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Characterizations of various classes of
Einstein metrics

by
Seungsu Hwang
Doctor of Philosophy
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Mathematics
State University of New York at Stony Brook

1996

A rigidity theorem of the complete n--dimensional spin Ricci
flat manifolds admitting a certain S action is proved, provided
that the action has smooth fixed points and the metric is asymp-
totically flat. Such manifolds are isometric to the n—dimensional

Riemannian Schwarzschild metric.

Also the critical point of the scalar curvature functional re-
stricted to the Yamabe space of constant scalar curvature metrics
with volume one is studied. It is proved that there are strong
topological and geometrical restrictions on the critical point met-

rics. For some cases, it is proved that the metric is Einstein.
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Chapter O

Introduction

In Riemannian geometry, it has been an interesting question to study
Finstein metrics on manifolds. A metric g on a manilold M is called an
Finstein metric if the Ricci curvature is proportional to the metric g, in other

words,

Ric(g) = Mg

for some constant A. Binstein metrics serve as a good candidate for best or
nicest Riemannian structures on the manifold M. In dimension 2 and 3, having
such structures means that the metrics are of constant curvatures, We know
that not every 3—dimensional and 4—dimensional manifold has an Einstein
metric, compared with the fact that that any 9 —dimensional manifold admits
a complete metric W'lth. constant curvature[Bes87]. In dimension greater than

4, it may be that any manifold admits a (negative) Einstein metric.

The existence of such metrics does pose restrictions on the manifold itself
in some cases. For example, when the constant A is positive, the manifold

itself is compact. It is not known whether the nonpositive A might pose some




restrictions on the manifold, except that if A < 0, the isometry group is finite,

It is our concern to classify such structures. It is usually hard to classify such
metrics in general setting, so it is often necessary to introduce some additional

conditions of symmetries or topologies on the manifolds.

In the chapter L, we restrict our attention to a special class of Finstein
metrics, namely Ricci flat metrics on a manifold with a compact 1—parameter
group of isometries. In other words, we study, complete, noncompact Ricci flat
n—dimensional manifolds with smooth §* action. Then the projection map ©
from the manifold M to the space N of orbits is a Riemannian submersion. Qur
study in chapter 1 is focused on the case when the space N is a submanifold
of M. Such a metric is called static. In dimension 4, it is known that, under
natural conditions, static metric is unique if the action is smooth. But as
shown in Theorem 2, in dimension greater than 4, an analogous result fails.
In fact, there are the same number of such n—dimensional metrics as (n —
2)—dimensional positivé Einstein manifolds. But in our Uniqueness Theorem,
it is shown that under “pre-determined” geometric behavior of its end, such a
structure is unique. We refer the study of nonzero A in more general setting

to [Hw].

If the Ricci flat metric has “large” symmetries, we conjecture that the
metric can be completely determined by the behavior of the norms of Killing
vector fields. Not only we coufirm this in Section 1.3, but also we show that

the norms are harmonic functions.




In the chapter 2, we study the scalar curvature functional and Einstein

metrics on compact manifolds, Let M denote the set of all smooth Riemannian
structures on a closed n-manifold M, and M, those of volume 1. The scalar
curvature functional on M, is defined as a function & : M; — R, which is
given by

g S(g)= [ set,
where s, denote the scalar curvature of the metric g, and dvg 1s the volume
form. It is well known that a compact Riemannian manifold (M, g) of volume

1 is Einstein if the metric ¢ is a critical point of & restricted to M.

Since the solution to the Yamabe Problem shows that any compact man-
ifold M carries a lot of metrics of constant scalar curvature, we will introduce
the set

C={ge My, s, constant}.
It should be pointed out that a metric g in C is a critical point of & restricted
to the set Confo(g) of metrics pointwise conformal to g and having the same

total volume[Bes87].

