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Abstract of the Dissertation

Circle Actions on Symplectic Manifolds

by
Leonor Pires Marques de Oliveira Godinho
Doctor of Philosophy ‘
in

Mathematics

State University of New York
at Stony Brook
|

1999

In this work we study different blow up constructions on symplectic orbifolds.
Some of these may be used to describe the behavior of reduced spaces of a Hamilto-
nian circle action when passing a critical level of its Hamiltonian function containing
critical points of signature (2, 2k). We also describe this behavior for critical points of
signature (2k, 2d). We use these descriptions to generalize the Duistermaat-Heckman
theorem to intervals of values of the Hamiltonian function containing critical values.
Finally, we use localization formulas in equivariant cohomology to give conditions
under which circle actions must be Hamiltonian.
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Chapter 1

Introduction

A dircle action on a compact symplectic manifold M is symplectic if it preserves the symplectic form.
In addition, it is Hamiltonian if its generating vector field X is Hamiltonian that is, if it satisfies
txw = dH where H € C'°°(M) is the Hamiltonian function.

An obvious necessary condition for a circle action to be Hamiltonian is that it has fixed points,
which correspond to the critical points of H. For Kihler manifolds and more generally for manifolds
of Lefschetz type, this condition is also sufficient, (cf. [MD-5]). Moreover McDuff proved in [MD1]
that this result also holds for four dimensional manifolds. However, this is not true for higher
dimenéions. In fact, McDuff constructed a six dimensional manifold with a symplectic circle action
which has fixed points but is not Hamiltonian, (cf. [MD1]). Therefore we need more conditions either
on the manifold or on the action to make sure the action is Hamiltonian for higher dimensions.

One possible conjecture is that a symplectic action with isolated fixed points must be Hamil-
tonian, This result has already been proved by Tolman and Weitsman, ([T-W]}, in the case of a
semi-free action that is, free outside the fixed point set. Moreover there are no known counterexam-
ples, (the fixed point sets in McDuff’s six-dimensional example are tori).

The argument used by Tolman and Weitsman uses integration in equivariant cohomology. Nev-
ertheless, even though it generalizes to the case of non-semifree circle actions it fails to eliminate
all non-Hamiltonian examples with a nonempty fixed point set. For example, as it is pointed out
in ({T-W]), it does not rule out the existence of a symplectic six-manifold with a symplectic circle
action with only two fixed points with the action having weights (1,1, —2) on the normal bundle to
one fixed point and (—1,-1,2) on the normal bundle of the other.

Trying to obtain more information on this problem we first study in Chapter 3 non-semifree
circle actions and describe the behavior of the reduced spaces H™1(a)/5* when passing a critical

level. For this, it is necessary to generalize the usual blow up construction to orbifolds as these




reduced spaces may now be orbifolds.

First, we define the blow up of an orbifold singularity = by considering the standard scalar
circle action on a local Darboux uniformizing chart for z, ((B2",w,},T, ). This action descends to
a Hamiltonian action on a neighborhood of z and we can remove a neighborhood of this point of the
form H~1([0,¢)) and collapse the boundary of the resulting orbifold along the orbits of this circle
action.

This construction can be made using other circle actions on the local Darboux uniformizing chart
as long as they fix the origin and commute with the action of T'. In the particular case of a conic
singularity that is, one with a cyclic orbifold structure group we can for instance obtain interesting
examnples of weighted blow ups, (please refer to Section 3.4.1). Similarly to the manifold case, these
special weighted blow ups are the connected sum of the orbifold with a weighted projective space
with reverse orientation. Moreover, the exceptional divisors are also weighted projective spaces.

As an example of this type of blow up, the weighted blow up of a regular point corresponds to
removing an ellipsoid around the point and collapsing the boundary of the resulting manifold along
the orbits of the corresponding weighted circle action.

Just as the usual blow up of O(k + 1) at a point of its zero section, (where O{2) is the bundle
over CP! with Euler class t), can be identified with the plumbing & # Loon where E = O(k) and
Looan — CP™ 1 ig the canonical line bundle, a similar result holds for these special cases of weighted
blow up.

In fact, these can also be identified with a plumbing of two special orhibundles over a weighted
projective space (cf. Section 3.4.2).

This result allows us in particular to determine how self-intersection numbers of spheres change
with these weighted blow ups. Moreover as pointed out by McDuff in [MD2], it can be used in the
context of almost complex structures in 52 x 52, as we can see in Remark 3.4.8.

In addition to these blow up constructions on orbifolds, we also describe the blowing down
process as well as the blow up along a gymplectic suborbifold X. Here we consider a neighborhood
of X in M of the form P Xy C* where P — X 18 a principal U{k)-orbibundle. Moteover, we let
the circle act on P x C* by acting trivially on P and as the standard circle action on C¥. This
action will then descend to a a Hamiltonian action on the quotient P xpmw C* and so the blow up
can be obtained by removing a smaller neighborhood of X of the form H~1{[0,&)}) and collapsing
the boundary of the resulting orbifold, along the orbits of this new S* action.

Any circle action on P X C* that fixes P and descends to P Xyx) C* can again be used to
define a blow up of M along X.

Using these different blow up constructions, we obtain the following results, (Section 4.1 and
4.2) which continue the work of Guillemin and Sternberg in [G-S) and describe the behavior of the

reduced spaces of a Hamiltonian circle action when passing through a critical level:




Theorem 1.0.1 Let (M,w) be a (2n)-symplectic manifold with a Hamiltonian St -action and let X

be a critical submanifold with signature (2,2d), lying on the criticol level p = M. Then, on the normal
directions to X, the reduced spaces Oxye = YA +€)/St are all diffeomorphic to the weighted q-
blow up of the reduced spaces Ox_e = p~* (A —€)/S" at o point of order p, for suitable values of
q € (ZM) and p € ZT determined by the eircle action.

Theorem 1.0.2 Let ST act on a symplectic manifold M M in o Hamiltonion fashion. Let p be its
Hamiltonian function and let X be a critical submanifold of signoture (2(d — k),2k), lying on the
critical level p = X. Then on the normal directions o X, the reduced spaces Oxye = p (A +e)/S
can be obtained from the reduced spaces Ox_¢ = LA —€)/ S by a “singular blow down” of a copy
of CP44=1(p) followed by a “pertial blow up”, for suitable values of p € (ZH)*F determined by p.
The exceptional divisor resulting from this blow up is CP¥=1(q) for g € (ZT)5! determined by p-.

The “partial blow up” of a non-orbifold singularity of the critical reduced space used in this last
case is obtained by removing a neighborhobd of a singularity and then collapsing the boundary of
the resulting orbifold along the fibres of & special fibration described in Section 4.2. The “singular
blow down” will then be the opposite of this construction.

The Duistermaat-Heckman theorem, [D-H], allows us to compare the cohomology classes [we] €
H2(O,,R) for different values of ¢ in the same component of the set of regular values of the Hamilto-
nian function H. In Section 4.3, using the above results, and based on a result of Brion and Procesi
for circle actions on projective varieties, (cf. [B-P}), we generalize the Duistermaat-Heckman theorem
to the case of an interval of values of the Hamiltonian function containing critical values.

In the case of an isolated critical point of signature (2,2(n — 1)) (or (2(n — 1),2)), this theorem
generalizes to non-semifree circle actions, the similar result proved in [G-8] and in [Aul. In fact, if
the fixed point has index 2 (2(n 1)) and S* acts with different weights on the normal bundle to the
fixed point then only one of these weights is negative (positive). Let p be the absolute value of this
weight. Then when passing such a critical point, the “rate of change” of the cohomology class of
the symplectic form of the reduced spaces changes by %x the Poincare Dual of the homology class
of the exceptional divisor resulting from the weighted p-blow up of the initial (final) reduced spaces.

Again like the equivariant cohomology methods used in [T-W] these results fail to rule out by
themselves the possibility of existence of a non-Hamiltonian circle action with isolated fixed points
in the non-semifree case.

On the second part of this work we use equivariant cohomology localization theorems to obtain
additional information in the six dimensional case.

Here we study circle actions with only isolated fixed points. After showing that in the presence
of non-trivial isotropy subgroups Zy, there are isotropy 7.,-spheres through pairs of fixed points in

the same connected component of M Zk, we prove the following theorems:




Theorem 1.0.3 If u circle action on a compact connected siz dimensional symplectic manifold has
only isolated fized points and all the Zj,-spheres have trivial normaol bundles in M, then the action

is mecessoridy Hamiltonion.

Blowing up at fixed points of such actions will of course result in different Hamiltonian actions.
Moreover examples of Hamiltonian cirele actions on six dimensional manifolds with isolated fixed
points satisfying the triviality condition on the normal bundles of isotropy spheres can be obtained
from 52 x §2 x §? by considering different weighted diagonal ‘S*-actions.

If we assume instead that the circle action (with only isolated fixed points) satisfies the condition
that the weights on the normal bundles to each fixed point are always £p, £q, £r with p, ¢, 7 relatively
prime and such that the largest of these numbers is different from the sum of the others, then the

action is again Hamiltonian:

Theorem 1.0.4 Let S action act on a siz-dimensional symplectic compact connecied manifold. If
the circle action has only isolated fized points satisfying the condition that ot the normal bundle to
each fized point the action weights are always p, kg, kr, where p,q,r > 2 are relatively prime and

the largest of these numbers is different {o the sum of the others , then if M st # 9, the action must

be Hamiltonian.




Chapter 2

Preliminaries

‘This chapter contains the background needed for other chapters. First we review the usual definitions
of orbifolds and orbibundles and then we describe some important results about weighted projective

spaces wich we will need later.

2.1  Orbifolds and orbibundles

In this paragraph we recall the definitions of orbifold and orbibundle. Most of what is presented
here can be found in [S1] and in [T2].

A differentiable n-orbifold M is basically a space locally modelled on R® modulo a finite sub-
group of the orthogonal group. These local coordinate systems are then glued toghether by diffeo-

morphismx. To give a formal definition we first need to define some additional structure:

Definition 2.1.1 ({51]) Let M be a Hausdor[f space. A C™ local uniformizing chart for an open
subset U; of M, (ff,-, ['i, i), consists of a connected open set in R™, a finite group T; of O auto-
morphisms of Uy such that the set of its fized points has at least codimension two and o continuous
map @; from U; to U; such that ; oy = ; for all v € T'; and which induces o homeomorphism from
f’i/I‘i onto U;.

After this we have,

Definition 2.1.2 A C'*° orbifold M (V-manifold in Sateke’s terminology) consists of a Hausdorff
topological space | M| with a covering of open sets U; closed under finite intersections such that to

each U; is associated o local uniformizing chart (62-,11;,%), satisfying the following compatibility

conditions:




1. For every point p of M thereis at least one Lu.c. (U, Ty, ;) with p € (,07;(5'4) = ;.

2. If (Us, Ty, 00) and (53’,Fj,(,0j) are two Lu.c. such that U; = o, (U;) C 1,0;;([7,-) = U,, then there
s an injective homomorphism
fz‘j = Fj
and a smooth open embedding My : U; — U; equivariant with respect to fij, (i.e. hij(yE) =

Jig (7Y Ai; (8)), satisfying @i 0 hiy = @i

S/ N #
! !
Y VR
Pi T t Py
Ui — U;

Remark 2.1.8 1. Each \;; is defined only up to composition with elemenis of Ty, and each fi;

15 defined up to conjugation by elements of I';.

2. IfU; cU; Uy and X : U; = U; and A : U; ~» Uy are the respective injections, then there

is a v € [y such that yAix = Age © Aiy and

v Fa(@) vt = fawo fig(7)

Example 2.1.4 1. A typical example of an orbifold is provided by a properly discontinuous (e.g.
finite) action of a group G on o manifold M. Then the topological orbit space |M/G| with an
atlas obtained by suitable restrictions of the quotient map, forms the orbifold M/G.

2. Any closed manifold is an orbifold where G is the frivial group.

If p is & point on an orbifold M, (I/,T,¢) is a Lus. for p and § € U is such that o{f) = p,
then the isotropy subgroup of I' at §, I', is well-defined not depending up to isomorphism, on the
choice of U or § and is called the (orbifold) structure group of p. A point p is regular (or generic)
if its orbifold structure group is trivial and is singular otherwise. The set of points with nontrivial
structure group ig called the singular locus of the orbifold.

