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Abstract of the Dissertation
Langlands Parameters of Subquotients of

Derived Functor Modules

by

Paul David Friedman
Doctor of Philosophy
in
Mathematics
State University of New York
at Stony Brook

1997
Professor Anthony Knapp

Let G be a linear, noncompact, simple Lie group with finite center,

and K a maximal compact subgroup of G. Suppose that rank G = rank
K; Harish-Chandra showed that this equal rank condition is necessary and
sufficient for G to have discrete series representations. In the ongoing effort
to classify the unitary dual of G, one technique used to search for unusual
unitary representations of G is “to continue the discrete series analytically”
by allowing a parameter to vary outside the range that produces discrete
series.

Let g be the complexified Lie algebra of G such that the underlying

algebraic object for a representation of G is a (g, K} module. Fix a Cartan
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subgroup T' of K and its complexified Lie algebra t, and let b be any Borel

subalgebra of g containing t. In 1978, Zuckerman gave an algebraic consiruc-
tion of a series Ag(A) of (g, K) modules such that Ag() underlies a discrete
series representation when a certain translate of A is dominant (the “good”
zone). Moreover, as b varies, the representations obtained this way exhaust

the discrete series.

1t is known that when Ap()\) is a discrete series module, then it con-
tains a special K type whose highest weight we denote A. When Ag(A) is no
longer in the “good” zone, but A is still K-dominant, the theme of continu-
ation beyond the discrete series leads one to consider the unique irreducible
subquotient, V', of Ap(A) containing the K type 7a.

In 1997 Knapp conjectured that a certain recursive procedure would
produce the Langlands paramecters of V. These are parameters that locate
V in the classification of all irreducible (g, K') modules, He proved, via
a combinatorial argument, that in particular cases his algorithm succeeds
in identifying the Langlands parameters. Roﬁghly, the proof extracts the
infinitesimal character and the minimal K type and then shows that the
Langlands parameters produced from the process are the only possible ones

that can have these invariants.

This thesis provides a different approach to the problem studied by
Knapp. Via techniques of cohomological induction, we produce a simple
set of criteria on roots of g that, when satisfied, allows one to construct an
explicit mapping from which one can often read off the Langlands parameters

of V. We show that this approach handles the cases considered by Knapp
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in 1997, as well as some other cases. The approach taken in this paper gives
deeper insight into why Knapp’s process works, and suggests some lines of

reasoning for how to proceed more generally.
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Chapter 1: Introduction

Section 1.1: Overview

Let G be a linear, noncompact, simple Lie Group with finite center, X
be a maximal compact subgroup of (f corresponding to a global Cartan invo-
lution ©. Suppose that rank G' = rank K, so that there is a maximal abelian
subspace ty of & that is also a Cartan subalgebra of go; Harish-Chandra
showed that this equal-rank condition is a necessary and sufficient condition
for G to have discrete series representations. In analyzing a representation
(7, V) of G, one often examines the restriction of 7 to K. The theorem of the
highest weight parametrizes irreducible representations of K, and we call an
equivalence class of irreducible representations of K with highest w;»’eight Aa

K-type, denoted 74. A representation = of G is admissible if each K-type

occurs with only finite multiplicity in 7|g. Work by Langlands [L], and sub-
sequent work by Knapp and Zuckerman, parametrized irreducible admissible
representations of G. The Langlands parameters of such a representation
consist of a cuspidal parabolic subgroup M AN, a discrete series or a limit
of discrete series on M, and a complex-valued linear functional on the Lie
algebra of A satisfying a positivity condition.

When attempting to handle a representation (x, V) algebraically, one
often studies its underlying “(g, K') module.” This is a vector space natu-
rally associated with V' that carries compatibly both a U(g) module struc-

ture, where U(g) is the universal enveloping algebra of the complexified Lie

algebra of G, and a representation of X in which every vector lies in a finite-
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dimensional invariant subspace. General (g, K') modules may also be defined,
and theorems of Harish-Chandra, Lepowsky, and Rader show that every ir-
reducible (g, K) module is the underlying (g, K} module of an irreducible ad-
missible representation of G. Generally, the terminology of G-representations
is transferred to (g, K) modules. In particular, by the Langlands param-
eters of an irreducible (g, K) module V, we mean those of an associated
irreducible admissible representation of G.

| Cohomological induction, introduced by Zuckerman in the late 1970s,
is an algebraic technique used to construct admissible (g, K') modules. Let
us describe a functor of cohomological induction: Let (g, K} be a reductive
pair, let g = [ ® u be a 8 stable parabolic subalgebra with Levi factor | and
nilpotent radical 1, and let § = [ 1 be the opposite parabolic of‘q. Let Z be
an (I, LN K) module, and define Z# to be the ({,L N K) module Z & A"Pu.
Extend Z# to a (§, L N K) module by having @ act as zero. Form the (g, X)

module

£(2) = I;(U(g) ®up) Z27)

where II; is the j th derived functor of the so-called “Bernstein functor” II,
whose precise definition will not concern us at this time. Let § = dim{un#);
this is the middle dimension among all degrees for which II; can be nonzero.
Zuckerman sketched an argument that £g(Z) is in the discrete series of G
if L is compact, Z is one—dimengional, and a certain translate A -+ § of the
unique weight A of Z has positive inner product with the roots of u (in which
case, we say that A or Z is in the good zone).

One technique used to search for unusual unitary representations of G
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is “to continue the discrete series analytically” by allowing‘a parameter to
vary outside the range that produces discrete series. Wallach [W1] in effect
was one of the first to apply this approach, treating the case that G/K is
Hermitian symmetric, Z is one-dimensional, and u is built from all the non-
compact positive roots (L still being compact). In this case, § = 0. Wallach
determined the exact range of the parameters in which £g(Z) is irreducible
and infinitesimally unitary. Outside this range £3(Z) can be reducible, and
Wallach determined exactly when the unique irreducible quotient of Ls(Z)
is infinitesimally unitary. Enright, Howe, and Wallach [EHW] and Jakob-
sen [J] independently extended Wallach’s results to Z finite-dimensional. It
is known that these unitary representations obtained via analytic contin-
uation of discrete series play an important role in the classification of the
unitary dual for certain groups G. Furthermore some of these represen-
tations, which include certain “ladder representations,” are of interest in

mathematical physics.

Enright, Parthasarathy, Wallach, and Wolf [EPWW] considered a gen-
eralization in which G/K is no longer Hermitian symmetric but L is still
compact. Again they considered “analytic continuations.” Their standing
hypothesis was that a certain K-type parameter A remained dominant for
K this condition had automatically been satisfied in the Hermitian case.
Now, the parameter S was no longer 0. The paper [EPWW] was chiefly
concerned with unitarizability, and the work was a predecessor of Vogan’s
Unitarizability Theorem [V2], which tidily extends the results of [EPWW]

by allowing L noncompact and Z infinite-dimensional.
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Knapp undertook the task of determining for the setting of [EPWW]
the Langlands parameters of the unique irreducible subquotient of Ls(Z)
containing the K-type 7a. In [K3], extrapolating from work of Wallach in
+he Hermitian case, he proposed a recursive process for doing so, and in cer-
tain cases Knapp proved via a combinatorial argument that his procedure
worked. Roughly, the proof extracts the infinitesimal character and the min-
imal K-type and then shows that the Langlands parameters produced from

the process are the only possible ones that can have these invariants.

We mention some features of the Knapp process. For a discrete series,
the cuspidal parabolic subgroup is G itself, and A = 1. As the parameter
A + § moves outside the initial range (the good zone), the process increases
the dimension of A by 1 at each step, essentially projecting data to get the

new M and A parameters.

Knapp’s combinatorial argument has a limited scope. It becomes more
complicated for more complicated groups, and there appear to be cases not
settled by Knapp where the infinitesimal character and the minimal K-type

that it uses do not uniquely determine a set of Langlands parameters.

This thesis provides a different, more representation-theoretic approach
to the question of Langlands parameters and analytic continuations of dis-
crete serics. We start by exploiting some basic properties of representations
of an sl(2,R) subalgebra naturally embedded in g. Then we apply tech-
niques of cohomological induction to produce a set of criteria on roots of g
that, when satisfied, allows us to construct a mapping, ®, which can be use

to read off Langlands parameters. The criteria given provide a true reduc-
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tion of the problem, because they are simple and can be checked in a finite
number of steps in any particular example. We then show that the cases
handled by Knapp, as well as some other cases, are handled by the approach
of this thesis. Moreover, the approach taken here gives deeper insight into
why Knapp’s process works, and suggests some lines of reasoning for how to

proceed more generally.

Section 1.2: Basic Notational Conventions

Let G be a connected semisimple Lie group with finite center and let
K be a maximal compact subgroup. We denote corresponding Lie algebras
by the corresponding Gothic letters with subscripts 0, and we denote com-
plexifications by dropping the subscripts. We let bar denote the conjugation
of g with respect to go. Let 8 be the Cartan involution of gy corresponding
to K and let go = & @ po be the associated Cartan decomposition. Let U(g)
denote the universal enveloping algebra of g.

Let ho be a Cartan subalgebra of go, and let A = A(g,h) be the set
of roots. We introduce in the usual way an inner product {-,-) and a norm
squared |- |* on the real linear span of the roots. We use a hat to denote a
coroot; that is, if @ € A then & = 2a/|a|?. If the Cartan subalgebra by lies
in & then each root vector lies in € or in p, and the roots are called compact

or noncompact accordingly. We denote the subset of compact roots by Ax

and the subset of noncompact roots by A(p).




