINITION 2.1. Let X be a topological space. We define the following

topological monoids and groups:

1. The infinite symmetric product of X is

SP(X) = {0} 1 {H X“/zﬁ}

n>1
where X, is the symmetric group on n letters; 0 is an extra point not
in any of the spaces X"/%,. The spaces X" /¥, are given the quotient
topology and SP(X) is endowed with the disjoint union topology. Note
that SP{X) is a topological monoid: If x € X" 2" € X™ then (z,1')
represents another element z -+ 2’ € SP(X). If x = 0 then we set

t+a =2 +z =2 for any ' € SP(X).
9




2. The group of zero cycles on X, Z3(X) is the naive group completion of
SP(X). Tt is defined as the quotient of

SP(X) x SP(X)

by the equivalence relation (z,y) ~ {(z',v') if z +4' = y 4+ 2. The
elements of Zo(X) are formal sums of points, 3. n,2; with n; € Z and
z € X _

3. AG(X) is the kernel of the augmentation homomorphism deg from
Zy(X) to Z. This homomorphism is defined by deg(3>", niz;) = 3>, ni,
for n; € Z and z; € X. The elements of AG(X) are the cycles of degree

ZEero.

NoTE 1. The notation used here for the zero cycles of degree zero is not
the same as in [3] where AG(X,0) is used instead of AG(X). Our notation is
taken from [23].

If ¢ is a finite group and X is a G-space, these functors take values in the
categories of G-topological monoids and G-topological groups. In [23] Lima-

Filho proves the following equivariant version of the Dold-Thom theorem; [3].

THEOREM 2.1. ([23]) Let (X, A) be a G-CW pair (see Definition 6.1).

Then there 18 a natural equivalence
mi(AG(X/A)Y) = Hf (X, A Z).

where HE(e;Z) denotes Bredon homology with coefficients in the constant

Mackey functor Z (Definition 2.4).

Observe that m;(AG(X/A)%) can also be described as the equivariant ho-
motopy classes of maps from S* to AG(X/A) where S* is equipped with the

trivial G-action. The G-space S is the one point compactification of the trivial
10 ‘




G-module B, We now want to replace R by a general G-module. Before we
can state our goal some more definitions are needed. We follow the conventions
and notation of [24] for G-spectra and for all matters regarding equivariant
homotopy theory.

A complete G-universe is an orthogonal G-module containing countably
many copies of each irreducible G-representation. We fix a complete G-
universe YN and all the G-modules we consider are assumed to be finite
dimensional submodules of 4N, An indexing set A in UN is a collection of
submodules of 4N — called indexing spaces — which contains the zero sub-
module and is cofinal. For example, in the case of G = Zq we let 4N be the
real Zo-module C® with the action given by complex conjugation. Then {C"}

with C ¢ €2 ¢ C* < -+ is an indexing set.

NOTATION . If V is a G-module then SV denotes the one point compact-
ification of ¥V, ¥ = V U {co} and, for a G-space X, ZVX & oV A X,

DEFINITION 2.2. A G-prespectrum X indexed by A is a collection of G-
spaces X (V), where V' € A with structural G-maps

WYX (V) A X(W).

where V is a submodule of W and W — V is the the orthogonal complement
of V in W. The maps oV are required to satisfy certain compatibility con-
ditions; see [24, ChapterXII]. A G-spectrum is a G-prespectrum X such that
the adjoints

X(V) — Q¥ VX(W)
of the structural maps are G-homeomorphisms.

NoTaTION . The following notation will be used throughout.
11




1. If X and Y are pointed G-spaces, the set of pointed maps X — YV
has a natural G-action given by conjugation. We denote this G-space
by F(X,Y). The set of equivariant homotopy classes is denoted by
[X, Y]e.

2. If X and Y are GG-spaces, the set of stable G-equivariant homotopy
classes of maps X -+ Y is denoted by {X,Y }¢. This is defined as the

limit
colimy[ZV X, T Y]q.

Here the limit is taken over the finite dimensional G-submodules of the

universe UN.

3. The suspension G-prespectrum and G-spectrum of a G-space X are de-
noted by %X and XX, respectively. We recall that 2°X = L(S>X),
where L is the left adjoint functor of the forgetful functor, £, from the
category GS of G-spectra to GP, the category of G—i)respectra. The
sphere spectrum, Y259 is also denoted by S.

Associated to a G-spectrum F there are RO(G)-graded equivariant coho-
mology and homology theories defined on G-spaces by

E4(X) ¥ {5 A X, Elg = colimy S~ A X, E(W)|g
and
Eo(X) € {S% B A X} = colimp [S*, B(W) A Xg.

When o is the trivial representation R® we write E™ and FE), instead of £, |
E,,. There exists an equivariant spectrum HZ so that the groups HZ ,(X)

are the Bredon homology groups HS(X;Z); see [24]. It is now natural to ask

if Theorem 2.1 has a generalization for general G-modules V. That is, we ask

12 h




if there is an isomorphism
m(AG(X)) = HZ y(X)

where 7y (AG(X)) = [SY, AG(X)]g. This is what we mean by the RO(G)"

version of the equivariant Dold-Thom Theorem.

Our main goal in this section is to answer this question. i

NOTATION . Since HZ ,(X) is the extension of (reduced) Bredon homol-
ogy with Z coefficients to an RO(G)-graded theory we will denote it by

HE(X;Z). The same convention will be used for equivariant cohomology.

ConNSTRUCTION . We need the following construction introduced by Lima- ;
Filho:
If X is a G-prespectrum we can apply the functor AG to the spaces X (V)

and the structural maps ‘ |
SYX(V) — X(V+W)

naturally extend to maps

SWAG(X(V)) — AGX(V + W) ‘

defining a G-prespectrum AG(X) |
Following Lima-Filho we define

DEFINITION 2.3. Let X be a G-prespectrum. Then

Z(X) & L(AG(X)). %

We also need the definitions of Mackey functor and Burnside category. See

(24| for more details.

13




DEFINITION 2.4. The Burnside category Bg has as objects the orbit

spaces G/H and the morphisms are
Be(G/H,G/K) ={G/H,,G/K }¢q.

A Mackey functor is a contravariant functor from Bg to the category of
abelian groups, Bg — Ab. Observe that Bg is an abelian category since the

sets {G/H,, G/K}q are abelian groups and the composition is bilinear.

We will now describe the morphisms in Bg. A G-map G/K, — G/H,
induces a stable map X°G/K, — Y°G/H, thus giving a morphism in Bg.
Associated to every subgroup H of G there is a stable transfer map 7(G/H) :
G/G. — G/H, defined as follows. Let V be a G-module in which G/
embeds equivariantly. Choose disjoint disks around the points of G/ H so that
they are permuted by the action of G, Collapsing the complement of the disks

we get an equivariant map
T(G/H) : SV 5 SV A G/H,.

The class of 7(G/H) in {8° 5° A G/H,}g is independent of V' and of the
embedding G/H C V; see [29].

More generally there is a stable transfer map G/H, — G/K, for every
group inclusion K C H which we now describe. First embedd H/K into a G-
module V considered as an H-module by restriction of the action. Apply the
Pontrjagin-Thom construction above to get a transfer map 7(H/K) : 8V —

SY A H/K,. Now extend this to a G-map
SYAG/H, =28V Ag Gy — (SYAH/KL) A Gy =5V ANGJK,

A general G-map f : G/K — G/H is a composition of a conjugation
isomorphism ¢, : G/K — G/g~'Kg and a projection induced by an inclusion

g~'Kg C H. Define 7(c,) as the stable map induced by ¢,-1. Define 7(f) €
14




{G/H,,G/K,} as the composition of 7(c,) and the transfer of the projection
G//9 'Ky — G/H. Every morphism of Bg is a composition of maps of the
form f and 7(f); see [24, Chapter XIV§3].

Associated to any G-prespectrum there are naturally defined Mackey func-

tors m,. X, n € Z.

DEFINTTION 2.5, Let X be a G-prespectrum. Define the Bredon homotopy
groups of X

X (G/H) = 77 X ¥ colimy [S™ 1% A G/H.., X (W)le.
A specially important case of this is
DEFINITION 2.6. The Burnside ring Mackey functor A is defined by
A(G/H) ¥ 7oS(G/H) = {G/H, 5% = {59, 5% .

It is a fundamental result of Segal that, for a finite group G, {S°, $"}¢ is
isomorphic to B((), the Burnside ring of . The ring B(G) is a classical object
defined as the Grothendieck ring of isomorphism classes of finite G-sets with
the operations of disjoint union and Cartesian product; see {24, Chapter XVII].
This isomorphism is the motivation for calling B the Burnside category. We
briefly sketch the definition of the isomorphism x : B(G) — {S% 5%}z. On
the finite G-sets G/H, x(G/H) is the stable class defined by the composition

SV I oV A GrH, 2 8V

where pr : SY A G/H, — SV is the projection onto the first factor. For a
general finite G-set YV, x(Y) is defined the a Pontrjagin-Thom construction
associated to an equivariant embedding of ¥ in a G-module V. Restricting
to H-fixed point sets we get a map x(Y)¥ : SV — V" whose degree is the
Euler characteristic of Y¥. For this reason the function y is also called the

Euler characteristic.
15




We will need the following result concerning the Mackey functor A.

ProrosiTion 2.1 {[29, Section IL.8]). The group
AlG) = {5°,5")¢

is a free abelian group on generators x(G/H) where H runs through o set of
representatives of the conjugacy classes of subgroups of G and x is the Buler

characteristic defined above.

DEFINITION 2.7. The constant Mackey functor Z is the unique Mackey
functor, M, that satisfies:
1. M(G/H)=12Z for all H < G.
2. On morphisms f : G/H -~ G/K of Bg induced by G-maps G/H —
G/K M(f) is the identity homomorphism.

The homomorphism Z(7) induced by the stable transfer map G/H, —
G /K, associated to an inclusion K < H is multiplication by the order |H/K]|.
The functor Z can also be defined as a quotient of A by another Mackey functor

I whose value at G/ H is the kernel of the map
{G/H+1 SU}G — {G+= SO}G =7

induced by the G-map G — G/H. See [24, Chapter IX] for the proofs of these
facts.

There is an alternative description of Z which is purely algebraic. The
existence and uniqueness of this functor ag well as the equivalence of the two
definitions are proved in [24].

In the case G = Zo, Z is the Mackey functor with the value Z on both
elements Zy and Zq/Zg of By, The homomorphisms Z — Z induced by the
projection Zg — Zg/Zy and its transfer are the identity and multiplication by

two, respectively.

16




Before we can state our first result we need another definition.

DEFINITION 2.8 ([24]). Let M be a Mackey functor. A G-spectrum E
is an Hilenberg-Mac Lane G-spectrum K (M, 0) if m,(E) = 0 for n # 0 and !

mg(#) = M. This property determines ¥ up to homotopy equivalence. !

Given a Mackey functor M there exists an Eilenberg-Mac Lane G-spec-
trum K (M, 0) and this spectrum represents the RO(G)-graded equivariant i
cohomology theory with coeflicients in M.

In particular, the equivariant spectrum HZ that represents equivariant

cohomology with Z coefficients is a K (0, Z) spectrum.

PROPOSITION 2.2. For a finite group G, the G-spectrum Z(S) is an Filen-
berg-Mac Lane spectrum K(Z,0). Thus , for a € RO(G), we have

(2.3) Ta(Z(8)) = colimw [S* A SV, AG(S™ )]s, = HE (pt; Z) i
G | |
Where, as before, HE (8;Z) denotes equivariant homology with coefficients in "

the Mackey funcior Z.

Proor, It is proved in [23] that, for a large enough representation V of
(G and for n > 0,

v (AG(SY)) = 0;

see also Section 6. This implies that 7, (%(S)) = 0 for n > 0. For n < 0, we !

have

T (Z(S)) = colimy [SY+™ A G/H ., AG(SW)]¢ =

COliIIlW [SWHI-H, AG(SW)}H

Let W be large enough so that it has —n copies of the trivial H-representation

and set d = dim W. Since AG(SY) is d-connected and the complex S% " has |
17




dimension less than d, it follows that
[SWH AG(S™ )] = 0

hence m,” (Z(S}) = 0.
We have to show that 7o(Z(S)) = Z. We start by observing that there is a

morphism of Mackey functors
A= 1S = mo(Z(S))
induced by the map ¢ : S — Z(S) defined at the space level by
s S — AG(SW)
Ei= %5 —00

where, as usual S = W U {0}.
The map ¢, is surjective; this is implied by the stronger fact that for a
G-module V containing a copy of the trivial G-representation and any H < G

the map
1SV, 8 ] =[SV, AG(SV)]

is onto. This is proved in Lemma 6.3.

Thus mo(Z(S)) = A/kers, and it suffices to identify ker 1, as the Mackey
functor [ mentioned after Definition 2.7. This amounts to showing that two
elements in {9°, 5%}y have the same image under ¢, if their image under the
forgetful map ¢ : {S°, 5% — {S9,5°} is the same. So the proposition will
follow if we show that two elements of {5, 5%}¢ which are non-equivariantly
homotopic have the same image under .

Recall from Proposition 2.1 that the elements x(G/H) form a bagis for the
stable stem {59, S°}¢. We now show that ., (x(G/HY} is a multiple of the class
1. (x(G/@G)) — which is the class induced by the identity map S° — S° — and
that completes the proof.
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The composition
sV TG, oV A Gl B SV AG(SY)
factors as
SV TG o\ GrEL 2 AG(SY A GJHL) 2 AG(SY)
where (g : S AG/H, — AG(SY AG/H,) is given by

> (@i AgH) = Y (@ AgH — o0 A g:H)).

i i ¥

Note that [AG SV A G/H ) = (G/HJr,AG(SV)jand
(2.4) [SV (G/H+:AG(SV))]G =[5V, AG(S")]n.

