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Abstract of the Dissertation
Transport By Random Stationary Flows

by

Leonid Koralov

Doctor of Philosophy
in
Mathematics

State University of New York
at Stony Brook

1998

We consider transport properties for Gaussian, stationary, divergence
free, random vector fields in R?, which are Markov in time. Using the dis-
cretization of the spectral measure of the field, we approximate the equation
of motion in the random field, which is an ordinary differential equation
with the random right hand side, by a system of stochastic differential equa-
tions. The infinitesimal generator of the system is a hypoelliptic operator,
which couples the velocity mode space to physical space. We prove existence,
uniqueness and a priori estimates, uniform in the number of points in the

discretization, for the agsociated hypoelliptic equation.
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We then use an analog of the harmonic coordinates to express the ef-
fective diffusivity of the approximating fields in terms of the solution of the
PDE. The uniform a priori estimates allow for the transition back to the
original velocity field, thus proving the existence of effective diffusivity.

We then consider two consequences of the above analysis. The first
is a complete and rigorouos asymptotic expansion of diffusivity for vector
fields with short time correlations. The second is a rigorous analysis of the
divergence of diffusivity for generalized random fields with pure Kolmogorov

spectrum.
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Chapter 1

Existence of Effective

Diffusivity

1.1 Introduction

Consider the motion of a particle in the random velocity field
V(z,1) ,z € R% which is described by the system of random ordinary differ-

ential equations
Xt - V(Xf,,t) s X() =Zg . (11)

The matrix of effective diffusivity is defined as

Dab _ l lim b ((Xta - Xg’)(Xf - Xg))
T 2t9m i ’

a,b=1,..4d, (1.2)

where o and b are coordinate directions.




The problem of expressing the effective diffusivity, which is a Lagrangian
characteristic of the flow, in terms of the correlation function of the flow vec-
tor field itself, which is Eulerian data, is an important question which has
been discussed extensively in physical and mathematical publications. We
refer to [16] for an introduction to this literature. Most of the results have
been obtained in two cases. Either the time correlation scale of the ran-
dom vector field is infinite, that is the. field is time-independent, or on the
contrary, the field has short time correlations. Some of the important. recent
results in the case of time independent vector fields are due to Fannjiang and
Papanicolaou [7]. For the short time correlated vector fields the first results
date back to Taylor [19]. Taylor’s method gives the answer (on a physical
level) for the main term of effective diffusivity in the short time correlated
limit.

Recently Molchanov [17], and Carmona, Grishin and Molchanov (3]
considered random vector fields with a finite number of spatial modes. It
was shown by Molchanov [17] that for a class of vector fields with a finite
number of spatial modes the effective diffusivity can be expressed in terms of
the solution of a certain hypoelliptic partial differential equation, provided
the solution of the PDE exists. This equation couples velocity mode space
to physical space through (1.1). Through the coupling to physical space, it
gives the influence of the velocity modes upon diffusive transport.

In the dissertation develop the required PDE existence theory. More-

over we avoid the non-physical assumption of a finite number of modes. As




a result we obtain the existence of effective diffusivity under mild regularity
hypothesis on the random velocity field. We also obtain its full asymptotics
as the time correlation scale of the vector field tends to zero. The main term
of the asymptotic expansion coincides with Taylor’s answer, as is required
from physical considerations.

Among the related results we would like to note a recent paper by
Komorowski and Papanicolaou [14]. The existence of effective diffusivity is
proved there for a Gaussian, stationary, incompressible velocity field under
the assumption that the correlation function of the field has finite support
in time. rVI‘he main regularity assumption is that almost every realization of
the velocity field is continuous in t and C? smooth in . While the regularity
assumptions in this dissertation are essentially the same, we study the fields
which are Markov in time, rather than the ones with finite time correlations.
Markov assumption implies that the correlation function is exponentially
decreasing in time, and thus excludes the case considered in [14]. A different

derivation of the existence of effective diffusivity for Markov in time vector

fields was obtained independently of our work by Fannjiang and Komorowski |

[6]-

The technique developed in the dissertation allows us to prove the fol-
lowing two consequences. The first is a complete, and rigorous asymptotic
analysis of diffusivity in the short time correlated limit. The second is a rig-

orous analysis of the divergence of diffusivity for generalized random fields

with pure Kolmogorov spectrum. To the author’s knowledge, no comparable




results have been obtained previously.

We assume a physical model of turbulence described by a Gaussian ran-
dom field, which is stationary in time and space and Markov correlated in
time. Following [17] and also using the ideas which succeeded in construe-
tive quantum field theory [10], we use the discretization of the spectrum of
the random field V(z,t) in order to approximate the system of random ordi-
nary differential equations (1.1} by a finite dimensional system of stochastic
differential equations. Two types of cutoffs are needed to obtain a finite
dimensional system. A finite volume (periodic) cutoff gives a discrete struc-
ture to mode space, and a truncation with a finite number of periodic modes
giveé a finite dimensional velocity space.

Thus, together with (1.1) we consider an auxiliary system
XP=VMXMt), XP=um. | (1.3)

From the Markov assumption governing the time correlations of the random
velocity statistics, each Fourier mode in the random velocity field V" (z,¢) is
represented by a vector valued Ornstein-Uhlenbeck process. Thus (1.3) can

be also viewed as a system of stochastic differential equations

n{d—1)
AXPt = 30 VPR, a=1,..d, (14)
i=1
d},;n,i — /2QidW: - Qi}/tn;idt , b= 1, very n(d e 1) s (15)

where v; are periodic with common period p, and Y** are independent

Ornstein-Uhlenbeck processes. The Markov process (X7, Y)") is ergodic on
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’]I‘g x R™4-1), However, it appears to be impossible to prove directly suf-
ficient mixing properties, which would allow one to apply ‘the functional
Central Limit Theorem to (X7, ¥;").

Instead we use the harmonic coordinates method 18, 8] to approximate
the process X;" by a stochastic integral M;"*. The mean square expectation

Ty p g, b
E(—M‘WM can be calculated explicitly, and its limit as ¢ — co is equal to

: BXP X : : a
limg_ 0 57 . The harmonic coordinates u® + 1z, ,a = 1, ...d are defined

by the solutions u® of hypoelliptic equations
Mu"+z,) =0,

on ’]I‘g x R™M¥1 where M is the infinitesimal generator of the system (1.4},
{(1.5). The existence and uniqueness of solutions to this PDE is one of the
main technical results of the dissertation. Hormander’s hypoellipticity prin-
ciple {11] applied to the differential operator and its adjoint is a key element
in the proof of existence and regularity. The effective diffusivity can be then
expressed in terms of the harmonic coordinates.

In the dissertation we obtain a priori estimates for the operator M
which are uniform in the number of modes n in the spectrum of the velocity
field. These estimates allow us to perform the removal of the cutoffs and
prove the existence of the effective diffusivity for the field V{z, ).

In Section 1.2 of the dissertation we introduce assumptions on the ran-

dom field V(z,%) and formulate the theorems on existence of effective diffu-

sivity and on itg asymptotic expansion in the case of short time correlations.




In Section 1.3 we describe the discretization of the spectrum of the
velocity field. We state the theorem that for finite fixed time the mean
square displacement of a particle in the field V™(xz,¢) tends to the mean
square displacement in the field V(x, ) as the discretization gets finer, that
is as n — 0o. The proof of this theorem, being of purely technical nature, is
given in the end of the chapter in Section 1.6.

In Section 1.4 we relate the diffusivity in the field V" (z, ¢) to the solution
of a hypoelliptic PDE. This PDE couples the infinitesimal generator of the
Ornstein-Uhlenbeck process, in each of the mode variables, to the transport
operator in physical space.

Section 1.5 contains the proof of the main fechnical results, namely
existence, uniqueness, and a priori estimates for the hypoelliptic PDE, which
are uniform in the number of modes in the spectrum of the velocity field.

Section 2.1 is devoted to the full asymptotic expansion of the solution
of the hypoelliptic PDE in the case of short time correlations. First. we
construct the series which satisfies the equation at a formal level. Then we
use the estimates obtained in Section 1.5 to show that this series is the true
asymptotic series for the solution. The asymptotic expansion for the solution
of the hypoelliptic PDE provides in turn the asymptotic expansion for the
effective diffusivity of the field %V” (z, g) We then justify the removal of
the cut-offs in the expansion in order to get the asymptotics in & of the

effective diffusivity in the field 2V (z, ?).

)

In Section 2.2 we calculate explicitly the first two terms of the expansion

|




for the effective diffusivity.

In Section 3.1 we study the dependence of the effective diffusivity on the
large wavenumber cutoff for velocity fields with pure Kolmogorov spectrum.
Physically such a cutoff would be given by molecular viscosity in the Navier-
Stokes equation generating the turbulent velocity field. In this picture our
result is a bound on the effective diffusivity in terms of the flow Reynolds

number.

1.2 Definitions, Assumptions, and Results

Throughout the rest of the dissertation we shall consider z ¢ R*. All
the theorems, except in Section 3.1, remain valid as stated for z € R?, d > 2.
The proofs carry over to arbitrary d > 2 as well, so the only reason to consider
d = 3 is notational simplicity. We did not take d = 2 as a model problem in
order to avoid the temptation to consider the scalar stream function for the
velocity field V(z, t), something which may only be possible in 2 dimensions.

We shall consider the motion of a particle in a zero mean, Gaussian
random vector field V(z,%), & € R*® , which is stationary in z and ¢ and
Markov in time. Let G%(z,1) = E (V*(z,1)V®(0,0)) be the correlation
matrix of the field V(z,t).

We shall also consider the motion of a particle in the random field

V.(z,t) given by the formula

Ve(z, t) = —}g_‘/(m, 5. (1.6)

£




The field V, has the same stationarity and Markov properties as V. The
meaning of assumption (1.6) is that as & — 0 the field V; becomes short time
correlated. The multiplicative factor % in front of V ensures that the main
term of effective diffusivity is of order one as & — 0.

The properties of V(x,t) listed above imply a particular form for the

correlation Gz, 1) and the spectral matrix
a‘;a(k,t) = (27r)_3fe“ik‘”G.“b(:c,t)d9:

of V. By stationarity, Gaussian and Markov properties there exists a matrix

valued function K (¢, z} such that for tg <# <ty
EV(z, t)lo(V(:,5),s < )] = [K (01 — t) x V(20)](2) ,

where the symbol * denotes convolution in the space variables. From the

Markov property
G(',tz - to) = K(i’g - t]_) * I((tl —_ to) * G(, 0) = K(fz — tD) * G(, 0) .
A Fourier transform in the space variables shows that

Gk, ty — to) = K(ty — t1, K) K (¢, — £, £)G(k, 0) =

K (ty — to, k)G (k,0) . (1.7)

Example Consider a divergence free vector field, whose finite dimensional

distributions are invariant with respect to orthogonal transformations of




space variables (isotropy), and time reversal. In this case the spectral matrix

has the form

G (k, £) = (|, £)(6% — o) (1.8)

where ¢ is scalar valued [1, 17]. Suppose ¢ is continuous in {. Then (1.8)
and (1.7) imply that

kokb

G (k,t) = (|, 0) exp(— [ k)% - |k|2) )

where { is scalar valued.
Formula (1.7) suggests the exponential in time behavior for G(k,1).

Namely,

Gk, t) = exp(~[t|Qk)) M (E) , (1.9)
for some matrices {) and M. We shall not examine the conditions under
which (1.7) implies (1.9). Instead we shall use (1.9) to define a class of
vector fields, which will include the fields considered in the above Example.
Namely, we shall assume that Q(k) is a scalar, and the matrix M(k) is
symmetric. The condition (M (k)k, k) = 0 for all k is then equivalent to the
divergence free property of the field.

