Indefinite Kahler-Einstein metrics on
Compact Complex Surfaces

A Dissertation Presented
by
Jimmy Petean

to

The Graduate School
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in
Mathematics

State University of New York
at
Stony Brook

August 1997




State University of New York
at Stony Brook

The Graduate School »

Jimmy Petean

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of the dissertation.

i y

> Claude/l.eBrun

Professor of Mathematics
Dissertation Director

904

~ Dusa McDuff
Professor of Mathematics
Chairman of Defense

Michael Anderson
Professor of Mathematics

P
/\j\,\)\ Cuap €y !
[/ Sanfiiago Simanca )
Research Scientist, Department of Applied Mathematics and Statistics

Qutside Member

This dissertation is accepted by the Graduate School.

o /(f//(/& 7

Graduate School

i




Abs_tract of the Dissertation

Indefinite Kahler-Einstein metrics on
Compact Complex Surfaces

by

Jimmy Petean |

Doctor of Philosophy

in
Mathematics
State University of New York at Stony Brook

1997 i
|

We completely classify those compact complex surfaces which

admit indefinite Ricci-flat Kahler metrics. Slightly weaker results

are also obtained for indefinite Kahler-Einstein metrics with non-

zero scalar curvature.
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Chapter 1

Introduction

A pseudo-Riemannian metric on a smooth manifold is called Finstein if
the Riccl tensor of the Levi-Civita connection equals a scalar multiple of the
metric. These equations {irst appeared as the vacuum case of the Einstein field
equations ‘with cosmological constant’ and were introduced by Einstein as a
system of hyperbolic partial differential equations for an unknown Lorentzian-
signature metric on a 4-manifold. Since then, mathematicians have been highly
interested in these equations, but the attention have been focused in the Rie-
mannian case. While we still have only limited knowledge about general Rie-
mannian solutions, strong results have been obtained about the existence of
(positive definite) Kdhler-Einstein metrics (cf. [1, 23]). In [3] the reader can
find a detailed discussion of these topics and an extensive list of references.

In the last years, especially since the work of Qoguri and Vafa [20] on

N = 2 string theory, indefinite Ricci-flat metrics of Kéhler type on complex

surfaces have attracted considerable attention from physicists. We will study

indefinite Kéhler-Einstein metrics on compact complex surfaces, focusing in




the existence problem. We will completely classily surfaces admitting indef-
inite Ricci-flat metrics of Kahler {ype, and almost completely classify those
admitting indefinite Kahler-Finstein metrics with non-zero Einstein constant.
We will also display some non-locally-homogeneous examples. These examples
will show that the moduli spaces of these metrics can be highly non-trivial and
surprisingly different from those encountered in the positive definite case. In
particular, we will see that indefinite Ricci-flat metrics on tori need not be

flat.

Let us begin by considering a compact complex manifold (M?** J). Here
M is a 2n-dimensional smooth compact manifold and J is an integrable almost
complex structure on M. Il n = 2, M is called a (compact) complex surface.

A pseudo-Riemannian metric g on M™ is said to be Hermitian (or J-
compatible) if g(z,y) = ¢(Jz,Jy) for all z,y. At any point of the man-
ifold one can choose an orthogonal basis of the tangent space of the form
{2y, J21, ey Ty J Ty }; 50, 1 ¢ is Hermitian, its signature is of the form (2k, 21).
In particular if M is a complex surface, any indefinite Hermitian metric on M
has signature (2,2).

If g is a Hermitian pseudo-Riemannian metric then w(e,y) = g(Ja,y) is

a 2-form, called the Kahler form of g.

Definition 1 : A Hermitian pseudo-Riemannian metric g is called Kahler if
its Kahler form is closed. In particular, if g is not positive or negative definite,

it 18 called an indefinite Kahler metric,

Consider now the Levi-Civita connection V of ¢ on M. Assume that ¢




is Kahler; then J is parallel with respect to V. 'This is usually stated only
in the Riemannian case, but it i1s not dificult to check that it 1s also valid in
the indefinite case (by exactly the same proof). Let Ric be the Riccl tensor
of V. Then Ric is J-invariant and hence p(z,y) = Ric(Jz,y) is a 2-form. Tt
is called the Ricci form of ¢g. It is also true in the indefinite case that —ip is
the curvature of the canonical line bundle of M (the bundle of holomorphic
2-forms); the proof is the same as in the Riemannian case. In particular p is
closed and the de Rham class [p/27] is equal to the first Chern class of M in

cohomology with real coefficients.

Definition 2 : An indefinite Kihler metric g ts called indefinite Kahler-
Einstein if there exists A € R such that Ric = Ag [or p = Jw). In this

case h is called the Einstein constant.

If g is an indefinite K&hler-Einstein metric on M and k& € R, then g = kg
is also an indefinite Kahler-Einstein metric (even if & < 0). The Kéhler form
of § is & = kw while the Ricci form is j = p. If p = Aw, then j = (A/k)@.
Without loss of generality, we may therefore assume that A is either 0 or 1.

Indefinite Kahler-Einstein metrics on compact complex surfaces is the

object of study of this paper. The following are the simplest examples.