When we restrict the domain of the scalar curvature functional & to C,

the equation for a critical point(metric) is given by
zg = Dydf — (Agflg — fry (0.1)

where z, is the traceless Ricci tensor, 7 is the Ricci tensor, and f is a function

on M with vanishing mean value. A solution (g, f) to the equation 0.1 will

be the focus of our study in the chapter 2.




First we proved that if the function f is greater than or equal to —1,

the metric is Finstein. It will also be proved that in dimension 3, there are
quite strong topological(Theorem 6) and geometrical(Theorem 11) restrictions
on the structure of the solutions. Fspecially the regions where f < —1 and

f = —1 are both chacacterized. A result(Theorem 7) analogous to the static

metric case will be also proved in the chapter 2.




Chapter 1

Ricci flat manifolds with S' symmetry

1.1 Motivation

Let M be a complete, noncompact Riemannian n-—dimensional manifold
such that the Ricci curvature vanishes. As mentioned in chapter 0, it is hard to
know the structure of such manifolds without any simplification of the metric
in higher dimensions. As a natural simplification, we assume that there is an
isometric ST action on the manifold M. Let (¥, §) be the (n —1)—dimensional
space of non-trivial orbits, where the action is free. Let M’ C M he the set of
points where the action is free and let 7 : M’ — N be the projection onto the

space of orbits. Since 7 is a Riemannian submersion,
ok 92
gMr = TGN+

where 8 is a connection 1-form on S'-bundle. Using the formula of O’Neill for

Riemannian submersions[Bes87], it is easy to see, c.f. {Hw], that

5.7 = 3|A]%,




where 3 is the scalar curvature of the metric § on N and A is the (2, 1) tensor

field on M whose values on vector fields Fy, F, are given by
Am By = HDyp VE +V Dyp, HE,.

Here H the horizontal distribution of the Riemannian submersion @ and V the
vertical distribution of 7. The tensor feld A is related to the obstruction to

integrability of the horizontal distribution of the submersion .

A metric with a smooth isometric S* action is called stationary. Moreover
if A= 0on M, such a metric is called static. These metrics have been of great
interest in general relativity of dimension 4, c.f. [KSHMS80]. Our goal of this
chapter is to study those metrics in any dimension. For a more discussion of

S' action on Riemannian manifolds, we refer to [Bes87|, [An}, and [Hw]|.

In this chapter, we study static metrics. A static metric on M can be

written as the warped product metric given by
g = §(z) + h*(a)dt, (1.1)

where § is the (n — 1) dimensional metric on N, and h is the norm of the
Killing vector field of the action. Then the equations that (M, g) is Ricci-flat

take the form

hi = Dydh (1.2)
Agh =0, (1.3)

on N. In particular, the scalar curvature § of § vanishes. Even though it is the

simplest possible metric, it still hard to classify these metrics. Locally there are




infinitely many solutions to the equation 1.2 and 1.3. Thus in order to obtain
some rigidity results, we need to impose conditions on the behavior of the
infinity of such manifolds. Among conditions at infinity, asymptotic flatness

is perhaps the simplest and most natural, but also quite strong condition.

It is known that if the isometric §* action on the static manifold does not
have any fixed point and the function % is bounded, then the manifold M is
isometric to N*! x 5! due to Cheng and Yau'’s result, ¢.f., [An]. Thus from

now on, we study the case when the S action has a fixed point.

Example of a static metric The n-dimensional Riemannian Schwarzschild
metric on R? x §7~%[Bes87] with the metric g can be written as
dr?

T e 4L =

g _—
where r > 1, §o is the canonical metric, of curvature 1, on "%, and @ is the

angle variable on S* with period 4w. This is an example of a complete static

metric. The fixed point set, where & = 0, is isometric to S™? of curvature 1.

Qur direct motivation for the study of static metrics stems {rom the so-
called Black Hole Uniqueness Theorem due to Israel|[Isr67], Robinson[Rob77],
and Bunting-Masood-ul-Alam|[BM87].

