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Abstract of the Dissertation
Einstein-Thorpe Manifolds
by
Jaeman Kim
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1998

One of the most fascinating facts in mathematics is that the
local geometry of a manifold provides us with information about its
global topology. For instance, the Euler-Poincaré characteristic x

of a compact oriented Riemannian manifold M 4 of even dimension

can be written as an integral

112
Y = %Lgfklf trace x Ry * Ry, dV
M

where Ry, is the 2k™ —curvature operator and = is the Hodge star
operator and V is the volume of the Euclidean unit 4% sphere and

dV is the volume element of M.

il




If Ry, commutes with %, we say that the metric is a Thorpe

metric. In the 4—dimensional case, a metric is Thorpe metric if

and only if it is Einstein. On the other hand, as we shall see in

sions.

We shall say that a Riemannian 4k manifold is Einstein-Thorpe
if it is both Einstein and Thorpe.

|
Section 2.4, Thorpe metrics need not he Einstein in higher dimen-
i
l
|
}
I
|
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In this dissertation, we shall see that 1
i

|

]

|

1. There is an infinite dimensional moduli space of Thorpe met-

rics on 7% (k > 1). Most of these are not Einstein met-

rics. The same construction also yields Thorpe metrics on
M%=p 5 TW+p (k. p > 1,4k — p > 2) where M*~? is any
J

compact oriented manifold. - ]

2. However, every Einstein-Thorpe metric on 7% must be flat.
On compact oriented hyperbolic manifolds of dimension 8, ev-
ery Einstein-Thorpe metric is a hyperbole metric up to rescal-

ings and diffeomorphisms. ;
|

3. There are some manifolds of dimension 8§ which have x = 0
and P, = 0 but which never carry an Einstein-Thorpe metric.

In particular, a compact orientable Einstein-Thorpe manifold

(M8, g) that satisfies

2121
x=rihl

iv




must be (T%/T, flat) where [ is of finite order.
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Chapter 1

Introduction

1.1 Motivation

One of the most beautiful aspects of mathematics is that the local geom-
ecry of a manifold provides us with information about its global topology. For

instance, it is the generalized Gauss-Bonnet theorem [Chedd, T ho69] that the

Fuler-Poincaré characteristic ¥ of a compact oriented Riemannian manifold

M* of even dimension can be written as an integral

112
X = %%1— fthce * Rop % Rgp dV

where V is the volume of the Fuclidean unit 4k—sphere and dV is the volume

element of M and * is the Hodge star operator and Ry is 2kt curvature




operator. If Ryy commutes with x, i.e. Rop ¥ = #Rop, we call this condition a

Thorpe condition and this metric a Thorpe metric.

In the 4—dimensionl case, the Thorpe condition is equivalent to the Ein-
stein condition. It is an interesting fact that in the 4—dimensional case the
Einstein condition, which is the extremal condition of the total gcalar curva-
ture of suitable normalized metrics on compact Riemannian manifolds, can
be read off from a purely algebraic condition. For dimensions higher than 4,
nothing is known about topological conditions for the elxistence of an Einstein
metric on a manifold. This is reflected the fact that the Thorpe condition does
not imply the Einstein condition in higher dimensions. As a matter of fact, in
section 2.4 we shall see some examples of manifolds whose given metrics are
Thorpe metrics, but not Einstein metrics. l

The following questions still remain open:

e Are there any non-flat Einstein metrics on the T* torus, for & > 17

e Does every compact Riemannian manifold M** admit at least one Ein-

stein metric, for & > 17

On the other hand, the purpose of this dissertation is to prove the following

statements:

1. There is an infinite dimensional moduli space of Thorpe metrics on T**




(k > 1). Most of these are not Einstein metrics. The same construction
also yields Thorpe metrics on M%? x T%* (kp > 1,4k —p > 2)

where M*~-? is any compact oriented manifold.

2. However, every Einstein-Thorpe metric on 7% must be flat. On compact
oriented hyperbolic manifolds of dimension 8, every Einstein-Thorpe

metric is a hyperbolc metric up to diffeomorphisms and rescalings.

3. There are some manifolds of dimension 8 which have x = 0 and P, =
0 but which never carry an Einstein-Thorpe metric. In particular, a

compact orientable Einstein-Thorpe manifold (A 8 g) that satisfies

must be (7%/1, flat) where T" is of finite order.

1.2 Basic properties of the 2kt curvature op-

erator

Let M be a Riemannian manifold of even dimension n and let AP(M)
denote the bundle of p—vectors of M. AP(M) is a Riemannian vector bundle,
with inner product on the fiber A”(z) over the point z related to the inner

product on the tangent space T, M of M at £ by < ugA---Atp, V1 A+ Atp >=

det [< w;, v; >] with u;,v; € To M.




