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Abstract of the Dissertation

Distinguished Kéahler Metrics and
Equivariant Cohomological Invariants

by
Gideon Maschler
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1997

This work is concerned with cohomological aspects of Kahler
geometry. We approach these via invariants of Futaki type. The
Futaki invariants are characters on the Lie algebra of holomorphic
vector fields of a; compact Kahler manifold, ane attached to each
Kéhler class. The non-vanishing of one of them provides an ob-
struction to the existence of a representative of constant scalar
curvature in the corresponding Kahler class.

In chapter Two we givé an equivariant cohomological descrip-
tion of the Futaki invariant. This is used to derive localization

formulas, expressing its value on a given holomorphic vector field
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in terms of local data at the latter’s zero locus. The cohomological
approach naturally leads to a Kéahlerian version of a well-known
formula of Duistermaat-Heckman. We also use a holomorphic ver-
sion of equivariant cohomology to give a topological explanation of
the Kahler clags invariance of the Futaki character.

In chapter Three we give two constructions relating Futaki type
invariants to distinguished K&hler metrics. In the first we use a
similar invariant to determine a special potential function, condi-
tions on which give rise to a new notion of a distinguished Kahler
metric. We call such metrics central. The whole process mimics
the relation between the Futaki invariant and Calabi’s notion of
extremal Kéhler metrics. Both types of metrics have distinguished
holomorphic vector fields and we describe relations between them.
We also give existence results for central metrics for which the
central potential is congtant.

In the second construction we define a new invariant that de-
pends on two distinct Kahler classes. Its non-vanishing gives an
obstruction to the existence of Calabi-Yau metric pairs having iden-
tical harmonic components of their shared Ricci form. Calling
such pairs harmonic, we describe relations between harmonic and
extremal pairs. Finally we show how to construct out of known
examples of extremal metfics harmonic Calabi-Yau pairs.

In chapter Four we apply methods of Kahler geometry to give a

weak topological uniqueness result for Hermitian Einstein metrics
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in dimengion four. LeBrun’s refinement of early results of Derdzin-
ski shows that if such a metric is non-K&hler, it can live on at most
three distinct compact complex surfaces. On these it is conformal
to an extremal Kahler metric which gives a Kahler cone critical
point of the L? norm of the scalar curvature. We give a computer-
assisted proof that on one of these spaces, the general position
two point blow-up of the complex projective plane, there exists a
unique such critical point. This shows that all possible Hermitian

Einstein metrics on this space must be conformal to cohomologous

cxtremal Kahler metrics.
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Chapter O

Introduction

Within the general study of spaces of Riemannian metrics on a given
compact manifold, Kahler metrics are immediately distinguishable by their
cohomological character. A simple picture describes their parameterization
by pairs, each of which consists of a point of a cone in the (1,1)-Dolbeault
cohomology group together with a smooth real valued function. A second
illustration is provided by a cohomological reflection of the close relationship
between a Kahler metric and the complex structure: the Ricci form of any such
metric represents (a multiple of) the first Chern class of the manifold. Thus
it is natural that the history of the subject is rich with methods and results of
a topological type. This work is based on a more recent development of the
last fifteen years, in which various cohomological invariants are tied up with

questions of existence of distinguished Kahler metrics.

These invarianis are of practical significance for complex manifolds ad-
mitting continuous groups of biholomorphisms. Typically they are characters

on the Lie algebra of holomorphic vector fields, attached to each Kahler class.
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The primary example is the invariant defined by Futaki [F't1], originally for
the first Chern class and then for an arbitrary K&hler class. This character
is defined using a Kahler metric, but can be shown to depend only on the
Kéahler class. Its most basic utility is in giving obstructions to the existence
of Kahler-Einstein metrics, or more generally of Kahler metrics of constant
scalar curvature.

While readily defined, the Futaki invariant is not readily computable.
However, when the Kahler class is the first Chern class, a localization formula
is known [FMol], expressing the value of the invariant on a given holomorphic
vector field in terms of topological information and data given at the zeros
of the vector field. Such formulas have a long history, but have reappeared
more recently in symplectic geometry [DH1], for vector fields generating circle
actions. I'rom this point of view the above formula can be understood as essen-
tially resulting only from the symplectic portion of the information contained
in the Kahler form.

In Chapter Two we derive new localization formulas that are valid for
arbitrary Kahler classes. As in one of the derivations of the Duistermaat-
Heckman Theorem [AB, BV1], our derivation uses equivariant cohomology,
where we form the relevant equivariantly closed forms from both the Kéhler
form and the Ricci form of an invariant Kahler metric in the Kahler class. In
dimension four we actually have two formulas, one of which we use to re-derive
and slightly generalize known formulas [LSn, LSm, KLP]. We then proceed

to the higher dimensional case. Finally we use a recent holomorphic version

of equivariant cohomology [Lu], to extend the validity of the formula to more




general holomorphic vector fields, and arbitrary Kahler metrics. We have:

Theorem 0.1 Let (M, J) be a Kdhler manifold, = a non-degenerate gradient
holomorphic vector field and w a Kdhler form of an arbitrary Kdhler metric on
M. Denote by p the Ricct form of the metric, and [ the holomorphy potential
of Z with respect to the metric. If My, the zero sel of =, forms a complex

submantfold, then

— w Andl [ A 2 [w ll\n

det(L— +Q) det( L=-+52)

See Sections 1.4, 2.2.2 and 2.2.3 for exact definitions.
The realization that a Kahler metric defines two (holomorphically) equiv-
ariantly closed forms leads to a Kahlerian generalization of the Duistermaat-

Heckman formula.

Theorem 0.2 Let (M,,J) be a Kdihler manifold, w, p as above, and = a
non-degenerate gradient holomorphic vector field having isolated fized points.
Then
/ JHIHAS) (w+ o) n < U EIHASR)
M

(—2m)

_, 0.1
n! > t"det B, (0.1)

where the sum is taken over the fized point set.

Regarding the above exponéntial as a power series, this formula embodies

the Futaki invariant as well as many other new invariants. The use of holomor-

phic equivariant cohomology allows for a direct cohomological proof of their
invariance under change of representative in the Kahler class.

In Chapter Three we turn to applications of invariants of Futaki type to

the search for distinguished Kahler metrics in a given Kahler class, The first




such notion, potentially usable for an arbitrary Kéhler class, was given by Cal-
abi [C1] in his paper on extremal K&hler metrics. An extremal Kahler metric
can be regarded as defined via a holomorphicity condition on the Laplacian
of a certain potential function. The latter is essentially the Green function
of the scalar curvature, and the holomorphicity condition gives rise to a dis-
tinguished (gradient) holomorphic vector field. The special case of constant
scalar curvature occurs when the potential function is constant, and is detected
by the vanishing of the Futaki invariant. The value of the Futaki invariant on
the distinguished vector field gives a uniform lower bound for the L? norm of
the scalar curvature of metrics in the class {H2], achieved exactly by extremal
Kahler metrics. This follows from a duality of the Futaki invariant with the
distinguished vector field. The duality in question is with respect to a bilin-
ear form on gradient holomorphic vector fields. This bilinear form is another
Kahler class invariant [['Mal, determined solely by the symplectic portion of
the Kéahlerian information.

Starting with another invariant Lie algebra character defined in [FMol]
and related to classical invariants [Bt2], we reverse the above process and arrive
via duality at another potential function, giving a new candidate for a notion of
a distinguished Kahler metric. Unlike extremal metrics, these metrics behave
uniformly throughout the K&hler cone, in the sense that on a given space the
potential functions of all of them are either all constant, or all non-constant.
If a manifold is Fano, this constancy (or lack of) can essentially be detected

by the existence (or lack of) of a Kahler-Einstein metric. In other words, the

behavior throughout the Kahler cone can be understood via the behavior at a




central point in the cone, namely the first Chern class. This motivates us to
name such metrics central.

This contrast with extremal metrics results from the fact that the invari-
ant character we use to define central metrics is not a Kahler class invariant,
but only a complex manifold invariant. Despite the distinction, an analogous

uniform bound holds also in this case, with similar corollaries. We quote:

Theorem 0.3 Let M be a compact Kihler manifold with a Kdhler metric g

having Kdhler form w and central potential G. Then:

“ w/\'n, ’_|. .
fM(AC)Q— 2 —B(Er,a0)): (0.2)

nl

The right hand side of the inequality ts a real non-negative Kdihler class in-

variant, and equality occurs ezactly when g is ceniral.

Here B denotes the character and C the potential function, with Z; (ac) (a
generalization of) its corresponding holomorphic vector field. For details see
Section 3.1.

The bilinear form is further used to derive relations between the gradient
vector fields related to the central and the extremal potentials of an arbitrary
Kéahler metric.

We infer existence results for central Kahler metrics of constant central
potential from Yau’s solution to the Calabi conjecture [Yu]. Yau’s result turns
out to have other interesting ties with the invariants we study. A known re-

sult [FMol] uses it to show that on a Fano manifold B = F,,, where the right

hand side denotes the Futaki invariant at the first Chern class. We use it to
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define a new invariant, called the reflection character, which depends, how-
ever, on a pair of Kéhler classes. For classes of fixed volume, it simply equals
the difference of the Futaki invariants at the two classes. Its non-vanishing
obstructs the existence of Calabi-Yau pairs of metrics having equal harmonic
parts of their shared Ricci form. We call such a pair harmonic, and proceed
to relate its existence o the existence of Calabi-Yau pairs of extremal metrics.
This works very simply for the case of constant scalar curvature, while for

the non-constant case an extra condition involving the Laplacians of the vari-

ous scalar curvatures is required to insure that an extremal pair is harmonic.

We then proceed using results in [H3] to find non-trivial examples of Calabi-
Yau pairs which are both extremal and harmonic. The reflection character
of the corresponding classes consequently vanishes, but as these examples in-
clude pairs of extremal metrics having non-constant extremal potential, the

individual Trutaki invariants remain non-zero. We sumnarize:

Theorem 0.4 Let M be a compact Kéihler manifold, and €, a pair of Kihler
classes. If the reflection character 728 does not vanish identically, then there

does not exist a harmonic pair of Kihler metrics with Kdihler forms (w,0) €

- Q x Q. When this obstruction vanishes, there are examples of harmonic pairs

which are also extremal.

For details see Sections 3.3 and 3.4.

In Chapter Four we apply the invariants, and the theory of extremal

K&hler metrics as a whole, to the question of existence of Hermitian Einstein

metrics on compact complex surfaces. The possibility of application lies in a




result of Derdzinski [Dr], which-implies that such a metric is conformal to an
extremal Kihler metric. The classification of the complex surfaces admitting
such metrics was refined by LeBrun [Le], who showed that only the general
position blow-ups of CP? at one, two or three points might admit such Einstein
metrics which are also non-Kahler. He also showed that the isometry group {of

the Einstein metric and of its extremal conformal partner) contains a 2-torus.

Of these three cases the two point blow-up is the least understood, and

we are able to give the following weak topological uniqueness result:

Theorem 0.5 If there cxists Hermitian Einstein metrics on the general po-
sitton two point blow-up of the complez projective plane, then any two such
metrics are conformal to cohomologous eztremal Kdhler metrics. The latter

metrics evaluate equal volumes for the two ezceplional divisors,

The proof begins with the observation made in [Le], that the correspond-
ing extremal metric is a critical point, over extremal Kéhler metrics in neigh-
boring Kahler classes, of the L? norm of the scalar curvature. This in turn
is computable from the above mentioned lower bound result using the Futaki
invariant evaluated on the extremal vector field. We are able to systematize
and improve on the calculations in [Le] by transferring the computation to
one of elementary integrals on the image polygon of the I™- moment map.
The Futaki invariant formulas of Chapter Two, and the bilinear form of Chap-

ter Three all appear in the calculation. A rather complicated cohomological

expression results for the L? norm of the scalar curvature.




The second part of the proof is a compuier-assisted computation of the
critical points of this cohomological function. A numerical calculation easily
gives a unique critical point, but much care is taken to symbolically insure
that no other critical points in the Kéahler cone were left out. Details appear
in an appendix to Chapter Four.

Of the two remaining cases, results for the one point blow-up are well
known. For the three point blow-up, the first part of the proof works just
as well, but gives a much more complicated answer. At the second stage the
computer program is unable to determine all critical points. An improvement
here will be of much value, as this space is known to admit Kéhler-Einstein
metrics, for which uniqueness results are known [BM], and so a proof of mere
topological uniqueness will translate into a uniqueness of a stronger type.

The determination of the critical point above indicates that it is a global
mintmum. This agrees with evidence from all other known cases, and so ap-

pears to suggest that a stronger condition than criticality distinguishes the

Finstein metric and its extremal conformal partner.




Chapter 1

Holomorphy Potentials and Equivariant

Forms in Kahler Geometry

This chapter contains consequences and constructions related to the exis-
tence of gradient holomorphic vector fields on compact Kahler manifolds. Such
a vector field can be constructed from a complex valued function, which we call
a holomorphy potential. T'he construction involves the metric, or alternatively,
the closed Kahler 2-form. In Section 1.2 we compute holomorphy potentials
with respect to other distinguished closed 2-forms, namely the Ricci form and
its harmonic part. The results are then reinterpreted in the next two sections
in terms of moment maps, and ultimately in terms of equivariant cochomology.
This cohomology theory can be regarded as associated to the vector field, with
the differential built out of both the standard exterior one and interior mul-
tiplication by the vector field. A distinguishing feature of the theory is that
the contribution to cohomological non-triviality is completely determined by
the zero set of the vector field. This results in various localization formulas

for integrals of equivariantly closed forms. Section 1.3 develops the theory




0

in the special case where the imaginary part of the vector field generates an

isometric circle action, and Section 1.4 treats the general case. The upshot of
the chapter is that the Kéhler geometry determines a number of distinguished

equivariantly closed forms.

1.1 Some Conventions, General Background

We give here a summary of repeatedly occuring notations, and review
some of the underlying material. This is intended merely to facilitate a reading,
and some of the concepts will be re-introduced later.

A smooth manifold will be denoted with or without its dimension, e.g.
M, M. If it admits a complex structure J, its complex dimension will be
given as M,. If a complex manifold (M,J) admits a Riemannian metric g
with respect to which the complex structure, thought of as an endomorphism
of the real tangent bundle, is an isometry, it is called Hermitian. If for such
g the 2-form w(-,-) = g(J-,.) is closed, g, w and M are called Kdhler (M is
sometimes called Kdhlerian). We will at times not distinguish between ¢ and w.
For example, we might refer to ¢ as belonging to a DeRham cohomology class
(the Kéhler class). A Kahler manifold (M,w) is an example of a symplectic
manifold, which is one admitting a closed non-degenerate 2-form. We will
sometimes call a closed 2-form pre-symplectic.

When working in local complex coordinates z* on a complex manifold, we

will make moderate use of complex index notation. The complex structure

induces decompositions of the complexified tensor bundles. A bar/no bar over
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an index gives indication of where the object belongs. For example ¢ = ¢adz®
is a (0, 1)-form, = = Z°3% a (1,0) vector field. Given a Hermitian metric,
commas will denote covariant differentiation with respect to the (complexified)
Levi-Civita connection. For example Z% = 3=, V=% We will generally put
one comma for repeated covariant differentiations. Also note the use of the

summation convention in the previous equation. We will make use of the

inverse matrix ¢°@ of the coeflicient matrix of ¢ to raise indices: ¢* = g°P Pa-
The corresponding invariant notation will be ¢#*. Recall that a for the Levi-
Civita connection Vg = 0, so one can (consistently) raise a covariant derivative
index ().
‘ A Hermitian metric 4 on (M, J) also induces inner products on all bundles
| in the above decompositions. The sesqui-linear ones will be denoted by (-, ),

or, more ustally, without the subscript. We will also denote’it via indices.

Recall that this implies a bar over the second factor. If, for example, M is
compact, one uses the integration with respect to the metric volume form to
get associated inner products on global sections: < ¢,& >p= [y ($,&)dpn
Here if ¢, ¢ are, say, functions, then the integrand is simply the product HE.
Note that when ¢ is Kéhler with Kahler form w, du, = " /nl,

The exterior derivative on a complex manifold decomposes as d = 0+ 0,
where 8 raises by 1 the p sub-degree of a (p,¢)-form, and @ raises its ¢ sub-
degree similarly. One has 9% = 8% = 0,80 = —00. From these operators three
Laplacians can be formed: A = Az = 8"9 + 90", A = Ny = 070 + 99"
and Ay = Ay = d*d + dd*. Here the superscript * denotes the formal adjoint

with respect to the inner product < :,- >. For a Kahler metric on a compact




manifold these satisfly the basic relation: A = %Ad = Ag, and, as follows
from Hodge theory, A commutes with 8. Note that for smooth functions only
the first of the summands in each of these acts non-trivially, and with these
conventions, it turns out that at a maximum of a real valued function they are
all positive. Recall the Divergence Theorem, that states that on a compact
manifold (without boundary), the integral of a divergence is zero. This works
for complex divergences as well, see Chapter 2. Here we merely state a special
case, namely that for a Kéhler metric and any smooth complex valued function
fy fy Af ™ /nl = 0.

If r denotes the Ricci tensor of a Kahler metric g, a fundamental result is
that the 2-form p, called the Ricci form, is closed, and the DeRham cohomology
class it represents is 27 times the first Chern class of the manifold, denoted
e1, or ¢;{M). Using this, one can understand p as a curvature of a Chern
connection on a holomorphic line bundle, the anticanonical line bundle, and
obtain the simple expression p = —i83logdet(g). The right hand side defines
the first Chern form of ¢ even if ¢ is only Hermitian.

The scalar curvature s of a Kahler metric ¢ can be computed by the for-
mula sw™ = 2np A w""t. This follows from Hodge theory, as the Kéhler form
w is harmonic (i.e., belongs to the kernel of A), and s is (up to factor) the
w-trace of p. A basic result of Hodge theory is that on a compact (Kéhler)
manifold any (Dolbeault) cohomology class admits a unique harmonic repre-
sentative. The Hard Lefschetz Theorem gives a cohomological decomposition

resulting from the operator given by wedging with the Kahler form (and its

adjoint). It holds since these operators commute with Laplacian, A particular
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consequence we will make use of is that the inner product of w with a harmonic
9-form is harmonic, and therefore constant (constants are the only harmonic
functions on compact manifolds).

The relations between ¢, J and w in Kahler geometry (e.g. VJ = 0} induce
strong ties between vector fields preserving each of these three structures,
to be detailed in the next section. A vector field X is called symplectic if
Lyw = 0, Killing if Lxg = 0 and holomorphic if LxJ = 0. Here £ denotes
the Lie derivative. A vector field X is called Hamiltonian if it satisfies i1xw 1=
w(X,.) = df, where f is a smooth real valued function on the manifold. f is
uniquely determined up to an additive constant. Such vector fields are always
symplectic. With the other two categories we will also be mainly interested in
vector fields that are related to functions as above. However, in these latter
cases the functions will automatically satisfy an extra differential equation.
This accounts for the finite-dimensionality of the spaces of such vector fields.

Another notational choice is to regard a holomorphic vector field as living
in the complexified category, i.e., as a (1,0) vector field. So = = JX 41X
will be called holomorphic if X is holomorphic. Remaining in the context of
a compact Kahler manifold, if X is Killing and generates a circle action, =
is holomorphic and JX is a gradient vector field [Fr]. For more details and
references, see the next section,

If a compact connected commutative Lie group (a torus) T" acts on 2
symplectic manifold M, preserves the symplectic form, and induces an in-
finitesimal action of the Lie algebra ¢ such that associated to every vector in

¢ corresponds a Hamiltonian vector field, it is called a Hamiltonian T'-action,

13
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and M is called a Hamiltonian T-space. For such a space, the dimension of I’
can be at most half the dimension of M. When M is compact and the action
is effective (i.e. no non-trivial element acts trivially), the manifold admits a

complex structure with respect to which T' acts holomorphically, and the sym-

|
plectic form is Kéahler. In this case M is called toric. The theory of these will ‘
be of interest in Chapter 4, whereas in Chapter 2 we will be interested in the l‘
other extreme case, where T is the circle group S, For these, recall that an
action is called semi-free if the only stabilizer subgroups of points in M are
the identity and the entire group.
More specialized background will be described later. We mention that '
\ in Chapter 3 some Lie algebraic information will be needed on one occasion,
and the background for Chapter 4 includes a limited amount of 4-dimensional

Riemannian geometry.

1.2 Laplacians and Holomorphy Potentials

Let (M, J) be a complex manifold, and Z a holomorphic vector field with a
non-empty zero set. Then for a Kahler metric ¢ on M, there exists a complex
valued smooth function f on M such that = is the type (1,0) part of the

gradient of f with respect to g (cf. [LSm]). We write = := Z; = 0¥ f = (AF)*,
s 0f 8
af M4

5.7 0 The function f then

or, in local complex coordinates, Z = 3 g
o,
satisfies f 0;3 = 0.

If w is the Kihler form of a K&hler metric g, one can also write

1w = w(=, ) = 0f.




f is called the holomeorphy potential of =, and is determined up to an
additive constant. = will sometimes be called a gradient (holomorphice)
vector field.

Now writing 2 = JX — iJ(JX) = JX + 1X, the real vector field X is
Killing, i.e. a generator of isometries, if and only if the imaginary part of f
is a constant, which we will choose to be zero {cf. [LSw]. For the opposite
convention, of having X be the real part of Z, at the price of making f purely
imaginary, see [F't2, Lemma 2.3.8]). In this case, X is also the Hamiltonian
vector field of the Hamiltonian f, with respect to the symplectic form w, and
we have

ixw = w(X,.) = df. (1.1)

Since g is Kahler, its Ricc form p is a closed 2-form. As with w one can
ask whether the interior product szp is J-exact, and if so, with réspect to what

function.