Chapter 2: SL(2,R) and Some of its Representations
In this thesis, we use some basic relationships among the representa-
tions of SL(2,R). In this chapter, we recall basic information about some
representations of SL(2,R). All of the material in this section may be found
in [K1] or (D] .

Let g = (‘Z S) € G = SL(2,R) = {(j 2) € Ma(R)|ad — be =

1}. Let K = SO(2) = {( cos § Smg)’o <6< 2«}. Let the nt* K type

—sinf cosé
be

, cosf sinf _ gind
"\ —sinf cosb ) )

(1) Principal Series Representations: P=¥

Let w € C and let V be the space of complex-valued functions in
L%(R,(1+ z2)fe ¥ dz). The principal series of SL(2,R) is a family of relﬁ—
resentations of G on V given by

-1—w ar—c :
+aw | G b . ‘—ba""—dl f(—bx—l—d if +
P (c d) f(m) - {

sgn(—bz +d)| — bz + d|™1 7V f(2E=Y) if —.

P is not unitary unless w is a purely imaginary parameter. (However, if

w € R and 0 < w < 1 then P can be renormed so as to become unitary.
When this is done, we have the complementary series.) The K types are
given by all even n in the 4 case, and by all odd n in the — case. The K
types all occur with multiplicity one.

The principal series representations can also be realized as induced
representations. Let § == MAN the upper triangular subgroup, and let
v € a*. Define ¢ on M = {:I:I} by

(e 0) {1 if +
a =
0 e e if —.

=23




Then we may realize the principal series representations as
U(S,0,v)(-) = ind$; sn{0 @ expr @ 1).

(2) Discrete Series Representations: D} and Dy

Let n > 2 be an integer. The Hilbert space for D is

. dz d
{f analytic for Im z > 0] ||f|I* = f/ ()] y" __ma;zy < oo}

Im x>0

and the group action is

D} (‘j 3) F(z) = (~bz +d)””f(_“§zjjd).

The K types of D} are given by n + 2m, where m is a nonnegative integer,
all occurring with multiplicity one.
The Hilbert space for D] is the complex conjugate of the Hilbert space

for D, and the group action is

oy (& 5) e =Twr " i £25)

The K types of D, are given by —(n+2m), where m is a nonnegative integer,

all occurring with multiplicity one.
(3) Finite Dimensional Representations: ®,,
Let n be a nonnegative integer and V,, be the space of polynomials of

degree < n. Then G acts on this (n + 1)-dimensional space by

3, (Z" 3) P(2) = (~be + d)"P(ﬁ).

7
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The K types of &, are given by n,n—2,... ,—(n—2), —n, all occurring with

multiplicity one.
(4) Reducibility

By comparing the actions in (1) and (3), we see that

5 { pti~(+l)  if n even
"= po-lnt) i oodd,

Similarly, by restricting the functions in the space for the discrete series

representations from the upper half-plane to R, we see that

ptm=1  if n even
P-n—1l i noodd.
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Chapter 3: Introduction to (g, K) Modules and Cohomological Induction

In this chapter, we summarize some of the basic definitions and prop-
erties of cohomological induction. All of what follows may be found in [KV]

or [K2].

Section 3.1: (g, K) Modules

Let g be a finite-dimensional complex Lie algebra and let K be a com-
pact Lie group. We call (g, K) a pair if the following compatibility conditions
are satisfied:

(i) the complexified Lie algebra £ of K is a subalgebra of g;
(ii) K acts on g by automorphisms Ad(k) extending the adjoint ac-
tion on & and
(iii) the differential of Ad(k) is ad() C ad(g).

Throughout this paper, we shall always assume that G is unimodular.
Additionally, we operate under the assumption that whenever we are working
with a pair, {g, K), that there is a real Lie group G with complexified Lie
algebra g such that K is a compact subgroup of ¢ for which € and Ad are
compatible with the definitions imposed by G.

For any pair (g,K), a (g, K) module is a complex vector space V'
carrying representations of g and K such that

(i) the K representation is locally K finite;
(i) the differentiated version of the K action is the restriction to £

of the g action; and

(iii) (Ad(k)w)z = k(u(k™'z)) forke K,ucU(g), andz € V.




Naturally associated to a representation (n, V) of ¢ is its underlying

(g, K) module {or Harish-Chandra module), that is, the subspace of K
finite C'> vectors of V, denoted C'°(V') g, with its U(g) and K structures,
Due to the following theorem of Harish-Chandra, Lepowsky, and Rader, the
study of admissible representations of G is essentially equivalent to the study

of (g, K) modules.

Theorem. Every irreducible (g, K') module is the underlying (g, K') module

of an irreducible admissible representation of G.

Section 3.2: The Hecke Algebra R(g, K)

The study of g modules amounts to the same thing as the study of
unital left U(g) modules. Since we are interested in (g, ') modules, we would
like to have something analogous to U(g) and unital left U(g) ﬁlodules to
assist us, The “Hecke algebra,” R(g, K), which we shall define presently,
will play the role of U(g). Further, since R(g, K) usually does not have
an identity, only an approximate identity, approximately unital left R(g, K)
modules will play the role of unital left U{g) modules.

The Hecke algebra of K, R(K), is the algebra of matrix coefficients
of all finite dimensional (unitary) representations of K with convolution as
multiplication. Unless K is a finite group, R(K') does not have an identity,
only an approximate identity. The Hecke algebra of (g, K), R(g, K), is the
vector space

R(K) @y Ulg)

equipped with the following multiplication: choose an Ad( K }-invariant inner
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product on U/™(g) for sufficiently large n, and let {u;} be an orthonormal

basis of U™(g). Then define
(c@u)d @u)= E e (Y Ad(Du, ui) @ uiu'.

This multiplication descends to R(g, K) and makes R(g, K) info a complex
associatice algebra. The relevance of R(g, K) in the study of (g, K') modules

can be seen in the following theorem.

Theorem. A (g, K) module in a natural way is an approximately unital left
R{g, K) module. Conversely, any approximately unital left R(g, K') module
comes from a (g, K) module by an inverse construction. For any two such

modules V and W,
Homg,x(V, W) = Hompg,x)(V, W).

Let C(g, K) be the category of all (g, K) modules and (g, K) maps.
Because of the above theorem, we may regard C(g, K) as the category of all
left R(g, K) modules that are approximately unital. This is a good category

with enough injectives and enough projectives.

Section 3.3: The Master Functors: P and
Definition: A map of pairs i : (h, L) ~» (g, K) consists of two maps
falg 1 — @ a Lie algebra homomorphism
tgp : L — K a Lie group homomorphism
satisfying the compatibility conditions

i1




(i) fag0otr = tx 0 digp, where dig, is the differential of igp;

(ii) ta1g 0 Adp(l) = Adg(igp (1)) 0 taig for I € L,
where ¢, : [ -+ h and ¢ : € — g are the Lie algebra inclusions arising from
the definition of the pairs (h, L) and (g, K).
Next we introduce the two master functors of cohomological induction:

P and I
Definition: The functor P(-): C(h, L) — C(g, K) is defined by -

P(V)=PPF(V) = R(g,K) @1y V-
The functor I(-) : C(h, L) — C(g, K) is defined by
I(V) = 17 (V) = Hompy, 1y(R(g. K), V)

where the subseript K denotes “the K-finite part.”

The functor P is right-exact, covariant and sends projectives to projec-
tives. The functor I is left-exact, covariant and sends injectives to injectives.
In this thesis, we will be concerned chiefly with two particular specializations
of these functors:

(1) When K = L, so that the pairs are (§,L) and (g,L), P and I

reduce to functors ind and pro, defined by
3 ~ 3 ,L
Pff,f(v) =indg 7 (V) = U(g) ®uey) V,
I5: (V) & profy[(V) = Homyy(U(g), V)i
These, in fact, are exact functors.

12
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(2) When g = b, so that the pairs are (g, L) and (g, K}, the functors

are given special names, II and I'. H is called the Bernstein functor
and T is called the Zuckerman functor. We have the following natural
isomorphisms:

POE(V) = Hgp (V)=T(V) = R(K) @nqe,r) V

10K (V) =85 (V) = T(V) 2 Hompe, 1y (R(K), V)
Of primary interest in this thesis will be the derived functors of the right

exact II,

IL; : C(h, L) — C(g, K)

obtained on modules by applying P to projective resolutions in C(h, L) and

taking homology, and the derived functors of the left exact I',
I :c(h, L) — g, K)

obtained on modules by applying I to injective resolutions in C(h, L) and

taking cohomology.

Section 3.4: Parabolic Subalgebrasq = (@ u

Before presenting the above functors in the form that we shall use
them, we need to introduce some more notation and terminology. Again,
the main reference for this material is [KV].

Definition. A reductive pair (g,K) is a tuple ((g, K}, 80,0, {,'))
consisting of a pair (g, K), a real form go of g, a Lie algebra involution 6 of
g0, and a nondegenerate form (-, -} on go that is Ad(K) invariant and is skew

symmetric under ad go. Moreover, it is assumed that
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(1) go is a reductive Lie algebra

(i1) the decomposition of g into -+1 and —1 eigenspaces under 8 is
0o = ¥y @ po, where & is the Lie algebra of K

(iii) & and po are orthogonal under {-,-}, and (-, -} is positive definite
on py and negative definite on &,.

As an example, if G is a connected semisimple Lie group with finite
center, K maximal compact, § a Cartan involution and {-,) equal to the
Killing form, then (g, K) is a reductive pair.