Let R denote the covariant curvature tensor of M. For each even p > 0,

we define the p—th curvature tensor R, of M to be the covariant tensor field

of order 2p given by

Rp(Uiy .. Up, U1,y 00,¥p) =

1
QE—p' Z e(ar) €(8) R(Uaf1); Yazy, Yoy, Va2))  * * FB(Va(p—1): Yam)s V8p—1) Us(w))
' o,BESy

where u;,v; € T,M, and S, denotes the group of permutations of (1,...,p)

and, for a € Sp, €(c) is the sign of the permutation a.

The tensor R, has the following properties: it is alternating in the first p
variables, alternating in the last p variables and is invariant under the operation
of interchanging the first p variables with the last p variables. Hence, at each
point z € M, R, can be regarded as a symmetric bilinear form on AP(z).
By use of the inner product on A’(z), R, at z may then be identified with a
self-adjoint linear operator R, on A*(z). Explicitly, this identification is given

by

<SRy A Aup),vi Ao Ay >= Ryt .oy Up, V1,5 Up)

with Uiy Uj = T_TM

Taking p = n, the space A"(z) is one dimensional and hence the self-

adjoint linear operator R, : A"(z) — A"(z) is a scalar multiple of the iden-

tity. More explicitly, when expressed globally, the line bundle homomorphism

—mETee




R, : A"(M) — A"(M) is

R, =KI
where I is the identity automorphism of A"(M) and K is the Lipschitz-Killing
curvature of M. Furthermore, for x € M, K(z) = Ru(e1,...,€n €1, -+, €n)

where {ej,...,e,} is any orthonormal basis for T, M.

The generalized Gauss-Bonnet theorem {Ched4] expresses the Euler-Poin-
caré characteristic y of a compact oriented Riemannian manifold of even di-

mension n as an integral

XZE Kdv

Cn JM

where K is the Lipschitz-Killing curvature of M, ¢, is the volume of Euclidean

unit n—sphere and dV is the volume element of M.

The tensor R, satisfies the Bianchi identity which can be expressed in the

following way [Tho69):
Alt By =0

where Alt is the skew symmetrization operator given by

1
Alt Rp('Ul, . ,’ng = (—"— E 'Ur(l)a e :Ur(2p))
ESap

with v; € T, M.

When 7 is a multiple of 4, p = 2 and M is oriented, the Bianchi identity

for R, admits another interpretation in terms of the Hodge star operator on
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AN (M):

Al Rp(el, N en) = ' Z < Rp er(1) A+ <A e,n(p)), Crip+1) N N Epmy >

'reSn

= Z <Ry (e;qy N Aep), ¥(ery A Aergy) >
'reSn

= o Z < & Ry( er(1) N ' /\er(p)),e,‘(l} N Aepp) >
n: TESY
| 5!

= Eﬂtr * IR,

and hence for the case p = %, the Bianchi identity for R, reduces to
trace * R, =0.

Let P € G,(M), where the Grassmann bundle G,(M} of oriented tangent
p—planes of M shall be viewed as a subbundle of the unit sphere bundle
of AP(M)} by identifying P € G,(M) with e1 A --- A g € AF(M), where
{e1, ++,€,} is any oriented orthonormal basis for P. Let {e1,...,ep} be an

oriented orthonormal basis for P. Then

= Z Rieay A ea@) A AR(eagp1) A eagr))
acSp

and suppose p > 0 and g > 0 are even integers with p +¢ < n. For P ¢
Gprg(M), let {€1,...,epyq} be an orthonormal basis for P and let us consider

B={6i1A°~-Ae,;p|1§z'1<---<ip§p+q}, then B C (M) and

__ p! q! 1
Ry+a(P) = 05 o) (;Rp Q) AR,(QY)

where Q~ is the oriented orthogonal complement of ¢) in P (Tho69].

Now we shall see that the Lipschitz-Killing curvature K of M can be

expressed by R, and the Hodge star operator *.




Let M be an oriented Riemannian manifold of even dimension n, then
according to [Tho69], the Lipschitz-Killing curvature K of M is the function

whose value at x € M is

ptin—p)! trace (x Ro_p * Ry} .

nl

For an oriented Riemannian manifold of dimension n = 4%, we can consider

the middle curvature operator Ry, and if this operator satisfies the condition
Rog * = * Rok,

then, since *> = I'dentity, the trace formula for K reduces to

_ [err? 2
K_——(WtraceR%EO

Cliven a Riemannian manifold of dimension n and an even integer p, with

2 < p < n, the p**—sectional curvature of M is the function g, : Gy(M) — R
defined by
o,(P) =< R,P,P > .

If R, and R are two self-adjoint operators on AP(z), each satisfying the

Bianchi identity, such that
<R,P,P>=<R,P, P>

for all P in the fiber of Gp(M) over z. Then K, = R, [Tho64, Tho69]. This

allows another interpretation of the Thorpe condition.




Theorem 1.2.1 Let M be an oriented Riemonnien manifold of dimension
4k, then we have Ry % = % Ry, if and only if ook (PL) = o9 (P), for all

P e sz(M).