The singular locus of a differentiable orbifold can then be described as follows. Let (U,T, ) ba
any l.u,s. There is a Riemannian metric on U which is T-invariant, (just consider any metric onf/
and average under I'). For any point & € U the exponencial map gives us a diffeomorphism from
the e-ball in the tangent space of £ to a small neighborhood of # Moreover this map commutes

with the action of the isotropy group of #, and so it descends to I giving us an isomorphism from a




neighborhood of (&) in U and a neighborhood of the origin in the vector orbi-sopace R™/T", where
I’ is a finite subgroup of the orthogonal group O(n).
An orbifold map 1 from (M7, A1) into (Ma, A9) where

-/41 = {(ﬁ’hria{p’i)}: "42 = {(ﬁh f“iy()ai)};

is a systemn of mappings {#~ 1 such that - : [71- — 17; is a C'"*® map and for any injection A;; : ..
g U U; 7

5} — 'ﬁ'j there is another injection ,ii P f;} — 173 such that

)\,;J' o T’bﬁw — '(/)53 < }\1;;,-. '

There s also a concept of a {complex) orbibundle = : E — B over an orbifold B with generic fiber

F and structure group G.

Definition 2.1.5 A pair of atlases A, A*, A being an atlas for B and A* that of B, is called an
atlas for an orbibundle (E, B, w, F,G) with fiber F' and siructure group G, if it satisfies the following

conditions: ¥

1. G is ¢ Lie group operating on F as a C°-group of transformations ond contuining all the e

groups Ty, 5;5?.

2. There is o one-to-one correspondence IZ-,I‘%-, i) [7*,]?"-",90‘? between A and A* such that L
' IR R '

5’;‘ =U;x F (where I'F = Ty acts by the diagonal action) and, d"enoting by pry. (7;“ = U

the projection on the first factor, b
Top] =i opry,.

i.e. the following diagram commautes:

[7:‘ = ﬁi x F ﬂ} {7@; i Fo= ?T_l(U-,') \;l

oy, b7

ﬁ,i i> ﬁg/ I =U; |I

"

8. Let (U, Tiy ), (USTF,00)), ((Uj,Fjasﬂj),(-5’;,F;f,<9§)) be two pairs of corresponding l.u.s. i

in (A, A*) and let U; C U;. Then, .
Uy c Uy ;
and there is a one-to-one correspondence Ay + /\;“j between embeddings A;; : fﬁ; — [75,- and

Aj ﬁ;‘, - fjJ‘-" such that for (B, f) € (75*, we have

A::f (157 f) = ()\ij (ﬁ) » They @).f) 1‘

with gx,(P) € G. (The mapping ga,, : U= Gisa C®map satisfying |

YIxir (ﬁ) = O\ ()\‘5.‘}' (ﬁ)) * G (ﬁ)

7




where 7y is determined by v - Ay, = Aji © Aiz, for the embeddings ﬁg Eﬁ 5’5 A—J;‘ Us. These maps

are the orbifold analog to transition maps).

Example 2.1.6 Consider the actions of tg o1 C x C® and on C given respectively by:

{' (Z,V) = (Eaz$€uuv17 v 7€’wnv‘n); EE Hq (21)
g"” = (5”11,”1,.”,51-6“1},“}, €€Mq (22)

These define the orbibundle F = C x patviry C" 5 O™/ ug(w) given by the following commutative

diagram:
CcxCr P cr
(W) 4 dr(w)
P
C xl‘-‘qjcn — Cn/”ﬁ‘j
where

1L 7(W): CxC" - C x o) C" ond 7(w) 1 C" — C™/u,(w) are respectively the quotient
maps of the piy-actions on C X C™ and on C* defined on (8.1) and on (£.2) with W = (a,w) =

(@, w1,...,Wn).
2. p: Cx C" = C™ is the projection on the last n coordinates.

3. p:C X uotiry CF = €/ ug(w) is defined by
pl(z)'vlﬁ R Uﬂ)q({ir) = (’Ul, R )’U'n)q(w)

Remark 2.1.7 If q divides a, then E is o complez product bundle over C*/ to(w) in the usual

sense, o8 now the action of 1y on C x C™ described in (2.1) becomes

E-(Z’v)=(z,§w1ﬂl’...’£wn‘1}n), ge#q
ond 50 C x, 5 €7 = C x (C*/py(w)).

The notior of principal bundle also extends to orbibundles i.e. a principal orbibundle is an
orbibundle with /' = ¢ and G acting on G as left multiplication.

In particular to a given F-orbibundle ¥ =+ B with structure group G, defined by the pair of
atlases (A4, A*), we can associate a principal orbibundle in the same way as it is done for manifolds.
We can in fact form the principal G-orbibundle P X2 B with fibre and structure group both
equal to 7, defined by the atlas (A, A%) where A% is formed by the local uniformizing systems
(E’.,;* = U, x G, I}, = Ty, i), corresponding to the local uniformizing systems in A, (ﬁi,Pg,cpi),

where mp o} | = ; OPry. -
ip




If we form the product bundle P x F —*, P with fbre the orbifold F, structure group G and

¢ the projection on the first factor, we can define the principal map ¢ : P x F — E as follows,

w(p,f):¢f(i,U-f)

with ;. (#,u) = p. We can see easily that 1) is an orbifold map. Moreover, its fibers are diffeomorphic
to G and so,
F2Pxgl.

We can also define differential forms on orbifolds by considering a collection of forms on the
local uniformizing systems which transform correctly under the overlapping maps. Having these, we
can define a 2n-symplectic orbifold, by defining a symplectic structure on a differentiable orbifold i.e.
a differential form which in each local representation is a closed non-degenerate 2-form. In particular,
if (7, @),T,) is a symplectic Lu.s, @ has to be I-invariant and so I is a subgroup of the group of
symplectomorphisms of 7. Moreover, we can consider an invariant metric on {7 and, for any point
& € [7 the exponential map gives us a symplectomorphism ¢ from the ¢ ball (B2, w,) to a small
neighborhoed of  in (ﬁ,d}). Since the isotropy subgroup of # preserves &, this symplectomotphism
descends to U giving us a symplectomorphism between a. neighborhood of the image of & in (U,w)
and a neighborhood of the origin in the symplectic orbispace (R?"™,w,), where I is a finite subroup

of the unitary group
U(n) = 0(2n, R) N Sp(2n, R).

The symplectic Lus. ((B2™,w,), ¢ o ¢,1'} is called a normalized Darbouz chart for the symplectic
orbifold.
Ag in the manifold case, we can define the de Rham cohomology of an orbifold M as well as the

de Rham cohomology with compact supports of M. When M is orientable, we can also define the

[ o
M2n

of a 2n-form, as follows. If for a given Lu.s. (T7,1, ), suppn is contained in U = () then

Jor=m ko

where ng; is the corresponding form on U. In general, we can consider a partition of wnity {fi}

integral

subordinate to a given covering of M and then,

anzngf‘M

Stokes’ theorem also holds for orbifolds as well as the following theorer, (cf. [S2] for details):




Theorem 2.1.8 ({S2]) Let M be a 2n-orbifold and let k € N, with k < 2n. Then the pairing
HY(M,C) x H™ %M, Q) = C
(L [nD) = fu A

is well defined and nondegenerate.

With this result we can identify H* (M) with the dual space (I*»~*(M))* via [u] v [,, pA -, Which

gives us Poincare Duality on orbifolds.

2.2 Weighted projective spaces

In the remaining paragraphs of this section we will describe weighted, (or twisted), projective spaces
as they will play a fundamental role in sections 3.4 and 4. Part of what is presented here can be
found in [Kaw] and in [A].

Throughout this paper, a{p), a € C,p € {(Z)" will denote the n x n diagonal matrix

Diag(a™,...,a™)
with diagonal entries aP i = 1,...,n. Moreover, pip, p € Z will denote the set of p-roots of unity.

Definition 2.2.1 Letq = (gu,...,qs) be a (n+1)-tuple of positive integers. The weighted (twisted)
projective space of type , CP"(q) is defined by:

CPYq) ={z € (C*)"} / (2~ Aq) 2, AeCY) (2.3)
where A = Diag (A%, ..., A%).
Remark 2.2.2 1. The above C*-action is free iff ¢; = 1 for every 1 =10,...,n.

2, If ged(go, ..., qn) = d # 1, then CP™(q) is homeomorphic to CP™(3) (by identifying A% with
A).

There are two maps ¢ : CP™ — CP"(q) and ¢ : CP™{q) — CP"™ which will be very important

in this section:

pllegtovz]) = [0 2ir]q (2.4)
Yllzo i znl) = [T c e g0 (2.5)

with m = lem{go,...,¢») and []q denoting a conjugacy class in CP™{q).
Weighted projective spaces are, in general, conic orbifoids i.e. the orbifold singularities have

cyclic structure groups. In particular, if all the g;’s are mutually prime, all the orbifold singularities

are isolated. In fact, as it is usually done for projective spaces, we can consider the sets,
Vi = {[z]q € CP™q): 2z # 0} C CP"(q) (2.6)

10




and the bijective maps ¢; from V; to C"/pg, given by

A

ng', ([Z]Cl) = (E%ﬁf";'zﬁ”:ﬁ)m (27)

where (z:)/% is a g-root of z; and (.)g, denotes a pg, conjugacy class in C” [ g (&%) with pg, acting
on C" by
£z =§(€1)Z: £ € Py
with § = (go,. -« 1 Gis- -+ Tn)-
Then on ¢:(V; Vi) € C™/ktas

o g s EH Zn
¢J o qbi ((zl’..-,.zﬂ)fﬁ) - ((Zj)qolqi, ) 27;,-" ) (Zj)Q4/£Ij 3o (Zj)q"/Qj)qj

and so, CP™(q) has the structure of an arbifold.
These spaces are in fact symplectic orbifolds as they can be obtained from (Gl wg) by sym-
plectic reduction, in the following way. First, again like usual projective spaces, CP™(q) can be

obtained from the quotient of §2*¥1 ¢ (C™**)* by an St.action, (the one obtained from the C*-

action by restriction):
Proposition 2.2.3 (fA])
CP(q) = {z € 821}/ (2~ Ma) 2, Ae S

Proof: Consider the natural map x : 21 /S' — CP*(q).
This map is injective: take [z]q = [2]q such that z,7 € §*+! and ' = A(q) 2, A € C*. Then,

as ¥ lail* = L AP

Moreaver, it is surjective: for any [zlq € CP"(q), there is a 7' € §*t1 guch that [2']q = |z
q q q

z)? =1 we have A= 1 and so z =%
Y

ie. zj = Az, A€ C*, i=1,...,n, (just make X equal the solution of

S ARl = 1

which exists and is unique, as all the coeflicients |z:|* are nonnegative and |2;|2 # 0 for some j). For

more details see [A]. 0

Hence, if we consider the Hamiltonian S*-action on ¢l given by
Az=AMq)z, AeS zeC™,

CcPr(q) = H-'(t)/S", where H : ol R is the associated Hamiltonian function (H(z) =
Y qil2i|?), and t 5 O is any of its regular values. We conclude then that CP"{q) is a symplectic
orbitold.
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2.3  Orbibundles over weighted projective spaces

:‘}

]

I

Axn important fact about CP™!{q) is that for any e; = 0,...,1,...,0)lq, By = CP () \{ei} !ii
[1Y]

projects over CP™(&), with & = {gos---1ir---1qn). This projection is given by w([zo ¢ -+ ¢ |IE
Znptl) =20t or i Biteeet Znaalq and the B,’s are orbibundles over CP™(§'): f :

Proposition 2.83.1 Fach ;= CP t'\{e;} is a line orbibundle over ' ‘I
CP(§')
|

with structure group S*. !l!.

Proof: Consider the open covering of CP™(§') formed by the sots Vj, jeJ=10,... iy n 1}

described in (2.6). Then, for each j we have the orbibundle 1

P" i :
Cx,, (@ C" 7 O/, (&) 3

defined in Example 2.1.6 with q = (g1, 6M) = (@i G052 Gis- - - gy« Gnti), and the commutative

diagram: e
ﬂr' ~d , b
Cx, @f" = C/ha(@?) I
xi b Sl
vy &Y o
where i

1. x; = ;"' o P; where P; is the “permutation” map
Pj(Z,’LU(], v -:'wn~1)q,’ = ('w()) cony W1, Wy 7w'ﬁ-""1)q5
and q*”);l : € g, — 7 H(V;) s such that

(5;1((20,...,&”,)%):[20 cer 1otz

9. ¢; is the map defined on (2.7)

3. py: C %y, @ C" € iy (4%) is defined by

|
|
|

p;(zo,..-,z-n)qi = (z].)' "!zﬂ)(b'

12




Remark 2.3.2 If each q; divides q;, then E; is a complex line bundle over CP™{!) as, in this case,

the action of pg, on C X s () C* described in (8.1) above, becomes
2

£z = (20,44 WY (21, . o Zn)"), £ €y

and then,

C X 110y @) C" = C x (C"/py, (@)
In addition, we have the following proposition:

Proposition 2.3.3 (fA]) When ¢; =m = lem(g;,5 =1, n+ 1), By = CP™{q)\{ei} is
isomorphic to the pullback bundle of the canonicel line bundle L over CP™ by the map o defined in
(2.5).