Recall the Bochner theorem [9], which states that the Fourier transform
of a positive definite continuous function is a positive measure, such that the

measure of the whole space (R® in our case) is finite. Assuming that G(z,0) is

continuous M (k) is the Fourier transform of a positive definite matrix valued




3
function G(z,0), that is 3 v*®G®(z,0) is a positive definite continuous
ab=1

function for any vector v € R3. Therefore, by Bochner theorem, for each

a, b fixed, M%(dk) is a real valued signed measure of finite variation on R?,
and M (k) is a positive matrix. The positivity means that for every vector
v € R? and every measurable set A |
) |
> et / M®(dky>0.
ﬂ,b:]. A ;
We shall denote the variation of M%*(dk) by |M®|(dk).

Necessarily £2(k) > 0 on suppM (k), otherwise
G(0,1) = f@q&a(k,t)dk — oo ast— oo, f

for some @, b, which would contradict the stationarity of V. We shall assume

that Q(k) > C > 0 in order to exclude the time independent modes. i_
The classical solution of the equation of motion (1.1) exists whenever the

function V(z,t) on the RHS is continuous in (z,¢) and Lipschitz continuous

in z uniformly on any compact. This will hold for almost every realization of

the random vector field V(z,¢) under certain smoothness conditions on its 3

correlation function (we are allowed to take a modification of the random field

V(z,t)). Let us summarize the above assumptions on the random transport;

Assumption A V(z,t) is o divergence free zero mean Gaussian field, sta-

tionary in z and t end Markov in time.

Assumption B The speciral matriz of the field V is given by (1.9), where

(k) is scalar, and the matriz M (k) is symmetric. The measure M (dk) of

10




the set {k = 0} is equal to zero, that is

f M®(dk) =0 for all a,b. (1.10)
{0}

There exists a constant ¢ > 0, such that
f AM(k) > of , (1.11)
R3

where I is the identity matriz. There exists § > 0, such that

7’

f (1 + |25 [M|(dk) < oo (1.12)

foralla,b. Moreover, Q(k) > C > 0; Q(k) is Lipschitz continuous uniformly

on any compact, and grows not faster than some power of |k| as k —= oo.

Remark If condition (1.10) was omitted, we would need to introduce an
additional mode corresponding to k = 0 in the discretization of the velocity
spectrum, something we do not do for the sake of notational simplicity. Con-
dition (1.11) could be avoided by considering an appropriate linear subspace
of the %k space. Condition (1.12) is essential, however, since it guarantees
the differentiability of a typical realization of the field V{z,1) in the space

variables.

It will be shown that under the above assumptions there exists a mod-
ification of the vector field V' (x, ¢}, such that the solutions to equation (1.1)
exist for all ¢ for almost all realizations of the vector field V(z,1).

Let the initial data zg be a random variable. With £ > 0 fixed, X; — X

is the displacement in time t under the action of the randor field V' (z,¢).

11




Since V'(z,t) is stationary, the distribution of the vector X; — Xy does not
depend on the initial data x;, provided that z; is independent of the vector
field V(z,1).

Theorem 1.2.1. Suppose Assumptions A and B hold. Then the effective
diffusivity, which is defined by (1.2), exists and is finite.

We denote by D2 the effective diffusivity in the vector field V. In order
to prove the asymptotic expansion of D® through order £™ we need stronger

local regularity assumptions on the correlation function.

Assumption C,, The spectral matriz of the field V is given by (1.9), where

the matriz M (k) satisfies the condition
f (1 + [5[Hm)| M| (dk) < oo

for all a,b.
We can now formulate the theorem on asymptotic expansion of effective

diffusivity.

Theorem 1.2.2. Suppose Assumptions A, B, and C,, hold. Then there exist

constant matrices d3°, ..., d®, such that

D = d2 + @3 1 ... + d%e™ 4 0(e™) when € =0 . (1.13)

1.3 Preliminary Considerations

The proofs of Theorems 1.2.1 and 1.2.2 are based on approximation

of the vector field V(z,t) by the vector fields V*(z,t), whose spectral ma-

12




trices é’z"(k,_t) are supported on finite sets in k-space. Let us describe the
construction of the field V*(z, t).

Consider the partition of the cube @, = {|k%| < 2™, a = 1,..,3} into
n = 2" cubes A;, i=1,..,n of the size 5. Let k; be the center of A;.
Let a; be the interior of A;, 8; be the boundary of A; excluding the edges,
v; be the edges without the endpoints, and J; be the set which consists of

six vertices of the cube A;. Define

= Qk;),

N; = fMdk fMdk /Mdk /Mdk (1.14)

It is important to note that A;, k;, Oy, o, G, v, &;, and N; depend on n. The
first step in the transition from M (k) to M™(k) consists of integrating M (k)
over each cube, and placing all the mass in the center. The four different
integrals enter (1.14) with their specified factors because each side belongs
to two different cubes, each edge - to four different cubes, and each vertex
to six different cubes. The second step is designed to make the matrices M™
satisfy the condition (M™(k)k, k) = 0. We define P; to be the orthogonal

projection on the subspace orthogonal to k;. Define

MP = BN;P; 5 M™(k) = Zfs and

G (k, t) = exp(—|t|Q(k)) M™ (k) . (1.15)

13




Then V"(z,t) is defined to be the real valued Gaussian random field whose
spectral matrix is given by (1.15). V*(z,t) is defined to be the real valued

Gaussian random field whose spectral matrix is given by

|2

Gi(h, t) = éexp(w?ﬂ(k))M"(k) .

From (1.12) it follows that there exists a constant ¢ > 0, such that for all
n,a,b
f(1 + k| (dk) < ¢, H 0<g<2+d, (1.16)

and the integrals converge at infinity uniformly in n.
From (1.11) it follows that there exist constants ny and C > 0 such

that for n > ng and any z € R3

n 3 M:t,ab
Sy

ztz’ > Clz|*. (1.17)
i=1 g,b=1 ‘

Throughout the rest of the dissertation we shall only consider n > ny.

The Fourier representation of the field V*{z, ¢) in space variables is

1 - t
n ) = = ik 2y,
V) =z [ e atan,
For ¢ fixed Z(k,t) is an orthogonal Gaussian measure, which depends on n.

Since suppV™(k,0) C {k;}

) 1 - iki® t
Viz,t) = 7 Z iz (k;, g) , (1.18)
i=1

where z(k;, t) are complex vector-valued Gaussian stationary processes. The

normalization of z(k;, t) is fixed by (1.15) so that

E -(Za(kg,t);(kj, 0)) = 6.,;_7'M;1’0Jb exp(—\ﬂﬂz) .

14




The fact that V(x,{) is a real valued field implies that together with the
mode k; the set {k;} also contains —k; with the same M and §;. We shall

write

{ki, i=1,.n} = {ki,~ki, i =1,..,n/2} .

Therefore we can write (1.18) as

nf2
0= 3 (A eosthe) + AaCraintin)) . (119)

Here Ay(t),? = 1,...,n/2; I = 1,2 are independent real vector-valued sta-

tionary (Gaussian processes and
( ( )A,,'rp( )) = Qéﬁfé'urM?’ab exp(—]ﬂﬂi) .

This implies that the A;(t) are independent vector valued Ornstein- Uhlen-
beck processes with correlation scales §2; and variances QMB’“I;.

Recall that M is an orthogonal matrix, and k; is its eigenvector with
eigenvalue 0. Let e}, €] and A}, A? be the eigenvectors and eigenvalues of M

237

in the subspace orthogonal to &;. Note that
Au = V2(y/ Ne; By + 1/ Ml BY)

where B}, and B are independent Ornstein Uhlenbeck scalar valued pro-

cesses with correlation scales ©; and variances 1. We shall write
{v*, i=1,..,2n} ={BR, i=1,..,n/2% 1=1,2; m=1,2}.

We shall use the same notation §2; for the correlation scale of the process Y?.

15




Thus (1.19) becomes

Vim0 = 2 > V(i) (1.20)

where the vectors v;(z), i = 1,...,2n are of the following form

{vi, =1, ..,2n} = {4/2\le} cos k;z, 1/ 2] e; sin k;z,
v/ 2X2e? cos by, £/ 2X2el sinkyz, i =1,...,n/2) . (1.21)

s

Therefore the vector fields v; are divergence free and infinitely smooth. By
the definition of k; the vector fields are periodic with common period p =
2m+2r. From (1.17) it follows that span{v;(z)} = R® for all z.

'The fact that

d 234 d 252} d Q1 o3 d X2 ol —
(E) cos:c(dx) cos:c—l—(dm) smm(dm) sinz = 0, | (1.22)

if oy - oty is odd, the particular form (1.21) of the vector fields v;, and the
fact that Q(k;) = Q(—k;) imply that

n 1
> Vet = 0. (1.23)
g=1 "7
The equation of motion for the particle in the vector field V*(z,¢) has
the form
Xp=VrXLY, Xp=a. (1.24)

As before we assume zf} to be independent of the random field V*(z, ).
Whenever the subscript ¢ is omitted from V* we shall imply that ¢ = 1 is

being considered.

16




Provided that the following expectations exist we define the finite time

displacement tensors
1
Dn,ab(t) — §E ((X:%,u _ Xél,a)(X;%,b _ X[T}L,b)) 1

DY) = 3B (X2~ XX - XD) |

where X7, and X; are the solutions of (1.24) with ¢ = 1, and (1.1) respec-

tively.

The proof of Theorem 1.2.1 is based on the following two theorems,

Theorem 1.3.1. Suppose Assumptions A and B hold. Then for arbitrary
t > 0 the displacement tensors D" (t) and D®(t) ezist for some modifica-

tion of the field V{x,t), and for t fized

lim D™ () = D) . | (1.25)

=00
Theorem 1.3.2. Suppose Assumptions A and B hold. Then the following
limit

Dn,ab i
lim —()

t—s00 t

, a,b=1,..,3 (1.26)
exists and is uniform in n.

Theorem 1.3.1 and Theorem 1.3.2 will be proved in Sections 1.6 and 1.4
respectively. Notice that the limit in (1.26) is the effective diffusivity for the
vector field V(x,t). We shall denote it by D™®. 'The effective diffusivity
for the vector field V*(z,t) will be denoted by D™,

17




Proof of Theorem 1.2.1 By Theorem 1.3.2

‘ n,ab
im 270

o0 t

— Dn,a.b

uniformly in n. By Theorem 1.3.1

,al ab
p DM Do)

n—+oo t t

Therefore by the theorem on uniform convergence the following limits exist

’,

‘This completes the proof of Theorem 1.2.1.

1.4  Formulation of the Theorem on the Hy-

poelliptic Estimate and the Proof of The-
orem 1.3.2

In this section we reduce the assertion of Theorem 1.3.2 to a hypoel-
liptic estimate for a PDE. In order to do that we shall employ an analog of
the harmonic coordinates method of Freidlin [18, 8]. The method was origi-
nally used to reduce a problem on the large time asymptotics of a stochastic
process with periodic drift to an elliptic problem, with the elliptic operator
being the infinitesimal generator of the process. Our situation is more com-
plicated, since the resulting equation is not elliptic, but only hypoelliptic,

and we need to prove the existence, uniqueness, and a priori estimates for

18




the solution. Besides, in order to prove the uniform limit in Theorem 1.3.2
we need to ensure that all the estimates are uniform in =, that is uniform
in the dimension of the space on which the hypoelliptic operator is defined.
'The existence, uniquencss, and a priori estimates will be proved in Section
1.5. Since the same estimate will be used in the proof of Theorem 1.2.2 we
preserve the e-dependence throughout this section.

