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Abstract of the Dissertation

Hyperinvariant Subspaces and Structure Theory
for K - tuples of Commuting Operators
on Finite Dimensional Spaces

by
Marc Steven Ordower
Ph. D.
in
Mathematics
State University of New York
at Stony Brook

1999

In this dissertation, we consider structure theory and similarity questions for
a k-tuple of commuting nilpotent operators on a finite dimensional space V.
To this end, we define a lattice £ of subspaces and thenamap L:V — £
which takes a vector onto the smallest element of £ which contains it. We
find that, in many cases, it is easier to work with the elements of the lattice
L than the original vectors.
Our principal result asserts that a k-tuple of commuting nilpotents is

" determined up to similarity by its lattice of hyperinvariant subspaces H.4
together with a map from the matrix valued polynomials to H 4.

= In the final chapter, we discuss a class of &-tuples for which there exists
a structure theory strongly resembling Jordan theory.
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Introduction

One begins the analysis of the structure of a single linear operator P on a finite
dimensional vector space V by decomposing V' into a direct sum of generalized
eigenspaces for P. On each of these generalized eigenspaces, P acts as the sum
of a scalar and a nilpotent. The study of structure theory for a single operator
therefore reduces to the study of structure theory for nilpotents.

One would hope to begin the study of the structure of an ordered k-tuple of
commuting operators (T},...,Ty) on a finite dimensional space V with an analo-
gous result. [4]

Proposition 0.1 Given operators T1,..., T 1 V — V, dim(V) = n, such that
TiT; = TyTy, for oll i,7, then V can be ezpressed as the direct sum V = @V),
where Aj = (A1 gy oy Akj) € C*k, Vy, invariont under all the T; and (T} — Ay ;) |ij
nilpotent.

Further, there exists a basis in which the nilpotent part of all the T; lies sirictly
above the diagonal and the diagonalizable part of all the T; form diagonal matrices.

We will therefore restrict-our attention to ordered k-tuples of commuting nilpo-
tents A = (Ay,...,Ag), where Ay,..., Ay : V =V and dim(V) =n < co.

Tdeally, a structure theory would answer many of the multivariable analogs of
the questions answered by the elegant Jordan theory. In particular, we have the
following goals in mind: .

1. Classify ordered k-tuples of nilpotents up to joint similarity. i.e. Given two
ordered k-tuples of commuting nilpotents A = (Ay,..., A} and A’ = (A],..., A4}),
where A; : V — V and A : V' — V’, determine the existence of an invertible
S :V — V' such that A} = SA;871, foralli € {1,...,k}.

2. Determine a direct sum decomposition of the space V = V1 &...® Vi, where
V; is both invariant for all the 4; and indecomposable under their joint action.

3. Clarify the action of a k-tuple of nilpotents on an indecomposable space V.

Such a structure theory is still beyond our reach. However, we develop ma-
chinery to-aid the study of such k-tuples, in general, and analyze completely some
important special cases. We begin by making some preliminary algebraic remarks.

The single variable analog of the second goal -above, is the decomposition of
a space V into the subspaces upon which the individual Jordan blocks act. We
recall that this decomposition is not unique, but Jordan theory tells us that every
decomposition is ‘essentially’ the same. One would hope for the same phenomenon
" in the multi-variable case. This is the essence of the following:

Theorem 0.2 (Krull-Schmidt) IfS is a set of operators on a finite dimensional
space V,
V==VieWwhoe..eV,=V(oVjoe...eV

are two decompositions of V into non-trivial subspaces invariant under the opera-
tors in S and indecomposable, then k =1, and if the V] are suitably ordered, then
there exzist invertible S; : V; — V!, such that for each A in 8, A ly; S; = SiA |y,
1=1,...,k.




We also make note of a few basic differences between the single and multi-
variable cases.

Proposition 0.3 If A is the algebra genernted by the operator A, A:V — V,
dimV = n, AF =0, then the following are eqmvalent

1. V is indecomposable under A.

2. A=A (Where A is the commutant of A).

3. A has a cyclic vector.

For the algebra A generated by the & - tuple of commuting operators A, the
conditions are no longer equivalent. However we have

Proposition 0.4 3) = 2) = 1).

Neither of these implications is reversible.

We can determine the number of Jordan blocks for a single operator A: V — V
by finding the codimension of the image of A in V. The above observation indicates
that the determination of the number of indecomposable subspaces in a direct sum
decomposition is more complicated in the multi variable case.

The problems of classifying k-tuples of commuting operators up to joint simi-
larity, and the determination of the lattice of hyperinvariant subspaces for such a
k-tuple are closely intertwined. ‘

Fillmore, et al. [3] characterize the lattice of hyperinvariant subspaces H 4 for
a single linear operator A : V' — V. They begin by decomposing V into a direct
sum of generalized eigenspaces for A. This reduces the problem to the description
of the lattice of hyperinvariant subspaces induced by a nilpotent operator. This
simpler problem is solved by characterizing every hyperinvariant subspace as the
span of some subset of the basis vectors in a given Jordan Basis. '

In section 1, we parallel some of the results in [3] by developing a theory for a
related class of lattices which include the lattices of hyperinvariant subspaces.

Clearly, the lattice structure of H 4 alone is ingufficient to determine A up to
similarity.

Example 0.1

Consider A : V — V, where A is nilpotent of order 3 and dimV = 3. The lattices
of hyperinvariant subspaces for the operators A and A?, which we will denote
respectively by Hay, and M 42y, are identical (each is a chain of length three).
These two operators are clearly not similar. We note that the operators A and
A? induce lattice maps on H 4y, and H 42y respectively. Though the lattices are
identical, these lattice maps are quite different. It iz this observation which we
exploit in chapter 1, and later, in a multivariable format, in chapter 3.

In the second chapter, we further develop the relationship between the lattice
of hyperinvariant subspaces and similarity. Similarly, this time, in the multivariate

case.




Given an algebra A generated by a k-tuple of operators A acting on a finite
dimensional vector space V', we associate t0 each z € V| the subspace L1, (), the
smallest hyperinvariant subspace containing z. Clearly, the set of join-irreducible
elements of H 4 is contained in the set {L,(z) : @ € V}. We explore this con-
tainment in more depth. Further, using our single variable experience as a guide,
we investigate the relationship between joint similarity, and the lattice maps in-
duced by each operator in the k-tuple A on the lattice H 4. We find, that in the
appropriate setting, we can obtain a complete set of joint similarity invariants.

We conclude the chapter with a characterization of the complete lattice of
hyperinvariant subspaces for a k-tuple of operators A, as well as a characterization
of joint similarity in terms of this lattice and associated lattice mapping structures.
As is to be expected, this characterization is not nearly so transparent as is the
single variable case.

The final chapter presents a complete structure theory for a special class of
k-tuples of commuting operators. This structure theory meets the goals outlined
above for a good structure theory. Further, since our assumptions about these
k-tuples are very strong, we end up with as structure theory which is purely com-
binatorial and strongly resembles Jordan theory.

1 An Induced Lattice of Subspaces

Consider a vector space V over the field F such that dim(V) = n. The set of all

the join and meet operations are defined as follows:

A

v

= Intersection,
def .
= linear span.

