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Abstract of the Dissertation
Kahler-Einstein Cone Metrics

by
Thalia D. Jeffres
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1996

On a compact complex manifold with an irreducible curve D we
define cone metrics. The main theorem is that a given cone metric
may be deformed, within a certain function space, to a Kahler-
Einstein cone metric. This existence theorem is proved by working
directly with the complex Monge-Ampére equation, and we follow
the continuity method. The continuity method involves two parts,
an openness part and a closedness part. We draw upon the work
of several other authors, especially Mazzeo [14] and Melrose and
Mendoza [15] in the openness part, and Yau [22] and Aubin (1],
[2] in the closedness part. The main contributions of the paper

are application of the theory of Mazzeo, Melrose, and Mendoza (as

iii



above) to obtain closed range in the first part. and to understand
how to obtain a priori bounds for functions which may achieve

nonsmooth maxima in the second part.
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Chapter 1

Introduction

On a compact complex manifold with an irreducible curve D we define
cone metrics. The main theorem is that a given cone metric may be deformed.
within the same Kahler class. to a Kahler-Einstein cone metric-. This exis-
tence theorem is proved by working directly with the complex Monge-Ampére
equation. and we follow the continuity method. What it means to solve this
equation is to solve it away from the divisor. that is. on the noncompact set
which is the complement of the divisor. This noncompactness. and the singu-
larities that arise as one approaches the divisor. create analytic difficulties.

We use the continuity method. which involves two parts. an openness
part and a closedness part. We draw upon the work of several other authors.
especially Mazzeo [14] and Melrose and Mendoza [15] in the openness part.
and Yau [22] and Aubin (1] and [2] in the closedness part. but as indicated
above, nontrivial modifications are needed. The main contributions of this

paper therefore are:

e Application of the theory Melrose to obtain closed range in the first part.



and

e To understand how to obtain e priort bounds for functions

achieve nonsmooth maxima in the second part.

which may
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Chapter 2

Kahler-Einstein Cone Metrics

2.1 Cone Metrics

Let M be a complex manifold with dime M = n. and D a divisor with
only one irreducible component. that is. a complex curve. We restrict ourselves
to this situation. but use the letter D because it is not difficult 10 pass to the
more general situation of an effective divisor with simple normal crossings. One

N
way to state this condition is the following. Writing D = )_ D.. where {D,}
=1
are the irreducible components. the D; are smooth and the_v‘ meet transversely.
[f (" is a neighborhood of p through which exactly k divisors pass. there exist
local holomorphic coordinates (zy.---.z,) such that DN = {: ...z =0}.

We first give the exact definition of cone metrics. In a separate section
below we make some computations which identify the leading terms of the
metric and verify that those leading terms really do describe a cone. and

hence justify the terminology. Let V" be a smooth volume form on M. with D

as above. and 0 < @ < L. With R’y; denoting the canonical bundle. we assume



that A’y + aD is ample. which means that
CiRy) +al'(D) € Hpp( M)

contains a positive definite real closed (1.1) form. Let [D] be the line bundle
associated to D and s a global defining function. that is. D = {5 = 0}. Choose
a Hermitian metric in [D] and denote the associated norm by || - ||. Put

b
V= S > 3
ol (1 = 2fsf==1)

Now compute
ddlog\" = ddlogl — addlog||s|?

— 20 log(l — =5[>+

A smooth volume form on M is the same as a Hermitian metric on the anti-
canonical bundle A5'. [9]. Therefore.
ddlogV" = —Ric(Ky}) +aR([D))

200 log(1 — =||s|>*~*)).

The cohomology class of —Ric(Ky') + aR([D}) is
~CU(K3) +aCy(D) = Ci(Ky) + aCi(D).

Since we assumed C( Kyr) + aCy(D) = (' > 0. it is possible to choose V" and
|l - | in such a way that the representative —Ric(K ;') + aR([D]) is positive
definite. Then by choosing = small enough. we can make sure that 39 log V>

0.