By (1.20), (1.24) the equation of motion in the vector field V.*(z, t) has

the form
AxX] = Zl/;; o a=1,.,3, (1.27)
where the }’;”"" are independent Ornstein-Uhlenbeck processes
dY = S2udW) — VM, i=1,..,20 . | (1.28)

Here the superscript n is to indicate the dependence of the system on the
number of modes in the spectrum of the velocity field.

We re-scale the time variable in (1.27) so that we can consider (1.27)-
(1.28) as a system of stochastic differential equations. Thus define XM =

+2". In the new variables (1.27) takes the form
2n . -
=vEY YMHXMdt, a=1,..3. (1.29)
The operator

WZQ — 4y, +\/_Z'y,,fuz(a: . (1.30)

19




is the infinitesimal generator of the system (1.28)-(1.29). Recall that p is the

common period of the velocity modes defined in Section 1.3. Let

2’1‘1 p 2
4 = ~3/2 2 _1/4— _y_""
n(z,y) =p I [ (2m) 4exp( 4) :

i=1
As initial conditions for the system we take the distribution 52, which is
invariant for the process (}??, Y*) on '11‘13, x R**. We shall repeatedly use the

following elementary integrals

I

1
/ yin'dy =0, f Yiy dy = Eaij : (1.31)
Consider the equation
M, (vVEu™ 4 2,) = 0 (1.32)

for a function u™*(z,y) defined on T) x R*". The function /zu™" | z, of

(1.32) is the analog of the harmonic coordinate of [18, 8].

Theorem 1.4.1. Suppose Assumptions A and B hold. Then equation (1.32)

has a unique solution in the class of C® functions which satisfy the relations

2n
S0 [ [ (@ ey + ) dady < oo
i=1

/ f u™ntdrdy =0 .

Moreover, there exists a constant C' independent of n, £, such that the solution

of (1.82) satisfies

f f ((W)2 4 igi(awuﬂ:a)ﬂ) dady < C . (1.33)
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The proof of Theorem 1.4.1 is given as a consequence of the more general
Theorems 1.5.1 and 1.5.8 in Section 1.5 below.

For the proof of Theorem 1.3.2 we shall need the following simple lemma

Lemma 1.4.2. Let f** and gi"* be random variables, which depend on pa-

rameters n and . Suppose

B (524 g ) 2 + g1 = 6% () - (1.34)

Suppose there are constants Cy and Cy, which do not depend on n and 1,

such that
tE(g1)? < €y, and ¢%(n) < . (1.35)
Then
i (250 = ¢°0)
and the limit is uniform in n.
Proof From (1.34) with a = b it follows that
E(f"*)? = ¢*(n) — E(gi"")* — 2B(£""g1"") - (1.36)
From {1.36) and (1.35) we conclude that there exists a constant Cy such that
E(f*)? <C3; for all n and t>1. (1.37)
From (1.34)

B 1Y) — ¢%(n) = —B(glel") — BUMa0") — E(M"61") -

(1.38)
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By the Schwartz inequality, (1.35), and (1.37) the RHS of (1.38) tends to
zero uniformly in n as ¢ = co. This completes the proof of Lemma 1.4.2.

Proof of Theorem 1.3.2 We are here using the result of Theorem 1.4.1.
Since the function /eu™* + z, is smooth we can apply Ito’s formula to

(VEur® -+ z,)(XP, Y). By (1.28) and (1.29) we obtain

(\/gun,a + ma)(jg?: Y = (\/Eun’a + a:a)(}?g, Yon)+
t
/ M, (Veu e + ) (X*, Y7)ds + (1.39)
0
2n ¢
VB VL [ 0 (/w4 ) (3, V)W
i=1 0

Since M, (y/eu™* + x,) = 0 the expression above can be rewritten as

(VEu™ + ) (X7, Y7) = (Veu™® +2a) (X7, ¥7) =

2n t
V2e Y/ / B (X YV dW? (1.40)
=1 o
Similarly

(VEu™ + ) (X, V) — (Veu™® + m) (X5, Y7 =
2n t

V2e YV / By umb (X1, Y™ dW! . (1.41)
i=1 0
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Since the measure n? is invariant for the process ()??, Y}, the expectation
of the product of the right sides of (1.40) and (1.41) is equal to E;"
& ”,

2n
26 f B0, u™* (X2, Y0, (X7, Y]] ds =
=1 0

2n

2n
2263 0 [ [ @)@t ynbsy,
TR

which is finite by Theorem 1.4.1. Thus multiplying (1.40) by {1.41), dividing

both sides by 2ie, and taking expectations of both sides of the resulting

equality we obtain

1 s W) .0 naf vn Vv R TRy ) i
%E[(Xt' — X3+ Veu™ (X], YY) — Veu™ (XU,Y(']”)) i

(& — R 4 Vot (X, Y1) — Vet (K, ¥9) )| =

2n ;
ZQ,; f/ (8, u™) (B, u™ Y  dzdy - (1.42) |

=t T;XR%‘ .(i.‘.
Set ;,:1:.;
n,0 )?:!.,a — )A{’g.,a 0 un,a(le, Y;’n) N un’a(}?{f, Y.()n)
! Y= , gt, = , a.Ild
v 2te /2t
2n ; ;
#) =3 [ [ @@ty i
i=1 {

T, «R*™ I|
With this choice of £, gi"® and ¢**(n) equation (1.42) takes the form (1.34). |
Since the measure 72 is invariant for the process (Xr, Y™

E(un,a(jz::,,y;n))z — E(un,a(faz?%n))2 = // (,u,n,u.)2,!?20‘%,[,:{1,9,.J (143)
R
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which does not depend on ¢. By Theorem 1.4.1 the RHS of {1.43) is bounded
uniformly in n. Therefore t#(g7"")? < Cy. From Theorem 1.4.1 it also follows
that ¢*(n}) < Cy. Therefore we can apply Lemma 1.4.2 to conclude that the
lirnit

L B - X - Xt
lim B ((f7*)(f7*)) = ; Jim =

t—oo 2 o0 te

B X - xph)

2n
3o f f (B ™) (8,, 4™ ) dcdy
=t T;XRM

exists uniformly in n. Put £ = 1 to obtain the statement of Theorem 1.3.2.

Corollary 1.4.3. Suppose Assumptions A and B hold. Then the effective
diffusivity D™ is expressed in terms of the solution u™® of equation (1.32)

by the formula

prab :i 0 / | f (B, ™) (B, 0™yl . (1.44)
I N
We make a change of variables so that M, becomes the sum of a formally
self adjoint operator in the y variables (a simple harmonic oscillator) and a

formally antisymmetric operator in the z variables. Thus let

n,a

Upew = U”’“W ; (145)
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'!;E_ .,:-': illi”"'l
i?i'iiﬁ
:;E?i
i ‘ f:

and rename the unknown function by 4™® again. Then equation (1.32) be- L

cormnes

2n 2n
vi 1Y L. a i
Z Qi (8 - :’L + ) o \/‘z yit; Vau™® = — Z v (zn(y) . ‘I[
i=1 i=1
(1.46) il

Note that the first term on the LHS of (1.46) is the simple harmonic oscillator

and 7n(y) is its eigenfunction with zero eigenvalue. We transform (1.44) by Y

1}:

the above change of variables. i‘
Corollary 1.4.4. Suppose Assumptions A ond B hold. Then the effective Ilf
Al

diffusivity D™ is expressed in terms of the solution u™* of equation (1.46) B
by the formula 1
Do — Z / f (u™%0? 4 uMPoPyindzdy . : i
T3 RZH i;‘

. . ;‘

1.5 Existence, Uniqueness, and the Hypoel- i
|Is‘

liptic Estimate 5

Let us introduce notation needed for the statement of the existence

and uniqueness theorem. S* is the space of functions on ’]I‘f; x R*™ which :L

are infinitely smooth, orthogonal to 7, and decay faster than any polynomial

together with all their derivatives. That is f € S~ if

/J[f(:ﬂ,y ydedy =0, and sup |Qy)Pi(D,)Pa(D:) f| < 00

zy i
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for any polynomials Py, Py, and Q. £3 is the completion of St in
Eg(Tf; x R*™). Clearly

5 @ {const - ()} = Lo(T5 x R*™) .

|| ]| is the usual norm of Ly(TJ x R*). H' is the completion of S* in the

harmonic oscillator inner product

(f9)ne =) fo/ (0. /Yy 9) + yi fg + fg) dzdy .
i=1

HYTS), Lo(Ts), HH(T2), and H2(T}) are the usual Sobolev spaces of func-
tions on the torus.

Write
1 2n
Lu Z ;( u — ——u + 2u , Au :; yivi(2)Vau

M.=1L+EA.

Here M, is the transform by (1.45) of the expression (1.30), with change of

notation to the new variables.

Theorem 1.5.1. Suppose Assumptions A and B hold and f € L3. Then

the equation
Mu=f. (1.47)

has a unique weak solution u in the space H. There is a constant C, which

depends on n and €, such that
[ullse < ClFIT - (1.48)

If f € C%°, then u € O™ also.
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Remark Theorem 1.5.1 implies that O is an isolated point of the spectrum
of the operator M, : L(Ts x R™™) — L,(Ts x R™).

Indeed, 0 is in the resolvent set of M : £ — L3 by Theorem 1.5.1.
Therefore there exists a & neighborhood of 0 which belongs to the resolvent
set of M, : Lf — L3. Let f € £y, f = fi +cn where f; € Li. For
A such that 0 < |A| < & the equation (M, + AE)u = [ has the solution
w= (M, + AE)7 f1 -+ $n. /

The proof of Theorem 1.5.1 is based on a series of lemmas, First we

obtain the a priori estimates.

Lemma 1.5.2. Under the assumptions of Theorem 1.5.1, there is a constant
C depending on n and €, such that if u € S* is a solution of Mou = f and

[ flz,y)n(y)dy = 0 for all z, then u salisfies the estimate

[leellser < CISI - (1.49)

Proof In what follows we shall denote by ky, kq, k3, various constants de-
pending only on n and £. We represent v uniquely as a sum of two functions

which are orthogonal in £Lo(R2*) for all z, that is

u(:c,y) = (w(m? y) +u0(m)n(y) )

where [ w(z,y)n(y)dy = 0 for all z, and [ ue(z)dz = 0.
To prove (1.49) it is sufficient to estimate ||w||4L and ||ugl| £o(T?) SOP3-
P

rately. The equation M,u = f can be written as

Lw + e Aug(z)n(y) + Vedw = f . (1.50)
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In order to estimate the norms of w and uy we multiply (1.50} successively
by w, 1, and y;n and integrate in y. Multiplying by w and integrating in v,

we obtain

/wLwdy+/ \/EwAug(x)n(y)dy+/\/EwAwdy:/. fwdy . (1.51)

Multiplying (1.50) by n and integrating in y yields

[ ntwdy+ [ Veauytiy+ [ Veruntdy = [ fuay.
(1.52)
The RHS of (1.52) is equal to zero by assumption. Note that also
fnLwdy = fwIndy = 0 since Ly = 0, and [ /EAug(z)n?(y)dy = 0 since
[ yin*(y)dy = 0. Thus from (1.52) we obtain

f\/EAwndy =0. (1.53)
Note that |
/wAwd:c = iyszvz( VVawde = Zy@/dw vwdz =0,
i=1 =1
(1.54)

and thus the last term of the LHS of (1.51} vanishes after integration over

z. By (1.53), since A* = —A

//Vm%ﬂ y)dody = — //W%mw)ww~0 (1.55)

and thus the second term of the LHS of (1.51) vanishes after integration over

z. Therefore

fwawdmdy:/ffwdmdy. (1.56)
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There exists a constant k; > 0, such that for ¢ € S(R") the relation

[ ¢(v)n(y)dy = 0 implies

o, f O + 32 + ) dy <~ [ sLody (1.57)

=1

Recall that [ wndy = 0 for all z, and thus by (1.57),

|[w]l3. < H’ﬁ/ wawdmdy.

