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Abstract of the Dissertation

Parabolic Limits of
Renormalization

by
Benjamin Veinbergs Hinkle
Doctor of Philosophy
in ’
Mathematics
State University of New York at Stony Brook

1998

A unimodal map f : [0,1] — [0,1] is renormalizable if there is a
sub-interval 7 < [0,1] and an n > 1 such that f"[; is unimodal. The
renormalization of f is f"|; rescaled to the unit interval.

We extend the well-known classification of limits of renormalization of
unimodal maps with bounded combinatorics to a classification of the limits
of renormalization of unimodal maps with essentially bounded combina-
torics. Together with results of Lyubich on the limits of renormalization
with essentially unbounded combinatorics, this completes the combina-
torial description of limits of renormalization. The techniques are based
on the towers of McMullen and on the local analysis around perturbed
parabolic points. We define a parabolic tower to be a sequence of uni-
modal maps related by renormlization or parabolic renormalization. We
state and prove the combinatorial rigidity of bi-infinite parabolic towers
with complex bounds and essentially bounded combinatorics, which in
turn implies the main theorem.

As an example we construct a natural unbounded analogue of the
period-doubling fixed point of renormalization, called the essentially period-
tripling fixed point.
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Chapter 1

Introduction

This thesis investigates renormalization of certain unimodal or quadratic-like maps
(see §2 for definitions and background). For our purposes the goal is to answer the
4

following

Main Question: What, if any, are the limits of renormalization of an oc-renorma-
lizable unimodal or quadratic-like map?

In this chapter we first give the context of our results. Then we state our results and
discuss to what degree the main question has been answered.

1.1 Context

History begins, for us, in the 70’s and early 80’s when many people became interested
in renormalizable maps with period-doubling combinatorics, One of the main results
was the existence of a unique limit of renormalization in the period-doubling case:
the period-doubling fived point of renormalization. Let us be more specific. To fix
notation, let Qg and Gg denote the space of real-symmetric quadratic-like maps and
germs, respectively. Let Rf denote the renormalization of f. Let p(f) denote the
period of renormalization.

Theorem (Period Doubling Combinatorics, [Lan, El, E2]). There exists a
unique F' € Qg such that if f € Qg is co-renormalizable with p(R™f} = 2 for all
n>0then R"f — F.

Throughout this introduction we state theorems for real-symmetric quadratic-like
maps. The generalizations for different classes of maps will be discussed in §1.3.
Once the period-doubling fixed point was found, attention turned to the case of maps

with bounded combinatorics.

Theorem {Bounded Combinatorics, [S, McM2]). For p > 1 there exists @
compact R-invariant set A C Gr such that .




?'f_ N T

1. R |4 is conjugate to the yull shifi on Q(p), the set of combinatorial types of period
bounded above by p, and

2. if f € Qg is co-renormalizable and sup, p(R™f) < p then R"f — A.

Since R is defined and continuous in a neighborhood of A it follows that the limits
of renormalization of a map with bounded combinatorics are encoded by bi-infinite
sequences of a finite number of symbols. However, this theorem still left unexplored
the large set of maps with unbounded combinatorics. Lyubich answered the Main
Question for the subset of maps with essentially unbounded combinatorics. Let pe(f)
denote the essential period of a renormalizable f € Qr. The essential period roughly
measures the period of renormalization minus the time spent near a “chost parabolic
point”. See §2.3.3 for a precise definition.

Theorem (Essentially Unbounded Combinatorics, [L3]). If f € Qg is renor-

malizable then
mod R f > p(pe(f), mod f) >0

where p — 0o when p.(f) = co.

In this thesis we finish answering the Main Question by characterizing renormlization
limits of maps with unbounded but essentially bounded combinatorics.

1.2 New Results ‘

f Our first result produces the essentially-bounded analog of the period-doubling fixed
point of renormalization. Tn §3.1 we construct a countable collection of maximal tuned
Mandelbrot copies {M,({g)};‘f:l that accumulate at ¢ = —1.75, the root point of the real
period-three Mandelbrot copy M (3, These copies have “essentially period tripling”
combinatorics. They will play the roll of the period-doubling tuned Mandelbrot copy. : l

b

Theorem I (Essentially Period Tripling). There is a unique F € Gg such that
R*'f > F
for any co-renormalizable f € Qr with a tuning invariant
r(f) = (ME, MO, ..., MD,...)
satisfying ny — 00 as k — 00.

Our second result answers the Main Question for the essentially bounded combina-
torics case.

Theorem II (Essentially Bounded Combinatorics). For every p > 1 there exists |
a pre-compact R-invariant set A C Gr such that




1. R|4 is conjugate to the full shiji on § 2o(p), the set of combinatorial types with
essential period bounded above by p, and

2. if f € Qg is co-renormalizable and sup,, P{R"f) < p then R"f — A.

Let h : 1= _.(p) — A denote the conjugacy. Then there is a compactification
QPt(p) of Q(p) such that h estends to a continuous map h : 1= QP (p) — A,
Moreover, suppose fi € Qg has the same combinatorics as fz € A. Then for any
sequence my, — oo and sequence o € [1%, 0P (p) such that R™ f; — k(o) one has
R™ f —+ h(&)

Note that there does not exists a neighborhood of A on which R is continuous and,
moreover, it is not know even if R|4 extends continuously to A. If the map h were
injective then we could conjugate the shift on 11 _Q%(p) to a continuous extension
of R on A. We expect h to be injective (see [Y2, Remark 3.1]). However, Theorem II
states that any renormalization limit of a map with essentially bounded combinatorics
has a combinatorial description. Let us discuss this theorem in more detail. Recall
that the central objects of McMullen’s argument [McM2] are towers: sequences of
quadratic-like maps related by renormalization. A forward tower is a one-sided se-
quence and a bi-infinite tower is a two-sided infinite sequence. The convergence of

renormalization is implied by the combinatorial rigidity of the corresponding limiting.

bi-infinite towers. That is, for the purposes of introduction, we can define the space
Tow of McMullen towers to be the space of one-sided or two-sided sequences 7 of
germs [ € Gg such that f,11 = Rfa. If we embed the space X of germs of oo-
renormalizable maps with bounded combinatorics into Z'ow by the map 1 : X — Tow
defined for all n > 0 by

W[/ (n) =R"[/]

then we have the following equality:
R =mgold™on

where @ is the shift operator and g is the projection to the 0*-coordinate. Since
X embeds into a compact subspace Tow(p) of Tow we can pass to the limit as
n — oo and obtain a limiting tower 7 € wy(2([f])). Since the tower 7T is uniquely
determined (in Tow(p)) by its shuffle sequence, the theorem on convergence with
bounded combinatorics follows.

We use a similar argument. However, X, the space of germs of oo-renormalizable
quadratic-like maps f € Qg with sup, p.(R"f) < p, does not embed into a pre-
compact subspace of Tow. That is, for maps with essentially bounded combinatorics
the limiting towers may contain parabolic maps and we lose the renormalization
relation between levels. In this case a new relation appears: parabolic renormal-
ization. That is, the maps in the limiting towers are related by either classical or
parabolic renormalization. A tower which contains a parabolic renormalization is
called a parabolic tower.

See §5.1 for the precise definitions of parabolic towers, and of the space of towers
with essentially bounded combinatorics and complex bounds, denoted Tow(m, B)
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where m is the modulus bound and B is the corbinatorial bound. Our proof of the
rigidity of bi-infinite parabolic towers with definite modulus and essentially bounded
combinatorics consists of first analyzing forward towers and then analyzing bi-infinite
towers.

Our analysis of forward parabolic towers was motivated by the work of A. Epstein
[E], which considered general holomorphic dynamical systems (with maximal domains
of definition) and their geometric limits. The phenomenon studied there was the
renormalization (different from the sense used in this paper) of a parabolic orbit at
the ends of its Fcalle-Voronin cylinders. The parabolic renormalization we study
occurs away from the ends. As a result forward infinite parabolic towers share many
properties with infinitely renormalizable real quadratic maps. In some sense many

. properties of co-renormalizable maps “pass to the limit”.

The combinatorial rigidity of forward parabolic towers with polynomial base map
follows from the theory of quadratic-like families and from the combinatorial rigidity
of quadratic polynomials with complex bounds and real combinatorics {see Propo-
sition 5.2.6). After analyzing the Julia set of a forward tower we prove any quasi-
conformal conjugacy of a forward infinite parabolic tower in Tow{m, B) is a hybrid
conjugacy (see §5.2.9).

Then following the arguments of McMullen we prove in §5.3 the rigidity of bi-
infinite towers. That is, we first prove

Theorem 1.2.1 {(Dynamical Hairiness) The union of the Julia sets o f the forward \
infinite sub-towers of a bi-infinite tower in Tow(m, B) is dense in the plane. 1

Then we prove

Theorem 1.2.2 (Quasi-conformal Rigidity) Any guasiconformal equivalence of
a bi-infinite tower in Tow(m, B) is affine.

Theorem 1.2.3 (Combinatorial Rigidity) Any fwo normalized combinatorially "
|

and ‘
equivalent bi-infinite towers in Tow{m, B) are equivalent. ‘
|
\

1.3 Questions

The classification of renormalization limits for bounded combinatorics holds for a L
more general class of maps. For one, if f is an oo-renormalizable real unimodal map i
that is C*Z-smooth with quadratic-like critical point and if sup, p(R"f) < p then
R*f — A as well. One might hope to use the techniques from this thesis to prove the i
corresponding statement for unimodal maps with essentially bounded combinatorics.
However, our result requires the existence of perturbed Faiou coordinates, which do
not exist in the non-holomorphic class.

All of the theorems stated above are true for co-renormalizable maps f € @ that
only satisfy I(f) € R where I(f) is the inner-class of f. Theorems I and IT are proved




in this generality. One can also consider co-renormalizable quadratic-like maps that
do not satisfy I{f) ¢ R. Since the combinatorial rigidity of bi-infinite towers invokes
real combinatorics in only a few places, we expect to be able to generalize Theorem
TI to certain classes of maps with complex combinatorics. However, the techniques
used to prove Theorem IT cannot succeed for all combinatorial types, since a vital
ingredient in the proof is the existence of complex bounds, which is known to be false
for certain co-renormalizable maps (see {M2, Theorem 6] and [McM2, Proposition
4.14)}.

Let us mention a parallel with critical circle maps. The theory of renormalization
of unimodal maps is closely related to renormalization theory of critical circle maps.
The rotation number p, more specifically its continued fraction expansion, determines
the combinatorics of a circle map. If the factors in its expansion are bounded then the
map has bounded combinatorics and has unbounded combinatorics otherwise. If a
circle map has unbounded combinatorics then the rotation numbers of the renormal-
izations contain rational limit points and the corresponding limit of renormalization
contain parabolic periodic points. That is, the only kind of unbounded combinatorics
in the theory of critical circle maps is the essentially bounded combinatorics. DelFaria
[deF| analyzed the renormalization limits of critical circle maps with bounded com-
binatorics and Yampolsky [Y2] proves the analogue of Theorem II for critical circle
maps with unbounded combinatorics.

1.4 Notation

e H ¢ C denotes the complex upper half-plane, C the Riemann sphere, N = Ny
the non-negative integers and N, the positive integers.

[, 0] will also denote the interval [b,a] if b < a.

e diam(U) denotes the Fuclidean diameter of U C C and |I| the diameter of
ICR

e cl(X), int(X) and 8X denote the closure, interior and boundary of X in R if
X C R and in € otherwise.

e U @V means U is compactly contained in V. Namely cl(U) is compact and
c(U) C V.

e in a dynamical context f" denotes f composed with itself n times.

e if V is a simply connected domain and I/ C V then mod (V, U) = sup, mod(A)
where A is an annulus separating U from V.

e Dom(f) and Range(f) denote the domain and range of f.

e Im(f) denotes the image of f

¢ CC(X) denotes the collection of connected components of X.




o Pz)= 2* +c.

e an e-scaled neighborhood of a domain U is an € diam(U) neighborhood of U




Chapter 2

Background

2.1 Quadratic-like Maps

We will use the notation Dom(f) for the domain of a map f and Range(f) for
the image of f. A pair (U,z) consisting of a simply connected domain U cC,
U # C, and a point z € U is called a pointed disk. We will call a simply connected
domain that is not the entire plane a topological disk and we will call a topological
disk whose boundary is a Jordan curve a Jordan disk. Given a pointed disk (U, x)

let Ripay : D - U be the Riemann map normalized so that s (0) = z and.

R’(U,x)(()) > 0. Topologize the set D of pointed disks with the Caratheodory topology:

the compact-open topology on the Riemann maps Epz).
Let A denote the space of holomorphic maps defined on topological disks with

the Caratheodory topology. More specifically, define
H = {(f,U,z) | (U,z) € D, f: U — C holomorphic}
and impose on # the topology generated by neighborhoods of the form
N(f,U,3,6,K,D) ={(g,Viy) eH | (Vi) € D', |If —gllx <e}

where (f,U,z) € H, ¢ > 0, K C U is compact and D' is a neighborhood of (U,z) in
D such that K C V for all (V,y) € D'. Let Ho = {(f,U,x) € H :z =0}

A map f € H is quadratic-like if Dom(f) @ Range(f) and f is a branched double
cover of Dom(f) onto Range(f) (see [DH2]). An actual quadratic polynomial can
be considered quadratic-like by restricting to the pre-image of {2 : {2| < R} for some
large R. Unless otherwise indicated we will assume the critical point of a quadratic-
like map is at the origin. A point z € Dom(f) is non-escaping if f*(2) € Dom(f) for
all n > 0. For a quadratic-like f define

modulus of f = modf = mod(Range(f), Dom(f))
the filled Julia set of f = K(f) = {2z € Dom(f) | z is non-escaping}
J 0K (f)

UnZl fn(o)

the Juliaset of f = J(f)
the post-critical set of f = P(f)

i




Lefine the following subspaces of H:

Q = {f e H,:fis quadratic-like}
Q" = {feQ:f*0)e Dom(f) for k=0,1,...,n}
Q® = {fe€ Q:K(f)is connected } = My Q"
Or = {fGQ:ZEDom(f)#»ZEDom(f) and f(2) = f(2)}
Q(m) = {f€ Q:modf>m}.

Similarly define QF, Qr(rn), Q(m), etc. as the appropriate intersections of the
above subspaces.

Let f € Q. Foragivenz # 0let 2 = f{(f(z)}\{a}. fz=0Ietz =0
There are, counted with multiplicity, two fixed points of f denoted « and 3 and, in
the case f € Q%, labeled so that either o is non-repelling or, if both fixed points are
repelling, so that J(f) \ {#} is connected. Note a = g iff f'(8) = 1. We say f € Q@
is normalized if B = 1. We note the following folklore facts: (see, for example, [D],
[McM1, Theorem 5.9], [McM2, Proposition 4.12], [McM1, Theorem 5.8))

Lemma 2.1.1 The function diam K(f) is a continuous function on Q@ and the func-
tions oy and By are continuous on Q.

Lemma 2.1.2 For any m > 0 and C < oo, the set
{f € @°(m) : dlam K (f) = 1, d(0,C\ Range(f)) < C}

18 compact.

2.1.1 Quadratic-like germs

Two holomorphic maps determine the same germ at z if they are equal on a neigh-
horhood of z. That is, consider the equivalence relation ~, defined on {feH|z¢€

Dom(f)} by
f ~, g iff there exists a nbhd U C Dom(f) N Dom{g) of z such that flv =9lu.

For a given f € H with z € Dom(f) the germ of f, denoted [f]2, is the equivalence
class of f. The germ of a map f € Ho at z = 0 will be denoted by [f]. We call
a connected component F of [f] N Q@ a quadratic-like germ (see Fig. 2.1).  This
definition is slightly different from [L5, §3.1]. However, on Q> they agree, as shown
below.

Lemma 2.1.3 Let f € Ho and let F be a connected component of [fINQ. If f1,f2 €
F then K(f1) = K(f2).

Proof: Let X = {g € I : K(g) = K(f)}. We first claim X is closed: let g, € X be
sequence converging to g € F. Let W C Range(g) be a closed disk such that g(0) €
int W > Dom(g). Let h = g restricted to Wy = g~'(int W). Then K(h) = K(g).




Figure 2.1: The space Ho.
Also, since W, C Dom(g,) for large enough n, it follows from [McM1, Theorem 5.11]
that K (k) = K(gn) for large enough n. Hence X is closed. Now we claim X is open.
Let g € X and choose W as before. Choose a smalle > 0 andlet U = FNN{(g,e, Wh),
where recall N'(f, ¢, K) generate the basis for the topology of . Again from [McM1,
Theorem 5.11] it follows that U C X. [

Define the filled Julia set of F' by K(F) = K(f) for any f € F. Similarly define the
Julia set J(F') of a marked germ F'.

Lemma 2.1.4 If f € Q% then [f] N Q*® is connected.

Proof: Choose g,h € [f] N @®. From [McM2, Lemma 7.1] we have K(g) = K(h) =
K(f). Let U be the connected component of Dom(g) N Dom(h) containing 0 and let
¢ = g = h restricted to U. Then ¢ € [f]N Q™ and K(¢) = K(f). Without loss of
generality we may assume Range(g) and Range(h) are Jordan disks with piecewise
smooth boundaries. We claim ¢ and g are in the same connected component of [f]-
Foliate Range(g) \ Dom(g) with a continuous family of curves 4 for & € S' such
that for each 8, v4(0) ¢ dRange(g) and ¥5(1) € dDom{g). Pull back the foliation to
be a foliation of Range(g) \ K(g), which we will still denote by s, though now the
domain of -y is [0, 00). That is, for allt > 1 and 0 € S1, vy satisfies

g(e(t) =10 (t — 1)

where ¢ satisfies g(75(1)) = v (0). Each curve -y is called an ezternal ray and for t5 €
[0, o0] the level set Ugyg(to) is called an equipotential. For cach z € C = GRange(¢)
let 0(z) be the unique angle such that & € Im(vy(;) and let ¢(x) be the unique time
such that = Yy (t(z)). For each ¢ € [0,00) and z € C let

51 = Yooy (max(0, 1(z) — ).