Proposition 1.1 Let (M,J) be a complex mantfold and = a gradient holo-
morphic vector field on it. Supbose g 1s a Kahler metric on M with Kahler
form w and Ricci form p. Then of f is a smooth complex valued function on
M satisfying
wmw = Of, (1.2)
we have
ap = B(AS). (13)

Moreover, if M is compact, the second equation implies the first. Here A := Aj
is the O-Laplacian: A = 6*8 + 30",

15
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16 H
5
i
Remark 1.2 Fquivalently, using the 0-Laplacian on i-forms, one can write: ‘L
| 4[4
|
1zp = Alizw). il
il
I
_ !
Proof of Proposition 1.1 This proposition is well known (cf. [Kb, Theorem 4.2]), i
i
and goes back to Bochner [Be2] and Yano [Yn], but we focus specifically on our ‘.{l
7
main concern, the gradient vector fields. Let ¢ be the (0,1)-form associated [’
i i1
to = using the metric. Then g
a*¢ —_ quz l: ;\
* b
Ak B @ o 3 i|
B a(b = —Z(qsb - QS:E)!Q.dZ "ii‘
o3 i l‘
together give n
a““
| AG=2lp " ot 85— $p)d = 205" o b pogt i, (14) {!
2 “ L
by the Ricci identitics. But ¢5 = /3, 50 ” !
~ i
ba =5 = 200" 0,5 1" 5 =0, |t
‘;
S i
i
since f is a holomorphy potential. So the first term on the right hand side of
equation (1.4) drops out, while the second is exactly 2zp, and we get
BAS) = ABS) = =p
1
as required. In the other direction, Since = has zeros, tzw = dh for some FJ‘Q}
i
holomorphy potential %, so by the first part, i
H(AR) =1zp = H(AS). f
i




We see that A(f — k) is a constant, which by harmonic theory must be zero
on a compact manifold, and moreover f and h themselves must also differ by

a constant, so f is also a holomorphy potential for =. O

As belore, if the imaginary part X of = is Killing, then in the above setting

we have

xp = d(A]) = sd(Aaf) (1.5)
Here Ay := d*d + dd* is the a’—Laplacian, and we have used the fact that for
Kahler metrics Az = %Ad. Now even though the 2-form p might be degenerate,
it will be useful in the following to regard it as a pre-symplectic form, and thus
consider the real function Af as the p-Hamiltonian of X.

Aside from w and p, another closed 2-form determined by a Kahler met-
ric ¢ is pp, the harmonic part of p. As with p, one can determine the py-
holomorphy potential of a holomorphic vector field =, and the py-Hamiltonian
of a Killing vector field X.

Since p and pyr belong to the same cohomology class, there exists {cf. [GH,
Chapter 1, Section 2]) a smooth real valued function F, called the Ricci
potential, such that

p — pi = t00F. (1.6)

Unless otherwise stated, we normalize F' to be perpendicular to the constants.

Definition. The modified Laplacian of a Kahler metric g is the operator
Ap : CF — C given by Apf = Af — (OF,0f). Here {.,.) is the pointwise
inner product on forms of type (1,0) induced by g.

This operator was first used in [FMol] and [F12, Section 2.4]. See also [FMS].
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1
Proposition 1.3 With the assumplions of Proposition 1.1, equation (1.2) im- ﬁif
I

plies F
‘ 5 i

rapr = H(Arf), (1.7) T
i
and is tmplied by #t if M is compact. ]
Proof. Since wpg = 1mp — 1=(i00F), by Proposition 1.1 we need ouly verify l
~ ot
w=w(10aF) = (OF,0f). Verifying this tensor equality locally, and using the ‘4{
summation convention, we have "
((0BF) = Fozdz™ A deP |

, |

[, ’Y}G £ }l?

| , = = iy
0 :

— [ |

=J az7’ i

|

So, |
m - )

wm(100F) = F'agf’"dz“(é—;)dzﬁ ,‘

= F5f*d? %

. :|¥

= (Faf")sdz® _iE

|

= J(0F,8f), i

f

where in the penultimate equality we have used f ’% = 0, which holds because

f is a holomorphy potential. O

And again, when X = $m(=) is Killing, remarks similar to those re-

garding p apply to pg, since Killing fields preserve harmonic forms (see [Bel],

or [BY, Chapter 2, Section 7).




1.3 Moment Maps and Equivariant Localiza-
tion

We describe certain notions from symplectic geometry which will be re-
quired later.

Let (M** w) be a symplectic manifold with a Hamiltonian T-action,
where 7' is a torus with Lie algebra ¢ whose dual is ¢*. Denote by X the

vector field corresponding to a Lie algebra element £ € t.

Definition. In this setting, a moment map is a smooth map ® : M — ¢*

satisfying :
i) ixw=d<®,¢>foral e,

ii) Pog=goPogtioralgel.

For some time we will only be interested in the case T = S'. Then @
reduces to a single smooth function f : M — R 2 ¢*, condition i) becomes
equation (1.1) and the flow ¢, of X; := X, is periodic: ¢y = id.

Ignoring for the moment the possible degeneracies of a closed 2-form, we
have seen in the previous section that a vector field with zeros preserving a
Kahler metric gives rise, at least if it is periodic, to three possibly distinct
moment maps relative to w, p and py. We also saw there the holomorphic

counterpart of this situation.

The next important notion is that of localization. For this we give a rather

concise introduction to equivariant cohomology.
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Denote by Q% the space of smooth S'-invariant m-forms on M, i.e. those
m-forms o for which £Lxa = 0, where £ denotes the Lie derivative. Also
let 2%.[g] be the ring of polynomials in the degree 2 indeterminate ¢ with

coeflicients in % . Consider the degree 1 operator

dy =d—quy.

Assuming both d and sx act trivially on ¢, we have d§% = —¢Lx, and so
(%:[ql,dx) constitutes a differential coraplex. The resuliing cohomology

H (M) is called (the DeRham model for) equivariant cohomology.

We define integration of an equivariant differential form over a submani-

} fold via term by term integration of each component, where of course the latter
is non-zero only for forms of degree equal to the dimension of the submanifold.

Integration over M induces a map

/M : Hiqa (M) — Hz(point),

which is well-defined since an equivariantly exact form has an exact component

of the top degree.

Remark 1.4 Although we regarded q as an indeterminate, we can also view
it as a non-zero complez parameter (see [AB, Section 5]). Setting ¢ = 1, one

can view equivariant differential forms as polynomials on the Lie algebra of St

taking values in ordinary differential forms. Although we will not make much

use of this interpretation, we will at times set ¢ = 1. Then we regard the i

complex as Zy-graded by the parity of the ordinary degrees in the components

of an equivariant form. This has the advantage that the integration map above
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gives a map to the real numbers, or, in the holomorphic version of the neat

section, to the complex numbers.
A first result leading to localization, is the following:

Lemma 1.5 Lel

0 = gy + qorgpa + .+ (Mg

be an equivariantly closed 2n-form such that o vanishes on the fized points of

the S'-action. Then o is dx-ezact. In particular,

/ Qgy = 0. i

A proof can be found in [BGV, Proposition 7.10] or [MS, Lemma 5.54]. i

To state the Localization formula, we examine the circle action in more
detail. We here assume that M is compact.
Let My denote the (disconnected) submanifold of fixed points of the ac- it

tion, and N — My its normal bundle, with locally constant rank denoted by i

pulls back to a symplectic form on Mg, and N becomes a symplectic vector iii

|

tk(N). Let Lx € ['(End(N)) be the induced action of X on N. Then w
bundle with symplectic structure {(infinitesimally) preserved by Lx. Lx can |
!

it
be made into an {invertible) complex automorphism of N by choosing a com- “

plex structure on N commuting with Ly and compatible with the symplectic !
structure on My. As such it has weights (eigenvalues as a complex operator) :‘I
il
|

which are purely imaginary, and, since Lx stems from an $'-action, actually

integer-valued. We have:




Theorem 1.6 (Localization [BV2, AB]) Let M, My and N be as above.

Given an equivariantly closed form «,

(9 rlc(N)/Z/ o (1.8
/Ma (—27) M, det(qlx + )’ (1.8)

where §1 is the (endomorphism valued) curvature 2-form of an Lx-invariant
connection on N, and the determinant is complez, taken with respect to the

complex structure on N.

Note that the statement implicitly includes b()t}’l the formula’s indepen-
dence of the choice of £2, and the invertibility of the denominator, which follows
from that of Lx. More explicitly, if the normal bundle to a connected compo-
nent of My splits as [y @ Ly @ ... @ Ly, with Lx acting with weight k; on L;,

and 3, is the L;-component of the curvature, then

1 1 1
det(qLX + Q) - det(@?‘zl(qulE. —|-Q)) N m_ de‘t(qu|E- + Qj) -
Hdetqkf-l—ﬂ) H(qk + Q) qujg qk

where in the penultimate step the determinants can be dropped since they are
(complex) determinants of endomorphisms on (complex, one dimensional) line
bundles.

The basic relation between moment maps and equivariant cohomology is
that w+qf, for f as above, is a very simple example of an equivariantly closed
form. It is closed exactly because of condition i) above (or equation (1.1)).
Note that for this to hold, the non-degeneracy of the symplectic form is im-

material. This enables later applications involving the Ricci form.

For this particular closed equivariant form the Localization formula gives:
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Corollary 1.7 For any positive integer m,

mo__ rki 2 (w + Qf)m
/M(w Faf)" = (2w /Mo det{ql, + Q) (1.9)

We will mostly be intcrested in the cases k = n+1 and, less directly, & = n+2.

An important special case arises when X hag only isolated zeros:

Corollary 1.8 for m > n, if X has only isolated zeros, then

() fo”‘”w“” = (—zw)”zm, (1.10)

> c(p)
where the sum 18 over the critical points of f, and e(p) € Z is the product of

the weights at p (treated as real integers).

(Note that the factor ¢™~™ that should have appeared on the left hand
side canceled with a ¢™ from the numerator, and a ¢" in the denominator, on
the right hand side.)

Multiplying (1.9) by 1/m! and summing the series gives

Theorem 1.9 (Duistermaat-Heckman) For (M*™,w) and f as in the

above corollary, and for every non-zero ¢ € C,

/eqf““ _/ et = (o) Z

4

8qf (P)

(1.11)

Note that for ¢ indeterminate, the above series summation involves a power
series completion of the polynomial ring 0% [¢].

The last result will serve as a paradigm in what follows. The original proof

of the Duistermaat-Heckman Theorem involved a computation of the volumes




of symplectically reduced spaces (see [D1, DH2| and [G, Chapter 2]). Similar
notions were used in the proof of the localization formula obtained in [LSm]
for the invariant that will be introduced in the next chapter. The equivariant

cohomological approach adopted here resembles later proofs of Theorem 1.9

(see [AB, BV1, BV2], [Au, Chapter 5] and [MS, Chapter 5]).

1.4 Holomorphic Equivariant Cohomology

Following an approach beginning with [W], a holomorphic version of the
previous theory was systematically developed in [Lu], where many other ref-
erences to related earlier works are included. We summarize the elements
essential to our applications.

For a compact complex manifold (M, J), let

QM) = @ o),
g—p=r
where QP4(M) denotes the smooth (p, ¢)-forms. Given a holomorphic vector

field = on M, define the differential operator

=0—t

[1]
[11

As before, t can be regarded either as a non-zero complex parameter, or as a

formal variable of bidegree (2,0). Since now
8% = *"f(éZE + 153) =0,

we see that (*)(M), 8z) constitutes a differential complex, where ) denotes

the range of r = —n,—n + 1,...n — 1,n. We denote the resulting cohomology
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by HS) (M), if 7 is non-zero, and Hz(M) otherwise. The relevant localization
formulas are valid for the latter. To state these, we first carefully describe the
degeneracy bechavior of = at its zero locus.

Assume M is a (disconnected) complex submanifold of zeros of = (here
. this is not automatic, and weaker assumptions are possible), and N =
T M /T AL its holomorphic normal bundle, with locally constant com-
plex rank denoted by rk(N).

Let Ly € T'(End(N)) be the induced (complex Lie derivative) action of
= on N. Another major difference from the case of a circle action is that Lg
18 now explicitly assumed to be an invertible complex automorphism of N. In
this case we call = a non-degenerate vector field.

As before, integration over M is well-defined as a map
/ : He(M) — Hg(point),
M

which as we have already mentioned, can also be thought of as a map to C

once t is set to 1. We have:

Theorem 1.10 (Holomorphic Localization [Lu]) Let M, M, and N be

as above, with = non-degenerate. Given o with [a] € Ha(M),

— {9 k() . !
/Ma (=2m) M, det(tLE—l—ﬂ)' (1.12)

where § is the (complez endomorphism valued) curvature 2-form of an L=-

wnvartant connection on N, tnduced from any Hermilian metric on M, and

the determinant is complex, taken with respect to the complex structure on N,




Assume the fixed point locus of = consists of isolated fixed points, and

near such a point p write

p

{1]

Denote by B, the (Hessian) matrix (0v!/0%;)nxn.

Corollary 1.11 With notations as in Theorem 1.10, if My consists of isolated

fized points at which E is non-degenerate , then

F= (=92 (V) o:o(p) 1.13
Jyyo=t=2m 2 Fdet By (1.13)
where the sum is taken over the fized point set.

Generalizations abound [Lu]. For example, when the zero set of the vec-
tor field does not form a complex manifold, or for degenerate holomorphic
vector fields with the formula involving the Grothendieck residue. Even more

strikingly, a corresponding formula holds for meromorphic vector fields. This

extends the utility of such results to a much larger class of complex manifolds.
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Chapter 2

The Futaki Invariant and Localization

Formulas

This chapter introduces the Futaki invatiant 7., a character on the Lie al-
gebra of holomorphic vector fields. Its definition depends on a choice of Kahler
(metric or) form. However, it is in fact invariant under changes of representa-
. tive within the Kahler class. We begin in Section 2.1 with another character
B [FMo2], which is in fact a complex manifold invariant., After deriving some
of its basic forms for gradient holomorphic vector fields, we define the Futaki
invariant and recall that when the Kahler class coincides with the first Chern
class, F,, = B. Once this invariant’s form is given for a gradient holomorphic
vector field, a basic difference emerges between the two invariants: using the
localization techniques of the previous Chapter, B can be localized using a
single equivariantly closed form, whereas F,; cannot. Section 2.2 nevertheless
describes its localization via two of the equivariantly closed forms given in

the previous chapter. First we give a formula valid only in complex dimen-

sion two, and derive from it a slight generalization of a more explicit known




form {LSn, LSm, KLP]. Then we derive a formula valid in any dimension.
This leads to a Kahlerian generalization of the Duistermaat-Heckman formuia.
These later formulas are computed first for Killing vector fields generating iso-
metric circle actions, and then for more general gradient holomorphic vector
fields. Finally we show how to understand the above mentioned Kahlerian

invariance of the Futaki character via holomorphic equivariant cohomology.

2.1 Preliminaries, Definition

For a Hermitian metric A and a holomorphic vector field =, we denote
by diviE the (complez) divergence of Z: div,= = 3, V,E%. We retain the

notation p even in this case, but now for the first Chern form of 4.

Theorem 2.1 (Futaki-Morita [FMo2]) Let (M,,J) be a compact complex

manifold and = ¢ holomorphic vector field. Then the number
p/\n
B(:“.) = fM dlv;@F (2.1)

is independent of the choice of Hermitian metric h used for its computation.

In particular it is invariant under biholomorphisms of M.

Now when A is Kahler, if = has zeros and f is its holomorphy potential, then
divyZ = ~Af. While varying h, p and f also vary (in general), but we still

have:

Corollary 2.2 In the above setting,

An
] Afp_
M nl
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does not depend on the choice of Kihler metric.

We will also denote the invariant in the previous theorem B, (Z), since for
certain purposes we will be restricitng its evaluation to Kahler metrics whose
Kéhler class is ¢ (M). We now give it another form, which is useful for a later

comparison with the Futaki invariant.

Lemma 2.3 Let (M,,g) be a compact Kihler manifold with Ricci potential

F. Given a gradient holomorphic vector field = with corresponding holomorphy

An An
P Prr
Ty Ny 3
fM fn! M n!

Since p and py belong to the same cohomology class, we will see in the

potential [, we have:

next section that this result really follows from an invariance that can be
established via the techniques of Section 1.4. We give, however, a Kahler-

geometric argument, for which we will need the following important theorem.

Theorem 2.4 (Calabi-Yau [Yu)]) Let M be a compact Kdihler mantfold. If
p a real closed (1,1)-form representing ¢1(M), then in every Kdihler class there

exists a unique Kdhler form w, whose Ricct form equals p.

Note also that two K&hler metrics having identical Ricci forms have propor-

tional volume forms.
Proof of Lemma 2.3. By the Calabi-Yau Theorem there exists a unique Kahler
metric § in the Kahler class of g such that its Ricci form § satisfies 5 = pg.

Then 12p = 1zpy, and so by Proposition 1.1

AF) = 0(Arf),




where f is the §-holomorphy potential of =, and A is the §-Laplacian. So
Af=Apf -k, (2.2)
where k is a constant. Hence all the above gives

J Aridy = | Afir—k [

= [ Atk [
where in the last equality we have used Corollary 2.2. We will thus be done
if we show k& = 0. But [ A far = 0 by the Divergence Theorem, so equa-
tion (2.2) implies that &k is the average value of Ay f with respect to &,

ie.
b= S A fio™
- fM fofn :

To see the relation between the volume forms of @ and w we note that p =

pur = p —108F, or
—i8dlog det(§) = —id0log det(g) — iOF.

Choosing # to make this equation hold for the functions in it, we see upon

taking exponents, that det(§)/ det(g) = ¥, or

We now compute:

fM Apfo™ = fM AfG" — fM(aF, Bf ™"
= /M Afefw — /M(ap,af)ww
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= < 88f," >, — /M(ap, Bf)uo™

= <8f,8(F) >u /M(E?F, af)e"

— < BF,FB(F) >, — /M(aF, B
. oOF 9 FoAn @An
_ /M(af, BF), e fM(aF,Bf)w

= 0,

since (Of,0F )y = fat"® = Fgff = (0F,0f),, and so k = 0. O

Remark 2.5 Reguiring in the proof that & belong to the same class as w was

a choice made strictly for the sake of specificity, and is not necessary.

We now introduce the Futaki character.

Definition. Let (M, J,w) be a Kahler manifold with Ricci potential #. The
Futaki character is the map Fj,) : h(M) — C, where h{M) denotes the Lie .‘

algebra of holomorphic vector fields on M, given by i

Fu(® = [ B0

W (2.3) j

The values of this character do not depend on the choice of metric in the
Kiahler class w (see [B, C2, Ft3]), i.e., it is a Kéhler class invariant. This will

essentially be shown in the end of the next section, using the techniques of

Section 1.4.

When (M, J) is a Fano manifold, i.e. when the class ¢; contains positive

definite (1,1)-forms, we have the following relation between B and JF,: i




Proposition 2.6 (Futaki-Morita [FMo2]) Let (M,J) be a compact Fano
manifold. Let g be a Kahler metric with Kihler form w having Kdhler class

ci. If I denotes the Ricci potential of g, then for any holomorphic vector field

[1]

*/ dlvgu o= B.,(ZE).

Proof. We reproduce the original proof for the convenience of the reader,
although the result also follows from the previous and next propositions. By
Theorem 2.4 there exists a unique Kahler metric 2 in the class ¢; satisfying
pn = w, where py, is the Ricci form of h. Then p —w = i8JF can be rewritten
ag

p— pp = iO0F,

go we can take
det(g)

= =log g ay

and then:

H/ j:; h T

de ™

a /M detg % ( E ))) n!
_ _/ det(g wh (2.4)

det h

= /dith : (2.5)
Tl
f\n

= /dlvh._d

- /Mdingﬁ, (2.6)
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where to get (2.4) we used —— t(g) :,ﬂ det(h) “2— to get (2.5) the same relation

combined with integration by parts, and for equality (2.6), Theorem 2.1. [

Combining this with Lemma 2.3, we get

An

(&= A pr (=] arts, 2.7)

when M is of Fano type. On the other hand we have:
Proposition 2.7 For any Kéihler metric g on a compact complex manifold
M,

Fw)(E) = f Arf T (2.8)

for any gradient holomorphic vector field = having holomorphy potential f.

Proof. Using the Divergence Theorem,

Ar An w/\'n.

w W
S(F)r = [ ER = »apa_:
/. EE) %

n’ !

/M«af-,af)— “’—,—— f pfﬁ

|

Comparing the expressions for B, and for F at a general Kahler class
(w], and recalling Proposition 1.3, we see that since Apf is a py-holomorphy
potential, B., admits a localization formula via the techniques of Section 1.4.

Also, if M is Fano, and w is a Kéhler form in the class ey, then, being the unique

harmonic form in its class, w = py; and so, via Proposition 1.3, we see that f

<o e s e




and Arf differ by a constant. This means that, in this case, two of the three

moment maps induced by a Kéhler metric, or two of the three equivariantly
closed forms, coincide (up to translation). This has been understood in [FMol]
and [FMo2|, and here we have mainly reorganized the information to fit the
equivariant setting. In the next section we will study the Futaki invariant
at a general Kahler class, for the purpose of obtaining localization formulas.
As for the latter, by Proposition 2.7 Fj,) does not, in general, have the form
appearing in Corollary 1.8, which is easier to localize. Nevertheless, we will

show that it admits a localization formula.

To end this section, we record some other forms of the Futaki invariant
Flu(Z) of a gradient holomorphic vector field, that will be needed later (M is

assumed compact throughout):
St -= f(anr

Here s is the scalar curvature of the given Kahler metric g,

An

n' N .‘IZ/Mf(SMSO) nl’
(2.9)

An

IM S ol n!
fM w.'\n

Sg =

its average value and the last equality in equation (2.9) follows from rela-
tion (1.6) by taking traces (notice that in our conventions (w,100F) = —AF =
—A3F, and also that 2{w, pg) is the constant s, as follows from the Hard Lef-
schetz Theorem). Recall that the same theorem (or Hodge theory) also implies

that

sw” = 2np Aw™ !, (2.10)




we get the additional useful form

1 £ An—1 S0 n
- /pr/\w -|-ﬁ/Mfw . (2.11)

2.2 Localization Formulas

We have already mentioned that when [w| = ¢;, the F'utaki invariant can
be localized. Since in that case we really have an invariant of the complex
manifold, a localization formula can be found without resorting to symplectic
geometry. This was the approach in [F'Mo2]|, where localization results were
obtained following methods of Bott [Btl, Bt2], while demonstrating that the
Futaki invariant is the ‘barycenter’ of the moment map (see equation (2.7) and
the remarks after Proposition 2.7) was derived separately (see [['Mol]).