Proof. We have

ng(PL) = < Ry *P,*P>
= < xRy « P, P>

And hence Ry, ¥ = * Ry, implies oy (P) = 0gi(P) for all P € Gop(M).

Conversely, if oo, (PL) = o9 (P) for all P € Gy (M), then

<Ry #P,+P > = <Ry =P, P>
= <R2k7),73>

for all P € Go(M). Furthermore, both the self-adjoint operators, Ry, and

* Ry * satisfy the Bianchi identity:
tr « («Ropx) =tr Rogx =1r x Rop =0

Hence, by the above statements, *Roe + = Ry Le. Rop % = # Ry, 0

Now we can consider the necessary condition for the existence of a Thorpe

metric [Tho69]:




Theorem 1.2.2 Let M be a compact orientable 4k~ dimensional Riemannian
manifold such that Ry, * = * Ry, then

AR A
XZ(Q—k")ﬂPH

where x is the Buler characteristic of M and Py, is the k' Pontrjagin number
of M. And in particuler x > 0.

Purthermore x = 0 if and only if M is 2k—flat (o = 0).

Proof. The de Rham representation for the k' Pontrjagin [Tho64] class of M

is the differential 4k —form

261
(_Z‘“[ngz)(Q]nﬁm’; trace (Ry, * Rox) dV

Since Ry, commutes with *, it also commutes with I + %, where I denoctes

the identity operator on /\2’“. Hence Roy (I £ #) is self adjoint and

0 < tr [Rop(I £ #)]> = 2 [tr (Rox)? £ tr (Ro * Rap)]

and so
tr (Rog)® > [tr (Rop * Roy)|
that means
kKR!
> — P

and since K > 0, we have x = 0 if and only if X is identically zero. K =0 is

equivalent to Ry = 0, which in turn is equivalent to og = 0. Ll




Remark.

1. Let M be any compact orientable hyperbolic manifold of dimension 4%.

Then the Euler characteristic of M is positive.

2. Let N be any compact complex hyperbolic manifold of complex dimen-

sion 2k. Then the Fuler characteristic of N is positive.
1.3 Examples

We can now describe some examples of Riemannian manifolds which allow

a Thorpe metric.

o (H*, g_1), (%, 91), (R*,g,) where g.1 is the (—1)—constant sectional
curvature metric, g; is the (1)—constant sectional curvature metric and
g, is the (0)—constant sectional curvature metric.
We can verify that constant sectional curvature metrics are Thorpe met-

rics.

o CH?%* CP% and C?. The curvature tensor R of the Kéhler manifold of

c-constant holomorphic sectional curvature satisfies

RIX,Y,ZW) = ${o(X,2)9(, W) —g(Y, 2)g(X, W)
+29(IX,Y)g{IZ, W)+ g(IX, Z)g(IY, W)

_g(IY: Z)Q(IX: W)}

10




11

where I is the almost complex structure. For example the curvature
tensor R of a Kihler manifold of (—1)-constant holomorphic sectional

curvature satisfies

-1
R(e;,ej,epe1) = (4—) {g(es, ex)gle;, e) — gles, ex)g(ei er)
+2g(Ie;, e5)g(ley, e) + g(lei,en)g(Tej, e)

—g(lej, ep)g(les, e}

where T is the almost complex structure and {e;, Tes, €2, l€g, ..., €, Teap}

is an oriented orthonormal frame. So by the fact

Rie;, Te;, e, 1e)) = —1
Rle;, Ie; e, 1ej) = —% (i # 1)
R(ei ej,6,6;) = —% (i 7)
Rles, Iej e, 1e;) = “i" (¢ # 7)
R(Ie;, Iej, Tej, Ie;) = —i (2 # J)

and all the other cases are 0, we know that
R (ein sy Ciga Chry e e ey ejme) = Ry, (8i2k+1= oy By Cgg s e e 78j4k)

% . .
where {e;,...,¢i,} = {€j,---»€nt = {ei,Le;};Z; is an oriented or-
thonormal frame. Therefore we can verify the Thorpe condition in this

case.

e Quaternion projective spaces HP', HP? .

In the case of HP!, the standard metric is an Einstein metric and the




12

Einstein condition is equivalent to the Thorpe condition in case of di-
mension 4.
On the other hand , in the case of HP? the curvature tensor I of the

canonical quaternion projective space satisfies

AR(X,Y, Z2,W) = g(X,2Z)g(¥,W) - g(Y, Z)g(X, W)
+29(IX,Y)g(IZ, W) + g(IX, Z)g(IY, W)
~g(IY, Z)g(1X, W)
+29(JX, V)g(JZ, W)+ g(J X, Z)g(]Y, W)
—g(JY, Z)g(J X, W)
+29( KX, YV)g(KZ, W)+ g(KX, Z)g(KY,W)
—g(KY, Z)g(KX,W).

where I,J and K are the almost complex structures and so we know

that
Ry (3i1 1€igy €igy €14y €41y €y Elay ej4) = Ry (eiaa €ig; €irs Cigy Chsy Ejar Ejrs ejs)

where {€;,, ..., } = {€j,- ... €} = {&i, ei, Je;, Ke;}o_, is an oriented
orthonormal frame, therefore we can verify the Thorpe condition in this

case.