Proof: £ can be written as CP*1\{e;} and so we have,
B % wIL -5 L

T Ny Jn! L7
ceyg) % copr

CP™ 1\ for)

where
9L = (et ) € CPM@ X L algy) = #(0))
and
Beo szl = ([0 ezl [/ s 22800
is a bundle isomorphism O

2.4 Cohomology of weighted projective spaces

Let us consider again the map ¢ defined in (2.4). The fibers of this map are the orbits of the
standard linear action of fiq = (fig, X **+ X pig, )/ 1ta o0 CP™:

(fqo,---,fq")‘[zﬂ!“'Izn]:[EQDZOZ"'qunzn], £ge € phg, v =1,...,m

where d = ged(do, - - -, @) and g is a subgroup of pg, X+ - X pig, via the diagonal. Therefore, we

have the following results:
Proposition 2.4.1 (fKew|) ¢ induces a homeomorphism
CP" g = OP"(a)

and

13




Corollary 2.4.2 ([Kaw]) ¢ induces an isomorphism on rational cohomology:
o - H*(CP™(q); Q) = H*(CP™Q)

Proof: First observe that the linear action of fiq on CP™ extends to the linear action of T™ = (81)",
and so H*(CP") is fixed by fiq- The result therefore follows from the classical fact that, for a finite
G-action on X,

H*(X/G;8) = H*(X;8)¢ (2.8)
where the isomorphism is given by 7*, (with 7 the quotient map) and & is a ring containing 1/|Gl.

O

We have seen above that B; = CP™q)\{ei} 1s an orbibundle over cP™1(g'!). To compute the

integer cohomology of CP"{(q) we need the following proposition,

Proposition 2.4.3 ({A],[Kaw]) CP™(q) can be obtained from any of its subsets CcP (&), by
attaching a 2n- “cell” of the form C" [ 1tg, vie the canonical map f Eg &) — CcPv (g, where
Elqi; &) is the lens comples S22 . with pg, acting on 52n—1 by,

¢om=E@) 2 e ST L€ pa, (2.9)
Proof:
CPHQ\CP™ (@) =
HERRRE \1,_1 s Znlq (Zg,_...,é,‘,,...,zn) e C"}
i
In addition, if [gg - 1t i Znlq = [z{] s iees 1ot 2h]g, then 2§ = §%2;, for some £ € pig, and

»~

j # i. Therefore, CPMQ\CP (@) = C™ /g, (qi). Moreover,
H(CP (Q\CP" (i) = 52" /o = Ll Gy
and so,
cPMa) = cP* @Y Lo 4)
f

with, f: L{gi; &') <+ CP""‘l(é‘f), the inclusion map. ]

Before computing the groups HY{CP"(q); %), we will first compute the groups HY{CP"(a); Zi)
for a > 0, and then use the universal coefficient formula.

Theorem 2.4.4 ([A]) For any integer a > 0,

7, ifi=2, 0<k<n

0 otheruyise

HHCP™(a); Za) = {

14




Proof: We may assume that @ = p® with p a prime integer different from 1 and « > 0, (if not, we
can decompose Z,). Moreover, as CP™(d - q) = CP"(q) for any d € 4, we can also assume that
ged(go, ..., n) = 1.

If n = 0, then CP™(q) is just a point and the result follows trivially. Assuming the result true
for CP"(q) with any ¢ of length r + 1 < n, we will prove it for CP"(q) with ¢ of length n + 1.

Trivially, H*(CP™q); Z.) = H>(CP"(q); Z,) & Z,. Moreover, there exists a § € {0,...,n}
such that p does not divide g5,

Asg we have seen above,

CP™(q) = CP (@) | JL(gs &)
f
and g0 there is a cohomology exact sequence for the pair

(CP™a); CP™ (@),

— HYC"/pg;Za)  — HNCPMa)iZd) —
— HYCP™Y&§');Z.) — HIMY(C"/py3Za) —
Moreover by (2.8), H (C™pg;3Zpe) = [HACH Zpe )] and as py, fixes H(C" L), we have

i n Zpa if?: =2n
HH(C™ [y T = |

0 otherwise

Hence,
0 — HY{CP*q)Z,) — H{(CP™Ni);Z,) — 0 i#2n
I

Zoor 0

and the result follows. For more details, see [A]. m|

We can now prove the following result,

Theorem 2.4.5 ([A],/[Kaw/):

Z ifi=2k0<k<n

HY(CP™(q); Z) =
0 otherwise

Proof: The universal coefficient theorem for cohomology [B-T], tells us that

HHCP™(q); Z,) &
Hom{H,(CP™(q); Z),Z,) ® Ext(H;_1(CP"(q); Z), Za)-

For an odd i or ¢ > 2n, we have for every g,
0% H(CPMq);2) ® %o
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and so, H;(CP™(q); Z) = 0 for odd ¢ or 1> 2m.
For an even ¢ < 2n,
Zp = (Hi(CP™(q); Z) ® Z4) ® 0

Moreover H;(CP™(q); Z) is finitely generated and so, we can decompose it as

7P @l @ DLg, B20,821

Then,
7, = (ZF ® %a) © (Zg, ® Bo) ® @ (Zg, ®Za)
Cousequently, choosing a prime to all the bys, we have § = 1 and B, = 1fori= 1,...,8.
Therefore,

7 ifi=2k0<k<
m(cP”<q);z>={ . sE=T

0 otherwise

Moreover, also by a corollary of the universal coefficients theorem,
HY(CP™q);Z) = Fy © Ty

where F,, is the free part of H;(CP™(q); Z) and Tq-1 18 the torsion part of Hi—1(CP™{(a); Z), and

the result follows. O

To determine the ring structure of H*(CP™q); Z), we first need to define the following numbers:

Qig " Qin
ng(Qia yert quk)

l;‘:lcm{ :0r<_'io<---<i;g§n}

The minimum of these numbers is

—

ng(qO: ey Q'n)

lq Qo n
n

and the maximum is i = lem(do, - - 1 9n)

Let E be the set {p prime : pdivides some g, 0 < i< n} If we decompose
g=J[r i=0,0m
peE
and for each p, Tig <74 S S T then
95 — H prin#,,+1+---+nn
pEl

We are now able to state the following theorem:

Theorem 2.4.6 ([Kaw]) The induced map @* on cohomology, is the ring homomorphism
ot HW(CPYa);Z) — H*{CPME)
| I

l'q

y/ 2y Z
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Remark 2.4.7 If h = ¢1(L*) is the usual generator of H*(CP™Z), (where L is the canonical
bundle over CP") then we know that
{1, h,..., A"}

is a Z-basis for H*(CP™;Z). Hence, for each k such that 0 < k < n ,there is a unigue
by € H*(CP"(q); Z) (2.10)

such that
" (hi) = I3 h*

and {1,k hy, ..., kt}, is a Z-basis of the abelian group H*(CP*(q); Z).

Proof:

Let g = (go,...,¢»} and, for k € {0,...,n}, consider the set I = {ig,... i3} with 0 < ¢y <
s < g < 1

Let CP*(I) = CP*(gy,...,q;) and denote by ur the inclusion map

CPHIy ¥ cpP(q)

defined by z; = 0 for every i ¢ I.
Let my be the integer defined by u},
uy: H2*(CP™q);Z) - H™(CP*I),7)
| |
Z R y/
stepl. The integer elements of M = {my: I C {0,...,n}, |I| = &k + 1} have ged equal to 1: We
will prove this step by induction on n. If n = 0, then M = {1}, ( m; = id), and the statement is
true. Let us assume now that n > 1 ant that the statement is true for n — 1. If k = n, then again
M ={1}, If K <n-—1andforajsuchthat 0 <j<mandj¢I={i,..., iz}, consider the
following factorization
CP(I) =5 CP™(q)
IR /g
CP* ()

where u; is defined by z; = 0 and w5 is defined by z; = 0 for every 4 ¢ TU{s}. Then, u} = U} ;ou]

Le. my = my ;- my. Hence,

|
M = {m € Z for which there is an I C {0,...,n}, with i
|7] = k+land a j € {0,...,n} such that m = ms ;m;} [

|

However, by induction hypothesis, for each §, the elements of ,

My ={mr;:ITC{l,....n}, §¢1I, |I|=k+1)}
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have ged equal to 1. Hence, we just have to show that ged(mo, ..., my) =1
Since CP*(d - q) = CP™(q), we may assume that ged{qo,

..;qn) = 1. Moreover, we have
established above the existence of the exact sequence with Z, coefficients,

0 — H¥(CP(q)) 4

I

HMCPHE) - HPFFHC 1) -0
] [
i oy

(gs-torsion)
I
0 if @ prime to g;
If @ is prime to g;, then -m; is an automorphism of Z, and then a does not divide m;. We conclude

then that ged({mg,...,my,) = 1 and we have proved step 1.
step 2. Take [ = {ip,...

,ix} with 0 < g < -+« < i < n. Then we have the commutative diagram:

cPk <y CPp?
wrl Lo
CPHI) & CoPt(q)

where

orlla oo zal) = 2 1 2idla, ar = (g, Gia)
This induces a commutative diagram in cohomology,

HM#(CPMq)Z) <
"}
H?*(CP™ 7))

HP(CPH(1);Z)

L (en)”
<  H™(CP*7)

ie.
7z &z
-al Loy
7Z o 7

The commutativity of the diagram implies a = my - oy for every

I1c{0,...,n} with |/|=%k+1

i.e. ais a common multiple of the ar’s. By step 1, we have,

a=lemfar: I C{0,...,n}, [I|=k+1}
On the other hand, as

wr: CP* — CPY1) = CPk/p,qiD X oo X fig,
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is the quotient map,

1G] Gio " iy
de R L B L T
g1 |Hl ng(Q'b‘u:' .. :%‘k)

where G = pug, X -+ X pq, and
H={geG: g x=uforevery z ¢ CP*}

then
ip ' " iy
2ed{Gi ;s - - - » Gi)
and the result follows. o

a5 = degwy =

As ©* is a ring homomorphism, this theorem determines the ring structure of # *(CP™q); 4).

In fact, if hy is the generator of this ring defined in (2.10), then for i 4+ j < n,
@ (hihs) = " (hy)e* (i) = Lilph* = _l;j(p (his5)
2

and so,

bt

b o ifk+i<n
hjhk = .
0 otherwise

We canclude then that

Zity, ..., T
H*(CP™7) = _ i ;.}1] —
<TT5, B+j3>mn Tij——le+ka+j, k+tj<n>

where h; corresponds to the class of T}.
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Chapter 3

Blowing up on symplectic orbifolds

We begin. our discussion by defining the blow up of an orbifold singularity. First however, recall that
the blow up of a symplectic om-manifold at one of its points x is obtained by removing an embedded
ball around this point and then collapsing the boundary of the resulting manifold along the fibers
of the Hopf fibration which in turn, are the orbits of the standard scalar circle action on gin—t,
Similar constructions can be made for orbifolds and will be the object of the following sections.
We will discuss in Section 3.1 the simplest form of blow up coming from the diagonal action of
$1 on a Darboux neighborhood. In fact, one can define a weighted blow up corresponding to any
circle action that commutes with the action of the local structure group (cf. Section 3.4). However

we will discuss this in detail only in the case of a conic singularity (i.e. when this local structure

group is cyelic).

3.1 Blowing up an orbifold singularity

Let (M?",w) be a 9n-dimensional symplectic orbifold and © € M, an orbifold singularity. Let
(U@}, T, ) be a uniformizing symplectic chart around z and let U = U/r.
We can then choose normalized Darboux coordinates {(Z1,...,2p) 84 & such that B2" = {z €
Cr 0 |zl < et is contained in U for a small enough .
Clonsider the standard scalar action of 51 on B, with Hamiltonian function i B —» R given
by
. iis
H(z) = |uf”
i=1

H has a single critical point & of index zero. Moreover S! acts freely on the regular level sets
of I which are (2n — 1)-Seifert manifolds with no singular fibres, They are in fact (2n — 1)-spheres
and the orbits of the S action are the fibres of the Hopf fibration.
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I is a finite subgroup of U(n) therefore preserving H. Moreover, the action of I' commutes with
the S'-action and so H descends to a Hamiltonian function H for an induced circle action on U.
The regular level sets of this new function H are the quotients of the regular level sets of H by the
action of I'.

H™ Y (a) = $*7 1T

We can then define neighborhoods of & in M by N,{z) = H~Y{[0, p)) for small values of p. The
boundary of these neighborhoods is w-compatible as ¢(Xyr)w(Y) = dH(Y) =0, for all Y tangent to
ON, ().