Complez Tori: Let M = C?/A be a complex 2-dimensional torus. Let
z1, 73 be the standard coordinates on C%. The 1-forms dz,dz, d#, dZ; then
descend to M. If A = (a,) is a 2 x 2 (constant) Hermitian non-degenerate

matrix, then w = Yajdz; A dZ;, defines a closed, real, (1,1)-form on M. So w

is the Kahler form of a Kahler metric g. Moreover, this pseudo-metric is flat.




If we choose A to be indefinite, then g is an indefinite Kéhler-Einstein metric

on M with Einstein constant 0.

Minimal Ruled Surfaces: Let S be a Riemann surface of genus g > 2.
There is a unique Riemannian metric hy compatible with the complex structure
of § with constant scalar curvature —2; hy is a Kihler-FEinstein metric on §
with Einstein constant —1. In the same way we have a Kahler-Einstein metric
hy on CP' with Einstein constant 1. Then hg — Ry is a well defined indefinite
Kahler-Einstein metric on M = CP! x § with Einstein constant 1.

The general ruled surface is of the form P(E), where £ is a 2-dimensional
complex vector bundle over a Riemann surface 5. We will later construct in-
definite Kéhler-Einstein metrics on ‘most’ of these twisted products (assuming

always that the genus of S is greater than 1).

More examples (including non locally-homogeneous ones) will be pre-
sented in the last section. The following theorem determines on which surfaces

solutions could be found.

Theorem 1 : Let M be a compact comples surface. If M admits an indefinite
Kihler-Finstein metric, then M is one of the following:

a) a Complex Torus ;

b) a Hyperelliptic surface ;

¢) a Primary Kodaira surface ;

d) @ minimal ruled surface over a curve of genus g > 2 ; or

e) a minimal surface of class VIIy with no global spherical shell,

and with second Belti number even and positive.




Remark I: No surface of type (e) is known, and it has been conjectured

that they simply do not exist (cf. [17, section 5]). Moreover, if such a surface
existed and admitted an indefinite Kdhler metric, providing it with the oppo-
site orientation, would then yield a symplectic manifold with % > 1 violating
the Bogomolov inequality 2y > 37; no such symplectic ranifold is known at
present.

Remark 2: We will display indefinite Kahler-Finstein metrics with Fin-

stein constant 0 on the surfaces (a) , (b) and (c) and with FEinstein constant 1

on ‘most’ surfaces of type (d).




Chapter 2

Preliminaries

In this chapter we will summarize some basic facts that we will use in this
work; we will mainly describe some well-known results about the classification

of compact complex surfaces and the Seiberg-Witten mvariants.

Let us first recall some standard notation. For a compact connected
smooth 4-manifold X, b,(X) will denote its k-th Betti number. If X is an
oriented manifold, X is the oriented manifold obtained by reversing the given
orientation. Let also 47(X) (b7(X)) be the dimension of a maximal subspace
of H*(X,R) where the intersecion form is positive (negative) definite. So

by = b+ + b~ and the signature of X is 7(X) = b" —b".

Throughout this thesis M will always denote a compact complex surface.
And as usual ¢;(M) will denote the k-th Chern class of M and ¢f(M) and

ca(M) will denote the integers obtained by evaluating the corresponding 4-

form in the fundamental homology class of M. So (M) = x(M) is the Euler

characteristic of M and ¢? = 2y + 3.




Compact Complex Surfaces

We will now give a brief description of the Enriques-Kodaira classification
of compact complex surfaces. See [2] for a complete analysis of this topic. Let
M be such a surface, and consider the canonical line bundle K of M; i.e.
the line bundie of holomorphic 2-forms on M. Yor any positive integer m
consider its m-th tensor power K§; and let p,, denote the dimension of the
Jinear space of holomorphic sections of this linc bundle (these number are

called the plurigenera of M).

Definition 3 : The Kodaira number of M is

log{pm)
log(mm)

limsup,, .

We will usnally denote the Kodaira number of a surface M by Kod(M).
There is a more geometric description of this important invariant of a
complex surface M (in general, of any compact complex manifold); any holo-

morphic line bundle L over M induces a holomorphic map

o M — — — CP*!

where k is the dimension of the space of holomorphic sections of the line bundle
L. The map is defined at those points z € M where at least one holomorphic
section of L does not vanish; in this case or(z) = [¢1(z) : ... : ¢p()], where
$1, ..., ¢i is any basis of the space of holomorphic sections of L. Kod(M) then

gives the maximal dimension of the images of M through the maps induced

by the line bundles K7;. Accordingly, Kod(M) can only be —o0,0,1 or 2.




We will now describe the blowing up process. Given any point z € M,
replace a neighborhood of z by a neighborhood of the zero-section of the line
bundle L — CP*, L = {(z,2) € CP* x C? | 2 ¢ 2}. The identification can
be made holomorphically and so we get a new compact complex surface, the
blow up of M at x, which is diffeomorphic to M #6—132 (where CP” refers to
the oriented manifold obtained by considering the non-standard orientation of
CP?).

We will denote the blow up of M at one point by M. The zero-section of
the line bundle I is, of course, embedded into M : 80 the blow-up of any
complex surface has a holomorphically embedded copy of CP! with self-
intersection -1. Conversely, if a complex surface N has such a curver, then
there is a complex surface M whose blow-up at one point is N. M is then said

to be obtained by blowing down N.