Arguing by induction on the subgroups of & we can assume that there is a
G-module W so that the image of x(G/H) o tg/m in [SVT7, AG(SVTW)]g
is a multiple of s, (x(H/H)). Translating this back into [SY*W F(G/H,,
AG(SYTW))g via (2.4) we see that 7(G/H)otgi Is G-homotopic to a multiple
of
z Z (z AgH — oo A gH)
gHeG/H

which projects to |G/H|u.(x(G/G)).

1

Having identified Z(S) as a K (Z,0) G-spectrum it follows that, for any
based G-space X and for o € RO(G),

To(Z(S) A X) 2 H (X, 2).

NOTATION . Given based G-spaces X, Y there is a natural map

AG(X)A X — AG(X AY)
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defined by

(Z 3:%) Ay Z(”L“ Ay).

We use Lima-Filho’s notation and denote this map by Rx y or, just Rx when-

ever ¥ is understood.

We are now in a position to prove the RO(G)*-graded version of Theorem

2.1.
THEOREM 2.2. Let X be a based G-OW complex. Then the inclusion
AG(X) S Z(£°X)(0) = colimyy O AG(SY A X)
is a -homotopy equivalence. Moreover, for every G-CW -complex X, the map
Ry (Z(S)A X)(0) = Z(Z*X)(0)
is @ G-homotopy equivalence. In particular, for any V € RO(G)T,
(2.5) Ty (AG(X)) = Hy (X 7).

Proor. Consider the functors, HE defined on the category of pointed G-

C'W-complexes, with values in abelian groups, by
HE(X) € colimy [S7 7, AG(S™ A X)]g = 7§ (Z(T*X)).

From Lima-Filho’s equivariant version of the Dold-Thom Theorem, it follows
that the functors HE define a reduced equivariant homology theory',‘z'.e., they

the following axioms:

Functoriality: It is clear that a map f : X — Y induces ahomomorphism
20




Exact Sequences: By Lima-Filho’s result, Theorem 2.1, and the fact
that colimits preserve exact sequences, it follows that a G-cofibration

A — X — Y gives rise to an exact sequence
Hi (A) = HF(X) —= HE(Y).

Homotopy Invariance: It is is clear that G-homotopic maps maps f, g
X — Y induce the same maps on fi, g, : HS(X) — HE (V).
Suspension Axiom: We have HS (X) = HE,, (S A X).

By Proposition 2.2 we can compute the coeflicients of the theory HE. In
fact,
HE(G/H,) = colimy [SY, AG(SY A G/H)g
= colimy [SY, F(G/Hy, AG(S™" )]
= colimy [S¥ A G/H,, AG(S™)]e = mo(Z(S))(G/H)
and so HE also satisfies

Dimension Axiom: Let H < G and k # 0 then, by Proposition 2.2, we
have H$ (G/H,.) = 0.

Moreover,
HG(G/Hy) = mo(4(8))(G/H) = Z(G/H).

We conclude that #S(X) 2 HE(X;Z). The natural map &% : 1, (AG(X)€) -
HE(X) is a transformation of homology theories and, therefore, a self trans-
formation of (reduced) Bredon homology. It’s clear that the transformation
¢ an isomorphism when X = G/H,, and so it is an isomorphism for any X.

Since G is an arbitrary finite group, we have proved that the natural map

AG(X)T 25, colimyy {QY AG(SW A X))
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is a homotopy equivalence for all H < (. This implies that & is a G-homotopy
equivalence. That completes the proof of the first part of the Theorem.

For the second part we observe that, by Proposition 2.2,
HE(X;7) = colimy [S™7, AG(SY) A X]a = 7S{Z(S) A X).

There is a natural map Ry : Z(S)A X — Z{X*X) induced by the space level
map Ry : AG(SW)A X — AG(SY™ A X) and this defines another self trans-
formation, IZ, of Bredon homology. We claim that it is also an isomorphism.
As before, this is proved by showing that R is an isomorphism on the coeffi-
cients G/H,.. By definition, Rg/q, is the identity. We now use the fact that
H§ (e;Z) is the Mackey functor Z: For any H < G, there is a commutative

diagram
L(GIH) = BY(G/H;E) —2 HE(G/H;T)
idT Tid
LG/G) = H§(G/GiB) —“5 H§(G/G; )
where the vertical maps are the contravariant homomorphisms induced by the

G-map G/H — G/G. It follows that Rgp, is an isomorphism and hence
that, for any G-CW -complex X, the map

Z(S) A X (0) 25 Z(2°X)(0)

is a G-homotopy equivalence.
Together with the first part of the Theorem, this implies, that, for every
G-module V,

my (AG(X)) 22 colimy [S¥ W, AG(SY A X)) =
colimy [SY7, AG(S™) A X = HE(X; Z).

(|
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NoTE 2. The fact that
Rx : (Z(S) A X)(0) = Z(Z%X)(0)

is a G-homotopy equivalence is proved in [23] with more generality. In fact,

Lima-Filho shows that for any G-spectrum X the map Ry : Z(S)A X — Z(X)

is a G-homotopy equivalence. We chose not to use this result in the proof above

so0 as to make the exposition more self-contained.

COROLLARY 2.1. The G-prespectrum AG(S*SY) is an Q-G-prespectrum,

i.¢., the maps
AG(SY) — QW AG(§7TY)
are G-homotopy equivalences.

ProoF. The follows from Theorem 2.2 with X = SV. O

3. The Zs-homotopy type of £ and Real Vector Bundles

Using the Zs-equivariant version of the Dold-Thom Theorem of the pre-

vious Section and the results of {14] and [16] it is now easy to describe the
Zo-homotopy type of Z,(P¢) — the space of p-dimensional algebraic cycles on
PZ%. In the non-equivariant case (see [18]) the spaces Z,(IPg) are classifying
spaces for even dimensional cohomology with integer coefficients. When con-
sidered as a Zg-space Z,(IPg) is still a classifying space for certain equivariant
cohomology groups. However, Zq-equivariant cohomology is RO{Z,)-graded

rather than Z-graded. The cohomology groups that Z,(PZ) classifies are the

ones in which Chern classes of Real vector bundles live and these have non-

integral dimensions. |
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We begin by collecting some definitions and notation introduced in [15].
Irom now on IPP{ is considered as a Zq-space with the action of Z4 given by com-
plex conjugation of its homogeneous coordinates. This action sends algebraic

varieties to algebraic varietics and thus induces an action on Z,({Pg).

DEFINITION 3.1. Let X be a subvariety of PE. The subset of P& con-
sisting of all points of the lines joining points of X to the point (0:---:0: 1)
is a subvariety of ]P’%*"1 denoted by ¥ X. It is defined by the same equations
as X but now considered as equations in n -+ 2 variables. The operation ¥
increases dimension by one and keeps the codimension fixed.

More generally, given varieties X C P¢ and Y C P the set of points of the
lines joining points of X to points of ¥ — which we denote by X#Y — is a
subvariety of PRt = PLAPE. Observe that dim X#Y = dim X +dim Y +1
and 1 X = X#P.

The importance of the operation ¥ for the computation of the Zy-homotopy
type of Z,(IP%) is given by the following result of Lam. This result is an equi-

variant version of Lawson’s suspension Theorem ; [15].

THEOREM 3.1. [14] The suspension map
L Zy(P) — Zp-lrl(lpgﬂ)
8 a Zo-homotopy eguivalence.

Theorem 3.1 reduces the computation of the homotopy type of Z,(Pg) to
the case of dimension zero cycles, but it actually does more than that. It allows

us to define an equivariant product on Zo(Pg). First we need a definition.

DEFINITION 3.2, The space Z of stabilized cycles is

Z = lim Z,(P%)

T1,p—3CO
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where the limit is defined w.r.t. the suspension map and the natural inclusions

Z,(Fg) C Z,(Pg").

Observe that, by Theorem 3.1, 2 is Zy-homotopy equivalent, to Z,(P).
We are ready to defined our product.

DEFINITION 3.3. Let o : € x C* — 212 he the “shuffle” isomor-

phism defined by o(z, w) = (25, Wy, . . . , Zn, Wy). Consider the compositions
7 O+ - I
2,(B2) A Zo(BR) B Z107) 25 2,80 ) P 2y(R).

The maps 7' : Z (P2 —» Z,(P2) can be chosen go that the composi-
tions above are compatible with the inclusions Zo(PE) — Zo(PZ*"). Thus
they define a product Z(PE) A Z(PF) — Z3(PZ). Using the Zz-homotopy
equivalence Zy(P¥) = Z this defines u : Z A Z — Z. 1t is clear that p is

equivariant.

The product p plays a central role in Lawson homology. We will come back
to it after computing the Z,-homotopy type of Z.

In the non-equivariant case the Dold-Thom Theorem computes the homo-
topy type of Zo(Pg) since this space is a topological group and a Theorem of
Moore says that every such space is product of Eilenberg-Mac Lane spaces. In
the equivariant world there is no version Moore’s Theorem so the homotopy
groups of a topological G-group do not determine its equivariant homotopy

type. However in the case at hand we have the following result.

NOTATION . Let V denote the Zgo-module R, Equivalently, V is the real
vector space C with Z, acting by complex conjugation. The one dimensional
sign representation of Z, will be denoted by 4. | |

Given a Zy-module V, we define |V*| : {Zy, {0}} — Z by

V¥|(H) = V7| = dim V H = {0} or H =7,
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THEOREM 3.2. [16] There is a map

n
Zo(Bg) - [ [ AG(S™)
k=0
which is a Zip-homotopy equivalence.

Our equivariant version of the Dold-Thom Theorem now computes the Z-
homaotopy type of Z3(IP¥) but before we can state the result another definition

is needed.

DEFINITION 3.4. Let V be a Zy-module with at least one copy of the trivial
representation. An equivariant Eilenberg-Mac Lane space K(Z,V) is a
Zy-space X satisfying

1. X is |V*| — 1 connected, i.e.,

T (XH) =0, for k < dim V¥, H = Zy or # = {0}
o w0,
2. My (X) =
Z ifk=0.

A K(Z,V) space is characterized up to Zy-homotopy equivalence by these
properties; see [24, Chapter X1,§5].

NOTATION . From now on we will use the notation H*(e; Z) for Zy-equi-
variant cohomology with Z coefficients. In order to avoid confusion with the
singular cohomology groups with Z coeflicients will be denoted by Hg;, (e;Z).
Similar conventions hold for homology groups.

THEOREM 3.3. The space of stabilized cycles, Z, is Zy-homotopy equiva-
lent to the following weak product of equivariant Eilenberg-Mac Lane
spaces
(3.6) z 5 [[ K@ k).

k=0
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Thus, for a pointed Zig-space X,

oo

(X, 20(PE)z, = €D B (X; 2).

k=0
ProOF. This is an immediate consequence of Theorems 3.2 and 3.1, Propo-
sition 2.2 and Corollary 2.1.
O

We now analyze the equivariant product p. In [18] it is proved that, non-
equivariantly, u classifies the cup product in singular cohomology with integer
coeflicients. There is a notion of cup product in Bredon cohomology with Z
coeflicients. The existence of this product makes the equivariant spectrum
HZ into a ring spectrum (see [24]) and so the equivariant cohomology theory
HZ* has a product which we also call cup product. In the next Proposition

we show that u classifies the cup product in equivariant cohomology.

NoTE 3. In the proof of the next proposition we will néed to following
fact: Let G be a finite group and let {X,} be a family of G-spaces. Then
AG(V, X,) is G-homeomorphic to the weak product [[, AG(X,) If i, denotes
the inclusion X, C Y/, X the homeomorphism is given by @ota.; see [23] for

a proof.

ProrosrrioN 3.1. Under the equivalence of Theorem 3.2 the map
W:ZANZ 2

is Zin-homotopic to the biadditive extension
oQ o0 A o0
(H AG(S’“”)) A (H AG(SW)) S [ AG(s™).
k=0 k=0 k=0
of the smash product of spheres, S¥ A S®Y — SWHW - In particular, it
classifies the cup product in Ze-equivariant cohomology with Z coefficients.
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ProoF. Consider SV included in Z by

S 5 ¢z — 00 € AG(S™) € 2.

We start by showing that, for every &, &', the restrictions u, A|S® A S¥V are
Ziy-homotopic. In [18] it is proved that these restrictions are non-equivariantly

homotopic. We will see that the forgetful map
(3.7) & : [S™, 2z, — [S™, 2]

is an isomorphism. Thus the fact that p, A|S*Y A S¥Y are homotopic implies

that they are also Z,-homotopic. Note that

1S, 2lg, = @ HY (5™ ) = P BV (o1 2) = 1 (pt; Z)
k=0 k=0

: see (3.9). The map & is the map induced in equivariant cohomology by
the projection p : S™ A Zy, — S™. All we are saying here is that for any

Zo-spaces X, Y, the composition
(X, Y]z, 55 [X AZoy, Y]z, 2 [X, Y]

is the map that forgets the Zs-action. The isomorphism (3.7) now follows
from the fact that the H(pt;Z) — H%(Z,;Z) induced by Zg — Zy/Zy is
an isomorphism — Bredon cohomology with coefficients in Z is just singular
cohomology of the orbit space.

We now use the Zy-homeomorphism

ﬁAG(Sk_V) o AG(@ SEV)
k=0 k=0

mentioned before. From what was said above we see that restrictions of 1 and

Ato Vil S A Vies S¥V are Zy-homotopic. Let

H: {?S’“"/\ {78’“"’/\1},%3
k=0 k=0
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be an equivariant homotopy from the restriction of A to the restriction of .