Fix a 8 stable Cartan subalgebra, %y = typ @ a9 and choose a positive

system A1 (g, h). Let b denote the corresponding Borel subalgebra and define

H = Ng(b) N Ng(60)

T = Nx(b) = Nx(6b)

We then call (§,T) a Cartan subpair.

Starting from a reductive pair (g, K), we define a parabolic subal-
gebra of g to be any Lie subalgebra of g containing a Borel subalgebra b
built from a Cartan subpair. The parabolic subalgebras q containing b are
parametrized by the set of subsets of simple roots; the one corresponding to

a subset II is of the form
q:=[]&3€£>903
o€l
where T' = At (g, h) U {« € A(g, h)|e € span(Il)}. Now define

[=hp @ Oo and 1l:@9m

acl'n-T o el
ag—T

14




so that q = [ & u. In this decomposition, [ is called the Levi factor and u
is called the nilpotent radical. We call a parabolic subalgebra g =D u

germane if it satisfies the equivalent conditions below.
(a) [is the complexification of lp = [N gy
(b) [1is closed under conjugation (of g with respect to go)
(¢) I'N —T is closed under bar
{d) T T is closed under §

(e) [1s 8 stable.

The two types of germane parabolics that are of particular significance
to us are real parabolic subalgebras, i.e., q is closed under conjugation,
and # stable parabolic subalgebras, 1.e., g = 0q. If g = [ @ u is a real
or 6 stable parabolic subalgebra, then there exists A € 4ty U ap such that
I = Zy4(h) and u is the sum of eigenspaces of ad h for positive eigenvalues.
The element h may be taken in ag if q is real, and it may be taken in ity
if q is @ stable. Conversely, we can construct real and § stable parabolic
subalgebras by selecting a linearly independent set {h;} C itg Uag, and then
defining | = Z;(Chy + - -+ Chy,) and u = sum of simultaneous eigenspaces of

ad h;} for positive simultaneous eigenvalues.
p g

Section 3.5: Functors of Cohomological Induction

We need one final definition before defining functors of cohomological
induction. Let ¢ : (), L) — (g, K) be a map of pairs. Define the forgetful
functor F : (g, K) -+ C(h, L) by setting .7:3”}3()() to be the (h, L) module

15




with the same underlying vector space as X and with actions
he = iag(h)z and lr = igp (e

In particular, if ¢ = @ u is a parabolic subalgebra and X is an (I, L N K)
module, then f[,frﬂ}?(}() becomes a (q, L N K) module by letting u act as
0. The functor F is covariant and exact. Moreover, the functor I is right

adjoint to F. That is, there is a natural isomorphism
Homp(y, k) (X, I(V)) = Hompg, 1) (F(X), V)

for V € C(h, L) and X € C(g, K). This relationship is commonly referred to
as Frobenius reciprocity [KV, pg.110].

Let (g, K) be a reductive pair, and ¢ = [ © u a @ stable parabolic
subalgebra containing a § stable Cartan subalgebra §y of go. Let Z be in
C(I,Ln K), and define

Z%* = 7 @¢ \*Pu.

Since u is an (I, LN K) module, A*Pu is a one-dimensional ([, LN K) module
with unique weight 26(u) relative to h. Then Z# is in C(I, LN K). Let £;(Z)
and RY(Z) be the members of C(g, K) given by

K . INK 7, LNK
Li(Z) = (Hg,z,mc)j(md?,,LQK(FﬂLm”K} (Z#)))
; N SRy JNK ¢ g, LNK
R(Z) = (Fg,LmK)J(Pfog,ir?f;(ft,LLnﬂK (Z#)))-
The functors £; and RY are the functors of cohomological induction.

Let § = dim(uN€). It is easy to see [KV, Cor 2.125b] that II; and I
(and consequently £; and RY) are 0 for j > 25. In fact, £ ; and RY are 0 for
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J > 5 [KV, Th 5.35]. This dimension §, called the middle dimension, is
the one of primary interest.

Let A be ‘an analytically integral lincar functional on § that is orthog-
onal to all members of A(f), and let Cy be the one-dimensional (I, L N K)
module with highest weight A. We define (g, K) modules by

AX)=Ls(Cx) and  A%()) = R5(Cy).

We can extend the definition of functors of cohomological induction
from one using a @ stable parabolic subalgebra and a twist by 26(u) to one
applicable to any germane parabolic subalgebra . If ¢ = [ @ u is a germane

parabolic subalgebra we now allow L to be a subgroup of G satisfying Ly C
L C Ng(q) N Ne(6q) and define the “unnormalized” fuﬁctors “L and "R
from C(I,L N K) to C(g, K) by
uﬁq LK = Hg LnK( dg’igffg [qLLr?I{'((Z)))
"ReTox = Ty Lok (Prof i (Flini (£)))
The derived functors of interest are
(3 z0w)i(Z) = (g 70 (ndf LK(FAAE (2)))
(RyLax) (2) = Ty iax Y (pro MK (FITE (2))).
The unnormalized functors also arise naturally. According to Propositions
11.47 and 11.65 of [KV], if I 4 (€, v) is a continuous-series representation

and Vfi'm » is the underlying (m, M N K) module of ¢, then the underlying
(g, K) module of I, , 5 (£,v) 1s

~ i r~ K
(35.1) Xx(&v) 2 "Ry knn(Vierar ® Cotp) = "LEE i (Vian © Comp),
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where ¢ = méBadn, m acts in meM, and a acts in C, 4,. [We will sometimes
use Xx(-,v) to denote the obvious functor from C(m, M N K) to C(g, K).]
Notice that this functor has an adjustment by p. Modulo a technical matter
involving double covers, we may define the “normalized” functors of coho-

mological induction, "R and "L, to incorporate this shift (cf. [KV §X1.7]).

Section 3.6: The Bottom-Layer Map

All of the material in this section may be found in [KV §V.6].

A principle in representation theory is that when analyzing a represen-
tation of the connected semisimple G, it is often helpful to study either the
restriction of the representation to K or another type of K analog. The study
of (g, K') modules has a similiar principle, so we shall presently introduce the
K analogs, £§((Z) and ’R“}((Z), of £;(Z) and R?(Z). The bottom-layer map
then links these two modules. To obtain the nicest results, we assume that
(8, K) is a reductive pair, so that it arises from a reductive group,G, [ef. KV
Prop 4.31], and we assume that L meets every component of G.

'To start, we continue to write Zc-fé and Zf for the K analogs

Fapar (28) = Fiong ™ (2#).

mf:Lr'lK _ MELNE
Farek (Z§) = Fed ™ (a#),

where the superscript (-)# continues to refer to the tensor product AP,
Define
K e K b K ]
Iy = (Pe,LnK)J' and I'k = (I{:,LnI{‘)J'
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The K analogs of £;(Z) and R(Z) are the functors from C([N &, L N K) to
Cle, KK

LX(Z) = nE(PLEE (21

j i b, LK
Ri(Z) = DI nic(22)).

The advantage of studying Lf((Z ) and ’R,“}((Z ) is that we usually know
exactly what they are. When G is connected and Z is an irreducible (1N
€, LN K') module, these modules split so that study of them is reduced to the
case in which they are irreducible. This case is then handled by an algebraic
Bott-Borel-Weil theorem. Therefore, if yy, is the highest weight of Z, then
£§"(Z) = {J unless the weight ug = p7,+26(unp) is dominant for K. When it
is dominant for K, £§"(Z ) is an irreducible representation of K with highest
welght pic.

To take advantage of this concrete knowledge, we need to link E:TK (Z)
and £;(Z). To do so, one sets m = g, m’' = g, and Z = Z# in [KV Lemma

5.26], to obtain a one-one (& LN K) map
(3.6.1) Bz : P il 25) — PRLOE (23).
Because of the isomorphism from [KV Prop. 2.115},

I o Forng & Fyx o 1lj,

it is meaningful to form Bz = Hj‘((ﬂz) from (3.6.1); the result is the map

(3.6.2) Bz : LX(2) — L;(2).
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This map is called the bottom-layer map.
Theorem 5.80(a) [KV]Ifr is a K type in £5(Z), then the bottom-
layer map Bz maps the 7 subspace one-one onto the 7 subspace of Lg(Z).
The K types of L5(Z) that appear in LX(Z) are called the bottom-
layer K types of Ls5(Z).

Section 3.7: Some Properties of A,()\)

In this subsection, we highlight some basic facts about the A4(A) mod-
ules. The notation is as in §1.2.

o If Z is an (I, LN K) module with infinitesimal character A then £;{Z)
and RY(Z) have infinitesimal character A\4+6(u) [KV Cor. 5.25]. In particular,
A4(A) has infinitesimal character A4-§ since in this case, the ([, LN K) module
Ca has infinitesimal character A 4 §(1) and (A + &(1)) 4 6(u) = A + 4.

o If A= X+ 28unyp)is AT(Et) dominant, then A4(A) contains the
K type A with multiplicity one [KV §V.6].

e If L is compact, then A4(A) is isomorphic to Ap(A), where b is a Borel
subalgebra and q 2 b. (To see this, one can combine an algebraic Borel-Weil
theorem with an induction-in-stages result.)

e If ) is in the good zone, that is, the infinitesimal character A+ 6 is
strictly A(u) dominant, theﬁ

(a) A is A*(E,t) dominant

(b) A4(A) is irreducible

(c) Aq(A) is unitarizable

(d) if also rank G = rank K and ¢y C & is a Cartan subalgebra of go,
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then Ap()) is a discrete series module. In fact, the good Ap(N)’s,

as b varies, exhaust the discrete series of ¢ [KV Thm. 11.178].
The main result of this work concerns a natural subquotient V of the
(g, K) module 44()) when X is no longer in the good zone. In particular, we

are interested in determining the Langlands parameters of V.
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Chapter 4: Setting the Stage

Section 4.1: Langlands Parameters

As previously mentioned, theorems of Harish-Chandra, Lepowsky and
Rader show that every irreducible (g, K) module globalizes to an irreducible
admissible representation of G. Therefore it is reasonable to transfer the
language of G representations to that of (g, K) modules. The Langlands
classification of irreducible admissible representations of G is well known
(see, for example, [K1, Th. 14.91]) and by the Langlands parameters of
an irreducible (g, K) module V' we mean a triple (M AN, o,v) such that

(i) M AN is a cuspidal parabolic subgroup of G
(ii) o is a discrete series or limit of discrete series on M with infinitesimal
character Ay
(iii) v is a complex-valued linear functional on the Lie algebra ag of A with
Re v in the closed positive Weyl chamber
(iv) the induced representation ind§; 4y (o ®e” ®1) has a unique irreducible
quotient, called the Langlands quotient and denoted J(M AN, o, v)

(v) V is equivalent with the underlying (g, K') module of J(M AN, 0,v).