Let us then define the manifold with boundary N, = Nai{z)\{Ns(z)}, for fixed small £, > 0.
As it was seen above, the boundary of N, is an S'-orbifold where the §* action is defined by H.
Taking the image, L{J,&), of N, under a map « which is symplectic on intN. and which collapses

each circle fibre of N, to a point, we obtain a bundle, L{§,z) — B, over the orbifold
B = n(dN,) = N, /8 = 5% /(T x §Y).

If we glue M;, = M\Neys(2) to L(,¢) along S{e + 6) = OL(4, &) = §%n=1/T' we obtain the
blow up of M at =.

Definition 3.1.1 Let (M?",w) be o 2n-dimensional symplectic orbifold and let x € M be an orbifold
singularity. . The blow up of M at x is given by

Me=M;, || Lée)
S(et+d)
where L{3,c), is the total space of a Seifert orbibundle over o (2n — 2}-orbifold and S(z + 8) is the
(2n — 1)-manifold with the fized point free S action described above.

L(8,€) can also be obtained from symplectic reduction, in the following way: Consider the

Sl-action on N, x C given by
A(mw)=(\-2,27w), Ae S

where ) - z is the action on N, determined by H. This action is also Hamiltonian with Hamiltonian
function equal to
g N.xC — R
(5w) — Hyy (@)
Now, u~'(e) = {(z,w) : 6 +¢& > H),_(z) 2 ¢, |w|* = H),,_(z}) — ¢} and so,
—1
p e

L{d,e) = Sl( )
is the set {z € N5 : § + ¢ > H(z) > e} with boundary collapsed along the fibers of the 5! action
determined by H, as desired.
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The blow up of M at z is therefore obtained by removing a neighborhood of © and collapsing
the boundary of the resulting orbifold, along the fibres of the circle action induced by the standard
gealar S1-action on a uniformizing chart around z. ‘The exceptional divisor resulting from this blow

up is S /(T x S1).

Remark 3.1.2 Just like in the manifold case, this blow up is independent of the choice of 6. Nev-
ertheless, different embedding of the “2n-cell” BX T in M, moy result in different (though diffeo-

morphic) blow ups.

Example 3.1.3 Consider the orbifold CP%(k,1,1), the four dimensional weighted projective space
(c.f.(2.3)) with en isolaled orbifold singularity = of structure group py. The blow-up of this spuce at

this k-singularity is the k-Hirzebruch surface
Wi = {([a,b],[m,y,z]) : G'ky — bz = 0} C CP' x CP*

In fact, o neighborhood of the blown up point can be modelled by C%/pr where the py-action is
given by:
€+ (21,22) = (€21, 82), € € iy

The exceptional divisor is therefore CP,

Eézﬁ%_ﬁf\lﬁ%

L pi— kX

Figure 3.1: (a) CP?(k,1,1); (b) CP2(k,1,1) =W

Pt

The images of moment maps for torus actions on CP2(k,1,1) and Wy, =2 (CP3(k,1,1}},, are
shown in Figures 8.1 (o) and (b). The preimage of a vertes is o point with structure group of order
equal to its underlined lobel. The preimage of point in the interior of an edge is a circle and the
preimage of a point on the interior of the polytope is o torus. Therefore, the edges of the image of
the moment map represent intersecting spheres possibly with singularities. These images illustrate
the fact that blowing up an isolated orbifold singularity of order k corresponds fo removing o 4-“cell”
of the form C*[ug and collapsing the resulting boundary along the orbits of @ suitable St-action fo

form an exceptional CP.
Example 3.1.4 Let us consider now the space C4/T" where
I'={z,y:2® = (my)’ =4° " =1}

is the binary icosahedral group of order 120.
The standard S*-action on C* induces an Hamiltonian action on C4/T and the regular level

sets of its Hamiltonion function are diffeomorphic to S3/T", the Poincaré dodecahedral space, (c.f.
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[T1]) obtained from a dodecahedron by gluing opposite faces. T acts freely on S° and s0 S®*/T is a
Seifert manifold with finite fundamental group I,

The exceptional divisor obtained from the blow up of CY/T at the origin is the orbit space
($3/T)/S'. It is 8% modulo the orientation-preserving symmetrics of o dodecohedron, (c.f. {T2]).
In particular, it is an orbifolod with underlying space S%, having three isolated conic singularities

with structure groups ta, ps, and ps, (c.f. Figure 8.2).

2
3

Figure 3.2: 5%(2,3,5)

Tustead of the standard scalar Sl-action on a Darboux local uniformizer chart (BZ",T',¢) we
can also consider other Hamiltonian circle actions as long as they have a unique fixed point at the
origin and they descend to the quotient B2*/T. We will see later some examples of different blow

ups when we describe some special weighted blow ups of conic orbifold singularities.

3.2 Blowing down

The opposite process of blowing up in the symplectic manifold category is blowing down where we
replace the exceptional divisor by a single point. Similarly, suppose we have I = §2n=1 /T x Sh)
embedded in a symplectic orbifold (M,w) for suitable actions of 5% and T, a finite subgroup of
U(n — 1), If in addition a neighborhood N(E) of % is symplectomorphic to the bundie L{8,e)
described above, where S acts compatibly with the action on §2n—1 /T, then the blow down of M
along % can be obtained by removing L(6, ) and gluing back Nsy. (r) = H1([0,6 +¢&)) with H the
Hamiltonian function associated to the St-action. This gluing is made along S(d-+€) = HL(S, £)) =
§2n—1/T, In this way we obtain an isolated orbifold singularity of structure group T

By the orbifold neighborhood theorem , we know that a neighborhood of , A(X), in M is
symplectomorphic to a neighborhood of the zero section of its normal bundle. Therefore, N'(X) =
(27 1/1") x g1 C for an adequate circle action {cf. Section3.3), This action fixes > and commutes
with the action of T'. Hence, N(E) is the result of a blow up for this circle action which may not be
the one described in the preceding section. We conclude then that such an orbifold 3 can always be

blown down as long as we choose an adequate circle action.




3.3 Blowing up along a symplectic suborbifold

Let X be a compact symplectic suborbifold of (M,w) of codimension 2k. The symplectic neighbor-
hood theorem easily extends to symplectic orbifolds (c.f. [L-T]) and so we have that a neighborhood
of X in M is symplectomorphic to a neighborhood of the zero section in vx, the normal orbibundle
of X.

Npr(X) 55 Ny (20)
Again like in the manifold case, ([G-1~-8]), we can assign a Hermitean form to vy and so vx =
P Xy C* where P —2 X is a principal U(k)-orbibundle, (c.f. Section 2.1). Consider now the

Hamiltonian S1-action on P x C* given by,
A-(z,w) = (z,A1)-w) z€ P, we C*, (3.1)
The corregponding Hamiltonian function, H:PxCt3Ris
Hz,w) = il

P is a critical orbifold of H and S acts freely on the regular level sets of H, which are diffeomorphic
to P x S2k=1. U(k) preserves H and its action commutes with the Sleaction. Therefore, H descends
to a Mamiltonian function H for an induced S*-action on P Xyx) C¥. The regular level sets of H
are now P Xy S™L

We can again define neighborhoods of P/U(k) = X in vx by Ne(X) = H-'([0,¢)) for small
enough values of £ such that N(X) C Nyy (Z0). Moreover, these neighborhoods have w-compatible
boundaries. Hence, if we consider Ny = Njye(X) \N.{X) for small fixed values of 5,8 > 0, we can
again reduce its boundary by collapsing each circle fibre to a point. We obtain in this way an orbifold

L(§,&) with interior symplectomorphic to intNe and which is an orbibundle over the orbifold

B = (P xy@) §2=1y/ 81
Again, if we glue My, = M\¢H(Ners(X)) to ¢~ 2(L(5,¢))t along
S +€) = ¢ (ON-4o(X)) 2 P Xy S*7°
we obtain an orbifold which we will call the blow up of M along X.

Definition 3.8.1 Let (M?™,w) be a 2n-dimensional symplectic orbifold and let X be a suborbifold
of M of codimension 2k. The blow up of M along X is given by
Mx=M;, || ¢ (LGeN*
S(6+¢)
where L(5,£) is the total space of a Seifert orbibundie over a (2 — 2)-orbifold and S{§ + €) is the
(2% — 1)-manifold with the fized point free action of S described above.
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Remark 3.8.2 1. Again we could use different circle actions as long as they fix X and commute

with the action of U(k).

2. Again the diffeomorphism class of these blow up constructions is independent of the choice of
connection on the principal orbibundle P and of the symplectomorphism between N(X) and a
neighborhood of the zero section on vx. However just as in the manifold case, {c.f. [MD-S]) it
is not clear if there is an € > 0 such that for a given circle action all the corresponding e-blow

ups of M along X are symplectomorphic,

3.4 Blowing up conic orbifold singularities

As we have mentioned before, we can obtain different blow ups by considering different compatible
circle actions. We will study some of these in detail when the orbifold structure group of the
singularity is cyclic. These special cases of weighted blow up that we describe, will play a fundamental

role in the applications.

3.4.1 'Weighted blow up

Instead of the standard scalar S'-action on a Darboux uniformizing chart (ﬁ,I‘, ) for z, we can

consider the weighted circle actions given by
Nozm=(MMazg,.. ., Nz, Ae St

These will then descend to U and again we can remove a neighborhood of the form H~1([0,£)) and
collapse the boundary of the resulting orbifold along the orbits of the circle action.

A special case of particular interest in the applications considered in this work occurs on the
reduced spaces of a symplectic circle action when we pass a critical level containing a critical point
of signature (2,2(n — 1), (cf. Section 4.1). This special case occurs when we have a neighborhood of

an order p conic singularity £ modelled by C"/u, where u, acts by,
PR
tz=¢a)z £=e7, q=(g,...,qn), 0< g <P

and we choose a weighted circle action with weights (m) where m; & ¢; (mod p), for 1 <i < n. In

these cages it is possible to obtain a nice description of the blow up:

Lemma 3.4.1 Let (M*",w) be o 2n-dimensional symplectic orbifold and let © € M be a conic

orbifold singularity with structure group pp, the group of p-roots of unity. Let (U, pp,0) be a Lu.s.
for @, If u, acts on U by

£ m=¢(q) -5 E€pu 0<q<p &Epy
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then, for m = (mq,...,my), with m; = ¢; (mod p), the weighted (m)-blow up of (M, w) at z is
given by:

M, (m) = M#CP"(p, m)
where @”(p, m) is the (p,ma,...,Mn)-weighted projective space with reverse orientation. More-

over, the exceptional divisor is symplectomorphic to CP"~*(m).

Proof: An action satisfying the above conditions descends to U =2 E’/ tp and induces a new
Hamiltonian S'-action on this set. The regular level sets of its Hamiltonian function are now

diffeomorphic to the lens complex {c.f. (2.9)),

Lipiq) = 8™ !/%wisted pp-action” (3.2

= S (2~ &) 2 L€ 1) (3.3)

8! acts on these manifolds in the following way:

!

A (2), = (A(m) - 2), (3.4)

where ();, denotes the p,-equivalence class. Hence the quotient spaces
H(0)/8" = 57" (uy x 81) = (8% /8% = CP"~(m)

are the weighted projective spaces CP?1(m), (cf. Proposition 2.2.:3}.
If we consider the space (CP®(p, m),w), and remove a small neighborhood V{4) of the singu-
larity of order p, such that
V(8) = Bi" /iy,

we obtain a space E(4), which projects on CP™~!(m)

B Ly CPPYm)

(20121 12 —r [z 2]
E is the total space of an orbibundle over CP"*(m) (cf. Proposition 2.3.1) and, by Re-
mark 2.3.2, if in particular each m, divides p, it is a (complex) line bundle. Moreover, this space F

is a symplectic orbifold with boundary,
§ = 0B = $** [, = Lip; )

where y, acts on S2"1 by (3.3).

We can now consider this orbifold with the opposite orientation, %. It is also the total space of an
orbibundle over CP™~1(m) and it has boundary L(p; q). Both E\CP™ (m) and E\CP"~"(m) are
diffeomorphic to I x L(p; q) i.e. they are diffeomorphic to C™\{0}/ ptp. Moreover, by the symplectic
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neighborhhod theorem, F is symplectomorphic to 7(N,. ()\N:(z)) = I{,¢) for adequate values
of ¢ and 4§, where 7 is the map defined in Section 3.1 and N.(z) = H=([0,£)), for £ > 0.

Therefore, M, is obtained by removing a neighborhood N.4.5{z) of z and gluing the resulting
orbifold, M\Ns..¢(x), with L(6,€) along S = 8L{6,¢).