This lattice is modular. That is, for any elements Wy, Wa, W3 in S, such that
Wi > W, the following equality holds: '

Wl A (W2 N W3) hed (Wl A WQ) 3 Wa.

Clearly, any sublattice of a modular lattice is modular. Hence any lattice of
subspaces is modular. ~

It is well known [1] that if a modular lattice has a finite maximal chain of
elements containing, say, ¢ + 1 elements, then every chain contains at most ¢ + 1
elements. The number ¢ is called the length or dimension of the lattice. We
choose to use the word length to avoid an obvious confusion. Clearly, every lattice
of subspaces of an n-dimensional vector space V' has length bounded by n.

subspaces of V' can be partially ordered by inclusion, and forms a lattice S where




Given any lattice £, we define the set J(L) to be the set of non-zero, join-
irreducible elements of £, and Jo(L) to be J(L£) U{0). For any U in J(L), define

vV U
Ue gL
U<l

U

Clearly, U is the unique maximal element of £ strictly contained in U.
A lattice £ is said to be distributive if for any Wy, Wo, W3 in £, the following
equality holds:

Wi A (Wg \' W3) = (W1 A Wg) A% (W] A Wg).

One notes that the distributive inequality implies the modular inequality. How-

ever, there exists a five-element lattice which is modular but which fails to be '

distributive. A distributive lattice of length ¢ may be embedded in the lattice of
subsets of a g-element set. As a consequence, any distributive lattice of length ¢
must have no more than 2¢ elements.

Distributivity is a most natural concept in the context of subspace lattices.
Consider the following easy result, stated for convenience.

Proposition 1.1 £ is a lattice of subspaces of V' containing both the zero subspace
(0) and V, dimV = n < co. Then, the following are equivalent:
1. £ is distributive.
2. For all choices (Bu)yegcy such that By @ U =U, @yegie Bu =V
3. There exists a direct sum decomposition V = @yegc) Bu such that for
eachWe€L, W= yecgu) Ev
U<wW

Consider 4 : V — V, dimV = n < co. If £ is any lattice of subspaces of V'
closed under images and preimages of A, then we may consider A and A~! to be
lattice maps on £. A: £ — £ and A™! : £ — L are respectively join and meet
lattice homomorphisms. That is, for Wy and W; in £,

AWy v W) = AW, v AWy,

A_l(Wll/\ Wg) = A“1W1 A A_lWQ.

_Any meet or join lattice homomorphism is an order preserving lattice map [1].
The next proposition states conditions under which A : £ — £ is a meet lattice
homomorphism and A~ : £ — £ is a join lattice homomorphism.

Lemma 1.2 If W is any subspace of V,
ATTAW = W v AH0),
AATIW =W A AV.

Proof. Clear.

|
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Proposition 1.3 If W) and Wy are subspaces of V',
A(WIAW,) = AWIAAW, <= A™ L (O)V(WiAW,) = (A"HO)VWI)A(ATH(0)VIW2),

and
A_II(W1VW2) = A" "W VATIW, <= AV AW VW) = (AVA Wl)V(AV/\ Wg).

Proof. In order to prove the first statement, we make use of the preceding lemma
and the fact that A~! is a meet-homomorphism on the lattice S.

AVA(Wy A W) = AH0) v (W1 A Wa),

A‘"I(Awl A AWQ) = A"1AW; A A_]'AWQ = (AHI(O) A Wl) A (Aml(O) \% Wg)

So that, if we assume that A(W; A Wy) = AW, A AW,, we obtain A71(0) V
(W1 A W) = (A71(0) v W) A (A7H0) V W3). To get the converse assume that
A~H0) v (Wy AWR) = (A71(0) V W1) A (A71(0) V Wh). We now have A~LA(W: A
Wa) = ALY (AW, A AW,). Taking A of both sides and applying the previous
lemma again, we obtain A(Wi A Wa) A AV = (AW A AWy) A AV, or simply
A(Wl AWy) = AWy A AW, '

The other equivalence is handled similarly. [ |

Corollary 1.4 Assume L is a distributive lattice of subspaces of V.

If L is closed under images of A, and A™1(0) € L, then A: L — L is a lattice
homomorphism.

If £ is closed under preimages of A, and AV € L, then Al L s Lisa
lattice homomorphism.

Proposition 1.5 If £ is a lattice of subspaces of V' which is closed under both
images and preimages of A, then A : J(L) — Jo(£). Thot is, the lattice map
on L induced by A maps the non-zero join-irreducible elements L into the join-
irreducible elements of L.

Proof. Let U/ be an element of J(L£). Consider any decomposition AU = W1V W,.
Since W1, Wa < AU < AV, then we have trivially AV A (Wi VW) = (AV AWV
(AV A Ws). So that now

U = (Ao vU)AU _
= (A~TAU)AU (lemma. 1.2)
= AW (WivWy)AU
= (A"IWL VA IWL) AU
= (A'(W) AUV (AT (W) AUV ATHO) AT

~ = (A"'WLAUYV(ATIWLAT) (modularity)
But since U € J(L), either AT*Wy AU =U or A7 Wy AU = U. And thus, either
Wi = AU or Wy = AU. |

Lemma 1.6 Let £ be a sublattice of S which is closed under images of A and
which contains A~1(0). If U, Uy € J(L), such that AU; = AU; # (0}, and cither
a) Uy LUy

or
b} L is distributive,
then U = Us.




Proof. In both parts of this proof, we use the observation that AU; = AUj implies
that Uy C A-l(O) v Ui, .
a) Assume Uy < Us.

Uy = UsgA (A“I(O) v Uy)
(U AATY )} VU (modularity).

Since Uy is irreducible and AUy # (0), Uy = Uj.
b) Assume £ is distributive.

Uy = Up A(A™HO)VUL)
= (U AATYO) V (U ATL)  (distributivity).

Again, by the irreducibility of Us, and the fact that AUz # (0), we obtain that
U < U, Similarly, we may show that U; < Us. |

Lemma 1.7 I[fU € Jo(L) and U < AV, then there exists U’ € Jo(L) such that
AU =T.

Proof. Let § = {W € L|AW = U}. Note that AA™'U = U A AV = U. Hence
S is not empty. Let U/ be a minimum element of S. Assume U’ = W v Ws.
Then U = AU = A(W; V W) = AW V AW,. By the irreducibility of U, either
AW, = U or AW, = U. Since either Wj or W5 is in S, by the minimality of U’,
either Wy = U, or Wy = U’. Hence, U’ € Jp(L). [ |

Proposition 1.8 Let £ be closed under images of A and U € £ such that AU #
{0), E be a subspace of V such that U = E'® U. Then

1. AU = (AU),

2. Alg: E — AE is an isomorphism,

3. AU = AE @ AU.

Proof. To prove the first statement, we note that

Al=4 \ U=\ AU
U e J(8) Ue L)
Ut < U U < U

By the previous lemma, AU’ < AU for each U’ < U. Hence AU < (AU). Now,
consider U" € J(L), U" < AU. Note that

A"HO) v (ATIU" AU) (A~ 0y vU) A AU (modularity)

= (A1) V AU) A (ATHO) VD)

So, by lemma 1.2 and proposition 1.3 A(A™IU” AU") = AA™IU" A AU =
U" AAV A AU = U". Hence U" < AU.