That is, z; moves along the foliation until hitting dRange(g) when it stops. Let V;
be the connected component of C \ Uzec{z:} containing 0. Let ¢; = g restricted to
¢~ 1(V;). Then ¢, is a path from ¢ = ¢y to g = ¢r where T’ = maxgec t(z). O




We will often abuse notation and write [f] to denote [f] N @, when defined.
Let G denote the set of quadratic-like germs with connected Julia set. We give

G the following definition of convergence: F, — F iff there are representatives
fo € F, and f € F such that f, — f. See [L5, §4.1] for the definition of the

underlying topology.

2.1.2 Straightening

We will assume the reader is familiar with the theory of quasiconformal maps and the
Measurable Riemann Mapping Theorem (see [LV]}). A quasi-conformal equivalence ¢
between quadratic-like maps f and g is a quasiconformal map from a neighborhood
of K(f) to a neighborhood of K(g) such that ¢o f = go¢. A quasi-conformal

‘equivalence is a hybrid equivalence if o9| k() = 0 as a distribution.

Proposition 2.1.5 ([DH2]) Any quadratic-like map f is hybrid equivalent to a quad-
ratic polynomial. If K{f) is connected the polynomial is unique up to affine conjugacy.
Moreover, if f € @®°(m) and Dom(f) is a K-quasidisk with piecewise smooth bound-
ary then the equivalence can be chosen to be a conjugacy on Dom(f) with dilatation
bounded above by C(m, K) < oo,

The inner class of a map f € Q, denoted I(f), is the unique ¢ value such that
f is hybrid equivalent to P.. Recall P.(z) = 2* + c. The inner class of a germ with
connected Julia set is the inner class of any representative. Define the Mandelbrot set

M = {ce C: K(F,) is connected}.

The root of M is the point ¢ = 1/4, the unique parameter value so that ap, = Bp,.
For a picture of M see Fig. 2.2. The inner classes parameterize the space of hybrid

classes.

Proposition 2.1.6 ([DH2],[McM2, Proposition 4.7]) 7 : Q° — M is continu-
ous.

2.2 Renormalization

2.2.1 Complex renormalization

A parameter value ¢ € C is called super-stable if 0 is periodic under F,. Fix a
superstable cg # 0 and Jet p be the period of 0 under P,. There exists a domain
[V 5 0 such that

fco :PéDIUE Qm-
For example, let U be a small neighborhood of the immediate basin B of 0 in the

metric such that P, is expanding on dB. The Mandelbrot set tuned by cg, or, briefly,
an M-copy and denoted M, is the set of parameter values ¢ such that PP has a
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1.25

-1.25

Figure 2.2: The Mandelbrot sef.

quadratic-like restriction “near” f, with a connected Julia set. More precisely, let
f. = PP and let X C G™ be the connected component of the set of germs Ugec[ fe| Q™

containing f.,. Define
Mo ={ceC:[f]C X}

Using the results summarized in §2.3.4 (the puzzle construction), one can show that
ME is homeomorphic to M or M\ {1/4}. Note that this is not exactly the standard
definition of an M-copy, which would be the closure of what we call M°. The closure
of M¢ is always homeomorphic to M. The root of M° is the point corresponding
to 1/4 and the center is the point c. An M-copy that is not contained in any other
M-copy is called mazimal. The period of an M-copy M€ is the period of the origin
under F..

Fix a maximal M-copy M of period p and let f € I"'(M). By definition there
is 8 domain U S 0 such that f?|y € @©. The map g = f?|y is called a (complex)
pre-renormalization of f, and f is said to be renormalizable of period p. This pre-
renormalization is always simple, meaning the iterates of J(g) under f are either are
disjoint or intersect only along the orbit of 8,. We say ME is real if ¢ is real. The only
real maximal M-copy for which the root point is not renormalizable is the period two
copy M®. We will denote the real period three copy by M® | The root points of
M® and M® are ¢ = —0.75 and ¢ = —1.75, respectively.

If 2|y and fP|p are two pre-renormalizations then by Lemma 2.1.4 they represent
the same quadratic-like germ. Hence we can deline the renormalization R f as the
quadratic-like germ [f?|y] normalized so that 3 = 1. We define the renormalization of
a germ to be the renormalization of a quadratic-like representative. A map f € Q%

11




18 infinitely renormalizable if R™[ is defined for all n > 0, or, equivalently, if (f)
is contained in infinitely many M-copies. We say an co-renormalizable f has
real combinatorics if the all the maximal M-copies containing /(R"f) are real. See
[M3, D2] for a more complete description of tuning.

2.2.2 Real renormalization

Let I C R be a closed interval. A continuous map f : J — I is unimodal if f(8I) C
87 and there is a unique extremum c of f|;. For f € QF let By = (B¢, 8%], and
Ay = [af,of] C By. Note that K(f)NR = By. The next lemma follows from
Lemma 2.1.2 and the continuity of 8, and ;. We say A is C-commensurable to B if
Ct<A/B<C.

Lemma 2.2.1 Form > 0, |3;] and | By| are C(m)-commensurable to diam K (f) for
any | € Qg (m).

Any f € Q¥ is unimodal on By (and this interval is the only interval with this
property). A unimodal map f: I — [is real-renormalizable if there is an interval
I' 5 ¢ and an n > 1 such that f*|p is unimodal. Unlike complex renormalization, we
can canonically define real-renormalization as acting on unimodal maps as follows.
Define the real pre-renormalization g of a unimodal map f as g = f™iyr where n is
minimal and define the real-renormalization Rf as g conjugated by z +» z/08, where
#3, is the boundary fixed point of g.

Suppose f € QF is real-renormalizable and positively oriented, where we say a
unimodal map f|j with @ < b is positively oriented if f (b) = b. Note the quadratic
family P, is positively oriented. Let g be a pre-renormalization of f and let oy be the
permutation induced on the orbit of B, labeled from left to right. Any permutation
that can be so realized is called a unimodal non-renormalizable permutetion, or a
shuffle. The permutation on two symbols we will denote by 0@, If o5 = 0@ we say
f is immediately renormalizable. The map M® — op, from the set of real maximal
M-copies to the set of shuffles is a bijection. We will denote the shuffle corresponding
to a real maximal M-copy M by oa and the real maximal M-copy corresponding to
a shuffle & by M®. We will occasionally use the notation R, to denote the complex
renormalization operator acting on I™1(M?7) and on its germs. If f € J ~1(M?7) then
define o = o. For an infinitely renormalizable f € @ with real combinatorics define
s to be the sequence of shuffles oz forn > 0.

2.2.3 Complex bounds

An oco-renormalizable map f € Q% has complex bounds if there is some m > 0 such
that the domain Uy and range V; of the k-th complex pre-renormalization fi can be
chosen to satisfy mod (Vi,Uy) > m for all k > 1. The following theorem establishes
combinatorial rigidity of infinitely renormalizable maps with real combinatorics and
complex bounds.

12




Theorem 2.2.2 ([L3]) If P, and Py are two oo-renormalizable quadratics with com-
plex bounds and the same real combinatorics then ¢ = .

Complex bounds are proven to exist for real quadratics:

Theorem 2.2.3 ([LY, L2, S, LS]) Real infinitely renormalizable quadratics have
complez bounds. Moreover, U, and V, can be chosen to be K -quasidisks,

diam(Vy) < C - 1By,
and, if oge-1p # o'? then the unbranched condition holds:
P(f)N Vi = P(fx)-

The values m, C and K are independent of f.
s

When we make an additional assumption on the combinatorics we obtain the
unbranched condition on all levels.

Lemma 2.2.4 Let € > 0. Suppose f is an infinitely renormalizable real quadratic
with I(RFf) > —~2 + ¢ for all k > 0. Then there is an m > 0 such thal the domain
U, and range Vi of the k-th pre-renormalization can be chosen to salisfy

e mod (Vi, Uy) > m

e U, and Vy, are K -quasidisks
o diam(V}) < C-|By,|

o P(f)NVi=P(fi)

for all k > 1. The constants m and K then depend on e.

Proof: If oge-1; # @ then Uy and Vj can be chosen to be those given by The-
orem 2.2.3. So assume ogi-1; = oD, Let h: Uy, — Vi, and hy : Uy = W
be the (k - 1)-st and k-th pre-normalization from Theorem 2.2.3 rescaled so that
diam K (k) = 1. Let E = P(h)\ P(h1). From the following lemma, Proposition 2.1.6
and the assumption I(R¥f) > —2 + € we obtain

dist(F, B(hy)) = [*(0) — an| = Cle,m) > 0.

From a construction of Sands, V; can be chosen to be the union of a Euclidean disk
centered at 0 of radius |8, | and two small Euclidean disks centered at &8y, of radius
¢ > 0. The modulus mod(U%, V{) is bounded below by a function m/(¢’) > 0. Choose
e < Cle,m). O
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2.3 Generalized Quadratic-like Maps

Let U denote the subspace {(f,U,x) € # : f univalent and U € Range(f)}. Let
Hop=(QxUX - xU)/Sp 1
n—1

where S,,.; is the permutation group on n— 1 symbols acting on the last n—1 factors.
Let £ be the following subspace of U,>1Hn:

- T el S V0<4,ji<n—1, U;nU; =0, }
L= {(fh U:l?m'ﬁ)‘l::() € Hn : Range(fm) — Range(fj), z; = f;.,ml(fo(())) .

Yince the domains U; are disjoint we will identify the map f = fi|p, with the equiva-
lence class of the tuple (f;, U, z;). A map f € L is called generalized quadratic-like.
The distinguished component Uy = Uy(f) is called the central component or the
eritical piece. The connected components UjzoU; = U,20U;(f) are called off-critical
pieces, or non-central pieces. Choosing a representative (fi, Ui, z;) is simply the act of
labeling the off-critical pieces, and we will use both phrases interchangeably. Define
the modulus mod f, the filled Julia set, K (f), the Julia set, J(f), and the post-critical
set, P(f), as for quadratic-like maps. Recall the modulus is the supremum of moduli
of annuli in Range(f) surrounding all the components in Dom(f).
Define the following subspaces of L:

L0 o= {feL:fH0) € Dom(f) fork=0,1,...,n}

Eoo — nnZOLn :

Lr = {(fa,;, U:,;,:B,;) celL:zel;=Z¢c U; and f@(?) = f@(z)}
Lim) = {f€L:modf>m}.

Similarly define Lg, Lr(m), £2(m), etc. as the appropriate intersections of the above

subspaces.
Define the geometry of (f;, Ui, x;) € L as

. Ldiam K(f)NU;
geolf) = = K ()

The following lemma is a direct generalization of Lemma 2.1.2.
Lemma 2.3.1 For e given m > 0 and A > 0 the set

{f € £L2(m) : diam K(f) =1, n> 1, geo(f) = A}
s compact.

Proof: Let us denote the set in question by X(m, ). Let f = (fi,Us, %) and
K; = K(f) NU;. Then since f;'(K(f)) = K; we have

mod (Range(), K (1)) , modf _ m
2 -2 T2

mod (U«;, KE) 2
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Since diam K; > X it follows that U; contains an e(m, A)-neighborhood of Kj. Since
U;nU; = B for i # j and K(f) C D it follows that the number of connected
components of Dom(f) is bounded above in terms of m and A. Moreover, since
z; € K(f) it follows that U; contains an e(m, A)-ball of z;. Then 7 > 1 implies both
U; and its complement contain balls of radius e(m, A) with centers z; € D, which
implies that each (U}, z;) ranges in a compact set of pointed disks. Hence each f; is
ranging in a compact subspace of H (see, for example, [McM1, Theorem 5.6]). Since
X(m, A) is closed it is compact. L[]

2.3.1 First return maps and generalized renormalization
Fix an f € £ and let U -C C be open. Define the open set Dy by
Dy ={z: f*(z) € U for some n € Ny}
For z € Dy define the first landing time no : Do — Ny by
no(z) = min{n € Ny : f*(2) € U}
and the first landing map Lo : Dy — U by
Lo(z) = ™9 (2).

We will also denote the first landing map by L(f,U). Define Dy, ny and Ly exactly
as above except replacing Ny with N. We call Ly the sirict first landing map of
f to U. Define the first return map of f to U, denoted R(f,U), as L, restricted
to D, NU. If P C Dom(R) is compact then we denote the restriction of R to the
components of Dom(R) containing P as R(f, U|P). If 0 returns to Uo(f) under f we
define the generalized renormalization of f as R(f,Us(f)|P(f) U {0}).

2.3.2 The return-type sequence

Fix a maximal, real M-copy M # M and let f € I"Y(M). This implies oy is
repelling. In real contexts we will assume f € QF’. Define the complex principal nest

Vioviovio. ..

of f as follows. Choose a smooth closed embedded m;-injective curve vy in the funda-~
mental annulus Range(f)\ Dom(f). Curves of this type will be called equipotentials.
Let D be the disk bounded by f~1{vo). Choose a straightening of f|p to a polynomial
and pull back the external ray foliatation by the conjugacy. Cut D by the closure
of the rays that land at oy and at o. The resulting set of connected components is
called the indtial Yoccoz puzede T (see Fig. 2.3). Using the notation from [L3], these

are the sets
T=yPuyWuz®.

That is, 0 € Y, a5 € BYl(l) and o € 82'{1}. Let g be the first landing map
L({, Z{1) and let V° be the connected component of f -2(ZMY containing 0. We call
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V0 the initial return domain w.r.t. T. Note that f2(0} € Z{l) since M # M. For
m > 1 define
gm = RS, V™ P(f)U{0})
and define
Vm - U(}(gm)

For m > 0 let I = V™ N R. We will also denote the restriction to the real line
Gm 1 Ugd™ — I™" by g,.. Number the intervals U;Z[* {and domains V™ from left to
right and so that 0 € If* = I'™.

Figure 2.3: The initial Yoccoz puzzle.

The return type of gm is defined as follows (see [L6] for details). Let g € Lx have
finite type and let U;J; = Dom(g) N R numbered from left to right with 0 € Jo. Let
(T', €) be the free ordered signed semigroup generated by {L,} where e: {I;}} — {£1}
is the sign function defined for ¢ # 0 by €(l;) = +1 ift g|1, is orientation preserving
and for i = 0 by €{l;) = +1 iff 0 is a local minimum of g. Let i € Lg be a restriction
of the first return map R(g, Io) to finitely many components of its domain and let
U;J; = Dom(h) NR. Let (I",€) be the corresponding signed semigroup for h. Let
x : (I, ¢) = (T, €) be the homomorphism generated by assigning to each J; the word
I, I, - - I, where I;, is the interval containing g*(J;) and n is the return time of J;
to Iy. The homomorphism x : [ — T is the return type of h.

A homomorphism x : (IV,€') — (T, €) between free ordered signed semigroups is
called wnimodal if the image of every generator is a word ending with the central
interval and if the map is strictly monotone on the intervals to the right and left of
center and has an extremum at the center. We say a unimodal x is admissible if

€(I}) = sgn(j)e(x(f3)) for 7 # 0 and e(I}) = e(x(I}) for j = 0.

Let us describe the initial combinatorics of f. Let {/_,..., 2} be the connected
components of

(int(v ") A R) U (int(Y® \ V*) A R) U (tnt(V®) NR) U (int(Z]") N R)

numbered from left to right on the real axis. Let (I'y,¢o) be the signed semigroup
generated by —I_g, +1_1, +Io, —1I; and +I5. We say a homomorphism x : (I',€) —
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(T'o, €0) is zero-admissible if it can be realized as the return-type of the map ¢, for
some unimodal map through the initial puzzle (I', €). The initial combinatorics of
f is described by the homomorphism assigning to each I} its itinerary by f through
the intervals {Z;}. In general if iy is any restriction of the first return map to V0 then
the return type of A is the homomorphism mapping to any interval in its domain its
itinerary through the above intervals. Note that if f has negative orientation then
repeat the construction with all signs reversed.

The combinatorics of f up to level m is described by the sequence Sy, of admissible
unimodal homomorphisms

. Xr,, ™. 81 4T,

where X, is the return type of g,, and x; is zero-admissible. Each Sy 18 irreducible,
meaning the orbit of the critical point enters every interval IJ*. Since f is renormal-
izable there exists an m' such that 'y, is the semigroup with one gererator for all
m > m'. Let S(o) = Sp for the smallest such value of m’. Then the shuffle oy is
uniquely specified by Sp. Moreover, we have the following

Theorem 2.3.2 ([L6]) Let S be an irreducible finite sequence of admissible unimodal

homomorphisms:
T X5 Dy X5 51y 5T,

Suppose Ty, is the only semigroup with one generator, [y is as above and X1 is zero-
admissible. Then there is o unique shuffle o such that S{o) = 5.

2.3.3 Cascades and essential period

A level m > 0 is called non-central iff
gm(0) € ym-l \ V™

Let m{0) = 0 and let 0 < m(1) < m(2) < -+ < m(x) enumerate the non-central
levels, if any exist, and let Ay = gmpy+1, £ =0,..., K.
The nest of intervals (or the corresponding nest of pieces V™)

[l o 2 5 o ikt (2.1)

is called a central cascade. The length ;. of the cascade is defined as m(k -+ 1) —m(k).
Note that a cascade of length 1 corresponds to a non-central return to level m(k),
A cascade 2.1 is called saddle-node if 0 ¢ hp I™*), Otherwise it is called Ulam-
Neumann. For a long saddle-node cascade the map h; is combinatorially close to
2 +— 2% + 1/4. For a long Ulam-Neumann cascade it is close to z — 22— 2.
The next lemma shows that for a long saddle-node cascade, the map by : I™EH1 —
I™(¥) i5 a small perturbation of a map with a parabolic fixed point.