In complex dimension 2, localization results were obtained for any Kahler
class, assuming the holomorphic vector field generates a C* action, in [LSn,
LSm, KLP]. We first present another approach for that case, and give a slightly
more general formula. Both methods compute the Futaki invariant with re-
spect to an invariant Kahler metric obtained by averaging a given Kahler
metric in the class with respect to the S*-component of the C*-action. The
method given here, as well as its later generalization to higher dimensions,

requires minimum knowledge of the explicit form of this metric.

2.2.1 A Formula for Complex Surfaces

The following expression for the invariant can also be thought of as re-

tating Fj,; with F,. In all our formulas, the periodic flow of a circle action




generating vector field is of period 1.

Proposition 2.8 Let (My,J, g) be a Kdhler surface. If X o Killing vector field
generating an S'-action, and = the corresponding holomorphic vector field,
then
Fual®) = g0 [ w7 [ (4 AN+
4./f Af)w - M Q/AfM
- ~30/ fu 4f(f+Af (w+p)"?

g [ = AN Py F.E). (2.12)

Here w is the Kahler form of g and f any Hamiltonian of X,

Proof. By equations (2.9) and (2.11)

W]E 2/ 89— 3)f :—sof fwh? — /fp/\w

Further algebra gives

fM(f +Af(w A+ p)™ /M(f —Af)w—p)" = (2.13)
4/pr/\w+2fMAfw"2+2/Ma,fpf\2 =
4fop/\w+2fMAfpf\2,

where last step follows from the Divergence Theorem. Rearranging terms, one

arrives at the first equation, while the last one results from equation (2.7). O

Theorem 2.9 Let (M, J,q) be a Kdhler surface, X a Killing vector field

generating an S° action, and = the corresponding holomorphic vector field.
g s 4
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Let My be the fized point manifold of the action, and N its normal bundle of

locally constant (real) rank tk(N). Then

Fa(F) =
(_2,n_)r1c(N}f2 —-l—g / (w _|_.qf)3 B i - ((Ld ‘|“P) + Q’(f+ Af))B
q 127° Mo det(glx + ) 12 I det(gLx + )

PR O CROR 3:FialiS) S Wy G (R EY i
1200 det{glx +10) 6 Jmy det(gLx + ) f”

(2.14)

where ¢, det, Lx and § are as in Theorem 1.6.

Proof. Using both the previous proposition together with the expansion of the
equivariantly closed forms w + ¢f,{w + p) + q(f + Af), (w — p) + ¢(f — Af)
and p + gAf, as in the passage from the left hand sides of equation (1.9) and

equation (1.10), with m =n+1 = 3,

qFw(=) = —Sof w+ qf)® ((w‘FP)‘FQ(f-FAf))S

12/ ((w— P+q(f A 6f (p+ S,

and the result follows directly from the Localization Theorem 1.6. !

We would like to derive from the above formula the more manifestly topo-
logical ones appearing in [LSn, LSm, KLP]. While the terms in formula (2.14)
appear to require exira information, namely the values of Af and f at the
fixed points of the S'-action, these can actually be obtained from topologi-
cal information alone. The differences of values of the p-Hamiltonian Af at
the fixed points depend only on the cohomology class [p] = 2m¢;, and that of
the w-Hamiltonian f on the cohomology class [w] (this is related to the inde-

pendence of the measure, induced on the image of the moment map, on the

e e




particular (pre-)symplectic representative, see [Mbl]. See [Ka, Lemma 2.7] for
an explicit calculation in dimension four).

Our derivation will use the following known properties of Hamiltonians,
for which good references are [Au] and [MS]. The relevant original papers
~are [At, B3] and [GuS].

a. Every Hamiltonian f is a (perfect) Bott-Morse function, i.e., with
respect to a compatible metric (such as the invariant one we have been using),
the manifold M, of critical points of f satisfies T, My = kerV? f(x), where the
linear operator V2. T, M — T,M is obtained from the Hessian via the metric.

b. The connected components of My are even dimensional and of even
index.

c. A local minimum (maximum) of f is also a global minimum (maxi-
mum), and is obtained on a connected set.

d. The Hamiltonian f has a canonical local expression near a fixed point

p given, in Darboux coordinates for the Kéhler form, by:
_ kt k=
[heT) = fp) + 1+ 1 1
where k1, k™ are the weights, and in particular, integers.

e. For the four-manifolds we consider, a concrete description exists of
the submanifolds connecting two flow-adjacent fixed points, and of the rela-
tion between their Kahlerian area and the moment map values at the fixed
points [Kal.

It follows from c. that for a four manifold M, there are at most two

fixed surfaces, C_ and C,, on which the global minimum and maximum of f




are respectively obtained. We will consider the most generic case, where M

contains exactly two fixed surfaces. M is then ruled and CL are sections, so
in particular have equal Euler number y. We make a convenient choice for f
by requiring

F(Cy) = =f(C). (2.15)

The volume of the fiber F' is then given by

W(F) = 2n(2f(C4)) = 4 f(Cy). (2.16)

Let us first consider the contribution of ¢ and . to the first term in

equation (2.14). Recall that in general

1 Vit T Q.@
det(gLx + Q) ETZ qkj)’

=0
where k; are the weights, and Q; components of the curvature of the normal
bundle over a connected component of the fixed point set.

Let {14 be the curvature 2-forms of the normal bundles Ng, of Cy, re-
spectively, and ky = +1 their respective non-zero weights. Here the sign is
determined by our convention in formula (1.1) for the sign relation between the
moment map and the action. The contribution from C}y to the first integral
n (2.14) is therefore
:;'*ﬂ"i%{fc_(quf)?’/( g+ Q)+ fo, (w+af)/ +Q+}

2 {lo (0 + afP AR+ 2N+ fo (w0 P A (= 5)} =
=23 ([ (=3¢f%w — ¢f*Q) + fo, (3afw — af*Qy) } =
—2r 83 fHC)w(Cy — C) =2 B PO (fo_ O~ Jo, 4) =

— sl B¢ - OL) — 2GR (02 — OF),
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where we have used (2.15), (2.16) and f,, Q4 = 2xC}.
Next, the contribution from the isolated fixed points p;, having weights
e{p;) = ki ki = det(Lx|p;) is
(2 s0 o+, _ (2 (ot P,

g 12 i det(qLX|Pj) g 12 F q*e(p;)
(27) 5o~ (23)° 290 = f(p;)°
g 12 zjj ce(p;) (2m) E? e(p;)

Proceeding, f(p;) is replaced with a more cohomological expression:

_ oy (CU(CH) = 1) 4 £GP

125 e(p;)
w{H w
(= s 28 00

BRATE S

50 o (= iy 2k w(Ey) + w(F))°
1927 ZJ: e(p;)

¥

where F; denotes the rational curves which are closures of non-trivial C*-
orbits (gradient spheres in the terminology of [Ka]), belonging to the singular
fiber connecting €' and 'y on which the given fixed point p; lies (to which
a particular branch with a vertex labeled f(p;) corresponds in the extended
graph of [Ka]), and the inequality under the last summation means that one
sums only over those gradient spheres connecting p; with C.. kit denotes the
order of the isotropy subgroup‘of E;, which is also a k' weight for a fixed
point, namely s south pole, i.e. the —oo limit of its gradient flow. We have

also used relation (2.16).

Remark 2.10 Denoting by E; (E’J) the chain of rational curves obtained by

following the flow from p; to C. (C_), we this that because —Zw(E}) +w(F) =




—w(E‘;) + (w(F) — w(f'?;)) = —w(E;) + w(.ﬁ'j), the expression reduces, for a
semi-free action (i.e. all weights equal to one), to

Sp w Ej — E;, 3 Sp n NN
(%)QEZ( ( ()3 v Togr WU~ )

This agrees (up to a conventional factor) with the result in [LSm)].

We now consider the last three terms in (2.14). With little algebra, we
rewrite them as follows:
2O L L o (w0 + ) + g(f + AT/ det(qLx + Q)]
+35 fa [((w — o) +a(f — AS))P/ det(gLx + Q)] +
L [+ gATY/ det(qLx + )]}

= 2R (<A@ A p A gA o™ P PPAT + ¢ )

wqfp Aw — FAFW) [ det(gLy + Q)].
Hence the contribution to this term from C4 is
=iz L (=4 A p+ A+ @ FAAf + ¢ f20) — afp hw — ¢ FAfw)
[ det{—q + Q_)-I—
Jo, (WM A p+ AN + P AF A ¢ fPp) — afp Aw — ¢ fAfw)
[det(qg+ QL)) =
Sn [ (~HwN A p+ gAF + PPAS + P fP0) — afp Aw — 2 A fw)
A=)+ 2N+

Jou (3@ A p+ gAfu™ + P PAS + ¢ f20) — afp Aw — ¢ fAfw)
| )

=5 { [, Laf* +qfAfw + §afPASQ+

Jo, (—Laf%p — af Afw + 1afPAf0) ) =




—2m {3 F2(C) fo_p + FICHANC) fo_w + SIHCNANC) [ 0.~
YO Joy 0 TCOANNCY) fo, w + LPHCOANC) fo, Q4 } =

~om {1 AHCO2mK - C_+ FC)(AFNC) fo_w + 2FACHASC)2mC? -

(~L1(C2rK - Cr) = FICAN(CL) fo, w + EFHCHAC)2rCE

where K is the canonical bundle. Now as the d-Laplacian is the trace of the

Hessian, which is degenerate at the minimum and maximum of f, we have

AF(C3) = yAaf(Cs) =

(Recall that our Laplacians are minus the naive ones). Using this and the
adjunction formula, the calculation continues:

2w {3 £7(C )2mx ~ J(C)w(C) + §7%(C)2mx — F(C4)w(Cy)} =

27 f(CL)o(Cy — C) = —3l FYlC_— Cy),

by (2.15) and (2.16). This term already appeared in [LSn].

And lastly, the contribution to the second part of the expression for the
Ifutaki invariant from the isolated fixed points p; is
E2E (3@ A p+ A fu? + PPAS + ) — afp hw = P FAfw)ly,
[ det(qLxls,) = BT (=30 @) (A p)/ (¢elpy)) =
=2 25 [0 (A F) i)/ elps)-

Now if the S'-action is semi-free then e(p;) = 1, and since the index is
even and the points p; are neither minima nor maxima, the index has to be
2,‘ and the normal form for f as a moment map and as a Bott-Morse function
coincide. Therefore, the weights are 1, so Af{p;} = 0, and this last term

does not contribute, in agreement with [LSm)]. For a general action, if the
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weights at p; are k', k7, we get:

2 S PO - P0G )
7 i 3
Now as we have already seen, one can substitute — 37 2k} w (B +w(F)
| for f(p;). However, to reproduce the form of [KLP] for the above term, we
rewrite it as a sum over gradient spheres. For this we use the following in-
formation. A fixed point p; belongs to two of the gradient spheres E;, having
isotropy subgroups ij— and Z Kb respectively. Also, if p; is the south pole of
F;, and pi.y its north pole (oo gradient limit of its C* orbit), then kj; = —kft.
Note that this relation is also used when the poles lie on the fixed surfaces
(.. However, since gradient spheres with poles lying on C4 have isotropy
subgroups of equal (and trivial) order [Ka], the terms involving f*(Cy) cancel

by relation (2.15). Given all this, the new form for the sum is given by:

= 27?22 (P41) (Pz))k]?
= 26 (S loua) + S0 oer) — S0
= 20 )+ f(pz))(—;;w(Ez))
= =2 IO = Foa)) = (o) (SOl
- Y B - X B ) (B)
! m>l m<l
= LS - BB

m<£

where in the penultimate equality we have used relation (2.15) again, and the

inequality under the various summations refers to the partial ordering on these
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curves, where one precedes the other with respect to the flow (of the real part
of Z) in some singular fiber of the ruling.

So our final expression for the Futaki Invariant is:

Fu)(E) = —%f))zw(&r—c_)_w%%%_))“(cﬂ Cer)
S0 ~(Ciny 2k w( B wi. ;
e S DAL o
by SO = Bl () .17

2.2.2 The Higher Dimensional Case

|
Ji
! The T'utaki invariant formula of the previous section does not hold in 1]
higher dimensions. However, using wedge products of equivariantly closed
forms one can obtain a localization formula in any dimension. For this calcu-

lation we set the indeterminate ¢ to equal 1.

Proposition 2.11 Let (M,,J) be a Kdihler manifold, and X a Killing vector

field with respect to a Kdhler metric g. Assume X generates an S'-action, let

= denote the corresponding holomorphic vector field, and f o Hamilionian of

~ 2n i e [+ - % [ o+af)ntw+r (@218)

Proof. By the expressions (2.9) and (2.11), we have

1 .
FlE) = gogeo ), 7"




The right hand side of expression (2.18), on the other hand, evaluates to
srmso(n + 1) far for = 3 fag p A (Sheo(R)F7Ht) -

o1 AT (Sco () k) =

ﬁsngfw“ - ﬁn S fphw — ;11-, S Afw'" =

a0 Jur fw" — i e Fo A ™,

where we have used the Divergence Theorem in the last step. O

Theorem 2.12 Under the assumplions of the previous proposition, we have

the following localization formula for the Fulaki invariant:

—_ _ . (w )An+1 F ( A ) (w ]An
"7:.[‘”1('_’) - (_-ZW) k(N2 {m&] IMD dc:(-lf;x+ﬂ) - # fMo p+de{(£x++ﬂf) } ?

where 1k, det, Is, @ are as in Theorem 1.6.

Proof. This follows immediately from the previous proposition and from the

Localization Theorem 1.6. ]

Note that although this formula differs in form from the one given in the

previous section, it is completely equivalent to it.

Corollary 2.13 Under the above assumptions, if the circle action admits only

isolated fized points, we have

bl

— n 1 n+1l 1 A . n
Fii(Z) = (—2) {m%?% _;_!Xp:( f)(f();)f @)

where, as usual, the sums are over the isolated fixed poinis.
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Note that other combined powers of w + ¢f and p + ¢gAf also admit
localization formulas. As we will see they are in fact Kahler class invariants.
The following result includes them all in a power series, and can be regarded as
a generalization, valid in the coﬁtext of Kahler geometry, of the Duistermaat-

- Heckman formula (Theorem 1.9).

Theorem 2.14 Let (M™,J) be a Kihler manifold, w, p as above, and X a

Killing vector field generating a circle action with isolated fized points. Then

(a{ (YT AL())

¥

/M cq(f+Af)(w%)_)_ — fM plotaf)HeteAS) (_27[.)71, .
| =~ gqe(p)

where the sum is taken over the fized point sel.

2.2.3 Generic Vector Fields, Invariance

The holomorphic version of equivariant cohomology deséribed in Sec-
tion 1.4 provides a more natural setting for understanding the Futaki invariant.
First, the above results (and proofs) extend directly to give localization formu-
las for much more general clagsses of holomorphic vector fields. For example,

we have, setting the indeterminate ¢ to 1:

Theorem 2.15 Let (M,,J) be a Kdhler manifold, = a non-degenerate gra-
dient holomorphic vector field and w a Kdhler form of an arbitrary Kdhler
metric on M. Denote by p the Ricci form of the metric, and f the holomorphy
potential of = with respect to the metric. If My, the zero set of £, forms a
complex submanifold, then

(w+f)n‘\n+1

§p+Afl/\{w+f!"“}
b

Flu(E) = (—QW)TIK(N){z(nL)!SO oty Garerey — i e (e )
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where rk, det, L=, ) are as in Theorem 1.11).

The proof is identical to that of Theorem 2.12, except that it uses the

Holomorphic Localization Theorem 1.10. Also,

Corollary 2.16 Under the above assumptions, if 2 has only (non-degencerate)

isolated fized points with Hessian matriz B, at each such point, then

— n 1 f n+1 1 AT .. n
i) = 2 e S T s,

}

with the sums taken over the isolated fized points.

Likewise, we have a formula extending Theorem 2.14 for non-degenerate

gradient holomorphic vector fields having only isolated zeros:

ct{f (P)HAF(p))

pda g, 21)

/ granw o) f (WHHEHAT) _ (o)
M M

!
. )

Remark 2.17 In the case of isolated zero points, the requirement that the
holomorphic vector field be non-degenerate may be dropped, and one could

still obtain a Localization formula involving the Grothendieck residue (see [Lu,

Theorem 8.1]).

Remark 2.18 [t is an intriguing remaining question whether it is useful to
attempt to define the Futaki invariant for meromorphic vector fields, as the

equivariant cohomology works in this selting as well.

Next, we examine the question of invariance. We have stated in the previ-

ous section that the Futaki invariant does not depend on the choice of Kéhler
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metric used in its definition, within a fixed Kahler class. The holomorphic ver-

sion of equivariant cohomology allows for a natural proof of this invariance, at
least for gradient holomorphic vector fields {For vector fields having an empty
zero set, the Futaki invariant vanishes, (see for example the end of the proof
of Theorem 3.7), but the proof of this presupposes its invariance). We will use
the (more topologically proven) invariance of B, and add an assumption on

the complex structure.

Theorem 2.19 Let (M, J) be a Kahler manifold with ¢ # 0, and a gradient
holomorphic vector field =. If w, @ are two Kdhler forms in the same Kdhler

class, with Ricci potentials F' and I, respectively, then
w!\n . ~ An
[ arte= [ =it

M n! M n!

Proof. We continue to work setting ¢+ = 1. By the holomorphic equivalent of

Proposition 2.11, we can write the Futaki invariant as a difference of integrals
of holomorphically equivariantly closed forms:

An

= 1 mk1 L An
/M:F n! :2(n+1)!30./M(w+f) i *E/M(p-i_&f)/\(w_l-f) ’

where [ is an w-holomorphy potential for Z. Now if & = w+190¢ for a smooth

real valued function ¢, then
F=7+w(dd)+ K (2.20)

is the general form of an &-holomorphy potential, with K a constant. Now as

it follows from expression (2.9) that the Futaki invariant does not depend on




the choice of normalization constant K, we take / = 0. But then, as

we see that w + f and © + f differ by a 8z-exact form. The result will follow
if we can show the same for p+ Af and 5+ Af. Let 8 be a (1,0)-form such

that 7 = p+ 0f. Then again,
FHAf=p+Af+8—wf+D=p+Af+025+D,

with D constant. Therefore,

/M(,s L AfyH = fM(p FAS 8B+ D)™, (2.21)
But by Corollary 2.2, the left hand side also equals [i,;(p + Af)**" which can
be also written as [i;(p + Af +.0=8)""", as what is added is holomorphically
equivariantly exact. This differs from the right hand side of (2.21) by a non-
zero multiple of D [i; p*. So, if ¢} # 0, then f3; p" # 0, D = 0, and we are

done. U

In the next two chapters we will be using another invariant, a bilinear

form on gradient holomorphic vector fields given by,

Kol fo) = [ foufe S

where the holomorphy potentials fiz, are normalized to be orthogonal to the
constants. Note that this invariant can also be easily understood via equiv-
ariant cohomology, as it can be written as an integral of equivariantly closed

forms:

([ @ Fad Aot o)™ = CEYCE) [ @+ 20,
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Although this is certainly a useful observation, we will nevertheless approach

this invariant somewhat differently.
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Chapter 3

Cohomological Kahlerian Constructions

The invariants of the previous Chapter are applied here to the study of
distinguished Kahler metrics. Section 3.1 begins with a brief review of the no-
tion of an extremal Kahler metric [C1] and its relation to the Futaki invariant.
Such a metric has a distinguished gradient holomorphic vector field, called
extremal, whose holomorphy potential is given by the scalar curvature minus
its average value, i.e., roughly by the Laplacian of the Ricci potential. Now
for any Kahler metric one can construct a gradient (1,0)-vector field from the
same function. The value of the Futaki invariant on the [%-projection of this
vector field onto the space of gradient holomorphic vector fields is an invari-
ant of the Kahler class. (Minus) this real number gives a lower bound on the
L2 norm of the (normalized) scalar curvature, which is achieved exactly when
the metric is extremal [H2]. The role of the Futaki invariant in distinguish-
in.g classes admitting extremal Kahler metrics of non-constant versus constant

scalar curvature can be deduced from this bound.

We proceed to give an analogous result for the invariant B defined in the




beginning of the previous chapter (equation (2.1)). The primary tool used
above is another Kahler class invariant Ky, a bilincar form on the space of
gradient holomorphic vector fields. Under this pairing the Futaki invariant
is dual to an (essentially) unique vector field, which for an extremal metric
coincides with its extremal vector field. We determine that B is likewise dual
to another gradient vector field, whose holomorphy potential is the Laplacian
of the ratio of the n-form determined by the Ricci form and the Kahlerian
volume form. (Minus) the L* norm of this function is bounded by the value
of B on the vector field, again a Kéahler class invariant.

We call metrics for which the above lower bound is achieved {and also
their above-mentioned distinguished potential and vector field), central. The
latter invariant number distinguishes classes admitting central metrics of con-
stant versus non-constant central potential. In Section 3.2 we give existence
results for the case of constant central potential. Unlike extremal metrics, cen-
tral metrics have potentials which are either all constant, or all non-constant,
throughout the Kihler cone. We describe circumstances under which the (not
necessarily holomorphic) (1,0)-vector field associated to the scalar curvature
of a central metric projects onto the (holomorphic) central vector field, and
vice versa. This works well when the Kahler class is ¢;, but can sometimes be
extended to other Kahler classes.

The question of the relation of different Kéhler classes is taken up in Sec-
tion 3.3, where we construct a Lie algebra character associated to a pair of
Kahler classes, termed the reflection character. Tor classes of fixed volume it

turns out to equal the difference of the Futaki invariants at the two classes.
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It vanishes if the classes admit two metrics having identical Ricci forms and
identical harmonic Ricci forms. We then give a partial determination of when
this can occur for extremal metrics. The case of non-constant extremal po-
tential is the most difficult, and in Section 3.4 we construct examples out of

known families of extremal metrics [H3].