Remark. The curvature tensor R of the canonical quaternion projective

space HP™ (n > 3) does not satisfy the Thorpe condition. For example,

on HP?




Rﬁ (61., €9, €3, 183, J63, Kl‘?.g, €1,69, €3, I(ﬁg, J€3, I(B;}) 7é

Rﬁ (Iel, Jel, Kel,fez, JGQ,K&Q,f&l, Jel,Kel,IfBg, Jc‘g, Keg)

where Rjg is the 6 curvature tensor.

Question: Is HP" (n > 3) a Thorpe manifold or not?

13




Chapter 2

Thorpe metrics on 7% and M*~P x TP

2.1 An irreducible decomposition for the

curvature tensor

The curvature tensor of a Riemannian manifold M™ splits naturally into
three components involving respectively its scalar curvature, the traceless part

of its Ricci tensor and its Weyl curvature tensor (if n >4 ).
The bundle in which the curvature tensor naturally lives is not irreducible

under the action of the orthogonal group, and consequently has a natural

decomposition into irreducible components.

14




Let E be an n—dimensional real vector space then each tensor space

TEOE = (®%E*)®(®'F) is a representation space for the linear group GL(E).

For any r € GL(E), £1,...,& € E* and %1, ..., % € F, the natural action

of GL(E) satisfies.
r6® QLB Q- Qxy) = e @ @ (Gr i) @ (re) @ - ® (ra)

Let g be a non-degenerate quadratic form on F, then g induces a canoni-
cal identification between E and E*. Moreover, if r belongs to the orthog-
onal group O(g) of g, we have &r~! = r, so F and E* are isomorphic as

0O(g)—modules, and we may consider tensor products of ¥ only.

Of course, the O(g)—module E is irreducible. It is well known that ®%E is
not irreducible. We denote by SZF the space of traceless symmetric 2—tensors

and we may consider a linear map tr, : S2E — R.

The irreducible orthogonal decomposition of the O{g)—module @°F is

the following
&'E= \ E® SIE®Ry.

We define the Bianchi map b to be the following idempotent of R*E

(R(z,y,2,t) + R(y, z x,t) + R(z,2,y,1))

ol =

b(R) (.‘L‘, Y, 2, t) =

for any R in ®‘F and z,y, z,t € E*, b is GL(E) -equivariant, B =b

15




and b maps S? A’ F into itself. So we have the GL(E)—equivariant decompo-
gition
2
Sz/\ E=Kerb® Imb
We let RE = Ker b in 82 A*E and we call it the vector space of “alge-

braic curvature tensors”. The Ricei contraction is the O{g)—equivariant map
C: S2AN°E — S?F defined for any R € S? A’ E and any z,y € E* by
C(R)(z,y) = tr R(z,*,y,"). The Kulkarni-Nomizu product of two symmetric
2—tensors h and k is the 4—tensor A N k given by

(R D k) (z,y,2,t) = h(z,2)k(y,t) + h(y, t)k(z, 2)
—h(.’ﬂ, t)k(y? Z) - h(y: z)k(ma t)

for any z,y,2,t € E*. Now we come to the following fundamental result

[Bes86):

If n > 4, the O(g)— module RE has the following
orthogonal decomposition into (unique) irreducible sub-

spaces

RE=UEDZEDWE

where

UE = R(gB9)
ZE = g® (S:E)
WE = Ker C NKerb.

16




If we consider now g as a Riemannian metric and ¥ as T;{M) and then write

r=C{R) and s = tr r, we get the formula

1

R=—— e i + W
o1 P It gy T O F

where s is the scalar curvature, ric, is the traceless Ricci curvature and W is

the Weyl curvature.

If we consider subgroups of O(g), then more refined decompositions may
appear. We consider the case of the special orthogonal group SO(g), which

corresponds geometrically to the case where M is oriented.

It is well known that the irreducible decomposition of the O{n)—module

RE is also SO(n)—irreducible if n 5 4.

But new phenomena occur when n = 4. The irreducible decomposition of

RE as an SO(4)—module is the following
RE=UE® ZEOW'EOW™E

where the Weyl tensor splits in two parts, which we have denoted by W' and

W~ [Bes86].

If we consider ¢ as a Riemannian metric and E as T (M) and then write

r = C(R) and s = tr r, we get the formula

S8 1 R + —
-5 " rie, W
= mm—ng®g+mmmmc®g+w'+

17




where s is the scalar curvature, ric, is the traceless Ricct curvature, W+ is the

self-dual Weyl curvature, and W~ is the anti-sell-dual Weyl curvature.

2.2 About Thorpe metrics on 4-dimensional

manifolds

In this section we shall see that in the 4—dimensional case, the Thorpe

condition is equivalent to that of Einstein.