Extend H to an equivariant homotopy through biadditive maps

P AG(\ SP) x AG(\] S¥V) x I —» 2

k=0 k=0

Since A is biadditive we have F(e,»;:0) = A. Now, u is biadditive up to Zs-
homotopy, so F(e,e;1) is Ze-homotopic to p. Since F'(e,e;t) is biadditive, F

descends to

G((} SEVY A AG({} SEYAT

k=0 k=0 I

This completes the proof that A and p are Zs-homotopic.
The statement regarding the cup product is a consequence of fact that

the product A is the product induced on the Zy-{2-prespectrum V — AG(SY)

from the cup product in Bredon cohomology and this is proved in by Daniel
Dugger in [4]. E-A
] !

REMARK 3.1. The equivariant product u on Z restricts to a product on
the fixed point set ZR f 222 S0 the Z- graded group of homotopy groups of

Zg has a ring structure given by this product. The computation of this ring

is one of the main results of [16]. In view of Proposition 3.1 this ring can be

interpreted as a subring of the equivariant cohomology of a point: For & > 0,

Theorem 3.3 gives,

(3.8) |
me(Zr) = EDIS*, AG(S™)]e, = @) H™ (5% 2) = D H P (pt; 2). !
|

n>0 n>0 n>0
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where, S* is equipped with the trivial Zy-action, as usual. The cohomology

groups of a point are (see [4])

Zg mneven, 0< —n<m

ot pn Z  neven, —n =1m
(3.9) H" ™ (pt Z) = T

Ze mnodd,1<n<-—-m

0 otherwise

So we see from (3.8) that 7,{2Zg) is isomorphic as a group to the subring
consisting of the HPY®(pt;Z) such that ¢ > 0. The fact that the product
structure is the same follows from Proposition 3.1. From (3.9) we can also

conclude that the homotopy type of K(nV, Z)2* = AG(S™)?2 is
(3.10)
K(Z,2n) x K(Tia, 2 — 2) % K(Z, 21— 4)+ -+ x K(Za,n) n even,

K(Zg,2n — 1) X K(Zy,2n — 3) X -+ X K(Z3,n) n odd.
NoOTATION . We will denote the generators of
H"W (K (Zy,n + k); Zo) and of H(K(Z, 2n); Z),

in the decomposition (3.10) by ¢, and ¢, , respectively. The classes 4,y are

studied in [16].

REMARK 3.2. The classes ¢4, have the following interpretation in terms
of equivariant cohomology. Let X be a Zy-space with the trivial action. The
equivariant cohomelogy groups H*(X; Z) correspond to equivariant homotopy

classes of maps

Hn+nu(X;Z;) &= [X-H AG(SHV)]ZB = [X-H AG(SHV)Z2]
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where the last equivalence follows from the fact that X has the trivial action.

From 3.10 there is a further equivalence

nf2
H2 (X 7) @@Hﬁ;q% (X;%9) n even,

smq

e (X3 Z_) = (n—1)/2

P uEF X ) n odd,
k=0

Another way of writing this is

Hn+nu X; Z @

pro=n

(X; HY"(pt; 1)),

:.mq
and, in general
H™ (X, 1) 2 @ HE, (X5 HY™(pt 1)),
pta=m
The classes i, determine the restriction of the functor X* — H™ (X, Z)

to spaces X with trivial action. This functor will be analyzed more closely in

Chapter 2.

One of the interesting features of the space Z is that the classifying space

BU maps naturally into it, as follows. We have
BU = lim G,(C™).
n—oco

Linear spaces in € are degree one cycles on IP?C”“I, thus BU maps to the space
Z of stabilized cycles and this map is equivariant when BU is considered as a
Z.o-space under the action of complex conjugation of planes. With this action,
BU is the classifying space for the reduced KR-theory of Atiyah ([1])}. TIts
Zo-equivariant cohomology can be easily computed using the equivariant cell
decomposition coming from the Schubert cells. Denoting by R the cohomology

ring of a point H*(pt; Z), we get

H*(BU;Z) 2 R[@,... G .},
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where the €,’s are classes of dimension n) whose images under the forgetful
functor to non-equivariant cohomology are the Chern classes, ¢,; see Lemma
5.1 for a similar computation. The classes ¢, are universal characteristic classes
for Real vector bundles. We call them equivariant Chern classes for Real vector
bundles. We show that, as in the non-equivariant case, the map P : BU — Z

classifies the total equivariant Chern class:

PROPOSITION 3.2. Let i,y denote the universal nV-dimensional class in
H*(K(nV,Z);Z). Using the isomorphism (3.6), we consider i,y has an ele-
ment in the cohomology of Z2. Then

P*(an) = En.

PROOF. The proof goes exactly as in the non-equivariant case. One ob-
serves that BU(n) = limy, G (C***) maps to
T

lim 2Z,(PEt*) 22 | [ AG(S™),

k—yo0
k=0

where the limit is defined using the map T : Zi(PE™*) —» Zpyr (PR, Thus
P*(1;)|BU(n—1) = 0 and so P*(tny)} = A&, for some A € C. Let ¢ denote the
forgetful functor from equivariant cohomology to singular cohomology. Since
Piny = o — the generator of H*(AG(S?; Z)) — and by [18] P*(ian} = cn

we conclude that A = 1 and the result follows. &

4. A version of Lawson Homology for Real Varieties

In this section we propose a definition of Lawson homology for Real alge-
braic varietics. This definition is a natural equivariant generalization of Law-
son homology for projective varieties and we check that all the basic properties
which make Lawson homology computable go over to the Real case.

We start by recalling the definition of Real variety.
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DEFINITION 4.1. A Real quasi-projective algebraic variety U is a quasi-
projective variety with an anti-holomorphic involution 7 : I/ —+ U. The pro-
jective space Pg with v(zo : -+ 1 @) = (To : - -+ : Tp) is an example of a Real
variety. Any Real quasi-projective variety has a Real embedding into a projec-
tive space, i.e., there is an embedding ¢ : U — ¢ which is equivariant w.r.f

the action induced by complex conjugation on Pg ( see [26], for example).

Recall also that, for a projective variety X, the Lawson homology groups

of X, L,Hi(X) are

LpH(X) % mp_gpZp(X) for k > 2p and p < dim X.

If X is a Real variety with involution 7 : X — X then the group of
p-cycles Z,(X) is naturally a Zg-space: Observe that, for a subvariety V,
7.V is a subvariety and extend 7, to all cycles by linearity. Suppose [ :
(X',7") — (X,7) is a Real isomorphism. It follows that f induces a Zy-
equivariant homeomorphism fy : Z,(X') — Z,(X) defined by

fe Zn‘LVi, = anf*(vz)y

see [6]. Thus the equivariant homeomorphism type of Z,(X), equipped with
the action 7, is an invariant of the Real structure on X. From here onwards
the groups Z,(X) are always considered as Zs-spaces with this action.

In trying to define invariants of the Real structure it is natural to look at
spheres with Zs-actions and consider equivariant homotopy classes. We are

therefore naturally led to the following definition.

DEFINITION 4.2. Let X be a Real projective variety. The Real Lawson

homology groups of X, are the groups

Ly H, (X) =4 '”'a—pvzp(X) £ [Sa-—-pl}, ZP(X)]ZZ
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where p is an integer such that 0 < p < dim X, « is a real orthogonal repre-
sentation of Z; containing p) and o — pV denotes the orthogonal complement
of pV in «. Recall that V denotes the Zs-module C with the Zs-action defined
by complex conjugation.

The previous observations imply that these are invariants of the Real struc-

ture on X.

REMARK 4.1. Qur version of the equivariant Dold-Thom theorem shows
that for cycles of dimension zero the the Real Lawson homology groups of
a Real projective variety X are Zs-equivariant homology groups of X with

coefficients in the Mackey functor Z, 4.e.
LoFR(X) = H (X, Z).

If we expect these invariants to be computable we need relative groups
and exact sequences for pairs. Following Lima-Filho’s definition in the non-

equivariant cage, we define

DEFINITION 4.3. Let (X, X') be a Real pair, ¢.e. X’ is a Real subvariety
of X. The group of relative p-cycles is the quotient

ZP(X'.\X,) d:Qf ZP(X)

Z,(X)’
with the quotient topology. Note that Z,(X, X') is a Zy-space with the action
induced from Z,(X).

The Real Lawson homology groups of the pair (X, X”) are
Lo (X, X)) % 1y 020 (X, X)

where, as above, a is a real Zs-submodule of C* containing pV and 0 < p <

dim X.
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The next result is the main step in showing the existence of long exact
sequences in Real Lawson homology. The proof is a simple generalization to

the equivariant context of [20, Theo.3.1].

PROPOSITION 4.1. The short exact sequence of topological groups
(4.11) 0 — Z,(X") — Zp(X) — Z(X, X"} — 0
is an equivariant. fibration sequence.

ProOF. From [20, Theo.3.1] we know that (4.11) is a non-equivariant

fibration. It remains to show that
0 Z,(X')2 — Z,(X)" — Z(X, X)) — 0

is a fibration. In fact, a stronger result is true: The sequence above is a
principal fibration sequence. The proof is essentially the same as in the non-
equivariant case: We observe that Z,(X)” is the naive group completion of
free monoid Cp{ X )%2 = {I14C, 4(X}}%2. The Real structure on X induces a Real
structure on the Chow varieties Cp<a(X). The fixed point set Cp<a(X)™ is
the set of Real points of Cp <g(X). In particular, (Cp<a(X)™,Cp<a(X")%) is 2
pair of algebraic sets. By a classical result of [11] this pair can be triangulated.

The result now follows from [21]; see Section 6 for the details. O

ProposITION 4.2, Let (X, X', X"} be o Reol triple. Then the short exact

sequence of topological groups
0 — Z,(X, X") — Z,(X, X") — Zp(X, X') — 0
s an equivariant fibration sequence.

As a consequence, there is a long ezact sequence of Real Lawson homology

groups

— LyERG (X!, X"y = LyIRo (X, X") — Lpie (X, X') — LyHlg 1 (X', X") =
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PRrROOF. Asin Proposition 4.1 we only need to show that the exact sequence

of topological groups
(4.12) 0 — Z,(X', X"V — Z,(X, X" — Z,(X, X"V — 0

is a fibration sequence. Just as in the non-equivariant case ( [20, Prop.3.1])
, this follows from Proposition 4.1 in a standard fashion. Since (4.12) is a
sequence of topological groups the result will follow if we can show that (4.12)
has a local cross-section at zero (see [27]). By the proof of Proposition 4.1 there
is a neighborhood U of zero in Z,(X, X')** and a section s : U — Z,(X)?* to
the projection 7y : Zp(X)% — Z,(X, X'Y22, Composing s with the projection
T+ Zp(X )2 — Zp(X, X")?* we get the desired section. o

Finally, we recall a fundamental result of Lima-Filho that provides a def-
inition of Tawson homology for quasi-projective varieties. This also gives a
localization sequence which makes Lawson homology into a theory in which

computations are often possible.

THEOREM 4.1. [20, Theo.4.3] A relative isomorphism ¥ : (X, X') —

(Y,Y") induces an isomorphism of topological groups:

T, Z,(X, X") = Z,(Y,Y") i
for allp > 0. o

REMARK 4.2. Our observation here is that, if ¥ : (X, X") = (Y,Y") is a i
relative Real isomorphism of Real pairs then ¥, : Z,{X, X') — Z,(Y,Y") is i

an equivariant homeomorphism. a

This shows that Lima-Filho’s definition of Lawson homology for quasi-pro- gl

jective varieties also applies to Real quasi-projective varieties: gy
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DEFINITION 4.4. Let UV be a Real quasi-projective variety. The group of

p-cycles on U is the Real group
dBf I
Z,(U) = Z,(X,X')

where (X, X') is a Real pair such that X — X' is isomorphic to U as Real
varieties. Such a pair is called a Real compactification of /. The group Z,(U)
is considered as a Zg-space with the action induced from the action on Z,(X).

The Real Lawson homology groups of U are defined as the groups of the
pair (X, X'):

def
Ly Rol(U) & oy 2,(U)
where, as before 0 < p < dimU and « is a representation containing pV.

REMARK 4.3. Theorem 4.1 then shows that this definition is independent
of the compactification (X, X’). In fact, suppose (X, X') and (Y, Y”) are two
Real compactifications of the Real quasi-projective variety U so that there is
an isomorphism ¢ : X — X' = Y — Y’ of Real quasi-projective varieties. Let
' € X xY be the closure of the graph Graph(¢), where X XY is endowed with
the product Real structure. Set [V = I' - Graph(¢). Let 7, and 73 denote the
projections on the first and second factors, respectively. Then my : (I, 1) —
(X, X") and and 7 : (I,IY) = (Y,Y”) are relative Real isomorphisms. From

Theorem 4.1 it follows that 7;, and m, are equivariant homeomorphisms.

The long exact sequence for triple now gives the localization sequence
for Real Lawson homology: Let V' be a Real closed subset of a Real quasi-

projective variety U and let n,m > p. Then there is a long exact sequence of
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Real Lawson homology groups

(4.13) - > LyFRoymt(V) = LyFrid (U) = LBy (U V)

—3 Lp-['Rn—l+mM(V) —

ending at

oo = Lyt (V) — Ly By s (U) = Ly FRy (U = V).

As a consequence we can now prove the Real version of the “homotopy

property” for Lawson homology.

PROPOSITION 4.3. Let U be a Real quasi-projective variety and let B LU

be a Real algebraic vector bundle of rank k. Then the flat pull-back of cycles
w2, (U) — Zpyi(E)
is an equivariant homotopy equivalence.