Definition 4 : A compact complex surface is called minimal if it has no holo-

morphically embedded copy of CPY with self-intersection -1.

Every compact complex surface is obtained from a minimal complex sur-
face by blowing up a finite number of times. To classify compact complex

surfaces one can therefore consider only those which are minimal.

The Fnriques-Kodaira classification of compact complex surfaces gives
a description of minimal compact complex surfaces in terms of its Kodaira

number, Roughly it says that if M is a minimal compact complex surface,

then:




i) Suppose that Kod(M) = —oo. W 6,(M) is even then M is CP* or
a ruled surface; recall that M is called a ruled surface if there is a Riemann
surface 5 and a holomorphic 2-dimensional bundle £ over S such that M =
P (L) (this is the CP" bundle over S whose fiber over z € S is the projective
space of the fiber of & over z). If (M) is odd then it is actually 1 and the
intersection form of M is negative definite (i.e. (M) = 0); but the structure
of these surfaces is not fully understood yet (see [17] for an account of what is

known at present).

i1) Suppose that Kod(M) = 0. One can give good descriptions of all these
surfaces. They are Complex Tori, Hyperelliptic surfaces, K3 surfaces, Enriques
surfaces, or (Primary or Secondary) Kodaira surfaces. See [2] for details about

them. It is important to note that for all these surfaces ¢ = 0.

iii) Suppose that Kod(M) = 1. Then M is an elliptic surface; i.e. there
is a Riemann surface S and a holomorphic map = : M — 5 such that the
general fiber of the map is an elliptic curve. A very complete description of
these surfaces can be found in [5]. For every minimal elliptic surface ¢ = 0

and the Fuler characteristic is non-negative.

iv) Suppose that Kod(M) = 2. Then M is called a surface of general
type, and not much is known about its structure. We do know that M is
an algebraic surface (i.e. is the smooth zero locus of a set or homogeneous

polynomials in CP” for some n) and that 0 < ¢ (M) < 3e¢,.




Seiberg-Witten invariants

The other important tool we will need in this work is the theory of Seiberg-
Witten invariants. We will give here a very brief description of these invariants.
We refer to [16],[21] and [22] for more details.

Let (V,q) be a 4-dimensional real vector space V' with a positive definite

inner product ¢. Consider the tensor algebra of V,

T(V) = @neNo Ve. oV

7

and the ideal 7 generated by elements of the form v + ¢(v,v), for v € V. The
quotient of T(V) by T is called the Clifford algebra of (V,q), and it is denoted
by CU(V,q). The subgroup of C{(V, q) generated by elements of the form v.w,
for v,w € V of norm 1, is called Spin(V,q) (here v.w means the class of
v ®w). It is easy to see that the elements of Spin(V,q) acting by conjugation
on CI(V,q) leave V invariant; moreover, if we consider the restriction of this
action to V we get an element of SO(V,¢). One can check that this map
p : Spin(V,q) — SO(V,q) actually gives the universal (double) covering of
SO(V, q).

Now counsider the complexified Clifford algebra Cl(V,q) ® C of (V,q),
and let Spin°(V, ¢) be the subgroup generated by 5 pn(V, ¢) and the complex

numbers of norm 1. It is easy to see that there is an isomorphism

Spin°(V,q) = Spin(V,¢)x 1,1y S*

The complexified Clifford algebra is isomorphic to the algebra of 4x4

complex matrices (see [13] or [16]). Hence there is a unique irreducible complex

10




representation of this algebra; the canonical action on C*. Restricting the
action one gets a complex representation of Spin®(V,q). We will denote it by
Sc and call it the spin representation. Tt turns out that this representation
of Spin®(V,q) is not irreducible but factors as the sum of two irreducible non-
equivalent complex representations of dimension 2. Let us denote these spaces

by S¢t and S¢” and call them the plus and minus spin representations.

We will denote by CI(4) the Clifford algebra of {R*, q), where ¢ is the Eu-
clidean metric. Similarly Spin{4) = Spin(R*, q) and Spin°{4) = Spin®(R*, ¢).
Note that for any 4-dimensional inner product space (V,q), CI(V,§) is iso-
morphic to C'{(4) (and the same happens for the spin groups). Of course, this

isomorphism is not natural but depends on the choice of an orthonormal basis.

The previous constructions provide an important tool in 4-dimensional
geometry. Let (X, g) be a 4-dimensional compact Riemannian manifold. Let
P be the SO(4) bundle of oriented orthonormal frames of (X, g).” A Spin struc-
ture on (X,g) is a Spin(4) principal bundle over X such that the quotient by
the action of {1,—1} is isomorphic to P. Similarly, a Spin® structure on (X, g)
is a Spin°(4) principal bundle whose quotient by the action of {1, —1}x 1 _135"

is isomorphic to P.