Section 4.2: The Conjectural Method

The setting for this section is as follows: G is a linear, simple non-

compact Lie group with finite center, K a maximal compact subgroup, and
rank G = rank K. Let T' € K be a Cartan subroup, and let A = A(g, )

be the set of roots. Fix a positive system At = A¥(g,t) and assume that

22




there is exactly one noncompact simple root and this root has multiplic-

ity two in the highest root. Define A%,8,6k as usual. Let q = ! @ u be
the 8 stable parabolic subalgebra with | formed from the compact simple
roots, and u formed from the remaining positive roots. Let A be an ana-
lytically integral form on t that is orthogonal to the roots of Ay and let
A=2+25unp)=2+26p) =(A+8)+ (6 ~ 26k). Assume that A is K
dominant, and consider A4(A).

In [K3], Knapp outlined a recursive procedure which he conjectured
would produce the Langlands parameters of the irreducible subquotient V of
A4(A) containing the K type A. Using combinatorial arguments, he proved
that this method gives the correct parameters in some cases. In this thesis,
I will approach this problem from another point of view which will allow
us to reduce the question about the success of Knapp’s method to a simple
question about dominance properties of a finite set of roots. As a result, we
will be able to prove that the procedure works for a wider class of A4())-
modules, not just those which are isomorphic to the A;{A)-types above, First
we describe, with slight modifications, the Conjectural Method of [K3].

Assume‘tha.t
(1) {(A+6,8) > 0 for all compact simple roots, 3, of A*(g,t), and
(2) Ais Af dominant

Roughly, if the infinitesimal character A -+ é of A4()) is nondominant
versus a noncompact root o then split, by the Cayley transform relative to
o, the Cartan subalgebra t into t' & a'. Project the infinitesimal character

onto the dual of each of these pieces, but negate the projection onto the o
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piece. Label these projections Ay and v. Form M’ = Zg(a') and the roots

At(m',t'), which may be identified with the roots of A*(g) orthogonal to
«. The functional A, will be dominant versus the compact simple roots of
AT(m’) and the corresponding weight A’ will be M’ N K dominant. Con-
tinue this process on M’ and the corresponding A, _,(\') with infinitesimal
character A,¢, increasing the dimension of a at each step until you produce
a discrete series module on a subsequent M.

More precisely Set My = G, 4y = {I}, 8] = 4,0 = 0, = 0 &
a3, Ao = A, 8p = 8,5 = Ao + b0, 0 = 0, A0 = Aoy + (6p — 280, ). Suppose
M,-,Aj,t{;,ag,bg,)\j, 8, Ag;, Aj and v; are given with dim A; = j and with
Ay; dominant nonsingular with respect to all simple roots of M; that are M;
compact. There are now two cases:

(a) If (As;, &) > 0 for all simple roots « of M; that are M; noncompact,
the recursive construction ends. Define M == M;, 4 = A;, Ay = Ay, and v =
v + -+ +v;. Define N so that v is dominant relative to V. Then M AN, A,,
and v are the cuspidal parabolic subgroup, the infinitesimal character of the
M representation, and the parameter on gy of a set of Langlands parameters
for the irreducible subquotient of A4()A) containing the K type A,

(b) Otherwise, of the M; noncompact simple roots o with (Ag;, @) <0,

. Au-' 3 .
set aj41 to be the one for which u(—la’T;i)- is greatest. Further, set

()\o'j :ij—l-l) — (S(Ij+1()\0'j )1 Cl!j.|.1)
b }? |aja[?

(4.21) Cig1 = =

where 64;., is the Weyl group reflection corresponding to «j;4;. Applying

the Cayley transform relative to a;41 [K4 §VI.7], we write hg+1 = tf;“ & ag'l'l
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for the transformed version of §? and let A i1 = exp(a™) with dim A jp =

J + 1. Identifying ;1 with its Cayley transform, set
(4.2.2) Vitl = Cj+10j41 and It =0 Vit1.

Define Njyq so that »7*t! is dominant relative to Njpi. Let M 14,4, =
Zc(Aj+1), and we identify A(mjig, V1) with the subset of A(m;, ¥) or-
thogonal to a;j4q. Set A}tIH_i = Ay, N A"A;IJ_, let §;.41 be half the sum of
the positive roots and ;41,5 be half the sum of the positive M j+1 compact

roots. Define A, to be the projection of A, orthogonal to ajy1, so that

(4.2.3)
{Ag, :aj+1>
Aojpg = Ag; — — 2"
TR a2
S ’\a"))a'—l-l
= Ag; + e +1|t(itj-ij1|2 : )‘"Hl = Aoy T Ci10541 = Aoy + Vg

We also define Aj4; so that Aojr = Ajp1 + 641 and set Ajpr = doyyy +
(041 — 28;41,K). Then Ay, is dominant nonsingular relative to the M1
compact simple roots, and the recursive construction continues.
From these definitions, we also note that repeated iterations of (4.2.3)
yield
Agjpr = Agg + 11+ + v
(4.2.4) .
= (A8 4
Moreover, (4.2.3) shows that
® )y, i8 also the projection of S0;41(Ag; ) orthogonal to a1, and
® Aojp T Vi1 = Sa;4,(Ae;)
Proposition 10 of [K3] shows that the Conjectural Method runs into no

obstruction in finding parameters M AN, A,, and ». In fact, the hypotheses
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used in Proposition 10 are relaxed from those initially described in the setting

of this section. In particular, we still take ¢ = [ u to be a parabolic
subalgebra formed from the compact simple roots of A*(g,t) and Au) C
A*. But, we no longer assume that ) is orthogonal to the roots of [, only that
A 18 dominant for A'}: = AT NAr. Further, we do not make any assumption
on the number of noncompact simple roots. Proposition 10 then shows that

(1) A; is analytically integral

(2) Ajis A—'A;I,-,K dominant

(3) A; is dominant for the compact simple roots of ALj.

Later, we shall restrict ourselves to the situation in which A*(g) contains
only one noncompact simple root. This characteristic, however, 1s not nec-
essarily retained by the subsequent AL},. We will handle this possibility

later.

Section 4.3: The Approach

Knapp proved via combinatorial arguments that his Method does pro-
duce the Langlands parameters in some cases. We now approach the problem
from another, more representatioﬁ—theoretic, point of view. This new ap-
proach will ultimately reducg the problem of verifying the Method to check-
ing a finite number of computations. First, we sketch the approach.

We start by forming a f-stable parabolic subalgebra q; = [; & u; of
m;_1 with ({;)o = ¢ @ s/(2,R) where the 5l(2,R) is built from «;, and u;
is built from the remaining positive root spaces of m;_3. Then, at the level

of (I;,L; N K) modules - think sl(2,R) - we have a short exact sequence,
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roughly described as

discrete principal
(4.3.1) 0— series - series — Lg”_‘r}?ﬁ(t{jﬂ — 0
module module ’

where the principal series has v; as its a?;_ parameter. We then form a long
exact sequence of (m;_1, M;j_1NK') derived functor modules from (4.3.1) and
the covariant, right exact £ functor of cohomological induction. Focusing on

the resulting

principal
(4.3.2) — (L)s; series — (E)SJE%;{}?_K; (Cr) —
module

section of the long exact sequence, where S; is the so-called middle dimension,
dim(u; NE), we
(1) show, via a “bottom layer”-type argument, that the M -1 NK
type with highest weight A;_;, which is nonzero in the right hand
side, is in the image of the map,
(2) use induction-in-stages to write the right hand side of (4.3.2) as a
single functor of cohomological induction,
(3) show that the left hand side of (4.3.2) may be regarded as a prin-
cipal series (m,-..;, M;_1 N K) module, and then
(4) induce this principal series (m;_1, M;_1NK) module up to a (g, K)
module by applying a covariant, exact functor modelling ordinary
parabolic induction with 4;_, parameter vy 4 -+ + vi—1. Then,
using double induction and a Frobenius reciprocity argument, we

show that the K type with highest weight A behaves as desired.
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Chapter 5: Reduction of the Problem

Section 5.1: Steps (1) and (2) of the Approach

In this section, we carry out steps (1) and (2) of the Approach (see

§4.3). To do so, we will prove the following theorem.