Now denote wg = 30 log V. defined on Q := M — D. By its very construc-
tion as 39 of a real function . « is Hermitian of type (1,1) and as noted above
it is positive definite. and so it defines a Kahler metric.

Strictly speaking. it is a Kahler metric only on the noncompact set M —D.
but we also refer to it as a singular Kahler metric on all of M. or a Kahler
cone metric in V. The parameter « is called the cone angle. Taking wq as the
original Kahler cone metric then. we seek to deform this to a Kihler-Einstein
cone metric. [n order to formulate the problem more precisely. first note that
the singularities of «, are mild enough that wy can be integrated over all of W
against smooth forms of the appropriate degree — so it defines a current. The

problem can now be stated as that of finding « with the following properties.

l. w is Kahler-Einstein. i.e.. p = —w on M — D.

(i)
.

fw] = [wo] in the sense of currents.

. w has the same kind of singularities as wo. Namely. there should exist

constants ¢ and (" so that cvg < w < Cuy.

2.2 Background

We briefly review a few facts about Kahler-Einstein manifolds from the
smooth. compact case. A complex manifold is Kahler-Einstein if it admits a
metric whose Ricci and Kahler forms are related by p = kw for a real number

k. The first Chern class will be positive. negative. or zero according to the sign




of k. This provides a necessary condition for the existence of a Kahler-Einstein
metric. In fact. if C,( W) = 0 or Cy (M) < 0. this condition is also sufficient.
This has been shown by Aubin [l]. [2] and by Yau ([22]. For Cy(W) > 0
there are examples demonstrating its insufficiency. Additionally. for C'\(M) >
0. obstructions have been found by Matsushima. Futaki. and others. These
are discussed in the book by Futaki [3]. Since these automatically vanish
when there are no nontrivial holomorphic vector fields. Calabi asked whether
a complex manifold with ('} > 0 and no nontrivial holomorphic vector fields
must admit a Kahler-Einstein metric. Tian has given an affirmative answer
for the surface case {20].

The study of singular spaces and metrics arises in many contexts. From
the complex point of view. the metrics considered here may he considered
as higher dimensional generalizations of metrics which arise naturally in the
theory of Riemann surfaces. There one encounters two tvpes of distinguished
points. the cone (or branch) points and the puncture points. Removal of these
points leaves a noncompact manifold. [n the case of a puncture. the missing
point is infinitely far away so the metric is complete. while in the case of a
cone point. the missing point is reached in finite distance and so the metric is
incomplete.

On higher dimensional objects the analogues of puncture points have been
studied more than the analogues of cone points. but the cone metrics are
also interesting and have applications. See ([19] for a discussion of some of
these applications. Metrics similar to the puncture case have been studied by

R. Kobayashi [12] and by Cheng and Yau [7]. The second part of Yau's



paper [22] addresses the general question of Monge-Ampére equations with
degenerate right hand side. The method used there is to approximate the
singular metric by smooth metrics. but uniqueness of solutions prevails in
such a way that it is not possible to control the geometry of the solution
metric. Tsuji [21] has studied cone metrics. but in that work the cone angle
a is assumed to be rational. Therefore not only is the result more limited. but
the method itself cannot be applied to arbitrary cone angles. hecause for a
rational it is possible to pass to a smooth cover and then appeal to the earlier
work of Yau [22] and Aubin [1]. [2].

From the Riemannian viewpoint singular spaces also occur naturally. The
analysis of such spaces has been studied by many people: see for example the
work of C'Heeger [3] and [6]. Melrose and Mendoza (13| and that of Mazzeo

[14].

2.3 Local Properties of the Metric

Recall that the metric potential is given by

i

= . .
lIsllZ(1 = =[s[j21==))?