An important reason to introduce the Spin® groups is that while admitting
a Spin structure is a very restrictive condition for a compact 4-manifold (it is
equivalent to ask that the second Stiefel-Whitney class of the tangent bundle

vanishes), every compact 4-manifold does admit a Spin® structure. Actually,

given a complex line bundle over the manifold whose first Chern class agrees

11




mod 2 with the second Stiefel-Whitney class of the tangent bundle, we can

agsociate to it a Spin® structure. So, for instance, suppose that X admits an
almost complex structure J. J provides the tangent bundle of X with the
structure of a 2-dimensional complex vector bundle. The first Chern class
of this bundle agrees mod 2 with the second Stiefel-Whitney class and so an

almost complex structure on a manifold induces a canonical Spin® structure.

There is a natural map Spin® — S'; given a Spin® principal bundle this
map produces a complex line bundle. The line bundle induced by a Spin®
structure is called the determinant line bundle of the Spin® structure. Note
also that the Levi-Civita connection of the Riemannian manifold and any
connection A on the determinant line bundle induce a connection on the Spin®

bundle.

Given a Spin® structure P on X, the spin representation induces a 4-
dimensional complex vector bundle S¢ = ﬁ’xspmcSc. Sc is called the spin
bundle of P. The spin bundle splits as S¢ = SE @ 8¢, according to the
gplitting of the spin representation. Recall that any connection on P induces

a connection on Sc.

We also have the bundle of Clifford algebras CI{X,g) = PxgowCl(4).
And it is not difficult to check that the usual Clifford multiplication extends to
these bundles; i.c. there is a bundle map CI(X, ¢)®Sa — S¢ which restricted

to any fiber gives the Clifford multiplication.

Given a connection A on the determinant line bundle of a Spin® structure




we can now define the twisted Dirac operator:
Dy C®(8¢) — C>(S¢)
a -3 263' : Vf‘o‘

where the point is Clifford multiplication, and V4 is the connection induced
on S¢ by the connection on the Spin® bundle induced by the Levi-Civita
connection of the manifold and A. It can be checked that £ 4 is a self-adjoint
operator and that under the splitting of the spin bundles, D4 : SE — SE.

We can now write the Seiberg-Witten equations,

Dale) = 0

Ff = ¢@¢ —[4]’Ld

The unknowns are a section ¢ of S¢& and and a unitary connection A on the
determinant line bundle of the Spin® structure. The second equation needs to
be explained. In dimension 4, thé Hodge-star operator gives an endomorphism
of the bundle of 2-forms, of square 1. So we have a decomposition of the space
of 2-forms into the eigenspaces of eigenvalue 1 and -1; the self-dual and anti-
self-dual 2-forms. The left-hand side of the second equation is the self-dual
part of the curvature of the connection A. On the other side there is a natural

isomorphism of vector spaces between the exterior algebra of a vector space

and its Clifford algebra (this of course depends on an inner product). Using

13




the inner product we identify the tangent and cotangent bundles and so the
exterior algebra of the cotangent bundle with the Clifford algebra. But the
Clifford algebra is isomorphic to End(S¢). Under these identifications forms of
even degree correspond to endomorphisms which preserve Sé. Morecver, self-
dual 2-forms correspond to endomorphisms which act frivially on Sg and as
endomorphisms of S& have trace 0. The left hand side of the second equation
is the traceless element of End(SL) given by x — {x, #)¢ — |4]>x; we identify
it with a self-dual 2-form by the previous considerations.

Given the equations, there is a long process to produce invariants out of
them. There are many technical problems that one has to treat to do this.
We refer to [16] for that discussion. We will now only state the main results
that we will use in this work. For simplicity we will only consider the simplest
case: we will assume that 67 > 1 and that the Spin® structure is induced by
an almost complex structure. Fortunately, this is all what we will need.

In order to obtain smooth solution spaces it is necessary to consider per-
turbations of the equations. This is done by adding an imaginary self-dual
2-form 7 to one side of the second equation. The space of smooth funcions
of X to S*, C°(X,S), acts on the space of solutions of the perturbed Seiberg
Witten equations by f.(A, ¢) > (A--2dlog(f), f¢). The quotient of the space
of solutions by this action is called the moduli space. For generic perturbations
it is a smooth compact orientable manifold, In the case of a Spin® structure
induced by an almost complex structure and for a generic perturbation the
moduli space is a finite set of points. When 6™ > 1 the number of these points

(counted with the respective orientation) depends neither on the metric nor

14




on the generic perturbation. This number is the Seiberg-Witten invariant

of the Spin® structure of the manifold.

Let us now state the main results that we will need. First, there are two

important vanishing theorems.

Theorem: If a compact connected smooth oriented f-manifold X can be
capressed as the connected sum of two oriented j-manifolds and for each of
these 2 manifolds the intersection form is not negative defintte (i.e. b7 > (),

then the Seiberg- Witien invariant of any Spin® structure on X is 0.

Theorem: If b1 (X) > 1 and X admits o Riemannian metric of positive

scalar curvature, then all the Seiberg- Witten invariants of X vanish.

The invariants were first computed [22] for ﬂle canonical Spin® structure
of a Kahler manifold. An important generalization of this result was obtained
by Taubes [21].

Recall that a symplectic form on a 4-manifold is a closed 2-form w which

is non-degenerate everywhere in the manifold (i.e. w A w # 0 everywhere).