My(m) = (M\Nse(o))*| | L(5,e)
S
= (M\Nsi(2)}'| | B
5
= M#CP"(p,m)

and the exceptional divisor resulting from this blow up is CP*~!(m).

Remark 3.4.2 In the general case of a weighted blow up of a conic orbifold singularity, the excep- ‘

tional divisors oblained are quotients of weighted projective spaces by finite cyclic groups. i

Example 3.4.83 The weighted (nq,n2)-blow up of a regular point of a four dimensional manifold
M, 1s obtained by removing an ellipsoid of equation ny|z > +na|2|? = C and reducing the boundary

of the resulting manifold, along the orbits of the S'-action
A (Z],Zg) = (/\n121,)\n222)

the exceptional divisor obtained is CP(ny,ns), (c.f Figure 8.8). '

.

N2

e

Figure 3.3: (a) (C2); (b) (6—2’)(711,%2), n > ng

3.4.2 Weighted blow up as plumbing

It is a well known result that the blow up of O(k; + 1) ® .- @ Ok, + 1) at a point on its zero
section (where O{t} is the bundle over C'P' with Euler class ¢), can be identified with the plumbing
B L., where

E=0k)® - @ Oky)

and Lgop — CP? 1 ig the canonical line bundle.
Again in the case of the special weighted blow ups of conic singularities described above, a similar

result holds. However, before we state it, we need to define the orbibundles @, .(m) — CP(q,r)
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obtained (when m > 0) from CP?*(g,r,m) as described in Proposition 2.3.1, by removing a small
neighborhood of the point with orbifold structure group py, (for m < 0, O, ,(m) is just Oy, (—m)

with opposite orientation).

Proposition 3.4.4 The orbibundle Oy .(m) = CPY{q,r) , m > 0, obtained from CP%(q,r,m) by

removing a small neighborhood of the point with orbifold structure group iy, is given by,

Dt xC U D™ xC
fg Y
S%x C
(zg,21,22) ~ (()\("Z(), )\T.Zl),)\mZQ),)\ c gt

Ogr(m) =

where py and iy act on DF x C by:

£ (z1,20) = (£ 21,§M2), £€ 1y
£ (7, 22) = (E%21, €M 2), €€ pr

D, D™ are two discs with DV oriented positively and D™ negatively, and the gluing map o is given

by

8Dt x C 8D~ x C
o -
Hq oy
[erﬂi,y]q - [e—q-’?i’ e—mﬂiy]

v

Proof: Consider the covering of CP(g,r) by the sets
Vo = {[z1 : 2a](g,r) € CP (g,7) s 21 # 0} = C/py

Vo= {[21 1 22](q) € CPYq,r): 2 #0} = C/p,

then, the orbibundle Oy .(m) — CP!(g,7), m > 0, is then defined , as in Proposition 2.3.1 by the

l.u.s.
{CQa tqs Pq}

{02: Hrs ‘-Pr}
The gluing map c is then obtained by,

a((e™,y)g) = o (1))
= ‘Er([l cerft y] (q,,.))
= qﬁﬁr([e_qﬂi I e_mﬁy](q’r))

— (eﬂqﬁ"i : e—m@i‘y)r
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where
Tm: CP*gr,m) — CPq,r)
¢o:  TR(Ve)  — Dtx, C
dr: o (V;) = D x, C
are the maps defined in Section 2.3 and (.) denotes the pg-characteristic class, (k = q, 7). a

After the description of these bundles we can now state the following proposition:

Proposition 3.4.5 Let x be an orbifold conic singularity with structure group pi, lying on the zero

section of the bundle
Op,a(ml) & Op,a(mz) @D Op,a(mn-—l) — CPl(p: a)

Then, for r = +a + kop, and ¢; = +m; + kip, § =1, ,n; ks € Z), the weighted (r,q1,"*,@n—1)-
blow up of this bundle at x can be identified with

B 1,

where

M7 — Qlpn—

Ezor,a(ﬁ%ﬁ'@‘),@”'@or,a( 1) —>CP1(T,C&)

L— CP" Yr,q, ,qn-1) is the rank 2 orbibundle described below and the plumbing (# ) is made
on o neighborhood of the fiber v, of E with multiplicity r where p, is the structure group of the
intersection point of the exceptional divisor with the image of CP(p,a), after the blow up.

Remark 3.4.6 1. L = CP" {r g1, ,qn-1) is the orbibundle isomorphic to a neighborhood

of the zero section of the normal orbibundle of CP" 1(r,q1, -, qn—1) inside
CP™p,r, g1, qn—1)s
with apposite orieniation.
2. By plumbing we mean the result of a surgery that motches the "horizontal sections of B with

the "vertical fibers“ of L, in a neighborhood of the fiber v, of B, as we will see in the proof

below.

Remark 3.4.7 When we do not have any orbifold singularities, we have the usual line bundles over
CP! and the above formulas give us the known result that the Euler class of each line bundle O(m)

decreases by 1 after the blow up, (we just have to make all the g;’s, p, a and r all equal to 1).

Proof: The plumbing of £ and L is obtained in the following way: Choose neighborhoods By, By
of the point of order r in CP'(r,a) and in CP™(r,q) and the orbibundles over them, Bz, , Lz,
Then there are natural identifications,

Ej, = D?x,, D1 (3.5)
DXl D? (3.6)

=
&
11
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where . acts on D? x D=1 gnd on D>~} x D? by:

€-(wyz) = (£%6(h) 2), {€pn (3.7)
£-(zw) = (£(d}2,¢Pw), € (3.8)

Asr =xa+ kop and g; = Ly + kgp, fori =1,-+ n,

m; = ¢ (mod p)
¢ = TFhkoyp {modr)
and then,
My = LG = L(dmye +mskep F mia — akip)
= mgky —ak; = (&g Fhip)ko £ kokip (modr) = +kog (mod 7).

Hence, the action of g, on D? x DY) on (3.7) becomes

£-(wym) = (E79F,¢(xkoq) - 7), €€ py (3.9)
= (" ¢a 2z, {€pr (3.10)

‘We can consider then the reflection
f:D?x Py pRe-l) o p2
(w,7)y — (z,w),
and we can paste K and L together along Fip, and L|p, by the map f, obtaining the plumbing of
E with L.

In Figure 3.4.2, we can see images of E, L and E 3 L by moment maps, in the four dimensional

case:

t-;

Edf L
g

Figure 3.4: (a) £; (b) L; (c¢) E# L;

Now that we have E$# L, we still have to show that the blow down of F' = CP" (1, q} on this
space, is
Opalmi) ® - & Op,a(mmn-1)
A neighborhood of F, N(F), has boundary S(I.) = $%*~1/u,. Therefore the blow down of F' is
obtained by removing this neighborhood and replacing it by a 2n-“cell” of the form B*"/u, where

pp acts on B by
£-z=Eqr) 2 (€
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E# L

q

Figure 3.5: Blow down of E §: L along CP(r,q)

with the appropriate size. Note that the boundary of this cell is also 5%~/ p,.

In this way, we obiain a space which fibres over

CP'(p,a) = C/pp | J(CP (r,a) \N(x,))

where N{x,) = N{(F)n CP(r,a). This orbibundle decomposes into a sum of rank 2 orbibundles
over CP'{p,a). This is best scen by looking at moment map pictures (see Remark 3.4.8 for a
six~-dimensional example).
Moreover, by construction, these line orbibundles have the following decomposition,
DfxcC U D xC
Hp ~  He

where u, acts on D} x C by:

(&Tzla £n 2’2)
— (E:i:azlll é-:l:mi Zg_)

= (éﬂ‘zl,ém‘ZQ), £,€ € pp,

£ (21, 2)

ta acts on D x © by:
£ (2,22) = (F21,6™)
= (gora,Eomz)
= (épzla émiZQ) y ‘5: gxé € o2
and the gluing map is given by,
ab} x C oD x C
o —— 5 ———

Hyp Hea
[eaﬁ?i, y] Y [e—pﬂé} e—maﬁéy]

Consequently, by Proposition 3.4.4, each of these rank 2 orbibundles is isomorphic to Op,a(tmi),

i a

forl<i<mn,
Again, the above holds because
oy G;_(h mia mqa My

iy = + =-—(rFa mod @) = kym; (mod @
= p P (rFa) ( ) = komyg )
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Remark 3.4.8 This description of weighted blow up as plumbing was suggested by McDuff in [MD2]
in the context of abmost complex structures in X = 5% x S2.If we consider (X, w™),with w* =
(1+MXNo1+ o2 for some XA > 0, where the 2-form o; has total area | on the ith factor, then the space
J* of all 0% w*-compatible almost complex structures on X has a stratification which changes as
A passes each integer. In particular McDuff proves thot for each m > k > 1 there is a neighborhood
of the space

T2 = {J € J* : there is a J-hol curve in class A —mF)

in 7;; that is fibered over J\ with fiber equal to the cone C (Eﬁ%k) over a stratified spoce E,’,‘l,k of
dimension 4(m—k)—1. Moreover, she illustrates this result by constructing the link £3 . For this she
first constructs an auxiliory space Lz obtained by plumbing the unit sphere bundle of O(~3)®O(—1)
with the singular circle bundle S(Ly) — Y where this last bundle has total space L(Y) = S° and
fibers equal to the orbits of the following S'-action on S°:

8 (z,y,2) = (e¥x,ey,e*2), z,y,2€C.

E;‘,D is then obtained from Lz by collapsing the fibers over the exceptional divisor to a single fiber
and so it can be identified with S°. We can easily see then that this auxiliary space £z is the sphere
bundle of the weighted (1,2,1)-blow up of O(—1) & G{0).

In Figure 3.4 we can see the image of a moment map for effective T?-actions on O(—1) @& O(0),
{cf. [L-T]} and on the corresponding blow up. Here we can see how the Fuler classes of the line
bundles over CP' change with the blow up, (they can be determined by the difference in slopes of
the lines on the same face of the polygon which “start” on the image, B, of CP').

Figure 3.6: Weighted (1, 2, I}-blow up of O{—1) & O(0)

Example 3.4.9 Consider the space O = 52 x,,, 5% obtoined from S% x 8% by identifying ([2o
z1), [wo + wi]} with ((—2o : z1],[—wo : wn]). This space is an orbifold with four isolated singularities
of order two:

([t:0,[1:00), (1:0],[0: 1), ((0:1],[1:0]), (f0:1],[0: 1])

A neighborhood of each of these singularities can be modelled by

C*/{(z,w) ~ (=2, ~w)}
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Moreover, the blow up of Q, or in this case the weighted {1,1)-blow up, at one of these singularities
will give us a CP as an exceptional divisor. In Figure 8.5 (a) we can sce the image of a moment
map for o suitable T?-action on S? x,, S%. The labels on the vertices indicate the order of the
singularities in their preimage. Moreover, the labels on the edges indicate the intersection numbers

of the spheres on their preimage.

Figure 3.7: () S X, 5% (b) 52 iy SHACPA2,1,1) (©) (S x,,, SHH4TPH(2,1,1)

In Figure 8.5 (b) we can see the image of the blow up at one of the orbifold singularities. The
intersection numbers are determined by Proposition 3.4.5. If we blow up oll four orbifold singulari-
ties, we get the rational manifold represented in Figure 3.5 (c) , which is the blow up of 8% x 5% at

four points. Hence,

(8% x,, SHFACP(2,1,1) = (S? x §%)4#4CP?

3.4.3 Blowing down

If we have a weighted projective space ¥ = CP* Yq,...,qn—1), symplectically embedded in a
symplectic orbifold (M, w), we have seen in Section 3.2 that a neighborhood of X, A/(X), is symplec-
tomorphic to a neighborhood of the zero section in {$2"1/I') x g1 C. In particular, it is symplecto-
morphic to a neighborhood of the zero section of $27~1/ x g1 C for the circle action on $2"~1 x C
given by,

A (z,w) = M)z, Ww), A€ S, a= (g, qn-1)-

Therefore, such a neighborhood is symplectomorphic to a neighborhood of CP"*(q) inside
CP"(p,q) and so we can perform the weighted blow (p, q)-blow down of M along Z.
In fact, we can choose § and € such that A(%) is symplectomorphic to L(§,¢) described above

and so we can remove N(X) and glue a “cell” B*"(g)/u, back in, where u, acts on B?"(g) by:

€ (20, 2n-a) = (%20, € 2nen), €€ i
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Chapter 4

Applications

Continuing the work in [G-8] we can describe the behavior of the reduced spaces of an Hamiltonian ‘;!h

S'-action, which may not be quasi-free, when passing through a critical value of the moment map. I

4.1 Passing through a critical level of signature (2,2n — 2) i

In the case of a quasi-free action Guillemin and Sternberg prove that passing this type of crifical
point has the effect of blowing up the reduced spaces at a point, ([G-8]). Let us now see what i
happens if the action is not quasi-free. i

Let (M,w) be a symplectic manifold with a Hamiltonian $*-action and let = be one of its critical l
pts with signature (2, 2n — 2). Then, a neighborhood of z can be identified with C x C*~! with its "

standard symplectic structure and $*-action i

A (Z) = A(Mpa q) -7, ”f:

with moment map pt: M = C" ! x C — R given by: i
n—1 I

pl2) = —plzol® + Y ailzl. ‘

i=1 '

We will see that i
0" =0_.2p(-e)/S' =C" u,

:
1
with the standard induced symplectic structure and }

Ot 20, 2 ul(e) /8§ = (G ) (a),

is the weighted q-blow up of C®1 /u, at the point of isotropy p,. The “exceptional divisor” resulting L
from this blow up is CP™?(q). !
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In fact, at &,
’ n—1
O-e = {(0,7) € Cx € plaol® = 3 aaleal” +6}/5" = C" 7/,
i=1

where i, acts on C*~1 by:

Em=§€ 2, £E pp.