3.1 Extremal and Central Kahler Metrics

In [C1] Calabi defined a new notion of a distinguished Kéahler metric.

Definition. A Kahler metric ¢ with Kéhler form w on a complex manifold M

will be called an extremal Kihler metric if it is critical point of the functional

wh® .

among Kahler metrics in the class [w]. Here s, denotes the scalar curvature of
g-

We now specialize to the case where M is compact.

Proposition 3.1 (Calabi [C1]) For M compact a Kdhler metric is exiremal

if and only if its scalar curvature is a holomorphy potential, i.e. s’O‘B = 0.

In particular, if ¢ is a Kahler-Einstein metric, or, more generally, any
Kahler metric of constant scalar curvature, it is extremal.

The Futaki invariant has been found to contain the following information

regarding Kahler metrics:
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Theorem 3.2 (Futaki-Mabuchi [FMa])} Let M be a compaet Kihler man-
ifold. For a Kdhler metric g with Kdhler form w, denote by C{°(M,C,4q)
the space of all smooth functions on M g-perpendicular to the constants, and
Uy := Loy the subspace of all g-holomorphy potentials also perpendicular fo
the constants. Then, for any Kdhler melric g in a Kahler class |w], the num-
ber ﬁw](Ewg(S%D)) depends only on the Kahler class. Here s denotes the scalar
curvature of g, sp its average value, and w7, : CP(M,C,g) — L'y the orthogonal

projection with respect to the inner product
_ w!\n
< f b= ] R
MT nl
Ery(s—s0) 18 called the extremal vector field of g.

Theorem 3.3 (Hwang [H1, H2], see also [Sm]) Let M be a compact Ki-

hler manifold, ¢ o Kdhler metric on it with Kdahler form w. Then:

zw/\n _
Jlo = o0l 2 ~Fa(Eryo-a), (3.2)
where the notations are as in Theorem 3.2. The right hand side of inequal-
ity (3.2) is real and non-negative, and equalily occurs exactly when g is ex-

tremal.

Remark 3.4 Since by Theorem 3.2 the real number on the right hand side of
inequality (3.2) depends only on the Kdhler class [w], it gives, by the above, o

lower bound for the left hand side over all Kdihler metrics in the class.

One can obtain as corollaries the following two results, which have actually

bheen known earlier:




Corollary 3.5 (Calabi [C2]) Under the conditions of Theorem 5.8, if the
right hand side of inequality (3.2) vanishes (in particular if F,) is identically
zero), an extremal Kdhler metric in the class [w] has constant Ricci potential

{equivalently, constant scalar curvature).

Corollary 3.6 (Futaki [Ft2]) Under the conditions of Theorem 3.3, if there
exists a Kihler metric of constant Ricei potential (or constant sealar curvature)

in the class [w], then Fi(-) = 0.

We introduce now a new definition of a distinguished Kahler metric, which
broadens the notion of a Kahler-Einstein metric in a manner similar to, but
somewhat more uniform than that of an extremal Kéahler metric. All of the

above results will have parallels for this new notion.
Definition. For M a compact complex manifold, a Kahler metric is called
central if and only il the function

det p )
det w

AC = A( (3.3)

is a holomorphy potential, i.e. (AC)%; =0.

Note that det refers to the complex determinant, and that C is well defined
because w is non-degenerate.

Regarding ¢; as a central element in the second cohomology group of the
complex manifold M (or, more precisely, in H BM)), the terminology in the
definition is meant to suggest that such a meiric is determined to a large

degree by corresponding Kahler metrics in ¢y ( — for a Fano manifold. Or,

more generally, by the behaviour of the Ricei forms in ¢1).
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To obtain more symmetric expressions in what follows, it is convenient
to define the extremal potential F to be twice the Ricci potential #. The
function ', which we will term the central potential, is then the analog of

the extremal potential 7, and so AC is the analog of s — s5. We have:

Theorem 3.7 Let M be a compact Kahler manifold. Maintaining the no-
tations of Theorem 3.2, for any Kdihler metric g in a Kdihler class [w], the

number Be, (S acy) depends only on the Kdhler class.
We will call Z; (ac) the central vector field of g.

Theorem 3.8 Let M be a compact Kdhler manifold with a Kdhler metric g
having Kdhler form w and central potential C. Then

w/\n

[ (ACYE 2 ~Bo (B ryac), RN EY

n!
where 7, : C&(M,C,g) — Lo is as in Theorem 8.8. The righl hand side
of inequality (3.4) ts real non-negative, and equality occurs exaclly when g is

central.

The following corollaries of Theorem 3.8 are the analogs of Corollaries 3.5

and 3.6.

Corollary 3.9 Under the conditions of Theorem 3.8, if the right hand side
of inequality (3.4) vanishes (in particvlar if B., is identically zero), a central

Kahler metric in M has constent central potential.

Corollary 3.10 Under the conditions of Theorem 3.8, if there exists on M o

Kéhler metric with constant central potential, then B.,(-) = 0.
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The proofs of the above results are very similar to those of the first set of

statements. We review the most important steps. The pertinent Lie theoretic
background here is that the Lie algebra of gradient vector fields on a compact
Kahler manifold is the Lie algebra of an algebraic group, and as such splits
into a sum of a reductive subalgebra and a nilpotent radical [Ij]. Both the
former’s embedding and, consequently, the splitting, are non-canonical. See

the relevant papers quoted below for further information.

Proof of Theorem 3.7. Let fg,, fz, € I'oy. Define a symunetric C-bilincar form

on 'y, by

A

no W
]CQ(E‘IJS‘Z):/Mfgle'ZF'

Futaki and Mabuchi showed in [FMa] that within a given Kahler class, K,
is independent of the choice of Kahler metric, and so defines a.bilinear form
]&M on gradient vector fields. Following Hwang [H2] we extend this form to
all holomorphic vector fields by fixing an arbitrary (non-degenerate) bilinear
form on nowhere vanishing vector fields, and declaring the latter orthogonal
to the gradient vector fields. We denote the resulting bilinear form K. Let
p be the Riccl form of ¢, note that ¢ is real valued and satisfies p"* = Cw®™*,

We now have, for any gradient vector field =;:

BB = [ (Al =
fM(AfE)CLi:IH B /MfEAcwﬂ;n -

w/\n -
/Mfa T (AC)— = Kui(Es, Erya0));

where we have used integration by parts, and then in the penultimate step, the




orthogonality of the projection m,. (By the construction of Ky, and because

(as we will see) B, vanishes on nowhere vanishing vector fields, both sides of
the above equation are zero for such vector fields, and so these can be safely
neglected). Therefore, because for any ¢ belonging to the Kahler class, = (Ao
is Kpj-dual to the fixed functional —B,,, as g varies in [w] this vector field can
only vary in the subspace of A(M) on which Ky, degenerates, i.e. it is fixed
up to an additive element of the nilpotent radical of A(M): in {FMa] it is
shown that K, has this degeneracy subspace for metrics having a maximal
compact group of isometries, and since this subspace, as well as K, are metric
independent, this follows for any metric in the class. But —B., vanishes on such
elements — as in [Mb1], or, alternatively, since the invariance of this character
implies that it is invariant under the adjoint action of the identity component
of the group of biholomorphisme; (as in, e.g., [C2]). Its co dimension one kernel
is therefore also invariant under the adjoint action, and so induces the zero
functional after dividing by the kernel of this action, i.e. the center of the
reductive part of the Lie algebra. The quotient includes the nilpotent radical
(and also the nowhere vanishing vector fields). Thus although Er (ac) may

vary with the metric, ABCI(EM(A@) does not, and we are done. O

In the rest of this chapter we will ignore the slight ambiguity in the def-
initions of the central and extremal vector fields, as we have just seen that

these do not cause an ambiguity in the value of the above lower bounds,

Proof of Theorem 3.8. We write the L2-orthogonal decomposition of AC as

AC = 7, (AC) +T. (3.5)




0 << 1 (AC),m(AC) > = < w(AC),AC T >=
<1 (AC),AC > = < A(m(AC)),C >=

1" — w.‘\n _ . —_ An _ =
— Jar divyEr,ac)C% = — faur divEa a0y 5r = =B, (Erya0)s

where first we have used the orthogonality of the relation (3.5), then the fact
that AC was real-valued meant that conjugation was unnecessary in the inte-
gral, and finally integration by parts. Combining this again with the orthog-

onality of (3.5), we have
1AC|E = |lm(AC); + 170} =
=B, (Brgiacy) T IITH; = —Bey(Eryiacy),

as required. Equality here exactly means T = 0, or AC = m,(AC), so g is

central. O

Remark 3.11 In the next section we will show that there are indeed cases

where the bound on [|AC||? given by Theorem 8.8 is non-trivial.

3.2 Some Existence Results

Clonsideration of extremal Kihler metrics can be divided into two main
cases: constant and non-constant scalar curvature. Existence questions in both
are challenging, and not completely solved. In contrast, for central Kahler

metrics having constant central potential, the question of existence has been

implicitly understood for some time.




Theorem 3.12 Let M be a complex manifold admitling a centrel Kdahler met-
ric of constant central potential. Then M admits such metrics in every Kdhler

class.

Proof. L.et g be a central metric with Kahler form w and Ricci form p. Given
a fixed Kahler class, let § be the unique Calabi-Yau metric in it having Ricci
form j equal to p. Then in particular det p = det p, and, again by the Calabi-
Yau Theorem, det & = Adetw for some positive constant A. Therefore, the

central potential ¢ of § satisfies & = —};C’ , and so is constant. O

Note also that the sign of ' (if non-zero) is the same as that of C.

Kahler-Einstein metrics certainly have constant central potential, but
even if a manifold does not admit any Kahler-Einstein metrics, it could admit
metrics of constant central potential. For example, generalized Kahler-Einstein
metrics in the sense of [Mt] (i.e. metrics with eigenvalues of the Ricci tensor
constant with respect to the metric) have constant central potential. We also
mention that every central Kéihlér metric of constant non-zero central potential
has a symplectic Ricci form. We will show that more is true later on.

Thus, for example, the Kahler cone of a manifold admitting a Kahler-
Einstein metric (or having B = 0 and admitting one central metric) is com-
pletely filled with central Kéhler representatives, but none have non-constant
central potential, by Corollary 3.9. B not identically zero, on the other hand,
implies that every central metric must have non-constant central potential,
by Corollary 3.10. This should be contrasted with the behavior of extremal

Kahler metrics.




Although the case of non-constant central metrics seems more difficult,
we will see shortly that known results about extremal metrics can be used fo

show at least that non-zero central vector fields do exist.

Lemma 3.13 The following relation holds between the extremal and the cen-

tral vector fields, of any Kdhler melric:

Fiu)(Ergac)) = By (Zryram) (3.6)

Proof. We use orthogonality, reality, and integration by parts, as before.

Fl(Englac)) =
/\n we‘\n
- [ mBOABL = [ w(AC)m (AR =
(AEYACE o AlrdAENCE S -
/Mﬂ'g —r = " ("Tg( )) nl
f\n

MA G'l'g AE = Bcl(E g(AE))'

Combining this with Proposition 2.6, we get:

Corollary 3.14 For any Kdhler metric in a class [w] on a Fano manifold M,
Fid(Engacy) = Fou(Eng(am)- (3.7)

Proposition 3.15 There exist manifolds with Kdhler metrics satisfying

—Bc1 (Ewg(Ac)) > 0.




Proof. Let M be a Fano manifold having an extremal Kahler metric of non-

constant scalar curvature in the class ¢;. An example of such a manifold would
be the one point blow-up of C'P? (cf. [C1]). Taking [w] = ¢;, Corollary 3.14
gives

—Be, (Er,a0)) = —For (Enya0y)) = —Flul(Enya0)) = —Fe (Bar) > 0,

by Corollary 3.5. a
Corollary 3.14 also implies:

Theorem 3.16 Let g be a Kdihler metric with Kdhler form in ¢y. Then, if g

is central and extremal, its central and extremal vector fields coincide.

Proof. Let E and C be the extremal potential and central potential of ¢,

respectively. By (3.7),
‘7:01 (EAG - EAE) = f‘q(EACﬁAE) = (. (38)

Suppose Zag and ZEac span a real 2-dimensional subspace in the space of
gradient (holomorphic) Killing vector fields. The restriction of the bilinear
form K., (-, -) to this subspace is a positive definite inner product. Now Zac_ag
is also a nonzero vector in this subspace, and (minus) the relation (3.8) can

be rewritten in two ways:

Key(Eac-am;Eac) = Ko, (Eac—an, Ear) = 0. (3.9)

Since a nonzero vector cannot be orthogonal to all vectors of a basis, Za¢ and

=ar coincide up to constant multiple. But then relations (3.9) force them to

coincide exactly (even if one of them was zero). O




It is also worth noting that some information can be drawn with even

weaker assumptions. For example:

Proposition 3.17 Let g be a Kdhler metric with Kahler form in ¢;. Using
previous notations, if g is central, then =, (am) = Sac. A similar relation

holds when g is extremal.

Proof. Suppose g is central, and let E,( and 7, be as above. We will see that
since AC' is a real holomorphy potential, an argument essentially analogous to
the previous one works. We write the information contained in equation (3.7)

in the following asymmetric form:

Ke (Bag—ryam),Zac) = 0,

w/\n

/M(AC o (AE))7,(AE)— = 0.

n!
Using only the first equation, and taking 7,(AF£) 4+ T' to be the orthogonal
splitting of AE with respect to the hermitian inner product on C§°(M,C, g),

we have:

A
w
= 0.

nl

/M(/_\E ~ T~ AC)AC

Now even though 7" might be complex valued, it is in any case orthogonal to
the entire space of (normalized) holomorphy potentials. Also AC is real, so
the above equation can be regarded as expressing a hermitian inner product.

So we see that the term T'AC drops out, and we are left with

o™ w

AEAC
M

A
i

fecr

!l 7




Since this relation holds between two real functions, it implies that AE projects
onto AC' in the real subspace generated by both. To see that this projection

is the same as 7, we adjoin the second equation, and get:

fM(ngE - f AEAC—-—— / AC)?

3
nl

and we are done. The proof in the case where ¢ is exiremal is similar, O

One might suppose, e.g., that centrality implies extremality, at least if
[w] = ¢;. The exact situation is possibly more delicate, even in the constant

central case.

Proposition 3.18 If an extremal Kdhler metric on a Fano manifold M, hav-
ing Kdhler class ey, has constant scalar curvature, then il is central. If a
central Kahler metric, having Kdhler class ¢, has constant non-zero central

potential, then it is extremal if and only if it is Kdhler-Finstein.

Proof. The first part follows simply because a constant scalar curvature Kahler
metric in ¢; is Kahler-Einstein. This is well known, see [F12, Lemma 2.2.3],
or [Ft4]. On the other hand, if ¢ is (constant central and) Kahler-Einstein,
it is clearly extremal, Suppose now that ¢ is central, with constant non-zero
central potential C, and is not Kéhler-Einstein. The (constant) centrality
implies that 7, (-) =0, so if g were extremal, it would have to have constant

scalar curvature. But this cannot happen, by the first part. C

We can characterize such cenfral metrics somewhat more precisely.
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Theorem 3.19 A central Kdhler metric g having constant non-zero Ricci po-
tential (' has Finstein-symplectic Ricei form (for this terminology see [Mb1],

or the proof).

Proof. Tor such g, its Ricci form p is symplectic, so log C is well defined. We

have:
0 = i0dlog C = i00log det(p) — 100 log det(w) = 188 log del(p) + p.

The above equation precisely says that p is Einstein-symplectic. [

3.3 Reflection, Transference

We can extend some of the previous conclusions to other Kahler classes.

Theorem 3.20 On a Kdhler manifold M, suppose that for some Kdhler class
[w], Fl(-) = B(-}. Then the central and extremal veclor fields of any Kdhler

metric that is both extremal and central coincide.

Proof. Lemma 3.13 and the premise together yield:
Fu)(Bac) = B, (Ear) = F)(Zar).
From here the proof continues just as in Theorem 3.18, with Fp,) replacing

F.,. 0

To proceed further in relating distinguished Kahler metrics of different
Kahler classes (but this time, mostly extremal), we define the following invari-

ant.
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Definition. Let M, be a Kihler manifold, € and Q) two Kahler classes.

Let w be a Kahler form in Q with Calabi-Yau representative & in €}, Define
the reflection potential ® of the pair (w, ) to be the smooth real valued

function given up to an additive constant by

pH - P = 385@7

where py, gy are the w-harmonic and @-harmonic representatives, respec-
tively, in the clags ¢;. The  — Q reflection character is defined to be
the Lie algebra character R : h(M) — C, where A(M) is the Lie algebra of

holomorphic vector fields on M, given by

RiE) = [,Z@) (3.10)

We call {w,®) a Calabi-Yau (metric) pair, and say they form a har-
monic Calabi-Yau pair if py = gy.

We proceed immediately to show that this invariant is well defined.

Proposition 3.21 Keeping notations as in the definition, ’Rg does not depend

on the choice of w in Q. Furthermore, we have Rg = —~ARE, where A := Ag =
%2% (the volumme ratio of the classes).

An wh™
[

Proof. Since w, & are Calabi-Yau related, one has A@n =

(A > D).

n!
Also, if F and F are the Ricci potentials of w and &, respectively, we have,
00 = pyr — g = pu—p+p—pPu = pr—p+p — pur = —i00F + iddF.

Choosing ® = —F + F, and using the volume form proportionality of the pair,

we gel




RUE) = [ E(R)L: = — [ E(F)VLE [y ()L =

n

k{3

— Ju BT+ A [y B0 = —FL,(E) + AF5 (),

which is an expression depending only on Kihler classes. The last staternent

follows from the definition of A together with the relation @, & = —Dsa. O

Remark 3.22 Note that on Kdhler classes of metrics of fized volume, the

reflection character satisfies cocycle condition:

G 0

RE +RE RE

fl

For simplicity we will work only with such Kdhler classes in what follows.

Proposition 3.23 Let M be a compact Kdihler manifold and 2, {1 two Kihler
classes (having the same volume). Suppose w € Q is the Kdhler form of a
Kihler metric g, & € Q the Kéhler form of its Calabi-Yau related §, p their
shared Ricci form, F, F' the corresponding Ricci potentials and © their reflec-
tion potential. We will assume these polentials are normalized to be orthogonal

to the constants. Then:

A If (w,©) form a harmonic pair then ’Rg = 0.

B If A® is a holomorphy potential and RE(EQ) = 0 then (w,@) form a har-

monic pair.

C If (w,&) form a harmonic pair then g has constant scalar curvature if and

only if § has constant scalar curveture,
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D If (w,@) form a harmonic pair, and ¢ is exiremal, then § ts extremal with

respect to the same holomorphic vector field, if and only if A°F = A?F +

D, where D is a constant vanishing at least when ef™ # 0.

E If both g and ¢ are extremal with respect to the same holomorphic vector

field, then (w,@) form a harmonic pair if and only if A*F = AR

Proof. A and B are proved in the same way as for the Futaki character. C
follows since the assumptions imply g = pg = p = p. For D, & = 0 implies

F = F, and by Proposition 1.1,
ON’F =15, ,p = 13, ,f. (3.11)

Now if § is extremal (with respect to the same vector field), then iz, g =
AA?F = GA’F, so combining with (3.11), A?F and A?F differ by a constant.
If this is assumed, on the other h@nd, and again combined with equation (3.11),
it results in 1=, .p = dA?I which, via a second use of Proposition 1.1, implies
that § is extremal with respect to Epp. Given this equivalence, since A*F and
A" have integrals with respect to (the shared) p™ both equal to —B(Zar),
they can only differ by a constant if ¢ s 0. Finally, to show E, we note in
one direction again that ¢ = 0 umplies F = F". The assumption in the other
direction means that A(AF — AF) = 0, so the difference inside the brackets
must be a constant, Integrating with respect to w”™™ and using the Divergence

Theorem eliminates the constant. Repeating this argument eliminates the

remaining Laplacian, and so we see that F = /', & = 0, and the pair is

harmonic. |




In the next section we give examples of harmonic Calabi-Yau pairs of

extremal metrics.

3.4 Extremal Pairs

In [H3], families of extremal K&hler metrics are constructed in a manner
analogous to the one given in [Ki, KS1, KS2] for the Kahler-Einstein case.
We demonstrate the existence of extremal Calabi-Yau pairs using ounly special

cageg of these constructions.

We begin with a summarized description of the construction. We refer
the reader to these papers, as well as to [HS], for further de1.;a118. Tet p :
(L,h) = N = M x M be a holomorphic Hermitian line bundle over a product
of two copies of a Kéhler-Einstein manifold M of positive Ricci curvature,
second Betti number equal to one and dimension {. Let w be an indivisible
integral Kahler-Einstein form on M with Ricci form ¢ (M,w) = kw, & >
0. Write ¢1(L,h) = nwi + nwe, with n # 0, where w; = 7w and m; the
corresponding projections on the factors of N, and take £ to be the symmetric
two-tensor associated with 2wey (L, h) via the complex structure on N. Fix
positive real numbers aq,ay and b with a; & o > 0,01 # ag. Let gy be the
Kiahler metric on N with Kahler form awq + axws. The Riccl tensor ry of gy

has constant eigenvalues fl-, i, each of multiplicity { with respect to gn, and

B has eigenvalues 7=, =, also of multiplicity {.




Define two functions

Q(z) = det( — =g, ' B) = (1 — —nwzt:)g(l — —a),

ki kl

a1 — NT Gy — NT

7'(1:) = tr,qN—wBTN —

@ and T - @ are everywhere defined and positive on (—b, 4). To emphasize the
dependence on the Kihler class, we will sometimes write Qa5 Ta1 -

Now use ¢ and 7' to define ¢ : [—b,b] — R by

(4Q)() = 2o+ B)Q(-) =2 [ (o0 + y = T(1)) (s — 1)Qw) dy,

where the constants o and A can be written in terms of 4, a;, and n, by solving

the equations

Goco + Ay = Q(B) + Q(—b) + /lb T(2)Q(x) dz,

Here o; = 7, #*Q(2) de,i = 0,1,2. ¢ is smooth on [-b,b], non-negative, zero
exactly at the endpoints, and satisfies ¢'(4:b) = F2.