[n a local coordinate neighborhood (. let ¢ be a local holomorphic basis
section of [D]. Then s may be written as s = sq- €g, where s¢ is a holomorphic
function. For these local computations it will be convenient to isolate the
singular direction. so we will let the dimension of M be n + 1 so that local

holomorphic coordinates (=.uw;..... w,) may be defined in which = = so. In
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these coordinates. ||s]|* = |z|*||eq||*: note that |leg||* is smooth but generally

not holomorphic. Put @ = ||¢y]|*>. Then

ddlog V"

T

Il_-l'zaaa( 1 - :-isl‘_’(l-—a)al—-v)'.{ .

dDlog V" — addlog |z|* — 3 log a®

'.’(')5[05(1 _ s|.~|‘*“-°’a*-°).

One computes directly that ddlog|z|* = 0. Since a is positive and bounded

away from zero. ddloga” is smooth. as is ddlog V".

That leaves 25 := =288 log(1 — z|=[*'==)q' =) as the most singular term.
o o

that is. the term needing further study. Write b = a'~°.

—f)glog( L — g|z[21="p)

(3]

-1
(L —elz[t=10)
Nl — :-l:l'-’(l—o:)b) A 'd-( I - :.|:|2(l-u)],)>
l
(1 —z[z[1==16)2
APV A b + b A D) z[P1 ) 421 5b)

(( - 5[;"—’(1-0)6) . 05(1 - Sl:lzu-u””

(o1 = =l 8520720

(121726 + |=21-198) A (B4

‘:I'.!(l—a)gb)))

|
(1- 51:]2(1""6)2
AP 1= A 3b + 9b A 3|z + |2~ 5Fb)

(c‘(l — &|=[¥+=*b) - (63D} = [+~

S2(B20)= 2120 A F|z[H1=2) 4 b|z|21-2)g|z[20-2) A T

b =[21=219b A Blz|H1-2) 4 |z 1=l /\'56))_

Examination of this last expression shows that the most singular term contains
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the factor

AD|=[*1*) = (1 — a)*|z|"d= A d=.

We therefore have:

where w — 25 is a smooth (1.1) form and S is the singular part. Furthermore.

the form of S is

S =|z|7* . bounded form.

So locally. « is equivalent to

1

P =2
i<l

w) =

d=AdZ+) dwNdET

in the sense that there is a constant ¢ > 0 so that

l
cwg <« < ~wy.

[

The metric wy is a crude approximation to w in the same way that in the
smooth Riemannian case a small enough neighborhood looks like a piece of
the plane. The interesting part. the = factor. is just a flat cone. so we may
refer to wg as the flat cone metric. One way to see that the = factor describes

a flat cone is to view it in two real variables. Then

[ ' ]
1
e 0 p [0
gu: :'.;2—0' -
1
0 wer 01

in other words a conformal change g;; = o(r)é;; from the flat metric. Because

it is radially symmetric. it may be seen as a surface of revolution. and because



Alogoe(r) = 0. it is flat. so it is a cone. (This comes from a formula in [11].)
One may see by direct computation that the cone point is reached in finite

time. so this metric is incomplete.

10
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2.4 Derivation of the Monge-Ampére Equa-
tion

With wq the original cone metric described above, we consider new metrics
of the form «w = wy + 9Ju. For now let us just say that u is a real-valued
function and postpone a more precise description until the next section. Since
w = wg + 88u. [w] = [wo]. If p and po denote the Ricci forms corresponding to

« and wq. respectively. then
p = -3 log det(g)

and

po = —dd log det(go).

Next. we have

[po] = [p] = [—] = [—wal-
The first equality holds by computing p = po + 99 f;. in which f, is bounded
because of the third condition above. The second equality holds because g
is Kahler-Einstein. and the third because « and «yq are assumed to be in the

same class. Then since [pg] = [—wy], there is a function f such that
Po + wo = 20 f -
We would like to specify a unique choice by requiring the normalization

I~ e™=1.
_AI(C )a

but we need to know that f is bounded in order for this to make sense.