PRrOOF. The proof goes exactly as in the non-equivariant context ({7]): It
suffices to show that the map induced by 7* on the Bredon homotopy groups
is an isomorphism. Using localization and the 5-lemma we can reduce to the
case where F is trivial. At this point one can use induction on & to reduce
to the case of k = 1. Then one can further reduce to the case where U has a
projective closure U such that B — U is the restriction to U of O(1)|U — U.

The result now follows from the suspension Theorem. Ol

Following Friedlander and Gabber we can now define the intersection with
a Real effective Cartier divisor. Let U/ be a Real quasi-projective variety and

let D be a Resl Cartier divisor. By this we mean that D is defined by the

vanishing of a Real section, sp, of a Real line bundle, Lp L U. The inclusion

of D in U is denoted by ip. Also let V be the complement of [D| in U.
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The composition
res o sp, : Zy(U) = Z,(Lp) -+ Z,(Lp|V)

is equivariantly homotopic to the zero map: The homotopy is defined as mul-
tiplication by t in the fibres of Lp, for ¢ € [1,00[ and as the zero map for

t = co. Thus, since by Proposition 4.2 the sequence
0-— Z,(ipLp) — Z,(Lp) — Z,(Lp|V) — 0
is an equivariant fibration sequence we get an equivariant map
op : Z,(U) = Z,(i%Lp)
well defined up to equivariant homotopy.

DEFINITION 4.5. The intersection with D is defined as the composition
ip = (W*)gl oop: Zy(U) = Zp(i}Lp) — Zpél(JlDl)

4.1. The s-map. The last feature of Lawson homology that we must
reinterpret in the Real case is the s map defined by Friedlander and Gabber
in [7]. If U is a Real quasi-projective variety, s maps Z,(U) APL — Z, 1(U)

as follows. Congider the composition
Z,(U) A AG(PL) % 2,(U x PL) % 2,_,(U)

where w(V,t) =V x {t} and i}; denotes intersection with U x {oo} which is a
divisor in U x P};. 'This map is clearly equivariant for the diagonal action on
Z,(U) x AG(P}) where P} is equipped with the action induced by complex
conjugation. Consider P} embedded in AG(PL) by ¢ — ¢ — co. Restricting
iy ow t0 Z,(U) APL and taking the adjoint we get a map

8 Zp(U) — szp—l(U)
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which induces a map in Real Lawson homology groups
(4.14) Loy (U) =5 Ly 1 H(U).

We usually abuse notation and denote this map by s as well.

In [7] it is also proved that in Lawson homology, the induced map s, :
L,H,(U) = Ly_1H,(U) can also defined by a different construction. Consider
PL embedded in AG(P}), as above, by mapping ¢ € P{, to ¢t — oo, The adjoint

of the composition
1 # 1y B2
Zy(U) APy 5 Zpa(U#Pe) — 2,4 (U)

is another a map Z,(U) L 22, 1(U), which is homotopic to s. Therefore

the map s, can also be realized in the following way: the inclusion of PL 111.

AG(PE) is a generator 3 for mAG(Pg) = Z. Joining with & gives a map
n-2
Tn 2 Zp(U) = Tny2-2p Zppn (UH#PL) = Taia-2pZp-1(U)

which is the induced map s, : L, H,(U) — Ly_1Hy(U) in Lawson homology.
All this works equivariantly but now z is seen as the generator of the group

mpAG(PL) & 7, so joining with it gives the map
] -2
Ta—pvZp U) = Wa+v_vap+1(U#lP’é3) “:E“** 7Ta+v—pvzp—1(U)

of (4.14).

Now, p iterations of the map s give the Real version of the cycle map:
LR, (U) 5 LyR, ().

and this is the motivation for the indexing in Real Lawson homology. If U
is a closed variety, this last group is isomorphic-to H,{U;Z). We think of
the elements of L,HR,(U) as having algebraic dimension p and homological

dimension .
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REMARK 4.4. The following observation is often useful. Suppose the cycle
map s : Z,(X) — QY Z, 1(X) is an equivariant homotopy equivalence. From

the definition of s it is clear that the diagram
Z(X) — Q2 (X)
b vy l
Zp (LX) —— QY%7 X)

is commutative, so s : Zp..1 (LX) - QVZ, (¥ X) is also an equivariant homo-
topy equivalence.

To see this we use the definition of the adjoint of s given by joining with
a generator of myAG(Pg). The result follows from the commutativity of the

diagram

Z(X) x AG(PY) 4 2, (3°X) 2 2, 4(X)

P d J
Zu(BX) X AGPY) —E 2,,(2°X) 25 Z,(2X)

up to Zy-homotopy.

5. Examples and Computations

In this section we compute the Real Lawson homology groups for some Real
varieties. The main tools in these computations are the localization sequence
(4.13) and the cycle map sP. We start with the fundamental example of affine

space A" with its standard Real structure.

ExAMPLE 1 (The Real Lawson homology of affine space A™). Let A™ have
the Real structure given by complex conjugatioh of its coordinates. We call
this Real structure on A™ the standard Real structure. By definition,

Z,(Fe)
2,(Pe)
41
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The suspension Theorem gives Z,(IPg) & Z¢(Pg *) and from Theorem 3.3

Zp(An) _ ZO(]PE_p)

= Z = K((n—-p)V,Z).

Here we used the following important property of the equivalence in Theo-
rem 3.2: Under this equivalence the inclusion Zy(Pg %) C 2, (Pe") corre-

sponds to the inclusion

-p--1 n—p
[ AG(s®) = [ AG(s™)
k=0 k=0

as a factor; see [8]. Thus, for 0 < p < n and « containing pV,
Ly Hio(A") = oy K((n — p)V, Z) = H"V"(pt; Z).

Moreover we see that the cycle map sP gives an equivariant homotopy equiv-

alence
sP: Z(A") — QWZO(A”).

Since s will play a central role in the examples to follow we will try to explain
this carefully.
Recall the description of s on Z,(PR) as the adjoint of the restriction of

the composition

2

(5.15) Z,(P2) A AG(PE) B 2,41 (B21?) £ 2, (1)

to Z,(FPL) AL, Where we consider P embedded in AG(PL) by the map ¢+

t —oo. Recall also that we have a complete description of the action of the join

and suspension maps on the cycles of P¢: The suspension Theorem identifies

2,(P%), Z,_1(PZ), canonically, with Zo(P ") and Z,(PET'7P), respectively.
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The commutativity of the diagram (up to equivariant homotopy)

] -3
z,) x Py 5 g8 Ty 2, ()
}"_."PxidJ( Jl;g—p l;ﬁ*(pul)
-1 .
2P x B —Fo 2P 2o 2@ )
shows that the, under the above identifications, the map (5.15) is identified

with the product p (see Proposition 3.1) restricted to Z3(Pg7) A Ph.
By Theorem 3.2

(B2 ) = [] 4G(5™)

k=0

and by Proposition 3.1, u restricted to Zo(Pg ) A Pg is identified with the

map
n—p n—p+1
[TAGs™) kg & [ AG(S™)
k=0 k=1

induced by the smash map S¥ A SV 2 S*+IV (recall that Pk = SY). It
follows that this map is one of the structural maps of the §)-Zs-prespectrum
W — AG(SY) hence its adjoint is an equivariant homotopy equivalence

n—p n—p+1
(5.16) [TAG(s)y =205 ] AG(S®)
k=1

=0
This concludes the analysis of the map s : Z,(P}) — QVZ, ((PZ). To
obtain the result for the affine space A™ we observe that s is natural, so s :
Z,(A™) — QVZ, 1(A") is obtained by passing to the quotient in (5.16) and
we get that, for A™, s is the adjoint of

Z,(A*) A SV 2 AG(SPPYY A SV B AG(STHVY = 2 (A")

which is an equivariant homotopy equivalence, as desired.
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The following summarizes our conclusions regarding the Real Lawson ho-

mology of affine space A™.

THEOREM 5.1. The space Z,(A") is an eguivariant Eilenberg-Mac Lane

space of type K(Z, (n — p)V), for every 0 < p < n. Moreover, cycle map
1 Z,(AY) — QFY Zo(A™)
is an equivariant homotopy equivalence.

We will now make use of the cycle map and the localization sequence to
prove the following general result about the Real Lawson homology of Real
varieties with a Real cell decomposition. The next definition is an adaptation

to the Real case of [22, Definition 5.3]

DEFINITION 5.1. Let (X, Y) be a pair of Real projective varieties. We say

that X is a Real algebraic cellular extension of Y if there is a filtration
X=X,2X, 12 - XoD2 X, 1=Y

by Real projective subvarieties X; such that X; — X; 4 is a union of affine

spaces A, If Y = @ we say that X has a Real cell decomposition.

ProrosITION 5.1, Let X be o Real variety with a Real cell decomposition,

then the cycle map
s 1 Zp(X) — Y Z5(X)

is an equivariant homotopy equivalence. In particular, the cycle map induces

an isomorphism

LR, (X) & H, (X, Z).
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ProoF. The result is proved by induction using the localization sequence

and the fact that, by Example 1, it holds for affine spaces: Assume that
sf Zp(Xi—l) —p QPVZU(X@;ml)

is an equivariant homotopy equivalence. Applying the localization sequence

and the cycle map s” we get a map of long exact sequences

mek—i-pV(Xz') —_— L’pI_RkerV(X'i - Xifl) —_— me}c+pV—1(Xi—l) IR
i sP LSI’ l sP
Lo BRp oy (X)) —— Loy (X — Xi1) — LRy py1(Xiq) —
ending at
Ly Bp(Xio1) — LpHyy (Xi) — LpHtn(Xi — Xioq) — 0
[ 37 l sP l sP
LoBRpy(X; 1) — LoFRyw(X,) — LoFRuw(X; — Xiiq1) —— 0.

Exactness at the lagt group of the bottom row follows from the fact that,
since X; 1 has a Real cell decomposition, Hyy 1(X;-1;Z) =0, for all m € Z;
see Lemma 5.1.

By the assumptions and the 5-Lemma it follows that
s+ Lp gy p(Xs) — Lo Hbip(Xi)

is an isomorphism for all & > 0. Translating this into homotopy groups, it

means that
P (Z5(X5)) — me? (7Y 2,(X5))

is an isomorphism for all & > 0. Since we already know that s* is a non-
equivariant homotopy equivalence (see [22]). This implies that s* : Z,(X;) —

QPY Z,(X;) is an equivariant homotopy equivalence. n
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LEMMA 5.1, Let X be a Real variety with a Real cell decomposition
X=X,0Xp 12 XgDX_ =9

such that X; — X;_1 15 a union of affine spaces A", Let R denote the coho-
mology ring of a point, H*(pt; Z). Then H,(X;Z) is an R-free module. Each

cell A™i gives rise to a generator x;; in dimension n; ;- V.

ProoF. The Real cell decomposition gives X an equivariant cell decom-
position with cells of type D™V, The proof is by induction on the cells: By
Definition 5.1, Xy is a disjoint union of points fixed by the action, so the result
holds. Assume it also holds for X;_; and consider the cofibration sequence

Xigy — Xop — \/ SmisV,
g

There is a long exact sequence
(5.17) = Hu(XiZ) — @, Ha(S™V;8) < Hoor(Xi1;2) —

Observe that this is an exact sequence of R-modules and, by assumption, the

homology of X;_; is free on generators @y, k < ¢, of dimensions n,; - V. Also
ﬁ*(Sm,jV;Z) o I_I'ﬂ,—g,jv—*(pt;z) _ an-vf*

s0, in particular, this B-module is free and generated by an element z;; in
dimension n; ;V ( z; is sent to the identity element in B by the isomorphism
above). The connecting homomorphism & in the sequence (5.17) is determined
by the image of the generators x; ;. But the induction hypothesis implies that

this image is zero because
H™4 () = 0
for all m € Z; see (3.9). This completes the proof. J

The following are examples of Real varieties with a Real cell decomposition.
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EXAMPLE 2 (The Grassmannians G4(C™1)). The variety G¢(C*t*) has a
Real structure given by the action induced by complex conjugation in C**1.

"The Schubert cells give a Real cell decomposition for G1(C!),

ExAMPLE 3 (Products of varieties with Real cell decompositions). Real
varieties with a Real cell decomposition form a class which is closed under
products. So, for example, Pg x P& has a Real cell decomposition and we
have that the group L, R, (Pg x PE) is isomorphic to the o degree part of the
RO(Z,)-graded module Rz, y]/(z", y™) where R is the cohomology of a point
and z,y have degree V.

EXAMPLE 4 (Quadrics with signature zero). Any Real smooth quadric in

P! is equivalent to a quadric of the form

Qn,k =

(#r:-- o) € PE ol + - 42 — 2y~ — 22 =0}

where k < n/2.

We consider the case, n = 2k, t.e. the quadratic form defining the quadric
hag signature zero. We will show that the cycle map is an isomorphism. From
now on we use homogeneous coordinates (X : ¥) = {z1: ... &Tn Y11 -1 1 Yn)
for the points of P2*~1. In these coordinates the quadratic form is X7 X —-¥YTY.
The point pg = (Xo : ¥p) = (0:...:0:1:0:...:0:1)is a real point of
Qann and the tangent plane to Qg , through py is

H={(X:Y)ePE (X :Y) (Xo: -Y) =0}
and
Qo NH ={(X:Y) e P V2, —yn=0and X'X - Y'Y =0} .

Using coordinates zy,... ,Zu_1,Y1, .-  Yn—1 a0d £ = Tn 4y, for I we see that

the quadric Qy, n,NH is given by the equation i+ +z2_ —y?— . —y2 | = 0.
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Let ' be the Real hyperplane given by the equation ¢t = z,, + y» = 0. The

intersection Qg N H N H’ is a quadric Qg 5,1 and we have
Q2ﬂ.,'n. NH= QZR——Z,R—I#pO-

Thus QoppnNH =2 ¥ Qo .. Assume that the cycle map is an isomorphism
Ly (Qon—2n-1) = Ho(Qopn_on—1; Z). From Remark 4.4 it follows that the
same holds for ¥ Qop_opn_1.