The above data determine a metric
g=dt* +(dt-J)? 4+ p gy —up B =dt* + (dt- J)* + g,

on the complement Ly of the zero section in L, which extends to an ex-
tremal Kahler metric on the compactification P{L. @ C) of Ly. IHere J is

the complex structure on Lg, and the two functions u : Ly — [—b,b] and

t: Lo — (0, ffb \/d;(_mi) are recovered from ¢ by precomposing the hermitian
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norm on Ly with

u(r) dz wWr)  da
=L 0L

respectively. ¢ measures the distance from a section of P{(L & C) (the one
that corresponds to zero hermitian norm in L), w is the moment map for
the S'-part of the natural C*-action on Ly, and if H is the real gradient
vector field generating the R*-part of this action, ¢(u) = ¢(H, #). The map
(Lo,g) — (Lo 8" = N x (0,00),d¢* + g;) is a Riemannian submersion.

The explicitness of the description of g allows one to give local coordinate
expressions for the various quantities of interest. If zy is a fiber coordinate
such that 3%0 is the generator of the C™-action, and 2, ..., 2y are coordinates

on IV, then on a fiber where % =0, 1 =1,..2], we gel

905 = 26(u), G053 =0, oz = {9N)as — ¥Bus-

For the Riccl tensor one has

Top = “'"qs(d)f + a,qs)!(u): Tog = 0, Tag = (T'N)aﬁ + %(gﬁ(log(tﬁ@))’)(U)Bgﬁ,

where the prime denotes differentiation with respect to u. The scalar curvature

18 NOwW

s(u) = T'(u) — ﬁ(qﬁ@)”(u) (3.12)

Finally we record the following expressions that hold for any smooth func-

tion f:{—=b,b] = R :

fo ey £ 901(0) = 25V0l(, 1) [ F(@)Q(z) do




grad f(u) = f'(w)H, Af(u)= Q%i)“f(”)'

The condition for such a function to be a holomorphy potential is simply
that it be afline in u, a condition that can be verified directly for s from the
expression (3.12). Thus one obtains extremal Kahler metrics in every Kahler
class of the Kahler cone of P(L @ C). These will not in general be (products
and not be) of constant scalar curvature, since the required extra condition
A = 0 is only obtained in (at most) a real-algebraic hypersurface of the Kahler
cone.

To obtain extremal harmonic Calabi-Yau pairs from this family, we make

the simple observation that

Qﬂl,fm = Qaz,ﬂu TM waz T Taz,ﬂl'

Going through the above expressions in succession we see that oy, A, then
é,u,t and finally the Ricci tensor, s and As all remain invariant under this
permutation of the a;’s. S0 gy, 4, and gq, 6, for every allowable value of the
a;'s form an extremal harmonic Calabi-Yau pair, usually of non-constant scalar
curvature. The expression for the Laplacian of a function of u together with
the coincidence of the scalar curvatures of the two metrics show that condition
E in Proposition 3.23 is verified, so the reflection potential of the two metrics

is zero, and then by condition A of the same proposition,

Rberm = (3,

Jaq a9




Chapter 4

Einstein Metrics Conformal to Extremal

Kahler Metrics

The lower bound on the L? norm of the (normalized) scalar curvature,
which is achieved, as described in the beginning of the previous chapter, by
extremal Kahler metrics, is applied in what follows to a uniquéness question
regarding non-Kahler Finstein metrics conformal to extremal Kéahier metrics.
Section 4.1 describes background results in which such metrics are shown to
exist on at most three compact complex surfaces [Dr, Le]. We then recall that
varying over Kahler classes, such metrics are conformal to extremal Kahler
metrics that are critical points of the Kéhler class infimum of the L? norm of
the scalar curvature. Now since for the first of these surfaces, the one point
blow-up of CP? a unique such metric is known to exists up to scaling and
isometries [P], we turn to the next case, the two point general position blow-
up of CP2%. We give a moment theoretic method of computing the above L?

norm. After a possible biholomorphism, an extremal Kahler metric gives rise

{0 a standardized moment map, with respect to which we view our space as




a Hamiltonian T%-space. Choosing an appropriate basis for the torus, the
image of the moment map can be described explicitly as a pentagon, for which
(a multiple of) Lebesgue measure equals the push-forward of the Kahlerian
Liouville measure. It follows that the bilinear form Kp; on basis elements
can be computed as elementary integrals on the pentagon. Combining this
with the Futaki invariant formulas of Chapter 2 and some linear aigebra, one
gets a cohomological formula for the Futaki invariant on the extremal vector
field, and consequently for the required £2 norm. We carry this out explicitly
in Section 4.2, with the factorization of the final expression provided by a
symbolic computational program. This part of the method works also for the
last possible space, the three point general position blow-up of CP?, whose
moment map image is a hexagon. We summarize and then include in an
appendix the computer-assisted proof of the existence of a unique critical point,

which implies a type of topological uniqueness for such Einstein metrics.

4.1 Background

An interesting relation between extremal Kahler metrics and Hermitian

Einstein metrics was described in [Dr].

Theorem 4.1 (Derdzinski [Dr]) Let (M, k) be a compact oriented Einstein
four manifold for which W has less than three eigenvalues, and is not parallel.
Then, up to a double covering, M is topologically S* x 52 or CP2#(—kCP?),

0 < k < 8, and h is Hermitian non-Kdhler, and conformal to an extremal

Kihler metric of non-constant and positive scalar curvature,




Here W is the self-dual Weyl curvature of &, regarded as a symmetric trace-

free endomorphism of the rank 3 bundle At of self-dual 2-forms on M.

This result was refined in [Le} in a number of ways. Iirst, it was pointed
out that a result of Goldberg-Sachs [GoS], adopted to the Riemannian sig-
nature, allows one to drop the first assumption on W, if one assumes the
Einstein metric is Hermitian. Second, as the Hermitian property of his in any
case implied in the theorem, the original result in [Dr] also contained a biholo-
morphic classification, which was improved by a direct differential geometric

argument as follows:

Theorem 4.2 (LeBrun [Le]) Let (M*,J) be a compact complex surface. If
M admits o J-Hermitian non-Kihler Binstein melric h, then (M,J) is ob-
tained from CP? by blowing up one, two or three points in general posilion
(i.e., no two points coincide and no three are collinear). Moreoﬁer, the isom-

etry group of h conlains a 2-torus.

Of these three cases, the one point blow-up is known to admit such a
metric [P]. Regarding the two and three point blow-ups, all that is known is
information about the existence of Kahler-Finstein metrics on these spaces.
Namely, the two point blow-up cannot admit such a metric (by a theorem
of Lichnerowicz [Lc]), and the three point blow-up admits a Kahler-Einstein
metric [Su, TY].

With regards to uniqueness, it is known that the Page metric [P] is the

unique one up to isometry and rescaling satisfying the hypothesis of Theo-

rem 4.2. We further develop here a method initiated in {Le] to help settle the




issue in the remaining two cases, especially the two point blow-up. It is worth

mentioning that a final resolution of the problem would also yield an answer
to the following question asked in [Le]: If a compact complex surface admits a,
Kahler-Einstein metric, is every Hermitian Finstein metric on it also Kéahler?

We first review the basic idea. Let h be as above, g the extremal Kéhler
metric conformal to it, w the Kihler form of ¢ and s its scalar curvature.
Now A, being Einstein, is a critical point over the space of all Riemannian
metrics on M, of the functional f;, [W;T|2dg,. As this functional is conformally
invariant, ¢ is also such a critical point. But g is also Kakler, and therefore
satisfies 24 [o, IW;P“’TM = for 33%\3 := A, and so can be regarded as critical
with respect to the latter functional. See [Be, Chapter 1, Sections G and H]
and [Dr] for the facts used here.

Now ¢ is also extremal, so [w] has a neighborhood in H™* (M) of classes
which admit extremal Kahler representatives [LSm]. Restricting A to these
metrics, g is still critical, and so is [w], if A is regarded as a functional on the
Kihler cone in H%(M). One now proceeds o compute this functional and
attempt to determine its critical points, with A being one of the spaces in
Theorem 4.2.

To this end, one uses inequality (3.2), which is an equality for the extremal
metric g, and is rewritien:

A2

LW LW _
— _ W o= A1
A ./J\/IS 9 /MSO o~ FllEs), (4.1)

where =, is the extremal vector field of g. As the term involving s is well

known (from equation (2.10)) to be 327%*% 5 * we are left with the task
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of computing the Futaki invariant at the extremal vector field. By Theo-

rem 3.2 this is a Kahler class invariant. It can be computed via the methods
of Chapter 2. We will however, proceed differently. First note, that for the
spaces we are considering, the Lie algebra of holomorphic vector ficlds has as
center of its reductive part an abelian (real) two dimensional subalgebra, to
which =, belongs [FMa]. Suppose =, =, form a basis for this subalgebra, and
=, = a5y + B2, for some real constants «, 8. Recall that associated to each
Kihler class there is a symmetric bilinear form Kp,; on holomorphic vector
fields with respect to which =, is (essentially) dual to Fj.j, (See Theorem 3.2
and the beginning of the proof of Theorem 3.7). This duality is completely well

defined on the reductive quotient of the Lie algebra of gradient holomorphic

vector fields, and so in particular when K, is restricted to this subalgebra.

We therefore have the equations:

ﬁw](gl) - ]C[w](EhEs) = CT!]C[W](El,Eﬂ + ﬁ)c[w](EhE2)7

Fin(Za) = Kpi(Ba, Zs) = ol (22, Z1) + B (E2, Ea).

We can solve for «, § in terms of the K, (Z4,5;),4,§ = 1,2. By Cramer’s

Rule,
o= ——

det }C[w] |’

8= , |

1 det Ky, !
| ] ;

where g

, det ]C[w] = )C[w](El, E1)K:[w] (327 Ez) - }C[w](Ela 52)2: ‘El




det Ky = Flua(E1)Kw)(E2, E2) — Flu)(E2) K (En, 22,
det Kf) = Kp(Bu, B10)Fu(Ba) — K (B, Ea) Fiug (B )-
Then, denoting for brevity Ky,j(E;,Z;) = K}, we have
Fa(Es) =
Fruf(Er) + BFu)(Za) =
dem[ ] {det K Fra (B1) + det }'C[w]}"w] =) } —
Yo {(f[w](El)’C[w] - f[w (52)]C[w])f[w}(51)‘|‘

(K Fru(B2) — K (Zs) } = _
K?[w](ﬁwl( )) "WCMﬁu (E10)Fa(Es) + Ky (Fru (B2))? (4.2)
KK — (K82 ’ ’

and so we arrive at the followmg expression for A:

A= gpprla 1

[ew]?
KP4 (Fa(En))? — 25 A w](El) w)(Z2) + K (Fin(29))?
KK — (K '

Now if &, =5 are chosen as generators of C*-actions, by Theorem 2.9 we

(4.3)

have cohomological expressions for F,j(Z;), § = 1,2. It remains to find similar
expressions for Kp,j(5;,5;), 4,5 = 1,2.

For this we need to understand the moment map for the 7%-action gen-
erated by the imaginary parts of =; and Z,. Our spaces M are toric varieties,
(i.e. admit an eflective C**-action, where n is the complex dimension). As will
be reviewed below, this torus subgroup can be made into a group of isometries
for g (from which the statement about the isometry group of A in Theorem 4.2
follows). Therefore, with respect to w, our spaces become Hamiltonian T2

spaces. The induced measure on the image of the moment map ® : M — ¢ is

given as follows:
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Proposition 4.3 For a Kdhler-toric manifold with moment map ®, the push-
forward measure <I)*“’TA2 (called the Duistermaat-Heckman measure) of the
Liouville measure on M (i.c. the measure determined by 2212—) is equal to

(27)* x (Lebesgue measure on the moment map polygon).

For a proof see for example [G, exercises 2.20 — 2.24].

Proceeding as in [Mb3, FMal, let fi, f> be the real valued holomorphy
potentials orthogonal to the constants of Z;,=,, respectively. If xy,xz, are
coordinates on t* such that ®*z; = f;, i = 1,2 , then, using the definition of

Ki.j and the above proposition, we have:

Kp(Z, E) = (27)° /Im(@) w5 diey dieg,

for 4,7 = 1,2, and ® the moment map given by (/f1, f2).

Note that although the above condition on the holomorphy potentials
prohibits translation of the moment map, we can always allow translation if
we evaluate the right hand side via the simple substitution
(2m)® Sim@) (@i = Zi)(z; — i) dzy dxy = (QW)Q[IIm@) z;z; dzy deg — T3, A] =
(QW)z[frm(é) z;x; dzy dy — f[m((il) z; dzy dzy fm(é) 25 dzy dag /Al
where ® = ® -+ (£;,4;) and A is the area of the image, This is useful in
choosing a convenient location for the image.

We now wish to understand the shape of the image. By the convexity
Theorem [At, GuS], the image of the moment map ® : M — {* is convex.

Delzant, [D1} showed that Hamiltonian T™-spaces (of dimension 2n) are deter-

mined (up to isomorphism) by such convex polyhedra, and classified which
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polyhedra can occur. We note in passing that an understanding of the Iutaki
invariant at the first Chern class of a toric Fano manifold has been achieved,

from this point of view, in [Mb2].

To get concrete formulas, we now describe the image polygons for our

manifolds. For a general toric surface, these have edges with rational slope |

' (including oo), such that any two consecutive edges with slopes m/n and
m//n', (in reduced form) satisfy nm’ — n'm = 41 [D], Ka]. The pre-image of I
a vertex is a fixed point for the torus action, that of an interior point is a free %
torus orbit, and that of an edge of slope m/n is a 2-sphere fixed by the action :
im0 gind )

of a subgroup {e of the torus.

For the space CP?%, a moment polygon is a triangle, with vertices {0,0), i
(0,r) and (r,0). Here 2xr = w(F), where F' is a complex projective line in CP?. i

Operating on vertices by an element of SL(2,7) yields another admissible

polygon. Although this won’t change the cohomological calculation we are
about to perform, we can eliminate this freedom by fixing a basis in ¢ as |
follows. Given homogeneous coordinates [zg : 21 @ 23] on CP?, an (effective)
holomorphic T?-action is given by [z : 21 : 23] — [e¥2 @ €2 : 23], As
the isometry group of an extremal Kahler metric is maximal compact in the |
identity component of the automorphism group [C2], and since the latter is 51
unique up to conjugation, by changing homogeneous coordinates we can make i

!

¢ invariant under this action. Then we choose the Lie algebra basis to be the |
\

pair of Killing vector fields which generate the two circle subgroups (e*,1,1)

and (1,¢e'*,1), and Zy, =, the corresponding vector fields. '.




We now proceed to describe the polygons for blow-ups of CP?. The simple

prescription for this (see [Au, Chapter 6] or [Ka, Section 6.4]) is as follows: cut
the polygon near a vertex, where "near” means that the resulting new edge
intersects the two edges that formerly met at the vertex. To determine the
angle that this new edge makes with the other two, choose its outward normal
to be u; + ti1, where u;, 4,41 are primitive inward-pointing vectors (of the 72
lattice in #*), normal to the neighboring edges. For CP?, the general position
condition means that we cut off only near the one, two or three vertices of the
original triangle, gelting a trapezoid, pentagon or hexagon for the one, two
or three point blow-ups, respectively. The condition on the normals results in
each of the new edges being parallel to an original edge of the triangle (see
Figure 4.1). Their lengths are a, b, +/2¢, where a, b, ¢ are (up to a 27 factor) the
symplectic areas of each of the exceptional divisors (see subseduent figures).
The various integrations will actually be performed by integrating over the
triangle and then subtracting from the result integrals over each ”chopped-

off” triangle.

Note that although our spaces are originally defined in terms of blow ups
in the complex category, as our spaces are T?-Hamiltonian, we can get from
them to CP? by a sequence of eguivariant symplectic blow- downs (of well
chosen exceptional divisors), and therefore return to them by reversing the
procedure, i.e. by equivariantly blowing up CP2%.  This justifies the above

procedure for determining the corresponding polygons (of course, in any case,

our calculations are purely cohomological).

I
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Figure 4.1: Moment polygons for the various spaces of interest.

In terms of the concrete action above, the points [0: 0 : 1],[0: 1 :0],[1 :
0 : 0] are fixed by the T*-action, and so the action extends to the blow-ups at
each of these points. Keeping the same basis for the Lie algebra stil! eliminates

the SL(2,7) degrees of freedom in the choice of the polygon.

4.2 Uniqueness for the Two Point Blow-up

We outlined in the previous section a method for computing A. Proceed-
ing with the calculation for the 2-point blow-up, we saw how to reduce terms

related to the bilinear form K, to elementary integrals over a pentagon. As

functions of the lengths of sides of the polygon, we have:
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We are left with determining the Futaki invariant at our basis vector fields,

for which we also need the average scalar curvature.

To compute sy, we take the homology basis h, eq, eq, where A is the proper
transform of a projective line in CP? with area 2x(r — b), ey the exceptional

divisor intersecting h of area 27b and e; the other exceptional divisor of area

27a. The intersection matrix is given in this basis by:




0 0 -1
0 -1 0
I 0 -t

The first Chern class ¢; is Poincare dual to 32 — e; + 2ey (for the general
scheme for computing it for blow-ups, sec [GH, Chapter 1, Section 4]). If [w]
is Poincaré dual to Ah 4+ Bey + Cleq, we can use Poincaré duality to find the

coefficients. Intersecting with A, e; and ey in succession we get:

Irlr— b= | w=0C

wr—b)= [

2wa:/w:~B
1

27rb:/w:A—C,
=]

so the Poincaré dual to [w] is 27(rh — ae; + (r — b)ey). We therefore have,

e - [w]
] - [w]

(3h — €1 + 2ey) - 2m(rh — aey + (v — beq)
2r(rh — aey + (r — b)ey) - 27(rh — aey + (r — b)ey)
. 27(3(r — b) — a4 2r — 2{(r — b))

42 (r(r —b b) —a?+r(r—b) —(r—5)?)
dr —a —

e (4]

s = &r

= &7

This also gives the first term in A, namely,:

(3r —a — b)*

wh? 8l 3y — q — b2
[ = Sl =ttt =t

r2 g2 f2
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! Although the T%action is not semi-free, the action of the circle sub-
groups generated by each basis element is. This means that the formulas

for Fry(E;),7 = 1,2, simplify to those of [LSm]. Note that the other require-

ment for the use of those formulas, namely that the action of (each of) the

circle group(s) has two fixed surfaces, holds for both the 2-point and 3-point

blow-ups. One can read off the data for these S actions directly from the

polygon data (see [Ka, Section 2.5]). We detail this in Figure 4.2.

aff J=2na @(CH=2ra, Gr=-1 |

— ﬁ\ ;
AN - f
- . ]

m(E1') = 2n(r-a-b) :

a{C_} =2r{r-a) \\ -

c® =0 ~,

™,
~,

lo(F) =2rir-a) S |
AN ) i

11— — — -

|
i
. ofE}) = 2n{r-a-b) |i

N

W @(C+) = 2nb
2

e w(Ey) = 2rb

w (F} = 2n{r-b)

O o -

o{C ) = 2nlr-b), CE; 0

Figure 4.2: Futaki invariant data for the two point blow-up.

We thus have:

Fr(B1) = 1/2(2x(r — b) —27a)2r(r — a)
4(3r — a — O)2n(r — a)]?

+ 1927 (r? — a? — b?) (0= (1) E
2ra —2x(r—b)  2m(r—a—0b)—2xb,
+ 6 27r(r —_ a,) ( 271’(?" — G.) ) ) ;

472 (r — a — 6)(2a® — 4a®r + 2ar® 4 arb — r2b 4 2r6® — B°) i
3 r? —a? —H? ’
Fr(B2) = 1/2(27(r —a) — 270)27(r — b)

4(3r — a — D) 2r(r — B)]?

i
192w (r? — a? — b?) (0= (=1) J




27b — 2x(r — a) N (211'(7' —a-—b)— 27ra)3)
2r(r — b) 27 (r — b)
Ax? (r — a — b)(20° — 4b%r + 260 + bra — rPa 4 2rd® — @)

3 r? g2 2

6

We thus completed the computation of all terms in formula (4.3). Due
to their complexity, we use a symbolic computational program (Maple} to
determine A. This turns out to be the following rational function in r,a and
b, whose numerator and denominator are homogeneous polynomials with total

degree equal to 14.

‘A = 3272(2536 r 0% a® + 2746 7% 62 a® 1 618 r8 bt a? — 9™ + 67100
— 151 r*a!® — 6137 a6_— 100378 a® + 99277 o7 + 131 0 ¢
+190r°a® + 57875 a® + 181 r10 5 4 oM - 61 — 82401067 B2
+ 17927% 6?6 + 179272 6° * — 3264 r° 1% a* — 15327° B a°
— 02578 5% a? — 1960 7° b7 a® + 218478 1% a® + 1189 r* 6% &®
— 45473 8 a? — 112477 8% a? + 10472 8% 0'® + 10472 b0 &

+ 147677 b a® — 3872 6% a® + 47277 8% a® 4 2184 7 b% 0°

+ 118974 0% ¢® — 54572 b a® — 19601 6% a” + 82 0° a”

— 54572 BB ot — 92518 b ot — 42072 8% 0® 4 2746 1 18 ot

— 35325 5% a® — 3630 7% 6% o® — 85320r° 8% 0 — 3264 ° b &°

306874 8° @b — 4207 6% ¢® — 15327 0% a5 + 1880 7% B3 d”

+ 147677 B2 at + 188071 7 a® — 112477 b2 a® — 4545 b? a®
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—387°0%a® + 8126 a5 — 40407 rP b — 240" 1 67 + 36 0% r B1°
+264a*r " +12a"r % 4+ 264 0° r b* + 258 4% 1 B° + 258 4% r °
4-2536a° r°b° — 404 ¢* r3 8" + 36 r * + 12451 b

— 247" a? - 11870 a® b4+ 29207 a® b4 5507° 6 b — 5240547 b
—64r%a* b 2967140’ — 86+ b a — 6477 b1 e — 29671 0% 4
+5507° 6% a + 292" 8% a + 11871007 0 — 5240° 67 @ — 86 a° r® b
+50a 9764220 r? b4+ 507260 a 4 99207 B — 61313 8°

— 100375 8 + 57875 5% - 190 72 65 — 151 14 510 4 17 g2 2
—8ar® + 548 —33a*5'° — 544° 0% — 29a®1° — 334100
—54a°6° —29a°8® — 201 1P — 40" BT — 8001 4 17 b2 2

+ 5826 — 20" a® 9171202 — 21601 0P 4+ 9172 6% — 21601 0P
—6a13r—|—Zalsbu6b13r+2b13a-|-22b1'1r2a—54T1ia62
—4r'ab—b4r" a®b~ 1262 rb—120%ar + 6+ a) /((
24a°r? 0 — 66 ri bt + 112a* v 5° — 200 6% v B® — 66 0 1t b
F1120° 7% b 24 r 68 412067 P02 — 240" r0* — 24 0% r b7
~66a b r? 10758~ 9r? B8 9,8 b7 — 107408 — 16477

+ 16720 — 10 41200 5 0% 4+ 24 P2 % — 7247 ¥ B 4+ 10 0% °
+10a*r® 166" +8a® 6 + 92 - 0a®r® +10a%0*
—10a®r* —24a®r b —9a®r* +9a® W + 160" + 84" B 4+ B

_‘_alo)(_rz ‘l" a2+bz )2)

We now wish to determine the critical points of 4. As we are any-




way only interested in metrics up to homothety (and A is scale invariant
in dimension four), we can eliminate one variable. To keep in conformity
with the conventions in [Le], we rescale by defining the two new variables as
s =af(r—a—>b),t =b/(r—a—>b). A part of the graph of the resulting function
on the (relevant part of the) Kahler cone, which corresponds to s,¢ > 0, is

given in Figure 4.3.