For the second assertion, note that the definition of U implies that either
UAAY0) CU or UAATY0) = U. Our assumption that AU # (0) prohibits the
latter. We deduce that E A A~1(0) = (0} and the second assertion follows.

6




Lastly, we use the fact that A distributes over join to note that AU = AT v
E) = AfvaE To obtain that AU and AF are linearly independent, we compute
Yo)vO)a(A? (0) v E)
~H{0) v ((A L{0) V ) A E) {modularity)
~1(0) V(U A(A™] 0) % U) A E)
(0) v (
(0) v (

“Hoyv ((UAA- 1(0)) v U) A E)
oy v (U AATHOYVU)AE)  (proof of 2.)
= AY0)V(UAE).
Hence, by proposition 1.3, AU A AE = AU A E) = A{0) = (0). The final
agsertion follows. [ |

Proposition 1.9 Let £ be closed under images of A and containing A~1(0).
There exist {Ey }yezc) such that for all U € Jo(L),

1. U=U®Ey,

2. AEy = By,

3. A|gy,: By — Eay is an isomorphism, provided that AU # (0).

Here, E ) is defined to be (0).

Proof. We choose the Ey iteratively. Let § C Jy(L) for which an Ey has been
chosen. If § # Jo(L), choose a U ¢ S such that AU € §. If AU = (0), choose
Ey; such that U = U & Ey. Statement 2 holds automatically and statement 3
holds vacuously. If AU # (0), choose Ey such that ABy = EuU, By < U
and By A A71(0) = (0). Clearly, both statements 2 and 3 hold. By the _preceding
proposition, AU = (AU ). Hence EyAU = (0). Further, A(U VEy) = AUVAEy =
AU, and U A A71(0) = U A A71(0). We deduce that U = U & Ey. [

Given a lattice £, we note that a set { Fyy} satisfying property 1 in the preceding
result generates a minimal complemented lattice of subspaces containing £. We
say that such a set properly complements £ with respect to the operator A if it
satisfies statements 2 and 3. :

We recast the preceding results in a graph-theoretic milieu. We define a strict
directed graph (to which we will refer simply as a directed graph), ['(V, &) to
consist of a vertex set V, and an set of directed edges £. The set £ consists of
ordered pairs of elements (z,y) where z,y € V, # # y. For a more standard
formulation, see [2]. If 2,y € V, the pair (x,y) may be visualized as a directed arc
from z to y. The outdegree of a vertex is defined to be the number of directed
edges leaving that vertex. Likewise, the indegree of a vertex is defined to be the
" number of edges entering the vertex.

Consider an operator A : V — V and lattice £ containing the zero subspace
(0), and closed under both images and preimages of A. Form a directed graph
= T(J(L),E). As written, J(L) forms the vertex set of our graph. We take
(U1,U,) € € if AUy = U,. Proposition 1.5 implies that the outdegree of a vertex

Ue J(£)is 1if AU # (0) and 0 otherwise. Lemma 1.7 states that the indegree -

of any vertex U < AV is non-zero. Lemma 1.6 states that the indegree of each
vertex is at most 1 provided that £ is distributive,




We define the connected components of a digraph to be equal to the connected
components of the underlying graph. Denote the set of connected components of
I’ by IL.

The last proposition has an important consequence,

Corollary 1.10 Given a lattice L closed under images of A and containing (0),
and given o set of subspaces {Eyltyeg(c), then for each m € II, there exists a
collection of isomorphisms :

Ourus + Buy, — By,

where U, Uy € 7, such that
1. 8y av = A |g, #f AU # (0),
2. 9U1,U2 = 9U1,U39U3,U2'

Given a collection of operators T, denote by L+, the unique smallest lattice
of subspaces containing (0) and closed under both images and preimages of each
TeT.

Proposition 1.11 IfA:V = V, dimV’ < 00, then L4 is distributive.
Proof. Let £ be the lattice generated by
(A*V ke {1,...,n}}u{A~*(0) ke {1,...,n}}.

That the union of two linearly ordered subsets of a modular lattice always generates
a distributive sublattice is well known [1]. Hence, £ is a distributive sublattice of
L 4. We note that both A~!(0) and A(V) are in £. Hence, by proposition 1.3,

A(W]_ A Wg) = AW A AW,

AN WL v W) = AW v AW,

for any W1, Ws € L. L is therefore closed under both images and preimages of A.
Hence L4 = L. [ |

Note, that as a consequence of the above proof, we have the following.
Proposition 1.12 J(L£4) C {4V A A~9(0) : 4,5 € {1,...,n}}

That is, every join-irreducible element of the lattice £4 can be realized as the
intersection of the image of some power of A with the kernel of some (possibly
different) power of A.

Proposition 1.13 Given a nilpotent A : V — V, there exists a direct sum decom-

position
V= @ Ev
UeJ{La)

such that for all U € Jo(L4),




LU=Ua Ey,
2. AEy = Eay,
3. Algy: By — Eav is an isomorphism provided that AU # (0).
4. AEy, = AEy, # E) implies that Uy = Uy,
Here, E) is defined as (0).

Proof. For each U € J(La) for which no U’ € J(L4) exists such that AU' = U,
choose Eyy arbitrarily such that U = U @ Ey. Once an Ey is chosen, if AU # (0),
define Eay = AEy. Proposition 1.8 implies that 1. and 3. hold. Since, £ is
distributive, by proposition 1.1,

V= & B

UeT(La)

The last assertion follows from the distributivity of £4 and lemma 1.6. [ |

- The reader will recognize in the preceding result the traditional chain structure
of Jordan form. In our result, each chain of Ey subspaces represents all Jordan
chains of vectors of the same length. Hence, we have the following.

Corollary 1.14 FBEwery nilpotent operator A:V — V has a Jordan basis.

2 Hyperinvariant Subspaces and Joint Similarity

Consider operators Ai,..., Ay : V — V, where dimV < 0o and A;A; = A;A; for
all4,5 € {1,...,k}. Define A = (A,,..., Ag), the algebra generated by Ay,..., Ag.
We denote by A the k-tuple of operators (Ai,..., Ag).

A subspace W of V is said to be hyperinvariant for the algebra A if it is
invariant for the commutant algebra A’ of A, That is, AW C W forall A:V -V
such that AA; = A;A for all i € {1,...,k}. Clearly, the set of all hyperinvariant
subspaces for A forms a sublattice of S.

We begin with the following easy result.

Lemma 2.1 If W € Hy, and p € Clzy, ..., 2] then
1. 'p(A)W € Ha,
2. p(AYIW e Hu.

As a consequence, we note that the lattice H 4 is closed under both images

and preimages of A; and contains both A;'(0) and A;V for each i € {1,...,k}. .

Recall that in the preceeding chapter, we defined L7 to be the smallest lattice of
subspaces containing (0) and closed under images and preimages of each element
of 7. Clearly, £Lao C L 4. We have the following corollary to the lemma.




Corollary 2.2 L5 C LA CH4.

In [3], it is shown that for a single nilpotent operator A, the lattice H4 is
generated as a lattice by the kernels and images of the various powers of the
operator A. The following is a consequence.

Proposition 2.3 I[f A= (A), La= Ha.