Any symplectic form w induces almost complex structures J on the 4-
manifold which are compatible with w in the sense that for any vector fields v, d
on the manifold w(Juv, J9) = wlv,d) and moreover the bilinear form g(v,?) =

w(v, JB} is positive definite (i.e. a Riemannian metric). The space of such

almost complex structures is path-connected and hence all of them induce

13




the same Spin® structure on the manifold. This is called the Spin® structure
induced by the symplectic structure. If one of these almost complex structures
J is integrable (i.e. a complex structure) then the metric ¢ is Kahler and w
is its Kéahler form. Taubes computed the invariants for general symplectic

mantfolds;

Theorem: Let (X,w) be a symplectic manifold, b7 (X) > 1. The Spin®

structure induced by w has Seiberg- Witlen invariant 1 or -1.




Chapter 3

Indefinite Kihler Metrics

A natural question to consider, independently of the Einstein equations,
is the existence of indefinite Kihler metrics on complex manifolds. Our main
tool to study this problem in the case of compact complex surfaces will be the

Seiberg-Witten invariants, which we discussed in the previous.chapter.

Let M be a compact complex surface. As usual, the complex structure
induces a standard orientation on M and we denote by A the manifold M
provided with the opposite orientation. If M admits an indefinite Kahler
metric, its Kahler form w is a symplectic form compatible with the orientation
of M (since w Aw < 0). In particular 5~ (M) > 0. But much more can be said:
the work of Taubes (see [21] or the previous chapter) shows that, assuming
that b~ (M) > 1, the Seiberg-Witten invariant of the canonical Spin® structure
induced by w on M is different from 0. This turns out to be a very strong

obstruction, as we can see in the following lemma.

L7




Lemma 1 : If a compact complex surface admits an indefinite Kihler metric,

then it ts minimal or a one-point blow-up of CP*.

Proof: Let N be the blow-up of the compact complex surface M and
suppose that it admits an indefinite Kahler metric. From the discussion above
we know thafu there is at least one Spin® structure on N with non-trivial
Seiberg-Witten invariant. All the Seiberg-Witten invariants of a connected
sum of 4-manifolds vanish unless one of them has a negative-definite intersec-
tion form (see [22, 21] or the previous chapter). Since N = M#CP? we must
have b=(M) = 0 (in particular M is minimal) and hence & (N) must be even;
the symplectic form on N provides it with an almost complex structure and
for almost complex compact 4-manifolds & +b" is odd (note that &+(N) = 1).
The first Betti number is invariant under blowing-ups and so & {M) is also

evell.

We have proved that if N = M admits an indefinite K&hler metric, then
b= (M) =0 and b (M) is even. Let us now invoke the classification of compact
complex surfaces to see what are the poss.ibilities for M.

The only surface with Kod(M) = —oo, b7 (M) = 0 and even first Betti
number is CP?.

If Kod(M) is 0 or 1, then ¢}(M) = 0. When (M) is even we have
ci + 8¢+ b~ = 10p, + 9 (see [8, p.755]; p, is the geometric genus of M and ¢
the irregularity. We only need to know that they are integers). This clearly
implies that 6~ (M) > 0.

Now assume that Kod{M) = 2. Then 0 < ¢} = 2¢y + 37 < 3cp. Another

18




way to write this inequality is 20" < 2 — 26, + 457 ; assuming that b~ = 0 we
get that b = 0 and 6" = 1 (note that &% > 0 because M is Kéhler ). But
then it is known that M is a quotient of the unit ball in C? (cf. [2, p.136]).
By a theorem of Mal’tsev (cf. [24, p.151]) the fundamental group of M is then
‘residually finite’ and hence M admits non-trivial finite coverings. Consider a
covering of order k > 1; then N is covered by a surface which is the blow-up of
another surface at k points. Such a surface can not admit an indefinite Kahler

metric and so neither can N. |

Remark: The blow-up of CP? at one point is a ruled surface. We will see
now that every ruled surface M admits an indefinite Kihler metric. Let o :
E — 5 be a 2-dimensional holomorphic vector bundle over a Riemann surface
S so that M = P(E). Let 7 : M — S and p: I¥ — £y — M be the natural
projections. There are local holomorphic sections of p. Moreover, if ¢ and &
are two local holomorphic sections of p, then there is a holomorphic function f
siucht that & = fo. Choose a Hermitian metric on # and a Ké&hler form wy on
S. Given a local holomorphic section & of p, define w = #*{wo)—is8d log(||o|}).
It can be checked that w is well defined globally and that, for small s, it is the

Kahler form of an indefinite Kahler metric on M.