Together with (1.56) this implies that ||w(|ye < k2| f]l. y
Now we estimate the £, norm of ug. Multiplying (1.50) by y;n and

integrating in y, we obtain
f ynlwdy + / VE Augy;n’dy + f VeAwyndy = f fymdy . (1.58)

2n
Recall that A = }_ vV, We evaluate
i=1

2n ;
. 1
/ E %V oo (2 )iy dy = E’Ujkuo(m)

=1

with only the 7 = 7 term contributing. By carrying the first and the third

terms from the left to the right side of (1.58), we have the identity

Vev; Vaug(z) = p° ( f Jyndy — / ynLwdy — f \/EyjAwndy) :

(1.59)
Applying the operator ﬂLj'UjV to both sides of (1.59), taking the sum
iﬂ—:l, and dividing by /€, we obtain due to (1.23)
J= 3 1 |
a;l le ﬁ;”; Ui Uazys, = (1.60)
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k1 2n

1
%2§U§V(/fyﬂ?dy - fyj??L’wdy - \/EfyjAwndy) .
j=1"" '

For the following lemma it is important to note that 'Jl‘i is a torus (a compact

manifold), but not a cube with a boundary.
Lemma 1.5.3. Suppose u € Lz(Tg), fe H™(T), and [ udz = 0. Let c

T,
be a constant, and Ag o constant matriz, such that for any x € R®

3

Z Atz > cf|z|] .

a,b=1
Then there exists a constant ¢, which depends only on ¢, such that the
equality

3

Z Aabumumh(m) - f ort Tg

a,b=1
implies the estimate

Proof In the case when p = 1 the statement of the lemma is a standard a
priori estimate from general elliptic theory [12]. If p # 1, then the change of

variables

i(z) = u(ps) , Fla)=p*flpz), z€T°.

reduces the statement of the lemma to the case when p = 1. This completes

the proof of Lemma 1.5.3.
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Note that by (1.21)

2n n n,6h
M;

]‘ @
ZQ_‘;J j = 0.’ (1.62)

and thus by (1.17) we can apply the result of Lemma 1.5.3 to (1.60). We

need to estimate the #*(T;) norm of the RHS of (1.60). Since v;V is a
bounded operator from H™'(T3) to H~*(T3) it is sufficient to estimate the
#H~*(T;) norm of

s

/fyjndy - £ /.wyjndyﬂ \/E/yjAwndy ) (1.63)

For the first term of (1.63)
2
/ ( / fyjndy) d < f dz ( f fdy f (ym)zdy) =

l;lg//fzdwdy: ?%Ilfﬂz- | (1.64)

Thus we have the stronger £5 estimate of this term. For the second term

. / ( f yjandy)zdm = / da ( / wL(yjn)dy)2 <

ks /[wzdmdy < ka1 (1.65)

Again we have an £, estimate. Finally for the third term

| / yiAwndyll, opsy <

ks sup || [ yiyswndyl| e,y < kol|lwl| < &[S - (1.66)

2y
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Thus by Lemma 1.5.3 we conclude that ||u0[m)||cz(Ts) < kgl|f]]- Com-
P

bining this with the bound ||w||y. < k1| f|| we see that there is the estimate
Jtullp < Bl 1] - (1.67)

This completes the proof of Lemma 1.5.2.

Now we consider the general case when the right side f is not necessarily

orthogonal to n for all z.

Lemma 1.5.4. Under the assumptions of Theorem 1.5.1, let u € St be a

solution of Mou = f. Then the estimate (1.48) holds.

Proof We represent uniquely f as a sum of two terms orthogonal in £, (]R;”)

for all z, the first of which satisfies the hypothesis of Lemma 1.5.2. Thus

M= f = fi(z,y)+ g(z)ny) , (1.68)

where [ fi(z,y)n(y)dy = 0 for all z and [ g(z)dz = 0. Write

u=w(z,y)+ Y cl@yn®) , (1.69)

i=1
where c;(x) are chosen below and wy(x,y) is defined by equation {1.69), We
shall estimate the H1 norm of each of the terms in (1.69).

Take G(z) such that AG(z) = g(z) and [ G(z)dz = 0. Such a func-
tion G exists and is unique in ’H?(Ti) by the general elliptic theory. By
Lemma. 1.5.3 106l egs, < krolgl s, < oll7
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We shall find ¢;(z) from the equation

Ve Z vi(r)ei(z) = VG(z) . (1.70)
Since {v;} are smooth and span R?, equation (1.70) can be solved with

lest@ s ey < Rt VoGl ey < ralig ()], (171)

This in particular implies that A
/s
2n

1Y cl@yan(®)lle < kaalloll o2y - (1.72)

i=1

It remains to estimate ||u||4.. By (1.68) and (1.69) u,(z,y) satisfies

Msul fl(l" y + q Z L Cﬂ yz

2n ‘

> VEAe(m)yn(y) - (1.73)
i=1

Now we show that the RHS of (1.73) is orthogonal to n for all .
Multiplying the RHS by n and integrating in y we see that the first term

[ fi{z, y)n(y)dy is equal to zerc by the definition of fi. The third term is

equal to

—Z/czaz)L Yin Z/Cz 2)yin(y)Ln(y)dy =0,

since In(y) = 0. For the remaining two terms we obtain

/g(w y)dy — \/_fZACz o)y’ (y)dy =

33




1 2n
p (9(53) - \/EZ 'Uz'VCz'(ﬂ?)) ;
i=1
which is seen to be equal to zero by applying div to both sides of (1.70). By
(1.71) the £; norm of the RHS of (1.73) is estimated by k14(||f1||—|~[|gH£2(Ts)).
P
Applying Lemma 1.5.2 to the equation (1.73) and using (1.69) and (1.72) we

see that
2n
llullge < 11D @)l + llulle <
=1

bs (11911 s, + 1511) < ksl 1] (L.74)

This completes the proof of Lemma 1.5.4.

In the proof of the next lemma we shall use Hormander’s hypoellipticity

principle. For the proof of it we refer the reader to [11].

Theorem 1.5.5 ([11)). Let Xy, X1,..., X, be first order differential opera-
tors in R® with infinitely smooth coefficients, and let g € C(R?). If the Lie
algebra generated by {X;} coincides with R® in every point of the space then
the operator H = Xo+ X +...+ X2+ g is hypoelliptic. Thatis Hu= f € C*®

implies that v € C'™.

Let M? be the operator formally adjoint to M,. Note that Mu =

Lu — /e Au since divy; = 0.

Lemma 1.5.6. Under the assumptions of Theorem 1.5.1, the equations
M.f =0 and M}f =0, considered in the sense of distributions, each admil

f =0 as their unique solution in Ly .
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Proof Let f € Ly be a solution of the equation M!f = 0. Both M, and M}
are hypoelliptic by Hormander’s principle. Therefore f is a classical C*°
solution of M7 f = 0. To proceed we must understand the behavior of f at
infinity.

Let x,(y) be cutofl functions chosen so that x,(y) = 1 for [y| < r,
x-(y) = 0 for |y| > r + 1, and x, are bounded together with all their first

and second derivatives uniformly in r. Recall that

2n
. f e FAGe S =3y f X0 f Ui @) Vo e f i =

2n
> f div(v (e f)2)da = 0
i=1

Therefore, using integration by parts, we obtain

//erM:(er)dxdy://anL(an)dI:d'y: | (1.75)

Z Q2 /f (_(aya(er))2 - zli(inrf)z + %(er)z) dzdy .

On the other hand since M} f = 0, using the integration by parts again,

f/xrfMi(xrf)dwdy=

> // (85 X )xr I + 2By ) By )1 f) devdly = (1.76)

- Z % [ [ 70wy
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Since f € L5 C L3, the expression in the RIS of (1.76) is bounded uniformly
in r. Thus the same is true for (1.75). Taking r — oo in (1.75) and (1.76)
we see that [ [(8,,7)? <oo, [ [(5:f)* < oo and

g: £ // (“(f?mf)z - i(y@f)2 + %(ff) dudy =0 .

'Thus, since the simple harmonic oscillator is a negative operator,

2n | 1 1 - )
;Qz/. (—(6yif)2~1(yz’f)2+§(f)2) dy—O ’

for almost all z. This implies f(z,y) = c¢(z)n(y). Using M} f = 0 again we

conclude that
2n
— Z v:v;(2)Vee(z)np =0 .
i=1

Therefore, v;(x)Vze(z) = 0 for all i, and since span{v;} = R®, we conclude
that ¢(z) = const. Since f € L, we obtain f = 0. The equation M, f =0 is

treated analogously. This completes the proof of Lemma 1.5.6.

Consider M, as an (unbounded) operator from H* to £3 with domain

SJ_

Lemma 1.5.7. Under the assumptions of Theorem 1.5.1, the closure of

M,St coincides with Ly .

Proof Suppose the contrary. Then there exists f € £, such that f # 0, and
(f, M.¢) = 0 for all ¢ € §*, and thus for all ¢ € C§°. Then M f = 0. By
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Lemma 1.5.6 f must be equal to zero, and thus we arrive at the contradiction,

This completes the proof of Lemma 1.5.7.

Proof of Theorem 1.5.1 By Lemma 1.5.7 there exists a sequence u; € S*,
such that M ug = f; — f. Then {fi} is a Cauchy sequence in £3, and by
Lemma 1.5.4 {uz} is a Cauchy sequence in H*. Tet u € H' be the limit
of the sequence uy. Clearly w is a weak solution of M,u = f. The estimate
(1.48) holds for any pair uy, fi, and therefore it holds for the limits u and f.
Note that f € C* implies # € €™ by Hormander’s principle. /

Finally, if u, and uy are two weak solutions of (1.47), then u = uy — uy
satisfies M.u = 0. Then u = 0 by Lemma 1.5.6. This completes the proof of
Theorem 1.5.1

Theorem 1.5.1 proves existence, uniqueness, and regularity for equation
(1.46), and consequently for equation (1.32). However the estimate (1.48)
does not imply (1.33} since the constant in the RIS of (1.48) depends on n
and &. The following theorem provides the estimate of the £5 norm of the

solution, which is uniform in n and €. This estimate will allow us to prove

(1.33).
Theorem 1.5.8. Suppose Assumptions A and B hold, and f € S* satisfies
2n
1
/fndy =0 forall z, and Z/ﬁ;vj\"?mfyjndy =0 forall z.
j=1

(1.77)

Then there exists a constant C, which does not depend on n or €, such that
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the solution v of (1.47), given by Theorem 1.5.1 satisfies

uil < ClFI - (1.78)

Proof We represent u ¢ H* uniquely as a sum of two functions which are
orthogonal in LZ(RE") for all z, that is
u(z,y) = wiz, y) + ulz)n(y) , (1.79)

/

where [ ug(z)dz = 0, and [ w(z,y)n(y)dy = 0 as an element, of Ly(T3). 'To
prove (1.78) it is sufficient to estimate ||w|| and ||uo]| £o(T% separately.
P

By Lemma 1.5.7 there exists a sequence ¥ € S*, such that

M = f* = f in £ (1.80)
Then {f*} is a Cauchy sequence in £, and by {1.48)

w = u in HE. | (1.81)
Let

u* =w® + ufn

f*=g"+ fin
as in (1.79). Note that by (1.80), (1.81), and since [ fndy =0

wh —w inHE ) uf oy in Lo(TS)

g"— f inH'; fé“_>0 inﬁz(']l‘f,).
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The equation M,u* = f* can be written as
Lw® 4 e Auk(z)n(y) + VeAw® = ¢* + fin . (1.82)

In order to estimate the norms of w and ug we first derive three integral and
differential relations satisfied by w® and uf. In order to do so we multiply
(1.82) successively by 5, w*, and y;n and integrate in y. We could not
perform this integration with w and ug replacing w* and uf in (1.82), since
w may not belong to &%, and thus the integral over ¥ may not convefge.
Then we let & — oo in order to obtain three corresponding relations on w
and ug. The first two of these are used to bound w, while the third gives the
bound on .