(iven a lattice £ of subspaces of a vector space V, such that V € £, we define
the natural map Lg : V — £,

Le(v) = /\ w.
wekl
ve W

Our goal is to use the lattices Lo and H 4, and the associated maps Lz, and Ly,
as tools to help understand the structure of various k-tuples of operators A. We
start with two simple observations:

Ly, (z) = {Az: A € AT},
and
ALy (x) = Ly, (Ax).

We introduce the following example, both to illustrate the above notions and
to motivate a class of examples to be introduced in the next section.

Example 2.1

Consider an n—dimensional vector space V™ with basis B = {e;}{~, and the nilpo-
tent S, : V" — V™ such that She; = ei—1 for i € {2,...,n}, and Sper = 0.
Let -

Vn’k = ®-§=1Vn.

Define operators A; : VA% — V™F for i € {1,...,k} as follows:
A1 Rz2® .. Qx) =010 228 ... Q5T ® ... QTk

for 21 ® ... ® o € V™. Finally, define the algebra Ay to be the algebra of
operators generated by Ay,..., Ay. We examine the subspaces Ly, (z) forz eV
- from several points of view.
Note that c = e, ® ... ® e, is a cyclic vector for Ay, ;. Hence, by proposition
0.4, A' = A. Hence
Ly (z) = {Az: A € A}

Let Z, C C[z1,. .., 2x] be the annihilating ideal for the vector =, and py,...pr €
Clz1,..., 2] be a basis for Z. Then

Ly, () = pr (A)0) A ... Ap;H(A)(O).

10




Lastly, if p € Clzy, ..., 2] such that p(A)(c) = z, then
Ly, (z) = p(A)V.

We define an equivalence relation =4 induced by A on the vectors in V as
follows, For u,v € V, we write u =4 v if there exigts C' € A’ such that Cu = v,
Clearly, if u =4 v, then Ly, (u} = L1, (v). In order to prove the converse, we will
need the following results.

Lemma 2.4 IfA,B:V = V and dimV = n < oo, then there exists p € C[z]
such that A + p(B)(1 — BA) is invertible.

Proof. If m is the minimal polynomial for B, then write m(z) = zFm, (z) where
m1(0) # 0. Decompose V = Vp @ Vi where BV; C Vi, (B |1,)* = 0 and my(B |ny
)=0.

For all A € C, define

k
ra(e) =AY (=Az)
§=0

and ¢x(z) = Az + 1. By the Chinese Remainder Theorem, there exists a unique
polynomial py € C[z] of minimal degree such that

zpy = 1{modm,),

py = ra(modz?).

Note that pA(B) |vp=ra(B) vy, and Bpa(B) v, = Iv;. ‘

Define P : V — V such that PV = V;, PVi = 0 and P? = P. Note that
P = p(B), for some p € C[z] and hence commutes with B.

We compute ag follows:

A+pA(B)(1 - BA)
= P(A+pr\(B)(1 - BA))+ (1 - P)(A+pr(B)(1L - BA))
(1 — Bpa(B))PA + Ppa(B) + (1 — Bpx(B))(1 — P)A+ (1 — P)p»(B)
(1— Bry(B))PA+ Pra(B) +0+ (1 — P)p\(B)
(1 = Bra(B))PAP + Pry(B)P) + ((1 - Bry(B))PA(1 — P))+
(1= P)pA(B)(1 - P).

Il

_The last line above gives a block upper-triangular representation of the operator
- A+p(B)(1 — BA) relative to the direct sum decomposition V = PV & (1-P)V.
Since Bpy(B){(1 — P) = 1 — P and hence py(B) |y, is invertible, it remains only
to show that for an appropriate choice of A, ((1 — Bry(B))PAP + Pry(B)P) |v
is invertible.

We note the following;:

rA(2)aa(z) = A+ (=2,

and
o (2)(1 — zra(2)) = 1 = (=Az)*+2,
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Hence, substituting B for z, we obtain

ax(B)((1 ~ Bry(B))PAP + Pry\(B)P)
= (1 - (-—AB)IG+2)PAP + P(}\ + (—A)k+2B_k+1)P
= PAP 4 P)P.

This last expression is clearly invertible for all A ¢ o(PAP). Therefore, ((1 -
Bry(B))PAP + Pry\(B)P) |v, is also invertible for these same values of . |

& V such that

Proposition 2.5 If A,B:V — V, dimV =n < oo, and z,y
= (A, B) such that

Ax = y and By = z, then there exists an invertible C € A
Cz=1y.

Proof. Given A’, B' € A such that A’z = y and B'y = z, define P = B'A’. We
claim that A’ and B’ may be chosen so that P has the following properties:

P?=P,
AP =4
and
PR =P

In order to prove the claim, note that BAx = z. Define P : V — V to be
the unique idempotent which has the following properties: P(BA) = (BA)P,
(PBA - 1" =90, and (1 — P)BA — 1 is invertible. That is; P is the idempotent
induced by the primary decomposition of the operator BA onto the generalized
eigenspace corresponding to the eigenvalue 1. We recall that P is a polynomial in
BA and is hence in A. Further note that Pz = z. ' ‘

Choose A' = AP which gives BA' = BAP. The spectrum of BA’ is contained
in {0,1}, and BA’ is the zero operator on its generalized eigenspace associated to
the eigenvalue (0). Hence, (1— BA)*BA’ = 0. Further, since (1~ BA")* =1 P,
we have that

n ' n
P=1-(1-BAY=1-%( " J(-BaY =-3"( " ) (-BAY"
A s\
= j=
Define B' = —PBY}_; T; (—BA"Y~1. . Note that A/, B’ and P meet the

requirements outlined in the claim.
Given p € Cfz], consider the operator G : V — V defined as follows:

Cp= A+ Pp(BJ(1-P)+ (1~ P).

We observe that Cpz = A’z = y. So it remains only to show that for appropri-
ate choice of p, €y is invertible.
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Define R, = 1 — Pp(B')(1 — P). Clearly, R, is invertible. We compute 2,Cl,
and display the product in block form, relative to the decomposition V = PV &
{1-P)V.

R,Cp = P(A'—p(B')(1 - P)A)P +0+ (1~ P)A'P + (1 - P).

Since R,Cj has a block lower triangular form, we see that it is invertible if and
only if P{A’ - p(B"}(1 — P)A")P |py is invertible.
Let ¢ € C|z] such that gz — p € C. Note that

Pp(B)(1 - P)
Pq(B')B'(1 - P)
Pq(B')PB'(1 - P)
¢(B'P)B'(1 — P).

1

4

Hence :
P(A"—p(B')(1 - P)A)P |py |

= (PA - ¢(B'P)B'(1- P)A") |py |

= (PA - (B'P)(ipy — (BP)PAY) Ipv |

By the previous lemma, we may choose p € C[z] to make Cj, invertible. a ll

:

Corollary 2.6 Ifx,y € V, then Ly, = L,y if and only ifz =4 y. ;r

Theorem 2.7 Let © € V. Then, Ly, x € J(Ha) if and only if there exists o
direct sum decomposition V = Vi & Vo such that AV; C Vi, x € V1, and V1 is
indecomposable under the action of the algebra A. !|!