Theorem 1 [Black Hole Uniqueness Theorem] Let M* be a complete 4-dimensional
static manifold. Assume that the metric on N° is asymptotically flat. Then

M* is isometric to the {-dimensional Riemannian Schwarzschild metric,

First it should be noted that in these works, the space M* is usually given the

metric of Lorentzian signature 3 + 1. However the Ricci equations 1.2 and




1.3 on N3, of the Riemannian version, have the same form for static metrics

as in the Lorentzian case. Fixed point sets of the action correspond to black

holes in Lorentzian case. The idea of the proof of the above theorem involves
the use of the positive mass theorem in dimension three. M. T. Anderson has
proved that this theorem still holds without the asymptotic decay condition
of the metric, only if the fixed point set of the smooth St action is compact,

[An].

We consider the generalizations of this theorem to dimensions greater
than or equal to 5. Without an asymptotic decay condition on the metric, the

uniqueness is not true:

Theorem 2 [Bes87] Given any Linstein manifold (V*2,4), n 2 5, with

Ricy = (n — 3)§, the manifold (R* x V"% g), where the melric g 18 given
by
A(f1)

g = dt® + 2 () + mdaz,

and [ is the unique function on [0,00) with f(0) =1, f' >0, fr=1-ftn

is complete and static.

If we let N be the space of orbits, given by Ry x V*72, with the metric
§ = dt® + f2(t)g, then N is asymptotic to the Ricci flat metric cone on [
which is smooth except at the origin. The metric has curvature decay of order

2, i.e., as the distance function r from some fixed point in N goes to oo,

C




where K is the sectional curvature of the metric given by
g=dt’ + f*(t)g

on N. This metric § is asymptotically flat only when (V2 §) = S %(1),
which corresponds to the n-dimensional Riemannian Schwarzschild metric.
Asymptotically flatness is a faster decay condition of the curvature of §. The-
orem 2 tells us that there are at least as many as n-—dimensional complete
Ricci flat metrics as (n — 2)—dimensional positive Einstein manifolds. Then

we can pose the following question:

Question A: Does every complete static Ricci flat metric with quadratic
curvature decay arise in this way, i.e., any such metric is of the form given in

Theorem 27

Even though the answer to the question A is not known yet, in the case
where the metric is asymptotically flat, the answer is yes, and is shown in our
Uniqueness Theorem. More specifically, we will describe it in the following.
With abuse of notation, we denote § by g. We assume that the manifold

(N""1, g) is asymptotically flat in the following sense:

Assumption 1. There exists a compact set K € N such that N \ K
has a structure of infinity, i.e., there is a ¢ diffeomorphism ® : N\ K —

R™=*\ B;(0) which satisfies

2m

60!,@ + naﬁu




and

1 m  em?  cuy®

B (’n‘?, - 3) pr—3 + pr—2 + yn—1

h=1

+ v

where A is the norm of the Killing vector field of the action, ng = O(1/r""%),
an € O(1/r" 1) with 6% € Li(’r+n-—2)(E2) for ¢ >n—1and v=0(1/r""),
Dv = O(1/r"), where m and ¢ are constant, as r = [¢| goes to infinity,
and D%y € L'iT_(n_l)(.Eg), with n — 1 < ¢ < oo for some 7 € (1,2) where
By = R*1\ By(0).

Here the asymptotic behavior of the harmonic function A on N is chosen

in order to correspond to the behavior of the Green function on V. Also the

metric g.p is chosen so that the mass m is given by

1
= lim ——m———— dhl,.
= i, ey gy

LY, W# are defined as usual, c.f. [Bar86],[GT83]. The main result of this

chapter is the following Uniqueness Theorem.

Theorem 3 [Uniqueness Theorem) Let M™ be a complete n— dimensional static,
spin. manifold, with n > 5. Also let the metric be asymptotically flat in the
sense of Assumption I, Then M™ is isomelric to the n—dimensional Rieman-

nian Schwarzschild metric.
The fixed point set of the S* action of the asymptotically flat metric should
be compact by definition.