Now we have to study which minimal compact complex surfaces do admit
indefinite Kahler metrics. The Kodaira classification will be again of much

help. The previous remark deals with the surfaces of Kodaira number —oc of

Kahler type. Those which are not of Kdhler type are called surfaces of class
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Vily. Of course, to study the existence of indefinite Kihler metrics we need
to consider only those surfaces for which 6~ > 0. When the first Betti number
is odd, the existence of an indefinite Kahler metric would actually imply that
6= > 1. The following lemma shows that none of the known examples of
V1{, surfaces admits such a metric. Nevertheless the classification here is not
complete and we cannot decide if new examples could hold indelinite Kahler

metrics; but, as we said in the wiroduction, i seems very unlikely,

Lemma 2 : If M is a surface of class VIl with o global spherical shell (cf.
[17]) and bo(M) = b~ (M) > 0, then M does not admit an indefinite Kdhler

melric,

Proof: Such a surface is diffeomorphic to the connected sum of S* x §°
with b,{M) copies of CP” (cf. [17]). Then M admits Riemannian metrics of
positive scalar curvature; hence all the Seiberg-Witten invariants of M vanish

and the lemma follows from previous remarks.

Now we turn our attention to elliptic surfaces. Let us recall a few standard
notations. All the results we will use can be found in [5],[8] or [9]. Let M bea
minimal elliptic surface with projection 7 : M — S onto the Riemann surface
S. All the fibers of 7 are elliptic curves except for a finite number of them. The
possibilities for these finite singular fibers is very limited. They are classified

in [9, p.564]. For us it is important to recall that a singular fiber of type mlp

is an elliptic fiber of multiplicity m, and a singular fiber of type I3 is a union




of holomorphic spheres of self-intersection -2. Recall that the base orbifold of
the elliptic surface is (S, {p;}, {m;}), where 7' (p;) are the multiple {ibers and

m; i8 the corresponding multiplicity.

Proposition 1 : A minimal elliptic surface of Kdhler type admits an indefi-

nite Kahler metric if and only if ils Fuler characteristic is 0.

Proof: Let M be an elliptic surface of positive Kuler characteristic 124d.
'The smooth structure of M is determined by its base orbifold and d (cf. [5,
p.122]). For any orbifold and any d > 0, it is easy to construct {as in [9,
p.578]) an elliptic surface with constant J invariant (this means that the com-
plex structure of the regular fibers is constant), only singular fibers of types
mliy and I and the given base orbifold and Fuler characteristic. The number
of singular fibers of type I of this surface will then be 2d (see [10, p.14]). It
follows then that M has embedded 2-spheres of self-intersection 2. Note also
that &% (M) > 1. This implies that M does not admit indefinite Kéhler met-
rics because all the Seiberg-Witten invariants of a 4-manifold X that admits
embedded 2-spheres with positive self-intersection vanish (cf. [4, 11]). Indeed,
if X has a Spin® structure with non-trivial Seiberg-Witten invariant so does
X4 CP? i4]. We can then assume that X has an embedded sphere S whose
cohomology class is non-trivial and has self-intersection 0. Let E be the ex-
ceptional curve in X #CP? (i.e. E = CP' C CP?). For any positive integer
k, the cohomology class of £S5 + E can be represented by an embedded sphere

of self-intersection -1 and hence, there is a diffeornorphism of X#CP? realiz-

ing the reflection on the orthogonal complement of this class (with respect to
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the intersection f(')rm‘). It is easy to check that these diffeomorphisms produce
infinite different Spin® structures with non-trivial Seiberg-Witten invariants.
But this is a contradiction, since Witten has observed [22] thal the number of

Spin® structures with non-trivial invariants is always finite.

N-OW assume that the Fuler characteristic of M is 0. We will construct
an indefinite Kahler metric on M. First note that M has only singular fibers
of type mly. Let # : M — S be the projection onto the base curve and w
be a Kahler form on M. At any p € M the fiber of = through p is smooth
and hence it has a tangent plane; this is of course contained in the kernel of
Te t T,M — Ty S. Tt is not equal to the kernel exactly when p is in a multiple
fiber. Assume that this is the case; there exists a neighborhood ¥/ of w(p) such
that w~1(U) is isomorphic to the quotient of the product ¥V x 1" of the unit
disc V and a torus T' by the action of a finite cyclic group G generated by
an automorphism x of the form x(z,t) = (e%™™z,t + h(z)) (cf. [8, p.T67]).
Let z be a holomorphic coordinate in V and f be a smooth positive function
of ||z]| with compact support in V which is equali to 1 in a neighborhood of
0. Conmsider ¥, = fdz A dz; 9, is invariant through G and so descends to
=M (U). Since this form has compact support in 7#7H(U), it can be extended
to the whole M. Construct such a form for each multiple fiber. Summing up
these forms and the pull-back of a Kéhler form on S5, we get a (1,1)-form % on
M which is closed, vanishes on the tangent plane to the fibers and is strictly

positive in the orthogonal plane. For a big positive constant A, & = w — A is

then the Kihler form of an indefinite Kahler metric on M. O
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Remark: lvery K3 surface is diffeomorphic to an elliptic surface. Since
the Buler characteristic of a K3 surface is 24, the previous proposition implies
that K3 surfaces do not admit indefinite Kahler metrics. Every Enriques
surface is covered by a K3 surface and hence Enriques surfaces do no admit
indefinite Kahler metrics eithef. Of course, to prove this last assertion we
could also argue that Enriques surfaces are also elliptic surfaces of positive
Euler characteristic. Note also that Secondary Kodaira surfaces do not admit

indefinite Kahler metrics since their second Betti number is 0.