Note that (1.82) is the same as (1.50), except for the extra term ffn
on the RHS of (1.82). Thus, multiplying (1.82) successively by w*, 7, and
y,m, and repeating the arguments which led to (1.53), (1.56), and (1.60) we

obtain the following three relations

P k(g
\/E/Aw ndy = p3f0( ) (1.83)

[/w’“kadmdy: //gkw’“dmdy—i-}%/fé“(m)u’g(m)dm. (1.84)

i

>0 é‘tvﬁ G (1.85)

ab=1 j=1 7

3 2n

1
r_ > gu / g*ymdy — f ynlw®dy — /e f yiAundy) .
Ve
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In order to obtain the integral relations of the type (1.83) and (1.84) for the

limits w and wug, we consider k — oo in those formulas. In (1.83) the LHS
2n

tends to /& " vV, [ wymdy in H'(T5), while the RHS tends to zero in
i=1

H~!(T3) since f§ — 0. We conclude that

2n
pEAY / wyndy =0 . (1.86)
i=1

From (1.84) we conclude that

f / wLwdzdy = f / Fwdzdy . (1.87)

Formulas (1.86) and (1.87) are the first two relations for w. Using
(1.87), we bound ||w||. By the elementary properties of the simple harmonic

oscillator there exists a constant Cy > 0, such that for w € H
|2 < —clf/'wLwdmy.
By Schwartz inequality we conclude from (1.87) that
lwll < Coll£1) - (1.88)

Next we estimate ug. We start by deriving our third relation, an el-

liptic equation which ug satisfies. In (1.85) the LHS tends in H™*(T;) to
3 2n

b Qljv;?v;?ugwamb as k — 0o. The first term on the RHS tends in H~2(T})

ap=1 =1

n
to %—E‘; > ﬁvjV( f fyjndy). The latter quantity vanishes by the assumptions
g=1"

of the theorem.
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Since [ynLlw*dy = ~Q; [y;muwdy, the second term on the RHS of
(1.85) tends in H~2(T3) to
a 21
% S~ 0,V [wymdy, which is equal to zero by (1.86).
j=1
The last term on the RHS of (1.85) tends in H~2(T3) to

n
P Y L V(@ V([ yiyswndy)). Thus (1.85) yields
i,9=1 !

3
1
E: "Q“"%Ug%mm p’ E:'Q—Ua (v;V /%ij??dy))- (1.89)
a,b=1 4

s .7 =1 J 'n‘,j 1
Since ; is divergence free the RHS of (1.89) can be written as
P Z Q—UJ V{div(v; /yiijndy)) .
1,9=1
We have the following inequality

[ Z U,de o [ vaswndy)ly s, <

1,J= 1

sup,, |v;| sup, |v;
0y 35 sl [y, (1.90)

=1 7
Using the Schwartz inequality and the fact that the (}; are uniformty bounded

from below, we estimate the RHS of (1.90) as follows

SUP, Ivgl sup |vi
Z Il [ wyswndyl] ey <

tj=1
2n

O (3 sup P loup PO I [ oy, s 5
’i,j i 2,5=1

(1.91)
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By (1.21) (sup, |ui|)?> = 2], where X is one of the cigenvalues of the matrix

M}, and therefore by (1.16)

2n

Z(Sup ;] }* < Cs . (1.92)
i=1 7

2n
Therefore the factor Y (sup, |%])?(sup, |v;])? is bounded uniformly in .

i,3=1

To estimate the second factor on the RHS of (1.91) we note that

f PPy mwdy = / 2 (yayy — 6i)nwdy

since f wndy = 0. The functions p%/ ?(y;y; — bi3)n form an orthogonal system

in L£,(R*™). Moreover,

|12%2 (ysy; 5ij)7?||iz(Rzn) =146 .
Therefore
27 2n
Z H/ngzy@ijﬂdyuiz(-ﬂ-z) = f Z(fpsfz(yiyj — dij)wndy)*de <
t,=1 L=1

fodexdy < GullfII2 - (1.93)

The last inequality in (1.93) is due to (1.88).

From the chain of inequalities (1.90) - (1.93) we conclude that the
H~?(T2) norm of the RHS of (1.89) is estimated from above by Cyp*/?||f||.
In the view of (1.62) and (1.17) we can apply Lemma 1.5.3 to equation (1.89)

and obtain

ol g, < Gt 1711
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Therefore

luoni] < CollfII- (1.94)

Combining (1.94) with (1.88) we obtain (1.78}, which completes the proof of
Theorem 1.5.8.

Corollary 1.5.9. Theorem 1.4.1 is a consequence of Theorems 1.5.1 and

1.5.8. | /

Proof With the change of variables (1.45) equation (1.32) takes the
form (1.46). The existence and uniqueness result of Theorem 1.4.1 follows
immediately from Theorem 1.5.1 applied to equation (1.46).

We transform the LIS of (1.33) by the change of variables (1.45). Thus
the LHS of (1.33) is equal to

2n
((u”’“)2+ Z u™udyn ) dxdy (1.95)
i=1

T <R
where u™% is the solution of equation (1.46).

We estimate the norm of the RHS of (1.46) as follows

2n
|Zyz'u 77||2 -/.fzyzfu 77 dmdy“ E/ d33<

2n
> “sup(vf)* < Cy - (1.96)
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The last inequality in (1.96) is due to (1.92). From (1.96) and Schwartz

inequality it follows that the expression in (1.95) is estimated from above by

Cy // (u™*) 2 dady .

T <xR*™
To complete the proof of Theorem 1.4.1 it remains to apply Theo-
rem 1.5.8 to equation (1.46). In order to do that we need to show that

2n
f = 3 yven satisfies (1.77). The first part, [ fndy = 0, is trivial siuce
i=1 ,
2n
f yimPdy = 0. To show that 21 il S;—jvjvmfyjndy = () we write
J:

2n 1 2n 1
3 / q Vi Valymdy = > f G Vi Vati yeym’dy =
j=1 J 1

i,§=1

1 3 i Vot =0, - (1.97)

The second equality in (1.97) is due to (1.31), and the last one is due to

(1.23). This completes the proof of Corollary 1.5.9.

1.6 Proof of Theorem 1.3.1

In order to prove Theorem 1.3.1 we need a number of results from
13, 4, 2].

First we show that the RHS of (1.1) is smooth enough for some mod-
ification of the field V(z,t), so that we can solve (1.1) for almost every

realization of V. In Lemmas 1.6.1, 1.6.5, and Corollary 1.6.2 we state the
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general results on the regularity and on the behavior at infinity of a typical
realization of a Gaussian field, whose correlation function is sufficiently reg-
ular. It follows from Lemma 1.6.6 that our vector field V' (z) indeed satisfies
the assumptions of Corollary 1.6.2 and Lemima 1.6.5, and thus we can solve
(1.1) for almost every realization of V.

Note that the Gaussian fields V"(z) are defined in Section 1.3 through
their correlation matrices, and the underlining probability space for V" may
be different from the one for V. The argument which proves the convergerlée
of the displacement tensors (1.25) is based Skorohod Theorem, which allows
us to realize the random fields V' and V™ on the same probability space.

Let f(z,t) be a scalar, vector, or tensor valued function on R, Let

K C R* be a compact set, and let & > 0. We shall say that f(z,t) € H*(K)

if there exist positive constants Cy and Cy such that for (zy,t1),(@g,%2) € K

|f (21, t1) — f(82,t2)| < Chl(m1 — @a, 81 — 10)|*,

whenever |(z1 — 3,1, — t2)| < Cs.
We shall say that f(z,t) € H* if f(z,t) € H*(K) for every compact
set K.

Lemma 1.6.1. ([13]) Let ¢ be a Gaussian stationary random field (possibly
vector or matriz valued), whose correlation tensor belongs to H*. Then there
is @ modification of ¢, whose almost every realization belongs to H™?~¢ for

every € > 0,
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Corollary 1.6.2. Let g®(z,t) be the correlation matriz of a Gaussian sta-
tionary vector field v(z,t). Suppose that for every partial differential operator

Dy of order not greater than two with constant coefficients the following holds }

Dog®(z,t) € H* .

Then there exists a modification of v, such that almost every realization of the

vector field belongs to H/* ¢ together with the first order partial derivotives
/

mox.

For a compact set K C R* we define C(K) to be the set of all continuous

R? valued functions on K. C'(K) is endowed with the usual Borel o-algebra.

It is assumed that 0 € K. We state several lemmag, which will be used in the
proof of Theorem 1.3.1. Lemmas 1.6.3 and 1.6.4 are contained in Chapter

2 of Billingsley’s book [2], while Lemma, 1.6.5 follows from Lémma 4.5 and

Proposition 2.5 of Collela and Lanford [4]. [

Lemma 1.6.3. ([2]) Let v"(x,1) and v(z,t) be continuous random fields on
a compact set K C R If finite dimensional distributions of v™ converge
weakly to those of v and if the sequence v™ is tight on C(K), then v converge P

weakly to v as measures on C(K).

Lemma 1.6.4. ([2]) The sequence v™ is tight on C(K) if and only if these
two conditions hold

(a) For each positive n, there exists an a such. thot

P{v™: (0,0} >a} <y, n>1. (1.98)
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(b) For each positive ¢ and n, there exist a 6, with 0 < § <1, and an integer

ng such that

P : sup (w1, ) 0" (za ) 2 et <m, nzmg
(w1 —~wz,b1—22)| <8

(1.99)

Lemma 1.6.5. ([4]) Suppose that v(z,t) is a Gaussian stationary random
vector field on ]R‘(im?t) with continuous realizations, such that ils correiatz'?_n
matriz g°(xz,t) is continuous. Suppose there exist constants Cy, Ca,00 >0
such that
(a) 1g°(0,0)] < C
(b) |g%(,t) — g**(0,0)| < Col(=, 1)[* for |(=,8) <3 -
Then for every Ty,y > 0 there exist constents ki and ks, which depend only
on C1, Cy, &6, Ty and 7y such that

Plv: sup o) >kt <e forall e<1l. (1.100)

s>k t<To \/10g ||

Moreover, for every compact set K C R* and for each positive € and i there
ezists a 8, which depends only on Cy, Ca, o, K, € and 1 such thot
P{u: sup fu(z,t1) — v(@2, t2)| > e} <.
: {m1—®2,01—t2)|<d
We next show that the vector field V{(z,1) satisfies the assumptions of
Corollary 1.6.2, and V™(x,t) satisfy the assumptions of Lemmas 1.6.4 and
1.6.5. Note that due to (1.20) almost all the realizations of V*(x,t) belong

to H® together with the first order partial derivatives in z for some o > 0.
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Lemma 1.6.6. Suppose Assumptions A and B hold. Then

(a) The correlation matriz G*(z,t) of the vector field V(z,t) satisfies the
assumptions of Corollary 1.6.2 with some o > 0.

(b) For every compact set K the vector fields V™(z,t) satisfy the assumptions
of Lemma 1.6.4.

{c) The correlation matrices G® and G™ satisfy the assumptions of

Lemma 1.6.5 with C1, Cy and o independent of n.