If we consider Ry = £ in 52 /\2 T*M as a linear map of /\2 T*M and if we

decompose
NTM=NTM0 N\ TM

where A T*M is the (+1)—eigenspace (self-dual space) and A~ 7*M is the
(—1)—eigenspace (anti-self-dual space) of the Hodge * operator, respectively,

we get the following expression for R [Bes86],

self-dual anti-self-dual

Wt 51d ric, self-dual

tric, W~ + 51d anti-self-dual

where s is the scalar curvature, ric, is the traceless Ricci curvature, W is the

self-dual Weyl curvature, and W~ is the anti-self-dual Weyl curvature.

18




We show now that it is possible to interpret R+ = xR as R(A;) = Aj and
R(B1) = B; where A, A € /\Jr T*M and By, By ¢ A”T*M in the following

way:

R % (A1) = R(A]) = Ag + By
on the other hand
*R(Al) = * (Ag +Bg) - Az el Bg

and hence, R* = %R implies B; = 0, i.e. R{A;) = A,.

In the same way
R * (B;) = R(—By) = —A; — B3
on the other hand
*R(By) = % (A3 + By) = A3 ~ Bs

and hence R+ = %R implies A3 = 0, i.e. R{B,) = By,

Therefore we can see that * R = R is equivalent to the vanishing of the

traceless Ricci curvature, which implies the Einstein condition.

Furthermore the Euler characteristic of oriented compact 4—dimensional

manifolds M can be expressed in the following way [Bes81]:

2

_ b 2 a8 |rice|®

19




The Thorpe condition implies x¥ > 0 and x = 0 if and only if the Thorpe
metric is flat, in particular, every Thorpe metric on T* is flat and S' x 83

never carries a Thorpe metric by the Cartan-Hadamard theorem.

2.3 Thorpe metrics on 7% and M*~P x T4+p

The purpose of this section is to prove the following statement.

Theorem 2.3.1 There are non flat Thorpe metrics on T for k > 1.

Proof. In the case of k = 1, we have already seen in section 2.2 that every
Thorpe metric on 7% is flat. On the other hand, we can construct infinitely
many Thorpe metrics on 7% for k& > 1. First we can consider T (k > 1)
as T? x T* P (2 < p < 2k — 1) and take the product metric {gr» + grae—n)
such that gpa—» is a standard flat metric on the torus 7%~ and gre is a non-
flat Riemannian metric on 7%, This is always possible since we can construct
non-flat metrics on small open sets and use a partition of unity function to

construct a global non-flat metric on 7'7. On the other hand, the curvature £

of a product metric ¢ = gre -+ gpran—p i8
R = Rre + Rparp

and this implies that the product metric g is 2k-—flat and so we can see that R

satisfies the Thorpe condition Rox * = %Ryy. Hence our constructed metric,




which is not-flat, is a Thorpe metric on 7%*. Furthermore we can see that
there are infinitely many choices of non-flat metrics on small open sets and a
partition of unity function and so there are infinitely many non-flat Thorpe

metrics on 7%. And this completes the proof. 0

We can apply the same argument in the following case:

Theorem 2.3.2 There are infinitely many Thorpe metrics on MY¥P x T+?
for p,k > 1, where M*~7 is any compact oriented manifold of dimension

1k —p > 2.

Proof. We can consider a product metric g = gaas—n + gracrs 0n M7 x THF?
for p, k > 1, such that gpaets is a standard flat metric on the Torus T**? and
garin—» 18 a non-flat Riemannian metric on M* 7 {4k —p > 2). This is always
possible since we can construct non-flat metrics on small open sets and use a
partition of unity function to construct a global non-flat metric on M*~?. On

the other hand, the curvature R of a product metric g = gasar—» + gpar+p i8
R = RMtlk—p + RT-ﬁc-i-p

and this implies that the product metric g is 4k—flat and so we can see that

R satisfies the Thorpe condition
Ryp x = * Ry

Hence our constructed metric is a Thorpe metric on M*~P x T4+ Further-

more we can see that there are infinitely many choices of non-flat metrics on

21
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small open sets and a partition of unity function and so there are infinitely
many non-flat Thorpe metrics on M7 x T*+P and this completes the proof.

O

Example 2.3.1 The following manifolds are Thorpe manifolds

o« RP* xT%  (p>Fk > 0)
e CPU xTH (s>g>0)
« HP* xT% (s> k> 0)
o H¥ xT% (p>k > 0)

e CH* xT% (p>k>0)

Proof. By theorem2.3.2 the above described manifolds are Thorpe manifolds.

O
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2.4 Other examples

In Section 2.3 we have seen that the product manifolds of T%+? with
any compact oriented manifold of dimension 4k —p > 2 for p,k > 1 admit
Thorpe product metrics. In this Section we can see that the product manifolds
of $* with hyperbolic manifold of dimension 4%k admit a Thorpe product
metric which is not an Einstein metric and also that the product manifold
of CP? with complex hyperbolicc manifold of complex dimension 2 admits a
Thorpe product metric which is not an Einstein metric and hence in the case
of dimensions greater than 4, a Thorpe metric, in general, does not imply an

Einstein metrice.