Lemma 2.3.3 ([L2]) Let by € Qr be a sequence of real-symmetric quadratic-like
maps having saddle-node cascades of length Iy — co. If by — f then f € I-1(1/4).
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Proof: It takes I, iterates for the critical point to escape Uy = Dom(hs) under
iterates of hy. Hence the critical point does not escape Dom(f) under iterates of
f. By the kneading theory [MT] f has on the real line topological type of 22 + ¢
with —2 < ¢ < 1/4. Since small perturbations of f have escaping critical point, the
choice for ¢ boils down to only two boundary parameter values, 1 /4 and —2. Since
the cascades of hy are of saddle-node type, ¢ =1/4. [J i

Let z € P(f) N (I™®) \ 841y and let hyz € 17\ 1. Set i
d(z) = min{j — m(k),m(k +1) ~ j}.

This parameter shows how deep the orbit of z lands inside the cascade. Let us f
now define d; as the maximum of d(z) over all z € P{f) N (I™®) \ I™®)*1). Given I'&
a saddle-node cascade (2.1), let us call all levels m(k) +dp < 1 < m(k +1) — di \E
neglectable. ! L

Let f be renormalizable and f; a pre-renormalization of f. Define the essential !
period p, = po(f) as follows. Let p be the period of the periodic interval .J = B(f1), *
and set J, = f*J, for 0 < k < p—1. Let us remove from the orbit {Jp },2;(1] all intervals E
whose first landing to some I™*) belongs to a neglectable level, to obtain a sequence ;i?;
of intervals {J, }7,. The essential period is the number of intervals which are left, 1
pe(f) = m. Note the essential period of a shuffle is well-defined and in this way we
can define the essential period for any real maximal M-copy M or f € 1 —HM). |

Let us give some examples of combinatorial types involving long saddle-node cas- |
cades with neglectable levels. Let T, I”, x, x' and Xo be from 3.1 and 3.2.

Example 2.3.1 (Goes Through Twice) Let xo : ' = T' be the homomorphism
generated by Iy v+ Iy and I_; — I2, 1. Then any sequence of the form

R R PUPRPA RS (JECNES gL

will correspond to a shuffle where the critical orbit moves up through the cascade
until the top, returns to the level of x2, moves up through the cascade again and then
returns to the renormalization interval. If the total number of levels in the sequence |
is m then the number of neglectable levels will be roughly m — 2 min(d, m — d) where I
d is the level of xa. g

Example 2.3.2 (Two Cascades) As a second example imagine perturbing the right-

hand picture in Fig. 3.4 so that the renormalization becomes hybrid equivalent to zz+i. ‘
Now any further perturbation will cause the parabolic orbit to bifurcale and we can E
create another long cascade. More specifically, let x5 : T' — I' be the homomorphism ‘
generated by Iy v [_1lp and I_; — I?,Iy and consider a sequence of the form

R A L & LI ST A O

Since x3 has a non-central return the two long sequences of x form two separate ;
saddle-node cascades, each with a long sequence of neglectable levels.
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2.3.4 Families of generalized quadratic-like maps

In this section we summarize the theory of holomorphic families of generalized quadratic-
like maps. For further details see [L4]. Let D C C be a Jordan disk and fix * € D.
Let 7, and 75 be the coordinate projections of C? to the first and second coordinates.
Given a set X ¢ €2 let X* = mp(XNa7'(A). An open set X € C? is a Jordan bidisk
over D if m(X) = D and X* is a Jordan disk for all A € D. We say X admits an
extension to the boundary if ¢I(X) is homeomorphic over cl{D) to cl(D) x cl(D). A
section ¥ : cl(D) — cl(X) is a trivial section if ¥()) € int X A for all A € cl(D). Given
a Jordan bidisk X which admits an extension to the boundary we define the frame
6X as the torus Uxeap Uzeax, (A, 2). A holomorphic section ® : D — X is proper if
it admits a continuous extension to 8D and $(8D) C 6X. Let ® be a proper section
and let ¥ be a trivial section. Let ¢ = my o ® and 4 = mp o W. Define the winding
number of ® to be the winding number of the curve {¢ — 1/}|ap around the origin.

Lemma 2.3.4 (Argument Principle) Let X be a Jordan bidisk over DD that admits
an eztension to the boundary. Let ® : D — X be a proper section and let U : cl(D) —
cl(X) be a continuous section, holomorphic on D. Let g =mp0®d and ¢p = mpo V.
Suppose there are no solutions to ¢ = 1 on 0D. Then the number of solutions to
¢ = counted with multiplicity is equal to the winding number of ®.

Let U = U;U; be a pairwise disjoint collection of Jordan bidisks over D with
0 € U}. Let V be a Jordan bidisk over D such that each U} is compactly contained
in VA, Let
f: U=V

be a fiber-preserving holomorphic map such that each fiber map fy : U* — V> is
a generalized quadratic-like map with critical point at the origin and which on each
branch fA]UJg\ admits a holomorphic extension to a neighborhood of U}\. Let b be a

holomorphic motion
hy : (BV*,8U") — (8V*,0U7%)

over D with basepoint * € D which respects the dynamics. We say (f,h) is a
holomorphic family of generalized quadratic-like maps over D. When U consists of
only one bidisk then the family is a DH quadratic-like family. A Tamily is proper if

1. V admits an extension to the boundary

9. for each z € AU* the section A =¥ (A, hy(2)) extends continuously to 4D and is
a trivial section

3. the critical-value section ®(A\) = (A, f1(0)) is proper.

The winding number of a proper family is the winding number of the critical value
section.

Theorem 2.3.5 ([DH2]) If (f,h) is a proper DH quadratic-like family over D with
winding number 1 then

M(£,h) = {X € D: J(f,) is connected}
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is homeomorphic to the standard Mandelbrot set M. The homeomorphism is given by
the inner class map A — I(f)).

2.3.5 Generalized renormalization of families

Let (f : U;U; — V,h) be a proper holomorphic family of generalized quadratic-like
maps over D with winding number 1. If 0 returns under fy to Ug let %) be the return
itinerary of fy: the (possibly empty) sequence of indices of off-critical pieces {U}}
through which the critical point passes before returning to Ug. For such an fi we
can define a holomorphic motion b’ of the boundaries of the domain and range of the
return map to U by pulling back the holomorphic motion h by f5. The motion h'
has basepoint A and is defined over the neighborhood of X having the itinerary <.

Lemma 2.3.6 ([L4, Lemma 3.6]) Let (f : U;U; — V;,h) be a proper generalized
quadratic-like family over D with winding number 1. Let x € D be the basepoint
and let g, be the first return map R{fs, Ug) restricted to finitely many components.
Suppose g, € L. Then the set

D'={reD:iy=14}

is a Jordan disk and the family of first return maps (g, h') over D' is proper and has
winding number 1.

2.4 Parabolic Periodic Points

The limits of maps with unbounded but essentially bounded combinatorics are maps
with parabolic periodic points. This section reviews the local theory near parabolic
orbits and their perturbations. The main results are the existence and continuity of
Fatou coordinates. These results were proven in [DHI] and [La] for perturbations
lying in an analytic family and later generalized in [Sh]. Our presentation is based
on [Sh].

Throughout this section we give the space of holomorphic maps the “compact-
open topology with domains”. A basis for this topology is given by the sets

N(f,K,e) ={g:1g(2) — f(2)| < eforz € K}

where K C Dom(f) is compact and € > 0. If a sequence of maps f, € H converges
in H then it also converges in this topology.

2.4.1 TUnperturbed Fatou coordinates

Let P, be the space of holomorphic maps fo with a fixed point & that is parabolic and
non-degenerate: fi(&) = 1 and fi (&) # 0. For example, choose any quadratic-like
map fo hybrid equivalent to 2% + 1/4. Choose a neighborhood V' 3 & so that fo|y is
a diffeomorphism and maps N onto a neighborhood N' 3 &. '
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Proposition 2.4.1 (Fatou coordinates) Let fo € Py and choose N and N' as
above. Then there exist topological disks Dy € NNN', whose union forms a punctured
netghborhood of &y and which satisfy

(D) C Dy U{&} and Naxo fi*(Dy) = {&}-

Moreover, there exist univalent maps @, : Dy — C such that
1. Range(®,) and Range(®_) contain a right and left half-plane, respectively

2. @i(fo(z)) = @i(z) -+ 1

These maps are uniguely defined up to post-composing with a translation.

The disks Dy are called incoming and outgoing petals and the maps @4 are called
the Fatou coordinates. The Fatou coordinates induce conformal isomorphisms be-
tween the Ecalle- Voronin cylinders C4+ = Dy/ fy and C/Z. Let m denote the projec-
tion of Dy to Cy.

When fy € I71(1/4) we can extended the Fatou coordinates to be branched covers
as follows. Let B = int K(f;) be the attracting basin of £. Extend m; to B by
m{2) = 74 (f7(2)) for a large enough n. Lifting 7 : B — Cy. to &, : B = C we
obtain an extension of @ : D, — C to a branched covering map. The set of critical
points is the backward orbit of 0 under fo and the set of critical values is a set of the
form {a—n}, for some a € C depending on the normalization of ®.; (see Fig. 2.4).
We can also similarly extend ®~! to be a holomorphic map with range Range{fo).
Note that & will be a branched cover over Range(fo) \ {&o}. (see Fig. 2.5). In
general, if fo is a branched cover then we can extend @, to the immediate attracting
basin of & and we can extend ®-' to a map with range Range(fy) which is a branched
cover over range Range(fo) \ {&}-

A transit map g : C4 — C.. is a conformal isomorphism which respects the ends
+00. A holomorphic map h : U — C is a local lift of a transit map g if U C Dy,
Range(h) C D.., and

gomy =m_oh.

When written in Fatou coordinates, h is a translation 7, by a complex number a. The
quantity @ = a mod Z, called the phase, depends only on g (and the normalization
of Fatou coordinates) and uniquely specifies g. We will use the notation gz to denote
the transit map with phase a.

To simplify future notation, let ® = @, and ¢ = ®'. Also, we shall freely use
the notation ®*, ®/, C%, etc to indicate a dependence on an index n or map f.

2.4.2 Conformal dynamical systems

Given a collection {f, € H} of holomorphic maps let {f) denote the set of restrictions
of all finite compositions of {f,}. Note that we consider a composition of zero maps
to be the identity. A collection F of holomorphic maps closed under composition and
restriction is called a conformal dynamical system. For a given z € C we will let F,
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Figure 2.4: Extended attracting Fatou coordinates.
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Figure 2.5: Extended repelling Fatou coordinates.
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denote the set of germs {[h],} of h € F such that z € Dom(h). Define the orbit of a
point z € C as

orb(z) = orb(F, z) = | ] h(2).
heF :
Let f € Py and let g : C; — C_ be a transit map. The conformal dynamical
system

F(f,9) = (f U {all local lifts of g to Di}) |

will be central to our study. Note that F(f, ¢) is independent of the choice of petals
D,. We define a total grder on orh(z) as follows. First we order E’he germs [h], of
h € F(f,g) at z. Fix h,h € F(f, g) such that z € Dom/(h) N Dom(h). Write

h=ffohy_j0f10---0 hyo f™
h:fml Ohiflofm!—l o...ohlofml <i|

for some k,1 > 1 with appropriate lifts h; and ?Lj of g and iterates of f. Since f
commutes with local lifts of g, we can find a “common” local lift ¢ so that

hio f™ = f%odiof* ;
ao fm = o dyo [ :

on a neighborhood of z for the appropriate choice of sy, s4, t1, th € N. We can continue
rewriting local lifts until we have the expressions v

h=f*%odq0fhto - of2ogpof |
h=fiodiofito--of?ogoft.

—~

on a neighborhood of 2. Now define [h], < [h], iff
(5‘1,82, ey Sk) S (tl,tg, ‘e ,ti)

in the lexicographic order. Now order orb(z) by declaring z; < 2 if the [h], < [hols
where hi(2) = 21, ha(2) = 22 and [h], and [ha), are the minimizers with this property.
We say F is contained in any geometric limit of a sequence F, if for any f € F there
are f, € Fp such that f, — f on compact sets.

We do not put a topology on the set of conformal dynamical systems. The systems
we consider are generated by generalized quadratic-like maps and local lifts of transit
maps, so instead we speak of the convergence of these generators.

2.4.3 Douady coordinates

We now consider perturbations of fo € Pg. Since &g is a non-degenerate parabolic
fixed point the generic perturbation will cause it to bifurcate into two nearby fixed
points £ and &; with multipliers Ay and A%, respectively. Let N be the neighborhood i
of & chosen for Proposition 2.4.1 and let P be the space of holomorphic maps which I
are diffeomorphisms of N. Let Py be the set of f € P with exactly two fixed points 5
£ and £} in N satisfying

arg(1 — Ap),arg(l — Ap) € [w/4,3n /4] U [-3x /4, —7 /4] (22)
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Theorem 2.4.2 {Douady coordinates) Let fy € Py. There is a neighborhood N
of fo such that if f € (N N'Py) then there exist univelent maps &y = (Di and
¢ = (®1)1, unique up to translation, and a constant af € C satisfying

1. ®(f(2)) = ®s(2) + 1 and ¢s(w + 1) = f(¢s(w)}) where defined

2. Cfr = Dom(®;)/f and ¢! = Range(¢;)/f are conformally cylinders and one
can choose fundamental domains Si to depend on f € Py continuously in the
Housdorff topology. '

3. (see Fig. 2.6) for z € Sf_ there is an n > 0 such that f*(z} € 54 and for n
minimal

fHz) = (o Tosqno D)(2). (2.3)
If we fiz points zy € Dy and normalize &S, by ©L(24) = 0 then @) depend continu- )
ously on f € N N (PoUPr). ‘ g

Suppose fo € Py and f € Py NN where N is from Theorem 2.4.2. The dis- i
continuous map from .S’_{ to ST defined by equation 2.3 projects to a transit map
g5 C_{ — ¢ with phase a 5 =a; mod Z. This map describes how a long orbit of f I
“passes though the gate” between &y and £f. We call it the transit map of f. F

The following lemma gives a simple condition under which perturbed Fatou coor- it

dinates exist.

Lemma 2.4.3 Suppose f, is a sequence of quadratic-like maps converging in the i
Carathéodory topology to o quadratic-like map f € Po. Suppose the fized points of fu
are repelling. Then f, € Py for n large enough.

Proof: Using the holomorphic index (see [M1]) one can prove that

1,1
1= %y  1—Xp

converges as f, — f. Since A, A € C\ D it follows
larg(1 — Az)| — 7/2 and |arg(l — X, )| = 7/2 ![
\

as n — oo. In particular, f, € Py for n large. O
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Figure 2.6: Perturbed Fatou coordinates.
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Chapter 3

Statements of Main Theorems

3.1 Theorem 1

Let us remind the reader of our first result:

Theorem I (Essentially Period Tripling). There is a unique F € GO such that
R"f — F
for any co-renormalizable f € Qp with a tuning invariant

fr(f):(M(?’) M® MO )

n ! g ? ! ng ?

satisfying ng — 00 as k — 00,

In this chapter we define the M-copies M,(f’) and describe the limit operator of renor-
malization: parabolic renormalization. We will not use parabolic renormalization, as
defined in this section, in the proofs. However, the definition and the properties of
parabolic renormalization are easier to understand in the essentially period tripling
case and so are worth discussing.

Let f(z) = 2% — 1.75 and let £ be the parabolic periodic orbit of period three.
Recall A = Aj = [of, o], Let g be the first return map of f on A (see Fig. 3.1). Let
I® and I? be the two indicated intervals satisfying gl = f* and glp = f2.

Fix a small € > 0 and consider ¢ € (—1.75,—1.75 + €). The periodic point £
bifurcates and the orbit of the critical point under P? now escapes the interval I °.
Let ¢, be the parameter value (see Fig. 3.2) so that for f = P,

o fY0)efori=1,...,n—1,
o fr(0) eI,
o fIH2(0) = 0.

To justify the existence of ¢,, consider the following signed semigroups generated
by the specified intervals

I'= (+I-1) —I0>

I = (=Io) (3.1)
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Figure 3.1: The first return map for z* — 1.75.

and consider the following homomorphisms

Xo - I'=TYy generated by I 4+ I_zjg.[_lf_g.[o and Iy +5 I_gfzf(}
y:I'—=T generated by [y — 11y and Iy — I (3.2)
x I —= T generated by Ip— I_1Jo.

Then the sequence corresponding to M = Men is

TS RG-SR LY N

where y is repeated n — 2 times. Let of¥ = ap,, -

In Fig. 3.3 we have drawn pictures of the Mandelbrot set zooming down to the
M-copy Mf').

In Fig. 3.4 we have drawn the filled Julia sets for 22 — 1.75 and for 2* — ¢, for
some ¢, with n large, together with two blow-ups of the Julia set of f = 2% —¢,. The
“ghost” boundary of the basin of £ is visible in the left picture and the pre-images of
this ghost boundary nest down to J(R f) in the right picture.

3.1.1 Parabolic Renormalization

Let M be a maximal M-copy with root ¢ and let f € I"Y{c). Let f; be a pre-
renormalization of f and let £ = f;,. Choose incoming and outgoing petals D4 around
the parabolic point £ and let C4. denote the respective Fcalle-Voronin cylinders and Ty
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Figure 3.2: The first return map for 2* ++ ¢5 and the orbit of the origin.

the projections with 7. extended to B = int(K(fo)). Fix a transit map g:Cy — C._

satisfying
g(m(0)) & (K (fo))-
We say the pair (f, g) is parabolic renormalizable if there is a neighborhood U 5 0

and a map
he (F(f g\ (M)

such that
hlU = Qoo‘

We call such an h|y a parabolic pre-renormalization of (f,g). From §2.4.2 there is a
natural order on the germs in F(f, g) at 0. We call the normalized germ of a first
pre-renormalization the parabolic renormalization of (f, ).

3.1.2 Construction of parabolic renormalizations

In this section we describe a construction from [DD] for finding a canonical repre-
sentation of the parabolic renormalization in the essentially period tripling case. For
simplicity we will state the construction for the quadratic map P_i75. However, it is
clear how to generalize this construction to any map f € [ —1(—1.75).