LEMMA. f is continuous on all of M. Proof: We had [w] = [—p]. so there

exists a function f so that w + p = d3f. or
ddlog V' — 9B log " = 3.
This implies
log V" — logw" = f +c.
for ¢ some constant. or
‘:.
log— = f+c.
Both the numerator and denominator are of the form | = |** times a smooth.

nonvanishing form. so log of the quotient makes sense.

Continuing with the derivation of the Monge-Ampere equation. we then

have
p = po— DD log :;t(z,))'
and also
p=—<
and
po = —wo + 00f.
Putting these together gives
detlg)

—-w = —wg + da_f - 05 lOg det(go)‘

Recalling that « — wo = 0u. this may be rewritten as

ATy det(g) a8 ATy
94 log detloa) dJaf + ddu.
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As in the smooth case. this implies that

det
o detlg) = u + f + constant.

det(gq)

Replacing u by u plus a constant. we may assume that the constant above is

zero. So we get the Monge-Ampére equation

det(g)
log _—det(go) =f+u

We also require w + Jdu > 0. so that the solution will give a metric.

General references for this material are [19] and [9].

2.5 Definition of the Function Spaces

We want to describe functions which are uniformly bounded on the non-
compact set ) := W — D with respect to the singular metric g. Cover M by
finite number of unit polydisks {7, in which either D appears as one of the
coordinate axes or else D does not intersect {; at all. Then define C 3“5 (Q) to
consist in functions u which are continuous on .M and twice differentiable on

Q) and bounded in the norm

lulls = sup(supiu
I3 Q
+ sup [Vull +sup [V,

S | (g70:05u)(x) — (g70:05u)(y) |)
Tk (dy(2.9)?

Here V is the covariant derivative with respect to g.
REMARK: [f g were complete. then for the Holder part we could have |[VVu(z)—

P,VVu(y)| for the numerator. where P,, is the parallel transport operator.



2.6 Statement of the Theorem

THEOREM. Let M be a compact complex manifold. and D a divisor
with one irreducible component. that is. 2 complex curve. Suppose that w,
is the Kahler form of a cone metric as defined above. Then there exists a
Kihler-Einstein cone metric of the form w, + ddu. where u is a function in

2,5
25(0)).

2.7 Continuity Method and Computation of

the Linearized Operator

We want to solve the Monge-Ampere equation

3\

(wy + 9u)t = eftupn

S WA,

<y T ()E).u > 0

s

We set up the continuity method by introducing a parameter ¢:
3
(wg + dOu)" = efre?

\ (M A),.

...:g+33u > 0

7

The problem we therefore want to solve is to show existence of a solution when
t=1. Put £ = {t € [0.1}}(M 4), can be solved}. E contains zero since u =0
solves (M A)o. If E can be shown to be both open and closed. then E = [0.1]

and in particular will contain 1.

14



That E is open can be shown by the Inverse Function Theorem.

Theorem 2.7.1 (INVERSE FUNCTION THEOREM) (/2)). Suppose B, and
B, are Banach spaces and that f € C'(L°) for some U C B;y. If at ug € U,
f'(uo) is a homeomorphism of B, onto B,. then there exists a [’ neighborhood

- of ug such that f|("" is @ homeomorphism of ' into f(L").

Define an operator @, : ("> — (% hy

detv( gij + 0:0;u)
det(g,—,)

®,(u) = log —tf—u

a solution to (M A), occurs when ®,(u) = 0. Suppose t, € E. We want to
show (¢ — 0.ty + &) C E also for some small § > 0.

The first step in applying the Inverse Function Theorem is to compute
the linearization of ®,,. Abbreviate the notation by writing ®¢ for @,,.
det(ggz + 9idu)

det(g,;)
= logdet (g5 + did5u) — logdet(g) — tof — u

Po(u)

—tof —u

d®o(u)(v) = %I,_—_o(@o(u-&sv))

= f ls=a (log det(g; + Bid5u + s0;350) — (u + sv)).
since these are the only terms which involve u. So we get

d®o(u)(v) = v —v.

where g is the metric whose Kahler form is w + 90u.