Theorem 5.1: Let G be a linear, noncomi)a.ct Lie group, K a maximal
compact subgroup, and rank G =rank K. Let T' C K be a Cartan subgroup,
and let A = A(g, t) be the set of roots. Fix a positive system At = At (g, t)

and let b be the Borel subalgebra formed by the positive roots. Define
A'I'}, 6,65 and §(p) in the usual way. Let A be an analytically integral form

on t. Assume

(1) (A +6,8) > 0 for all compact simple roots, 8, of At(g,t), and
(2) A= X+258(p) is A} dominant.
Suppose ay is a noncompact simple root such that (A+46, @) < 0. Then form
the @ stable parabolic subalgebra q = [ & u by building [ from @; and u from
the remaining positive root spaces. Let by = t @ go, be a Borel subalgebra
of [, L = Ng(q) N Ng(8q) and § = dim(un§).

Apply the Cayley transform [K4 §V1.7] relative to oy and write t) @ af
for the transformed version of tg. Identify oy with its image under the Cayley
transform, and define A,, to be the projection of A+§ orthogonal to ay. Build
A = exp(ay) and form the minimal parabolic subgroup of I with Langlands
decomposition M; ANy, in the usual way, taking Ny, to be formed from the
transformed gq, . Since L is split modulo center, we have that M; = T".

Consider the parabolically induced (I, LN K) module X (éL, ) (see
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(3.5.1)) where

(i) ér = Zy is the irreducible (¢,T1) modnle of infinitesimal char-
acter Ay, — (1) (which we can regard as a (', Ty ) module), that

matches the action of 7/ in ,C%’(L;K((C).), and

(i) v = —Athela, € (a) .

a1’2

Then there exists a (g, K') module map,

(5.1.1) Ls(e) : Ls(Xpar(€r,v)) — Ap(N)

whose image contains the multiplicity-one K type with highest weight A.

Note: For the rest this paper, any numerical label beginning with 11
refers to Chapter XI of [KV]. |

Proof: Let ) be the noncompact simple root with (A + 8, @) < 0.
Build [ from a;, and u from the remaining positive root spaces so that q = [Pu

is a § stable parabolic subalgebra . We have | = t@® gq, Dg_o, = ¢ PHsl(2,C).

First, we will form a short exact sequence of (I, N K') modules, Form
by = t B ga,, a Borel subalgebra of [. Since t is 8 stable and «; is imaginary,

LnK

we have by = t®g_q, . Thenﬁ%’[ 7 (Ca)is an upside down Verma module for

' @ sl(2,C) with infinitesimal character A + 6(1) and lowest weight A + 26(0)

relative to the Cartan subalgebra 1.

Next we consider Xpnx(€r,v) (see (3.5.1)) as the Harish-Chandra

module of a principal series representation of L. This has a positive (a')*
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parameter, and according to [KV Prop. 11.43] its infinitesimal character is
oy — 6(W) + v = A + v — 8(u)

= San (A +6) — 6(u)
= Sa, (A + 8 —8(u)) since ay L §(u) {KV 4.69].

Accordingly, as L is locally isomorphic to T" x SL(2, R) we know from Chap-
ter 2 that Xrznx(€r,v) contains the underlying (g, K) module of a represen-

tation we can call a

(matching character on T') x (SL(2,R) discrete
series), with infinitesimal character (A + §) — &(u)

as a submodule. By matching infinitesimal characters, LN K types and LNK
actions, we see that the resulting quotient of Xynx(€r,7) by this discrete

series module is L7 LnK(CA) Therefore, we have the short exact sequence

discrete

0— series | — Xpag(€r,v) — — Lh LnK(C )—0
module

We let
v Xpng(ér,v) — £[L0I&(C )
be the quotient map.

To continue the proof, we use an argument not unlike that on page 765
of [KV], with ¢ above replacing the ¢ in [KV]. Accordingly, we form the
diagram
(5.1.2)

4 ndgny i (ef ) (LAK

U(t) @uene Xrnx(ér, v); U(%) @ueny [£3 0 (Ca kg

ﬁxl lm

m.dg VJEOK )
U(8) ®ue) Xink(Er,v)f -z U(9) ®uey [£g 7 (CIF

nK(
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where the maps 8x and 84 are the one-one (&, LN K) maps given by (3.6.1).
This diagram commutes since effectively 8x and 84 act in the respective
first factors while indgﬁfgﬂ((cpa#) and indg:é’gi:(cp#) act in the respective
second factors. Applying II¥ to this diagram, where § = dim(u N &) is the

appropriate middle dimension, we obtain the commutative diagram
LE (Xrax(er,v)) 229 LE(CH0F (cy))

(5.1.3) Bx l lsA
Ls(Xnnx(ér, ) =22 Ls(ChH0K(Cy))

in which Bx and B, are bottom-layer maps as in (3.6.2).

The L N K type with highest weight A 4+ 26(1) occurs with multiplicity-
one in the the 5[(2, R) principal series type module, Xrnr(€r,v), and ¢ is
one-one on that L N K type. Since A = (A + 26(1)) + 26(u N p) = A+ 28(p)
is assumed to be K dominant, the K type 74 with highest weight A occurs
with multiplicity one in L3(X1nx(£r,v)) and LE() is one-one on 4. By
[KV Th. 5.80a, sce §3.6], B4 is one-one onto for the K type with highest
weight A. Consequently, Ba o L (v) maps onto the multiplicity-one K type
of Es(ﬁé’f;K(CA)) with highest weight A. Thus, by the commutativity of
the diagram, the same thing must be true of Ls() o Bx, and we conclude
that the image of L£35(¢) contains the multiplicity-one K type with highest
weight A.

To complete the proof, we must identify the range representation of the

map Lg(¢) as Ap(A). Since ay is a noncompact root, we have that the

LNK

appropriate middle dimension of (EE-," h

)i(C») is 0. Because the functors of

cohomological induction vanish above the middle dimension, we have that
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( f,[ L”K }i(C,) is nonvanishing in only one degree. Moreover, the 0** derived

functor is nothing more than L% LHK(C A). Therefore the double induction
result in [KV, Cor. 11.86a] is applicable. When combined With a supple-
mentary argument to take A'*P() into account (cef. [KV, §XL.7]), it gives
L (,C[ LnK(C )) & (ﬁg:?)g(c;\) = Au(A) where b is the natural Borel sub-
algebra formed from A*(g,t). O |

Let us now specialize the above theorem to produce a corollary which
will be used in proving Knapp’s Conjectural Method for Ag(A). Set G =
M;_1,q; = [; ©® u; the parabolic subalgebra of m;_; with [; formed from «;
and u; from the remaining positive root spaces, {1,; to be the appropriate
character on T7, and abbreviate (le’ Ll’:g;f 1NK )s; by Lg;, so that we obtain
the corollary below.

Corollary 5.2: In the setting of §4.2 there exists an (m;_1, M;_1 N K)

module map
(514) ﬁSj ((PJ) : [-:.S’j (XLJ; HK(ELJ' ’ VJ)) - A['lmj_l (’\J—l)

whose image contains the multiplicity one (M;_; N K) type with highest
weight Aj_4.
Section 5.2: Reduction of Step (3) to Calculable Conditions

At this point, we would like to rewrite the domain space of Lg;(¢;) in

(5.1.4) as an (m;_y, M;_1 N K) principal series module as follows:

(5.2.1) L:Sj (XL,' ﬂK({LJ‘ ? VJ')) = XMj-lﬁf\’(S?'J V.?')?
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where §;‘ is an M; representation with underlying {m;, M; N K) module

Ag,,, (A;). This amounts to a change of polarization and is the subject of
Theorem 11.225 of [KV]. Unfortunately, the dominance condition (11.220)
required to apply Theorem 11.225 will not usually be satisfied. However,
in our situation, since A? is one dimensional, we are able to run through
the proof of Theorem 11.225 to extract weaker conditions under which the
isomorphism {5.2.1) holds.

Theorem 5.3: Assume the same set-up as in Theorem 5.1. Let M A =
Zg(ap), At(m) = AH(g)NA(m, t'), §(m) be half the sum of the positive roots
of m, and by, the Borel subalgebra formed from A*(m). Let A\; = A,, —é(m).
Let

(5.2.2) C={yeA*(g)={ar} | (rs01) > 0, {50, (A +8),7) € Z = {0}}.
If
(5.2.3) (e A+6),7) >0  forallyeC

then the domain space of Lg{y) in (5.1.1) is a (g, K} principal series module,

Specifically

(524) £.‘;}'(*X’LI'IK(&L: V)) = XK(ghv U)

where £" has Ag (A1) as its underlying (m,Mh K) module.
Remark: The proof of this theorem follows the lines of the proof
of Theorem 11.225 [KV], except that we replace condition (11.220) of that

theorem, with condition (5.2.3) above.
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Proof: We restate the setup of [KV Th 11.225] in our notation as it

applies to our situation, dropping the hypothesis (11.220) on the functional
Aq, in (iv) below. We start with
(i) the 8 stable parabolic subalgebra q = [ u,
(ii) the Levi subgroup L = Ng(q) N Ng(9q) for |
(iii) the Cartan pair (§',7") for both ([, LN K) and (g, K) with b} =
ty G ag and T = Zrax(h") = Zx ().
(iv) the functional A,, € 1th*

Let Arp = A = exp(af) and consider two continuous-series representations

(5.2.5) Iyan(€v)  and  Iip an, (62,v)
and their underlying modules subject to the following conditions:
(5.2.6)

MA = Zg(ay) and MrA = Zr(ap),
N 2 Np,
(Re v,8) > 0 for every positive a-root 5 of g,
bm; = Borel subalgebra of my,
bm = Borel subalgebra of m,

b 2 b, and b D mg if mp Cy,
Z1, = irreducible (¥, TL) module of infinitesimal character Ay, — 8(u),
Z = irreducible (t, TV') module of infinitesimal character A,,,

Z7=17 L ® Cseuy,
£y, = 6(2}” bm, ) 88 a representation of M;, and

¢ = E(Z, b ) as a representation of M.
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Accordingly, the underlying {m, M N K) module of £ is (“RE:%?K)S“‘(E ). By .iLh\ji“

i
£"* we shall mean the representation of M with underlying (m, MNK) module n |

(“LIE:%?K)SM(E) - which after tracing through the definitions is Ag ()),

apart from technicalities involving double covers. Also, £2 2 £/ since My, =
T'. Further, we remark that by, is nothing more than ¢ because L is split
modulo center. Also, we identify the positive roots as follows: _

At L. (8, ") = members of A(m,¢) contributing to by,

imag

At (L) = members of A(my,t') contributing to by, =

imag

(5.2.7)
AY 1(g,8") = real roots contributing to n

—real
A;al([, h') = real roots contributing to ny = ay.