Recall from §3.1 the sequence of maximal M-copies M with essentially period
tripling combinatorics accumulate at the root of the period three tuned copy, ML,
Let f = P_; 75 and choose fy and Dy as above. Let B = int K (fo) and let f, = P,.
Choose n sufficiently large and let I_ be a connected component of int K(f)\ B that
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Figure 3.3: The Mandelbrot set zooming in to Mff}.
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intersects P(f,) and such that U_ € D_. Let ¢ be the landing time of U_ to B under
I
Let
D; ={g: . — C_|g is a transit map and g(m (0)) e = (U_)}.

The phase map gives a conformal isomorphism of Dy to a disk Dy € C/Z. Note that
D; is a Jordan domain. Choose a branch of - so that the range contains U_. For
g € Dy let W, be the connected component of {(m;' o g7t om_)(U-) containing 0.
Since m_(U_) is a topological disk, it follows the map I : Wy — B given by

Ry =flon togzom,

is quadratic-like with possibly disconnected Julia set. If J (R;) is connected then we
have constructed a parabolic pre-renormalization of (f, g). /
Fix any * € D;. Define the holomorphic motion

hg : (OB, 0W,,) — (0B, 0W,,)

on 8B by the identity and locally on 8W,, by pulling back under Rz, Let V = {(a, z):
@€ Dsyze Byand U= {(8,2):d € Dy, 2 € Wy, }. Let f: U — V be defined by

R{a, z) = (@, Ra(2)).

Lemma 3.1.1 The family (R,h) is a proper DH quadratic-like family with winding
number 1.

Proof: The map f* is a conformal isomorphism of a neighborhood of U_ onto a
neighborhood of B. There is a branch of #_' such that the map (=1 0 gg o my)(0) is
a conformal isomorphism of a neighborhood of D onto a neighborhood of U_. The

lemma follows., O

The following lemma states that the renormalization operators R_¢ converge to
essentially period tripling parabolic renormalization. In order to state ‘the lemma we
need some notation. Let f € I"Y(—1.75). Suppose fi € I71(M®=%) is a sequence
of renormalizable maps with f; — f and n; — oo. From Lemma 2.4.3 there exist
perturbed Fatou coordinates for fr. Let g : Cp 4+ — Cy, — be the induced transit

maps with phases d.
Lemma 3.1.2 With the above hypotheses,
1. {ag} is pre-compact
2. if Gy, —+ @ is a convergent subsequence then J(R;) is connected and
[f;] = [Bal

where hy 15 a pre-renormalization of fy
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8. F(f,ga) is contained in any geometric limit of (fx;)

Proof: Let h; be a pre-renormalization of fi. Since fx € I7'(M®+) and fi — f we
can write

he = fi oG o fL (3.3)

on some neighborhood of the origin for some fixed Ny, Ny and some choice of local
lift gy of the induced transit maps gg : Cp,, — Cpy,—. The first claim is that hy can
be chosen in @®(m’) for some m' > 0. Let V' be an e-neighborhood of the central
basin B of f for some small ¢ > 0. Choose € small enough and N and N, large
enough so that for large k the right-hand side of (3.3) can be used to define a pre-
renormalization hy with range V'. Let UL = h;'(V’). By taking & larger still we can
assume U} is contained in an €/2 neighborhood of B. It follows there is an m’ > 0 so
that mod (V/, UL) > m'. Moreover, diam(U}) > C > 0 for some C' independent of .
Hence (3.3) holds on a definite neighborhood of the origin.

From the convergence of Fatou coordinates and the convergence of fi it follows
that {@} is pre-compact. Let @, — d be a convergent subsequence. Then Ay,
converges on a definite neighborhood of the origin to the map f Ni o gy o [ for an
appropriate local lift §; of gz. Since the origin is non-escaping under all by it follows
J(Rz) is connected. The last statement follows from the fact that f — f and from

equation 2.3. O

Moreaver, the proof of the previous lemma can be modified to prove the following

Lemma 3.1.3 Suppose f € I"1(=1.75) and fy € I71(—1.75) satisfy fr — f. Sup-
pose gi : Cp,+ = Cy, . are lransit maps with phases Gy, such that Iy, = Ra, is defined.

Then
1. {@ax} is pre-compact
2. if ax, — @ ts a convergent subsequence then

R;cj. — R;.

3. F(f,ga) is contained in any geometric limit of F(fx,, Gk;)

We finish this section with two useful properties of parabolic renormalization.
The first property is that open sets intersecting the Julia set of the parabolic pre-

renormalization iterate under F(f,g) to open sets intersecting J(f).

Lemma 3.1.4 Let f € I71(=1.75) and g : Cy = C_ be a transit map with phase @
such that J(Rg) is connected. Suppose U is an open set satisfying

UnJ(Ry) #0.
Then there is an h € F(f,g) such that U N Dom(h) # 0 and
nU) 2 J(f)-
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Proof: From the construction of Rj it is clear that there is an h € F(/, g) such that
h is a quadratic-like extension of R to a small neighborhood of B = Range(Rz). 1t
follows that there an m > 0 such that A™(U) N OB # §. But 08 C J (f). Iterating f
further covers all of J(f). O

The second property is that no quadratic-like representative of [Fz] can have too
large a domain.

Lemma 3.1.5 Let [ € I"Y(~1.75) and g : C4 — C_ be a transit map with phase @

p

such that Ry is defined. If (f : U — V) € Q satisfies [f] = [Ra) then
U C Range(Rg).

Proof: Let f; be a pre-renormalization of f and let B = Range(Rz). Suppose
UnNJdB # ¢ and let U’ be the connected component of I/ N B containing 0. Since
fi-preimages of 0 accumulate on J (f1) = OB there exists an n > 0 and 20 € U " such
that fP*(z) = 0. Since [f] = [Rg] it follows 7 has a critical point at z, which is a
contradiction. [

3.2 Theorem II

Let us remind the reader of our second result:

Theorem IT (Essentially Bounded Combinatorics). For everyp > 1 there exists
a pre-compact R-tnvariant set A C Gg such that

1. R|a is conjugate to the full shift on Qe(p), the set of combinatorial types with
essential period bounded above by p, and

2. if f € Qg is co-renormalizable and sup, p(R*f) < p then R*f — !

Let b : 11 _Q.(p) — A denote the conjugocy. Then there is a compactification
QP (p) of Qu(p) such that h extends to a continuous map h I _Qrt(p) — A
Moreover, suppose fi € Or has the same combinatorics as fo € A. Then for any
sequence i — oo and sequence & € 1%, QP (p) such that R™ fz — h(7) one has
R™ fi — h(a') _

Let Q(p) be the space of shuffles o satisfying pe{cd) < p. The sequence @
from the previous section is a simple example of a sequence of shuffles with bounded
essential period but unbounded period. In this section we construct 2 compactification
Qrt(p) of Q.(p) which will form the elements of our combinatorial description of
renormalization limits.

Suppose f € @F is renormalizable and let
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be its sequence of return types. Let { be a neglectable level and let x; @ (I', €) —
(Ty_1,€1) be the return type of g. 1t is clear that if both level I — 1 and { -1 are
neglectable then (T, ¢) and (['y_1,€.1) are generated by configurations of the form

S5 NN NP  ARPE

or by ‘
+I0,:*:I]',. .o ,:f:Ip_l,in i

for some p > 1. We claim that (I'y,e) = (I'1_1,€-1) and that x; is defined by it
I; v LIy for i # 0 and Iy +> Ly, First 1t is clear Iy — Ip. Now if x;(f;) contained :
more than one off-critical interval then { would not be a neglectabie level. Since x; is
unimodal it follows T;_; contains at least as many intervals as I";. Since the return
type sequence is irreducible I';_ contains exactly the same number of intervals as L.
Hence I; — ;1. The claim that the signs agree follows from the condijtion that x;
be admissible.

Hence we can “insert” another neglectable level into S before { to obtain another

irreducible sequence S’ of return types:

Fm’ﬂ‘--F;ﬁF;_l”ﬁ’I‘;—"#F;_l-‘-ﬁl"o.

From Theorem 2.3.2 there is a unique shuffle o’ such that S(o’) = 5.

We say two shuffles o and ¢ in (2, (p) are essentially equivalent if one can insert
a finite number of neglectable levels into ¢ and o’ and obtain equal shuffles. Let 2
be the partition of Q¢(p) into essentially-equivalent equivalence classes. Let UekE
be a non-trivial equivalence class. Then there is an n = ny > 0 such that for any
o € U the return type sequence S{o) has exactly n different cascades S1,59,...,5n,

canonically ordered, containing neglectable levels. Let {z, k = 1,...,n, denote the
number of neglectable levels in the cascade Sk. The map 6y : U — N} given by
o+ (I1,1lg,...,1,) is a homeomorphism. Let

N+ = N+ U {+OO}

be the one-point compactification of N. Define [Jert 5 U as the unique space such
that 0y extends to a homeomorphism 8y : U — N}. Define QP (p) D Q.(p) as
the union of the trivial classes of Z and of the spaces [Pt for non-trivial U € E. An
element of Q2P (p) \ $2.(p) is called an end and can be represented by a “sequence” of
return types where infinitely long sequences of neglectable levels are allowed:

X 0 0y By ) 9 T, ™5 B T,

The following lemma. is evident from the definition of essential period and Q% (p).
Lemma 3.2.1 For any p > 1 the space QF'(p) is metrizable and compact.

Let
(M}, = {M":0 € Qelp)}
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be the collection of M-copies corresponding to ,(p) and let
cp = {C: MC e {M}p}

be the corresponding collection of centers. We now describe the topology of C? and
how CF compares to QP4 (p). For any U € B with n = ny > 1 let Gy C C* denote
the collection of centers of {M? : ¢ € U}. Since E is a finite partition it suffices to
describe the topology of the sets Cyy. We claim for each non-trivial U € = there is a
homeomorphism of R which maps Cy to the image of the function F: N} — R given
by

F(Q?l, Tay.. s fﬁn) =927 ¢ Z—xlmgml TS 2—x1m2...wn——n+1

where n = ny (see Fig. 3.5).
””H“H |” HIII ] ,
IR
. 5

Figure 3.5: The image of F' for n = 2.

To be more specific the limit points of Cy are root points of the M-copies obtained
by “truncating” the return type sequences of o € U at the neglectable levels. Let us
describe how to truncate a return type sequence

Fm m mel Xm__;l e ﬁl) I-‘() ‘ B

at a level . Let (I'r, e7) be the semigroup generated by I, with ex(fp) = ¢(I}) and
let xr be the homomorphism defined by lp — xi(1}). Let S be the sequence '

PTHFg__1 Xi:;l"'gr1lq>[‘0. jl'E

One can check that S’ is a sequence of admissible unimodal return types. If S’ is 3
not irreducible then simply remove all intervals I not in the combinatorial orbit of
the critical point and shorten the sequence if necessary. We obtain a unique shuftle l
o' = ||, the shuflle o truncated at level L. |
Let U € E satisfy n = ny > 1. Any shuffle 0 € U has n cascades with neglectable 1}:
levels of lengths zi,...,z, respectively. As z; — oo, the corresponding centers
accumulate at the root of the tuned M-copy corresponding to any ¢ € U truncated
at the first neglectable level. If we fix z; and let @3 — oo the corresponding centers
accumulate at the root of the M-copy corresponding to truncating at the second i!}g
cascade of neglectable levels. In general if we fix the lengths of the first &k sequences
of neglectable levels and let the length of the & + 1-st sequence grow the centers
converge to the root of the M-copy corresponding to truncating at the {(k + 1)-st
neglectable sequence. i
Given an end 7 € QP (p) let :

c(t) = root(| o))
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where o € Q(p) is in a sufficiently small neighborhood of 7, [ is a neglectable level
of ¢ which belongs to the first infinitely long cascade of 7, and root(c) is the root of
M?. The map ¢ : 2P (p) — R is continuous and its image is C?. This completes our
description of the topology of {M}, and how CP compares to QP (p).

We return to our examples from §2.3.3. Choose a large p so that the shuffles from
Example 2.3.1 and Example 2.3.2 are contained in €2.(p).

First consider the essentially period tripling shuffles o). Then ¢(o$)) — root(c™)
where o® is the period tripling shuffle. Moreover, 0,(1.3) converges to an end 7 €
Q& (p).

Now consider the shuffles 7,, 4 from Example 2.3.1 (Goes Through Twice). First
fix d > 1 and let m — oo. Then ¢(oma) — root(lomali) # root{c®) where [
is any neglectable level and, in much the same spirit as essential period tripling,
Oma converges in P (p) to an end. Now fix m —d > 1 and let m — oco. Then
(o q) = root(c®) and o, g converges to an end 73 € QFt(p). d

Finally consider the shuffles oy, 5, from Example 2.3.2 (Two Cascades). Fix 1l > 1
and let I — co. Then c(ay, ) — 73, = root(|o1,,]() where I is any neglectable level
in the second cascade. The sequence r;, — root(c®) as Iy — oo. Moreover, for any
sequence of Iy if we let [y — oo then ¢(oy, 4,) — root{c®). Now consider the limits of
a1 1, in QP (p). If we fix I; and let {; — oo the shuffles will converge to an end 754,




Chapter 4

Preliminary Constructions

In this section we describe a combinatorial framework that is more convenient for
our proofs than shuffles and parabolic shuffles. The combinatorial objects, markings
of generalized quadratic-like maps, are based on return-type homomoi"phisrns. The
maps, first through maps, are based on the Bernoulli schemes introduced in [1.3] and
they encode an entire cascade at once rather than as a sequence of first resurn maps.
We then define the generalized parabolic renormalization of a generalized quadratic-
like map with a saddle-node cascade.

4.1 Markings

Fix amap f € £. Let A= {av,...,an} C 8Range(f), m > 2, be a finite number of
marked points in dRange(f). Let T be a collection of Jordan curves v : I = [0,1] -
cl(Range(f) \ Dom(f)) such that

+(OI) € A= AU f71(A).

Let G be the graph with vertices ¥ = AU CC(Dom(f)) and with an edge between
x,y € V if either

e 1,y € A and there exists v € I such that v(81) = {=,y}
e ory € Or.

We say (A,T") is a marking of f iff G is a tree.

Example 4.1.1 Any f € Lg with Dom(f) and Range(f) Jordan disks is naturally
marked by choosing A = Range(f) N R numbered so that oy < cp and T such that
(Dom(f) NR) UUyerIm(y) = Range(f) NR.

Two markings (A;,T1) and (A4z,T) are homotopic iff A; = A, and if there is a
bijection A : I’y = I'y such that each v € I'; is homotopic rel A to h(v}. A marking
is real if

o |A| =2
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Figure 4.1: A marking (o, o/, {%}) of a generalized quadratic-like map.

e the span of CC(Dom(f)) in G is isomorphic to a linear graph 7
e G is symmetric around the span of A.
A real marking induces an ordering on CC(Dom(f)) by the rule

the shortest path from a4 to U; in G

< T .
Ui < Uy iff contains the shortest path from oy to U;

and associates to f a signed ordered semigroup Ay 4 generated by CC(Dom(f)) by
defining the sign e(U) of U € CC(Dom(f)) by the relative position of f~' () € OU.

Let ML denote the space (f, A,I")/ ~ where f € £, Dom([f) and Range(f) are
Jordan disks, (A4,T) is a marking of f and

(f}_,Al,FI) ~ (fz, Ag, ]._‘2) iff fl = fg, A]_ = Ag and Pl is hOIﬂOtOpiC to Pg.

The topology on ML is the Caratheodory topology on f, the Hausdorff topology
on A and the quotient the sup-norm topology on I'. Let ML C ML denote the
subspace where (A4,T) is a real marking.

4.1.1 Induced Markings

Fix (f, A,T') € ML and suppose 0 returns to Uy(f) under f. Let g be a restriction
of R(f, Us(f)) to finitely many components of Dom(R) so that g € £. Mark g by the
following inductive construction.

First let G, = f;'(G) be the lift of the graph G to the central component Uy(f)
by the double cover f,. Label the points {af, o, ..., o, } = A’ = f3 ' (A) so that o
and o are in the same connected component of the graph G \ Up(f) and so that o;
is the dynamically symmetric point to :

ay = fo ' (fe)) \ {er}

Now suppose by induction that we have constructed G; and suppose there is a cop-
nected component of Dom(g) that is compactly contained in a component U of G;.
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Let Gy be the lift of G to U by the covering map f™ where n is the smallest integer
such that f*(I/) = Range(f). Define the graph Gi}1 to be the graph G; outside of
I/ and to be Gy on U. Note that these graphs glue continuously across 8U. Repeat
this construction until all connected components of Dom(g) are components of some
Gy, N > 1. For each pair

(z,y) € CC(Dom(g)) U A’

there is a shortest path p,, in Gy between z and y. For each component W of Gn
on p choose a Jordan curve vy C W between the neighbors of W in p. Since p is a
finite path there is a well-defined concatenation 7, of {yw} and of the curves of G
in p,, such that as ,y range over all allowed pairs we obtain a marking (A', {¥zy})
of g. The induced marking of g, denoted (A,,T';), is the smallest sub-marking of g
from (A’, {Vsy}) that contains {of, a5}

The induced marking is defined up fo homotopy. In particular, let (f,A,T) €
MLy and suppose g € £ is a restriction of R(f,Us(f)) to finitely many components
such that (g, Ay, ['y) € MLg. Define the return-type homomorphism x : Ag,a,r,) =
Apar of g asin §2.3.2.

4.1.2 Initial Markings

Suppose f € I™1(M?) for some shuffle o # . Choose an initial Yoccoz partition
YT and let V? be the initial return domain w.r.t. T, as defined in §2.3.2. Let g be a
restriction of R(f, V?) to finitely many components of Dom(R) so that g € £. Mark
g as follows.

Recall that V? is the connected component of f~2(Z") containing 0. Let A =
{1, a3} ¢ AV be two pre-images of f~?(«;), numbered so that the smallest positive
angle of an external ray landing at o is larger than the smallest positive angle of the
ray landing at ay. See Fig. 4.2 for a diagram of the situation.

Figure 4.2: The marked points A in the initial marking.