Proof. (=) Assume Ly ,z € J(H4). Choose a decomposition, V = V{ & V3 |
such that AV! C V/, z € V{, and dimV/{ is minimal with respect to these two
properties. Assume Vi = V{' @ V', where AV C V{'. For i € {1,2}, define
P,: V = V to be the idempotent such that V" =V, and P,(Vy; ® V) = (0).
Clearly, P; € A'. Hence, Py € V" A Ly, x. So, Ly, Pz C Ly, Moreover, the
fact that x = Pjz + Py implies that Ly & = Ly, Prz V Ly Pox.
By assumption, Ly & is irreducible in the lattice 4. Hence, there exists a
4 € {1,2} such that Ly, Pjz = Ly ,x. By corollary 2.6, there exists an invertible
operator C' € A’ such that CPjz = z. Note that V = CV{' & CV} @ CV3, -,
x € CV{, and that CV{",CVy, and CV{ are all invariant under A. By assumption, |
- dimVy’ =dimV]. Hence V{’ = V{.
(<) Assume we have the decomposition V = V1 © 3 as in the proposition.
Say

v
Lz = AU ‘ .?

i=1

where U; € J(H.4). For each i, choose x; € U; such that 377, ; = z. Note that |

Ly o C UG,
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and that .
L'HA:L' = /\ L_HALL',;.
i=1
The idempotent with range Vi and kernel ¥, is an element of .A’. Hence,
Ly, Px; € Ly x5 Note that

ZT:Pa:,- = Pim = Pr =g,
i=1 i=1

and hence .
Ly Ax = /\ mel,.
i=1
For all i € {1,...,r}, there exists an operator C; € A’ such that Cjz = Px;. Note .

that
PC;Px = Pz; forie{l,...,r},

and that both Vi and V5 are invariant under the operators PC;P. Since V7 is
irreducible, and PC;P € A/,

card (oc(PCiP) |») = 1.

Further note that .,
> PCiPz =g,
i=1
and hence that ,
le O'(Z PCP).
i=1

This further implies that

-
trace Y  PC;P = dim V.

i=1
So we have that tracePC;P # 0 for some j. Then, PC;/P+ (1 —-P):V =V
is invertible. Let R = (PC;P + (1 — P))™'. R(Pz;) = =z, and R € A’. Hence
Ly, Pxy = U; = Ly x. The result follows, |

Corollary 2.8 If the space V is indecomposable under the action of the algebra
A; then forallz € V, Ly, 2 € T(Ha).

Based on our experience in the case when the algebra A is generated by a
single operator A : V — V, we may make the following conjectures for an algebra
A generated by commuting nilpotents Ay,..., 4z V — V"

L. Ha= Ly,
2. The lattice H 4, together with the induced lattice maps 4; : J(H4) —
Jo(H 4) contain sufficient information to determine Ay, ..., Ax up to joint similar-

ity.
Unfortunately, neither of these assertions is true.
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Example 2.2

Consider the shift S5 : V° — V° as defined in example 2.1. Define A, Az : V — V
as follows: Ay = S2, Az = S§. Let A be the algebra generated by A; and Aj.

Since both A; and Ay are polynomials in Ss, the algebra A is a subalgebra of
As 1. Hence Af ; is a subalgebra of A’. This further implies that the lattice 7.4 is
a sublattice of H 45,. We know that the latter lattice is a chain of six elements:

HA5,1 ={U;: Uy = (O)aU(i) = {e1,...€),1 € {1,... ,5}}.

It is not difficult to check that each of these six subspaces is an element of H 4.
Note that Ve, = U; for 1 € {1,...,5}. We further note that

g1 =4 Usgen Ai(e) #0
45 _Ue‘ - { UoJ otherwise.

The lattice 74 and the lattice maps thereupon induced by A; and A are
incapable of distinguishing the pairs (A3, AAg) for A # 0. To disprove the second
conjecture, we could observe that for different X, the pairs (A;, AAz} are not jointly
similar. In particular, we show that

(A1, Mg) ~ (A1, Ag)

implies that A = 1. To see the last assertion consider the the 2 x 2 matrix valued
polynomial operator in the variables A; and Ay, Fy : Vi@ V® = V59 V' defined
as follows: ‘

Fa.(m: y) = (G.A%.’B + A'Zya Az + Aly)'

If a = 1, then for each & € V5, there exists a y € V? such that (z,7) € ker F,. If
a # 1, and if & = g, there is no y € V® such that (x,y) € ker R,. Wo have hence,
found a similarity invarient which differs in the cases when @ = 1 and a # 1. We
have thus disproved the second conjecture.

To see that the first conjecture is also false, consider the operators By, Bz :
V5@ VS = V5@ V?® defined as follows: By = A; @ Ay, By = Ay @ 24A,.

By our comments above, we can immediately see that each clement in £y
has even dimension. Define the operator F : (V8 @ V8)2 — (V5 & V5)? (here
(Vi@ VE)? = (Vi@ V8 @ (V5@ V5)) as follows:

F(z,y) = (Bjz + Bay, Box + B1y)
where z,y € V3 @ V®. Further define P: (V2 g V5)? 5 Vi@ V5,
Pz,y) = .

Note that PkerF is a hyperinvariant subspace of V3@V?3. By our earlier comments,
dim PkerF = 9. Hence PkerF cannot be in L;.
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This example suggests a new light in which to view the lattices LA and £ 4.
We define the set of matrix-valued functions with polynomial entries:

F= {[p,;j]i,je{l,m,n} :pij € Clzn, .. z),r € Z+} .
If FF e F, then F(A): V" — V", Further define P : V" — V as follows:
Plxy,...,zp} =21 x € V.
Define
Li.={PkerF(A): F e F}.
Proposition 2.9 L, is a sublattice of Ha.

Proof. We first show that £, is closed under both meets and joins. Let Wy, Wy €
L. Then there exist F, G € F such that W; = Pker F(A), and W = Pker G(A).
Without loss of generality, say that F and (7 are the same size, say r by r. Then

Ny ... By 0 .0 0
Fa ... Fp 0 ... 0| _

Pker Giy ... G 0 ... 0]~ Wi A W,
_Grl . e Gv,mr 0 Ve 0_‘

and
11 o ... 0 t o0 ... 0]
0 Fiu. Pz ... Fip 0 o ... 0
Pker | 0 Fq Fu ... Fye (0 0 0 = Wi v W,
0 0 0 ... 0 Gun Gz ... G
_0 0 0 - 0 Gr]_ Gvrﬂ.--; G‘r'y‘_

Hence, £, is a lattice. To see that this lattice is contained in the lattice of hyper-
invariant subspaces, choose a vector x € P ker F'(A) for some F € F. There exist
veTtors g, ..., &, € V such that (z,2q,...,2,) € ker F(A). Let B € A’ and define
GV =V as follows:

G('vl,. ‘e ,'Ur) = (B'U]_,-. .,BUT)-

Then
F(Bml, B$2, ey an)
= GF(z1,22,...,%n)
= G(0,...0)
- 0
Hence, Bz € Pker F(A). The result follows. [ ]
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Proposition 2.10 L, is closed under images and preimages of p(A) for allp €
C[Zl, con ,zk].