We recall that a spin manifold is an oriented Riemannian manifold (X™, ¢)

together with a lift of the structural group SO(m) of its principal bundle

10
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SO(X™,g) of oriented orthonormal frames to its simply connected double
cover Spin(m). It is well known that X has a spin structure it and only if

its second Stiefel Whitney class wy(X) vanishes. Note that every oriented

manifold of dimension < 3 is spin. This theorem is based on the following ﬂ
special case of the positive mass theorem due to Witten[Wit81], c.f., [Bar86,

Theorem 6.3]. i

Theorem 4 Supposc that (M, g) is a complete spin n—dimensional manifold !!

and that there is an asymplotic structure ® such that i
2, ]
(9.9 — 6) € W2§(Er,) (1.4 H:

for some Ry > 1, ¢ > n, and 8 > n —2). If the scalar curvalure and the
2

mass are zero, then M is flat.

Note that this version of the positive mass theorem ouly requires the regularity i

of the metric to be C (M) N Wf{fc(M) for g > n. }
|

1.2 The proof of Uniqueness Theorem

In this section, we generalize the idea of Bunting and Masood-ul-Alam[BM87]

to higher dimensions. We turn (N, ¢) into an asymptotically flai complete Rie-

mannian manifold with zero scalar curvature and zero mass by making suitable 1:1‘
conformal transformations and by gluing suitably along the boundary. Then
the positive mass theorem for a spin manifold stated above applies, which im-

plies that (V,g) is conformally flat. Since there is no structure theorem in i

dimension greater than or equal to 5, as in dimension 4, we need to devise an




analogous result for any dimensions. Lemma 4(Structure Lemma) serves this

purpose. Having this, Theorem 3 follows.

Without loss of generality, we can assume that 0 < A < Lon N, and b =0
on the boundary 0V, which is the ﬁxed point set of the isometric action; g and
h are a,s%umed to be smooth in N = NUAN. Ii follows that |dh| is constant on
each component of the boundary &N, which is totally geodesic in . The end
of the manifold N, which is the region when % tends to 1, is simply connected

by Assumption 1.
In order to prove theorem 3, we need the following lemmas.

Lemma 1 The metric v = Q3 gag is of scalar curvature zero, where {1y =

_??213(1 + h)ﬁ, Also the metric vy is asymptotically flat with mass zero.

Proof For gt = Q%, s, = 0, and = Q(h), the scalar curvature s' of g' is
given by

sto= 7%, — Q7N (n — 2)(20A0 + (n - 5)|dQf)

(n—2dhP P dO,

since Ah = 0. Taking @ = b(1 £ h)ﬁ with a positive constant b, we have
s! = 0. We shall take b = 27723 from now on.

For the other part, for sufficiently large r,

14+ h, o 2m 1
Yrap = 5 =3 (1 + @—_-3—)—2;_—5)6@ + Nasl
m em? s 2m
= b »=3((1 AT om—13 60{ o
(1 Q(T’L _ 3).;,~n—3 + pn—2 + P) [( + (n _ 3)2 ?‘“_‘5) g+ 7 .3]

12
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_ 2m 1 em? 2m 1 ..
(1 NCEE to A1+ mm‘)éaﬁ + ]

= éaﬁ _|_ ﬁrx,@:

where 5 = O(1/r*™1), and fi,g = O(1/r* 1), for some d > n — 1, which implies

that the metric is asymptotically flat satisfying 1.4 and has zero mass.
1

Lemma 2 +y_ compactifies the infinity: If p is the point at infinity, then there

is a W1 egtension of v_ to N U {p}.