Let D_1, D; be the two connected components in Y of f ~2(Y (1) and let Up»1Zy
be the connected components in Zgl) of the domain of the first landing map L to Y1),
Consider the map f which is f2 on D_, U V°U D; and L on U,»1Z,. Then apply
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the same inductive construction as for induced markings to the map f. That is, pull
back the configuration Xy = {D.1, V°, D1,Un»1Zn} to V0 and refine it as X, Xo, . .. i
until the components of Dom(g) are not compactly contained in any component of .
Xy. Choose a collection of curves I' with images in cl(UX v) so that (g,A,T) is a I‘
marking of g. We call (g, 4,I') € ML the initial marking of g. .“

If (g, A,T') € MLy then the initial combinatorial type of ¢ is given by the zero- f:‘%f;_
admissible return-type homomorphism x : A ar) — (Lo, €0) as defined in §2.3.2. |

4.2 First-through Maps

Fix an f € £. Let L be the first landing map of f to UjsolU;(f) and suppose ,
0 € Dom(L). Define the first through map, T(f,U;zU;(f))}, to be fo L (see Fig. 4.3 i
and Fig. 4.4). Note that first through maps are not generalized guadratic-like maps, 4
since if there exists a one branched point of 7' then all pre-images by L are branch 1
points as well. However, first through maps are very similar to generalized quadratic- I
like in the following sense: instead of having a unique critical point, first through %
maps have a unique critical value. In any case we will construct restrictions of first
through maps that are generalized quadratic-like.

Figure 4.3: A first through map with off-critical (dark gray) and pre-critical (light
gray) pieces.

Let A be a restriction of T'(f,U;2U;(f)) to finitely many components of Dom(T’ )
and suppose h € £. Let fo = flugs)- Suppose f is marked by (A,T). As before let
G, be the lift of G by fo. Refine the graph G; inductively until all components of
Dom(h) are components of some Gy, N > 1 and define the induced marking of h in
the same way as for return maps.

See Fig. 4.5 for the first few pull-backs of U;zoU;(f) and I'.

Let us define the combinatorial type of a real-marked through map. Let (f, 4,1") €
MLk and suppose g € £ is a restriction of T'(f,U;20U;(f)) to finitely many com-
ponents such that (g, Ay, Ty) € MLg. For each U € CC(Dom(g)), define dyo =
no(0) — no(U) and dy 4 = ng(U) Define the depth d(U} of U € CC{Dom(g)) as

| —dyp dvo<dua
dU) = { dya  otherwise
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Figure 4.4: A restriction of a first through map.

Figure 4.5: A few curves of a marked first through map.




Define the through-type homomorphism x : Ag.a,r,) — Apar) X Z X Ny to be the
homomorphism generated by

x(U) = (L), d(U), n0(0))-

4.2.1 Saddle-node cascades
We say (f, A, ') € MLg has a saddle-node cascade if
. (T(f’ Uj?éon(f)IP(f)): AT1 FT) S MﬁR

¢ [ has a low return: let a € Ap N OU(T) be in the same connected component

of Gr \ Up(T) as ;. Then f has a low return if the component U 3 f(0),

U € CC(Dom(T)) is in the same connected component of G \ Up(T") as a and
T(a). _

The length £(f) of a saddle-node cascade is the first landing time of 0 in UjzolU;(f)

under f.
The following lemma is the complex analogue of Lemma 2.3.3:

Lemma 4.2.1 Suppose (fn, An,'n) € MLy converges to (f, A,T') € MLy and sup-
pose each fn has o saddle-node cascade with £(f,) — co. Then fluy(p) € I-1{(1/4).

Proof: Apply the pull-back argument. Let fo = Faloo(sa) and let Wy, = Range( Fa)\
Dom(ﬁ). We can assume that W, is bounded by piecewise smooth curves. Since f,
has a saddle-node cascade there is a unique N, ~+ 00 so that ¢, = j"“;N”(O) € W,. Let
B be the disk of radius 4 around the origin. Let g, = 2% + 1/4 4+ ¢, where ¢, > 0 is
chosen so that g¥=(0) € B but g2»+1(0) ¢ B. For n large enough g, is quadratic-like.
Let W! == B\ g-'(B) be the fundamental annulus of g,. Now there is a C >0
such that mod W, > C and mod W/, > C. Since (fs, An, ['n) converges to (f, A, I it
follows that there is a K > 0 so that for n large enough there is a K-quasiconformal
map h, : W, = W/ mapping (An, T's), or a homotopic smooth marking, to the real
axis, mapping ¢, to gX¥~(0) and conjugating ., and g, on the inner boundary of W,
and W/, respectively. Pull back h, to get a K -quasiconformal conjugacy 7&,1 from ﬁ,
to g. This pull back is well defined since the marking determines which branch of g, !
to choose. Note that the limiting pull-backs extend over K (F) as K-quasiconformal
maps and they glue across the pre-images of W, as K-quasiconformal maps. Choose
a convergent subsequence h,, so that A, — h. Let f = fluys. Then his a K-
quasiconformal equivalence of f and 2% + 1/4. From rigidity of parabolic parameter
values, f is hybrid equivalent to 22 + 1/4. O

Suppose (f, A,T') has a saddle-node cascade. Let h be the first through map
T(f, U;20U;(f)) restricted to finitely many components such that (h, Ay, I's) € MLp.
The combinatorics of A is said to be essentially bounded by B if

o number of connected components of Dom(f) < B and

e d(U) < B for all U € CC(Dom(h}).
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4.3 CGeneralized Paraboiic Renormalization

Tn this section we modify the construction of parabolic renormalization to act on
generalized quadratic-like maps. The idea is to consider the first through map of

F(f,9)-
Fix an f € £ that satisfies

fo= flosp € 17H(1/4).

Let £ = f,. Choose incoming and outgoing petals Dy around the parabolic point
¢ and let Cy denote the respective Fcalle-Voronin cylinders and 7+ the projections
with 7, extended to B = int(K(fo))-

Figure 4.6: The generators f and g of F(f,g).

For a given g : C; — C_. let L be the first landing map under F{fo,9) to UszaU;(f).
This map is well-defined because the germs of F(fy,g) at z are well ordered {see
§2.4.2).

Note that if O is a connected component of Dom(L) then there is an h € F(fo, g)
extending L to a branched cover of Range(f). (see §2.4). Let T(f, g, JjzoU;(f)) be
the first through map

T=fol. (4.1)

4.3.1 Marking

Now suppose (f, A,I') € MLg and let h € £ be a restriction of T to finitely many
components of Dom(1"). Mark h in the following way.
First consider the collection of curves

Iy = Unsol s "(M}-

Since 0 € K (fy) each lift is well-defined for any n = 0. Let T = T(f,UsolU;(f)) and
let A; = AUTH(A). Let G be the graph with vertices

V=AU CC(Dom(Tl))
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Figure 4.7: The first through map of F(f, g)-

and with an edge between z,y € V), if either z,y € A; and there exists a chain
€ = {v} with 7, € Ty such that v(dI) = {w,y} or z € Iy. Fach connected
component of G has a well-defined limit point on J (fa), and, using the Caratheodory
loop + around J(f;) we can assign an angle ¢ to each connected component GY of G
so that v(8) = cl(G®) \ G’. Since V; U Im(T'1) is fy-invariant, we can project G to
the repelling Ecalle cylinder C_. Take the pre-image by ¢ to obtain a graph on the
attracting cylinder C,. Now lift by 7 to obtain a graph (74 in the basin B.

Now we make two simplifying assumptions. First, that g(7.(0)) lies in the con-
nected component G°, the component of G with zero angle. This connected com-
ponent limits onto the fixed point €. If this assumption is satisfied then we say the
transit map is combinatorially real. Second, we assume all the components of Dom(h}
lie on

G'UGTUGY.
One could define the induced marking for maps that do not satisfy these assumptions.
But for simplicity of exposition we keep the assumptions.

Now using the graphs G°, G* and G, it is clear how to modify the constructions
from §4.1 to construct a marking (Ap, T's) of h. We omit the details.

Let us define the combinatorial type of a real-marked through map. Let (f, 4, I') e
MLy and let g : C; — C_ be combinatorially real. Suppose h € L is a restriction
of T(f, g,U;j0U;(f)) to finitely many components such that (h, Ap,[s) € MCLg.
Define the depth of a component U € CC(Dom(h)) as follows. For each U €
CC(Dom(Ty) N Dom(h)), define d(U = no(U) where ng is the first landing time of U
to UjoU;(f). For every other U € CC(Dom(h)) define d(U) as the first landing time
to U;oU,(f) relative to the origin,

Define the through-type homomorphism x @ Ama,r.) — Ayrarm % Z to be the
homomorphism generated by

x(U) = (L{U), d(U)).




Chapter 5

Towers

5.1 Definition of a tower

A tower is a forward infinite or bi-infinite sequence of maps. First let us define
the “product” space II2° X of a given topological space X to topologize the forward
infinite or bi-infinite sequences of elements of X. Let 8 = [—00, 0] denote the one-
point compactification of —Np. Given an m € & let Sy, = {n € Z:n > m}. Define

M®X = {f:Sn— X | meS8)

with the following topology. Fix an f € I12° X with index set 5 (f) = Spypy. Let A be
a neighborhood of m(f) in 8 and let m’ = sup A. Fix N, M € [m/, oo) with N < M
and for each n € [N, M] let X, be a neighborhood of f(n)'in X. A basis for the
topology of TI® X is generated by neighborhoods of the form

{ge I X :m(g) € A, g(n) € Xy forn e [N, M]}.

In words, I1%° X is the space of one-sided sequences (Tmy Tt - - - ) With m € —Np and
two-sided sequences (..., Z_1, To, T1, - . . ) with the topology of pointwise convergence.

The space of towers will be a subspace of a product space [1*°L'. We now define
the space £/, Let

Lo={(f,9): f €L, fluotp € 171 (1/4), g:Cs > C_ a transit map}

and let £/ = £ U Lp with the topology generated by the following subbasis. A
neighborhood in £’ of an f € £ is a neighborhood N C L of f. Now fix an (f,9) € Lp
and fix a neighborhood N of the parabolic fixed point of flue(yy on which f is a
diffeomorphism. Let A be the neighborhood of f from Lemma 2.4.2. Let N' Cc C/Z
be a neighborhood of the phase @ of g. Then a neighborhood of (f,g) is the union of

1. (f',d") € Lp satisfying f' e NNPyand & € N where @ is the phase of ¢'.

2. f' € L satisfying f' € N'NP and @' € N where @ is the phase of the induced
transit map gy .
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Let us introduce some notation for a given T € IIPL’. The index set of T will be
denoted by S = S(7). We will often write T = {fu, gn} where it is implicit that g
is not defined for all n € S. Also, let U™ = Dom(f,) and V" = Range(fy). Let Ug
be the central component of f, and let UUZ,q = UjzolU;(fn) be the off-critical picces
of f,. Let |

Sp=1{n€ 8 fluya) €I (1/4)}

and let
SgZ{'ﬂES:fHEQw}-

We will often identify a transit map g, with the set of local lifts of g, to some choice
of petals. Let

Tm:{fm}u{gn nzm}
and let F,, = (7;,) and define the post-critical set of 7, as
P™ = orb(Fp, 0). ;

We will often also denote Fryin(s) simply by F.
The space of towers Tow is the set of 7 € I[°L’ such that sup Sg = oo, for each
level n € S one of the following conditions hold:

Tl: n € Sg, fn is immediately renormalizable and [fne1] = [h] where h is a pre-
renormalization of f,, of minimal period

T2: n € Sg, fnis not immediately renormalizable and fus1 = B(fn, VVHHP™) where
7+ is the initial return domain w.r.t. some initial Yoccoz partition Ty, of f,

T3: n & (So U Sp) and furs = R(fa, Ug P
T4: n & (SqU Sp) and fup1 = T(fn, UUL, | PT)
Th: n € S’P and fn+1 = T(fn:gn:UU;L#Ulpn)

unless n+1 € Sg, in which case one of the above conditions holds for the germ [fn41].
If Sp # O then 7 is a parabolic tower. If S = Z then 7 is a bi-infinite tower. If

S # Z and fmins) € @ then 7 is a forward tower. The map fiyin(s) 10 @ forward

tower is called the base map. A tower with fo € Q% is normalized if B = 1. Let

Towg = {T € Tow: S(T) = Ny }.
For any n € Sg we denote the next m € Sg by succ(n). That is,
suce(n) = min{m € Sg : m > n}.

A tower T has comples bounds if there exists m > 0 such that mod fr = m for all
n € S(T). For a given m > 0 let

Tow(m) = {T € Tow : mod f,, > m for all n € S}
We say a tower 7 is unbranched iff
P = PO nv"

forallne S.
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5.1.1 Combinatorics

A tower T = {fn,gn} € Towp is naturally marked as follows. First mark all levels
n satisfying condition T2 with the initial marking (A,,Ty). Then inductively mark
levels k = n-+1,n+2,. . .,suce(n)—1,succ(n) with the marking (Ag, T'y) induced from
level k& — 1. Levels satisfying T1 are not marked. Clearly the markings {{An,Ty) tnes
depend continuously on 7. That is, for each level n (not satisfying T1) the injective
map fn — (frr An, In) € ML is continuous. We say a tower has real combinatorics
iff every (fn, An,I'n) € MLr and every g, is combinatorially real.

Suppose now that 7 has real combinatorics. Let A, denote the signed ordered
semigroup As,,4,,ry) and define a sequence of homomorphisms ¥, as follows. If level
n satisfies T2 then define ¥, : Ay —> (Lo, €0) to be the homomorphism generated by
mapping ecach generator of A, to its itinerary through the initial Yoceoz partition
Y,. If level n satisfies T3 then define xy : A, = An_1 to be the homomorphism
generated by mapping each generator of A, to its itinerary through A;_; until the
first return to V*. If level n satisfies T4 then define x, : Ay — Ap_i X Z x Ny to
be the homomorphism generated by x,(U) = (L(U), d(U),no(0)} where L is the first
landing map of f,-1 to the off-critical pieces, d is the depth function and ng is the
first landing time function. If level 7 satisfies T5 then define x, : Ay = Ap—1 X Z t0
be the homomorphism generated by x»(U) = (L(U), d(U7)) where again L is the first
landing map of F(fn—1,gn-1) to the off-critical pieces and d is the depth function.

The combinatorics of T is encoded by the sequence {Xn}nes. We say T has
essential combinatorics bounded by B if the following conditions hold

o if n € Sg then |n — succ(n)| < B
e the return times on T2 and T3 levels are bounded above by B

e the depths of all components on T4 and T5 levels are bounded above by B

e number of connected components of U™ < B for alln € 5.

Let us describe how to associate to the sequence xn a sequence of (parabolic)

shuffes
or = {an}nESQ-

To each level n satisfying T1 let o, = @, Now suppose level n satisfies T2. We
will assign a parabolic shuffle to the group of levels B = {n,n+1,...,succ(n) — 1}.
First, if E N Sp = § then fn, € M? for some shuflle o and {f,11] = R fa. Hence the
combinatorics of the levels in E are uniquely specified by the shuffle o, = 0.

So suppose D = EN Sp # 0. For each m € D let x,(r,’,f) c A, = Ano1 X Z X Ny
be the homomorphism generated by YUY = (xm(U), k). Now for each k there is a
unique shufile o®) with the return-type and through-type sequence

Xny Xntlr - Xm—1s ng): Xm+1: -+ 3 Xsuee{n)—1-
Moreover, there is a p < oo such that o'¥) € Q,(p) for all k. Let

o, = lim o,
k—oo
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It is apparent from the definition of Q% (p) that the limit is well-defined. The com-
binatorial objects o, and {xytner are comparable. That is, if the essential combi-
natorics of T restricted to F are bounded by B then then o, € Qert(p) for some p,
depending on B. Vice versa, if o, € QF*(p) then the essential combinatorics of 7 are

bounded by B depending only on p. The bounds p and B tend to infinity together.
Two towers T and 7" with real combinatorics are combinatorially equivalent iff

S=5,8g=_5y, and =0

For a given m > 0 and B € N let Tow(m, B) be the space of towers 7 € Tow(m)
with essential combinatorics bounded by B.

5.2 Forward Towers

In this section we analyze forward towers. For convenience we will assu;ne all towers
in this chapter are indexed by $ = Np.

Let T be a forward tower. Let us define the (filled) Julia set. We say orb(z)
escapes if orb(z) N (VO \ U%) # 0. Define the filled Julia set, K(T), the Julia se,
J(T), as for quadratic-like maps.

Two forward towers 7 and 77 with S(7) = S(7") are quasi-conformally equivaient
if there is a quasi-conformal map ¢ such that

1. ¢ is a quasi-conformal conjugacy of f, and [, on a neighborhood of K(f,) to a
neighborhood of K(f}) for all n € &,

9. ¢ induces a quasi-conformal conjugacy of the transit maps g, and g, forn € Sp.

A gua,si-conformal equivalence ¢ between two forward towers is a hybrid equivalence
if 8¢ gy = 0 and is a holomorphic equivalence if ¢ is holomorphic. A forward towers
T is equal on K(T) to a forward tower 7" if

1. K(T)=K(T")
2. F,=F for every z € K(T).

Here F is the dynamical system generated by 7, 7' the one generated by 7', and F,
is the set of germs at z of the dynamical system F.
Fix a z € UU®. We note without proof the following two facts:

1. the germs F, are well-ordered by an extension of the well-ordering defined in
§2.4.2

2. any h € F with z € Dom(h) can be extended to a holomorphic map h € F
with range V0 by extending local lifts of transit maps using the extended Fatou
coordinates of §2.4. A restriction of h is a cover map of VO\ P In particular
if V* C VO then f, € F.

3. given a tower 7 and a level n € Sq, a different choice of initial Yoccoz partition
T, yields a tower equal to 7 on K (7).
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5.2.{ Straightening

Proposition 5.2.1 (Straightening) Any forward tower T is hybrid equivalent to a
tower with a quadratic base map.

Proof: Let f, be the base map of 7. From Proposition 2.1.5 there is a hybrid
equivalence ¢ between fy and a unique polynomial of the form 2% -+ ¢. Let u(z) be
the complex dilatation of ¢ and let p = u(z)dZ/dz be the corresponding Beltrami
differential. Since ¢ is quasi-conformal there is a & < 1 such that 16(2) [0 < k. Let
U 5 K(f,) be the domain on which ¢ is a conjugacy.