Proof. Let W = Pker F for some ' € . Then

p(A) 1 0 ... 0O
0 Ffy Fa ... F
Pker ] oo = PHI(A)VVa
0 Fa B ... Fy ]
and .
1 p(A) O 0
0 Fu Fao ... Fi
Pker | . = p(A)W.
0 FTl Frz e Frr i

So we have the following
Corollary 2.11 LA C L4 C L, CH4.

The next theorem states that the last containment in the above corollary is
actually equality, and gives necessary and sufficient conditions for two k-tuples of
operators to be jointly similar.

Lemma 2.12 If 8 is o subspace of linear operators on V, dimV < oo, and for all
x € V, there erists an Ay € S such that Ayz = x, then there erists A € § such
that A is tnvertible.

Proof. Choose A € S such that dim(ker A®) is minimal. If A is not invertible,
choose = € ker A, A, € 8 such that Ayz = z. Consider the matrix-valued function
A'(e) = (A + €A;). The eigenvalues of A’, including multiplicity, are continu-
ous functions of e. Also note that € € o(A'(e)). Hence, for sufficiently small e,
NulA/(e)™ < NulA™. The contradiction establishes the lemma. [ |

Theorem 2.13 1. For all F € F, Pker F(A1,...,4x) € Ha,

_38. The k-tuples (Ay,..., Ay} and (A}, ..., A}) are jointly similar if and only if
there exists an invertible map S : V. — V' such thot for all F € F, SPker F(Ay, ..., A)
P'ker F(A],...,A}).

Proof.
1. Let U = Pker F(A1,...,Ag). If v’ € U, then there exist vy, ..., v € V such
that F(Ay,...,Ax)(v,ve,...,v) = 0. Consider an operator ¢ € A'. We compute

F(Ay,..., Ag)(Cv,Cuy, ..., Cuy)
= diag(C’, vas ,O)F(Al,. e ,Ak)(v,vg, v ,’Uk)
= 0

17
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Hence Cv € U which in turn implies that U € ‘H 4.
2. Given U € H 4, let

W= A Pker F(4y, ..., Ag).

Fer
U C Pker F(A1,. .., Ag)

For all w € W, there exists v; € U such that v; € Pker FP(Ay, ..., Ag) implies
that w € Pker F(Ay,..., Ag). Extend vy to a basis {v1,v9,...,1,} of V.
For r,s € {1,...,n}, and t € {1,...,k}, define ars € C such that

T
Agmi =) G
j=t

Further define F € F as follows:

21 0 ... ©
0 21 0]
: [aij1] In
0O 0 ... z
F(zl,...,zk)= —
2k g ... 0
{,) “ 0 @it} In
R 0 0 ... Zh

By assumption, there exist vectors ws,...,wy, € V such that
F(A1, ..., Al (w1, ... ,wy) =0,
Define the operator C': V — V such that C'{1;) = w;. Note that

n n k)
AlCoyy = Ayw; = Za,;jtwj = Zaijtcvj =C z aijivy = CApy;.
i=1 i=1 J=1

Hence, C € A’ which implies w € U, which in turn implies that W = U. This
establishes the result.

3. (=) This direction is trivial.

(«=) Without loss of generality, assume that

Pker F(Ay, ..., Ay) = Pker F(4}, ..., A})

for all F € F. Take z; = z and extend to a basis {z1,...,2,} for V. Define
aji and F € F as in 2. Clearly, (z,29,...,%,) € ker F{4,,... A;). Hence, by
definition, © € Pker F(Ay,...,As). By assumption, z € Pker F{4], ..., A}). So
there exist a5, ...,2,, € V, such that {z,z5,...,2}) € ker F{4], ..., A}).

Define the operator X : V — V as follows: Xe; = z, Xe; = x; for 1 €
{2,...,n}. Note that A}X = XA; for all i € {1,...,k}. Further note that x is
an eigenvector for X with associated eigenvalue 1. By the lemma, there exists an
invertible T : V' — V such that A/T = TA;. |
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If the vector space V is indecomposable under the action of the algebra A, we
can make several additional assertions.

Proposition 2.14 If the vector space V is indecomposable under the action of the
algebra A, then the algebra A' may be diagonalized.

Proof. Let D and N be the sets of diagonalizable and nilpotent elements of
A’ respectively. Since V is indecomposable under the action of A, the set D
consists of just the scalars. Consider elements By, Bs in N. Note that Trace(B; -+
B3} =TraceB;+TraceBy = 0. Since V is indecomposable, o(B; + Bz) = {0}.
Hence, N is a subspace. Further note that BiB; is singular. Again, since V is
indecomposable, By By must be nilpotent. We now have that N s a nil algebra.
Every finite dimensional nil algebra is nilpotent. The result follows. [ |

Corollary 2.15 If the vector space V is indecomposable under the action of the
olgebra A, then the lattice H 4 contains a chain of n + 1 subspaces.

Recall, that given a lattice of subspaces £, and a join-irreducible element U € L,
we have defined U to be the largest element of £ properly contained in IJ.

Proposition 2.16 If thev'uector space V is indecomposable under algebra A, and
Uec J(Ha), then dimU/U =1.

Proof. We wish to show that there is an operator E € A’ such that card(c(E)) #
1. For, if so, then the generalized eigenspaces for E form a npon-trivial decompo-
sition of V into invariant subspaces of A. Let ,y € U such that z + U,y + U
are linearly independent in V/U. There exists ¢ € A’ such that Cx = y. If
card(a(C)) # 1, let B = C. Assume then, that o(C) = X Let z = (C' - \)=.
Note that z € U, z ¢ 7. Hence, there exists D € A’ such that Dz = ». Note that
D(C—))z = r and that D{C—\) is not invertible. Therefore {0,1} C o(D(C-A)).
Set E = D{C — A). Since E € A’, we have established the result. |

' 3- D-Normal Form

Although, in chapter 2, we have given a complete set of joint-similarity invariants
for a k-tuple of commuting operators, we can hardly claim to have a general
structure theory. Our characterization of the lattice M 4, though concrete, is not
transparent. We have not even offered a general solution to the problem of when
the vector space V' is indecomposable under the action of A, though we have given
several necessary conditions.

In this section, we develop a structure theory for a special class of k-tuples
of commuting nilpotents A = (Ay,..., Ag) where Ay,...,4; : V' — V. For such
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k-tuples, there exists a basis B for V which clarifies the algebraic structure of the
k-tuple in much the same way that a Jordan basis does for a single nilpotent.
We state necessary and sufficient conditions for the existence of such a basis, and ‘
conclude the chapter by answering the previously posed structure theory problems i
for this special class. ‘i

Recall that we have defined the lattice £4 to be the smallest non-empty lattice
of subspaces closed under images and preimages of all the A;. In general, this i
lattice is not distributive, nor even finite and the lattice maps on £4 induced by
A; and A may not be particularly nice.

Recall from the first chapter, that the dlstnbutlwty of £4, in the cage of a i
single linear operator A, had a number of mce consequences. Amongst them, the
lattice maps on £ 4 induced by A; and A were both lattice homomorphisms. In
this chapter, we begin by assuming that the lattice L is distributive.