O~ is therefore an (n — 1)-dimensional orbifold (with an isolated singularity of order p) with the
standard induced symplectic form.

For e >0,
A1

0. = {(#0,2) € C x C* ™ :plzo|* +& = quzi\z}/sl.
=1

Making the following coordinate change,
wy = 2
u; = (Eﬁfﬁﬂ)lmz‘i i=1,,n—1
we get
Z Ji]? = :& 11 @jzl® _
plwff e
and so,

ot =cC X g1 G2(n—1)—1

where the S1 action is given by:
g Y

A (UQ,U) (ﬁp:q)'(u():u)z re st

Hence, O is just the orbibundle CP™ ! (p, ¢) we considered in Section 3.4.1 and so it is the weighted

g-blow up of O~ at the point of order p. In conclusion, we have proved the following:

Theorem 4.1.1 Let (M,w) be a (2n)-symplectic manifold with a Haemiltonion S*-action and let
z be a critical pt with signature (2,2n ~ 2), lying on the critical level u = . Then, the reduced
spaces Oxpe = p~ (A +8)/S? are all diffeomorphic to the weighted q-blow up of the reduced spaces
On_e = s H{(A—€)/SY at a point of order p, for suitable values of q € (ZY)""1 and p € Z+

Remark 4.1.2 In the case where we have o critical submanifold of signature (2k,2), the seme

analysis holds in the normal directions to x.

We can easily picture the result on Theorem 4.1.1 when n = 3. Take (C3,wp) with the S*
action given by:
A (Zo,zl,ZQ) = (A"Pu0, N 21, AB2), A € St
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and moment map p(zg, 21, %) = —plzo|? + q1|z1|? + gajza|?. First, we define an effective S* x S'-
action on each reduced space p'(Ze)}/St in the following way:

Consider the standard symplectic action of T% on C* with moment map:
— 2 2 2
pirs (20, 21, 22) = (|20, jan ], |22]")
Define a linear projection P : R® —» R? by the matrix

my  —pPmg  pams

0 g/m —q/m

where my = ged{gy,q2), me = ged(p,q1), ms = ged(p,¢2) and o, B € Z' are such that amags —

Bmaq = m..
Remark 4.1.8 As the S'-action is effective, ged(p,g1,q2) = 1. Hence
ged(maqy fmn, maga/my) = 1

and so a and 3 exist as defined.

P induces a map from T* = R3/Z3 to 7% = R?*/Z*. Its kernel is given by:

K

i

{[k] € T°: P(k) ¢ 2%}
= {[-pt,at, gt € T*: t€ R}

= {(ATP, A1 2%), A e §'} with the identification A = ™.

As K is a subgroup of T?, it acts on C? with moment map

Zg|2

pr =5 o pps = —plap|* + q1|z1]* + @
where j : K — R? is the inclusion map. This action of K on C? is our initial action of §* and so,
K (o) K % O

Moreover, the action of T on C? induces Hamiltonian actions of T# on both O_, and O, and the
moment mMap fbrs| u=l (7e) descends to the moment maps:
K
fio:0_, —= (RY)*

fir : 0, = (RY)”

with images

ﬁ':F(O:FE) = {(m,y,z) € (RS)* LY, E 2 O/\ —px +QIy +fI2Z = :FE}
. . t
= PH@®))+ (Fefp 0 0 )
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Now the action of T® on O_, descends to a Hamiltonian action of 7% = 'T%/K on O~ and we

have the following diagram:

(R?)* = (Lie(T))* 5 [-(0-) :
TN B ‘ iéh
O_. i

where ¥_o(y} = P'y + (¢/p,0,0)t. pipm = % o fi_. is therefore a moment, map for this action. i
Mareover, this 72-action on O_ is effective. To show this, it is enough to find a point # € O_, i
with trivial isotropy group or, equivalently, to find a point on u;{l (—&) with trivial isotropy group I,
in T?, (any point (z,y,2) € %' (—¢) such that ,y,z > 0 will do).
We can easily see that pig=(0O_c) is the following region of the plane:

_|;.
T3 i

Figure 4.1: pp={0_.) I

The labels m; in the above Figure 4.1 are the orders of the orbifold structure groups of the ]
points iz the preimage of the respective edges and the label p is the order of the orbifold structure i
group of the point with image (0, 0). I

Similarly, the action of T on (. descends to a Hamiltonian action of T3 on O, and we have i

the diagram 5

BY* = LTy % 4 (Ose) y
TN A i
Ope

where ©:(y) = Pty + (—¢/p,0,0)'. Again this action on O.. is effective, as any point (z,y,2) €
p1it () such that z,y,z > 0 has trivial isotropy group in T3,

The image pp2(04.) is the region of the plane in Figure 4.1 where the labels m; indicate the
order of the orbifald structure groups of the points on the pre-image of the labeled edges and the
labels ¢1, ga are the order of the orbifold structure groups of the points with image (e/pm1, amee/q)
and (g/pmy, fmae/gs) respectively. For more details on how to obtain effective torus actions on
compact orbifolds and their moment map polytopes, please refer to [L-T].

We can now see from Figures 4.1 and 4.1, that the reduced spaces Q- for negative values of
the moment map px are all diffeomorphic to C3/u, and that for positive values of pg they are the

weighted (g1, ¢z2)-blow up of O_ at the point of orbifold structure group pyp.
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Figure 4.2: pig2 (O4e) o

4.2 Passing through a critical level of signature (2(n — k), 2k)

Emes e

In the case of a quasi-free circle action, Guillemin and Sternberg reduce this case to the previous

one by proving that passing through a critical level of signature (2(n — k), 2k) is the same as passing

through two critical levels, one of signature (2(n — k),2) and the other of signature (2,2k). The

trick used was to blow up the manifold at the critical point. This point then “becomes” two fixed k.
manifolds. However, this may no longer hold when the action is not quasi-free, We will describe
next how to proceed in the general case. ‘l

Let x be a Hamiltonian function for an S*-action on a symplectic manifold M and consider a |_
critical point = of p with signature (2(n — k), 2k). A neighborhood of  in M can be identified with R
Cnk % Ck where St acts by

A (z,w) = A(-p,a) - (z, W),

with P= (plv . ")pn*k): q= (qla"‘1Qfﬂ)a and
wlz,w) == pilal® + D alwl. ik

We will see that
0" =0 =p~ ' (—6)/3" = Oplg) ® - ® Op(qs) i

where i
Op(a) = CP™*(p)

is the line orbibundle diffeomorphic to the normal orbibundle of CP™*(p) inside |
CP™*(p,g;),
with symplectic structure given by symplectic reduction.

Remark 4.2.1 i
OP(Q’.':) = 82(n_k)+1 XSl C J

where S1 acts on SHP—MFHL « C by : "

A (Z,’U}) = ./\_(pw%') ' (st)
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On the other hand, we will see that
ot =0, = N_l(E)/Sl & Oy(—p1) @+ & Oq(—Pr—t),

is the result of a blow down of O~ followed by a blow up.
In fact, at —¢,
O = {(mwW)eC ™ *xC*: > pilul = gilwi]® +}/8
— SZ(ﬂ,—k)~1 X g1 Ck
= Op(@)®- ® Oplgs).

O~ is therefore a 2(n — 1)-dimensional orbifold which is the total space of an orbibundle over

CP"5-1(p), Morcover it is isomorphic to the normal orbibundle of
CP'n—k—l (p)

inside CP*"}(p,q).
For € > 0,
0. = {(w)eC xC* 1 e+ pilal* =Y alwl}/s"
— Cn—k X g1 Squ
= Og(-p1) & ® Og(—pn—s).

We now need to describe the critical level set Og = p~(0)/S5*. This space is a cone C'X over

a link X, where X = §2(n=F)—1 x o §26—1,

Oy = {(z,w)e Ccrk x CF . Zpi\zﬁ = zqﬂwiﬁ}/sl
= (CX.

5! acts on S2(n—k)—L by,

Az=A(-p)z, xSt (4.1)

and so this sphere is a principal orbibundle over the orbit space

S2(n—-k)—1 /Sl o CP'n—-k.—l (p}

Therefore, the link X considered above is the associated orbibundle with fiber §25-1:

gl g2An—k)-1 X g1 G2h—1
i (4.2)
CPn—k—l(p)_
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Similarly, S' acts on 521 by,
Aw=Mgw, e S )
and so this sphere is also a principal orbibundle but now over the orbit space
§2h=1 761 o2 PR ().

Therefore, the link X can also be described as the associated orbibundle to the principal orbibundle

above but now with fiber §2(m—k—1;

Sy SRRl oy, gRk
} (4.4)
CP*1(q).

On the other hand,
O = S5~ F 1 50 CF = Op{q1) @ - @ Op(ar)

is the orbibundle over CP" *~'(p) with fiber C*, associated to the principal orbibundle described
in {4.2) and
O = ank X gt S%gl = Oq(_pl) oD Oq(“pn—k)

is the orbibundle over CP*~1(q) with fiber C*~!, associated to the principal orbibundle described
in (4.4).

As X fibers over both CP?*~1(p) and CP*~#(q) there are two ways of “partially blowing
CX up” at its singular point as we will see next. As the blown up point is not an orbifold point,
the previous blow up definitions do not apply.

However, O_. can be seen as a “partial blow up” of CX at its singular point, where a neigh-
borhood of this point in C'X is removed and replaced by a neighborhood of the zero section in O—..

The gluing involved is made along the boundary S of the resulting manifold, where
S = J(CX\{0}) &2 SPvRI=1 oy 2T

The exceptional divisor resulting from this blow up is CP™*~*~1(p) and the “singular blow down”

map corresponding to the opposite of this “partial blow up”, is given by

ﬁﬁg : O_s -3 Oo
with
,
B-e(lz, w]) = ([ﬁz,w}) €0X (4.5)

where r = (3 gilwi|?) ¥ and CX = Op.

40




Remark 4.2.2 §_,. is well defined as

ﬂme([A(—P;Q)(Z:W)]) = [A(_p:q)(

7, W)

r
Vri4g "

P

7, W|. 1
[\/?"2 +e ] k
Moreover it maps O_,\CP" *~1(p) injectively onto Og\{0} and

B (CP™*1(p)) = {0}.

Alternatively, this “partial blow up” can be described as the space obtained by removing a

neighborhood of the critical point in CX and then collapsing the boundary of the resulting orbifold
along the fibres of the fibration described in (4.2).

Similarly, (}, can be described as a “partial blow up” up CX at its singular point where a

neighborhood of this point is now replaced by a neighborhood of the zero section of the orbibundle il

O.. The gluing is again made along a manifold § = §2(P—k)=1 x o §2k—1 byt now the “singular
blow down” map

A 1 0% = 0

is given by b

Be([2,w]) = [5, \/—Sfmﬁw} € 0X =04 (4.6) f

where s = (3" p;|zif*)?. | i

B

Remark 4.2.3 B, is also well defined, mapping OT\CP*1(q) injectively onto Og\{0} with

B(CP*Yq)) = {0}.

We can now state the following result:

Theorem 4.2.4 Let S act on o symplectic manifold M?" in o Hamiltonion fashion. Let p be its
Hamiltonian function and let & be o critical point of signature (2(n — k),2k), lying on the critical
level jt = M. Then the reduced spaces Oxye = u~ (A +€)/ST can be obtained from the reduced spaces
] Oxn_e = YA —e)/8* by a “singular blow down” of a copy of CP" *~1(p) followed by a “partial
blow up”, for suitable values of p € (Z*)** determined by p. The exceptional divisor resulting

from this “partial blow up” is CP*~1(q) for q € (Z+)** determined by p.