Define the Beltrami differential g’ by

PJ"K(‘T) =0

and if z € (U \ K(7)) by ,
o = 17 (1)

where h € F(T) and U’ 3 z satisfy h(U") C (U \ K(fn)). The well-ordering of the
germs JF, implies p' is well-defined.

First we claim there are restrictions f! of f, such that Range(f}) C Range(fn)
and 7' = {f', gn} is a forward tower equal to 7 on K(7) and ¢ is invariant under 7.
Let fi = f, forn=0,1,...,m where m € Sq is the first level where Range(fm) ¢
Range(fy), if it exists. Let N € N be large enough so that VY = f-¥(Range(fm)) C
Range(fy). Let f!, = fu, restricted to V,J*!. Choose a new initial Yoccoz partition T
for f and construct the restrictions f! of f, as required for an equal tower for levels
n=m+1m+2,...,my until the level my € So and repeat. The resulting sequence
of maps {f!, g»} will be the desired tower.

Write z'(z) = w/(2)dZ/dz. Since all maps in 7' are holomorphic 1o (2)||o0 < K < 1.
Let ¢ be the solution to the Beltrami equation

5¢1 =u - don

and let
T"={poho¢r' :he T}

We claim T" is again a forward tower and that ¢, is a hybrid equivalence between
T and T". Let n € Sp and g, € T'. Let g = d1ogao ¢y and fy = dro fro o7t
Since ¢; conjugates forward and backward orbits of f, to orbits of f!, it follows that
gl is a map on the Fealle-Voronin cylinders of f. Since ¢; is a homeomorphism, it
is evident that g/ is a homeomorphism. Moreover, ' is invariant under g,, and so
g" is conformal. That is, the conjugate of a transit map in T is a transit map in 7.
The other properties of a tower are clear.

The base map of 7” is holomorphically equivalent to a polynomial. Hence T" is

holomorphically equivalent to a tower with a polynomial base map. U
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5.2.2 Expansion of the Hyperbolic Metric

One of the central ideas in McMullen'’s arguments is that maps in a tower expand
the hyperbolic metric on the complement of the post-critical set. In this section we

prove similar propositions.

Lemma 5.2.2 There are continuous increasing functions C1(s) and Co(s) such that
if f: X — Y is an inclusion between two hyperbolic Riemann surfaces and x € X

then, letting s = d(z, Y \ X),
0 < Ci(s) < DS @) < Cals) < 1.
Maoreover, Co(s) = 0 as s = 0.

Proof: The inequality |[Df(z)| < Ca(s) < 1 and the properties of Cy(s) are found in
[McM2]. Lift f to the universal cover 7 : D — V" and normalize so that z = f(z) =0.
The inclusion B, = {2 : dp(0,7) < s} — D factors through f and so ||D fO) =
1/r(s) where r(s) is the radius of B, measured in the Euclidean metric. O

The following Proposition states when maps in a forward tower T € Towg expand
the hyperbolic metric on 9\ P® and gives an estimate on the amount of expansion

and the variation of expansion.
We will use the notation p, || - ||, d(-,-) and £(-) to denote the hyperbolic metric,

norm, distance and length on V°\ P°.

Proposition 5.2.3 Let T € Towy be a forward tower with base map fo. Let h €
F(T) and @ = k=1 (P°). Then

| DA(2)]| > 1
for any z € (Dom(h) \ Qn). Moreover, if (Qy \ P°) # 0 then
5 (s2) < |IDM()]| < C7 ' (s1)

where s = d(z, QuUADom(h)) and s; = d(z,Qx). Finally, if v is a path in Dom(h)\
Qp with endpoints z, and z, then

IDh(z)["* < [|DR(z1)} < | DA(22)[1*
where o = exp(ME(h(7))) for a universal M > 0.

Proof: Let h € F(T), Qu = h™'(P°), U = (Dom(h) \ Qn) and z € U. There exists
an H € F such that H|y = h and H is a covering map onto VO\ P°% Since the
inclusion

22 Dom(H) «» (VO P

is a contraction by the Schwarz Lemma, we see H expands p. Since H|y = h we
have ||Dh(z)|| > 1. More precisely, the Schwarz Lemma states thatif f: U >V isa
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holomorphic map between hyperbolic Rietnann surfaces U,V C C then, with py and
py denoting the hyperbolic metrics on U and V/,

| (2} pv (f(2)) 1
pu(2) -

with equality iff f is a covering map. With U = Dom(H), V = V°\ P’ and f =1 we
see that py(2) < pu(z) and hence
oy () | [HE@lov(e)

pv(z) - pu(2) ’

IDH(2)|| =

where the last equality comes from the Scharz Lemma applied to the covering map

H :U — V. We rule out equality since V # U.
Now we estimate how much h expands p. Apply Lemma 5.2.2 to the inclusion

1 : U < V to get the inequalities
C;H(s) < |IDH()|| < €7 (s)
where s = d(z, V \ U). Assume @y \ P® # §. Then since C; and C} are increasing,
Cy ' (s2) < |IDH(2)|| < C ' (s1)
where s, = d(z, @, UDom(h)) < s and sy = d{z,@r) = 5.

To conclude let us prove the last statement about the variation of expansion. From
[McM1, Cor 2.27] the variation in ||DH(2)|| is controlled by the distance between

7 and 7, measured in the hyperbolic metric on /. Since H is a covering map,

this distance is bounded above by the length £(H (7)) of H(7) measure on V. But
h(z) = H{y). O

5.2.3 Repelling Cycles in J

Fix a forward tower 7 = {fn,gn} € Tow,. For a point z € U’ we say a (possibly
finite) sequence (zp, 21, 22, -..) is & sub-orbit of z (in 7) if the following conditions are
satisfied:

® 2p =2z

if z; € VO\ U then 2 is not defined

if z; = 0 then z4 =0

if z; € U™ then 241 = h(z) for some local lift h € T of g,

otherwise z;11 = fo(2)
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Note any sub-orbit of z is a subsei of orb(z) and orb(z) escapes iff there exists a
sub-orbit z, . .., zy such that zy € VO\ U°.

A point z € U° is called periodic (in T) if there exists h € F(T), h # 1,
such that h(z) = z. Equivalently, z # 0 is periodic iff there is an x € orb(z) such
that z € orb(z) and a sub-orbit zo,z, = hi(%),..., 25 = hy(z) of z such that
zo = xny and zg # x; for 0 < i < N. The multiplier, A, of the periodic orbit
through z is defined to be Dhy(z). The multiplier does not depend on the sub-orbit.
A periodic orbit is called superattracting, attracling, repelling, neutral if A satisfies
A =0, < 1,]A > 1,|A] = 1, respectively.

Lemma 5.2.4 Let T € Towy. The only non-repelling periodic orbits in T are the
orbits through the parabolic points of fy, for n € Sp.

Proof: Let zg,...,zy be the periodic orbit. Since the only non-repelling periodic
orbits in P(7) are the orbits through the parabolic points, we can assume the orbit
is disjoint from P(7). By Proposition 5.2.3,

|1 DAy (2)]! > 1

But then
Al = |Dhn(2)| > 1

in the Euclidean metric as well. [

For a given level n € Sp let B, be the central basin of level n. A connected
compact set K C U® is iterable if K N @B, = @ for all central basins B,. Mimicking
the definition of sub-orbits of points, we say a (possibly finite) sequence of compact
sets (Ko, Ky, Ka, ... ) is a sub-orbit of K (in T) if the following conditions are satisfied:

e [y=K

@ all K; are iterable except possibly the last one, if it exists

e if K; C Dom(h) then K;y; = h(K;) for some local lift A € 7 of g
e otherwise K11 = fo(K;).

Now that we have said what it means to iterate an iterable compact set, we can
prove the following

Proposition 5.2.5 Suppose T € Towy and let y € J(T). The foliowing are two
equivalent definitions of the Julia set:

1. J(T) =cl{z € U : z is a repelling periodic point}

2. J(T)=cl{z € U%: z is a pre-image of y}
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Proof: The proposition is well-known when Sp = @ (for example [M1, Theorem
11.1]). So assume Sp # §. Let us first prove that

J(T) C cl{z € U : 2 is a repelling periodic point}.

Let z € 8K (T) and let W be a connected neighborhood of 2. Our claim is that
there is a repelling periodic orbit of 7" in W. Since such orbits are dense in J (fo) we
can assume W C int(K(fo)). Let K = W. We can form the suborbit K; = h;(K)
from K until the first moment when K; is not iterable. Such a moment must exist
since the orbit of z € K mnever escapes but the orbit of some other point in X does
escape, by the definition of K (7).

Case 1: Suppose int(K;) N OB, # 0 for some n € S. We follow the proof in [M1]
of Theorem 11.1. By arguing as in Lemma 3.1.4 there is a open set W' ¢ K; and
composition & € F defined on W' such that h(W') N J(fo) # @. There is then an
open set W” C h(W') and an N > 0 such that 8;, € ff' (W"). Let z/€ W be the
pre-image of 8y,:

z=(f3 ohohi)™(Bs)

Tet Wy be a neighborhood of B, on which fo is univalent. There exists an M > 0
such that z € fM(Wo). Let z; € Wy be a pre-image of z by fg:

2= (fg") 7 (2)-

Since 8, ¢ P® we can assume orbz; N P° = (. Then a small enough neighborhood
Wi of z; will map univalently under

flohohso f

to a neighborhood V of 85,. Pull Wi back by folw, until it is contained in V. Say
the resulting domain is V3 = f; “*(W}). Then we have found a univalent map

N Ni+-M
foiohohiofy

from V4 to V O Vi. Moreover fy' 1M1y ¢ W. Hence there is a repelling periodic
orbit passing through W.

Clase 2: If K is not iterable because K; N (Vy\ Ug) # 0, then by perhaps choosing
a smaller neighborbood W and iterating fo more, we can assume that the moment
when K; is not iterable is because int(K;) N 8B, # @ for n = minSp and we can
argue as in case 1. :

Case 3: Suppose int(kK;) N 8B, = @ for some n € Sp but that 0K; N OB, # 0.
Then by choosing a slightly smaller neighborhood W we can assume K is iterable and
continue iterating the sub-orbit. We claim this case can only happen a finite number
of times., For otherwise every time IK; is not iterable K; falls into this case. Then
by choosing the slightly smaller neighborhoods so that they all contain some definite
neighborhood W' of z we see that the orbit of W' is defined for all iterates. But this
is impossible since then W' never escapes, contradicting the fact that z € 9K (7).
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Thus after a finite number of restrictions, -he non-iterable set &; must fall into the
cases considered above. This finishes the claim that

J(T) C cl{z € U° : z is a repelling periodic point}.

Now let us prove the other containment. Let z € K(7) and let W be a connected
neighborhood of z. Suppose W contains a repelling periodic point z;. Again let
K = cl{W) and start forming the sub-orbit K; = h;(X) through K. Claim there is
a moment when K; is not iterable. For otherwise the maps h; form a normal family
on W and that contradicts the fact that W contains a repelling periodic point. Thus
there is a non-iterable iterate K;.

Clase 1: Just as case 1 above, there is a open set W’ C K; and composition
h € F(T) defined on W' such that A(W') N J(fo) # §. But then there is a point in
h(W') that escapes and thus there is a point in W that escapes as well.

Case 2: If K; is not iterable because K; N (V°\ U%) # @, then we have found a
point in W that escapes.

Case 3: Suppose int(K;) N 3B, = @ but that 8K; N 3By, # 0. Then by choosing
a slightly smaller neighborhood W that still contains the repelling periodic point zp,
we can assume K; is iterable and continue iterating the sub-orbit. We claim this case
can only happen a finite number of times. For otherwise every time K; is not iterable
K; falls into this case. Then by choosing the slightly smaller neighborhoods so that
they all contain some definite neighborhood W' containing z we see that the orbit
of W' is defined for all iterates. But this is impossible since the iterates of W' cannot
form a normal family. Thus after a finite number of restrictions, the non-iterable set
K; must fall into the cases considered above. Thus we have proven the first statement
of the proposition.

To prove the second statement, notice that the argument proving the first also
proves that if y € J(7) then any point in Up has a pre-image arbitrarily close to y.
That is,

J(T) C cl{z € U°: there is an h such that h(z) = y}.

The reverse inclusion follows from the fact that J(77} is closed and backward invariant
and that y € J(7). O

5.2.4 Forward Rigidity

In this section we prove the combinatorial rigidity of forward towers. That is, the
germ of the base map and the sequence x, determine the germs of the quadratic-like
maps and transit maps uniquely:

Proposition 5.2.6 Let T = {fn, g} and T' = {f}, gn} be forward towers with real
combinatorics and comples bounds. Suppose S(T) = S(T") =N, T is combinatorially
equivalent to T' and [fo] = [f}]. Then T is equal to T' on K(T).

The proof involves constructing families of generalized quadratic-like maps, which we
discuss first.
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Families of first through maps : ‘

Let (f : U;U; — V,h) be a proper holomorphic family of generalized quadratic-like g
maps over A € D with winding number 1. Assume f is not a DH-family and let
Ty = T(fr, UjzolU;(f2)). Let * € D be the base point of the family and suppose
0 € Dom(T.). Let D' C D be the connected component of X, = {X:0 € Dom(T))} !
containing *. Let g. be a restriction of T(fy, UsaU;(f.)) s0 that g, € £. One can o
pull back the motion h to a holomorphic motion h' of 8Dom(g.) defined over I)'.

Lemma 5.2.7 Let (f : U;U; — V;,h) be a proper generalized quadratic-like family
over D with winding number 1. Let x € D be the basepoint and let g, be the first
through map T(f., UjzoU;(fi)) restricted to finitely many components. Suppose g. €
£. Then the connected component D' of X, containing = is o Jordan disk and the
family of first through maps (g, W) over D' is proper and has winding number 1.

Note that when (A, I';) is a continuous family of markings of f then D' is uniquely
specified by the induced marking on g, and the through-type homomorphism of g..

Families of generalized parabolic renormalizations \

Now suppose f € L satisfies

fo = flun € 17 (1/4).

We keep the setup from §4.3 as follows. Let { = Gp,. Choose incoming and outgoing
petals D. around the parabolic point £ and let (. denote the respective Ecalle-
Voronin cylinders and 74 the projections with 7, extended to B = int(K(fy)). For
a given g : Cq — C- let L be the first landing map under F(fo, g) to Uszoll;(f). !“

The goal is to construct a family in £ by varying the transit map g : C4 — C_..
Let X C C/Z be the set of phases a such that for g = ga,

0 € Dom(L). *

It is clear that X is a countable pairwise disjoint collection of Jordan disks. Choose a
connected component D of X and fix * € D and a restriction T, of T(f, e, UjaU; ()
to finitely many components of Dom(T') such that T, € L. The construction of the
holomorphic motion h of (8Dom(T.), dRange(T.)) described before Lemma 3.1.1
carries over unchanged to this situation. Moreover, one can modify the proof of
Lemma 3.1.1 to prove

Lemma 5.2.8 For any connected component D of X, the family (T,h) over D is a
proper generalized quadratic-like family with winding number 1.

‘ We are now able to prove Proposition 5.2.6:

Proof: If Sp = @ then the result is a restatement of Theorem 2.2.2. So suppose
Sp = 0 and let n = min Sp. Then since [fo} = i8] it follows that

[falootra)] = Unlvots)]- | f
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Hence the Ecalle-Voronin cylinders of level n are equal: C1 = C. We claim that
gn = ¢.. In what follows we have implicitly fixed a pair of Fatou coordinates for
level n. Also, by intersecting initial Yoccoz partitions and passing to towers equal on
K(T) and K(T") we can assume
f n = f :L

For each @ € C/7Z let L; be the first landing map of F(fn,9a) t0 UjzoU;(fn) and

let
X ={a:0€ Dom(Ls)}.

Let L = L(fn, gn) and let Uy = Up(L). Similarly let L' = L(fs,q,) and let Uy =
Us(L'). Let @ be the phase of g, and let al, be the phase of g,. Let D C X and
D' c X be the connected components of X containing @y and ag, respectively. First
we claim D = D'.

Since 7 and 77 are combinatorially equivalent the through-type homomorphisms
are equal: yn = x,. Let xu(Us) = Uy and let x;,(Ug) = Ui. Also, since [fo] = [fg] we
know K{(fo) = K(f3). Let K = K(fo). Since xix = xj, for k=0,...,n we know

KNty =KnUj.

Let K = K NUy. Since L(0) € K and I/{0) € K it follows that @y and @} are in the
same connected component of X. Hence D = D',
Let (T,h) be the holomorphic family over D constructed in Lemma 5.2.8 such

that

Tﬁg = fn+1

Ty = kL
Note that (T,h) is a proper generalized quadratic-like family over the Jordan disk
D with winding number 1. The base point can be chosen as either do or . Let
(fot1, hpy1) = (T,h) and suppose n+1 ¢ Sg U }». That is, suppose level n + 1
satisfies condition T3 or T4 in the definition of towers. If level n + 1 satisfies T3
then let (f,19, hny2) be the family of first return maps from Lemma 2.3.6 such that
frt2,30 = fn+2. This family is a proper family with winding number 1. If level n +1
satisfies T4 then let (£,.2, hyt2) be the family of first through maps from Lemma 5.2.7
such that fnisa, = fat+2. Again, this family is a proper family with winding number
1. In either case, let Dy, be the parameter domain for (fa+2, Bpro). Inductively
construct families (£, hy) for levels k =n+2,n-3,...,m where

m = inf{m' € Sp U Sg: m > n}.

Since xx = x} for k=n+2,n+3,...,7m we see (fx, hy) are also the families of first
return and first through maps for f; with base point a;.

Now consider the DH quadratic-like families (£, hy,) restricted to the central
domain, denoted by F. From Theorem 2.3.5 the set

M = {G € Dy, : J(Fz} is connected}

is homeomorphic to the Mandelbrot set M. It follows that ao, ay € M. Now we claim
that dg = ﬁ;).