(d) For every compact set K G™™ —» G® uniformly on K. ’
Proof Note the following
|6—Lt1lﬂ{k) . ew|t2|ﬂ(k)| < ltl . tz!aﬂ(k)a , ‘ (1101)
for all #i,t3,%k, and 0 << 1.
|etm — T2 < 2|z — z4|*k* | forall @p,72,k, and 0<a < 1.
(1.102)

We shall use (1.101) and (1.102) without reference. Note that if D, is of

order not greater than two, then
D.G%(z,t) = fp(k)e_lt1ﬂ(k)eikmM“b(dk) :

where p(k) is a polynomial of degree not greater than two. Thus,
| DG (21, ) — DyG® (w0, 8)| =

1/p(k)e—|t]ﬂ(k)(6ikw1 _ eikmz)Mab(dk_)‘ < (1.103)

48




2o — aal? [ (k)| 01312 (k)
The integral on the RHS of (1.103) converges by Assumption B, and thus

| DG (11, 8) ~ DyG®(za,1)| < 1|z — m]° (1.104)
Similarly

DG (3, 11) — DyG® (2, 1y)| =

p . /
| / p(k) (e~ 11120 _ g1l ke yrab gry| < (1.{05)

= al7 [ (IR M)
For v small enough the integral on the RHS of (1.105) converges by Assump-
tion B, and thus

| DG (z, 1) — DaG®(z,t2)| < colty — ] . ' (1.106)
‘By (1.104) and (1.106)

|DeG® (1, 1)) — DG (g, ty)| < ca|(@1, 1) — (2, t2)|* (1.107)

with & = min{6,v}. Therefore the function D,G* belongs to H® with
constants €7 and €5 independent of the compact set K. This completes the
proof of part (a) of Lemma 1.6.6.

The arguments leading to (1.107) can be applied to G™® instead of
G®. The only difference is that for G™* one needs to use (1.16) instead of
(1.12). Thus

|G (21, 81) — G (2, 13)| < cal(m1,81) — (22, 82)|% (1.108)
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where ¢4 does not depend on n. Recall that
Grab(g, ) = /ew|t|ﬂ(k)eikmMn,ab(dk) _
Therefore, by (1.16)
Gr(0,0)] < [ M) < e (1.109)

where ¢y does not depend on n. The assumptions of Lemma 1.6.5 are satisfied
by (1.108) and (1.109). This completes the proof of part {c) of Lemma 1./6.6.

The relation (1.98) for the fields V™ follows from (1.109) by Chebyshev
inequality. The relation {1.99) is a consequence of Lemma 1.6.5 applied to
V™. This completes the proof of part (b) of Lemma 1.6.6. It remains to
prove patt (d).

Let a compact K C R* be given. We also fix a bounded set
My ={1/N<|k*| < N,a=1,.,3} CR?

in Fourier space. Recall from Section 1.3 that «;, §;, v, and §; are the sets
which consist of the interior, the faces, the edges, and the vertices of the
cube A;, respectively. We introduce the following notation, for any function

#(k) and measure p

[ s03utan = [ pwntar) + 5 [ oonan+
Ay o B

ij@wmwm+%]MMM%y
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Then,

|Gz, ) — G”’“b(m,t)| <

> / e MG (M (k) — M (dh)) |+

{i,ki€Mpy}
[l e g ) + (1110
kQMN //

f |€m|t|ﬂ(k)eikm||Mn,abl(dk) ]
k¢ My

By (1.12), {1.10), and (1.16) the last two terms on the RHS of (1.110) can be
made arbitrarily small uniformly in n,¢ and z by selecting NV large enough.

In order to estimate the first term we write

'
|f e—[ﬂﬂ(k)ez'km(Mab(dk) _ Mn’ab(dki))l S
Ay
/. ( ~HIUR) _ o)) ghe prab (g + (1.111)

i
| f e MUk eika (Areb (dk) — M6 (k;)dk)| .
The first term on the RHS of (1.111) is estimated from above by

er(V) [ 16006 = )| )




Since Q(k) is Lipschitz continuous on My this is estimated from ahove by
!
(NI [ M) (1112)
Ay

where |A;] is the length of the diagonal of A;. The second term on the RHS

of (1.111) is estimated from above by

’
|/ eikm(Mab(dk) _ Nf’ubd(k@)dk)] + |N;"’“b — M;"’ab| . (1113)
/A

/

The first term in (1.113) is estimated by
! !
sup {67 — e} [ M) (ak) < ol M)A [ |BIaR)
kEA; Ay Aj

From the definition of NJ** and M™® it is readily seen that the second term

in (1.113} is also estimated by
el W [ M)

Thus the first term on the RHS of (1.110} is estimated from above by
ex(K, N) max | A / M| (k) | (1.114)

Due to (1.12), since max;|A;| tends to zero as n —» oo, the quantity in

(1.114) tends to zero as n — oco. Therefore

lim sup |G™*(z,t) — G%(z,t)| =0.

=0 (p e K

This completes the proof of Lemma 1.6.6.

Proof of Theorem 1.3.1 Without loss of generality we may consider Xy =

X =0. Let t = Ty be fixed. By Lemma 1.6.5 there exist constants &k, > 1
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and k; such that (1.100) holds for v = V and v = V}, for every n. Let
R, = 2c"1ke?T and K, = {|z| < R.} % [0,Ty).

The finite dimensional distributions of V™ converge weakly to those of
V, since V™ and V are Gaussian, and the correlation functions converge
pointwise (Lemma 1.6.6, part (d)). By Lemma 1.6.4 the sequence V" is
tight on C(K;), and therefore, by Lemma 1.6.3 V" converges weakly to V'
on C(K,). By Skorohod Theorem ({5]) there exist vector fields W} and
W,, which induce the same measures on C(K.) as V™ and V, and Whi;h
are defined on the same probability space Q. with W — W, in C(K,) for
almost all w ¢ Q.. By Corollary 1.6.2 the realizations of the vector fields W}
and W, belong to H*(K.) together with their first order partial derivatives
in z. We do not need to take the modifications since we know a priori that
almost all the realizations belong to C(K,).

Define Y; ;, and Y to be the solntions of the equations

st,s = Ws(n,s: 3) 71/6,0 =0. (1115)
Yo = WHYL,s) Y =0, (1.116)

Since (1.100) holds for v = W,, on a subset of Q. of measure not less than

1 — & the norm of Y, ; is estimated as follows
|1/"373|Sy358w<_T0 01’192,}1.(92)21—8,
where ¥, is the solution of the equation

s = ko/108Ys ;Yo = 5_%'1‘31 .
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Clearly

SUp Yy <
s<Th

H

R
2

and therefore

sup |Y; .| <
s<Tp

R.
L (1.117)

T'his shows that for w € Q equation (1.115) can be solved for 0 < s < 1,

Vi

and that , L

R?
P{sup |V * > -2} <e. (1.118)
s<To 4

Since Y, 7, and Xg, have the same distributions when they are restricted to
the events {3up,<q, |Yos| < %} and {sup,r, |Xs| < %} respectively, we

conclude from (1.118) that ‘ |

i

2
P{sup |X,[* > £} <e. (1.119) 3

SST(]
Therefore | X1, |? is integrable. Since (1.100) holds for v = W we can repeat

the arguments leading to (1.119) to conclude that

RZ
P{sup X} > —*} <e,
s<To 4

which shows that | X7 |* are uniformly integrable.
Since Xg = X = 0, in order to complete the proof of Theorem 1.3.1

we need to show that the difference

E(XMXM - B(XEX]) (1.120)
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tends to zero as m —» co. Let an arbitrary v > 0 be given. Since | X7 |?
and | Xr,|? are uniformly integrable, we can select £ > 0 such that for every

measurable set A, with P(4) < 2¢,
E|X2 x4 <7 BlXg['xa<7. (1.121)

We next show that sup,<qy | Yo% — ¥z ,s| tends to zero almost surely on Q2. By
(1.115) and (1.116)

|Y:-,Ls - Y;,Sl S |};T,"s - }/;‘,Sl sup IDGDWF(:B: Sf)l—'_
(z,5")EK,

sup  |We(z,s) — Wi (=, 9)], (1.122)
(w8 )EK,

whenever sup,, [Y%| < R.. Since the second term on the RHS of (1.122)
tends to zero as n — 0o, and sup,cq |Yes| < Beoon QF by (1.117), we
conclude that sup,cq, |Y7%| < Re on Qf for n > n(w),

and sup,cr, |Y — Ye,s| — 0 almost surely on 0. Therefore there exists a

set Qf € QF with p(€;) > 1 — 2¢, such that

sup |Y7", — Yi 4| — 0 uniformly on €} .
SST[] k

Since for each n the variables Y — ¥, and X7 — X, have the same dis-
tributions when restricted to the events {sup,.r, |Y%],|Yes| < Re} and
{sup,<q, 1 XP1,1X,| < Re} respectively, and since the constant 7 in (1.121)
was arbitrary, we conclude that (1.120) tends to zero as n — oo. This

completes the proof of Theorem 1.3.1.
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Chapter 2

Vector Fields with Short Time’

Correlations

2.1 Effective Diffusivity in Vector Fields with
Short Time Correlations

This section is devoted to the proof of Theorem 1.2.2.
Let P be the space of functions on '][‘2 x R?" which have the form
u(z,y) = plz,y)ny) ,

where p(z,y) is a polynomial in ¥ whose coeflicients are infinitely smooth
functions of z.

Let P1 be the subspace of P of functions which satisfy

fu(a:, yn(y)dy =0 forall z .
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We shall say that u(z,%) is an odd (even) function if u € P and the corre-
sponding polynomial p(z,¥) contains only odd (even) powers of y. The next

lemama follows from the general properties of the simple harmonic oscillator

(10],
Lemma 2.1.1. Suppose that f(z,y) € PL. Then the equation
Tu=f

has a unique solution u € PL. If [ 4s an odd (even) function, then u is aléo

odd {even).

In the next theorem we state the asymptotic expansion for the solution
of equation (1.46), which in turn provides the asymptotics for the effective

diffusivity D™ by Corollary 1.4.4.

Theorem 2.1.2. Suppose Assumptions A, B, and C,, hold. Let u™® be the
solution of equation (1.46) given by Theorem 1.5.1. Then there exist func-
tions uy®(z,y) € H: with k = 0,1,...,2m, and constants c(k) independent
of n and &, such thot

e — (2 + b+ 4 )| < (k) (1)

Moreover, uli® is an odd function and uy,. ; 48 an cven funclion for all k <

2m.

o0
Let us substitute the series > sgu}:’“ formally into the equation M, u =
k=0

f. Equating the terms with the same powers of ¢, we obtain

Lug* = f, (2.2)
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Lul, = —Aul® . (2.3)

By Lemma 2.1.1 in order for the solutions of (2.2), (2.3) to exist in Pt it is
enough to show that the right sides are in P+. Unfortunately, the fact that
u € PL does not guarantee that —Au € PL. We use the particular form of
the vector fields v; to describe the subspaces of P+ appropriate for solving
(2.2), (2.3). By staying within these subspaces we verify —Aup® € P, Then
we use (2.2), (2.3) as an inductive definition of the sequence {ug™}. /

From (2.2), (2.3) it follows that wy, = u™* — (ug™ +... —I—f—:%u:’”) satisfies

k1

Moy = e Aup® . (2.4)

We then estimate the RHS of (2.4) uniformly in » and employ Theorem 1.5.8
to obtain the desired estimate of wy. These arguments will be made rigorous
below. |

Let us introduce notation needed for the proof of Theorem 2.1.2. To
simplify the notation we consider ¢ = 1 and drop the superscripts on the
function » and the terms of the asymptotic expansion. Recall that the set

{vi, 1 =1,..,n} can be written as follows:

{v;, i =1,...,2n} = {4/ 2X}e] cos ki, 1/ 2} e; sin ksz,
v/ 202€? cos kim, \[2A2e] sinkym, i =1,..,n/2} . (2.5)

On the set { = 1,...,2n} we introduce a reflection operation which in-

terchanges sin and cos terms of the same wave length as follows: if v; =
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/22 e cos kyz, then 7' i the index for which vy = /2 e sin k;z. Simi-
larly, if v; = /2X7e[* sin k;z, then vy = /2\"el" cos k;z. Recall that

Qi - Q,,;J . (26)

In what follows the constants c(iy, ..., %) are assumed to be invariant

under this reflection operation:

ClE1s ooy By ey k) = i1y ey By ey B} forany 1 <1<k, (2.7)
7/

We next describe the subspaces R* of P+ appropriate for solving (2:2),
(2.3). R* will be defined as a linear space of functions of (n, z, 7). Note that
we include the dependence on n in the definition of the space R*. Thus we
shall be solving (2.2}, (2.3) for all n simultaneously. First we define the set
of functions which span R*.