Remark 4.2.5 Again when we hove a critical submanifold of signature (2(d — k),2k) the same

analysis holds in the normal directions to x.
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4.3 Duistermaat-Heckman with singularities

The Duistermaat-Heckman Theorem, [D-H] altows us to compare the cohomology classes [w,] €
H?(0., R) for different values of € in the same component of the set of regular values of the moment
map . This piecewise affine function extends to a continuous function at critical points of p.

In fact, let S! act on a 2n-manifold in a Hamiltonian fashion and let # be a critical point of
signature (2(n — k), 2k) lying in a critical level ¢ = A of the corresponding Hamiltonian function.

Then, by the preceding section, we have the following commutative diagram:

o+ X0, 07 -{f{:} 0~

A Ny LB
o+ A 0,

where A_ and B4 are the maps defined in (4.5) and in (4.6), and

1.
0" = ut(A—-g)/st
OF = pl(i+e)s!
Oy = p'(N/s
2,

0% x0, 07 = {(z,9) € OF x 07 : By(w) = B-(y)}
is the pullback orbibundle of O~ by £
3. g is the Hamiltonian function for the $'-action and A = p(x)
4, ¢F, ¢~ are the natural projections to O and O~

In this situation we have the following theorem:
Theorem 4.3.1 In H2(OF xp, O7;R),
(@) (wate)) — (07 (lwrg D)) = e (0)] = ePD([24.3-])

where [w, ] is the value ot A+ ¢ of the estension of the affine function on t < A, [we], to values of
t> A; T4 and T_ are the singular locus of the blow down maps B4 and . with 84 (34) = B (¥)
and PD([%4,£_]) denotes the Poineare dual (c¢f. Theorem £.1.8) of the homology class [E4.,5] €
Hy(n-1)—2(0T %0, O7,R).

Proof: Let i : M?" - R be the Hamiltonian function associated to the S'-action and consider the
critical point z. As we have seen above, a neighborhood of z in M can be identified with C"* x C¥,

and the S*-action becomes
A (z,w) =A(-p,q)
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with Hamiltonian function p(z, w) = — Y. pil#l* + 3 @|wi[*. We are then in the situation described
in Section 4.2 and we can adapt the proof of Brion-Procesi (c.f. [B-P]) for a C*-action on a projective
variety, in the following way:

By the Duistermaat-Heckman theorem, ([D-H]), all the regular quotients of p~'(€) can be
identified with the same orbifolds OF and all the regular quotients of x~*{—¢) can be identified with
the same orbifolds O~ Moreover, Ot is a blow up of Oy at its singular point and CP*~(q) is the

singular locus of the “blow down” map Sy. Again by the D-H theorem,
(@ ([wel) = (87 0 ™) (fwo]) — e(¢t)*(ef)

where et ¢ H2(O%; Q) is the Fuler class of the principal S'-orbibundle P+ — Ot with Pt =
pYe)/T, and T is the subgroup of S* generated by the orbifold structure groups of the points in
pte)/ 8.

Similarly,
(¢ ) (lw—e]) = (B 0 ¢} ([wo]) +&(¢7)"(e1)
and so,
(@) ([ws]) = (B0 ¢7 )" (wo]) —&(¢7)*{eT ).
Hence, as f4 0 ¢ = -0 ¢~ =4,
(@) (fwel) = (@707 (WD) = —e((67){el) — (67)7(er))- (4.7)
Now the Sl-action on C%* x CF extends to an action of C* with the same fixed point and so,

[B-P], gives us that the right hand side of (4.7) is equal to —e PD{[X,%_}) and so we have,

(@) (wel} = (¢7)"([w; ) = —ePD([Z4,3.])

The following result first proved by McDuff in [MD1] comes as a corollary:

Corollary 4.3.2 If M is 4-dimensional, then when passing through a critical value of p on an
isolated critical point of type (—p,q)
1
g
Proof: In this situation, ;. = {z;} and ©_ = {z,} are single points respectively in O and O~

e (0%) ~er(07) = ¢

with orbifold structure group g and gip.
Then,

ef (0F) —ef (07) = (;—E (@) (we) = (¢ ) () ([(0F,07))
= PD([$Q!$p])([O+ﬂO_])

= {2y 0F)(zp- 07)
1
bq
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In the case of an isolated critical point of signature (2, 2(n—1)} or (2(rn—1),2), we have another
corollary which generalizes the similar result for the case of a semifree S'-action proved in [G-5] and
in [Aul.

Corollary 4.8.3 Let « is a critical point of signature (2,2(n — 1)), (resp. (2(n —1),2)). Then S*
acts on the normal bundle to this fived point with different weights where only one of these is negative

(positive). Let p be the obsolute value of this weight. Then, 8* ([w;]) — [wel, (resp. [w] — 8" ([wel) ),

is a half line directed by

%PD([&]) e I*(0,Q),

where 3: OF = O_, is the corresponding blowdoun map between reduced spaces.

Proof: Let [4] € Ha(0T, Q). Then,

[A}B] € H2(0+ Xy O+J Q)

iff (81).([A]) = (B-)«([B]). Now

B*(wih) — )[4 = (@) (B (D) — lwel) (A B])
= ()" {wsD) - (™) (we])) (4, BD)
= e(PD{[Z, -1} (4, B)
= (.- A)(%- - B)

- %PD([&])([A])

]

This result can be easily seen in Figures 4.1 and 4.1 for the 6~ dimensional case. From these
figures, we can eagily see that the Euler class e of the principal §*-orbibundle P+ — O, differs
from B*(e] ), the pull back of the Euler class of P~ — O~ by a multiple of the PD[Z] € H?(O4,R),
where ¥ is the exceptional divisor of 3.

Hence,

(B*([wo]) = [weD} (=) = ekPDIE]([2])

= gh(% %)
_ P
- F (lcm(ql,cp)

On the other hand, [wiel(E) = grpigy and S*([w, (%) = w7 1(8.(X)) = 0. In fact, as we can

see from figure 6, we can define a quasi-free Hamiltonian S*-actlon on a neighborhood A(X) of
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in Oy, having the orbifold singularities »1,zs of order ¢:,¢s as fixed points and ¥ as a gradient
sphere. If H, : N(Z) — R is the Hamiltonian function for this action, then, t(X,)w, = dH, for X, .
the Hamiltonian vector field associated to He. If we consider a path v(t), (0 <t < 1), on O, from

a1 to z9 and the map |

w: 0,20 x [0,1] — O4¢ :

(5,8) = e y{t) = ¢ (4(1)

where 19, : M = M is such that —(‘%’— = X, o, then, It

£ _ P
and we have Tomiaraa] — Ek!cm(qu@)'

We conclude then that & = 1/p and so 8*([w, ]) — [we] is a half line directed by 1/pPD[*]. (this

o |

L) = o e = _/ 0" We 1
(we)(Z) 2 Ew 2m [0,24] x]0,1) v la
1 ;

= P L Xg We ) t lE\

s [ E)G) L

1 |i|§

= - 4H. (3(2)) i

21 Jjo,2mlxl01] I

£ !

= Hels) - Helw)) = ———— i
(33'2) (ml) lcm(ql, Q‘Z) p

|

alternate proof of Corollary 4.3.3 for dimension 6 can be easily generalized for other dimensions).




Chapter 5

Equivariant cohomology and |

Sl.actions

5.1 FEquivariant cohomology and the Cartan model

The equivariant cohemology of a G-manifold is defined as the ordinary cohomology of the space

Mg = M xg EG where EG is a contractible space on which G acts freely. Hence,

Hy(M) = H*(Mg)

Moreover, HE(M) is a module over
H} = H(pt) = H*(BG) :
where BG, the classifying space, is defined as

BG = EG/G.

5.1.1 The Cartan model

We will now present a DeRham version of equivariant cohomology, the Cartan model, for the simple

case where G = St. For this we first need to define the spaces: (1% (M), the set of smooth k-forms

: on M which are invariant under the S'-action and 0%, (M)[u], the ring of polynomials in » with

coefficients in %, (M). u is a generator of degree two and so an element in Qb (M)[u] is the finite

| suimn,

o= oy -+ utg_g + u2ak_4 o
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where ; € ﬂ’él (M). In particular, 0% [v] = 0% (pt)[u] is the ring of polynomials in » with constant
coefficients.

On Q%, (M)[u], we can define the differential operator,
dx = d+ ui(X)

where X is the vector field that generates the $-action. This degree one operator satisfies dx odx =
0. Nate that an element o of §2%; (M)[w] is equivariantly closed, t.e. dxa = 0 iff « i3 closed in the
usual sense and ¢(X)a = 0 (a basic relative to X). Note that if o € (%, (M)[u] is closed but
not bagic, it may be possible to extend it to an equivariantly closed form by adding a polynomial
p € O (M)[u].

The equivariant DeRham complex Hpp (0% (M)[u],dx) can be naturally identified with the
equivariant cohomology H%, (M) of M. In particular, as dx vanishes on 0%, [u], H = HZ, (pt) is

again the ring of polynomials in » with constant coefficients.

5.1.2 Egquivariant characteristic classes in the Cartan model

Let F — M be a complex line bundle where S* acts compatibly with its action on M and consider
&n equivariant connection V on F (i.e. the actions of V and X commute). Note that we can obtain
such a connection by taking an arbitrary connection on F and then averaging over S, If sis a
generating smooth section of £ over an open set U, then locally the action of X is described by a
function L(s) satisfying

Xs=IL(s)s

while the connection V is described by a 1-form 6(s) satisfying,

As V is equivariant, L(s} and 8(s) satisfy,
dL(s) = Lx8(s}.

The ordinary Chern class of E is then locally represented by

0(3)

27

This representation is independent of the generating section ¢ and hence it is the restriction to an
open set U of a global class ¢ (F, V).
If we consider the form locally defined by

1 1
&' (B, V,8) = = {db(s)  [L(s) ~ u(X)6(s)]u}

we can easily see that it is independent of the choice of section, it is invariant under the §*-action

and it is S'-closed, thus defining & global equivariant cohomology class.
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Example 5.1.1 Let S act on a manifold M and consider o line bundle B over M with an S*
action compatible with the action on M. Moreover, let F' be a component of the fized point set of S*

I

[
on M. The action of S* on the fibers of B, is conjugate to the circle action on C, .‘

i

z 1y et P

Henee if z is a generating section, X = 2mifz0, and so L(2) = 2mif. Moreover, Vxz =0 as X Ir

vanishes on I and so0 6(z) = 0. We have then, i

clsl (F) =c1 + fu ;
|

Example 5.1.2 If F' is agoin o component of the fived point set, and vp is the normal bundle to
Fin M then S acts on this bundle. By the splitiing principle (¢f. [B-T]) o obtain e polymomial
identity for the equivariant Chern classes of a complez vector bundle it is enough to prove it under

i
the assumption that the vector bundle can be decomposed equivariantly as a sum of line bundles. ;I

Let us assume then that the normal bundle fo F' in M decompeses equivariantly into compler line )

i

bundles ’}I|
vp=Li@® - DLy “P.il

b

on which. the circle acts with weights $1,.. ., Bm. Hence, i‘
i

1 m 4

of (vr) =Y (er{Ls) + Biu) :

=1 :

and we can also consider the equivariant Buler class
' = ) ;
er (vw) I I(Cl(Li) + Biu). :

since all the B; are different from zero, we can wrile, i

o ) = (Hﬁz )H{‘” L

i=1

and so we may define the inverse of efl (vi) in Q% (M)[u] (the ring of polynomials in u with ol

coefficients in Ok, (M)},
n 1 & ) ke
(I/F) H (ﬁ%u Z ( Biu ) )

i=1 k=0

as only o finite number of terms contribute to this sum.

5.1.3 The localization theorem il

We will see next that the integral of an equivariantly closed form « depends only on the restriction i

of a to the fixed point set M ) ‘|




Theorem 5.1.3 (fB-V];fA-B]) Let M** be o compact manifold equipped with an action of S* and
let F be the set of components of the fized point set MS of §' on M. Let a ¢ H3, (M, Z). Then,

[ 2

FeFd¥ € VF)

Proof: We will present here the proof by Berline and Verne, ([B-V]), which uses the Cartan model
for equivariant cohomology. Let o € Q% (M)[u], o == aon + dgn-2t + - + apu?”

Stepl Let F € F be a critical submanifold of M of codimension 2m. a tubular neighborhood
of F' can be defined as in Section 3.3, by

U(F) = Pr Xy C™
where P is a principal U (m)-bundle over F. We can choose coordinates,
Wi, Wynm)s T1y - -+ Lo
on this neighborhood such that the vector field X, generated by the action takes the form,
X = i (®2071 — 21022) + -+ + B (T2mOTam—1 — T2p—10%3m)
and so0 ef (VF) = g»ﬁ;‘)%mum Moreover, we can define a one form @5 on this neighborhaod of F by,
O = ﬁfl(m2dm1 —adzs)+-+ ﬁ;l (ZamdBam—1 — m?m_ldmgm).