It is also easy to see that, if 7 : IP’%"_1 — po — H' is the projection on H'
centered at po, then 7|Qopn — Qan M H is an isomorphism onto H' — HNH' =
A™=2_ Since everything is Real, this is a Real isomorphism. It is easy to check
that Q4o = I% X IP’}C with the standard Real structure, hence, by Example
3 the cycle map is an isomorphism in this case. Using induction on n, the
sequence for the Real pair (Qay,n, Qonn M H) and the five Lemma, it follows
that the cycle map

LPH?'OA(QZH,H) — Ha(QEn,n;Z)

is an equivariant homotopy equivalence. This reduces the computation of Real

Lawson homology to the computation of the equivariant homology of Qs ,,.

ReEMARK 5.1. The computation of the Real Lawson homology groups gives
us, in particular, the homotopy type of the spaces of Real cycles, i.e. the cycles
fixed by the involution. This is an immediate consequence of that fact that
these spaces are topological groups and hence products of Eilenberg-Mac Lane
spaces and so their homotopy type is completely determined by the homotopy
groups. The homotopy groups nx(2,(X)%*) are the Real Lawson homology
groups Ly, ey ,p(X).

The next example is a very simple case — albeit somewhat artificial — in
which the cycle map is an isomorphism but the variety doesn’t have a Real

cell decomposion.
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EXAMPLE 5. Let U C P¢ be a quasi-projective variety such that the in-
tersection U N7 is empty. Then &/ 11U is a Real variety with the involu-
tion induced by complex conjugation. Assume that the non-equivariant cycle
map s : Z,(U) = Q22, 1(U) is a homotopy equivalence. We will see that
5: Z,(ULNTY} ~» QYZ, (U T) is an equivariant homotopy equivalence.

We have Z,(U1LU) 2 Z,(U) @ Z,(U) and, under this isomorphism, the

involution is given by
T (Cl:GZ) — (@; ﬁl)

Recall that, for pointed Zg-spaces S and X, F(S, X) denotes the space of
based maps with the conjugation action: f > 7o f o7, It follows that, if we

consider Z,(U) equipped with the trivial Zs-action, then
2,(U UT) & F(Zay, Z(0)).

In particular we see that there is a commutative diagram

ZUNU% =5 Z,U)

a ‘|
(VzZ, (UTIT)™ = 022, ,(U)

where the left and right vertical arrows denote the equivariant and the non-

equivariant cycle maps, respectively. The result now follows.

ExXAMPLE 6. Consider the variety Pg x Pg with the Real structure given
by

(5.18) (X, Y)= (¥, X) (X,Y) € P& x P,

We will show that the cycle map is an equivariant homotopy equivalence.

In the case n = 0 there is nothing to prove. Assume the result holds for n—1.
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We have

(6.19) PgxPr=A"xA"U {A” X PR URE! x A”} uPE ! x PRt
Note that A® x A™ (with the action of 5.18) is a Real subvariety and it is
actually isomorphic to A?* with the standard Real structure. 'The isomorphism
is

(X, V) (X +Y,v-1{X -Y)).

Also the second factor in the decomposition (5.19) can be written as the dis-
joint union U I 7 - U where U = A" x PE~'. By Example 5 we know that the
cycle map s : Z,(ULl7-U) = QVZ, (U7 U) is a Zo-homotopy equiva-
lence. Finally, by induction, the cycle map is also an equivalence in the case
of the last factor, P! x P&~'. By localization and the 5-lemma it follows
that the cycle map s : Z,(PE x PR) — QVZ,_1(F% x P&) is an equivariant

homotopy equivalence.

EXAMPLE 7 (The Quaternionic line). Let X = P (H?) with the anti-ho-
lomorphic involution induced from multiplication by j. If one identifies P, (H?)
with the two sphere S%, the involution is the antipodal map. In particular,
there are no fixed points so X cannot have a Real cell decomposition. The cycle
map is very simple in this case because there are no cycles above dimension 1
and Z,(X) =2 Z.

The cycle map, in this case, sends Z3(X) to Y Z(X) and we know it is
a non-equivariant homotopy equivalence. We want to show that the induced
map s, : mpZ1{X)} — 1y Ze(X) is an isomorphism. We start by computing the
group 7y Zy(X) which, by the equivariant Dold-Thom Theorem, is Hy(X;Z).
To do this we use the identification of X with S(31/) mentioned above. There
is a cofibration sequence

S(3U)y — D(3U); — S
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where D(3U) denotes the unit disk of the representation 3U/. Note that
D(3U).,. = 8° equivariantly. The associated long exact sequence in homology
is
— Hy41(ph Z) — Hya(S¥52) — Hy(S(3U); Z) — Hy(pt; Z) —
For V effective we have Hy(pt; Z) = 0 so, in particular,
(5.20) Hy(S(3U); Z) & ﬁ1+v(33u;m7ﬁ) & Hoou(pt; Z2).
This shows that 7y Zy(X) = Z. Let
P [Sv! ZO(X)]ZB - [SV: ZU(X)]

be the forgetful map. Let [X] denote the generator of Hy"9(X;Z). We know
that the non-equivariant cycle map sends the cycle X to [X]. This means
that ®(s(X)) = [X]. It follows that s(X) € Hy(X;Z) is a generator and @ is
an isomorphism. We conclude that s : 2, (X) — QY 2Z(X) is an equivariant

homotopy equivalence.

EXAMPLE 8 (Quadrics with signature 3). It is easy to check that Py (H)
is isomorphic as a Real variety to the plane quadric Qz¢. From Example 4
it follows that the quadric of signature 3, Qg1 -1, is obtained from Qs
by adding Real cells A* and taking suspensions. Using exact sequences, the
5-lemma. and the results of the previous examples, it follows that the cycle

map
s Z,(Qon1nm1) — QPVZO(an—l,n%l)

ig an equivariant homotopy equivalence.

EXAMPLE 9 {Quadrics with signature 2). From Example 4 it follows that
the signature 2 quadric, Qgynq9y, is obtained from Q44 by adding Real cells

A* and taking suspensions. One can check that Q,; = Pk x PL with the Real
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structure of Example 6. It follows that the cycle map is also an equivariant

homotopy equivalence in this case.

6. Auxiliary Results

In this Section we give the details of the unproved assertions in the proof
of Proposition 2.2. We begin by reviewing some results of [23] whose proofs
we include here for completeness. Throughout this section G is a finite group,

unless otherwise stated.

DEFINITION 6.1 ([24]). A G-CW complex X is the union of sub G-spaces
XU CXl C...ch

such that Xy is a digjoint union of orbits G/ H and X, is obtained from X,,_;
by attaching G-cells D™ x G/H along attaching maps S" ! x G/H — X,_1.
Xy, is the n-skeleton of X. Note that the interior points of & cell D™ x G/H
have-isotropy group conjugated to H. A cell D" x G/H is called an n-cell of
type G/H.

If A, is the set of n-cells of X and, for each o € A,,, a has type G/H,, we
have

XnfXn12 \] S"AG/H,,.
aChy

Let (X, A) be a G-CW pair. In [23] Lima-Filho shows that the sequence
of topological G-groups

(6.21) 0 — AG(A) — AG(X) — AG(X/A) — 0

is a G-fibration. Given a G-module V, and a subgroup K of G, define the

Tunctors

(X, A) XD, 1 (R(SY, AG(X/A)K) = [SVH, AG(X/A)]«.
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It is important to note the following property of the functor AG(-),
which is proved in [23]. For a finite G-set S and a G-space X there is a

(z-homeomorphism
F(8y, AG(X)) = AG(X A S4).
From the fact that (6.21) is a G-fibration we get long exact sequences
coe = (X)) = he(X, A) = By g (A) — - i

ending at
cov = ho(A) = ho(X) — ho(X, A)

In general we cannot assert exactness at the last group, but if we assume Iy
that V has at least one copy of the trivial representation then we can make i

sense of h_y(-) and the sequence extends to i
o Bg(A) = Ro(X) = Ro(X, A) = hoy(A) = by (X) = hoy(X/A).

LeMMA 6.1 ([23]). Let V be a G-module with at least one copy of the triv-
ial representation and let X be a G-CW complex. Denote the p-skeleton of X F-i
by Xp, p = 0 and let A, be the set of p-cells of X. Then there is a spectral i
sequence with E'-term

P P m(s” A G/H,,)

P20 achy

converging to hy(X).

I
ProoOF. The properties of the functor A, mentioned above allow us to Ii
apply the usual machinery to the bigraded group hy4q(Xp, Xp-1) to produce 5\

a spectral sequence i

|
Pprq(Xpy Xp-1) == hp1(X); '5,,‘
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see 28|, for example. Now

hp1g(Xps Xp-1) = TvipigAG ( \/ SPA G/Ha+ A G/I{+) =

achy

TV 1t (@ AG(SP AG/Hyy A G/K+)) > P hprg(SP NG H, ).

Ay aE.Ap
1
We can now prove the following result which is used in the proof of Propo-

sition 2.2.

LEMMA 6.2 ([23]). Let V be a G-module with at least one copy of the triv-
ial representation and let K be a subgroup of G. Then, for all k > 0,

[SV*, AG(SV)]x = 0.

PROOF. We have to show that hz(SV) = 0. Let X, denote the p-skeleton
of SV. Also let A, be the set of pcells of SV. For a € A,, we have
he(SPAG/H,,) =[SV AG/Ky, AG(ST AG/H, o =
[SY**AG/K L, F(G/Hq,, AG(S"))]a 2 [SYT*AG/ K AG/Hq ,, AG(SP)]g &
[SYtEAG/K,, AG(SP) 5. .
Write V as Ve @ V(H,), where V(H,) has no copies of the trivial repre-
sentation of H,. Then
[SYHEAG/K |, AG(SP)]a, 22 [SV"HE A (SYHD A GYEK) /Hy, AG(SP)]

HEIVP 7R (VW) A @K ,)  Hos T).

and his last group is zero since p < |V ¥¢| — because the cell « is contained

in UgeG{gSvH"‘g"‘} — and & > 0. We conclude that (X, X,.,) = 0 and,
b4




by the previous Lemma, this implies [SY7F AG(SV)]x = m(SY) = 0, as
desired. 0

DEFINFTION 6.2. Let G be a compact Lie group, U a G-module and let
X, Y be G-spaces. For each subgroup H of G let U{H) denote the orthogonal
complement of U,

1. Amap f: X - Y is a |U*|-equivalence if, for every subgroup H, the

map
(fH)* . ﬂm(XH) — ﬂ'm(YH)

is an isomorphism for 0 < m < |U#] and an epimorphism for m = |U¥].
2. A 0*-equivalence f: X — Y is called a G-U-equivalence if, for every
subgroup H, the map

Fio s moay+m (X) — mom (V)
is an isomorphism for 0 < m < |U#| and an epimorphism for m = |U7],
It is well-known that a map f : X — Y is a |U*|-equivalence if and only
if it is a G-U-equivalence. This was proved by Waner for the case of ¢ finite

and generalized by Lewis to the case of G compact; see {19, Lemma 1.2]. We

will use this result in the next Lemma.

LEMMA 6.3. Let V be a G-module, the homomorphism
®:[8Y, 5] — [8Y, AG(SV)]e
induced by the inclusion 1 : SY — AG(SY), defined as x — x—00, is surjective.

Proor. The proof goes as follows: One shows that the inclusion ¢ is a [V*|-
equivalence. By the result of Waner mentioned above this implies that ¢ is a
V-equivalence so, in particular, the induced map @ : wy (8V) = v (AG(SY))

is surjective.
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We proceed to show that ¢ is a [V*|-equivalence as claimed.

1. Observe that AG(SY) is |[V*| — 1 connected: Let 7 {e;Z) denote re-
duced Bredon H-equivariant homology (where H is a subgroup of G)
with coefficients in the Mackey functor Z. By Theorem 2.1

m(AG(SY)) = HE(SY;2) = I (S A sV g) = AT (S 2)

and this last group is zero for k < |[V#],
2. Moreover, with n(H) = [VH|,

amy (SV") 2 mnan (AG(SY™))

is onto: For each subgroup, H, of G, write V = VI & V(H), as be-
fore. The map §V" — AG(SY)Y extends to an inclusion AG(SV") —
AG(SV)#, Tt suffices to check that this inclusion induces a surjective
map on t'wn(H). But the induced map on gy corresponds by Theo-
rem 2.1 to the map H (H)(SVH Z) —» HHH)(SV 7). Now observe that

SV 22 SVF « S(V(H)) — where # denotes the unreduced join — so
SV/SVT o2 ST A S(VI(H)),

and this gives H . (SV/SY";Z) = 0. The Bredon H-homology exact
n{H)

sequence of the pair (V, V) shows that

'n.(H)(SV Z) — A, (H)(SV Z)

is onto, as required.

7. Proof of Proposition 4.1

In this section we give the details of the proof of Proposition 4.1. The
Proposition is mainly a consequence of Lima-Filho’s result on completions

and fibrations involving a certain class of abelian topological monoids.
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We will need the following elementary result.

LEMMA 7.1, Let (X, X'} be a pair of Real algebraic varieties. The natural

group homomorphism
2 2,(X, X')E
18 « homeomorphism.

Proor. It is clear that ¢ is closed and that it is induced by the continuous

group homomorphism
Z,(X)" 5 2,(X, XY

v has kernel Z,(X")%? so we need only show that it is surjective. Let ¢ be an
element of Z,(X, X')%2. Choose a representative Y, n; - V; for ¢ so that none
of the V;’s is contained in X'. Then, since Z,(X’) is invariant under the action

of Z,, it follows that > . n; - V; is a fixed element of Z,(X) and
® (Z 1 - Vi) =c.