Figure 4.3: A for the two point blow-up.

The graph suggests the following property, which was nearly confirmed
computationally: not only does A have a unique critical point, lying on the line
s = t, but also, a unique critical point when restricted to any line orthogonal
to that one. As it is difficult for Maple to find critical points directly, this
observation suggests a more natural coordinate system for evaluation, namely
(p,q) with s = p+¢,t = p— ¢. Note that p = (s +1)/2 is positive.

With this choice of coordinates, Maple finds numerically a critical point




with ¢ = 0 (s = ¢), and p = .9913521825. One has to verify more carefully
that the numerical process did not discard other critical points. To this end
we use algebraic routines to solve for each of the partial derivatives separately,
and then proceed to find all the intersection points of the resulting two curves
in the p, g plane. One can then go through the list and see that other than the
above mentioned critical point, all other solutions are either complex valued,
or else have p < 0, and so our critical point is indeed unique. 'I'he relevant

portion of the Maple session will be given in the appendix.

We thus have a computer-assisted proof for the following weak uniqueness

result.

Theorem 4.4 If there exists Hermitian Finstein metrics on the general po-
sitton two point blow-up of the complex projective plane, then any two such
metrics are conformal to cohomologous eztremal Kdahler metrics. The latter

metrics evaluate equal volumes for the two exceptional divisors.

The proof of course gives a more accurate determination of the Kahler class.

Note that even the existence of extremal Kahler metrics alone is not known

for this space.

The first part of the proof, namely the evaluation of A, works also for the
3-point blow-up of CP?. We give in [Migure 4.4 only the relevant polygon data.

The computer-assisted evaluation of the critical set has not been successful

thus far.

89




[ J=2na @(C+)=2na, Ca=-1

TN T . ﬁ

| N
ofE") = 2n(r-a-b} I . o
@) =anlre) \\\ 1 :"l'l w(E )=2n(r-a-c) \\G\J\(EJ - erira)
Gl=-t AN | olF=2nira) .
| N
) ofC+) = 2rb | y
cu(Ez)ZZRC\\\_— & : olE j=2rc - Jm(El)=2'n:b
aE, J=2n(r-b-c)
o (F) = 2n{-b) 0(G_) = 2n{rb-c), C° =1
e e e e e E;iiib

Figure 4.4: Futaki invariant data for the three point blow-up.

4.3 Appendix: Critical Set Computer Check

We continue the evaluation of the critical points of

2
s°d.
/cpz#chz #

Preparatory substitution:

SSl:=factor(subs(r=a+b+delta,A));

891 = 32r? (22496 a® 58" + 7896 a” b5° + 35312 a” b 6®
+1152a%5 8% + 20276 a8 + 1928365 4115267 67
+ 2908 5° 6® + 1932 ¢ 6™ + 3532 a* 610 4 4088 o° §°
+ 2908 a® 6% + 11524 67 +1924% 6% 4+ 9 6™ 4 19325° 6**
+ 120 a 6 + 650 62 6'2 4 120 563 4+ 4088 6° 67 -1- 3532 41 61°
+ 7434 a* b6 4 1486 a b§'? 4 7434 a b* 61 + 650 a® 62

133764 a* b8 +192a%0° +192a50® + 384 a7 ¥

471008 a? 5% 6% 4 123968 a2 6% 87 + 130678 a2 b* &°
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4 2844 ¢® b7 §* 4 22176 a7 b* 6° + 71008 a® 62 6° 1 3768 B 1° &° i
433648 a" B2 61 + 121344 a® B3 65 + 115245 68 § 4

+ 15360 a° 57 6% + 74976 a° 1° 6° - 186420 ¢° 1° 6*

- 268596 a® b* 6° + 85898 o b* 6% + 34286 a2 b2 §'°
+ 235688 a® 1° 6° + 2844 a* £° 67 + 29928 ¢* b7 §°

+ 123348 a® b° 6* + 268596 o 1° 6° + 3458124 b* 6°
4273932 a* 6% 67 + 3768 ¢ 18 5 4+ 336484° b7 §*

+ 121344 a® 6° 6% - 235688 o b° 6% + 273932 o® b 67
4 197274 a® 6% 6° + 123968 a® b% 67 + 130678 o 47 6°

+ 85898 a® b? 6% + 2844 a? 1® 61 -+ 22176 a® b7 §° 4 2844 B b* §2 i

+ 29928 a” b* 6% + 4032a® 57 6 1 25392 o 65 62 + 74976 o° 15 §°

+ 123348 a® 51 61 1 1152a® 85 6 + 403267 1% 6 + 15360 a7 b° 62

+35312ab° 8% 337640 b26° + 11520 5% 6% + 7896 ¢ b7 &°
+ 29496 ¢ 5° §7 + 20276 o b 610) / ((5“3 4 448 a2 b 6

+240a% 6% 6% + 816 a2 54 6 + 11522 5° 8% 1 82802 b? 6°

L 288a%b8" 4 120a b° 6* 4+ 360 a b* 6° + 448 ¢ b° &°
+288ab* 6" +90abé® + 6446 +360%6° + 104 6°
+240° 6% + 600165+ 646° 67 + 3607 6% + 10667 + 24 0% °

+ 24 a® 6% + 60 a* 6° + 120 ¢° b* § 4 240 0 1° 67 4 240 a° * 6°

+120a°56* +120a* %6 + 516 a* b* 6% - 912 a* 4% 6°

4816 a* 1% 6* + 360 at 65 + 240 62 15 6% 4 912 4% b 6




+ 1440 6% 5° 8 4 11520° 42 %) (2ab+2a5+265+62)2)

Restriction to constant volume metrics:

AA:=factor(subs(a=s*delta,b=t*delta,551));

AA = 327%(9 + 1201 4+ 120 s 4 19245 4+ 115247 4+ 19324 + 3532 5

+ 4088 5° + 65017 -} 650 s* + 74976 5° 45 + 186420 5° ¢

+ 268596 5° t* 4 85808 57 £ + 34286 57 ¢ + 235688 5° 1

129928 M 17 1 123348 5* 5 + 268596 57 17 4 22496 s° ¢

+ 789687t - 11525% ¢ 4+ 20276 5%t + 192 5% 4% 4 192 45 ¢

+ 3845717 + 7434 5 4 15360 5" £° 4 25392 5% 1% 4 74976 55 ¢°

+ 123348 8% 1 + 1152 % 4° - 403257 £° + 35312.5#° + 33764 544
1152 51% + 7896 57 + 22496 5 £° + 20276 5 £° + 2844 s* *
+353125° ¢ - 1486 51 + 7434 s 1% + 33764 5* ¢ - 71008 52 °

+ 123968 5% 1° - 130678 5% t* 4+ 2844 5512 4 22176 57 2

+ 71008 s® % 4+ 3768 s 1% + 33648 57 3 + 121344 s%¢° + 11525 4®
1 15360 s° 7 - 1932 5° + 4088 ¢° + 2908 s° + 2908 ° + 3532 14
+1926% 4 115267 - 345812 6% ¢ - 273932 s* > + 3768 53 47

+ 33648 s> 7 -+ 121344 s* 1° + 235688 s° ° 4- 273932 5% ¢*

+ 19727453 1% 4 123968 s° 17 - 130678 51 4% 4+ 85898 5 42

+ 2844 % 18 4+ 22176 s> t7 4 2844 8% 1 + 20028 57 4 4 4032 5%¢7)
(41004108 +644° +605* + 2455+ 36 £2 + 36 57 - 24 5°1°

+1208% ¢ + 1152%4% - 828 8% 2 + 240 6% 2 + 120 8% ° 4 448 53¢




+ 928852t + 1208¢® 4+ 360 st + 448 542 +1208° ¢ + 00 s ¢
+ 288 542 4+ 3608t -+ 24057 4% + 816 52t + 64 5% + 24 ¢° + 60 ¢*
+ 51684 4 912 64 13 - 240 5% 15 4 912 &3 11 4 1440 &2 £°

+ 240542 + 816 517 + 11525° ) (28t + 25 + 26 + 1))

Change of coordinates:

BB:=subs(s=p+q,t=p-q,AA);

BB := 3277 (9 + 240 p + 235688 (p + ¢)° (p — ¢)°
+29928 (p+¢)* (p—q)" + 74976 (p+¢)° (p — q)°
186420 (p+q)° (p—q)° + 268596 (p+¢)° (p—¢)*
+ 85898 (p+q)* (p—q)° +34286 (p+¢)* (p—¢)°
+3532(p+q)" +4088 (p+¢)° +650(p+q) +1932(p+4q)°
+2908(p-+¢)° +192(p+¢)" + 1152(p+¢)" +192(p — ¢ )°
+1152(p—¢q)" +1932(p—q)® + 650 (p—¢q)* +4088(p—¢q)°
+ 2908 (p—q)® +3532(p—q)* -+ 123348 (p+ ¢)* (p — q)°
+268596 (p+ ¢ )* (p—q)° +22496 (p+q)° (p—q)
+ 7896 (p+q) (p—q) +1152(p+¢)*(p—q)
+20276 (p+¢)° (p—q) +192(p+¢)* (p—q)°
+192(p+¢)(p—q)®+384(p+a) (p—q)
L7434 (p+q) (p—q) + 15360 (p+¢) (p—q)°

+ 25392 (p+¢)¢ (p—q)° + 74976 (p+ ¢ )¢ (p— q)°

+123348 (p+ )8 (p—q)* + 1152 (p+¢)¥ (p—¢)°
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14032(p+q) (p—q)°*+36312(p+q)(p—q)°
+33764(p+q)(p—q)* +1152(p+¢)(p—q)°

+ 7896 (p+q)(p—q) +22496 (p+¢)(p—q)°
20276 (p+q) (p—q)® + 2844 (p+q)* (p—q)®
+35312(p+q)°(p—-q)+1486 (p+¢)(p—q)
+7434 (p+q)(p—q) +33764 (p+q) (p—q)
+T1008(p+¢ ) (p—q)° + 123968 (p-+ ¢ ) (»p —q)°
+ 130678 (p+¢)* (p— q)* + 2844 (p+¢)* (p — ¢)?
+ 22176 (p+q)" (p— ) + 71008 (p+q)° (p— ¢ )*
+ 3768 (p+q)* (p—q)®+33648(p+q) (p—¢q)°
+121344 (p+9)° (p— g +1152(p+¢)" (p—¢)°
F 15360 (p+q)*(p—q) +345812(p+¢) (p—q)*
+9273932(p+q) (p—q)* +3768 (p+¢)* (p—¢)®
+33648(p+¢)* (p—q)" +121344(p+¢)° (p—¢)°
+ 235688 (p+¢)° (p—¢q)* + 273932 (p+¢)* (p—¢)*
+ 197274 (p+ ¢ ) (p—q)° + 123968 (p+¢)° (p—q)°
130678 (p+q)* (p—-q)* +85898 (p+q )% (p—q)°
12844 (p+q)2 (p—q )P+ 22176 (p+¢) (p—¢)"

+2844 (p+q)° (p—q)" +29928(p+¢)" (p—q)’

~4032(p+¢)* (p—a)) J((1+20p+240(p+¢)° (p—¢)°

+24(p+q)P(p—g)°+120(p+4q) (p—1q)°




+1152(p+¢) (p—q)° 1828 (p+¢)* (p—q)* +60(p+¢)?

+24(p+g)°+36(ptq) +64(p+q)°+64(p—q)°

+36(p—q) +24(p—q)°+60(p—gq)* +120(p+g)*(p—q)®

+448(p+ ¢ (p—q)+288(p+¢) (p— q)

+120(p+q)(p—q)° +360(p+q)(p—q)*

+448(p+q)(p—ql+120(p+¢)° (p—q)+90(p+q)(p—q)

+288(p+q)(p—q)°+360(p+q) (p—q)
+240(p+q)* (p—q)° +816(p+q)*(p—q)*
+516(p+q¢) (p—g)* +912(p+¢) (p—¢)°
+240 (p+ g (p—q)®+912(p+¢)°(p—q)
+1440(p+¢ )’ (p—¢)° +240(p+¢)>(p—q)*
—|—816(p+q)4(p%q)2+1152(P+Q)3(P“Q)z)

(2(p+a)(p—q)+ip+1)?)

Evaluation of partial derivatives:

BBp:=factor(diff(BB,p));BBq:=factor(diff(BB,q));

BBp := 1287%(—3 + 19439196576 p* ¢® — 16193640384 p'® ¢®

+ 101952 p** + 7465955520 p'°® ¢* — 10730224512 p'° ¢'°

— 5416128 p** ¢% + 44540352 p™? ¢* — 173959488 p'7 ¢°

+ 404514432 p'® ¢® + 12249292608 p'% ¢® + 2010911616 ¢ p'°

- 73584 ¢*® + 371718720 ¢*° p® — 68795712 ¢*® p*

+ 5204160 ¢%° p* — 1100504448 ¢** p® — 134 p




— 8446618368 p'* ¢° - 3312435744 p™® ¢ -+ 5663843136 p'® ¢

4 1108576800 p'7 ¢* — 178765632 p' g2 — 3288432384 p'® ¢°

+ 269258688 p'® ¢* 4- 1854029952 p'* ¢® — 920306880 p'® ¢

— 6465733920 p'* ¢* + 7945920 p* ¢*° — 13548257952 p? ¢*°

— 54378432 p° ¢'® — 429812352 p° ¢ + 623645568 p'' ¢'*

+ 195041088 p” ¢'® — 2384774784 p'? ¢** — 611839872 p'% ¢'°

+ 5674423104 p® ¢'? — 13370688 p? ¢ + 2272248 p ¢'®

— 43788096 p” ¢ + 404672544 p° ¢*® — 1721675520 p” g™

+ 4127360832 p° ¢'% + 19322598336 p*? ¢*

+ 23166590688 p™° ¢ — 6079425408 p'* ¢'° — 37707840 p*° ¢°

— 23738270400 p™ ¢ — 3236538096 p'® ¢7 — 615820824 plS 2

— 5138724864 p'® ¢* 1 14866296624 p® ¢® + 3556895040 p° ¢'*
— 27040838016 p™* ¢° + 592051200 p* ¢'2 — 1098828480 p° ¢'*

— 1712358144 p° ¢ — 24211394592 p'® ¢° — 12501252384 p® ¢*°
+ 13009843776 p™* ¢* + 17805113568 p'° ¢* — 4476432480 p° ¢'°
+ 5367729600 p7 ¢** 4 21083863056 p° ¢* — 25996896 p* ¢**

+ 92186544 p° ¢'° + 255548448 p* ¢'° — 459767232 p* o™

—~ 63936 ¢2% + 8233139592 p” ¢° — 6446363400 p'° ¢* + 68256 ¢%°
+ 171000 ¢*° — 1650096 p ¢'® — 1603706160 p*7 ¢

+ 16708365432 p! ¢* — 383040 p ¢*2 — 17183678184 p° ¢°

— 8583881472 p" ¢ — 1812669336 p° ¢*° + 110702592 ¢'2 p**




— 93063168 ¢'* p'® 4+ 158634408 p® ¢'? + 53982720 ¢'° p®

— 20782080 ¢'® p°® 4 202752 p** ¢* + 1293984 p ¢*°

+ 398440728 p'® — 1013760 p'® ¢° + 3041280 p'7 ¢°

— 6082560 p'® ¢! + 1686984288 p® ¢'% — 18432 p*3 ¢*

— 19768320 p™® ¢° — 91846656 p** ¢'° + 52462080 p'® ¢°

+ 4460544 p* ¢* + 4866048 ¢ p* — 562176 ¢%2 p*

— 470016 p** ¢* — 8515584 p! ¢ + 6082560 p° ¢*°

+ 8515584 p'® ¢'* — 3041280 p” ¢'® + 1013760 p® ¢*°

— 202752 p® ¢*% + 18652944 p? ¢ + 13824 ¢** — 3665016 p ¢
+ 4608 p** + 18432 p ¢** + 53940440 p® ¢* + 194401008 p° ¢*
— 89921744 p* ¢° + 10273336 p* ¢ + 90363656 p ¢*

+ 21714476 p° ¢* — 12615320 p° ¢ + 915162 p ¢® — 8116052 p°
+ 3732 ¢® — 28833490 p” — 373586868 p11 — 292717608 p*°

— 79907210 p® — 2833684 p* ¢* — 964576 p? ¢® + 3805468 p* ¢*
— 355804 p? ¢* + 16172078 p° ¢* — 1763046 p° ¢* — 4214 p ¢®
— 298394108 p° ¢* + 867915384 p” ¢* — 436101496 p° ¢°

+ 71135740 p° ¢® — 2002348 p ¢'° — 33922 p® — 286863 p*

— 1551 g* — 1758997 p® + 36462 ¢® — 2735 p? + 120 ¢ + 4418 p ¢*

+ 6798297 ¢° + 623746 p° ¢* — 36333 p ¢* + 47869968 p° ¢*
— 331159820 p'? + 264276 ¢'% — 134951508 p*°

— 129302400 p® ¢'* — 173442422 p° — 166152 ¢"°




1+ 1265245780 p° ¢° — 141457384 p° ¢'° + 4152652 p ¢**

— 3017588584 p'! ¢? + 6294641716 p° ¢* — 4390366768 p” ¢°
+ 346236504 p'® — 1286889368 p'® ¢* + 2638898092 p° ¢

- 1570928848 p® ¢® -+ 345880844 p* ¢® — 25175064 p? ¢'°

1+ 314513592 p17 + 183919248 p'® + 31695936 p? ¢

+ 3620019456 p° ¢® — 576682080 p* ¢*° - 137761152 p**

— 252576 ¢* - 6339744 p?! + 81014832 p'® + 26633376 p™

— 5044328352 p'% ¢* -+ 11516520768 p'° ¢" — 9722483040 p° ¢°

+1030464 p™) /((1 +20p — 120p° ¢ + 240° ¢* — 240" ¢°

+120p% ¢® — 960 p” ¢ + 1440 p° ¢* — 960 p* ¢® + 240 p ¢®

+3312p° — 484° + 2304 p" + 24 p*° + 996 p® + 3096 p* ¢*

— 1104 p* ¢° — 4752 p* ¢* + 1488 p* ¢* — 4992 p° ¢* 4 3072 " ¢*
— 384 pg® 704 p° - 1844 p* 4 524" + 3072 p° 4 36 ¢° 4 162 p

—18¢* —192p¢* — 936 p* ¢* — 2688 p> ¢* + 384 pg* — 3024 p° ¢

+240p° — 24 ¢")}(2p* — 2¢* + 4p+1)°)

BBq 1= 1287% ¢(6 4 14648610816 p'' ¢® - 15376112640 p'® ¢°

+ 433152 p* + 9785318400 p'® ¢* — 5472061056 p'° ¢'°
— 4359168 2 g% + 19768320 p*° ¢* — 53222400 p*7 ¢°

+ 94279680 p'® ¢® + 7504104384 p'* ¢® 4+ 488218752 ¢** p™°

— 92880 ¢'% + 69066432 ¢*° p® — 11492928 ¢*® p* 4- 795456 ¢*° p?