We may form the directed graphs I'; = I';(J(£a), &) with vertex set J(L£4).
Given Uy, Uz € J(LA), let (U1, Us) € € if AUy = Uy Define the directed graph

k g
—rrea, Ug). ;:1
i=1

As in chapter 1, denote the connected components of I' by II. ]1‘
Define the set Ja,(£a) = {U € J(La) : AU # (0)}, and theset 741 = {U € ‘{‘:
J(LA) : U < AV} By proposition 1.5, the outdegree of a vertex Ue J(La) 1
of T; is equal to 1 if U € Ja,(£a) and equal to 0 otherwise. We further proved,
in lemmas 1.6 and 1.7 that the distributivity of £a implies that the indegree of |
each vertex Uin [, is1if U € J At and 0 otherwise, li'

We define the maps ¢4, : Ja, (ﬁ A) = J(La) as follows:

¢a(U) = AU,
and the maps 'qui' : Ja,(LA) X L thus:
¢A1(Ua W) = AW : ir!

Further, define the maps “[
g
|

4, : U/W — da,U[pa U, W) j“‘1

‘I)Ai(:z:-f- W) = A.ia:-l-'l,DAi(U, W)

such that !-J‘
|
Similarly, define the maps ¢ -1 : J4-1(La) — J(LA) '

QSA—I(U) = U’
the maps 9 ,-1 : T4-1{£LA) X LA — La.

-1 (U, W) = AT'W AU,
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and

®4-1(z + W) = (A5 A d 1 (U)) + 9, (U, W)

where U’ € L{J) and AU =U.
Given Up € J(£), say that A = (C1,...,C,) where

Ci e {AL,..., Ap, AT, .. ATY)

is a Up-admissible sequence, if pAl/ = d¢, ... ¢, U is defined. Given the Up-
admissible sequence A, define A~! to be the sequence (C7L,...CrY). T palp = U,
then A~! is a U;-admissible sequence and ¢oU = Uy. Say that A is a Up-admissible
loop if A is a Uy-admissible sequence, and ¢aUs = Up. :

Even assuming that the lattice £ is distributive, it still takes fairly strong
assumptions to give a multivariable analogue of proposition 1.9. To this end, we
introduce the following definition.

Say that the lattice £ is A-good if, for all U € J(£), and for all U-admissible
loops A, there exists a subspace Fy such that Ey @ U = U for which

PA(z) = Bcy - Be(z) = 2+ (U, (0)),
for all x € Ey.
Example 3.1

Recall the terminology from example 2.1, The pair of operators (Sy,253)
generates a lattice Lg, 25,) which contains only three elements. However, L(g, 25,)
is clearly not (Ss,25)-good.

Given the lattice £, and a subspace E of V, define £L5{L, F) to be the smallest
lattice containing £ and E, and closed under images and preimages of each of the
Aj;. _

Denote the connected components of I'y by 1.

Recall that, given a lattice £, we have defined Lzv to be the smallest element
of £ to contain v. We generalize this definition to subspaces.

Given a lattice £, and a subspace W’ C V, define

Lewh= \J w
- W cw
Wedl

Lemma 3.1 If the lattice £ is distributive and A-good, Uy € J(L), and E < Uy
such that E & Uy = Uy, then

1. The lattice L' = LA(L, E) is distributive and A-good. :

2. The function Lg | gycny: Jo(£') — Jo(L), and is one-to-one and onto,

3 ForallU' € Hp(L),1€{L,....,K}, Le AU = AL U, and

4. We have the containment U' < LU’
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Proof. Let mg be the connected component of I in the graph I'. If U; € mp, and
we have a Up-admissible sequence A such that ¢,y = Uy, then clearly ¥ {Up, E)V
Uy = Ur. We claim that, if ¢p,Up = U for 1 € {1,..., s}, then

(/\ "AbAi(UOr E)) v Ul =U1.
1=1

To see this, note that if A; and Ag are Up-admissible sequences and ¢a,Up =
éda,Us = Uy, then AgAl_lAl is a Up-admissible sequence and ¢A2 AT A Up = Uy
Further note that under these same conditions,

¢A2A1—1A1(U0! E) = PA, (UD,E) v ¢A2(U0a E).
Hence,
dim('wh (Uo,E)V’!,D,\z (UO, E)) = dim((@bA](UO, E)/\UI)V(T,L‘M (Uo, E)/\ﬁl))-l—dimE.

By application of the principle of inclusion-exclusion to the dimensions of the
subspaces in question, we have proven the claim.
If U € J(£) and Uy € mo, then define

U{:( /\ YA (Uo, E)).

pallo=ln

If Uy ¢ mo, define U] = Uy. Clearly, the elements U’ form the join-irreducible
elements of £'. |

Proposition 3.2 Given a k-tuple of operators A, such that the lottice La is A-
good and distributive, there ezists a direct sum decomposition

V= P Ey,

UeJ(L)

such that for each U € J(L), U = U ® Ey, and for each m € 11, there exists a
collection of isomorphisms '
Oyt Eyy — By,

where Uy, Uy € m, such that
"1 Byaw = Ai By f AU #(0),
2. 6'U1,Uz = 9U1,U39U3,U2-

Proof. We begin with £ = £4 and iteratively apply the preceding lemma. Ulti-
mately, one obtains a complemented, distributive, A-good lattice L4, and a map
L, t+ L« — La whose restriction to Jo(L«) is one-to-one and onto. For each
U € J(La), define Eyy to be the unique element of 7 (L.) such that L, (Ey) = U.
By assumption, £, is closed under the action of 4;, and A7 ' foreach i € {1,...,k}.
Hence, the set Jp(L4) is invariant under images of each of the A;. The last assertion
follows directly from the A-goodness of L,. n
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Call two U-admissible sequences A = (C},...,C,), and A" = (Cf,...,Ch)
adjacent, where r > v, if either ,

1. v = r and there exists a j € {1,...,r — 1} such that C; = C’;-_l_l and
Ciy1= 051

or

2. ' =7 — 2, and there exists a t € {1,...,r' + 1} such that

Ot_ = A,‘ and Ot—i—l = A,i_l ar Ot = A;l and Cf,.q.l = Ai_ for some i € {1, s ,k},
and

Cy = Cj for j < ¢ and

Cj=C] yforj>t.

Note that if A; and Ap are adjacent, Up-admissible sequences, then either
W1 (Uo, (0)) € 9, (Us, (0)), or 9, (U, (0)) & %4, (Us, (0)). Further, if we assume
the former, then

Py, (T' + (0)) + A, (Um (0)) = By, (:B + (O))

Call J(L£) doubly simply connected if for every Uy, Uz € J(L) such that U7 >
U7y, and for all loops A which are both U7 and U admissible, there exists a sequence
of loops A = Ag, A1, ..., Ay = Ajq such that A; is adjacent to A;11, and each A; is
both U; and Us-admissible. Here, Ayg is the trivial loop.

The following easily proved result allows us to drop the assumption of A-
goodness in some cases.

Proposition 3.3 Given a k-tuple of operators A, if L4 is distributive, and T(La)
is doubly simply connected, then £ is A-good, ‘

Theorem 3.4 Given a k-tuple of operators A, if La is distributive, and J{Lp)
is doubly simply connected, then there emisis a direct sum decomposition

V= & Ev,

UeJ(L)

stch that 5
1. For eachU € J(£), U =U @ Ey, and
2, If AU # (0), then AjEy = Eay.