Next we recall some definitions and one of the main results from [21].

DEeFINITION 7.1 ([21}). An abelian topological monoid, C, with identity
e, is c-filtered if it has the weak topology given by a compact filtration,

e=CoCCy---CCyC---
by subspaces satisfying Cy + Cy¢ C Cgra-

From now on all monoids are assumed to be topological abelian monoids.

Let C be a c-filtered monoid. Then C x C is also e-filtered. The filtration is

(C x Ca U Cp X Ch,.

n+m<d
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Suppose G’ is a closed submonoid of €, then ¢’ is c-filtered by ) = Cy N C".

In this context Lima-Filho makes the following definitions
Ao ®A+C xC CcCxC,
and
B % ) & {(C X Caot + Ae} N (C % Oy,
where A is the diagonal in € x C.

DEFINITION 7.2 ([21]). 1. A pair of e-filtered monoids (C, C") is prop-
erly c-filtered if the filtration --- C Cy C Cyyq C - -+ has the property
that the inclusion “(C x O}y C (C x )4 is a cofibration.

2. The pair (C, (") is free if C is free and €' is freely generated by a subset

of generators on C.

For a free monoid C the naive group completion, C , is the quotient monoid
C¥ox /A

The topology of C is the quotient topology. Lima-Filho shows that if (C, "
is a properly c-filtered pair then C' is a closed subgroup of C'. Moreover his

shows that C /’CT’ is filtered by cofibrations given by
Qd défﬂ'(éd) =7 Op((c X G)d)
where p: C' x C' -3 Candrn:C — 6/67 are the projections. He proves the

following result concerning the projection  : C—=C /EI‘V'

THEOREM 7.1 ([21]). Given a properly c-filtered free pair of monoids
(C,C"), there is a principal fibration = ¢ — 5/6’7, where 5’/67 is the
topological group quotient of the naive group completions of C' and C', respec-

tively.
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The importance of “(C x C)4 in the proof of the Theorem comes from the
fact that

(7.22) (Cx CH(Cx0)g) =5 (Qu, Qu_1)

is a relative isomorphism — in fact, Lima-Filho shows that it is a relative
homeomorphism. This is used to construct a local cross-section s for the
projection ¢ % C /6’7 inductively. In the induction step one assumes s has
been defined over a neighborhood of zero in Q4_ and then uses the relative
homeomorphism (7.22) and the fact that “/(C'x C)4 C (C'x C)y is a cofibration
to extend s over a neighborhood of zero in Q4. By a result of Steenrod ([27]),
the existence of s completes the proof of the Theorem.
We now apply Theorem 7.1 to the monoid of Real cycles on a Real algebraic
variety: Let (X, X'} be a pair of Real algebraic varieties. Recall that
Co(X) = [] CpalX)

d>0
is a monoid under addition of cycles. 1t is endowed with the disjoint union
topology; the algebraic sets Cp 4(X) are equipped with their analytic topology.
This monoid is filtered by

Cpza(X) E T Con(X).

k<d

The Real structures on X and X' induce Real structures on the Chow varieties

Cpa(X), Cpa(X'). Set
G - {CP(X)}Zz O’" — {Cp.(XI)}Zz

Note that the naive group completions of C, C" are Z,(X)%2 and Z,(X')%2,
respectively. It is also clear that the pair (C, ") is free.
The monoid (' is filtered by

Cia = {Cpzal )
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Observe that Cy and C) = C3 M C" are the Real points of the Chow varieties
Cp,<a(X) and Cp,<g¢(X") s0, in particular, (Cy, C%) is a pair of algebraic sets.
C is c-filtered and we have
YO X C)a=((Cx Oyt + A+ " x )N (C x C)q.
Since the sum operation
Cp(X) X Cp(X) - Cp(X)

is algebraic ([6]) it follows that ((C' x C)g, (C' x C)4) is also a pair of algebraic
sets and hence can be triangulated (see [11]). We conclude that Theorem 7.1
applies and so C" -+ C — O /6*7 is a principal fibration. But C = Z,(X )2
, O" = Z,(X")% and, by Lemma 7.1, C/C" = Zy(X, XY, Thus the exact

sequence of topological groups
0 — Z,(X)2 — Z,(X)% — Z,(X, X)"2 — 0

is a principal fibration. Since the same holds for the sequence Z,(X") -
Z,(X) = Z,(X,X"), and the maps are all equivariant, it follows that this

sequence is actually a Zo-fibration sequence.
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CHAPTER 2 3

Galois-Grothendieck cohomology |
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1. Introduction

In the previous Chapter we saw that the space Z of stabilized cycles is
canonically a product of classifying spaces for certain Z,-equivariant coho-
mology groups. In this chapter we study the relation of these cohomology
groups to Galois-Grothendieck cohomology groups which are invariants
commonly used in Real algebraic geometry; see [25] and [13] , for example.

Recall that, for a G-space X, the Borel cohomology of X with coefli-
cients in a ring I’ is just the cohomology of the Borel construction on X:
H*(X xgEG;T). In geometry this is what is usually meant when one refers
to equivariant cohomology. We will denote these groups by H H(X; F) For a
finite group G, Galois-Grothendieck cohomology can be thought of as a gen-
eralization of Borel cohomology to non-constant coefficients. If F is a G-sheaf
over X, then FxgEG is sheaf over the Borel construction X X¢EG and so
we can define H*(X xgBG; F xgEG). These are the Galois-Grothendieck co-
homology groups of X with coeflicients in F. We will denoté these groups by
Hy(X; F).

In [12] Kahn defined equivariant Chern classes for Real bundles in terms
of Galois-Grothendieck cohomology. Here (7 is Zsy and the sheaf F is just the
constant sheaf Z with the Zo-action of multiplication by (—1)* — denoted by
Z(n). The universal n‘* Real Chern class ¢, is an element of ﬁ%’;(BU s Z(n)).
The Z x Zy-graded groups I;T%Z(—; Z(*)) will be denoted by A**(—).

In Chapter 1 we identified a model for the Eilenberg-Mac Lane spectrum
HZ that represents Zg-equivariant conomology with coefficients in the Mackey
functor Z — which is RO(Zg)-graded. In particular, we proved that AG(S*")
is a classifying space the groups of the theory HZ is the dimension R*", Here
we use the motvic notation, where, for p > ¢, R*? denotes the Zo-module R?

with the action of multiplication by —1 in the last ¢ coordinates and 5P is
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RP4U{oc}. Also we will use the notation HZ P4 for the groups of the (reduced)
theory HZ™" in dimension R*?. The reason for this change in notation is that
the motivic notation is more compatible with the usual indexing of Galois-
Grothendieck cohomology. As in Chapter 1, AG is the group of zero cycles.

It is proved in [4] that there is a ring isomorphism
HZ**(BU) 2 R[G,,... ,Cy,...]

where ¢, has dimension (2n,n) and R** is the cohomology ring of a point.
Since BU is a classifying space for (reduced) KR-theory the classes &,%. ..
are universal equivariant characteristic classes for Real vector bundles. We
showed that the universal classes ¢, can be defined by the following natural
construction. The space Z of stabilized cycles is canonically a product

oo
(1.23) Z = Z(Py) = [ AG(5*)

n=0
and there exists a canonical Zg-equivariant map P ; BU — ' Z. We proved
that P classifies the total equivariant Chern class. That is, the class classified
by the map P: BU — Z is

1+8 +é&+ -+ +--

At this point it is natural to try to relate the classes €, defined by Kahn to
the classes ¢, defined in terms of the theory represented by HZ. This leads
naturally to the following question. What is the relation between the theory
represented by HZ and the “theory” A** 7

An answer to this question can be formulated in terms of a standard con- "

struction from equivariant homotopy theory. For based G-spaces X, Y the
space of based maps X — Y is denoted by F(X,Y); it has a G-action defined
by conjugation. Given a G-spectrum ke define

b(ke) & F(EG, ko).
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We call b(kq) the Borel analogue of kg. It is also a a G-spectrum. Let ¢

denote the map KG — *. Then there is a transformation of G-spectra
V=¢:kg— F(EG kq) = blke).
The following Theorem summarizes the main results of this Chapter

THEOREM 1.1. For all p, ¢ there exist natural transformations
Tpg: B(HZY(X,) — API(X)

which are isomorphisms. Thus the groups of the theory A** are groups of the
Borel anologue of the equivariant cohomology theory HZ**. The transforma-
tion Y from b(HZ)** to A** preserves products. Morcover the Chern classes

of these two theories are related by
(T o W)(¢,) = Cn.

We interpret this last statement as saying that the classes ¢, of Kahn are

the Borel type version of the classes ¢, defined in terms of the theory HZ.

REMARK 1.1, The theory A**(—) is (Z x Zy)-graded hence AP?(—) makes
sense even for ¢ < 0. This is implicitly used above. The equivariant coho-
mology theory b(HZ)** is (Z x Z)-graded rather than is (Z x Z,)-graded,;
Theorem 1.1 shows that b(HZ )** is periodic with period (0, 2) so that it can
be used to define a (Z x Zg)-graded theory. The theory A** is exactly the
(Z x Z)-graded theory corresponding to b(HZ )**.

In general Borel cohomology classes are very crude invariants of group
actions. In fact, if X and Y are G-spaces, a G-map f : X — Y which is

an non-equivariant homotopy equivalence induces an equivariant homotopy

equivalence

fxid: X x EG — Y x BEG.
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Therefore for any G-spectrum kg the map f X id gives an isomorphism
(f xid)* : blka)* (V) — b{ka)* (X).

However, as a general principle, Borel type theories encode a lot of in-
formation about the fixed point set. It is therefore not very surprising that
when restricted to spaces with trivial Zs-action both classes, ¢, and ¢, give the
same information. We prove this by analyzing the restriction of the natural
transformation ¥ : HZ — b(HZ) to the fixed point set HZ 2.

Qur result is the following

TueoREM 1.2. Let ¥ denote the natural transformation from the theory
HZ** to b(HZ )" and let p,q > 0. Then, for any Zg-space X, ¥ includes
HZP9(X%2) naturally in b(HZ)P9(X2%) as a direct summand.

Since Ty, : B(HZ )4 (—) — A™(—) is an isomorphism, we see that T o W
also includes HZP4(X??) naturally in AP9(X?2) ag a direct summand. Under
the natural identification of HZ**™(BO) with a direct summand of A?"(BO)

we have

C‘ﬂIBO :C'”"BO

because ¢, = (T o ¥)¢,.
The computation of the cohomology groups of a point, R** % £ Z** (S
shows that there is a natural isomorphism of functors between the restriction

to spaces with trivial Zg-action of X — HZ?""(X) and the functor

nf2
H"(X;Z)® @ H™ %X 7y} n even,

(1.24) X 9 oy k=1
@ HZn——Zk—l(X; Zg) n Odd,

k=0
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Using this isomorphism and Kahn’s computation of Enl Bo We obtain the
following formula
Prjz -+ S 2wy + -+ SqPwy, +w, n even

E”[BO =
S¢" Yy o+ -+ S¢Pw, + w, n odd

where py is the ™ Pontrjagin class and wy, is the & Stiefel-Whitney class.

2. Galois-Grothendieck cohomology

2.1. Definitions. We start by recalling the definitions of Borel construc-
tion and Borel cohomology. Even though we only need these definitions in the
case where the group is Z; we give the definitions for an arbitrary finite group

(7 since specializing to Z, is not more elucidating.

DErFINITION 2.1. Let G be a finite group X be a (G-space. The Borel

construction of X is the quotient

XxEG
G

where £ is a contractible free G-space. The Borel G-equivariant cohomology

Xa ¥ XxoFG =

groups of X with coefficients in I' are the groups H*(Xg; I'). Borel cohomology
is denoted by H5(X;T).

Observe that the natural projection X¢ — BG is a fibration with fibre X
It is an important fact that a fixed point zo € X determines a section of this

fibration. The section is defined by

s([t]) = [zo, ] te BEG
where [¢] denotes the class of ¢ in BG = FEG/G and [zg, t] denotes the class of
(.’1'0, t) in X G-

Let X be a G-space and let F be a G-sheaf of abelian groups over X —

that is, the sections of F over an open set U/ are G-abelian groups and the
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action is comnpatible with the restriction homomorphisms. In [12] the following

construction is considered

ClONSTRUCTION . Let pr : X x BG — X be the first factor projection.
Then

Fo % pr*(F)/G

__ where we think of F as an étalé space — is a (non—equivariant’)_ sheaf over
Xg. The fact that @ is finite is used to prove that Fg is a sheaf (more generally,
this works if G is discrete).

A particular case of this construction which will be used throughout is
the case where G = Zg and F is the constant sheaf Z with the action of
multiplication by (-1)*. This equivariant sheaf is denoted by Z(n) and the

associated non-equivariant sheaf is denoted by Z(n)z,.

This construction can be used to define Galois-Grothendieck cohomology

‘1 terms of non-equivariant sheaf cohomology.

DrrmNiTion 2.2 ([12]). Let X be a G-space and let F be a G-sheaf of
abelian groups over X. The Galois-Grothendieck G-equivariant cohomology

groups of X with coefficients in F are defined as
By (X ) 1 (X3 Fa):
There is a forgetful functor
§ Hy(X; F) — H (X F)
which is defined as restriction the fibre in X — Xg — BG.

This definition is equivalent to Grothendieck’s original definition ([10]) of
equivariant cohomology groups as the right derived functors of the functor of

equivariant global sections.
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NOTATION . For a Zj-space X let A**(X) denote the direct sum
D 1z, 2(5).
n.k

The pairing Z(k) ® Z(k') — Z(k + k') induces a product on A**(X) giving it
a (Z x Zy)-graded ring structure. Also let R** = A**(pt). We have R**
Z[e]/(2e) where & has bidegree (1,1) — see Section 5 for the computation the
ring R**.