— 231389568 ¢'* p® + 318 p — 6578668800 p'* ¢°
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+ 3589568352 p'® ¢* 4 2716519680 p™ ¢® + 961248384 p'7 4

— 263672064 p'° g% — 2026073088 p'® ¢° + 176482368 p'® ¢*

+ 655648128 p' ¢ — 422615232 p'® ¢® — 23740777728 p** ¢°
+ 709632 p® ¢*° — 8603642880 p® ¢"° — 5575680 p° ¢'®

— 57784320 p° ¢ + 97929216 p'! ¢'% 4 22809600 p” ¢'°

— 686206080 p*? ¢'° — 114960384 p** ¢*° + 2514939840 p® ¢'*
— 5598144 p® ¢'® - 1837152 p ¢'® — 11301120 p” ¢**

+ 109496448 p® ¢'® — 511847424 p” ¢™* + 1391572224 p° ¢*2

+ 41464557216 p** ¢* + 20902420320 p'° ¢®

— 2398201344 p'! ¢"® — 43221312 ¢* — 26834519616 p'? ¢°
— 8309887824 p'® ¢ — 1113600960 p'® ¢ 15679820544 pto g
+ 17956164528 p° ¢® + 2460984384 p° ¢** 358(}9310976 ptg®
+ 512486688 p* ¢? — 580654080 p° ¢** — 687543552 p® g™

— 37139236224 p° ¢% — 9506577888 p® ¢1° + 20235624768 p'* ¢*
+ 32556544128 p™3 ¢* — 4507840512 p° ¢'° + 3020645376 p” ¢'2
+ 22266325056 p° ¢® — 18794880 p? ¢'* -+ 50664960 p° ¢*°

+ 98413920 p* ¢® — 309027648 p* ¢'* — 8640 ¢**

+ 11071360608 p” ¢® — 29198529888 p'2 g% -+ 59616 ¢

+ 70056 ¢ — 1299456 p ¢'® — 3471446016 p*7 ¢

- 42319363488 p'! ¢ — 27648 p ¢*% — 30291101664 p° ¢°

7715314944 p7 g0 — 1920448032 p° ¢*° + 8515584 g% p*?
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— 6082560 ¢'* p'° - 126983136 p° ¢*% + 3041280 ¢'° p®

— 1013760 ¢*® p® 1 355968 p ¢*° + 5473370856 p*¢

+ 1366193280 p® ¢ 304!280 p'® 4% — 8515584 ptt 410

+ 6082560 p'° ¢® + 1013760 p*° ¢* + 202752 ¢*° p* — 18432 4% p?
— 202752 p*? g% + 14191056 p® ¢'® — 1713312 p ¢** + 18432 p*
— 4319625748 p® ¢ + 2035938088 p° ¢* — 353510568 p* ¢°

+ 18274004 p* ¢ — 1619635136 p” ¢* + 581526432 p° ¢*

— 69409984 p” ¢° - 1881264 p ¢® + 38999658 p® — 39234 ¢°

+ 160506632 p” |+ 5248215616 p'* + 2968887364 p'°

4+ 524415204 p® + 129079300 p* ¢* — 9814664 p? ¢°

— 20821270 p* ¢* 4+ 2475502 p® ¢t — 115223608 p® ¢

+ 21391704 p* ¢* — 892968 p ¢° — 9366006656 p® ¢*

+ 5675965056 p7 ¢ — 1371522304 p° ¢° + 117200192 p* ¢

~ 2058624 p ¢'° + 108376 p° + 1050269 p* + 5781 ¢*

- 7365848 p° 4 97902 ¢° + 7574 p* — 342 ¢ — 13704 p ¢*

— 249394 p® ¢* — 2754256 p° ¢* + 176760 p ¢* — 487146792 p° ¢
-+ 7676559412 p'? | 58644 ' 4 9323754624 p*?

— 100845312 p° ¢'* + 1381560368 p° — 99204 ¢*°

+ 1930052736 p® ¢° — 133255296 p° ¢*° + 1744128 p ¢

— 24370298496 p! g% + 23403059712 p° ¢* — 10117308672 p ¢°

+ 7894085664 p'* — 16648949080 p'° ¢ + 12780306028 p® ¢*
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— 4175364688 p° ¢° 4+ 546235084 p* ¢ — 20772568 p? ¢'°

+ 3114392160 p'7 4 1436885328 p'® + 19838136 p? ¢'*

+ 5257200984 p° ¢® — 595816968 p* ¢'% 4 9414937416 p'*

— 51624 ¢* 4 31902336 p** + 527915520 p*° + 150386400 p*°

— 20407276248 p'2 ¢* - 34909311144 p'° o* — 19598142840 p® ¢°
+ 4722624 ™) /(1 +20p — 120 p° * + 240 5° ¢* — 240 p* ¢°

+ 120 p* ¢ — 960 p" ¢ + 1440 p° ¢* — 960 p° ¢° + 240 p ¢®

4 3312p° — 4845 + 2304 p” + 24 p'® 4 996 p® + 3096 p* ¢

— 110492 ¢® — 4752 p* ¢* + 1488 p% ¢* — 4992 p° ¢* + 3072 p° ¢
— 384 p¢® + 704 p* 4 1844 p* 4 52 ¢* + 3072 p° + 36 ¢° + 162 p*
—~ 184 — 192 p ¢® — 936 p* ¢* — 2688 p° ¢? + 384 p ¢* — 3024 p® ¢

+240p° — 24¢"°)(2p" —2¢* +4p+1)°)

Symbolic solution of the first critical point equation:

M:=[solve(BBq=0,9)];

M = [0, RootOf(—6 — 433152 p** — 318 p + (353510568 p*
+ 53222400 p'7 + 26834519616 p*? + 37139236224 p'°
+ 19598142840 p® + 35809310976 p'* + 4175364688 p°
+ 1371522304 p® + 10117308672 p7 + 422615232 p*¢
+ 30291101664 p° + 892968 p -+ 39234 + 15376112640 p'*

+ 2026073088 p'® + 6578668800 p'* 4 9814664 p? -+ 3041280 p'®

+ 69409984 p®).Z° + (11492928 p* + 1013760 p° - 1209456 p




+ 5575680 p° -+ 11301120 p° + 92880 - 5598144 p?)_7°

- (202752 p* — 355968 p — 59616 — 709632 p® — 7954536 p* ) 4"

-+ (546235084 p* — 2716519680 p*? — 20902420320 p'°

— 1930052736 p° — 1881264 p — 18274004 p* — 14648610816 p™*
— 17956164528 p® — 117200192 p* — 655648128 p'*

— 22266325056 p° — 5257200984 p® — 97902 — 6082560 p'®

— 94279680 p* — 7504104384 p'* — 11071360608 p”)_Z*

— 5473370856 p'® 4 (1619635136 p” 4 487146792 p° + 13704 p
-+ 249394 p* | 16648949080 p'° + 342 + 202752 p*?

4 4359168 p** + 9366006656 p° + 4319625748 p®

+ 29198529888 p'® + 1113600960 p'® + 263672064 p'®

+ 29407276248 p'? + 8309887824 p'® + 3471446016 p*7

-+ 15679820544 p'® + 43221312 p™ + 2754256 p° + 20821270 p*
+ 24370298496 p'* + 115223608 p° + 23740777728 p**)_Z + (
18794880 p* + 511847424 p” + 687543552 p° + 231389568 p°

4 580654080 p° 4+ 309027648 p* + 6082560 p'° + 57784320 p°
+ 100845312 p° + 51624 + 1713312 p).27

+ (8640 4 27648 p + 18432 p® ) .Z" + (8515584 p'?

— 2514939840 p® — 3020645376 p” — 19838136 p* — 58644

— 1366193280 p° — 1744128 p — 126983136 p° — 2460984384 p°

— 512486688 p* — 97929216 p'' — 1391572224 p® — 488218752 p'°




)-Z° + (8603642880 p” + 99204 + 4507840512 p°

+ 9596577888 p® + 133255296 p° 4 1920448032 p°

+ 20772568 p* 4 5472061056 p° 4 8515584 p**

+ 2398201344 p'* + 2058624 p + 114960384 p'°® 4+ 595816968 p*

+ 7715314944 p™ + 686206080 p'?)_7Z° + (—22809600 p”

— 109496448 p® — 69066432 p® — 14191056 p* — 1837152 p

— 3041280 p° — 50664960 p® — 98413920 p* — 700567 - (
—41464557216 p'? — 961248384 p' — 581526432 p° — 1013760 p°
— 129079300 p* — 20235624768 p** — 23403059712 p°

— 3589568352 p'® — 176482368 p'® — 42319363488 p'?

- 2035938088 p° — 19768320 p'? — 5781 — 32556544128 p'®

— B6THI6E056 p” — 176760 p — 34909311144 pl® — 9785318400 p'®
— 21391704 p® — 12780306028 p® — 2475502 p*)_Z% — 18432 p**

— 38999658 p® — 160506632 p7 — 5248215616 p'!

— 2968887364 p'® - 524415294 p® — 108376 p° — 1050269 p*

— 7365848 p° — 7574 p* — 7676559412 p** — 9323754624 p*°

— 1381560368 p® — 7894085664 p'® — 3114392160 p'”

— 1436885328 p'® — 0414937416 p'* — 31902336 p*!

— 527915520 p'? — 150386400 p?° — 4722624 p**)*/% —Root Of (6
— 433152 p™ — 318 p 4 (353510568 p* - 53222400 p'*

L 26834519616 p'2 - 37139236224 p'° 4 19508142840 p°
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-+ 35809310976 p'* + 4175364688 p° - 1371522304 5°

+ 10117308672 p" + 422615232 p' + 30291101664 p°

1- 892968 p 4 39234 -+ 15376112640 p*® | 2026073088 p'°

- 6578668800 p™* + 9814664 p? + 3041280 p'® + 69409984 p°)
77+ (11492928 p* + 1013760 p® + 1299456 p + 5575680 p°

+ 11301120 p® + 92880 + 5598144 p*)_Z°

+ (—202752 p* — 355968 p — 59616 — 709632 p° — 795456 p* ) _%'°
+ (—546235084 p* — 2716519680 p'* — 20002420320 p*°

— 1930052736 p® — 1881264 p — 18274004 p* — 14648610816 p'!
— 17956164528 p® — 117200192 p® — 655648128 p'*

— 22266325056 p° — 5257200984 p® — 97902 — 6082560 p'®

— 94279680 p'® — 7504104384 p'* — 11071360608 p”)_7*

— 5473370856 p*® + (1619635136 p7 + 487146792 p° + 13704 p
+ 249394 p* + 16648949080 p*® 4 342 4 202752 p*?

+ 4359168 p*! -+ 9366006656 p° + 4319625748 p°

+ 29198529888 p'* + 1113600960 p'® -+ 263672064 p™

+ 29407276248 p? + 8309887824 p*® + 3471446016 p'”

+ 15679820544 p'° - 43221312 p™ - 2754256 p® + 20821270 p*
+ 24370298496 p' + 115223608 p° + 23740777728 p'*)._ 7 + (

18794880 p* + 511847424 p” + 687543552 p° + 231389568 p®

+ 580654080 p° + 309027648 p* + 6082560 p'° + 57784320 p°
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+ 100845312 p* + 51624+ 1713312 p)_Z7

+ (8640 1- 27648 p + 18432 p? ) _Z™ + (8515584 p'?

— 2514939840 p® — 3020645376 p” — 19838136 p? — 58644

— 1366193280 p° — 1744128 p — 126983136 p° — 2460984384 p°

— 512486688 p* — 97929216 p't — 1391572224 p° — 488218752 p*°
)-Z° + (8603642880 p” + 99204 + 4507840512 p°

+ 9596577888 p® 4 133255206 p® 4 1920448032 p°

+ 20772568 p* 4 5472061056 p° + 8515584 p*!

+ 2398201344 p'" + 2058624 p + 114960384 p'® 4 595816968 p?

+ 7715314944 p" + 686206080 p'?)_7Z° 4 (22809600 p”

— 109496448 p° - 69066432 p° — 14191056 p® — 1837152p

- 3041280 p® - 50664960 p* — 98413920 p* — 70056)..2° + (
~4146‘4-557216 p'? — 961248384 pl7 — 581526432 p° — 1013760 p°
— 129079300 p* — 20235624768 p'* — 23403059712 p°

— 3589568352 p'® — 176482368 p'® — 42319363488 p''

— 2035938088 p® — 19768320 p™® — 5781 — 32556544128 p'3

— 5675965056 p° — 176760 p — 34909311144 p'® — 9785318400 p*®
— 21391704 p® — 12780306028 p® — 2475502 p*)_Z* — 18432 p*
— 38999658 p° — 160506632 p” — 5248215616 p'!

— 2968887364 p'0 — 524415294 p® — 108376 p* — 1050269 p*

— 7365848 p° — 7574 p* — 7676559412 p'® — 9323754624 p*®
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— 1381560368 p® — 7894085664 p'® — 3114392160 p*”
— 1436885328 p'® — 9414937416 p'* — 31902336 p*

— 527915520 p'® — 150386400 p** — 4722624 p**)" /2]

Symbolic solution of the second critical point equation:

N:=[solve(BBp=0,p)];

N = [RootOf{(~3 + 4608 _Z** — 73584 ¢** — 63936 ¢*? -~ 68256 ¢*°
+ 171000 ¢'® + (—4390366768 ¢° — 1721675520 ¢'*
+ 867915384 ¢* -+ 195041088 ¢'° + 8233139592 ¢® — 3041280 ¢'®
+ 90363656 ¢° -+ 5367729600 ¢'* — 8583881472 ¢'° — 28833490)
LZT 4 (—20782080 ¢"® + 3620019456 ¢® — 1712358144 ¢
1 194401008 ¢* — 4476432480 ¢'° 4 47869968 ¢*
+ 371718720 ¢*® + 3556895040 ¢'* — 1570928848 ¢° — §116052)
_Z% + (1013760 ¢*° + 16172078 g% — 1098828480 ¢**
— 54378432 ¢** — 1812669336 ¢'° — 1758997 + 404672544 ¢'°
+ 1686984288 ¢'% — 436101496 ¢° 4 21714476 ¢*
+ 1265245780 ¢®)_Z° + (3805468 ¢° — 89921744 ¢°
— 2833684 ¢* + 592051200 ¢*? + 4866048 ¢*° — 576682080 ¢'°
+ 345880844 ¢° — 68795712 ¢'° — 286863 4+ 255548448 16
— 459767232 ¢*4)_Z* + (—129302400 ¢** -+ 158634408 ¢'

— 43788096 ¢'® — 33922 — 12615320 ¢® — 1763046 ¢* + 623746 ¢

+ 71135740 ¢° — 141457384 ¢ 4 7945920 ¢%° — 202752 ¢2
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+ 92186544 ¢°)_Z° -+ (18652944 ¢'® — 25175064 ¢'°

+ 5204160 ¢*° — 964576 ¢° — 562176 ¢** -+ 31695936 ¢'2

— 25996896 ¢ — 355804 ¢* 4 67982 ¢* — 13370688 ¢'®

+ 10273336 ¢° — 2735)-Z% 4 (134 4 4418 ¢* — 36333 ¢*

— 2902348 ¢'® + 2272248 ¢'5 — 3665016 ¢"* + 4152652 ¢*2

+ 1293984 ¢*° — 1650096 ¢'® + 915162 ¢° — 4214 ¢° — 383040 ¢**
+ 18432 ¢*)..Z + ( 101952 — 18432 ¢%) _Z%

+ (1030464 — 470016 ¢* ) 2%

+ (202752 ¢* + 6339744 — 5416128 ¢* ) 2!

+ (26633376 + 4460544 ¢* — 37707840 ¢ ) _72°

+ (178765632 ¢ — 1013760 ¢° + 81014832 + 44340352 q*)_z*
+ (—615829824 ¢* + 183919248 - 269258688 ¢* — 19768320 ¢° )
_Z"® 4+ (—~1603706160 ¢* 4+ 1108576800 ¢* + 314513592

— 173959488 ¢° + 3041280 ¢*)_Z"7 -+ (—3236538096 ¢

+ 3312435744 ¢* — 920306880 ¢° + 398440728 + 52462080 ¢°)
_7Y6 4 (3288432384 ¢° — 5138724864 ¢ + 346236504

+ 7465955520 ¢* + 404514432 ¢® — 6082560 ¢'°)_Z"° + (
1854029952 ¢° + 13009843776 ¢ — 8446618368 ¢°

— 91846656 ¢'° + 137761152 — 6465733920 ¢2)_7 ' + (

—6446363400 ¢° 4 5663843136 ¢° — 16193640384 ¢° — 134951508

— 611839872 ¢'% + 17805113568 ¢* 4 8515584 ¢'?)_ 2 -+ (
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— 5044328352 ¢* — 23738270400 ¢° — 331159820 — 2384774784 ¢'°

+ 110702592 ¢'* + 12249292608 ¢® + 19322598336 ¢*)_7'? + (
—3017588584 ¢* + 623645568 ¢'% + 19439196576 ¢°

+ 16708365432 ¢* — 6079425408 ¢'° — 8515584 ¢** — 373586868
— 27040838016 ¢°)_7"" + (—1286889368 ¢* + 11516520768 ¢*

— 24211394592 ¢° + 2010911616 ¢'? + 23166590688 ¢°

— 292717608 — 10730224512 ¢'° — 93063168 ¢'*). 2" 4 (
—17183678184 ¢° 4 4127360832 ¢'2 + 6082560 ¢'¢ — 173442422
+ 21083863056 ¢° + 6294641716 ¢* — 13548257952 ¢*°

— 298394108 ¢? — 429812352 ¢N-Z° + (—12501252384 ¢'°

+ 2688898092 ¢* — 79907210 — 1100504448 ¢'* — 9722483040 ¢°
+ 53940440 ¢* -+ 14866296624 ¢® + 5674423104 ¢'*

+ 53982720 ¢'%)_7® 4 13824 ¢** + 3732 ¢° — 1551 ¢* + 36462 ¢

-+ 129 ¢% 4 264276 ¢'? — 166152 ¢'° — 252576 ¢'4)]

Evaluation of the first set of critical point candidates:

VV:=[intercept{M[2]=0,N[1]=0,p,q)];

VV = [{g = RootOf(~1 + 4608 72 + 22752 2™ — 21312 7"

+ 12154 _Z* - 24528 _Z° + 57000 _Z% — 84192 _77 4. 88092 _#°
+ 1244 7% — 55384 _Z° — 517 _Z% + 43 _Z)'? p = RootOf(6

118432 _Z™ + 527915520 _Z™° + 1436885328 718

+ 0414937416 _Z" + 433152 _Z% + 7676559412 _Z'% + 318 .7
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+ 1050269 _Z* 4 108376 _Z> + 7574 _Z* -+ 1381560368 _%°
+ 524415294 _Z® - 2968887364 .Z° 4 5248215616 71! :
+ 7365848 _Z° + 160506632 _Z7 + 38999658 _7° 4 4722624 _Z%* II!
+ 1503864002 + 5473370856 2'° + 31902336 2% |
+ 7894085664 -7'° -+ 0323754624 7' + 3114392160 Z'"}}, {
p = RootOf(6 + 18432 _Z** 4 527915520 719 - 1436885328 _7'® i
+ 9414937416 2" + 433152 _Z% + 7676559412 _Z'* + 318 _Z ;
+ 1050269 -Z* + 108376 _Z> + 7574 _Z* + 1381560368 _7° :
+ 524415294 _Z° |- 2968887364 _Z° 4 5248215616 _Z" [
+ 7365848 _Z° 4 160506632 _Z" - 38999658 _75 4 4722624 _Z* |
+ 150386400 2% + 5473370856 _Z'¢ 4+ 31902336 _Z* |

+ 7894085664 _Z'° + 9323754624 7" 4 3114392160 .27, ¢ =
—RootOf(—1 + 4608 _Z'* + 22752 .7'° — 21312 _Z" + 12154 .2*
— 24528 _7° 4- 57000 _Z® — 84192 _Z7 + 88002 .Z° + 1244 .7°

— 55384 2% — 517 2% - 43 _2)V/*}]

Numerical values of first part of the above symbolically found critical
points. One inspects that the solutions are either complex or have p < 0, so

are not in the Kahler cone.

allvalues(VV([1]);

{%18,p = —3.802974653 }, { %18, p = —3.170767370 },

{p=—2.183469616, %18 },{ %18, p = —1.840896415 },
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{%18,p = —1.707106781 }, { %18,p = —1.331931115 },
{%18, %10}, { %18, %9 },{ %18, %8 }, { %18, %7 },
{%18,p = —.6717383310 }, { %18, %6 }, { %18, %5 1,

{ %18, %4 },{ %18,%3 },{ %18, %2 }, { %18, %1 },

{ %18, p = —.4209714630 }, { %18, p = —.3673473418 },
{%18,p = —.2928932188 },{ %18, p = —.1708834708 },
{%18,p = —.1607167876 },{ %18, p = —.1591035847 },
{%18,p = —.08568766797 },{ p = —3.802974653, %17 },
{p = —3.170767370, %17 }, { p = —2.183469616, %17 },
{p= —1.840896415, %17}, { p = —1.707106781, %17},
{p = —1.331931115, %17}, { %10, %17 }, { %9, %17 },

{ %8, %17 },{ %7, %17}, {p = —.6717383310, %17 },

{ %6, %17}, { %5, 17}, { %4, %17}, { %3, %17},

{%2, %17 },{ %1, %17 },{ p = — 4209714630, %17 },
{p=—.3673473418, %17}, { p = —.2928932188, %17 },
{p=-.1708834708, %17}, {p = —.1607167876, %17 },
{p=—.1591035847, %17}, { p = —.08568766797, %17 },
{p = —3.802974653, q = 4399400557 I },
{p=—3.170767370, ¢ = 4399400557 I },

{p = —2.183469616, ¢ = 4399400557 I },

{p = —1.840896415, ¢ = 4399400557 I },
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{p = —1.707106781,q = .4399400557 I },

(p=—1.331931115,¢ = .43994005571 },

%10, q = 4399400557 I },{ %9, ¢ = 4399400557 7 },
(%8, q = 4399400557 I },{ %T,q = 43994005571 },
{p = —.6717383310, ¢ = 4399400557 / |,

{ %6, ¢ = 4399400557 I }, { %5, ¢ = 4399400557 [ },
(%4, q = 4399400557 I }, { %3, ¢ = 43994005571 },
(%2, q = 4399400557 I },{ %1, q = 43994005571 },
{p = —.4209714630, ¢ = 4399400557 T },

{p = 3673473418, ¢ = .4399400557 T },

{p = —.2928932188, g = .4399400557 1 },

{p = —. 1708834708, ¢ = 4399400557 1 },

| {p = —.1607167876,q = .4399400557 I }, iﬁl
{p = —.1591035847, q = 4399400557 I }, :
{p= —.08568766797, g = 4399400557 1 },

{p = —3.802974653, ¢ = 2004472566 }, |

{(p= —3.170767370, ¢ = .2004472566 }, |
{p = —2.183469616, ¢ = 2004472566 }, f"\
{p = —1.840896415, ¢ = 2004472566 }, ~
{p=—1.707106781, q = .2004472566 }, ‘,.\

{p = —1.331931115,q = 2004472566 },




112

{ %10, q = 2004472566 }, { %9, ¢ = 2004472566 },

{ %8, q = .2004472566 }, { %7, q = 2004472566 },

{p = — 6717383310, g = .2004472566 }, { %6, ¢ = 2004472566 },
{ %5, 9 = .2004472566 }, { %4, ¢ = 2004472566 },