2.8 Proof That d®, is injective

Recall that ug is a solution of (M A),, and we want to show that d®(to, uq)
is a homeomorphism. To simplify the notation just write d® and u. Similarly
let g be the metric corresponding to the Kahler form w + ddu and write A
for \,. The proof in the compact. smooth case is described in several sources.
including [18]. We follow the same method. except that we are trying to
solve the equatibn on the noncompact set Q that remains when the divisor is
removed. This means that we will be left to investigate convergence of the
various integrals and to ask what happens to the boundary terms that arise.

Assume v € (" and d®(r) = 0. Then /QL'(AL' — vy =0.

JACONETS A L NG,
Q 2 Ja 7
= (T T - [
Here. \ =div grad and Vv = grad v. We want first to show that /n Al =
0. noting that © is noncompact.

Let T. be a tubular neighborhood of D. (Since g is incomplete and the

distance to D is finite. this makes sense.) Then

[t = [ (div grad b = [ i)

= lim d(ig.2w]) = lim IV, "
«—0 Ja-T, Y9N T emo Jya-Ty) T Y
= —lim Ivsawh.
e=0Jor, " 9

The first two equalities are pointwise equations on the integrands and the
fourth is application of Stokes™ theorem. See for example [10] for the identities

involving the interior product.

16



17

Now notice that V(¢*) = 2vVo. so

/ "
vy
aT. 7

= ' [ 2vives
3T,

< 2.su l[/ Fpu?
= Qp!l 5T, Ve,

Therefore it is enough to show that
/ tvewy; = 0asc—0. fore € c*e,
aTe

Since M itself is compact. we could cover it by a finite number of coordi-
nate charts. each of which either does not intersect D at all. or which intersects
D in such a way that. locally. the divisor appears as a coordinate axis. There-
fore it is enough to show that this integral goes to zero in each such coordinate
neighborhood. Furthermore. this is a question about tﬁe metric and the vol-
ume which does not involve the complex structure. So we may show. slightly
more generally: I[f {" is a coordinate neighborhood in a Riemannian manifold

(M.g). and S is an embedded hypersurface. and ||.X ||, is bounded on (. then
/S ixw, < 5 and L iy, — 0 as Vol(§) — 0.
Here w, is the volume form corresponding to g. In local coordinates (.ry. - - - r,).
w, =/detgdr  A--- Adx,.

Choose local coordinates so that § = {r, = 0}. Recall the definition of the

interior product:

ixwg(Viee s Vasy) = wp( X V- L Vaoy).




n a
IfX= It
fX Z: oz, then

=1

ixw, = y/det g(r1draA---Adr, +---+ Indry A--- Adr,_y).

and so
/ irwp\fdet gTodzy A--- Adzn_y.
S

Lemma 2.8.1 Given p € S. it is possible to choose local coordinates so that

in 0. S = {z, =0}. und at p the metric has the form

« 0
gy(p) =
0 gnn J
. d  gm 0 ) .
PROOF. Define ¥; = — —=~——fori = l.---.n— 1. where 4., is evaluated
dr;,  gnn 0T ’

dr,

Detine a corresponding choice of coordinates y; = r, —

nn

d tn -
at p. Then <Y,. > = fin — ;q-—y.m = 0 as desired.
]

Yin

I, for ¢t =

Yun

l.---.n = L. and yn = .. (gi, = gi;(p). i.e.. constants.)

Now verifyv that this defines a change of coordinates:

10 ---0 =2

Inn

... —~&n

o 01 0 -m
31,- -

l —89n-1.n

gnn




det (g-y—‘) =1
dz,
Continuing with the proof of the main result.