Theorem 2.4.1 If M* carries a metric with positive constant sectional cur-
vature and if N* carries @ metric with negative constant sectional curvature,

then M* x N* is a Thorpe manifold.

Proof. After rescaling, the curvature R of the Riemannian product manifold
is
R = Ry+ Ry
1 1
= §QM®9MH§QN®QN

and hence, the only non-zero terms in the 4k™ curvature tensor are those

which are products of sectional curvatures. All the other terms are zero. And
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s0 we can verify, case by case, that the product metric is a Thorpe metric. U

The above theorem provides us with a nice example of a Thorpe product

manifold, for instance, if we take
(M*,g,,) = (5", 9,)

(N*,9,) = (H*,g_))

then

(8% x H% g, +9.,)

is a Thorpe manifold.

On the other hand, this product metric is not an Einstein metric and
hence in the case of dimensions greater than 4, a Thorpe metric, in general,

does not imply an Einstein metric.

Remark. We can construct more Thorpe product manifolds in the following

way:

e 5% x ... x 9% with the product metric of standard ones.
e HY x ... x H, with the product metric of standard ones.

o Hix ---x HY x 8% x --- x 5%, with the product metric of standard ones.




2p
. 1—[(52 x H?), with the product metric of standard ones.
p21

We have seen H* x 8% is a Thorpe manifold and so we can raise the

natural question of whether CH* x CP? is a Thorpe manifold or not?

More explicitly, is the product of two Riemannian manifolds, whose holomor-

phic sectional curvatures are constant, a Thorpe manifold?

The following examples are Thorpe manifolds:

CP? x CP?
CH? x CH?
cr? x CH?

1t is not difficult to prove, by using a Kahler property and duality, that the

product metric of standard metrics gives us a Thorpe metric.

On the other hand, the product metric of standard metrics on the manifold

CP%* x CH?*  with k£ > 2, is not a Thorpe metric.

Question: Is CP%* x CH*, with k£ > 2, a Thorpe manifold or not?

Remark 2.4.1 We can construct more Thorpe product manifolds in the fol-

lowing way:
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e CP? x -.. x CP?, with the product metric of standard ones.

e CH? x .- x CH?, with the product metric of standard ones.

e CP2 x---x CP? x CH? x .-. x CH?, with the product metric of

standard ones.

e HP! x HP!, with the product metric of standard ones.

Remark 2.4.2 If a compact orientable manifold M** has non-zero Euler char-
acteristic, then the product manifolds M* x T, which have Euler charac-
teristic and 2k™ Pontriagin class equal to zero, have the following property: J

The product metric of any metrics on M* with any metrics on T is not a

Thorpe metric. The following compact orientable Riemannian manifolds are w

not Thorpe menifolds.

. ((CP% e T4k,gcp2k + gT4k)
. (H_Pk x T4k,g]ﬂlpk + gTuc)

. (H4k/F X T4k,gH4k/1" + gw&)




® ((Cffzk/r X T4k, Gerze T + gTrlk)

Remark 2.4.3 The following simply connected manifolds do not carry a Thorpe

metric because of their negative Euler charateristic, x < 0.

(S4p+3 . S4q+1) ST (S4P+3 X ,5'4‘”1) , with p,q 2 1,

and where # denotes connected sum.

(S4p+3 « Gla+l g 541") oo (S4P+3 x St 34"”) , with p,q,r 21,

and where # denotes connected sum.

(S4p+3 % S4q+1 % S4r % 84.9) # .. # (S4p+3 % S4q+1 x S4r % 543),

with p,q,r,s > 1, and where # denotes connected sum.

(S4p+1 % S4q+l % S4r+1 X S4s+1) # . # (S4p+1 X S4q+1 % S4r+1 X 843—|—1) ;

with p,q,r,8 > 1, and where # denotes connected sum.

(S4p+3 % S4q+3 X S4r+3 X S4s+3) # . # (S4p+3 % S4q+3 % S4r+3 % S4s+3) )

with p,q,7, 8 > 1, and where # denotes connected sum.
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Chapter 3

Einstein-Thorpe metrics

3.1 Uniqueness for Einstein-Thorpe metrics

In this section, we shall show the main theorems in this dissertation,
namely that every Einstein-Thorpe metric on 7% is flat and that every Einstein-
Thorpe metric on a compact oriented hyperbolic 8-dimensional manifold is a

hyperbolic metric.

Lemma 3.1.1 Let (M, g) be a Riemannian manifold of dimension 8, then

]_ ]. ]. 2 B 2 2
trace Ry = 5 (6) {58’ — 4 |ric,|” + 4 |R| }

where S is the scalar curvature, ric, is the traceless Ricci curvature and R is

28
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the curvature.