We shall say that a function u(n;z,y) belongs to 7% if for some ¢ and

s, such that ¢t +2s =k
2n

Y = Z U,,,;kV(...V(’UZ'QV’U}l)...)y,,;v_l ...’yz'rt(silliml ...5,,5333'7”5 Cn(?:l, ey Z}c)‘n 3

Byl =1
(2.8)
where (71, ..., 7t b1, Is, M1, ...y M) 18 some permutation of (1,..., %), the

constants ¢y (i1, ..., i) satisfy (2.7) and
|c’n.| S c 7 (29)

with a constant ¢ which may depend on u, but does not depend on n. Note
that 7" is not a linear space since it is a set theoretic union over choices ¢,

s, and the permutations, and thus is not closed under addition.
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We shall say that a function u(n, =, y) belongs to R¥ if w = wuy ... +ug,
where 1, ...,ug € T*. Thus R* = span{7*}. Note that the number d of
functions of 7% which comprise an element of R* can not depend on 7, since
n is already an argument in each of the functions u, uy, ..., uq. An element of
R¥ can combine terms of the form (2.8) with different ¢ and s. If & is even,
then all elements of R* are even, if & is odd, then all elements of R* are odd.

We prove several lemmas which are needed for the proof of Theo-
rem 2.1.2. Lemmas 2.1.3, 2.1.4, and 2.1.5 imply that (2.2), (2.3) canf be

used as an inductive definition for the sequence «)*. Lemma 2.1.6 provides
k P

the estimate of the RHS of (2.4), which is uniform in n.

Lemma 2.1.3. Suppose Assumptions A and B hold. If u € R*, then Au €

2n
Rk'l_l, and z ﬁlgijjku c RFHL,
J=1

Proof The statement follows from the fact that the same is true when RE

and R¥*1 are replaced by T* and T*+1.

Lemma 2.1.4. Suppose Assumptions A and B hold. If u € R*, then u €
P

Proof Without loss of generality we can consider u & T* given by formula
(2.8). If k is odd, then u is an odd function and f undy = 0, that is u € PL.
Assuming now that k is even, [ undy is equal to a sum of the terms, each of

which has the following form:
2n

Z vikv("'v(vizvvill)"')6‘5t1’5m1 ...(5,'%/2,;7”“20”('2:1, ...,'ik,) . (210)

ilyeengbp=1
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"“?!;42‘

where (l1, ..., k2, M1, ..., M) is a permutation of (1,..., k).
From (1.22) we derive the following: if D" and D3* are (tensor valued)
homogeneous partial differential operators of orders oy and . respectively,

then
D' ® D3?u; + DMy @ D*vy =0, (2.11)

provided o + ay is odd. Here product @ denotes either a tensor product, or
a convolution in one or more indices. From (2.11) we conclude that g

2n : ’
> D @ Dftuic(i) = 0, (2.12)

=1
if o + g is odd and ¢(7) = c(¢').
Distributing the derivatives in the expression v;, V(...V{v;, Vi )...) we

see that (2.10) is equal to a sum of the terms, each of which has the form
2n

Z ng”ik ®..R D?lvhdi;liml-- 4.

. ”k/z"m.'c/ﬂ

Cn(ih...,ik) . (213)

Byt =1

k
Note that > a; = k — 1 is odd. Therefore there exist [, and m, such that

J=1
o, + O, is 0dd. By (2.12)
2n
o . .
Z Dkk(uiic & ... R D?lviléitliml"'6iz.pimp"'5izk/2imwgcn(?’11 ...,3;;) =0.
ilp}?"mpzl

Therefore, the expression in (2.13) is equal to zero. Therefore, the expression
in (2.10) is equal to zero. This completes the proof of Lemma 2.1.4.

Lemmas 2.1.1 and 2.1.4 imply that if w € R%, then the equation

Lw=wu (2.14)
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has the unigue solution w € PL.

Lemma 2.1.5. Suppose Assumptions A and B hold. If u € RE then the
solution w of (2.14) belongs to RE.

Proof Without loss of generality we may consider u € T* given by formula
(2.8). The proof will be by induction with step 2 on the number ¢ of the
y-factors in (2.8). Thus we introduce the following induction hypothesis:

(H,) ifu € T* is given by (2.8) and ¢ = j, then the solution w of (2.i4)
belongs to R

If £ = § = 0, then u has the form u = uy(z)n. Since, by Lemma 2.1.4,
[ undy = 0 for all z, we conclude that u = 0, and therefore w = 0. Thus Hy
holds.

If t =4 =1, then

2n

U= Z vikV(...V(%Vv}l)...)yin 5”‘11“.7“1 ...55!81;1“8 Cn(i'lz cary ’.f;k)’l’] ,
i1, =1
where (71, 11, -y ls, 1, .oy M) i5 2 permutation of (1,..., k). Since L(g"ﬁ n) =
irq
—;,, 7, the solution of (2.14) is
2n n
i . .
Y == - Z vikv('“v(vizvvg})‘“)ﬁ%éilliml ...5@isimscﬂ(@1, ...,’Lk)’f) y
i yeensih=1 1

which belongs to 7% since {); are positive and uniformly bounded away from
zero. Thus H holds.

Assume a value of j for which Hj holds for any j' < j. We shall verify
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that H;,, holds. Let u € T* be given by (2.8) with ¢ = j + 2. Define

2n
‘y"':r "'yi-r
wy = - E v;, V(.. V{3, VU, )...) Lo Si i .
"‘;1:---1"3.&:1 * ’ ' ( i"'l + ane + Qi’r‘t)' 1 1

...6;;:35"53 Cn(il, caiy ik)?? .

Since £2; are positive and uniformly bounded away from zero wy belongs to
T* Let ug = u — Lwy. Then 1#g € RF and it can be represented as a sum of

clements of 7%, each of which has the form (2.8) with ¢ < 7. Since /
L{w — wy) = ug ,

and Hj holds for any j' < 4, we conclude that w — wy € R¥, and therefore

w € R*. Thus H;4; holds. This completes the proof of Lemma, 2.1.5.

Lemma 2.1.6. Suppose Assumptions A, B, and C,, hold. Then for any
function u(n; z,y) € R¥™2 the Lo norms ||u(n; z, y)|| are bounded uniformly

mn n.

Proof Without loss of generality we can consider u € 72™+2 given by formula
(2.8) with & = 2m + 2. We square both sides of (2.8) and integrate the
resulting equality in x and y. On the RHS we can perform the integration
in y explicitly. Note that

1
/Ua‘,ﬂl---%rt@}iql Yig, My = » Z Oy ey = Oicgy sy,

at

where o’ = (ay, ..., &tgs) 18 & permutation of (ry,...,r, ¢, ..., q), and 3 is the
o-n'
sum over the set of all such permutations. Note that the number of such

permutations depends only on ¢, but not on n.
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Thus, using (2.9), we see that ||u|]® is estimated from above by a sum
of terms, the number of terms being independent of n, each of which has the

following form

21
clo )
(3) [ Z "”1'4m+4v('"v(vi2m+4vv'i12m+3)"')
p T3 150 bl a==1

P

T UHam4aRom 42 I -

’U,_,;2m+2V(...V(’U,;zvvz-ll)...)(s,,;tl.;kl.. ) dx < (2/15)

2n

¢(o) sup Z 1Uz‘4m+4v(---V(”izm+4v'uz'12m+3)---)

B0y damya—1

?)iszer(. ..V('Uz'z V’Ug'l)...)(sitlikl )

' ""tﬂm+2%k2m+2| !

where o = (I, lam 12, k1, -y K2m2) 18 & permutation of (1,...;4m -+ 4).
Distributing the derivatives in the RHS of (2.15) we see that it can be
estimated from above by a sum of the terms, the number of terms being

independent of n, each of which has the following form
2n
(o) sup Z | D Vg ® o @ D0y G5y gy 00

“Homt2 kam 42 I '
140 e bdima=1

(2.16)
Note that max;o < 2m + 1. For an arbitrary temsor T' let || be the

supremum of its component’s absolute values. Then

sup | D cos(kiz)| = sup |D¥sin(k;z)| < e(D)|k;]* .
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Thus due to the particular form (2.5} of the vector fields »; the expression

(2.16) is estimated from above by a constant independent of n times the
27

product of 2m + 2 factors, each of which has the form Y Ag|k;|? with q <
i=1

4m + 2, where
{Nyi=1,..,2n} = {\, ,i=1,..,n}

2n
are the eigenvalues of M. Each of the factors 3, A;|k;|? is bounded uniformly
i=1 /
in » by assumption C,. Therefore the absolute value of the expression
in (2.16) is bounded uniformly in n. Thus the RHS of (2.15) is bounded

uniformly in n. This completes the proof of Lemma 2.1.6.

Proof of Theorem 2.1.2 The right side of (2.2) belongs to R'. From
Lemmas 2.1.3, 2.1.4 and 2.1.5 it follows that (2.2}, (2.3) can be used as the
inductive definition of the sequence {u}. Moreover, uy € R, Thus ugy, is
an odd function and wg;yq is an even function for all k.

Since uy, € R**! the function Awuy belongs to R*+2. Thus, by

Lemma 2.1.6 the norm of the RHS of (2.4) is estimated as follows
|| — &5 Aug|| < Culk)e™T .

By lemmas 2.1.3 and 2.1.4 the RHS of (2.4) satisfies (1.77). Therefore we
can employ Theorem 1.5.8 to conclude that ||wy|| < Cy(k)e"s". Thus (2.1)
is proved. This completes the proof of Theorem 2.1.2.

We next employ Theorem 2.1.2 and Corollary 1.4.4 to obtain the asymp-

totic expansion for D™, While the asymptotic expansion for the solution

65




of equation (1.46) is in the powers of &%, only the terms with integer powers
of £ contribute to the asymptotic expansion of D»**. The fractional powers

in £ vanish because the integrals in 4 of the odd terms vanish,

Theorem 2.1.7. Suppose Assumptions A, B, and Gy, hold. Then the effec-

tive diffusivity D™ has the asymplotic expansion

prab — g g AP 4 .+ de™ + €M (e, m) , where {(2.17)

n
TG 1 .0 n Q
=3 Z[ / (vl -+ ug v Jyandady |
i=1 '

and lim,_o ¢™(c, m) = 0 uniformly in n.

Proof As in the proof of Theorem 2.1.2 we consider the case a = b = 1.

By Corollary 1.4.4

2m 2n ;
Dptt=3Y"ety / f uhviyindedy+ |
k=0 i=1 -

//['u” — (uf + eTu - ... + ™l ) Juiyimdzdy . (2.18)
2n
Note that || 3 vlyinl|l < Ci by (1.96). By Theorem 2.1.2
i=1

™ — (ul + e3ul + ... + e™ug)|| < Cam)e™ 3,

therefore the last term on the RHS of (2.18) does not exceed C’g(m)em%. '

Tt remains to show that the terms with non integer powers of ¢ vanish.