]
I/i,..-, 5/!:’,,.:_.,!.
1vs 3

At a point we can choose coordinates as in the lemma. At this point.

vdet glraldey A---Adr.y = /det(g;, :l;;ll VOnnltaldzy A--- Adr,y
= \/gnnll'nl "V det(g,-_,')'l‘—ld.r[ ANeosANdrg_y

sup [|.X]| - ws-

IA

Since these are pointwise quantities. this inequality must hold evervwhere. So
! / i,.c,i < sup|l X - /f" = sup||X]| - Vol(S). Applying this to the case

ivywy . note that
T,
l. {|Vr]] bounded. by definition of the function space C*. and
2. Vol(dT,) — 0 as = — 0. (Proved below.j

So this proves that ‘/’A(v"]..‘::’,‘ =0.

Finally. we have
- 2 __ ! v 2y n
0 = /Qw_\u-u;u.-, -§/QA(L o

T W\ 2on W12 d,
- /Q(\-L.vl)w; /QL ot = /qubug.b; /n, .

(These are finite if v € C'*°. given that Vol(f;) < oc.) Therefore. v itself

must be zero.

Lemma 2.8.2 Vol(dT.) =0 as: — 0.

19



PROOF. w, is equivalent to the flat cone metric

so it suffices to prove it for the flat cone metric. And. since this is Euclidean
in the w-directions. it suffices to prove it in L complex variable. namely for the
metric H‘gd: AdZ.

But for this metric. Vol(9T,) = 2x=(l — a) (see Fig. 1).

2.9 d@ is surjective

The potential obstacles to surjectivity are that the operator is not uni-
formly elliptic and the domain Q is not compact. On the other hand the
uniformity was built into the function spaces that we defined. \e apply the
theory of elliptic boundary and edge operators developed by Melrose.

We first include a simple example to motivate and illustrate some of the
ideas of this theory and to introduce some of the terminology. Suppose one
were to study the Laplacian in R2. It is simply

? _6_3_

A=— .
013+3y2



Now suppose one chose to study it in polar coordinates. It becomes

;\—.?i.*.l.?.*.i
T ort rdr ' 962

One may regard this as being defined on a cylinder. a manifold with compact
boundary S'. This operator is singular on this manifold. but we can remove
these singularities by considering instead

—2.?14.,-:)_4__1_&
=T T s TR e

r’A
In a suitable sense. the operator P = r°\ has the same structure as the

original operator \: P is not elliptic any longer. but rewriting it as

9,
P=(r-a—r) +a—8—2'.

we observe that it is elliptic if it is regarded as being constructed from the
operators or vector fields rd/dr and d/d6. tangent to the boundary S'. One
says that it is a totally characteristic elliptic operator. These are a special case
of the edge operators.

To define these notions more generally. suppose M is a manifold with
compact boundary. and locally ¢ is a defining function for the boundary. We

have the Lie algebra of edge vector fields. V4§ which is generated by

{t_tl t_a_ ti i i
TR PR 8zk‘8y1”"ay, .

An operator P which is an elliptic combination (in the usual sense) of elements
of Vj is called an elliptic edge operator. This only summarizes some of the basic
definitions. One may consult the works mentioned above to see. for example.

that these notions all make sense invariantly.



[n the interior. we can study P in the usual way. At the boundary, we can
deduce some things indirectly. For any complex number s the conjugated oper-
ator ¢~° Pt* should have the same behavior as P. but if P is elliptic ¢™* Pt* will
have special restriction properties at the boundary. This restriction. (¢7°Pt°)..
actually makes sense as an elliptic operator on the compact boundary. This
ought to mean progress simply because that situation is more understood.
but most importantly for these questions. the spectrum. called the boundary
spectrum. of such an operator is discrete. We actually have a family of elliptic
operators on the boundary. parametrized by s. These are called the indicial
operators and denoted by [p(s).