Proof. For 4—forms {e, A ey A e, A eg} and with the Einstein summation,

L b pe
trace By = —R{ag ch}

1 , :
= o () (o Ret+ e o+ 2

+Rie Rog + Rig Req + Reg Ry

where a,b,c and d run from 1 to 8,[ ] is a skew symmetrization, and {ex}oms-

is an orthonormal frame. We analyze the terms of this sum individually.

(i) Rg Rej = 3% — dricg, ric5, + 2R R,

B3|

i ab ped __ - b - ¢ db pdc
(11) Rac Rdb = T TG, TiC,,, + Rdc Rdb‘

(iti) Ry RG

and 80 we obtain

1 /1 1
trace Ry = — (—) {—2—82 —drict, rict, — drict, rict,
+2RE e + AR, R + RS R

and this completes the proof. d
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Remark. On Einstein manifolds of dimension 8k (k > 2), trace Ry, cannot

be expressed as an addition of $2¢ with |R?*.

Now we obtain one of the main theorems in this dissertation.

Theorem 3.1.1 BEuvery Finstein- Thorpe metric on T must be flat.

Proof. A Thorpe metric on 7% which has Euler characteristic equal to zero

must be 4-th flat, hence trace R, must be zero. From Lemma 3.1.1 and the
Einstein condition, we can read that the curvature tensor must be zero. Hence

every Einstein-Thorpe metric on 7% must be flat. ‘ O

Now we obtain the other main theorem in this dissertation.

Theorem 3.1.2 On compact oriented hyperbolic manifolds of dimension 8,
every Finstein-Thorpe metric is a hyperbolic metric up to rescalings and dif-

feomorphisms.

Proof. First of all, we know that every Einstein metric on compact hyper-

bolic manifolds has the negative Finstein constant: If this were not true, the

Cheeger-Gromoll’s splitting theorem tells us that compact hyperbolic man-
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ifolds allow a flat metric. But this is impossible because compact hyper-
bolic manifolds have fundamental groups different from those of flat manifolds.
Therefore we can fix the scale that makes the given Liinstein-Thorpe metric g
have the same Finstein constant as that of the hyperbolic metric h,. So from
now, we consider the Einstein-Thorpe metric g which has the same Einstein

constant as that of hyperbolic metric A,.

Since the metric ¢ is an Einstein metric, the pieces of trace R can be

calculated as follows: For an orthonormal frame,

52 S

Ry Ry = g -t 28.—7W£ + Wiy Wy
32 ab ab

by the property of traceless W and

ab poc ob ac
Rac ab T Wac ab
ab ped ab cd
Rcd Rab - ch Wab
where S is the scalar curvature, W is the Weyl curvature and R{ is the 4

curvature operator with respect to the metric g. So from lemma 3.1.1, we can

conclude that

trace R > trace R

by |W|? terms. Therefore we can obtain the following inequality

2
8 t R4
trace R{R{ > (4) ( ra((:;e) 4)
4
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= trace Rl Rl

where (§) = 5I55 and that equality holds if and only if the curvature is

constant.

Furthermore, from the Thorpe condition, we get
trace R R = trace * R * R}
and by the generalized Gauss-Bonnet theorem, we get
/M trace R} RY dV, = / trace Ri Rl dV,
M

and so we obtain

volg(M) < vol,, (M).

Hence the Bishop-Gunther theorem tells us that
h* (M, g)vol, (M) < h¥(M, h,)vol,, (M),

where h(M, g) and h(M, h,) are the volume-entropies of g and h, respectively.

On the other hand, we know that there is a universal inequality [BG95]
h¥ (M, g)voly(M) > hB(M, h,)voly, (M),
and so we can conclude that

W3 (M, g)voly(M) = h¥(M, h,)vols, (M),
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and that g is isometric to h, up to rescalings and diffeomorphisms, [BG95]. [

Remark. (i) On compact eriented hyperbolic manifolds of dimension 4, every

Einstein metric is a hyperbolic metric up to rescalings and diffeomorphisms, ‘

ii
|
i?,_

'BGOS).

(ii) On compact complex-hyperbolic manifolds of complex dimension 2, every

Einstein metric is a standard complex- hyperbolic metric up to rescalings and

diffeomorphisms, [LeB95) f

3.2 Non-existence of Einstein-Thorpe metrics

In this section we can see that Einstein-Thorpe metrics do not exist on

some manifolds of dimension 8 which satisfy x = 0 and I = 0. |I

Theorem 3.2.1

(i) The product manifold of T* with any compact orientable hyperbolic manifold
of dimension 4 does not admit an Finstein- Thorpe metric. ;
(11) The product manifold of T* with any compact complex hyperbolic manifold
of complex dimension 2 does not admit an Einstein-Thorpe melric.