In this set-up, we argue as in the proof of Theorem 11.225 by letting
X, v) and X} (ép,v) be the underlying Harish-Chandra modules for
IﬁAN_ (¢,v) and If/IL AN (€L, v), respectively. We shall prove, in a moment,
that
(5.2.8) RO(Xpnr(Er,v)) = Xie(€,v).

Assuming (5.2.8), we have, just as in the proof of Theorem 11.225,
Li{Xrnr(L, V))h = ﬁj(XLnK(f?;, _V))h since £y, is unitary
= R XLk (€d,v)*) by [KV (6.24), (6.21a)]

2RI Xpar((ED (v)*) by [KV Cor. 11.59]

= R X pax (€, —7)) by admissibility of £,

= Xx(é,-7) by (5.2.8)

= Xy ((EM), 02 by admissibility of £

= (X g (&h, v)) by [KV Cor. 11.59].
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Setting j = S, taking (-)* of both sides and again using admissibility, we see

that (5.2.8) implies the result of the theorem.

To begin the proof of (5.2.8) we start by writing, via (11.210),
Xiax(ée,v) = CREEP(ZL 0 C).

Since A*(1,§") does not contain any imaginary roots, the index p == 0. There-

fore, a Mackey isomorphism and an induction-in-stages result give
RS(X},GK'(GL? v))

(uRq LNk )S((“R[;Lnf—{ T.-)(EL ® (C,s(“—)r & Cu) @ (026(11))
b +ng L

, K
= ("Rg LnK)S(uR:J’I:l: T')(ZL ® Cotnzy ® Co @ Cas)

(5.2.9) s
= (R h'+u+n T') (ZL®C6(n y @Cy ®C25(u))

K g
= (“R§,+u+n;m) (Zp ® Cotnzy ®Co @ Cose) @ Cosurzy)

At this point in the proof, we would like to change the Borel subalgebra
h'+u+nz to the Borel subalgebra b’ +n~ +ny,. In order to make this change,

we shall apply Lemma 11.128 of [KV], which we restate here:

Lemma 11.128 [KV] Let {(h, T), ), Ammg, At {Z(b}} be a set of data for
standard (g, K') modules satisfying (i) and either (ii) or (ii’) in (11.110), and let b= hpn
and b’ = B’ @ 1V be two Borel subalgebras satisfying the conditions

i A lmg C A(n)yn A(n’)

(i) A real CAMYNA(N)

(iii) whenever « is a complex root with & € A(1) but not in A1) and is such
that (A, &) is a nonzero integer, then the integer is positive, and fo is in
A(n)n A(n").

If p = dim(n N £) and p’ = dim{1’ N E), then for all ¢

(LR Lt (2(0)) & (“’55:_ P+ (Z(07))
(“RYL )P (Z(b)) & (“REE s 9(2(b").
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b
In our application of this lemma, §' + u + nz will play the role of b and l‘l

h' + n7 + nyp will play the role of b. Condition (11.110) is used only in the
definition of “standard module” [cf. KV §X1.6] and has no role in the proof,

In this case, conditions (i) and (ii) in the lemma are immediate from
(5.2.7). Therefore, we only need to show that condition (iii) is satisfied.

First, let us be a bit more explicit about what needs to be shown.

We set

C = {vy € Acpix(u+13) | v ¢ A(n™ + ) and (A, +1,5) € Z — {0}}.

We are to show that if v € C' then

(a) 8v € Alu+n7)NAMN +ny) and

(b) (AUL + Va?) > 0.

Let v € C. If v € A(np), then ¥ € A(n™) € A(n™ + ny). So when

v € C we must have v € A(u). Since A(u) is 8 stable fy € u and hence also
in A(t+n7). Moreover, —y € A(n~ + ny,) and the fact that 7 is a complex
root gives that —y € A(n™) which is closed under conjugation. Therefore
~7% = #v is in A(n7) and also in A(n~ + nn). Hence we have (a), ie.,
Oy € Alu+n )N AN +ny).

For (b), using the information in the above paragraph we can reexpress

C as

C= {7 € Agpix(t) | =y € A(n™) and (As, +1,%) € Z — {0} }.
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Further, because A is one dimensional, we have the following equivalences
—y € A(n7) &= {(—,v) <0
= (—7,a1) <0 since v = ca; with ¢ > 0
> {v,a1) >0

which allow us to write

If we apply the inverse Cayley transform with respect to oy to hfy so that we
once again have a compact Cartan subalgebra , and identify the roots with

their image under this transformation we then may write

C={yed)|{r,a1)>0,{sa,(A+6),7) € Z~ {0}}

={ve %@~ {m} | (r,a1) > 0,(s0, (A + 6),9) € Z - {0}}.

Hence, by hypothesis (5.2.3), we have that (b) holds as well.

Therefore, Lemma 11,128 is applicable. So, in the last line of (5.2.9) we
change the Borel subalgebra §’ +u+n7 to the Borel subalgebra §' +n~ + ny,.
At this point, the arguments given with [KV Th. 11.216] complete the proof
of (5.2.8) and therefore the proof of Theorem 5.3. [

We again specialize to the setup of the Conjectural Method and apply
Theorem 5.3 to the various steps of Knapp’s Conjectural Method to obtain
the following corollaries.

Corollary 5.4: Using the notation of the Conjectural Method, let

Cj = {'7 € A+(mj—1) - {aj} l (% O‘j) > 0, (Saj (Aﬂth)a:?) € Z~ {0}}
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If

(5.2.10) (sa;j(Ae;_1):7) >0 forall y € Cy

then (5.2.1) holds; that is, the domain space of Ls,(p;) in (5.14) is a

(mj_1, M;_1 N K) principal series module, which has been written in 85.2 as

(5-2-1) 'CSJ' (XL;ﬂK(fL,' ) VJ')) = XMj-lnI{(S_?1 Vj):

where {;" is an M; representation with underlying (mj, M; N K) module
As,,, {A;).
Furthermore, Corollary 5.4 combined with Corollary 5.2 gives
Corollary 5.5: Assuming (5.2.10), there exists an (mj_;, M;_; N K)

module map which has been written in §5.1 as
(5.1.4) Ls;(#5) : Xty oink (€], vi) — Ap,,_ (Njoa)

whose image contains the (M;_; N K) type with highest weight Aj_q.

Section 5.3: Step (4) of the Approach

We conclude this chapter with the final reduction:

Corollary 5.6: Using the notation of the Conjectural Method, let

Oy = {v € A%(mj_1) — {ag} | (v, @5) > 0, {50, (No;_,),7) € Z— {0} ]}

Suppose the recursive process of the Conjectural Method stops after n steps.
If (5.2.10) holds for all j,1 < § < n, then there exists a (g, K) map from a

standard continuous series module to Ag(A),

(5.2.11) B X (Er,v™) — Ag()),
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whose image contains the K type with highest weight A.

Proof: Apply the functor
XK(-, Vj_l) : C(fl'lj_.l,Mj_.l N K) — C(g, K)

to the mapping (5.1.4) of Corollary 5.5. Denote the resulting (g, KX') map by
¢;, and use double induction [pg. 740, KV] to combine the resulting domain
space as XK@J’-‘,VJ' + 91, Since v; + 131 = p7 and A[,mj_l (Aj—1) can be

identified with f;-", we have the (g, K) maps
$j: Xpc(€},v7) — Xg(eh |, 07 ),

By Corollary 5.5 and Frobenius reciprocity §3.5, the K type with highest
weight A lies in the image of each ¢;. Therefore, if the Conjectural Method

terminates after n steps, we can compose the ¢; maps to create a (g, K) map
¢ XK(‘f::vyn) —* XK(&;E; VO)

whose image contains the K type with highest weight A. We have My = G

and Ay = I so that the range representation of ® is £ = As(\):
B Xi(bn,v™) — Ap(N)

Since the Conjectural Method stops when the infinitesimal character of 3
namely A, , is A*(m;_;) dominant, £? is a discrete series (or limit of discrete
series) module. I

Remark: It is the mapping @ that allows one to re#d off the Langlands
parameters of the submodule V of Ay()\) generated by the K type A, provided
that (5.2.10) holds for all j.
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Chapter 6: Application of the Results

In order to use Corollary 5.6, we need a situation in which condition
(5.2.10) holds at each step, 7, of the Conjectural Method. In this chapter, we

provide such a situation, culminating with Theorem 6.9 and Corollary 6.10.