Let us develop a different point of view which also leads ro the indicial
operator and will clarify its appearance in the theory. [n the same way that
application of the Fourier transform converts expressions in d/7r; into alge-
braic equations. application of the Mellin transform converts «xpressions in
td/dt into algebraic expressions. When wishing to solve Pu = f for P of ellip-
tic edge type and f a graded conormal distribution. application of the Mellin
transform produces

Ip(s)uy = fur-

which suggests trying to solve for uys :

S
p(s)

Uy = I

and then applying the inverse Mellin transform. However. there are two places
where this could fail. Firstly. fy is only meromorphic. so it may possess poles.

and secondly. [p(s) vanishes for some values of s. namely at the boundary



spectrum. also called the indicial roots. Corresponding to each value § = R(s)
there is defined a weighted edge Sobolev space t’ HY. and P : ' HF — t* H5~™,
The results of Melrose and Mendoza and of Mazzeo show that if é is not R(s)
for any indicial root. then the map will have closed range.

We now apply this theory to the operator at hand. We do it first for the

model metric
‘#d: A = + Sdu; A 4T,
the flat cone metric. and then adjust it for the actual metric. At the end. an
additional regularity step is required to get back to the Holder spaces in which
we are interested.
[t requires some changes of variables to bring this to the «escription of
the edge theory. First introduce polar coordinates by putting r = €'? and also

since r and 6 are real variables. put w; = r; + V/—ly;. Then put p = r’. where

3 =1 — a. Finally. putting ¢ = 1/3 - p brings the metric to the form
dt* + 3*£df* + Stdri + Shdy?.

The Laplacian is

Ny = Pu +-L I du +ldu+ 0u +,\__nr')"’u
T R Tt ot “‘d’ Loy

so the operator we will study is
2 9.2, ac 2, 2engs 9 2 2.2
(3t)(A—1)—(3t 5t (.0)+3 (t )+3 (ta)—ﬂt-

It is clear that this is elliptic as a combination of the edge vector fields

. a 9 ad 9
V.= {tagé.td—r‘fa—y‘}



Put L = (3t)*(A — [). The next step is to compute the indicial roots.

N , Jd . . ad .
3 = 3°s5° 4 2:11 2 B lsn 2 _ J.! 2‘
Lt = $5 + o + ST + PG ) t
and at the boundary {¢{ =0} we have

I &
(ELE), = £57 + oo
This vanishes for eigenvalues of the one- dimensional Laplacian = on S that
is. when s = j/J for any integer j. Although we computed this for the model.
or flat cone metric. for the actual metric the indicial roots are the same. This

is because the operators differ from each other by a compact perturbation.

We now show that d® has trivial cokernel. We have the deuse inclusions
C3(Q) C Hy(Q)

and

Co¥(Q) C HyY(Q)

where these are the usual definitions of Sobolev spaces on Riemannian man-
ifolds. The proof of injectivity given earlier for d® can be made sense of on
the level of the Sobolev spaces. where now d® is defined in the distribution
sense. We note in passing that in fact the injectivity can even be improved to
about H'/? by investigating more carefully the terms which may appear in the
asymptotic expansion of elements of the kernel: this expansion is described in
(14] and in [13]. A good illustration of its use for improvement of regularity
is [16]. d® is essentially self-adjoint. so this extension is self-adjoint. and so

the injectivity also shows that the cokernel vanishes. so on the level of Sobolev



. spaces the map is a topological isomorphism. ie. d® and its inverse are con-
tinuous. We now dualize the above. To begin with. we have inclusions - also
dense - of the dual spaces:

H™' ()
and

H, C ((';’")'.
The boundedness of the operators. together with the triviality of the kernel on
a dense subspace implies the triviality of the ker_nel on the larger space. that
is.

1d®) : (C3°) — (3

has trivial kernel. so d® has trivial cokernel. To get the continuity of d® and
its inverse on the C'j""’ () spaces themselves. this is not enough: we need to

show that the range is closed.

We have the inclusions in the weighted Sobolev edge spaces:
. Cjb(Q) C [-(n-i-s) H:‘

and

('gb(Q) C t_("+£)Hg.
and we may extend the map L to a map
R SR

[f only we are careful to choose = so that —(n+:2) is not one of the indicial roots

J/3. this map will have closed range and will be continuous. See Mazzeo's

[
U



paper [l4] Theorem 6.1. So for f € C2¥(f) we can find a function u €
¢~{n+<) {2 for which Lu = f. The remaining piece that we need is to show that
actually u € Cj's(ﬂ). This is given by Proposition +.21 of the paper by Lee

and Melrose [L3].