This form is S*-invariant and ¢(X)0r = 6p(X) = ||z||*. Using a S'-invariant partition of unity
subordinate to the covering of M by the S* invariant open sets Up and M\M 51, we can construct a
one form # such that £(X)f8 = 0, dx8 = df + ||z||?u is invertible outside M5 and § =6 on U(F).

Now for any equivariant form e € 0%, (M)[u] such that dxa = 0 we can easily prove that,
A
=d .
T ( ax8 )

Step2 We can now prove the main statement:
Let M, = M\ Upcyr Ue(F), then

on on ]\/_5’\]‘./1"5“1

Sy = limeq fM; o = limsseo fMg dx (gi\{—‘;)
= M o fMe d (%‘%%) = lim. ;00 EFe.’F fBUE(F) (%%)

Rescaling the variable =, 8U, (F) we get

/ Ao _/ AN
8l (F) dx @ S2m—1 dxe

/a_z/ sldx9

FerF

where lim,_,0 @ = [ . Hence,
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Now,

fostis = Jo s
gam—1 x 8 n gam-1 G0+ u

m—1
_ 1 / 9<_d_9>
U Jgem-1 w

. _1_ m
B (A B (dG)
2T

whh e B
1

et (vp)

and the result follows. For more details please refer to [B-V].

5.2 Isolated fixed points on 6-manifolds

In this section we extend the results of Tolman and Weitsman in [T-W] to special non-semifree
circle actions with isolated fixed point. For this we first need to consider some facts about isotropy

spheres.

5.2.1 Isotropy spheres

Let M be a compact symplectic six dimensional manifold equipped with an effective circle action
with only isolated fixed points. Let p € M be one fixed point such that the absolute value of one of
the weights of the circle action on the normal bundle to p is different from 1. Let & be this value and
let F be the connected component of M#* containing p, (recall that uy is the group of the k-roots
of unity). If all other weights of the circle action on the normal bundle to p are not multiples of &,
the tangent space to E at p is the two dimensional subspace of T, on which the circle acts with
weight k.

Consequently, £ is also two dimensional, Moreover 5!/ acts effectively on E with at least
one fixed point. Therefore this circle action is Hamiltonian and as F is compact, the image H(E) of
its Hamiltonian function is a closed interval. Consequently, there ig an additional fixed point lying
on the other endpoint of the interval. Moreover the local normal forms for circle actions on surfaces
allow 18 to construct an equivariant symplectomorphism between B and a sphere with the standard
circle action (cf. [K] for details).

We conclude then that under the above assumptions, the connected component of M#* through
p is a sphere which contains only one additional fixed point.

If the condition on the weights of the circle action on the normal bundle for p is not satisfied i.e.

if there is one other weight which is a multiple of k then the connecled component of M¥*r through p,
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I 1s now four dimensional. Nevertheless there ig still an embedded sphere through p which contains
only one additional fixed point.

In fact, we now have a semifree S1/pp-action on E with only isolated fixed points which extends
to an action of the multiplicative group C* on E. The fixed points of this new action are the same
as the fixed points for the circle action, and the gradient flow on £ iz the flow generated by the
vector {ield —J X, where X is the vector field generating the circle action and J is an almost complex
structure on F preserved by the circle action. This gradient {low coincides with the gradient flow
of the Hamiltonian function with respect to a compatible metric. We can therefore consider the
gradient spheres in E (defined in [A] and [A-H]) as the closure of a non-trivial C*-orbit. The poles
of these spheres are the limits at times oo and —oc of the gradient fow inside this orbit which are
of course fixed points of the circle action on E. Again the circle acts on each of these spheres by
standard rotation. -

We conclude then that also in this case there is a sphere through p fixed by pg, which passes
through an additional fixed point in M. We will call these spheres isotropy spheres.

5.2.2 Hamiltonian circle actions

Using the above considerations on isotropy spheres and some properties of circle actions on disc

bundles over $2, we prove the following theorem:
; b

Proposition 5.2.1 Let (M%, w) be a siz dimensional compact, connected symplectic manifold equip-
ped with o symplectic circle action with only isolated fized points. If all the Zy-spheres (k # 0) Z
have trivial normal bundles in M, (i.e. c1{vz) = ei{vz) =0) and MS" 40, then the circle action

i8 necessarily Hamiltonian.

Proof: We can assume without loss of generality that w i3 rational. Then, if the action is not
Hamiltonian, we have that [¢(X)w] # 0 and so a multiple of w admits a generalized moment map

such that
piM -

with ¢(X)w = p*(df). This map cannot have any local extremum. Consequently, the index of any
of its critical points can only be two or four.

We need now a certain fact about disc bundles over the 2-sphere whick is proved in [A-H]: Let
the circle act on the 2-sphere by rotating it % times while fixing the north and south poles. Let
FE —+ 52 be a complex line bundle to which the action lifts. The fiber over the north pole is acted

upon by

Az = A\hEg
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and the fibre over the south pole is acted upon by
Arz o A8y

We then have,

my —mg = —ek

where e i3 the Euler number of the bundle F.

The possibilities for pairing fixed points along a Zg-isotropy sphere passing through them can
be seen in Figure 5.1.

Consider the Zj;-sphere below in Figure 5.1 (a) and let F be its normal bundle on M. E
decomposes as a sum of two complex line bundles where the complex structure is chosen to be
compatible with the symplectic structure. The circle action on the fibers of these two bundles over
the north and south poles is given by the respective weights, ,j and ~a, —b, {¢,7,a,b € ZT). By

the above discussion we must have

i+a = —ek (5.1)
Jitbd = -—exk (5.2)

which ig impossible ag by hypothesis e = e = 0.

i J
—k
k k
—qa -b -a —b
{a) (b) (¢)

Figure 5.1: Pairings of fixed points along Zg-spheres

Similarly, the situations in Figure 5.1 (b), (¢) and (d) are also impossible. For (e) to be possible,
we need § = a and ¢ = b. We conclude then that {e) is the only possible situation for pairing fixed

points along a Zg-sphere,
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Each one of these spheres goes through two different fixed points. Consequently, we cannot have
an index 2 fixed point with a negative weight « # —1 or an index 4 fixed point with a positive weight
a5 1. In fact, if that was the case, the corresponding isotropy spheres could not pass through any
other fixed point as situations (a) through (d) above are impossible. This fact and the equalities
imposed by situation (e) above, determine that the only possibility for existence of isotropy spheres
is the one described in Figure 5.2 below. Consequently, the get of fixed points has to be composed

of points of the types represented in Figure 5.3.

Figure 5.2: Pairing along a Zz-sphere

1 k 1 1 1 1
-1 -k -1 -1 -1 -1
(a) (b) (c) (d)

Figure 5.3: Possible kinds of fixed points

Now by the localization theorem for equivariant cohomology, (cf. Section 5.1.3)

= 2 F

1

for & € H%. Let Ny, N_g, N1 and N_; be the number of points of type (a}, (b), (¢) and {d). By
Example 5.1.1, if F is a fixed point of type (a), (b), (¢) or (d),then 8181(1}17‘) is equal to —ku®, ku®,

—u8 or u®. If in addition & = ¢f (TM) then o

r i8 equal to ku, —ku, u or —u.

As in this case [,; @ = 0 for dimensjonal reasons, we have

BT S -

FeMs! elvr) =

then Ny, N_g, Vi and N_; are all zero, contradicting the initial hypothesis that M sl # 0. We

conclude then that the circle action is necessarily Hamiltonian and the result follows. m|
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Remark 5.2.2 1. If the circle eclion can be oblained by a sequence of blow ups of fized poinis
from a circle action sotisfying the above triviality conditions on the normal bundles of isotropy

spheres then the action is also Homiltonian.

2. Ezamples of Hamiltonian cirele actions on siy dimensional manifolds with only isolated fived
points satisfying the triviclity conditions on the normal bundles of isotropy spheres arve diagonal

weighted circle actions on 8% x 5% x §2.
Using a similar argument we can also prove the following result:

Theorem 5.2.3 Let S* action act on a siz-dimensional symplectic compact connected manifold. If
the circle action has only isolated fived points satisfying the condition that af the normal bundle to
each fized point S1 acts always with weights £n, £m, =k, where n > m > k > 2 are relatively prime
and n £ m+ k, then if MS' # 0, the action must be Hamiltonian,

Proof: Again we can assume we have a generalized moment map on M which cannot have any
local extremum.

Consider an index 4 fixed point z such that the circle acts on its normal bundle with weights
(m—q,-r)ypysr € {nymkandp# q#r.

For this point to be paired with another fixed point along a Z, sphere, {cf. Figure 5.4}, we
either need '

¢=—r (mod p),

20 =0 (modp) or 2r = 0 {mod p). These last two conditions are impossible as p # 2 and
ged(p,r) = ged(g,r) = 1. Therefore (I) is the only case possible and then ¢ = —r  (mod p}.

g P 7 Or ¢

—p —p —gor —r

(1) (11
Figure 5.4: Pairings along the Z,-sphere

On the other hand, the possible pairings of this point with other fixed point along a Z, sphere
are described in Figure 5.5:
For (&} to be possible we again need 2p =0 {(mod r) or 2¢ = 0 (mod r), which we know is

impossible, For (b) to be possible, we either need 2p =0 (modr)orp=¢g (modr)andp=r
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, Figure 5.5: Pairings of fixed points along Z,-spheres
.i |
i (mod ¢). The first we already know is impossible. The second is also impossible as we can see from

the following lemma.

Lemma 5.2.4 Let p,q,r be three integers greater than 2, relatively prime and such that |

= ¢ (modr)
} p = r (modg) (5.4) |
| = —r (mod p). 1'

Then necessarily p — q-+r.
Proof: From the first two equations in (5.4) we have that
p=q+kir =7+ kg ;

_ with ki, ks € Z. Then, j
' (ks —Vg=r{k1 — 1)

and as g and r have no common divisor, this implies that
p=q+7r (mod gr). (5.5)
, From the third equation in (5.4) we have the additional condition

: q=-r-+tp
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with ¢ > 1. Therefore, as from (5.5}, p = ¢ + v + k3gr, we have that |
p(1 1) = ksqr,

and so kg < 0. However, ag g +r < gr and p > 0, k3 cannot be negative and so we have that ks = 0

and so £t =1 i.e.

p=g+r

For (c) to be possible, we need p = ¢ (mod 7). However, (d) is always possible.

On the other hand, we cannot pair this point @ with two other index-2-points along the Z, and '
the 7, spheres using pairings similar to the ones described in Figure 5.5 (¢). In fact, if that was so,
we would need p = ¢ (mod r) and p =r (mod ¢) in addition to ¢ = —r (mod p) and that we

know, implies p = g + 7.

Therefore we need at least one pairing of the type described in (d) either along a Z, or a Z;

sphere, This fact implies the existence of a fixed point ¥ of index 2 with negative weight 2 different

from p.
To pair y with another fixed point along the corresponding Z g sphere, we need p = -r (mod g), |
‘ (if8=gq)orp=—g (modr) (if B =r). As we also need to pair z along the remaining isotropy il

‘ spheres, we have additional conditions, which we can easily check cannot be simultaneously satisfied:

Case 1 8 =r and the pairing of z with an index 2 fixed point z along the Z, sphere is of the type 1
(d). As in this case » must also be paired by a pairing of type (I} in Figure 5.4, we have

g= -1+ kp i
( P =1+ kog %l
p=—q+ksr. “
_ Then,
‘ g1+ k) =r(L+ks) =p(l + k1)
and
by +1=tgr
ko +1=trp |
ka+1=tgp ,l

{ for ¢ > 1. Hence p= ZEL which is impossible as p > 3 and £ > 1.

i Case 2 f§ = r and the pairing of x with an index 2 fixed point along the Z, sphere is of the type

(c}). In this case we have :

= —r+kyp
= g+kr
= —q+kar, .




Then,
2p = (ko + kg)r

which is impossible as r # 2 and ged(p,7) = 1.

Case 3 8 = g and the pairing of z with an index 2 fixed point along the Z,; sphere is of the type

(d). The conditions on p, g and r determined in this case are the same ag in Case 1.

Case 4 3 = ¢ and the pairing of  with an index 2 fixed point along the Z; sphere is of the type
{(c). In this case we have,
= —r+kp
p = —r+kag
= 7+ kag.
Here we have,

2p = (ks + ks)q

which again is impossible.

We conclude then that such an S action has to be Hamiltonian.
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