Section 6.1: Main I—Iypdtheses

The set-up for this chapter will be similiar to that in Section 4.2. G
is a linear, simple, noncompact Lie group with finite center, K a maximal
compact subgroup, and rank G == rank K. Let T C K be a Cartan subroup,
and let A = A(g, t) be the set of roots. Fix a positive system AT = AT (g, t).
To obtain the best results we will assume

(*) there is exactly one noncompact simple root of At(g), and this
root has multiplicity at most two in the highest root of A*(g).
Define A}, 4,85, and &(p) as usual. Let A be an analytically integral form
on t, and let

A=A+25(p) = (A +8) + (6 — 26x).

Main Hypotheses: The hypotheses that we will invoke this chapter are
(ia) (A, B8) > 0 for all simple roots 83, except for one noncompact
simple Toot, ey, for which (A + 6,@1) is a negative integer, or
(ib) (A4, 8) = 0 for all simple roots B, except for one noncompact
simple root, ay, for which (A 4 6, &) is a negative integer, and
(i) A=A 4+28(p) = (A +6)+ (8§~ 26k) is AL dominant.
Note: Since {8, 8) > 0 for simple roots 8, if condition (ia) holds, then so does

condition (ib).
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Section 6.2: Satisfying the Reduced Conditions when j=1

Let us recall what needs to be shown. Fix j > 1. Let
Ci = {ve At (mj_1) — {5} | (7,a;) >0, (sa;(As;_,),7) € Z — {0}},
We need to show that
(6.2.1) if v € Cj then (s4;(As;_,),7) > 0.
To start the proof of (6.2.1), we let j = 1 so that

Cy = {y € A*(g) ~ {as}(v,a1) > 0, (50, (A + 6),7) € Z ~ {0}}.

First, note that if ¥ € C} then the condition (v, ay) > 0 forces the coefficient
of a1 in the A™(g)-simple expansion of v to be > 1.

Proposition 6.1: Let y¥ € C; and suppose that the coefficient of oy
in the A*(g)-simple expansion of « is one. Assuming (ib), we have (sq, (A +
8),7) >0,

Remark: We are imposing no compactness/ noncompactness restric-
tions on the remaining simple roots of At(g). In particular, we are not
assuming (+). Further, we are not assuming (ii).

Proof: We write « in its A*(g)-simple expansion as

Y= Zaiez'%—zbiﬁf-kaal,

where the first sum is over the simple roots non-adjacent to ay, the second
sum is over the simple roots adjacent to ay, a; > 0,5; > 0 with some b; > 0.

Then 0 < {v,a1) = 3 b:(8:,G1) + 2a. If we set & = 3. b;(8;, 1), then & is a

42




strictly negative integer. Therefore, 0 < —& < 2a with each inequality strict. ‘

So,if a=1, then £ = —1,k-+a =0, and {v,8,) = £+ 2a == 1. We compute
{0 (A +8),7) = (A +6,50,7)
= (A +8,7 — {7,81)ay)
= {A 8,7 — ay)

=(A+8,) we+ > bifi)

>0, by (ib).

Further, since y € €y, we in fact have (sq, (A +6),7) > 0. O
Proposition 6.2: Assume (ia) and (ii). Let v € C; and suppose that

the coefficient of ay in the At(g)-simple expansion of v is two. Assume

further that v € A} and that |y|? > |aq|?. Then (80, (A +8),7) > 0.
Proof: We have

(502 (A+8),7) = (A+6,7) ~ (A + 6,81 a1, 7),
and therefore
(s (A+8),7) = (A7) + (26 — 6,7) — (A + 6,81) {1, 7).
Summing, we get
2(s0, (A +6),7)
= (A,7) + [(26x — 6,5) — 2(A + 6,8} (@1, 7) + (A +6,7)]

= (A7) +[(26K,7) —2(A+ 6,a1) + (\,7)]  since (ay,F) =1

since (26k,7) > 2 and

2<A:$)'{“[2_'2(’\&1)_24"(/\:?)] (5"&1):1

= (Aaﬁ) -+ O‘:?_ 2&1)
> (N5 — 2a,), by (ii).
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-~ N o~ 2 2
Now, ¥ — 2&; = ]7—2|f(’r) - ]aillf(onal) = 'Frgrg(’Y“—‘ ]vall|{_2(2a1))’ where T{lxl}p > 1.
We let ¢ = Hg;l;g € {1,2,3}. Writing v = Y 5;8; + aa; as a sum of simple

roots of A*(g) so that each b; > 0 and a = 2, we get that ¥ — 26, =
,7212 [>28:8: +(a— 2¢)ay]. So,
2(s0, (A + 6),7) = {\, 5 — 284)
2
= -I_’;I_z_[z b,‘(z\,ﬁ,‘) + (a - 20)(,\, CE])].

By (ia), each (X, 8;) > 0, and

Hzl—z('y — 2cay) = i

(6.2.2)

e f?
2

2
= (6@ b

()\, al) = ()\, 6?1)

< —la* by (ia)
< 0.
Hence, since @ = 2,¢ € {1,2,3} gives (¢ — 2¢) < 0, we have from (6.2.2)
that 2(sq, (A + 6),%) > 0. Finally, since v € €y, we get that this is a strict
inequality.. ]
Proposition 6.3: Suppose the Dynkin diagram of A*(g) is of type
Bn. Assume (ia), (ii), and that oy is a long simple root. If v € Oy N A,
then (sa,(A+8),3) > 0. |
Proof: First suppose 7 is a long root, so that |y|2 = |oy |?. Moreover,
the coefficient of @y in 7 is < 2. Therefore, by the above proposition, we
have (s, (A + 6),%) > 0. Next, suppose + is a short root. In this case, the
coefficient of ey in « is one. Therefore, Proposition 6.1 gives the result. [
Putting these three propositions together, along with a further assuinp-

tion that o is the lone noncompact simple root of A*(g) yields the following
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conclusion:

Theorem 6.4: Assume conditions (*), (ia) and (ii). Then for all
v € C4, we have {sq,(A +6),%) > 0.

Remark. The lone-noncompact simple root hypothesis of () placed
on «; allows us to characterize A} as the set of roots which contain ¢y an
even number of times in its A*{g)-simple expansion.

Proof: Let v € (. If the coefficient of «y in 7 is one, then we get the
result from Proposition 6.1 - without using condition (ii). So assume that
the coefficient of ay in +y is two. Since oy is the lone noncompact simple root
of At(g), v is compact. Now we just run through the allowable cases.

If the Dynkin diagram is a single line diagram, then Proposition 6.2
gives the result. |

If the Dynkin diagram of A™(g) is of type B, and « is a short root,
then Proposition 6.2 gives the result. If @y is a long root, then Proposition
6.3 gives the result.

If the Dynkin diagram of At(g) is of type C),, then a4 must be a short
root by the coefficient two assumption on 4. Therefore, Proposition 6.2 gives
the result.

If the Dynkin diagram of A¥(g) is of type Fy, then o can be either
node. If oy is the short root node, then Proposition 6.2 gives the résult. If
a; is the long root node, then the coefficient two assumption on ~ forces ¥
to be the highest root of Fy, which is a long root. So then |y|? = |y |? and
Proposition 6.2 applies.

If the Dynkin diagram of A*(g) is of type G, then «; is the long
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simple root. Again, the coeflicient two assumption on ~ forces ~ to be the

highest root of G, which is a long root. So then |y|? = |a;|? and Proposition

6.2 applies. [

Section 6.3: Satisfying the Reduced Conditions when j > 1

As previously noted, from [K3] we know that

(1) A; is analytically integral

(2) Ajis AL},'K dominant

(3) A; is dominant for the compact simple roots of A}i{,[j .
so that the Conjectural Method runs into no obstacles. However, our Ap-
proach does hit a slight snag; part of the Main Hypotheses on A and A (g)
may not be inherited by A; and A*(m;). In particular, although ) is nondom-
inant versus only one simple root of AT(g), when we apply the Conjectural
Method, this may no longer hold for A;_; and At(m;_1) when j > 1. As a
result, we need to supplement some the arguments of Section 6.2 to handle
this possibility.

Recall what the goal is: Let j > 1 and

Cj = {7 € AT (mj—1) — {a;} | {v,05) > 0, {s0; (A, ), ) € Z— {0}).
We are to prove, as in §6.2 that
(6.2.1) if v € Cj, then (sq;(Ao;_,),%) > 0.

We start by investigating the noncompact roots of At(m;_y). To do

so, we shall assume (*) throughout this section:
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(*) there is exactly one noncompact simple root of A*(g), and this

root has multiplicity at most two in the highest root of A+(g).

Proposition 6.5: Assuming (%), every A*(m;) noncompact root is
A™*(g) noncompact.

Note. First we recall why this proposition is not entirely obvious. The
property of an imaginary root being compact or noncompact is not always
preserved by the Cayley transform [cf. KV Prop. 11.249]. If 5 is a compact
(resp. noncompact) root in A*(g, €°) that is strongly orthogonal to ay, then
it remains compact (resp. noncompact) as a root in AT (my, ¢'). But if 8 is
orthogonal to ay but not strongly orthogonal, then £ is noncompact (resp.
compact) as a root in At(my, ¢).

Proof. The proof proceeds by induction on 5. Let 7 = 1. Let 8
At (my, ') be noncompact. Then either

(a) A is noncompact in A™*(g) and 8 and o, are strongly orthogonal,
or

(b} B is compact in A*(g), but 8 and &y are not strongly orthogonal.