If F, has a parabolic orbit then clearly do = ay from the rigidity of parabolic
parameter values. Otherwise Fy, is infinitely renormalizable with real combinatorics
and complex bounds and so by Theorem 2.2.2 we see g = ajy-

Now by induction on n € Sp we see g, = g, and [fn] = [f1] for m = succ(n).
Hence K(7) = K(7T') and T is equal to 7. 0

In fact by examining the above proof we see the only use of complex bounds was
for Theorem 2.2.2. Thus the above proof also yields the slightly stronger resul:

Proposition 5.2.9 Let T = {fa, gn} and T' = {f,, gn} be forward towers with real
combinatorics. Suppose S(T) = S(T') = N, T is combinatorially equivalent to T’
and [fo] = [f}]. Suppose in addition that sup Sp = 0. Then T is equal to T' on
K(T).

Combining rigidity with straightening we have the following

Corollary 5.2.10 Any two combinatorially equivalent forward towers T, T" € Touwg
with real combinatorics and complex bounds are hybrid equivalent.

Proof: Straighten 7 and 77 to towers 71 and 75 with quadratic base maps. Since Ti
and 75 are combinatorially equivalent it follows from Theorem 2.2.2 and the unique-
ness of root points that the base maps have the same germ at 0. Hence by Proposi-
tion 5.2.6 7, and 73 are hybrid equivalent. [J

5.2.5 Compactness

The goal in this section is to prove Proposition 5.2.16. To do so we will need several
lemmas about the geometry of first return and first through maps.

Bounded geometry
First we control the geometry of levels satisfying condition T2 of a tower:

Lemma 5.2.11 ([L3]) Let m > 0. Let f € I"'(M) N Q(m) for some mazimal, real
M-copy M # M and let VO be the initial return domain w.r.t. some inttial Yoccoz
partition. Let g be a restriction of R(f, VY to finitely many components of Dom(R)
so that g € L. Suppose there is n > 0 so that the return time of any z € Dom(g) to
VO is bounded above by n. Then there are functions Cy > 0 and Cy > 0, depending
only on m and n, such that geo(g) > C1 and (diam K(g))/(diam K(f)) = Cs.

Next. we control the geometry of levels satisfying condition 'T3:

Lemma 5.2.12 Let r € N, m > 0, A > 0. Suppose f € L(m) and geo(f) = A
Consider the first return map R = R(f,Us(f)) and suppose 0 € Dom(R). Let h be R
restricted to finitely many components so that h € L. Suppose

sup n.(z) <r
z€Dom(h)

Then there exists C, > 0 and Co > 0, depending only on m, A and r such that
geo(h) > Cy and (diam K (h))/(diam K(f)) = Ca.

58




Froof: Assume diam K(f) = 1. 1f Dom(f) has one connected component then
K(h) = K(f). So assume Dom(f) has more that one connected component. Then
from Lemma 2.3.1 we know f is ranging in a compact set X {m, A). Let X(m, \,r)
be the subset of f € X(m,\) such that if R = R(/, Us(f)) then 0 € Dom(R) and
n4.(0) < r. Since X(m, A, 7) is closed it is also compact.

Let ¥ ¢ £ denote the set A of restrictions of R(f,Up(f)), f € X(m, A, r) such

that
sup ny(z) <
zEDom{h)
Then Y is compact since X (m, A, r) is compact and since Y consists of finitely many
connected components and within each component 5 depends continuously on f.
Since the geometry function geo(h) is continuous it follows that geo(h) = Cy where
C, depends only on m, A and 7.
The second statement similarly follows from the continuity of the function

diam K (h). O

The following lemma, controls the geometry of restrictions of first through maps
where the landing time is bounded above. The proof is a minor modification to the
proof of the lemma above, and we omit it.

Lemma 5.2.13 Let r € N, m > 0, A > 0. Suppose f € L(m) and geo(f) = A.
Consider the first through map T = T(f,U;zaU;(f)) and suppose 0 € Dom(T). Let
h be T restricted to finitely many components so that b € L. Suppose
sup mp(z) <.

z€Domlh)
Then there exists Cy > 0 and Cy > 0, depending only on m, A and r such that
geo(h) > C) and (diam K (h))/(diam K(f)) > C».
Let us now turn to those levels satisfying T4 with long saddle-node cascades. Let
m > 0 and let

X={feQ(m): felI'(1/4) and diam K(f) = 1}.

From Lemma 2.1.2, X is compact (in the Carathéodory topology). For each f € X
choose a neighborhood N 3 87 on which f is a diffeomorphism and let M,..., Ny be
a finite cover of X by the neighborhoods from Theorem 2.4.2. By rescaling we can
extend the neighborhoods A; to be a finite cover of {f € Q(m) : f € I7}(1/4)}. Note
the coordinates do not necessarily agree on the overlaps A; NA;. Now if (f, A,T') €
M Lg(m) has a long enough saddle-node cascade then by Lemma 4.2.1 it follows that
f € (NM;NPy) for some 1 < i < k. That is, there is a function £, such that if Lf) = b
then f € (M;NP,) for some 5. We can use the perturbed Fatou coordinates to control
the geometry of a first through map:

Lemma 5.2.14 Let A >0, m > 0 and B € N. Suppose (f, A, T) € MLr(m} satisfies
geo(f) = X and £(f) > by Let (g, Ag,Ty) € MLy be the first through map T of f
restricted to finitely many components such that the combinatorics of g is essentially
bounded by B. Then there exists Cy > 0 and Cy > 0, depending only on A, m, and
B, such that geo(g) > Cy and {diam K (g))/(diam K (f)) = C..
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Proof: Let us prove the first statement. buppose f € N;. All statements that depend
on Fatou coordinates implicitly use the coordinates from the neighborhood N;. Let
¢1 = f7(0) be the first moment when the orbit of 0 lands in Sy;. We can assume
r, is uniform over the neighborhood N;. Then ¢; lies in a compact subset of Cfr.
Let g; be the induced tramsit map of f and let ¢z = gg(c1). Since I™(e2) € Ujslj
for some n < B, it follows ¢ lies in a compact subset of C£. Hence the phase af,
measured in the coordinates from A%, lies in a pre-compact subset of C/Z. Now it
is easy to modify the proof of Lemma 5.2.12 to finish the proof: (f,g) is ranging in
a pre-compact subset and so the set ¥ of restrictions with combinatorics essentially

bounded by B is pre-compact. [l

Finally we bound the geometry on levels that satisfy T5. The proof is a minor
modification of the above lemma.

Lemma 5.2.15 Let A > 0, m > 0 and B € N. Suppose (f,A, ') € MLy (m) satisfies
geo(f) = A and
fo= Flown € I7(1/4).

Let g : C.. — C_ be a combinatorially real transit map of fo. Let (h, Ap, I'y) € MLy
be the first through map T(f, g,UjxzoU;(f)) restricted to finitely many components
such that the combinatorics of h is essentially bounded by B. Then there exists
Cy, > 0 and C; > 0, depending only on A, m, and B, such that geo(h) > C) and
(diam K (h))/(diam K{(f)) = C».

Compactness
We are now able to prove the main proposition of this section.

Proposition 5.2.16 For any m > 0 end B € N the set of normalized towers T €
Towg(m, B) is compact.

Proof: Let 7 = {fa, g} be a tower in Towg(m, B). First we claim the geometry of
f, is uniformly bounded. Indeed, the following table gives the appropriate lemma for
each type of level:

Level Lemma
T1 [McM2, Proposition 4.13]
T2 Lemma 5.2.11
T3 Lemma 5.2.12
T4 Lemma 5.2.13 and Lemma 5.2.14
T5 Lemma 5.2.15

That is, there exist C; > 0 and C; > 0, depending only on m and B such that

geo(fn) = C1
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and ) .
diam K (f,) > G,

diam K (fn—1) —
Let i = {fen Gen) be a sequence in Towe{m, B). From the geometry bounds
above and from Lemma 2.3.1 and Lemma 2.1.2 (the extra condition

d(0,C\ Range(f)) £ €

is satisfied since 3y, & Range( Jonce(ny)) We can select a subsequence Tp, s0 that fu, o
converges on all levels n € S to some generalized quadratic-like maps f,. Let Sp C 5
be the levels with fu|up € I7'(1/4). As in the proof of Lemma 5.2.14 we can choose
a further subsequence so that the transit maps on each level n € Sp converge. [t is
clear the limiting collection of maps will form a tower. O

5.2.6 Continuity of P g
Lemma 5.2.17 Let m > 0, B € N and T € Towy(m, B). Then diam K(f,) — 0 as
n — 00.

Proof: We can assume there are an infinite number of levels n — co where fo i8
not immediately renormalizable, for otherwise 7 is eventually a McMullen tower with
period-doubling combinatorics and the result follows. Choose a subsequence of levels
m, — 0o 50 that f,, has at least one off-critical piece.

Suppose by contradiction that diam K(fn,) > € > 0. Let U;U,; = Dom(f,,) and
Kij = K(fn,)NUk;. We may assume Kiiy; C K} 0 by selecting levels of first return.

Then since geo(fn,) > C(m, B) > 0 and mod(Ky,;, U,;) 2 m it follows that Uy,
contains a definite neighborhood of K ;. Hence there is eventually some ji,72 # 0
and kg > ki with Ki, j, N Uk,j, # 0. But this is a contradiction since Kg, 4, C Kiyi 0
and Kz, 0N Uku,j; =0 O

Proposition 5.2.18 ([McM2, Corollary 5.12]) Let m >0 and B € N. Then the
posteritical set P(T) varies continuously with T € Towy(m, B).

Proof: Let 7;, be a sequence of towers in Towg(m, B) converging to a tower T.ifze
orb(7,0) then d(z, P(T)) ~» 0 as m — oo since F(T) is contained in any geometric
limit of T;,. Hence P(7) C liminf,, P(7). We must show limsup,, P(Tm) C P(T).

For n € Sg let K,(0) = K(fu) and let Ky(%) enumerate the orbit of K(fa) by T-
That is,

UiKn('i) = {h‘(z) A K(fn)vh € }-(,T)}

Let 4, = sup; diam K,(i). The arguments proving diam K, (0} — 0 can be adapted
to prove &, — 0. Let ¢ > 0 and let N be large enough so that ¢y < €. Let

UiKmn(d) = {1(2) : 2 € K(fmpn), b € F(Tm)}-

Since T, — T it follows that for m > N large enough Ui Ky 0 (i) is contained in an
e-neighborhood of U; K, (i). Hence P(T,) is contained in a 2e-neighborhood of P(T).
(i
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5.2.7 Definite Expansion

The following corollary can be used to control the expansion of the hyperbolic metric

on one level with bounds from a deeper level. For a given tower 7 and level n € Sg

we will use the notation gy, || - |ln, da(,*) and £,(-) to denote the hyperbolic metric,
: norm, distance and length on V™ \ P?, where recall P* is the post-critical set of T
| restricted to levels m > n. That is, for any m € S recall o = {{fm} U{gn : n > m})
and P™ = orb(F,,,0). Recall we say T is unbranched ift

Pt =pP'ny"
foralln € 5.

Corollary 5.2.19 Let m > 0 and B € N. Let T € Towp(m, B) be an unbranched
forward tower. Suppose n € Sg is a level such that V" C VO, Let h € F, and let
n = hH(P?). Then if (QF \ P™) # @ and z € Dom(h)\ QF, ’

Cy'(s2) < || DR(2)|

l where sy = dn(2z, Q}).
Proof: Since V* c VY and P" = PN V" we see
(V" P7) € (VA P

and so
do(z, Q%) < dn{2, Q%)

! Since the function C5 in Proposition 5.2.3 is increasing,
Cy (dn(z, Q1)) < C3 M {do(2, QR))- (5.1)
Then from Range(h) C V™ and V™ N P® = P" we see
hH(P™) = hH(PY). |

Since h € F(T) it follows from Proposition 5.2.3 that
G (do(z, Q1)) < 1 DR(Z) - (5.2)

The lemma follows from equations 5.1 and 5.2, Ul

: In order to apply this corollary we need to get a bound on s; = dn(z, Q}).
! This is done by compactness. For any m > 0, €' < o0, K < cc and B € N let
Towe(m, B, C,K) be the set of towers T = {fs, g} in Towy(m, B,C) where all
U € CC(U™) and V" are K-quasidisks for all n € 5.

Lemma 5.2.20 Letm >0, C < 0o, K < oo and B € N. Let T & Towe(m, B,C, K),
; n € Sq and z € fH{VP\U™). Then there exists a C1 < 0o depending only on m, C),
K and B such that d,(z, Q%) < Ci. '
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Proof: By shifting level n to level 0 anc. restricting to a subtower we can assume
n = 0. Since V°® and U° are K-quasidisks, the set

Wo = fo {(VO\T?)

_ varies continuously with 7 ¢ Towy(m, B, C, K). Since P(T) varies continously the
! hyperbolic metric p and the set Q‘}O vary continuously. Therefore the function F' on
Towy(m, B,C, K) given by :

F(T) = sup d(z,Q},)

ZEWD T

is continuous. Since Towo(m, B, C, K) is compact by Lemma 5.2.16, there is a Cy
such that F(T) < €. O

5.2.8 The Interior of K |

1 An infinitely renormalizable quadratic-like map f € QF has a filled Julia set with i
empty interior. The same statement holds for forward towers: o

Proposition 5.2.21 For any unbranched T € Towy(m, B, C, K),
int(K(7)) = 0.

The proof of Proposition 5.2.21 is broken into propositions Proposition 5.2.25 and
Proposition 5.2.26 and will occupy the rest of this section.
Fix an unbranched tower T € Towg(m, B, C, K). Suppose by contradiction that

O = CClint(K(T)))

is non-empty. Let U € O and z € U. Let K C U be a compact and connected
neighborhood of z. Recall B, are the central basins of 7. Since 9B, C J (T) for all
n € Sp it follows that X is iterable. Since J(7) is backward invariant we see that all
the iterates of K are iterable as well. Thus the orbit of K is well defined and contains
the orbit of z and so, letting K range over larger and larger compact subset of U, we
can define the orbit of U, orb(U), to be components containing the orbit of K.

; Periodic Components

A component U € O is called periodic if U € orb(U) implies U € orb(U'). A
component U € @ is called pre-periodic if U is not itself periodic but there is a
periodic component in orb(U).

The classification of periodic components is based on the following classical propo-

sitions (see, for example, [L1, M1]):

i Proposition 5.2.22 Let h : U = U be an analytic transform of a hyperbolic Rie-
mann surface U. The we have one of the following possibilities:
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1. h has an altracting or superattracting fized point in U to which all orbils converge
2. all orbits tend to infinity

3. h is conformally conjugate to an irrational rotation of the disk, the punctured
disk or an annulus

4. h is a conformal homeomorphism of finite order

Proposition 5.2.23 Let U be e hyperbolic domain on the sphere, and h: U — U an
analytic transform continuous up to the boundary. Suppose that the set of fized points
of h on 8U is totally disconnected. Then in case 2) of Proposition 5.2.22 there is a
fized point o € OU such that hy(2) = « for every z € U.

The following lemma, is useful for controlling the dynamics near the ends of the
Ecalle-Voronin cylinders. Let f € I71(1/4) and choose petals Dy. -For any z €
D.. N D_ define the Ecalle-Voronin transformation £ by

Er_(2)) = m4(2).

One can show that £ extends holomorphically to the two ends of C_ by using the
Fatou coordinates and the standard isomorphism m(z) = exp(2miz) of C/Z to C\ 0.

Lemma 5.2.24 Suppose fo € I71(1/4) and g : C4 - C_ is a transit map such that
the critical point of fo escapes K(fo) under iterates of fo and local lifts of g. Then

(g 0 &) (+o00)| > 1.

Proof: We will prove the lemma with the critical point escaping after just one iterate
of a local lift of g. Assume the critical point of f is at the origin. Let R =go & and
J_ = 7_(J(fo)). Let Vi denote the connected components of (C_ Y\ J_) U {£oc}
containing +oo and let Useo = 97 (Vioo) (see Fig. 5.1).

Note that £ can be extended to Vie, as a branched cover. The set of critical
points is the backward orbit of 0 and the only critical value is 7, (0).

Since 74 (0) & Usoo and each Uy is simply connected there is a branch of £t
defined on U..,, preserving 00, Composing £~} o g~ ! we have constructed a branch
of R~! which maps each Vi, inside itself and fixes +oc. In fact, since £ “Usoo) C
m_(int K (fo)) it follows that R~ maps Ve strictly inside itself. The lemma follows
from the Schwarz lemma. O

We can now prove the following

Proposition 5.2.25 No U € O is periodic or pre-periodic.

Proof: Suppose U € O is a periodic component. Suppose cl(U) is iterable and all
iterates of cl{U) are iterable. Then since U is periodic there exists a univalent map
h € F(T) defined on a neighborhood of cl(U) such that h(cl{U)) = cl(U). Let us
examine the possibilities from Proposition 5.2.22.
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Figure 5.1: A blow-up of the Julia set of fo = 2° 4+ 1/4 with pre-images by fo, g and

£ highlighting the sets Utoo and Vig.
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Since cl(U) is disjoint from P, 7), Ler.ina 5.2.4 im}.ies any periodic point in cl(U)
must be repelling. Thus there cannot be an superattracting or attracting orbits.
Suppose all iterates tend to 8U. Now the set of points on AU fixed by h are isolated,
since otherwise h would be the identity on an open set and that would contradict
Proposition 5.2.3. Applying Proposition 5.2.23 again contradicts Lemma 5.2.4.

The other possibilities in Proposition 5.2.22 are ruled out because h expands the
hyperbolic metric on U° \ P° and any map conjugate to a rotation will have high
iterates arbitrarily close to the identity.

Now suppose there is a component U’ from orb(U) such that cl{U”) is not iterable.
To simplify the exposition we will assume 7 is a real-symmetric tower. Since U is
periodic we may assume U = U’. Since U C K( fo) there must be an n € Sp such
that cl(U) N O(By) # B. Since UNJ(T) = {) it follows that U7 C B, and if n' € Sp is
the next parabolic level after n then cl(U) N By = .