Finally, we turn our attention to a surface M of general type. In this case,
it has been proved (cf. [11], [15]) that the existence of non-trivial Seiberg-
Witten invariants for M implies that 7(M) > 0. The proof goes as follows;
we can assume that b (M) > 1, becanse if 5+*(M) = 1 then it is clear that

(M) > 0. Hence, for any Riemannian metric g on M we have (cf. [14}),

f sadvol, > 32x%c} (M)
M

When M is a minimal surface of general type with no (-2)-sphere (what is
guaranteed by the presence of a non-trivial Seiberg-Witten invariant for M),
c1(M) is negative-definite and hence [23], M admits a (Riemannian) Kahler-

Einstein metric gg. For this metric

stgﬂdvolgo = 32n%c; (M)

This shows that ¢}(M) < Z(M) and hence (M) > 0.
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Since surfaces of general type have even first Betti number, it follows that
bt is odd. If M admits an almost complex structure, then 5~ is also odd and

therefore (M) is even.

Let us now summarize the results of this chapter:

Theorem 2 Suppose M admits an indefinite Kdihler metric. Then
i) If Kod(M) = —oo, then M is a ruled surface or is as in

Theorem 1 (e).

it) If Kod(M) =0, then M is a torus, an Hyperelliptic surface or a '

Primary Kodaire surface.

i61) If Kod(M) =1, then M is minimal and (M) =0

) If Kod(M) =2, then M is minimal and v(M) is non-negative ;

and even. h

We have seen that ruled surfaces and the surfaces in (iii) of Kahler type ;

do admit indefinite Kéhler metrics. We will see in the next section that all j

the surfaces in (ii} actually admit indefinite Kahler-Einstein metrics. The

existence of indefinite Kahler metrics in the other cases remains unknown.




Chapter 4

Indefinite Kahler-Einstein Metrics

We will first see that the existence of an indefinite Kéhler-Einstein metric
completely determines the Kodaira number of a compact complex surface. We
will show that the Kodaira number must be —oo or 0. Together with the

results of the last section, this will finish the proot of Theorem 1.

Let us consider first the case when the Finstein constant is not 0.

Proposition 2 : If M admits an indefinite Kéhler-EBinstein melric with Ein-

stein constant #£ 0, then Kod(M) = —co and (M) < 0.

Proof: Suppose that M admits such a metric g. Let w(z,y) = g(Jx,y)
be its Kahler form and p(z,y) = Ric(Jz,y) be its Ricci form. Then p = kw,

with & # 0, and so it is everywhere non-degenerate and indefinite.

Suppose now that for some positive integer m the m-th tensor power K7;
of the canonical line bundle admits a non-trivial holomorphic gection 7. Since

M is compact ||, must attain its positive maximum at some point @ € M. In




a neighborhood of x, v can be written as v = ¢™, where ¢ is a local section of
K.
Then, we see that

p= ;%Bglog 4]

See [3, p.82]; the proof is given in the Riemannian case, but the same proof
works in the indefinite case. The last equation implies that p is semi-negative
definite at z. This is of course a contradiction. Hence, for all m > 0, K7} has
no non-trivial global holomorphic section; and Kod(M) = —oc.

The second assertion follows from the facts that [p] = 27¢; and wAw < 0,

g

Corollary 1 : If M admits an indefinite Kdhler-Einstein metric with Ein-

stein constant # 0, then M is as in (d) or (e) of Theorem 1.

Proof: The corollary follows almost immediately from the previous result
and Theorem 2 in the previous chapter. The only thing to remark is that a
ruled surface has ¢ < 0 if and only if the base Riemann surface has genus

g> 1.

Now let us consider the case when the Finstein constant is 0.

Proposition 3 : If M admits an indefinite Kihler-FEinstein metric with in-

stein constant 0, then Kod(M) =0 and ¢;(M,R) = 0.
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Proof: Suppose that M admits such a metric g. Then the Ricci form of
¢ vanishes and so ¢,(M,R) = 0. Note that this implies that M is a minimal
surface.

The only surfaces with Kodaira number —oo and vanishing real first Chern
class are the minimal surfaces of class VIT with 0 second Betti number, which
do not admit indefinite K&hler metrics. So we can assume that there exists

m > 0 and a non-trivial holomorphic section vy of K73;.

Let M be the universal covering of M. The pull-back of ¢ gives an indefi-
nite Kahler-Einstein metric on M (with Einstein constant 0). Since this metric
is Ricci flat, there are holomorphic 2-forms of constant length in a neighbor-
hood of any point of M (this fact is usually stated only in the Riemannian case,
but it is not difficult to check that the proof also works in the indefinite case.
See [3, p.82]). Of course, two local holomorphic 2-forms of constant length can
only differ by multiplication by a constant. Since M is simply connected, we
can glue these local holomorphic 2-forms together and get a global non trivial

holomorphic 2-form ¢ of constant length.

The pull back 4 of ¥ to M is a holomorphic section of K}%. Hence there

must exist a holomorphic function f on M such that = fo™

Hence f is constant, because |f| achieves its maximum where ||¥|| does.

It follows that ||¥|| is constant. Then v is never zero and K7y is trivial. This

implies that Kod(M) = 0.
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Corollary 2 : If M admits an indefinite Kdhler-Einstein metric with Iin-

stein constant 0, then M is as is (a), (8) or (e) of Theorem 1.