Proof. This follows immediately from the preceding proposition, and from propo- '

sition 3.2. |

We note the following easily proven combinatorial result.

Proposition 3.5 a) If J(L) is doubly simply connected, then there exists a map
K : J(L) = ZF such that if U € J(L), AU # (0), then K(A4U) = K(U) — &,
where e; i3 the ith coordinate vector.

b) If k = 2 and such an K : J(L) — ZF exists, then J(L) is doubly simply
connected.

Let ug consider another pair of examples based on example 2.1,
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Exampie 3.2

Define the set & = {(0,3), (1,3),(2,3),(1,2), (2,2),(2,1),(3,1),(3,0)}. Con-~
sider the pair of operators A = (A1, A2), A1, Az : Vo — Vq where Vo = {€a}aecq.

Define

0 otherwise

Define

_ ) ea—oyy @—(0,1)eQ
Ageq = { 0 otherwise )

Define the set €' = {(0,3),(1,3),(1,2),(2,2),(3,2),(2,1), (3,1), (3,0)}. Con-
sider the pair of operators A’ = (A}, A}), A}, A5 : Voy — Vi where Vo =
{ea}aeqy . Define .

0 otherwise

'1€a={ Ca—(1,0; & (1,0) € ¥ )

Define

fo_ éa—{l),l): o~ (0: 1) € 04 'I
Azeq { Q otherwise ) !

We consider several of the structure questions outlined in the introduction
applied to these two pairs of commuting operators. Namely, are the two pairs |
jointly similar (Clearly, all four of the operators are individually similar), and are
the spaces Vi, and Vq irreducible under their respective algebras.

The answer to the first question may not be immediately obvious, as many of
the obvious invariants are equal for the two pairs (eg. dim(kerA’B’) = dim(ker 4" B%)
for all 1 and j). Upon initial consideration, the answer to the second question also
may not be immediately obvious. The directed graphs I' and I formed by us-
ing the basis vectors as nodes, and inserting directed edges in the obvious way,
are both connected. So it seems plausible that the spaces Vo, and Vo are both
irreducible. However, one must show that our perception of irreducibility is not !
dependent on our particular choice of basis.

. To clarify the situation, we consider the two induced lattices ﬁ A and Lar.
These lattices are both distributive (and, in fact, isomorphic as lattices). We may
| consider A, B : La — La and A, B’ : £La: — Las to be lattice maps. These maps
: are lattice morphisms on their respective lattices as detailed in chapter 1.

: -The reader may easily verify the following: There exists a map §: Q — J(La)
: which is one-to-one and onto, and such that

1. Ve, = B(w) for w € 1,

2. Aje, = ey if and only if 4;8{w) = B(w’).

The map 3 : ' — J(Lf) with the corresponding properties also exists.

The directed graph structures of I' and IV are respectively joint similarity in-
variants for their respective operator pairs. Since, these directed graph structures !
are inherited from the graphs I' and I respectively, we see that the two pairs are
not jointly similar.
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Assume that for the k-tuple of commuting operators A = (Ay,..., A) where
Ai 1V =V, there exists a basis B = {e)}xea for V such that:

1. ABAEBU{O}, and

2. A,,eA1 = Ajey, # 0 implies that Ay = Xa.

Note that in such a case, if W is an element of the lattice £, then there exists
a subset Aw C A such that

W = span{ex}reay -

We form the digraph I'g = ['g(B, Eg) where (ey,,ex,) € € if Ajexr, = e, for
some i.

Denote the connected components of I'g byllg.

Say that a basis B of V is D-normal for the k-tuple A if it has properties 1.
and 2. above, and also satisfies the following:

3. Given 7 € II and ey,,ex, € 7, such that ey, € LEAS,\“ and ey, € Lz, en,,
then )\1 /\2

The following result is now easy.

Proposition 3.6 A k-tuple of operators has a D-normal basis B = {ex}rca, and
amap B: B — J(La) such that B(Asey) = AiB(ex) if and only if the lattice La
18 distributive and A -good.

Proof. («) This is a consequence of proposition 3.2. _
(=) Clear. [ ]
As a consequence of proposition 3.5, we have the following. '

Corollary 8.7 If there exists a map K : J(L£) — Z2 such that if U € J(L), AU #
(0), then L(A;U) = L(U) — e;, and there exists a direct sum decomposition

V= & Ev,
UeJg(L)

such thot .
1. For eachU € J(L), U=U @& Ey, and
2 If A;U 7& (0), then A@EU = EA,:U-

The reader may be wondering what obstructs such a result from holding in the

"case when k = 3. We introduce the following.

Exampie 3.3

Define the set _
Q = {(0’ 27 0)1 (03 3? 0)’ (1’ 2’ 0)’ (0! 21 1), (0? 3? 1)’ (11 25 1)? (1? 3'.' 1)!
(3,0,0),(2,1,0), (3,1,0),(2,0,1),(3,0,1), (2,1,1), (3,1, )}

Define the fourteen dimensional vector space Vi = {ew}weq, and the operators
A1, A2 : Vo — Vo ‘

_ | ey w=—(1,0,0)€0
ey { 0 otherwise ’
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_ ) ew-10, w—(0,1,0)€0
Azeu { 0 otherwise .

For each A € C, define Ay : Vo — Vg

€u—(0,0,1)» w—(0,0,1) G Qw# (1,2, 1)
Agpew = § €20 +Ae@o0, w=(1,21)
0 otherwise

The reader may verify that for each A € C, J(La) = {Ue, : w € 2}. Hence,
both the lattice J{£;A) and the lattice maps induced by the three operators and
their inverses are identical for each A. However, the triple Ay, Ag; A3 : Vo — Va
is A-good if and only if A =0.

Now, using the machinery based on £4, we may answer our original structure
questions.

Proposition 3.8 Consider the k-tuples of commuting operators A = (A1,..., Ax), !
Al = (A),...,A,) where A4;: V — V and A, : V! — V', have D-normal bases
B = {ex}rea and B = {€)}rcar respectively, Then A and A’ are jointly similar
if and only if there exists a one-to-one and onto map u: B — B’ such that

r | udien if Aiex #0
Aiper = { 0 otherwise

|
Proof. The forward implication follows from proposition 3.6. The reverse impli- }
cation is clear. [ ] |

Proof. (=) Since both A and A’ have D-normal bases, the lattices £ and La/
are distributive, and respecitvely A-good and A’-good.

Proposition 3.9 Assume that the k-tuple of commuting operators A = (A, ..., Ag)
where A; : V — V has a D-normal basis B. Then the space V' is indecomposable
under the joint action of the operators in A if and only if the underlying graph of
the digraph I'g is connected.

Proof. (<) Assume that we can decompose V' = Vi © V3, where V; is invariant

under the joint action of A. Clearly each W € L£a can be decomposed W =

Wi1e W, where W; C V;. Also, by our assumption of indecomposibility, U € J(LA)

implies that dimU//U = 1. For each U € J(£a), we may choose an zy € U such }

that 2y @ U = U and zy € V] or zy € V. Without loss of generality, assume |

that for some Uy, zy, € V1. By connectedness, zyy € V; for all U. We hence have |

a linearly independent set of vectors in V; of size n. |
(=) Clear. ]
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