Let K = cl(U), [ = falup and & = B(f). Since B, and 8B, are invariant by f, it
follows Kj = f¥(K) C cl(B,) \ By and 8K, N 3B, # B for all £ > 0. Let

B = CC(B, \ (UZef *(R)))

be the collection of components of the partition pictured in Fig. 5.2.

Figure 5.2: The tiling of B,,.

First we claim that U NR = @. Let n’ € Sg be the largest quadratic-like level
before n. Let B, be the central basin of the first level n” € Sp after n’. Then the fr
pre-images of By cover a dense subset of RN K (Fy). It follows that the pre-images
by F(T) cover a dense subset of RN B, and accumulate at £. Since dBn» C J(T )
the claim is established. Since U is periodic under 7, we can assume [/ C A where
A € B satisfies £ € 0A. Without loss of generality assume A C H.

Let v = 0A. Let
n =7 ")
gn
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Sincz g, is a real translation, y; C H. Le:

v = U ) |

k>0

where the branch of f~! is chosen so that f~'(H N B,) C HN B, (see Fig. 5.3).
It follows from Lemma 3.1.4 that 7 is contained in the domain A; bounded by 7.

Figure 5.3: The curves v, v and 7. A

Continue this process. That is, the pre-image of v, by g, is contained in A; and pulling
back by f~! we see that U is contained in a domain Az C A;. By Lemma 5.2.24,

() A=
m>1

and so a non-iterable periodic component U cannot exist. [

Wandering Components

A component U € O that is neither periodic nor pre-periodic is called wandering.

Proposition 5.2.26 No U ¢ O is wandering.

Proof: Suppose U € @ is wandering. Let K C U be compact and connected. Then K
is iterable and all iterates of K are iterable. Fix an z € int(K). Since each map A from
the orbit of K is defined on a neighborhood of K and since @ = h™}(P(T)) € J(7),
it follows from Proposition 5.2.3 that

s&p I|DR(2)|| < oo. (5.3)

Suppose there is an € > 0 such that there are an infinite number of iterates h,
satisfying
d(ha(2), P(T)) > €
where the distance is just the Eunclidean distance. Order the h,, to match the ordering
on the orbit. That is, if n < m then Ay, (2) € orb(h,(2)). Since each hy(2) lies in a
compact subset of the hyperbolic surface V°\ P(T),

d(ha(2), Qgo) < Cle),
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for some function G(e), and so from Proposition 5.2.3,

D folbn(zDlf =2 C > 1 (5.4)

But then
| Dl (2] = 1P (fo 0 ) ()] = 1D folen (D] - [1DAn (2]} 2 ClIDRa(2)]] - (5.5)

which as n — oo contradicts equation 5.3.

So we can assume
limsupd(h(z), P(T)) = 0.
h

Let 7, = Tls, be the restriction of 7 to levels m > n. Let K,, be the collection of
little filled Julia sets K, = orb(7, K(7T5))-

From Lemma 5.2.24 we see orb(z) must accumulate on some 2" € & where & is
the parabolic orbit of fo. But then 2’ is contained in a little filled Julia'set in Ky. By
iterating forward we can assume 2’ € K (7). It follows that there is a y1 € orb(z)
such that y; € K(T;). Now again there is an accumulation point orb(y,) disjoint from
&, the parabolic orbit of fi, and, repeating the whole argument inductively, there is

a sequence of iterates y, € K(T,).
Each y, has a moment z,, € orb(z) when orb{z) enters the collection of little filled

Tulia sets KC,. Once orb(z) enters X, it never leaves. It can happen that different g,
have the same moment z,. However, since

[ K(T) = {0}

n>0

there must be an infinite number of distinct entry moments Z,.

Let 2, € orb(z) satisfy fo(2,) = #.. Thus the relation between the points z, Tn,
y, and z, is given by: z, € orb(z), £, = fo(z,)} is the time orb(z} enters K, and
Yn € orb(z,) is the first time x,, enters K (7). Claim

d(zn, Qfﬂ) S C’.

Let X' be the component of f3'(Ky) \ Ky containing z,. The set K7, is called a
companion filled Julia set of level n. Since Qy, N K, # 0, it is enough to show

diam,(K,) < C'.

Consider the sets U/, and V/ containing K, which are pull-backs of U™ and V™ by the
map sending 2, to ¥,. By the unbranched property this pull-back is univalent. Since
mod (V*,U") > m, we have mod(V,,U}) > m and so, from [McM1, Theorem 2.4],
the diameter D,, of U’ in the hyperbolic metric on V;, is bounded. Bui V; C (VO\ PY).
'Thus

diam,(K}) < diam,(U;) £ D, < C

and the claim is established.
But then equations 5.4 and 5.5 hold along the sequence z,, = hn,(2), and we again

get a contradiction to 5.3. U
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5.2.9 No invariant line fields

A line field is a measurable Beltrami differential ¢ = u{z)dz/dz with |u(2)| = 1
on a set of positive measure and |u(z)| = 0 otherwise. A line field is invariant
under 7 iff for every h € 7, Dh maps the line at x to the line at A(z) for almost
every & € Dom(h). Using Proposition 5.2.5 and Proposition 5.2.21 we can rephrase
Proposition 5.2.6 in terms of invariant line fields.

Before doing so, we need the following

Lemma 5.2.27 ([L1]) Let T € Touy. The group G of homeomorphisms of J(T)
that commute with all maps h € T is totally disconnected.

Proof: Let ¢ € G be a map in the connected component of the identity. Suppose zp
is a repelling periodic point with A(z) = 2 for some h € F(7). Since the solutions
to h(z) = z are isolated ¢ must fix z. The lemma follows from density of repelling

cycles: Proposition 5.2.5. [

We now prove the following version of forward tower rigidity:

Proposition 5.2.28 Let T be an unbranched tower in Towy(m, B,C, K) and let pi
be a line field invariant under T. Then plgrry = 0 a.e.

Proof: By Proposition 5.2.1 it suffices to consider a forward tower 7 having a base
map of the form 22 + ¢y. From Proposition 5.2.21 we know K(7) = J(T). Suppose
by contradiction that 7 did admit an invariant line field '

= u(z)dz/dz
supported on J(7"). For any w € D consider the invariant Beltrami differential
oy = w - u{z)dZ/dz

on C. Let ¢ be a solution to the corresponding Beltrami equation normalized so
that the map
fw,ﬂ =¢uo foo ¢;1

is again a rational map of the form 22 + ¢, for some ¢, € C. Let T, be the tower
Tu={Ppwohod t :heT})

From Proposition 2.2.2 and the uniqueness of root points, ¢, = ¢ for all w € D.
Proposition 5.2.6 implies fyn = fu for all n € S and gyn = gn for all n € Se and
w e D. So ¢, is a holomorphic family of quasi-conformal maps with ¢ = id and ¢y
mapping J(7) homeomorphically to itself commuting with the dynamics of 7" From
Lemma 5.2.27 ¢ | s¢7) = ¢d. But then the complex dilatation of ¢, is zero at all points
of Lebesgue density of J(7) and so y is not supported on J(7), a contradiction. O
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5.3 Bi-infinite Towers

Tn this section we move from studying properties of forward towers to studying bi-
infinite towers. The plan of attack again follows [McM2| and the goal is to prove
combinatorial rigidity of bi-infinite towers with bounds. The idea behind the proof,
namely to blow up a non-trivial deformation to obtain a contradiction, was pioneered

by Mostow and Sullivan in the theory of Kleinian groups.
Let Tow™® = {T € Tow : S(T) = Z} denote the set of bi-infinite towers in

Tow and let Tow*(m, B) denote the set of combinatorially real bi-infinite towers
T = {fn, 9n} with mod f, > m and essential combinatorics bounded by B. Let
Tow™(m, B,C, K) C Tow™(m, B) the unbranched towers with

diam V™ < C diam K (f,)

and each U € CC(Dom(f,)) and Range(f,) K-quasidisks. For a given bi-infinite
tower T define the post-critical set as

P(T) = Up<oP(Fn)-

We say two bi-infinite towers 7 and 7" are equal if 7, is equal to 7; on K (7,) for all
n € Z and we say T and 7' with S(7) = S(7") are quasi-conformally equivalent if
there is a quasi-conformal map ¢ and an € > 0 such that

1. ¢ is a quasi-conformal conjugacy of f, and f, on an e-scaled neighborhood of
K(f,) to a neighborhood of K(f;) for alln € S,

2. ¢ induces a quasi-conformal conjugacy of the transit maps gn and g, for n € Sp.

The following are straightforward generalizations of Lemma 5.2.17 and Proposi-
tion 5.2.16:

Lemma 5.3.1 Letm >0, Be N and T € Tow™(m, B). Then diam K(f,) — 0o as
7 — —00.

Proposition 5.3.2 For any m > 0, ¢ < oo, K < o and B € N the space of
normalized towers T € Tow(m, B,C, K) is compact.

Given T € Tow*®(m, B, C, K) define Sy C Sg as follows. Let Swp = {0}. Then
inductively let Sy ni1 = San U {mny1} where

My = max{m € Sg| m <k =min Sy, U™ D 143

Define Sy = Up—y009nn- ‘That is, Sy is the minimal set of nested levels approaching
—o0 and starting at 0. From Lemma 5.3.1 we see Sy 18 unbounded below. Define

the depth of z #£ 0 by
depth(z) = max{m € Sy : 2z € U™}.

For a point z € C we say a (possibly finite) sequence (2o, 21, 72, ...} is @ sub-orbit of z
(in ) if the following conditions are satisfied:
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if zZi = 0 then Ziy1 = 0

if 2; € Dom(G,) then zi11 = gn(2) for some local lift g, € T

otherwise 241 = faoptn(z) (%)

Let p_co be the hyperbolic metric on C\ P(7)} and as in §56.2.2 let p, be the
hyperbolic metric on ¥\ P*. From Lemma 5.3.1 and the unbranched property the
metrics py, for T & Tow™(m, B, C, K}, converge uniformly on compact sets t0 f—co-
Using the expansion from §5.2.2, we now prove

Theorem 1.2.1. For any T € Tow=*(m, B,C, K)

lim J(7;)=C

n——00 ¢
in the Hausdor{f topology.

Proof: Let z & Us<o/(7;). Without loss of generality we may assume 2z € U0, Then
orb(F;, #) escapes U’ for any s € Sy. Let 2, = h,(2) be the orbit point just before
the first moment of escape on level 5. That is, fy{z) € V*\ U*® and if 2’ € orb(z)
also satisfies f,(z/) € V*\ U* then 2 € orb(z,). For a given s € Sy let 7; be a
hyperbolic geodesic in V* \ P° connecting z, with J (7,). From Lemma 5.2.20, there
is a C independent of s such that £,(v)) < C. But h, has an extension h € F (7
that is a covering map onto V*\ P*. Let v, be the connected component of h=Y~.)
containing z.

We now argue £5(,) shrinks as s — —oo. The proposition would follow since p;
converges to p_., near z and since Julia sets are backward invariant. Fix an s € Sy
and let N, = [{s,...,0} N Sy| be the minimal number of moments when the orbit
of z escapes a nested level. It follows from Lemma 5.2.20 and Corollary 5.2.19 that
there is a C' > 1 such that

C < ||IDfi(=)]s

for any t € {s,...,0} N Sy. Hence
CNe < || Dhy(2)]s- (5.6)

Hence the derivative at the endpoint z grows exponentially in N,. From Proposi-
tion 5.2.3, there exists a G > 1 such that equation 5.6 holds along 7, and hence the

length of v, shrinks as s & —oo0. O

A measurable line field 4 on an open set U is called univalent if there is a univalent
map A : U — C such that g = h*(dZ/dz). The main statement in this section is the
following extension of Proposition 5.2.28, which immediately implies Theorem 1.2.2.

Theorem 5.3.3 Let T € Towg(m, B,C, K). There does not exist a measurable line
field u in the plane such that h,(p) = p for all h € F(To), n € Sy ’




T | ]

field which is non-zero on a set, B, of positive measure. Let z € B be a point of
almost continuity of u and satisfying |u(z)| = 1. That is, for each ¢ > 0, the chance
of randomly choosing a point y a distance 7 from 2z that satisfies |u(y) — u(2)| > ¢ 1|
tends to 0 as r tends to 0O:

1 area({y € B(z,7) : lu(y) — u(z)| > €}) 0

i =
r30 area B(z,1)

l
|
Proof: Suppose to the coniiury that 4 = u{z)dz/dz is a measurable invariant line

where B(z,r) is the Euclidean ball of radius r centered at z. By Proposition 5.2.28,
we can agsume z ¢ K(7T;) for any n. Let z, be an infinite sub-orbit from z and for
cach s € Sy let 2, = hn, (2) denote the moments in the sub-orbit when 2,41 first
satisfies 2,41 € V*\ U

For a given s € Sy let 7, denote 7 shifted so that level s is moved to level 0 and :
let w, and u, denote z,, and u shifted by s. That is, if |B(f,)| = s, then w, = a, zn,
and u,(2) = u(w,;2). Then since Tow™(m, B,C, K} is compact the sequence 7! has
a subsequence which as s — —oo converges to some 7' € Tow™(m, B,C, K). By
choosing a further subsequence we may assume w, converges to a

w € cl((fo) " (Range(fy) \ Dom{f)))

and, from [McM2], u, converges weak®, and hence pointwise almost everywhere, to a
measurable line field ' invariant by 77 in the sense that h.() = p for all b € F(Ty,), :
n € Sp(T"). '
Let D be a small disk around w in A = Range(f) \ P(7]). The hyperbolic 5,
diameter of D in A is close to that of D, = a7 (D) in the metric on V*\ P* for s near ,,
—oc. Since D, is disjoint from P?, there is, by the argument given in Proposition 1.2.1, ;
a univalent pullback D’ of D, by the map hn,. By equation 5.6 and the variation of |
expansion in Proposition 5.2.3, we see D/, is a sequence of open sets containing z such '
that in the Euclidean metric diam(D') — 0 and B(z, C diam(D)})) C D; as s = —o0
for some constant C. Therefore from [McM1, Theorem 5.16] we can choose y' to be ;
univalent on D. |
By Proposition 1.2.1, there is an s € Sx(7") such that J(7/) N D # 0. By
invariance, if Dh(z) # 0 and 4 is locally univalent around 2 then u' agrees almost
everywhere with a locally univalent line field around h(z) for any composition h € l
F(77). From Proposition 5.2.5, the orbit of D by 7 covers all of V. So 1 agrees
almost everywhere with a line field that is locally univalent on the set Range(fi) \
P(T?). Since f! is injective on P(7;) every point in P(7]) except f;(0) has an fi :
pre-image around which 4/ agrees (a.e.) with a locally univalent line field. Hence ,
1t agrees (a.e.) with a locally univalent line field around (f;)?(0) and 0, which is a i
contradiction, since then we obtain contradictory behavior of 4/ around £;(0). U ;

As a corollary we obtain
Theorem 1.2.2. If 7,7 € Tow™(m, B,C, K) are normalized combinatorially

equivalent towers then T and T' are equal.




Proof: Let Sy be the set of nested levels of 7 as constructed above. For each
n € Sy, let ¢, be a hybrid equivalence between 7, and 7, coming from straightening
(see Corollary 5.2.10). The dilatation of ¢, is bounded above by a constant depending
only on mm and B and ¢, fixes 0 and oo and maps 3(fo) to 8(fj). Thus we can pass
to a convergent subsequence ¢, —+ ¢ as n — —oo. Since ¢, restricts to a quasi-
conformal equivalence of f, and f! for s > n, s € Sy, on a definite neighborhood
of K(f,), it follows that ¢ is a quasi-conformal equivalence. Let p be the line field
defined by ¢ and p, the line field defined by ¢n. Since hy(pin) = pn for all b € F(7,)
it follows that h.(u) = u for all h € F(T,), n € Sy R

From Theorem 5.3.3, x = 0 and so ¢ is conformal. Since lim,, o U" =C, ¢ is
linear and since 7 and 7' are normalized ¢ is the identity. U

5.4 Proof of Theorem I and Theorem II .

Let p > 1. Let f be an oco-renormalizable real quadratic polynomial with 5.(f) < p.
The first step in the proof of Theorem I1 is to construct a tower 7 € Towg(m, B, C, K)
from f.

It follows from Lemma 2.2.4 that there are m, B, ' and K depending only on p,
and a forward tower 7 = {f,} € Towy(m, B,C, K) with the following property. For
n € Sg let [f}] be [f,] normalized and let k(n) = |So N {1,...,n}|. Then

[£7] = R¥™ .

Hence renormalization acts on towers by shifting. Let 7, denote the tower 7 shifted
by n so that f, is normalized and has index 0. By compactness there exists a limiting
tower 7" and by Theorem 1.2.2 the germ | fy] is uniquely specified by the combinatorics
cf 7" a bi-infinite sequence of ¢ € Q& (p). Hence if f has essentially period tripling
combinatorics the germs R* f converge to a unique germ ¥, which proves Theorem I.

To prove Theorem II suppose & is a bi-infinite sequence of shuffles and ends in
QPt(p). Let 0, = m,() denote the n-th element of 5. For each o, let oy, be a
sequence in §2,(p) converging to o,. Define the sequence 7 € 1§, (p) by

T= (00,0,01,—1, T1,0:01,1,02,-2,02,-1,02,0,021:F225 -« y Oy« -« 5 Opymy - - )

and let 7, = 070 (F) where 6 is the left-shift operator and j(n) =1+3+5+---+
(2n — 1) + n. Then by construction 7, —+ &. Let f be a real quadratic polynomial
with shuffle sequence 7 and let 7~ be a tower in Tow(m, B, C, K) constructed from f.
By compactness of towers let 7 = {f, ¢.} be a limiting tower of 7;(). Define the
function b : II%, Q%P4 (p) — G by

h(@) = [fo].

From Theorem 1.2.2 h is well-defined and is continuous. The other properties of A
are clear.
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