The manifolds described in (i) and (i) satisfy x =0 and P, = 0. ’f




Proof. Since the manifolds described in part (i) and (ii) of the statement of

the theorem admit a nowhere vanishing vector field, the Hopf index theorem
implies that the Euler characteristic of those manifolds must be zero.
The tangent bundle of (H*/T) x T* splits as a Whitney sum
T (H*/T) © w31 (1)

and the total Pontrjagin class satisfies the following relation:

P (mT (H*/T) @ mT (1*)) = P (n{T (H*/T))
and so the 2% Pontrjagin class,

Py (T (1/0) @7 (7)) = 22 (i (/1))
and furthermore

Py (mT (HY/T)) = e(miT (H'/T)) Ue(mT (HY/T))
= 7 le(T(H"/1)) Ue (T (H*/T))]
= 0

Where e denotes the Euler class and U is the cup product. Therefore
Py (miT (H4/I‘) @yl (T4_)) =0

The same procedure can be applied to the manifold described in (ii} and so

the manifolds described in (i) and (ii) have x = 0 and % = 0.
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So any Thorpe metric on the manifold described in (i) and (ii) must be 4**
flat, therefore an Einstein-Thorpe metric must be flat by Lemma 3.1.1. This
implies that compact (complex) hyperbolic manifolds must allow flat met-
rics but this is impossible because compact (complex) hyperbolic manifolds
have fundamental groups different from those of flat manifolds. Therefore
the manifolds described in the statement of the theorem do not admit any

Einstein-Thorpe metric. 0]

Example 3.2.1 The following manifolds do not carry an Einstein- Thorpe

metric
(i) 57 xSt (i) 5% x S'x S
(iii) S® x s5° (iv) S°x 8%2x 51
(v) S*x8*x st (vi) S¥x 8 x8¥ xSt

(vii) 3 x 8% x 92 x 8t (viii) S%x 5% x9?xStxS!

Proof. Suppose that the manifolds described in the above statements allow
an Binstein-Thorpe metric. Since these manifolds have ¥ = 0, every Thorpe
metric on them must be 4% flat. And so trace R, must be zero and this
implies that the curvature must be zero by the Lemma 3.1.1 and the Einstein
condition. This contradicts the Cartan-Hadamard theorem and completes the

proof. d
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3.3 In the case of y = (£Z)|P,|

In this section we can see that a compact orientable Einstein-Thorpe
manifold of dimension 8 that satisfies the above topological equality must be

flat.

Theorem 3.3.1 Suppose that (M3, g) is a compact orientable Finstein- Thorpe

manifold and that

then (M3, g) must be a flat manifold, i.e. (T®/T, flat) where I' is of finite

order.

Proof. The above topological condition together with the Thorpe condition

can be expressed by

trace Ry Ry = [trace Ry = Ry]

Now consider any orthonormal basis A; € /\+(M ), and any orthonormal basis
B; € A" (M) where AT(M) and A7 (M) denote the self dual space and the
anti selfdual space with respect to the Hodge * operator repectively. Then we

get

<Ry(A) Ri(Ai) > = [RalAi, 4)) + |Ra(As, By)P?




< Ry(By),Ry(By) > = |Ra(By, B;)|” + | Ra(Bs, Aj) P
< xRy (Ay), Ry (A4;) > = |Ba(As, Aj)2 - |R4(Ai, B;)|?
<Ry (B)),Ra(By) > = |Ra(By, A))° — [Ra(Bi, Bj)I®

S0 we get
trace Ry Ry = |Ra( Ay, A} -+ [Ra(Ay, By)|? + |Ra(Bi, By)|* + |Ri(Bi, Ay
and
trace Ry * Ry = |Ra(As, A)[* — | Ra(As, By) P + [Ra(Bi, A))* — |Ra(Bi, Byl
If we assume trace Ry, * Ry > 0, then by the given condition
trace By By = trace By + Ry

and this implies
R4(Az‘,Bj) = R4(Bi, Bj) =0

therefore

RI:R%CJ& 0.

141

Furthermore by the Bianchi identity,
trace * By =0

and so we obtain

trace By = 0.

Hence by Lemma 3.1.1, we can see that the Einstein-Thorpe metric g is a flat

metrie. On the other hand, if we assume

trace Ry * By <0,

37

S——

m= e e e




then by the given condition

trace Ry Ry = —trace Ry * Ry

and this implies

and so we get

_ R R

0.
2

Ry
Furthermore by the Bianchi identity,

trace * Ry =0

and so we obtain {
|

trace Ry = 0.

Hence by Lemma 3.1.1, we can see that the Einstein-Thorpe metric g is a
flat metric. Therefore under the given topological condition, the Einstein-
Thorpe metric ¢ must be flat. Hence we can conclude that (M, g) must be

(T®/T, flat), where I is of finite order and this completes the proof. O

Remark, In the case of a compact oriented Einstein manifold M of dimension

4 with y = %lPl |, N. Hitchin in [Hit74], has classified these manifolds as follows:

1. M is flat.

2. M is a K3 surface (m (M) = {1}).




3. M is an Enriques surface (m (M) = Z»)

4. M is the quotient of an Enriques surface by a free antiholomorphic in-

volution (m (M) = Zgs X Zy).
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