By Theorem 2.1.2 the integrand in the first term on the RHS of (2.18) is a,
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product of n times an odd function if k is odd, and therefore the integral is

equal to zero. This completes the proof of Theorem 2.1.7,
Proof of Theorem 1.2.2 We introduce the induction hypothesis:
(1) The limit d3® = limy, o0 dj ™ exists.

From the proof of Theorem 1.2.1 it follows that limy ;oo Db = D% By
Theorem 2.1.7 lim,._,o D&% = dy’ b iniformly in 7. Therefore by the theorem

£

on uniform convergence the following limits exist

de® = lim dy’ b hm Do
H—r 00

Thus I, holds. Assume a value of k, & < m, for which Iy holds. We shall

verify that Iy, holds. Consider

b L oyn,oh

prsah . greb gt gk

gb(n,g) — [ 0 17 k .
P
By Ik

Da.b — dab _ Edqb _ _ Ek dab

' ab o € 0 1 k
7}1?010% (n,s) = gL :

By Theorem 2.1.7 lime_o ¥§’ (n,€) = dp? uniformly in n. Therefore by the

theorem on uniform convergence the following limits exist

(2.19)

o . b _ i Db — ab — et — . — Fdgp
= 1rn = I1I11 .
k1 = LT 0, gkl

Therefore Iy1 holds for all k& < m. From (2.19) with k =m — 1 we obtain
(1.13). This completes the proof of Theorem 1.2.2.
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2.2 Explicit Calculations l!%

Now we calculate explicitly the first two terms of the expansion (1.13)

in terms of the correlation matrix G of the velocity field.

Theorem 2.2.1. Suppose Assumptions A, B, and C) hold. Then the effec-

tive diffusivity D® has the asymptotic ezpansion
D = / G*(0, t)dt + (2.20)
0

oo OO0

’ Z / f jf o ame“b 2, 11 a=0 G (0, ts)dtrdtadts + of) .

Lim=1 0 i3 ia

Proof Solving (2.2) we obtain

. 1
up’ ~Z vigg;ni (@)

i From (2.3) with & = 0 and £ = 1 we obtain consecutively

1
no __ 1 :
'U:]_ _’bjzzi (Q + Q )Q y'ayjnv@v’{) I
2n 1 il
Ny st " i | . 221 ‘!
o z‘jzlc':—"l (\Qz + QJ + Qk‘)(ﬂj + Qk)Qky YiYphV V(UJVU};;) +( )
2n
2 0.
8 — i O
J;l 7 Q}c (Q -+ Q -+ Qk)(ﬂ + Qk:)ﬂ Yehv ('U_;l Uk) +
”6,34 s+ Q4+ Q) (S + Q)
30
Z 5;;!6 vV (v; Vg
ST (9 4 )+ Q)
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Using Theorem 2.1.7 together with the expression for 40" we see that

the first coeflicient (with €%} in the expansion (2.17) is equal to

; 2n
Z / / yi—— (Pl + vl oyt dody *Z / vd .
| (2.22)

The coefficient at the first power of € is equal to

Z // udv? + viud)ymndady . y

Using (2.21) and (2.12) this is seen to be equal to

5 - S Vo) (v, Vol
5 ;.;JZ'::I Q?(Qz +Qj) /(Ujvvt)(vjvvz)dm - (2.23)

Using (2.5) and (2.6) we evaluate the integrals in (2.22) and (2.23). Thus

we obtain

L (1]
ab M
dg, = § : ’

=1 £
M'n abklkmMn Jm
nab
==y 6 + 0,
4,j=1 J

The expression (1.9) for the Fourier transform of the correlation matrix

G(z,t) implies that

4 = lim A — f G (0, 1)t

n—rod

de = lim dmeb =
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o0 00 o0

J[/ Dy Oy, Gab(r t1 )]0 G'™0, t3)dtrdizdts .

t,m=10 is ta

Therefore {2.20) is valid. This completes the proof of Theorem 2.2.1.
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Chapter 3

Vector Fields with Kolmogorov

Spectrum

3.1 Effective Diffusivity in Vector Fields

with Kolmogorov Spectrum

In this section we study the dependence of the effective diffusivity on
the cutoff in the spectrum of the Kolmogorov velocity field.
We start with a vector field whose spectral measure is of order |k|* at

infinity. The case of pure Kolmogorov spectrum corresponds to o = —

o

In this case a typical realization of the field V' is not continuous, and V is
understood as a generalized random field.

In order to make sense of the equation of motion (1.1) we introduce
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cutoffs at infinity for the spectral measure, thus regularizing V' by ordinary
random fields V™. The spectral measure of V™ is defined to be equal to the

spectral measure of ¥ on the cube of size m centered at the origin in wave

number space, and equal to zero elsewhere.
We provide a bound on the effective diffusivity D™ of the approxi-

mating fields V™ in terms of the size of the cutoff m. We obtain
D™ < em®? (3.1) |

for the vector fields with Kolmogorov spectrum. | "
Let us discuss the physical interpretation of formula (1.9) in the case

of the three dimensional turbulence with Kolmogorov spectrum. In the Kol-

mogorov picture turbulence is looked upon as a system of eddies correspond-
ing to different velocity frequencies. The matrix M (k) is of order of the den-
sity of the kinetic energy corresponding to modes with frequency k. From

the dimensional considerations it follows that
M) ~ k|58 (3.2) I

for large |k {([15]). P

With the characteristic length scale, and the characteristic velocity fluc- I
tuation fixed, the size of the domain in which (3.2) is valid is determined i
by the fluid viscosity. Namely, outside of the cube of size m, the matrix
M(k) is assumed to be rapidly decreasing. The size of the cube, is inversely

proportional to the ratio of the viscosity v and the characteristic velocity U,
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and proportional to the ratio of the Reynolds number R and the macroscopic
length scale ! of the flow.

Since we are interested in the upper estimates on the effective diffusivity,
we assume that |M®(k}| < e(1 -+ |k])7>? for some ¢ and all a,b, and k.
We shall study the dependence of the effective diffusivity on the Reynolds
number R, or more precisely, on the cutoff m in the velocity spectrum.

As seen from (1.9) the function (k) is the decay rate, or inverse life
time of an eddy with frequency k. As follows from [15], classical Kolmogoéov
turbulence corresponds to the case Q(k) ~ |k|*? for large |k|.

We now state the assumptions on the stream function, in somewhat
more generality than needed for the case of pure Kolomogorov spectrum of

the velocity field.

Assumption Ay V(z,1),z € R3 is a zero mean Gaussian field, stationary

in z and t, isotropic in x, and Markov in time.

Assumption B The spectral matriz of the field V is given by (1.9), where
Q(k) is scalar, and the matriz M(k) is symmetric. There ezists a constant
¢ >0, and o compact sel K C R, such that

f AM (k) > ol ,

K
where I is the identity matriz. There ewist constants ¢;,cz > 0, and o, 3,

such that
| M| (k) < er(1+ KD, (3.3)
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(k) = call + k)P | (3.9

Moreover, Q(k) is Lipschitz continuous uniformly on any compact. The case
of pure Kolmogorov spectrum for 3 dimensional turbulence corresponds to
o = —5/3 and B = 2/3. The vector field V™(z,t) is defined to be the real
valued Gaussian random field whose spectral matrix am is given by (1.9) on
the set {|£%| < m,a =1,..,3}, and is equal to zero outside this set. Notice
that if a field V satisfies assumptions A; and By, then the field V™ satisfies
the assumptions A and B of Section 1.2 for m > my for some my. Therefore
the effective diffusivity of the field V™ exists and is finite for m > my. We

shall denote it by D™ We now formulate the main theorem of this section.

Theorem 3.1.1. Suppose Assumptions A, end By hold. Then there exists

a constant ¢ such that D™ < em®#+  a b=1,...,3 for all m > my.

Remark With o = —5/3 and § = 2/3 we recover (3.1).

We use the discretization of the spectrum of the field V™, as described
in Section 1.3, to obtain the approximating vector fields V™. The effective
diffusivity of the field V™ will be denoted by D™, From the proof of
Theorem 1.2.1 it follows that DM — D™ a5 n — oo for m > my.

Therefore Theorem 3.1.1 is a consequence of the following

Theorem 3.1.2. Suppose Assumptions Ay end By hold. Then there exists
a constant ¢ such that D™ < em® P+ a b =1,..,3 for m > mg,n >

ng(m)
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Proof We are using the notations introduced in Chapter 1. By Corol-
lary 1,4.4 the effective diffusivity D™ is expressed in terms of the solution

u* of equation

2 an
i: {2 (32 - ?_fi -+ 1) u-- Z Yy Vu® = Z yivin . (3.5)
i=1 1=1

by the formula

Drmab — Z /f (u0? + uPodYyndady . /(3.6)

TS R2ﬂ
Recall that the coeflicients v;{x) of (3.5) are defined by the spectral matrix
of the field V™, and thus depend on m.

We represent the solution u* of (3.5) uniquely as a sum of two functions

which are orthogonal in £4(R**) for all z, that is

u(z,y) = w(z, ¥) +uo(z)n(y) , (3.7)

where [ uy(z)dz = 0, and [w(z,y)n(y)dy = 0. Since [ nydy = 0, the term
uo{z)n(y) does not contribute to the integral on the RHS of (3.6). Therefore
it is sufficient to estimate the contribution of w to the integral.

As in the proof of Theorem 1.5.8 we obtain

//wLwdxdy:/ffwdmdy, (3.8)

where

2n
— > yain - (3.9)
i=1
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is the RHS of (3.5). We now use (3.8) to bound the RHS of (3.6). Note that
{p*"?ym,4 = 1,..,2n} is an orthonormal system in Lo( R*™). Let a;(z) =
p*? [ wymdy, and let wy(z,y) = p¥/2a;(z)yin. Thus for each z the sum % w;
is the projection in L£o(lR*) of w on the subspace spanned by the fun(j;lt)ns
{win}. In particular by (3.9) the function & = w — % w; is orthogonal to f

=1
in Lo(R*) for each z. Since L{y;n) = —§y:n, substituting

w=T1Y (310)

=1

into (3.8) we obtain

f /[ & Livdzdy — ZQ / z)de = “ij / a;(z)vd(z

(3.11)

Since [ [ @Lwdzdy < 0 we conclude from (3.11) that

ZQ / z)dz < p~3/2 f las(2)0? (2) dz . (3.12)

By Schwartz inequality, the RHS of (3.12) is estimated as follows

_3/22‘/'@1 |d:L‘<

Zuﬂ |ﬂf da:+—Z|k| ﬁf 2(3)ds | (3.13)

i=1
where ¢; and 3 are the same as in (3.4). Note that by (1.21) the second
term on the RHS of (3.13) is bounded above by 2 37 |k;| (A} + A7), where
i=1
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Af and A? are the eigenvalues of M. This sum in turn is bounded above
by e(m + 1)***? due to (3.3). Therefore by (3.12), (3.13), and (3.4) there

exists a constant C such that

2n

>kl f ai(@)dz < O(m + 1) F+ (3.14)

i=1
In order to bound the RHS of (3.6) is is sufficient to bound

2n
3 [ futebyindzdy. By (3.7) and (3.10)
i=1

2n 2n
3 / / utvymdzdy =) f / wiplymdady =
i=1 =1

2n
p‘3/22/ai(m)vf(im. (3.15)
i=1

By Schwartz inequality, the RHS of (3.15) is bounded above by
Zlk |ﬁf ey + 523 k- ﬂ[( "2 (z)da
i=1 "
The first term is bounded above by C(m + 1)*~#+% due te (3.14), and the
second term is bounded by the same expression, with maybe different C,
due to (1.21) and (3.3). Therefore the RHS of (3.6) is bounded above by
C(m + 1)*=#*+* | This completes the proof of Theorem 3.1.2.
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