We can think of the groups A**(X) as Borel cohomology groups with
“twisted coefficients”. More precisely, the groups A**(X) are the cohomology
groups of X xg, EZy with coeflicients in the local system of groups defined by
the locally constant sheaf Z(k) xz, EZy over Xg,.

2.2. The relation to Bredon cohomology. We will see that for a Zo-
space X, the Galois-Grothendieck cohomology groups A**(X) can also be
defined as certain Bredon cohomology groups of X x £Z;. First we need to

review some facts about Bredon cohomology.

DEFINITION 2.3. Let G be a finite group. The orbit category of G is the
category Og whose objects are the orbit spaces G/H and whose morphisms !

are the G-maps G/H — G/K. A contravariant coefficient system for G is a

contravariant functor from Qg to the category of abelian groups.

Let X be a G-CW Complex. There is a contravariant coefficient system

C,.(X) = H, (X", X"} Z),

whose value on G/H is H,((X™)¥, (X" 1)¥,Z). Here X™ denotes the n
skeleton of X. If f : G/H - G/K is a G-map and f(eHl) = gK then the

map x ++ gz sends XX to X#. The value of C, (X) on the morphism f is the \
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map induced on homology by this map. The connecting homomorphisms of

the triples ({X™¥, (X*1)#, (X)) specify a morphism

d: Qn(X) — Qn—l(X)

of contravariant coefficient systems satisfying d* = 0. Thus we have a chain

complex (G, (X),d) of contravariant coefficient systems. Then
C(X; M) % Homeg (C,(X), M), with § = Homey (d, id),

is a cochain complex of abelian groups. The homology of this complex is the
Bredon cohomology of X with coefficients in M, denoted by H&(X;M). In
the case we are interested in M is the coefficient system V. obtained from
o C-module V as follows. The value of V. on G/H is V¥. As before, if
f:G/H — G/K is a G-map and f(eH) = gK then the map = + gz sends
VK to VE. The value of V on the morphism f is this map.

If X is a free G-CW complex and V is a G-module then CZ(X;V) is just
the cochain complex of equivariant cochaing with values in V.

We now return to the analysis of the groups A**(X), for a Zy-space X.

Consider the usual cell decomposition of EZy with two cells in each dimen-
sion that are permuted by the Zgy-action. Given an cell decomposition for X,
give X x EZs the product cell decomposition. Observe that there is a 1 —1
correspondence between equivariant cochains on X x EZ; with values in Z(k)
and cochains in Z(k) Xz, EZy with values in Z(k) Xz, EZ. This last cochain
complex computes the cohomology of X %z, EZ, with coefficients in the local
system of groups defined by the locally constant sheaf Z(k) Xg, By — s6€€
[30]. This proves |

PROPOSITION 2.1. There is ¢ natural isomorphism

AMH(X) @ H,(X x BTy L(F)
69




where Hy (X X EZq; Z(k)) denotes Bredon, cohomology with coefficients in the
contravariant coefficient system Z(k) defined by the Z,-module (k).

Having identified the groups A**(X) as certain Bredon cohomology groups
we can now produce clasgsifying spaces for them. We just need to give models
for the equivariant Eilenberg-Mac Lane spaces corresponding to the coefficient

systems Z{k).

NoTATION . The group of zero cycles on the sphere S™ is denoted by
AG(S5™). We will use the notation AG(S™) ®Z(k) to denote AG(S™) equipped
with the action of multiplication by (—1)*.

We denote the reduced groups of the “theory” A™* by A®*. For a based
Zg-space (X,z) the elements of A**(X) are the classes in A**(X) which

restrict to zero on xy.

PROPOSITION 2.2. The space AG(S™) ® Z(k) is a clussifying space for
(reduced) Bredon cohomology with Z(k) cocfficients. It follows that the spaces

F(BZyy, AG(S™) @ Z(k))
are clossifying spaces for the Galois-Grothendiek (reduced) groups ;fi””“(—).

ProoF. Computing of the Bredon homotopy groups of AG(S") ® Z(k)
we see that this space is an equivariant Eilenberg-Mac Lane space of type
K(Z(k),n). Tt follows that it classifies Bredon cohomology with Z(k) coeffi-
cients in dimension n; see [2]. Since, for any Zs-space X,

[(Xy, F(EZy,, AG(S") @ Z(k))]z, = [(X % BZy),, AG(S™) ® Z(k))z,

=~ Hp (X x EZq; L{k)),

we see that F(FZy,, AG(S™) ® Z(k)) is a classifying space for AmE(=). O
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NOTATION . From now on we will denote the classifying space
F(EZsy,., AG(S?) ® Z(q))
by Ap g
REMARK 2.1. The pairings Z{q) ® 7Z(¢') — Z{g + ¢') and the smashing
map SP A S* = SP+7 induce a map
AG(S?) ® Z(q) A AG(S”) ® Z(¢) > AG(SPH) @ Z(g + )
which represents the pairing
Hy, (0, 2() ® H, (e Z(¢) — Hy,(* Z(a+ )
in Bredon cohomology. This induces a map
Apg N Ay g 2 Apip gt
which represents the pairing of the groups A®*(-).

3. The theory A** as a Borel type theory

In this section we prove that the functors A**(—) are the cohomology
groups of the theory represented by the Borel analogue of the Zs-spectrum
HZ.

NOTATION . The following notation will be used throughout

1. For p,¢ non-negative integefs such that p > ¢, R?? denotes the Zo-
module R4 x R? with the Zy-action of multiplication by —1 in the last
g coordinates. As usual, S??¢ = RP7 U co.

2. The reduced cohomology groups of the theories represented by HZ and
b(HZ) in dimension R? will be denoted by HZ**(—) and W{HZL ) (),

respectively — see explanation below.
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3. The spaces AG(S"9) and F(EZy, , AG(S7)) will be denoted by HZ,,
and b(HZ),.q, respectively.

Recall from Chapter 1 that the correspondence
Rpaq = HZP,Q‘

defines an 2-Zip-prespectrum HZ that represents the Zg-equivariant cohomol-
ogy theory Hg,(—;Z) where Z is Mackey functor constant at Z. This theory
is (Z x Z)-graded; the cohomology groups in dimension (p,q), p,q € %, are
denoted by Hz(—;Z).

Thus the spaces HHZ , 4 are classifying spaces for reduced cohomology groups
ﬁgf(—; Z). Given a based Zs-space X we abbreviate ETZE(X; Z) by HZ?*(X).
‘The prespectrum HZ has a product which is the biadditive extension of the

map
gre A P Z grtplatd

This product is denoted by A.
The Borel analogue of HZ is the Q-Zy-prespectrum b(HZ ) defined by the

correspondence
RPA s B(HZ )p g

The theory represented by b(HZ) is also referred to as the Borel analogue
of the cohomology theory HZ**(—). Its reduced groups are denoted by
b(HZ)**(X), for based Zj-spaces X. The spaces b(HZ),, are classifying
spaces for the functors 6(HZ)?9(—). The product A on HZ induces a prod-
uct on b{HZ) which we denote by A..

We will show that the groups A**(—) are the cohomology groups of the

Borel analogue theory 6(HZ)**(—) but first we need to establish facts about
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the groups AP(SP#). For this we use the fibration

(3.25) gra Lo gpa

lw

BZ.s

Associated to this fibration we have the Serre spectral sequence (see [9], for

example)
Bt = H*(BZy; HY (S, () z,) = ATTHI(SP).
Here H'(S™; i*Z(q),,)) the (focally constant) sheaf over BZ, with sections
H (S 2, ) (V) = HY (™ (U); 2(0),)

over an open set U in BZy. The stalk of this sheaf over a point z € BZ; is
the group H*{n1(z); 1*Z(q)y,). |

We claim that the sheaf HP(SP9; ©*Z(g)y,)) is actually the constant, sheaf
7. To see this, observe that HP(SP?;Z) = Z and the action of Z; induced
from the action on S#¢ is multiplication by (—1)9. It follows that H?(SP; Z)
is the locally constant sheaf Z(g¢)z, and so

1%

HP (ST " 2(g)y,) = L.

Note that the terms ES° are the groups A®4(pt) = R™. It is important
to note that R** = Z[e]/(2¢) where ¢ has bidegree (1,1); this will be proved
in Section 5. See figure 1 for a picture of the L term in the case where p is
even and ¢ is odd.

Observe that, since S has fixed points, the cohomology of the base injects
in A*9(SP9). In fact, a fixed point gives a section of the fibration (3.25) and

so the map #* has a left inverse. This implies that E%? consists of universal

cycles, i.e. they are killed by all differentials. Since these are obviously not
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Ficure 1. The B, term of the spectral sequence for the Galois-
Grothendieck cohomology of Gpsd in the case where p is even and

g is odd.

in the image of any of the differentials, they survive 10 ¢he term Foo. Hence

AP (SPT) = Zifp—qis odd; if p — ¢ is even W€ get an exact sequence
0 — T — API(SPT) — 7 — 0.

Thus, if p — ¢ is even

(3.26) API(SPT) 2L D To.

From now on we fix the splitting (3.26) by requiring that the generator of the
qummand Z be zero on the section 0o Of the Abration (3.25) defined by the
fixed point 00 € gre —— gee § 2. All this means is that the splitting (3.26) is
the one obtained using the homomorphisn & * . We denote this generator by

Tpgr 1t is the unique p-class which is zero on the section mentioned above and

whose restriction to the fibre is ap, the generator of HP(SP% 7). In the case

where p — ¢ is odd we also denote the generator of AP2(SP4) by Cpg:
T4




In either case we have AP7(SP9) 22 Z and @, is a generator for this group.

A clagsifying map SP4 — A, , extends to a group homomorphism
AG(S™) = HZipg = Apa

defining a class Ty € AP9(HZ,,) whose image under the forgetful map, 7, is
the generator i, of HY (HZiy g 1) = T

In summary we have shown

LEMMA 3.1. Let oy be the section of (3.25) defined by the fized point
o0 € 5P and let oy denote the generator of HP(SP’Q;Z). There 15 a canonical
isomorphism

AP,Q(Sp,q) o~ ZpZy p—qeven

Z p— ¢ odd.
[Inder this isomorphism, the generator of the group Z is the only elgment Ty g
of AP4(SP1) such that ap,q‘amwzz) — 0 and whose fibre restriction is cip.
In either case, AP4(SP9) 2 Z and Tp,q denotes the generator of API(SP9).
There ezists a class Tpq € APIYHZ,,) such that j(Ty,) is the generator iy of
HF(HZ, 4 Z). Considering 5Pt included in HZpq by the map T+ & — 00,

we have Tpqsme = Opg-

Using the classes T, we will now construct a transformation Y from the
equivariant cohomology theory represented by b(HZ) — the Borel analogue
of FHZ — to the “theory” A™".

In the next Theorem we will need the following tesult. For any finite
group G and any based G-spaces, X,Y and Z, a G-map f : Y -+ Z which
is a non-equivariant homotopy equivalence induces a G-homotopy equivalence

fo  F(X,Y) = F(X,Z) — sec [24].
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THEOREM 3.1. There are equivariant homotopy equivalences
B(HL)pg = Apg.
This implies that there are nalural transformations
Yyt HHL)P(—) — AP(-)
which are isomorphisms.

ProoF. By Proposition 2.2 the class t,, is classified by an equivariant

map
G:HZ,,— A,,
Let g be the corresponding map
HZpy N Bl — AG(S?) ® Z(q)

— explicitly g(z, ) = g(z)(t). Recall that the fibre restriction of 7, ; is the gen-
erator of v, € HP(HZ ,4; 7). This shows that g is a non-equivariant homotopy

equivalence. It follows that
Gy : F(EZZ+, HZpgNEToy) — Apy
is a Zy-homotopy equivalence. But there is a Zg-homotopy equivalence
F(EZay, HLyy A ELyy) 2% F(BTyy, HLpy AS°) &2 0(HZ )pq

where ¢ is the map FEZs — *. The required equivariant homotopy equivalence

is obtained by considering the composition
b(H_Z_)p,q - F(EZ%: HZM A EZ2+) & AP,Q"

where the first map sends a function F' : %y, — HZ,, to FF Aid and id

denotes the identity EZq, — EZio,.
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Since b(HZ ), 4 and A, , are classifying spaces for b(HZ )?(—) and AP9(—),
this equivariant homotopy equivalence defines a, natural isomorphism T,q be-

tween these two functors. L
REMARK 3.1. The class 7, is represented by the composition
» Tp,
-'HZ.P,(I = b(HZ)ﬂ,q —% AP»G‘

where ¢ is the map £Z; — * and we used the same letter to denote the
transformation T, ; and the Zj-homotopy equivalence used to define it. This
is a consequence of the fact that the equivalence T, 4 is essentially defined by

the map
g Hlpy — Apy

that classifies 7, 4. It is now a matter unraveling the definition of the equiva-

lence to see that T, 0¢* =7.

Recall that 8(HZ)** has a product induced from the product on HZ**.
Also A** has a product coming from the pairing Z(q) ® Z(¢") — Z{g + ¢').
We will now see that the transformation T of Theorem 3.1 is compatible with

these products.
ProprosITION 3.1. The natural transformation
T B(HE) (=) - A% (=)
of Theorem 3.1 preserves products.