(%3, q = 2004472566 }, { %2, ¢ = 2004472566 .,

{%1,q = 2004472566 }, { p = —.4209714630, g = .2004472566 },
{p= —.3673473418, ¢ = .2004472566 },

{p = —.2928932188, ¢ = .2004472566 1,

{p = —. 1708834708, g = .2004472566 },

{p = —.1607167876, ¢ = .2004472566 },

{p = —.1591035847, g = .2004472566 },

{p = 08568766797, g = 2004472566 },

{p = —3.802974653, %16 }, { p = —3.170767370, %16 1,

{p = —2.183469616, %16 }, { p = —1.840896415, %16 },
{p=—1.707106781,%16 }, { p = —1.331931115, %16 },
{9%10,%16 },{ %9, %16 }, { %8, %16 }, { %7, %16 },
{p=—.6717383310,%16 }, { %6, %16 }, { %5, %16 },

{ %4, %16 },{ %3, %16 },{ %2, %16 },{ %1, %16 },

{p = —.4209714630, %16 }, { p = —.3673473418, %16 1,

{p = —.2928932188,%16 }, { p = —.1708834708, %16 },

{p = —.1607167876,%16 }, { p = —.1591035847, %16 },




{p = —.08568766797, %16 }, { p = —3.802974653, %15 },

{p=—3.170767370,%15 }, { p = —2.183469616, %15 },
{p = —1.840896415, %15 },{p = —1.707106781, %15 },
{p=—1.331931115, %15}, { %10, %15 }, { %9, %15},
{ %8, %15 },{ %7, %15}, {p = —.6717383310, %15 },

{ %6, %15}, { %5, %15 },{ %4, %15 },{ %3, %15 },

{ %2, %15 },{ %1, %15 },{p = —.4209714630, %15 },
{p = —.3673473418,%15 }, { p = —.2928932188, %15},
{p=—.1708834708, %15}, { p = —.1607167876, %15 },
{p= 1591035847, %15 }, { p = —.08568766797, %15 },
{p=—3.802074653, %14 }, { p = —3.170767370, %14 },
{p=—2.183469616, %14 }, { p = —1.840896415, %14 },
{p=—1.707106781, %14 },{p = —1.331931115, %14 },
{ %10, %14}, { %9, %14 }, { %8, %14 },{ %7, %14 },
{p=—6717383310, %14 }, { %6, %14 },{ %5, %14},

{ %4, %14}, { %3, %14 },{ %2, %14 }, { %1, %14},
{p=—.4209714630,%14 },{ p = —.3673473418, %14 },
{p= 2928932188, %14}, { p = —.1708834708, %14 },
{p= —.1607167876, %14 },{p = —.1591035847, %14 },

{p = —.08568766797, %14 }, { p = —3.802074653, %13 },

{p= —3.170767370,%13 }, { p = —2.183469616, %13 },




{p = —1.840896415,%13 }, { p = —1.707106781, %13 },
{p=—1.331931115,%13 }, { %10, %13 }, { %9, %13 1,
{%8,%13},{ %7,%13},{ p = —.6717383310, %13 },
{%6,%13 },{ %5, %13 },{ %4, %13 },{ %3, %13 },
{%2,%13),{ %1, %13}, {p = —.4209714630, %13 },

{p = —.3673473418, %13 }, { p = — 2028032188, %13 },
{p= 1708834708, %13 }, { p = —.1607167876, %13 },
{p = —.1591035847,%13 }, { p = —.08568766797, %13 },
{p = —3.802974653, ¢ = .6764719278 },

{p = —3.170767370,¢ = .6764719278 1,

{p = ~2.183469616, g = .6764719278 1,

{p= —1.840896415, ¢ = .6764719278

{p = —1.707106781, ¢ = 6764719278 },
{p=—1.331931115,¢ = 6764719278 },

{9%10,q = .67647192787}, {%9,q = 6764719278 },
{%8,q = 6764719278 }, { %7, ¢ = 6764719278 },
{p=-—6717383810,q = .6764719278 }, { %6, ¢ = 6764719278 },
{ %5, ¢ = 6764719278 }, { %4, ¢ = .6764719278 3,
{%3,q = 6764719278 }, { %2, ¢ = 6764719278 },

{%1,q = 6764719278 }, { p = 4209714630, ¢ = .6764719278 },

{p= 3673473418, ¢ = 6764719278 },
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{p = —.2928932188, ¢ — 6764719278 1

{p = —.1708834708, ¢ = .6764719278 },
{p=—.1607167876,q = .6T64719278 },
{p=—.1591035847, ¢ = .6764719278 },

{p = —.08568766797, ¢ = 6764719278 },

{p = —3.802974653, %12 },{p = —3.170767370, %12 },
{p=—2.183469616, %12 },{ » = —1.840896415, %12 },
{p=-—1.707106781,%12 },{ p = —1.331931115, %12 },
{%10,%12 },{ %9, %12}, { %8, %12}, { %7, %12},
{p=—.6717383310, %12}, { %6, %12 }, { %5, %12 },

{ %4, %12}, { %3, %12}, { %2, %12 },{ %1, %12}, |
{p=—.4209714630, %12 }, { p = 3673473418, %12 },
{p=—.2928932188, %12 }, { p = —.1708834708, %12 },
{p=—.1607167876,%12 }, { p = —.1591035847, %12 },
{p = —.08568766797, %12}, { p = —3.802974653, %11},
{p=—3.170767370, %11}, {p = —2.183469616, %11 },
{p = —1.840896415, %11}, {p = —1.707106781, %11 },
{p=—1.331931115, %11}, { %10, %11 }, { %9, %11 },
{%8, %11 },{ %7, %11}, {p = —.6717383310, %11},

{ %6, %11}, { %5, %11}, { %4, %11}, { %3, %11},

{9%2, %11}, { %1, %11}, {p = —.4209714630, %11 },
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{p=—.3673473418, %11}, {p = —.2928932188, %11 },

{p = —.1708834708, %11}, { p = —. 1607167876, %11 },

{p = —.1591035847, %11 },{ p = —.08368766797, %11 },

{p = —3.802974653, ¢ = 1.852038703 },

{p = —3.170767370, ¢ = 1.852038703 },

{p = —2.183469616, ¢ = 1.852038703 },

{p = 1.840896415, ¢ = 1.852038703 },

{p=—1.707106781,¢ = 1.852038703 },

{p=—1.331931115, ¢ = 1.852038703 },

{%10,q = 1.852038703 }, { %9, ¢ = 1.852038703 },

{ %8, q = 1.852038703 }, { %7, ¢ = 1.852038703 },

{p = —.6717383310, ¢ = 1.852038703 }, { %6, ¢ = 1.852038703 },
{ %5, g = 1.852038703 },{ %4, ¢ = 1.852038703 },

{ %3, ¢ = 1.852038703 }, { %2, ¢ = 1.852038703 },

{%1,q = 1.852038703 }, { p = —.4209714630, ¢ = 1.852038703 },
{p = —.3673473418, ¢ = 1.852038703 },

{p = —.2928932188, ¢ = 1.852038703 },

{p = —.1708834708, ¢ = 1.852038703 },

{p=—.1607167876,¢ = 1.852038703 },

{p=—.1591035847, ¢ = 1.852038703 },

{p = —.08568766797, ¢ = 1.852038703 }
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%ol :=p = 4460338892 -- .2673861622 T
%2 = p = —-.4460338892 — .2673861622 ]
%3 1= p = — 4697369777 - 2934682106 [
Yod 1= p = — 4697369777 — .2934682106 7
%05 1= p = —.6034986533 + 1.065746913 T
%6 1= p = —.6034986533 — 1.065746913 [
%7 == p = —1.000000000 +- 8408964153 |
%8 1= p = —1.000000000 - 8408964153 I

%9 :=p = —1.047486572 -- .3510224844 [
%10 = p = —1.047486572 — .3510224844 |
%11 1= ¢ = .9833861885 + .002804374974 1
%12 1= ¢ = .9833861885 — .002804374974 [
%13 = q = .7826336983 + .5736370024 [
%14 := g = 7826336983 — 5736370024 T
%15 := ¢ = 3147997311 + 04558909220 T
%16 := ¢ = 3147997311 -- .04558909220 7

%17 1= ¢ = 5220842039 | 1.083852290 1

%18 := ¢ = .5220842039 — 1.083852290 7
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Numerical values of second part of the above symbolically found critical
points. Again one inspects that the solutions are either complex or have p < 0,

so are not in the Kihler cone.

allvalues(VV][2]);

{ %8,p = —3.802974653 }, { %7,p = —3.802974653 },

{q¢ = —.4399400557 1, p = —3.802974653 1,

{q = —.2004472566, p = —3.802074653 },

{ %6, p = —3.802074653 }, { %5, p = —3.802974653 },
{ %4, p = —3.802074653 }, { %3, p = —3.802974653 },
{g = —.6764719278,p = -3.802974653 },

{ %2, p = —3.802974653 }, { %1, p = —3.802974653 },
{p = —3.802974653, ¢ = —1.852038703 },

{%8,p = —3.170767370 },{ %7,p = —3.170767370 },
{q = —.4399400557 I, p = —3.170767370 1,

{ ¢ = —.2004472566,p = ~3.170767370 },

{%6,p = —3.170767370 }, { %5, p = —3.170767370 },
{%4,p = —3.170767370 }, { %3, p = —3.170767370 },
{q = —.6764719278,p = —3.170767370 },

{%2,p = —3.170767370 }, { %1, p = —3.170767370 },

{p = —3.170767370, q = —1.852038703 },

{%8,p = —2.183469616 }, { %7,p = —2.183469616 },




{q = —.4399400557 I, p = —2.183469616 1,

{q = —.2004472566,p = —2.183469616 },

{%6,p = —2.183469616 }, { %5, p = —2.183469616 },
{%4,p = —2.183469616 }, { %3, p = —2.183469616 },
{q = —.6764719278,p = —2.183469616 },

{%2,p = —2.183469616 }, { p = —2.183469616, %1 },
{p = —2.183469616, q = —1.852038703 },

{ %8, p = —1.840896415 }, { %7, p = —1.840896415 },
{q = —.4399400557 I, p = —1.8408964.15 },

{q = —.2004472566,p = —1.840896415 },

{ %6,p = —1.840896415 }, { %5, p = —1.840896415 },
{ %4, p = —1.840896415 },{ %3,p = —1.840896415 },
{q¢ = —.6764719278,p = —1.840896415 },

{ %2, p = —1.840896415 }, { %1, p = —1.840896415 },
{p = —1.840896415, ¢ = —1.852038703 },

{%8,p = —1.707106781 }, { %7,p = ~1.707106781 },
{ g = —.4399400557 I, p = —1.707106781 ),

{q = —.2004472566,p = —1.707106781 },

{ %6,p = —1.707106781 }, { %5, p = —1.707106781 },

{ %4, p = —1.707106781 }, { %3,p = —1.707106781 },

{q = —.6764719278,p = —1.707106781 },
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{%2,p = —1.707106781 }, { %1,p = —1.707106781 },
{p=—1.707106781, ¢ = —1.852038703 },

{%8,p = —1.331931115 }, { %7, p = —1.331931115 },
{ ¢ = —.4399400557 I,p = —1.331931115 1,

{q = —.2004472566,p = —1.331931115 },

{%6,p = —1.331931115 },{ %5, p = —1.331931115 },
{%4,p = 1331931115}, { %3, p = —1.331931115 },
{q= 6764719278, p = —1.331931115 },

{%2,p = —1.331931115}, { %1,p = —1.831931115 },
{» = —1.331931115,¢ = —1.852038703 }, { %8, %18 1,
{ %7, %18}, { ¢ = —.4399400557 I, %18 },
{q=—.2004472566,%18 }, { %6, %18 }, { %5, %18 },
{ %4, %18}, { %3, %18 },{ g = —.6764719278, %18 },
{%2,%18 },{ %1, %18 }, { %18, ¢ = —1.852038703 },
{ %8, %17 }, { %7, %17 },{ ¢ = —.4399400557 I, %17 },
{q= —.2004472566,%17 },{ %6, %17 }, { %5, %17 },
{ %4, %17 }, { %3,%17 },{ ¢ = —.6764719278, %17 },
{ %2, %17}, { %1, %17}, { %17,q = —1.852038703 },
{ %8, %16 Y, { %7, %16 }, { ¢ = —.4399400557 I, %16 },
{ g = —.2004472566, %16 }, { %6, %16 }, { %5, %16 },

{ %4, %16 }, { %3, %16 }, { ¢ = —.6764719278, %16 },
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{ %2, %16 },{ %1, %16 },{ %16, q = —1.852038703 },
{ %8, %15 },{ %7, %15}, { ¢ = —.4399400557 1, %15 },
{g = —.2004472566, %15 }, { %6, %15 }, { %5, %15 1,
{ %4, %15}, { %3, %15 },{ g = —.6764719278, %15 },
{ %2, %15 },{ %1, %15 },{ %15,q = —1.852038703 },
{ %8, p = —.6717383310 }, { %7,p = —.6717383310 },
{q = —.4399400557 I, p = — 6717383310 },

{¢ = —.2004472566,p = —.6717383310 },

{ %6,p = —.6717383310 }, { %5,» = —.6717383310 },
{ %4,p = —.6717383310 }, { %3, p = 6717383310 },
{g=—6764719278,p = —.6717383310 },

{%2,p = —.6717383310 }, { %1,p = —.6717383310},
{p = —.6717383310,¢ = —1.852038703 }, { %8, %14 },
{ %7, %14 }, { ¢ = —.4399400557 1, %14 },

{ g = —.2004472566, %14 }, { %6, %14 }, { %5, %14 },
{ %4, %14 }, { %3, %14 }, { ¢ = —.6764719278, %14 },
{%2,%14 },{ %1,%14 },{ %14,q = —1.852088703 },
{ %8, %13 },{%7,%13},{ ¢ = —.4399400557 I, %13 },
{g = —.2004472566, %13 }, { %6, %13 }, { %5, %13 },

{ %4, %13 },{ %3, %13}, { ¢ = —.6764719278, %13 },

{%2,%13}, { %1,%13 },{ %13, ¢ = —1.852038703 },
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(%8, %12}, { %7, %12}, { g = —.4399400557 1, %12 },

{g = —.2004472566, %12 }, { %6, %12 }, { %5, %12 },

{%4, %12}, { %3,%12 }, { ¢ = —.6764719278, %12 },
{9%2, %12}, { %1, %121}, { %12, ¢ = —1.852038703 },

{%8, %11}, { %7, %11}, { ¢ = —.4399400557 I, %11 },

{q = —.2004472566, %11}, { %6, %11}, { %5, %11 },
{ %4, %11}, { %3, %11}, { ¢ = —.6764719278, %11 },
(%2, %11}, { %1, %11}, { %11,q = —1.852038703 },

{%8,%10}, { %7, %10}, { ¢ = —.4399400557 1, %10 },
{q = —.2004472566,%10 }, { %6, %10 }, { %5, %10 },

{%4, %10}, { %3,%10},{ ¢ = — 6764719278, %10 },

(%2, %10, { %1,%10 Y, { %10, ¢ = —1 852038703 },

(%8, %9}, { %7, %9}, { ¢ = —.4399400557 I, %9 },

{q = —.2004472566,%9 }, { %6, %9 }, { %5, %9 }, { %4, %9 },
(%3,%9),{ ¢ = —.6764710278, %9 }, { %2, %9 }, { %1, %9 },
{%9,q = —1.852038703 },{ %8, p = —.4209714630 },
[%7,p = — 4209714630 },

{q = —.4399400557 I, p = —.4209714630 },

{ ¢ = —.2004472566,p = —.4209714630 },
{%6,p = —.4200714630 }, { %5, p = 4209714630 }, !

{%d,p = — 4209714630 }, { %3,p = —.4209714630 },




{q = —.6764719278,p = —.4209714630 ),

{%2,p = — 4200714630 }, { %1, p = —.4209714630 },
{p = —.1209714630, ¢ = —1.852038703 ],

{ %8, p = —.3673473418 }, { %7, p = —.3673473418 },
{ ¢ = 4399400557 I, p = —.3673473418 },

{ g = —.2004472566,p = —.3673473418 },

{%6,p = —.3673473418 }, { %5, p = —.3673473418 },
{ %4,p = —.3673473418 }, { %3,p = —.3673473418 },
{q=—.6764719278,p = — 3673473418 },

{%2,p = —.3673473418 }, { %1,p = —.3673473418 },
{p = —.3673473418, ¢ = —1.852038703 },

{ %8, p = —.2928932188 }, { %7, p = —.2028932188 },
{ g = —.4399400557 I, p = —.2928032188 },

{g = —.2004472566,p = —.2928932188 1,

{ %6,p = —.2928932188 }, { %5, p = —.2928932188 },
{%4,p = —.2928932188 }, { %3, p = — 2928932188 },
{g = —.6764719278,p = —.2928932188 },

{%2,p = —.2928932188 }, { %1,p = —.2028932188 },
{p = —.2928932188, ¢ = —1.852038703 },

{ %8, p = —.1708834708 }, { %7,p = —.1708834708 1,

{¢ = —.4399400557 1, p = —.1708834708 },
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{ ¢ = —.2004472566,p = —.1708834708 },

{%6,p = —.1708834708 }, { %5, p = —.1 708834708 1,
{ %4, p = —. 1708834708 }, { %3,p = —.1708834708 },
{g = —.6764719278,p = —.1708834708 },

{%2,p = ~.1708834708 }, { %1,p = —.1708834708 },
{p = —.1708834708, g = —1.852038703 },

{%8,p = —.1607167876 }, { %7,p = —. 1607167876 },
{ g = — 4399400557 I, p = —.1607167876 },

{ g = —.2004472566, p = —.1607167876 },

{%6,p = —.1607167876 }, { %5,p = —.1607167876 1,
{%4,p = 1607167876 }, { %3,p = —. 1607167576 },
{q=—6764719278,p = —.1607167876 },

{%2,p = —.1607167876 }, { %1, p = —.1607167876 },
{p= 1607167876, = —1.852038703 },

{%8,p = —.1591035847 }, { %7,p = —.1591035847 },
{ ¢ = 4399400557 I, p = —.1591035847 ),

{ ¢ = —.2004472566, p = —.1591035847 },

{%6,p = —.1591035847 }, { %5, p = —.1591035847 },
{%4,p = —.1591035847 }, { %3,p = —.1591035847 },
{q=—.6764719278,p = —.1591035847 },

{%2,p = -.1591035847 }, { %1,p = —.1591035847 },

——-_—
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{p = —1591035847, ¢ = —1.852038703 },

{ %8, p = —.08568766797 }, { %7, p = —.08568766797 ),

{ ¢ = —.4399400557 I,p = —.08568766797 },

{¢ = —.2004472566, p = — 08568766797 },

{%6,p = —.08568766797 }, { %5, p = —.08568766797 },

{ %4,p = —.08568766797 }, { %3,p = —.08568766797 },

{q = —.6764719278, p = — 08568766797 },

{%2,p = —.08568766797 },{ %1,p = —.08563766797 },

{p = —.08568766797, ¢ = —1.852038703 }

%l
%2 :
%3
%4
b

%6

%7 .

%8

%9

q

= q = —.9833861885 — .002804374974 1
= q = —.9833861885 -+ .002804374974 1
= ¢ = —.7826336983 — .5736370024 /

]
|

g = —.7826336983 + .5736370024 7

g = —.3147997311 — .04558909220 I

I

= ¢ = —.3147997311 + .04558909220 1

It
I

g = —.5220842039 — 1.083852290 /

= ¢ = —.5220842039 4 1.083852290 1

= p = —.4460338892 4 2673861622

%10 := p = —.4460338892 — .2673861622 I

%11 :=p = —.4697369777 + .2934682106 [

%12 = p = — 4697369777 — .2934682106 [
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%13 := p = —.6034986533 + 1.065746913 I
Tol4 1= p = —.6034986533 — 1.065746913 /
%15 1= p = —1.000000000 + .8408964153 I
%16 :=p = —1.000000000 — 8408964153 I
%17 :=p= ﬁ1.04748.6572 +.3510224844 [

%18 := p = —1.047486572 — .3510224844 T

Evajuation of the second set of critical point candidates:

subs(q=0,N[1]);

RootOf(—3 + 4608 _Z* 4 81014832 _Z'° -+ 183919248 _7*®
+ 137761152 7™ 1 101952 _Z* — 331159820 _Z"% — 134 _7
— 286863 7! — 33922 _Z° — 2735 _7? — 173442422 .Z°
— 79907210 7% — 292717608 _Z'° — 373586868 _Z 1
— 1758997 _7° — 28833490 _Z7 — 8116052 _Z° + 1030464 _%*?
126633376 _2% + 308440728 _2'° 4 6339744 27

-+ 346236504 _Z"° — 134951508 _Z"® - 314513592 _Z'7)

Numerical values of the final set of symbolically found critical point can-

, didates. For these ¢ = 0, and so a true critical point from this family will
evaluate equal volumes on the two exceptional divisors.
| All solutions but one are either complex or have p < 0, and so are not in

the Kahler cone. The unique solution is the first on the fourth row from the

bottom. This completes the proof.
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allvalues(”);

—4,199614645, —2.931616733, —1.707106781, —1.314201991,
—.8506115576 — .06269240613 7,
—.8506115576 + .06269240613 I, —.4559444654,
—.4442866226 — 2945305897 1, — 4442866226 + .2945305897 1,
—.4389928395 — 2603594925 I, —.4389928395 + .2603594925 1,
—.3619247455, —.2928932188, —.2163970164, —. 1688705464,

9913521825, —1.8408964.15, —1.000000000 — .8408964153 1,

—1.000000000 + .8408964153 I, —.1591035847, —1.840896415,
—1.000000000 — .8408964153 I, —1.000000000 - .8408964153 7,

—.1591035847

For confirmation, the unique critical point in the Kahler cone is found
directly by a numerical method. Though more efficient than the above proce-
dure, the method does not guarantee that no critical point has been dropped
in the process.

fsolve(BBp=0,BBq=0,p,q,p=0..infinity);

{q=0,p=.9913521825 }
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