We show that case (b) cannot exist.
| Suppose (b) holds. Since 8 and @y are not strongly orthogonal, and
a1 is simple, both § + @, are positive roots. Moreover, since B is AT(g)
compact, (*) implies that 8 contains ay with coefficent 0 or 2 in its AT (g)
simple expansion. If the coefficient of a1 in #is 0, then #— ay has a negative
oy coefficient while the coefficient of another simple AT (g) root is positive.
This is not possible [K1, Prop. 4.6], so we must have that the coeffcient of

ap in £ is 2. But in this case the root B -+ a1 has ay coefficient 3, which
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contradicts assumption (k). Hence any root with «; coefficient 0 or 2 which

is also orthogonal to a; must be strongly orthogonal to «;. Therefore, case

b) never occurs, and we have the base step of the induction.
1

Next suppose the proposition holds for 7 = j — 1, and let § be a non-
compact root of AT(m;). Suppose 8 is compact as a root of AT(m;_q).
Then 8+ «; are also roots of AT (m;_1). In fact, since a; is A*(m;j_1) non-
compact, both 8 + a; are AT(m;_;) noncompact., Hence, by the inductive
hypothesis, both 8 + a; are AT(g) noncompact and therefore each contains
oy with coefficient one in its At(g) simple expansion. This forces the ay co-
efficient of a; in its A*(g) simpie expansion to be 0, which is a contradiction.

Therefore 8 cannot be a compact root of A+{m;_q).

On the other hand, if # is noncompact as a root of At (m;_1) then the
inductive hypothesis gives the result. [

This proposition and the assumption that a is the lone noncompact
simple root of A¥(g) combine to give the following:

Corollary 6.6: Assuming (#), any noncompact root of At{(m;) has
a1 coefficient one in its AT (g) simple expansion.

Recall that we are trying to handle the situation in which A,,_, is
nondominant with respect to some noncompact simple roots of A*(m;_1),
and 7 > 1. If v € C; then {y,e;) 3 0 so that v is a root in the same
connected component of the Dynkin diagram of A"’(mj_l) as a . Therefore,
if there is at most one noncompact simple root per connected component of
the Dynkin diagram of A*(m;_1), then our Main Hypotheses do indeed pass

to this next stage, and we have no difficulties applying therpropositions of
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the previous sections.

Proposition 6.7: Assume (ib), and that the coefficient of oy in the
highest root of A*(g) is one. Then, for all J» there is at most one noncompact
simple root of AT(m;_,) against which Ag;_, is nondominant. Therefore, for

all j, (6.2.1) holds.

Remark: We are making no compactness/noncompactness assump-
tions on the remaining simple roots of A*(g). Further, we are not assuming
(ii).

Proof: By (ib), Ay;_, can be nondominant versus a root only if that
root contains @y in its A(g) simple expansion. Further, since the sum
of all simple roots of A*(m;_,) is also a root, the coefficient one restriction
implies that there can be at most one simple root per component of AT (my-q)
containing ¢;. By changing appropriate indices, Proposition 6.1 then implies
(6.2.1). O

Let us now consider the case in which there is more than one non-
compact simple root in some connected component of the Dynkin diagram
for"A*'(mj_l) agaii;st which A,;_, is nondominant. First, under our Main
Hypotheses, A;;_, can be nondominant versus a root only if that root con-
tains ¢ in its A(g) simple expansion. Second, since the sum of the simple
roots of a Dynkin diagram is also a root, and since, assuming (*) so that oy
occurs with coeflicient < 2 in the A*(g) highest root, there can be at most
two simple roots in any component of A*(m;_;) which contain ay in their
A™T(g) simple expansion. Third, if there are two simple roots in a component

of A*(m;_1) which contain ¢, then each of these roots has coefficient one
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in the A*{m;_; )-component highest root, for otherwise, the highest root in

At(m;_1) contains a; with multiplicity greater than two. Fourth, we note
that if a Dynkin diagram contains two simple roots with coefficient one in
the highest root, then that diagram is a single line diagram. Finally, with the
exception of the A,-type diagrams, no Dynkin diagram has adjacent simple

roots contained with coefficient one in its highest root.

According to the recursive procedure, of the two Ao;_,-nondominant,

. A':r' I -
stmple roots, we let a; be the root for which —<—|%—|?21~——) 1s greatest. Even
though the other simple root may not turn cut to be aji1 in the process,

for ease of notation in the next few arguments, we call this root CTERN

Theorem 6.8: Assuming (), (ia) and (i) of the Main Hypotheses, if
v € Cj then (sa;(Xs;_,),7) > 0 for all j.

Proof. By the above paragraph, we only need to consider the case in
which A,;_, is nondominant against two simple roots of A™(m;_;) which lie
in the same single-lined Dynkin component, and which are contained in the

A*(m;_y) highest root with coefficient one.

We know that in order to have (7,2;) > 0, when expanded into
AT(m;-1) simple roots, ¥ must contain ;- In fact, since o is contained in
the A*(m;_;) highest root with coefficient one, -y contains «; with coefficient

one. Moreover, since we are in a single-line diagram, we have {(v,&;) = 1.

Expand « into its A*(m;_;) simple expansion as

v = Zk‘,‘l‘ﬂ,‘ +rajy + aj
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so that
(Sﬂj (Aﬂ';‘—i)af)’) = (/\O'j—lvsa’j (7))

= (Adj_157 _aJ) since ("Y!aﬁn‘) =1

> (Ag;_1s ka; + zajy) since (Aq;_,, —dj) >0

since only a; and ;44

z ()\o,-,.n‘”ajﬂ) contain o

Therefore, we have the result when z = 0.

So suppose % 0. By our assumptions,  must be one. So, as a root of
AT(g), v contains oy with coefficient two and is therefore compact. Hence,
by Proposition 6.5, v is A*(m;_;) compact. Writing A, _, = Xj_1 +8(mj_1),
and using the fact [K3, Prop. 10] that A;_; is A*(m;—; N€) dominant, we

imitate the proof of Proposition 6.3 to write
2<S°‘j (’\Uj-q)? 7) > (/\j-——l-; % — 2ozj)

= {Aj-1, Z ki + ajpr — o)
Now, (’\j—ly Ekih:,') > 0, and
since «;+1 and oy are
Pimtsoir — a5) = Aoy 1 g1 — o) A+(mji1) simple.

= —lajs1lPejpr + lajl’e;

= |a;*(cj — cjt1) sincela;|® = a4/

>0 by our choice of ¢;.
Therefore, {sqa;{As;_,},7) > 0. O

Remark: If one wishes to verify (6.2.1) in a particular example, it is

often easier to use the following sitnplification:

(30 (Aayo ) 3D = (305 (A 8) +1771),5) by (4.2.4)
:(saj(A+6)-|—u"“'1,’f) since o Loysfor1 <i<j—1

= {sq; (A + 6),7) sincey La;forl <¢<j—1.
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Section 6.4: Langlands Parameters of Subquotients of Ay()\)

Theorem 6.8 allows us to conclude
Theorem 6.9: Let & be- a linear, noncompact simple Lie group with
finite center, let K be a maximal compact subgroup, and suppose rank G =
rank K. Let T C K be a Cartan subgroup, and let At (g, ") be a positive
system of roots such that
(i) there is exactly one noncompact simple root; call it oy, and
(ii) the coefficient of oy in the highest root is < 2.
Let A be an analytically integral form on t, and set A = X\ -+ 26(p) =
(A4 8)+ (6 — 286k). Suppose
(i) (A,B) > 0 for all compact simple roots, 4, of At(g)
(iv) A is A% dominant.
Then there exists a (g, K') map from a standard continuous series module to

AB(A):
(*) B Xp(Eh,v™) — Ay(N),

whose image contains the (nonzero) K type with highest weight A.
Corollary 6.10: In the setting of the above Theorem, let V be the
irreducible subquotient of Ag()) containing the K type with highest weight
A.
(1) If Ap(A) is irreducible then the Conjectural Method produces the
Langlands parameters of Ag()). l
(2) U Ag()) is infinitesimally unitary, then the Conjectural Method

produces the Langlands parameters of V.
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(3) If A is the minimal K type of Xg(o,v), then the Conjectural

Method produces the Langlands parameters of V.

(4) If A is the minimal K type of Ag()), then the Conjectural Method
produces the Langlands parameters of V.

(5) If A is orthogonal to the compact simple roots of AT (g), then the

Conjectural Method produces the Langlands parameters of V.

Proof: (1) is clear. For (2), since A()) is infinitesimally unitary, we
can compose the map @ of the theorem with a projection onto V to yield
the result. (3) is also clear.

For (4}, if A is not also a minimal K type in Xg{o,v), then every
minimal K type in X (e, v) maps to 0 under &. This is a contradiction.
Therefore (3) applies.

For (5), setting q = { @ u where [ is formed from the compact simple
roots and u from the remaining positive root spaces, we have Ag(A) & 4,()\).
By Corollary 8 of [K3}, A is the minimal K type of As()) and therefore (4)
applies.

Final Note: Recently, I have shown that the restriction in (ii) on the
multipicity of the lone noncompact root in the highest root can be removed
if (¢ is Eg,Fy, or Go. If G = E; (resp. G = Ej3), then label the simple
roots {8} in the standard fashion, and let E;; (resp. G = Fj;) be a real
form such that 8; is the lone noncompact simple root of A¥(g). Then we
can remove (ii) for Er 3, Fr4,Es 3, Es 4, and Eg 7. For the remaining cases,
Fq5, Ey,2, By 5 and Fg g, we need to impose a minor nonsingularity condition

on A in order to remove (ii).
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