PROOF. Recall @y, is the restriction of 7, 4 to the sphere S77 C AG(SP9).
Let &,4 denote the inclusion SP7 C AG (877). The product G+ Gy o i an
element of APT? a7 (SPJFP"”“") whose image under the forgetful map j is the

fundamental class of SPHP¢+e . It follows that

(3.27) Qpq " Ot g = Oppt g/
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This implies that the diagram

Bp,q Nt gt
I
Sp)q /\ Sp aq HZP‘FP":!}'"F(]’
l [ RTACY l o ipl gto!
_*
Ap,q A AP':Q’ Ap+p’,q+q’

where 7, is the product representing the paring in A™* — see Remark 2.1
— commutes up to equivariant homotopy. Since HZ,, = AG(5™7) and the

maps A and A, are biadditive it follows that the diagram

. ‘
Hlipe NHLp, g — Hpip' g+a

l/ Lp,g Nyt gt t bp+p'atd!

Ap.q A Ap’,q’

Y

Apin gty
also commutes up to equivariant homotopy. This shows that the transforma-

tion Y sends products to products. ' |

4. The relation between the Chern classes of the two theories

In the previous Section we related A** to the equivariant cohomology the-
ory represented by the equivariant spectrum b(HZ). Recall that the map
¢ : BZq — % induces a map ¢* : HZ — b(HZ) and a corresponding transfor-

mation of equivariant cohomology theories
U HZ* — b(HL )™,

We would like to say that the Chern classes , defined by Kahn are the
Borel version"of the classes ¢, of the theory HZ**, i.e. T = ¥(G,). Un-
fortunately is not exactly true because the classes ¢, live in A** instead of
b(HZ)**. To be precise we have to compose U with the natural equivalence
Tonn, b6

e = (T o U)c,.
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Anyway, since T is just the projection to the (7 x Z)-graded theory associated
to 6(HZ)** we can still interpret this equality as saying that ¢, is the Borel
type version of ¢,.

Let us briefly review the definitions of the Chern classes in both theories.

A Real vector bundle over a Zo-space X is a complex vector bundle & I X
with an anti-linear homomorphism X : / — F such that A? = id and so that
7 is equivariant w.r.t. the Zg-action defined by A. This notion was first
introduced by Atiyah in [1]. The space BU(n) with the Zg-action induced by
complex conjugation of planes is the classifying space for rank n Real vector
bundles; see [5]. The classes &, and &, are classes in HZ**{BU) and A»*(BU)
respectively. Hence they are universal characteristic classes for Real vector
bundles in each of these theories.

The class &, is an element of HZ 2" (BU) whose image under the forgetful
map @ : HZ?"(BU) — H?(BU;Z) is the non-equivariant Chern class cy.

There is a ring isomorphism
HZ**(BU) 2 R[¢1,-.. ,Cny. -]

where and R** is the cohomology ring of a point. These facts are proved in
[4].
The classes G, are defined by the following result of Kahn.

THEOREM 4.1. ([12]) There are classesT; in A%*(BU) such that the image

h Chern class, ¢; and

by the forgetful map, j(¢;), is the i
(4.28) A(BUY 2 R[E1,... ,Cn,-- ]
where R** = A**(pt).

We can now prove
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PrOPOSITION 4.1. Up lo composition with the natural equivalence Tanp,
the Chern classes &, € A™"(BU) are the Borel version of the Chern clusses
¢, of the theory HZ**. That is

Cp = (T o ¥) (Cn)-

ProOOF. From Theorem 4.1 we see that the classes g, are characterized by
the following properties:

1. The fibre restriction, j(¢,) is the non-equivariant Chern class c,,.

2. Cp

3. 7, restricts to zero on the sections of BU(1)g, — BZs defined by the

points of P = BU(1)".

Let P, : BU — AG(S*™) be a classifying map for &, and let ta,n denote

the universal HZ 2" class. Then (T o W)(¢,) = Pi(Y o ¥)(izn,n). By Remark

3.1 we have (T o ¥)(iann) = T2n,n, SO

(Y 0 T) (&) = Frliann)-

Since T restricts to zero on the sections of AG(5*')y, — BZ, defined by
the fixed points it follows that Py (71} also restricts to zero on the sections
of BU (1), —+ BZ, defined by the points of PF. From EﬂIBU(nq) = {) we see
that (T o ¥)(€,)|pum-1) = 0. Finally, the image of ¢, under the forgetful map
from HZ** to integer cohomology is the non-equivariant Chern class, hence

F{{(Y o ¥)(¢,)) = ¢, This completes the proof. O

5. The restriction of ¥ to spaces with trivial Z;-action

In this section we analyze the restriction of the transformation ¥ from
HZ** to b(HZ)"* to spaces with trivial action. In terms of spectra this

corresponds to the restriction of €* to the fixed point set:

HZ® < b(HZ)™.
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The space level map is
(5.29) Hiipy E_*) F(ELy., Hzp,q)zz-

This is an instance of a following general situation. For a Gespace X,
the set F(EG., X)% is called the homotopy fixed point set of X. The map
€: BEG —  induces ¢* : X = F(EG,,X). When restricted to X¢ the map
¢* gives an inclusion of the fixed point set into the homotopy fixed point set.
This inclusion has been the object of intense study in equivariant homotopy
theory.

In (5.29) both spaces are topological abelian groups and hence they are
products of Eilenberg-Mac Lane spaces. Also € is a group homomorphism.
‘This implies that its homotopy class of is completely determined by the induced
homomorphism on the homotopy groups.

Let us compute the homotopy groups of b(HZ )gzq These are cohomology
groups of a point for the theory A**: |

Wtb(HmZ;)f,é o b(HZ)p’q(St’O) o b(HZ)p—t,q(SO) o Ap*t’q(pt).
For ¢ even we have

Z, p=0,
AP (pt) = HP(BLg;Z) = < %5, p> 0 and p even,

0, otherwise.

Furthermore, as a ring we have, A*%(pt) = Z[]/(28) where 8 € A*°(pt).

In the case of ¢ is odd we have AP%(pt) = Hj (FEZ;Z(1)) where this
last group is a Bredon cohomology group and Z{1) is the coefficient system
associated to the Zz—rﬁodule Z(1) — see § 2.2. Thus we need to compute

homology of the cochain complex Cy, (EZg; Z(1)).
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Give BEZ, its usual cell decomposition with two cells in each dimension s
which are permuted by the Zy,-action. To indicated this fact we denote the
cells by D* and 7D* where 7 is the generator of Zy. We have 0D* = D*! +
(—1)°7.D°"! and 81 = 78. Let {e], e} be the basis dual to {D%,70%}. Tt
follows that there are no cocycles in even dimensions and, for odd dimensions s,
the cocycles are Z-{e} —e;}. Also, §(ef , —e;_.) = 2(e} —e;) so the homology
of CF (FZs; Z(1)) is zero in even dimensions and Z in odd dimensions. Thus

we have

Ziy, p >0 and podd,
Hy (BZs; (1)) =

0, otherwise.
Let € be the generator of AV (pt). Then £? € A%%(pt) so either €% = 0 or
g2 = 0. It is easy to see that the reduction mod 2 of £ is the generator of

HY(BZg; Zp) = Zp and so &2 = . We conclude that
A" (pt) = Zfe]/(2€)

NoTATION . Recall that R denotes the cohomology ring of a point for the
Zo-equivariant cohomology represented by HZ and R denotes A**(pt). We
will denote the cohomology groups of a point in the theory 8(HZ)** by b(R).
The subrings of R and b{R), consisting of clements in dimensions (p, ¢) with
¢ > 0 will be denoted by R and b(I)+, respectively.

It is proved in [4] -— see also [16] — that R.. = Z[xz,y| where 2 has degree
(0,2) and y has degree (1,1). Our next objective is to compute the ring b(R)+

and the ring homomorphisms
W R+ — b(R)+ and T : b(R)+ —+R.

LEMMA 5.1, Under the isomorphism Ry = Z[x,y|/(2y) mentioned above

s

we have: ¥(x) is a generator for b(R)™ = Z and U(y) is a generator for
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b(R)Y 2 Ziy. Hence
To¥(z) =+l €RY and ToWU(y)=¢ec R,

ProoF. Observe that

RO? = HZA(SA) 2 (L)
b(R)U;Z fa¥] b(HZ)%Z(S‘l,O) o W4(b(HZ)§%)
Under these isomorphisms, the transformation Wy, is the map induced on
w4 by the non-equivariant homotopy equivalence €* : HZ o — b(HZ )40 In
[16] it is proved that the inclusion

HZY% — HZ4p

induces an isomorphism on my. It follows that W(z} is not divisible hence it is

a generator for b(R)%2

The proof of the assertion regarding ¥(y} is similar. Observe that

RN HR(SY) &y (HLE)
BR)M 2 B(HEZ)>(S'0) 2 m (b(HZ)E2).

Now, 7, is Zo-homotopy equivalent to P and so the inclusion HZ %’ﬁ in
HZ 1, is not null-homotopic — in fact, this inclusion is homotopy equivalent
the inclusion of PR’ in PP. Again we use the fact that €* is a non-equivariant

homotopy equivalence. This implies that
* Fn - Zio

is not null-homotopic. Since both these spaces are K (Za, 1) spaces, it follows
that ¢* is an isomorphism on 77 and this means that ¥{y) is a generator for
b(R)H.

The last statement follows from the fact that Y, , is an isomorphism for

all p,g > 0. ]
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'This computes the ring homomorphism Ry i R. We will now use it to

compute the ring b(R) ;. Recall that we already know this ring additively since
Tyt B(RYPT — APT(pt)

is an isomorphism, for all p, q.

LEMMA 5.2. Let x = W(z), &1 = WU(y) and let ey be the generator of

b(R)*". Then there is a ring 1somorphism
b(R)-!— = Z[Xa £1, 52]/(2511 2"32-; 512 - XEQ).

Proor. This follows immediately from the previous Lemma because Y is

a ring homomorphism and Y, , : H(R)»? — RP9 is an isomorphism. O

In particular this shows

COROLLARY 5.1. The transformation ¥ includes R,y in b(R), as a direct

summand.

Finally, we have the following description of the restriction of the transfor-

mation ¥ to spaces with trivial Zs-action and dimensions (p, ¢) with ¢ > 0.

TﬁEOREM 5.1. Let ¥ denote the natural transformation from the theory
HZ** to b(HZ)"* and let ¢ > 0. Then, for any Zy-space X, ¥ includes
HZPY(X™%) naturally in b{(HZ)P9(X?%2) as a direct summand.

PRroOF. Observe that, given a space X with trivial Z,-action, we have

HZ™(X) = [X, HZyp 2, 2 [X, HZZ:

i 214

and

YHZYHX) 2 [X,b(HL )p gz, = X, 0(HL )7

F2UEN
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Now, both HZ %2 and b(HZ )5? are topological abelian groups and hence, they

are products of Lilenberg-Mac Lane spaces. The transformation ¥ is the map

induced from
& LY = F(BLy., HLy )™

which is a group homomorphism. It follows that, ¥ is completely determined
by the map induced by €* on homotopy groupé. Qur computation of the effect
of ¥ on the groups of a point shows that ¢* includes the product of Eilenberg-
Mac Lane spaces HZ ;fjl into b(HZ ),%,%1 as a direct summand. This completes

the proof. ]

REMARK 5.1. Since, for any p,g > 0 the natural transformation Tpg
b(HZ)P9(—) — AP9(—) is an isomorphism, it also follows from the Theo-
rem above that, for any Zq-space X, T o W includes HZ ™1 (X E2) natura,lly in

AP4(X%2) ag a direct summand.

To conclude we will give a formula for the restriction of the equivariant
Chern classes &, of the theory HZ**. Recall that m(H Zy,) = R™ Y so,

from Ry < Z[z,y], with deg(z) = (0,2) and deg(y) = (1,1), it follows that
HZ%  has the homotopy type of

2n,n

(5.30) K(Z, ) X K(Z,2n — 2) X -+ x K(Zg,n) 7 even
K(Z,2n — 1) X K(Z3,2n = 3) X +++ X K(Z2,n) 1 odd.

This decomposition shows that there is a natural isomorphism of functors

between the restriction to spaces with trivial Zg-action of X — HZ (XY
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and the functor

n/2
(X, 2)® D H™ (X, Zy) n even,

(5.31) X oy o=
P 1 X L) n odd,

k=0

Similarly, the computation of the groups ARn(pt) =2 b(HZ )2 *m(59)

shows that the topological abelian group b(/1Z )%fm has the homotopy type of

HZ% 5 K(Zig,n —2) % - X K{Z,0) n even,

2n,n

(5.32)
HZE % K(Zy,n—2) x - X K(Ly,1) nodd,

ZHinn

and this shows that there is a natural isomorphism of functors between the

restriction to spaces with trivial Zg-action of X — A*"*(X) and

H(X;2) & @ H™*(X;Z2) n even,

(5.33) X< k=1
@ H =21 X Tg) n odd,
k=0

By Theorem 5.1, under the equivalences (5.31) and (5.33) the transforma-
tion ¥ is inclusion as a direct summand. |

We now recall Kahn’s computation of Enl BO"

TuroreM 5.2. ([12]) The restriction of the equivariant Chern classes, Cn,

to BO is

Puja + Ble - ST 2wy + € S wy 4+ T wy), 1 even

B(Sq" w4+ € - Sq"Bwy A+ A €T ), n odd
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Where w, is the n'h Stiefel- Whitney class, p, sy is the Ponirjagin class and §,

B denote the coboundary maps associated to the sequences of ZLg-groups
0227 — 7 —0

0 — Z(1) =% Z(1) — Zy — 0.

It is easy to see that in terms of the equivalence (5.33) this reads

_ P2 + S 2wy + oo 4 Sq?w, Fwn 1 oeven
% po = '

S¢* wy, + -+ SqPwn + wy n odd

Since &, = (T o ¥)¢, we see that, under the isomorphism of functors (5.31),

this is the formula for Eﬂ‘ RO
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