By now we have already proved Theorem 1. The only thing remaining is

to displa{y the promised examples.

Non flat solutions on Tori: On the torus M = C/A| x C/A; consider
v = f(z)dz AdZ + dz Adw + dw A dz

where z and w are holomorphic coordinates on each complex plane and f is
a smooth positive function on M = C/A;. Tt is clear that v is 7 times the
Kahler form of an indefinite Kéhler metric ¢ on M. We will now compute
the curvature of g. If z = x; + 123 and w = 23 + i34, tﬂen {G_ZI} is the
standard basis of the tangent space of R*. This basis, of course, descends
to M and one can apply the Gram-Schmidt process to it to get a basis {vi}
orthonormal with respect to g. Let {e;} be the basis of T*M dual to {v;}.
The canonical orientation of M and ¢ induce a splitting of the space of 2-forms

A (T*M) = A" @ A~ into self dual and anti-self-dual 2-forms. And

d1 =e1 Neg+ ez Aey,

o = ey Aes+eg A ey,

s = e1 A ey — ey Aes,




form an orthogonal basis of the space of self-dual 2-forms. Considering the
curvature tensor R as a section of find(A*(7T*M)) and taking into account the

gplitting we have

Direct computations show that B = [) = 0 and in the basis of AT con-

sidered above,

1 0 -1

A=(2fAf) 00 0

1 0 -1

so the metric is Einstein, and is locally homogeneous (and flat) iff f is contant.

It is interesting to compare this computation with [12]. Our metric is
Einstein on a manifold with vanishing Euler characteristic; nevertheless the
metric is not flat. This is possible because, as shown in this example, a sym-

metric operator A with respect to a metric of signature {2,2) (instead of a

Riemannian metric) can verify trace{A?) = 0 while A # 0.




Primary Kodaire surfaces : As described in [8, p.786], such a surface M
is of the form M = C?/G where G = (vby,12,1a, 104}, each 1 is an affine

automnorphism of C? and ( is fixed point free. More precisely #; is of the form

i (wr, wg) = (wy + oy, wy + qwy + ;)

where o;, 3; € C and a1 = ay = 0.
Let S be the torus given by the lattice {cvs, oz} and f be a smooth function

on S. On C? consider
¥ = (f(w) — 2Re(w,))dwy A dwy -+ drwy A dwy + dwy A didy

The same computations as in the torus show that v defines an indefinite
Kahler-Einstein metric on C?, which is homogeneous (and flat) only when f
is constant. Moreover, v is invariant through the ;’s and hence the metric

descends to M.

Hyperelliptic surfaces : Tt is shown in [6, p.585] that any Hyperelliptic
surface M is of the form M = F x C/G, where F' and C are elliptic curves
and (7 is finite group of fixed-point-free automorphisms of F' x . Moreover,
let F' = C/A with A = (1,7); then G = (¢,o), where ¢ is of the form
Pz, w) = (z + 7/m, /™) and p is a translation of order m.

If #,w are holomorphic coordinates in C? then dz A dz — dw A dib is the
Kahler form of an indefinite Kahler flat metric (on C?). This form is invariant
through translations and so projects to a (1,1)-form on F x C. A direct

computation shows that this form is invariant through ¢ and ¢ and hence
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defines a (1,1)-form on M, this is the Kahler form of an indefinite Kahler-

Finstein metric on M with Finstein constant 0.

Minimal irrational ruled surfaces : Now let M = P(FE), where E is a
2-dimensional holomorphic vector bundle over a curve § of genus g > 2. We
will construct indefinite Kahler-Einstein metrics on M when the bundle E is
stable or the direct sum of two line bundles of the same degree (see [7], [19]).

Note that given vector bundles E and E, P(%) and P(E) are isomorphic
it and only if E = E@L for a line bundle L; and that I verifies any of the
conditions above if and only if E does. So both conditions are really properties
of M.

Consider M as a CP'-bundle over S. Let {Ui}i]\;1 be an open cover of
S and g¢;; : UyNU; — GI(2,C) be a set of transition functions for E. Then
951+ U N U; — P (GI(2,C)) are transition functions for M. Under the
conditions stated above, Naragimhan and Seshadri [19] proved that M admits
constant transition functions in P(U/(2)). Let g1 be the Fubini-Study metric
on CP'; then g; is a Kihler-Einstein metric on CP!, invariant through the
action of P(U(2)). Renormalize g so that the Einstein constant is 1 and let
g2 be a Kéhler-Einstein metric on S with Einstein constant -1. Then g1 — g4
is invariant through the transition functions and so, it defines an indefinite

Kahler-Einstein metric on M with Einstein constant 1.

Remark: In (18, p.395] M.S. Narasimhan and S. Ramanan proved that

every vector bundle {over a curve of genus greater than 1) can be ‘approxi-
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mated’ by stable vector bundles. A little more precisely, every vector bundle
is contained in an analytic family of vector bundles for which the set of stable
bundles is open and dense.

The cases considered above therefore contain ‘most’ of the minimal ruled

surfaces {over curves of genus greater than 1).
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