2.10 Outline of the Closedness Step

Recall that we had the parameterized family of equations (M A4), and
defined
E = {t €[0.1]|(MA), can be solved}.

Now show that £ is closed. So suppose that ¢ € [0. 1] and ¢ — I, with (M A),,
solvable for each ¢. We must show that (M 4),, is solvable as well.

[f t; — to. then any subsequence f,, — o also. So if {u.} has even a
convergent subsequence. i.e.. u;, — uq for some ug. it will be enough. For
if there is such a convergent subsequence u,, — uq then ug is a solution of
(MA)g-

To prove the existence of a convergent subsequence. we must show {u;}
is bounded in C}(Q). Then. since the embedding C3(Q) € C}*i1)) is compact
for 0 < & < L. {u;} will have a subsequence {u; } which converges in C**. The
goal. therefore. is to bound {u;} in C}(€). Here we follow the method of Yau
[22] in which he accomplished these estimates for the case Cy (M) =0 and M
smooth.

The main idea in proving these estimates is to obtain an elliptic equality

or elliptic inequality on some relevant quantity and then apply rhe maximum



principle. The difficulty encountered in the singular case is that if a maximum
occurs over the divisor D. it may not be smooth. so it is not possible to
apply the maximum principle directly. The third order quantity one is able
to bound is in terms of the solution metric «w = wo + du. In order for this
to be a uniform bound we need the solution metric to be uniformly bounded
in terms of the original metric. For this purpose, one would like to bound the
second order quantity m + Au. Since it is not possible to do so directly. one

estimates instead e™““(m + Au). and this requires in turn an estimate on u

itself.

Rephrasing this in the forward direction. the main steps in the closedness

argument are:
1. CY estimate on u.
2. Bound on m + Au.
3. Third order bounds.

A good explanation of the method may be found in [17] or in [4].

(8]
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2.11 C° Estimate

We attempt to use the maximum principle. as in (1], [2]. but it does
not apply directly; the function space in which we are working allows u to
achieve nonsmooth maxima. So we add on a function F which we hope to

control uniformly. Suppose u is a solution of the Monge-Ampere equation.

Then locally.
det(gg + did5u) fu
= € .
det(gff) '

Put ¢ = u + F for an unknown function F to be determined. Then u = v — F

so the Monge Ampere equation becomes

det(g,; + t)ﬁ;v - d.d;F) = oJtu
det(g,—,-) )

Suppose v achieves a maximum on €. Then at that point. (;d-r') is negative
semidefinite. so that

detlgy + didy — ithF) _ detigg — d:5F)
det(g) = det(gy)

or

S < det(g; —t)‘-t);F).
- det(g,;\

that is.

-f+F det‘(g:] - atafF) .
det(g;)

e"<e
At that point we have

v < e_f+[-‘det(9x7 — 0;0;F)
det(g:)

€

Recalling that f is bounded. the choice of F must therefore satisfy:

(N2
oL



1. Max v occurs on Q.

(M)

. maxu < maxv.
3. F is uniformly bounded.
4. For some Cg; < 0;05F . uniformly.

Put F = [|s||* for a positive power 3. ||s|| < |. Then v = u+ F will
agree with u along D. and ||s||* will be an initially increasing function in
directions perpendicular to the divisor. [f F increases more rapidly than eny

u € C3(Q). then v will achieve a maximum on €.

We compare the gradient of F to that of functions in ('7*(Q): if the

gradient is unbounded with respect to the flat cone metric g then it will also
be unbounded with respect to w,.

Write ||s]|*° = |z]**|lel|*? locally. with ¢ a basis section for [D]. or ||s]|*® =
|z]??b. Because |le|| is bounded away from zero. b is<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>