Proof From Assumption 1, we get, for sufficiently large r,

A
Y-ap = ""é*““*" Gop
4

1 m em?  cuy” w3

2(?’), . 3) T.n——B Tn——? T.'n—].

m n=d 1 cm o cay” g gk
— —_— ——— ] B — —_— ™ n—3a o
(2( 3)) r4[ * r - 2 T e

n —
Thus the metric y_,g becomes

m = em o cqy” g 1t 2m 1
— 1 -— Ll 12— —— 6&’ o
(Z(n—S)) ?‘4[ + - + 7 + w31 4 n—3)? :,,-?1—3) 2 + Nas)

m = dm o y® , 2m 1
= |- —[14— 4= 3, )8, N
(2(?’?. - 3)) ?«4[ + r + r2 -+ ‘U][(l + (n IR 3)2 Tn_3) 2] + ] ﬁ]

where & = O(%), |D8| = O(%), ¢ = £, 0(1/r*) with 1 < A < n -2, and
Do = O(1/r"71), [ Dgg| = O(1/r"),

D(zy)q) € Lq—'r—(n—l)(Ez)‘J




where 7 € (1,2), and &, ¢’ are some constant. Making coordinate transforma-
tion 2% = y*/r?, so that

Oy® _
5,8 = (Oas — 22 2 []2)) =72

Hence
e

I (ﬁ) T+ B+ Bagided”

where $,5 = O(|2|*1), |D®us| = O(|2[*?), and

/ ID{zz (i)aﬁlqdz
el<e
= O/ a1 by ol ly |2 Vdy
- ¢ | D2, 5|7y | (D= (rm Dy | bt =Aam (- gy

lyl>1
— 0(6(7+'n o)q-[—(n-—l))}

where ' is a constant independent of ¢. Note that 7+ n —52> 7 —1> 0 for

n > 4. Thus the compactified metric

7t o= y_(z) on {z:0<|z| <€}

o7) niil
. o1, 0 )
(MZ(n—S)) bopdz®dz® al p
is Wi,

O

Lemma 3 The second fundamental form of the boundary in the y4 is given

by

n—5

2n--3
o = —_— h" o , =1l,.n - .
II{(74)ap i(n_3)|d tap o f=1,.n—2 (1.5)




where Y4 s the metric on the boundary induced from vi, and [dh| is positive

constant on the each component of the boundary.

Proof For g' = Q%¢, @ = Q(4), the second fundamental forms on the bound-

ary relative to ¢! and g are related by
1 _y df2 .
H(g )ap = QU 1(g)ap + X7 (5)|dRlGas (1.6)

where § is the metric induced on the boundary from g*. Note that the bound-
aries with respect to the metric g are totally geodesic. Then the lemxma follows

by taking 2 = QHﬁ(l + h)%.
[:|

~ Then we construct a metric  on the NU{p}, where N is the double of N
glued along with the appropriate boundaries; having two copies ¥, and X,
paste these along their respective boundaries to form the double N, with the

metric

7' (=) = (z) zeN,

= v.{z) z€N._.

By the above lemma we can compactifly one end of N by adding a point p
representing the infinity of N_, and extend v to a metric v on NU {p} such
that ~ is W29 in a neighborhood of P in N U {p}. Also we have  is locally
W2 on N U {p}, since y is C* in a neighborhood of the boundaries of N,

and N_.

15




By this construction, (N U {p},~) is complete, of scalar curvature zero,
v is W7, and asymptotically flat with zero mass. Thus, by the positive mass
theorem mentioned in the introduction, N U {p} is isometric to R*~'. In

particular, (N U {p},7) is conformally flat.

Lemma 4 [Structure Lemma)] The function W = |dh|* on N depends only on

. Also the second fundamental forms of level sets h™'(c) for eachc, 0 < c < 1,

depend only on h. In fact, [l = (wnf_g)%g.

Proof For ¢* = Q%g,

Ddf) df) - df) AQ
?‘lzrw(n_B)( 0 -2 02 )W(Q

+ (n — 4)|dlogf2|H)g. (1.7)

Take an orthonormal frame {F;}i—1.n_2 on 27i(c) for a regular value ¢ of
h:Q — Ry, and let v = dh/W'? be the outward normal vector field on
h~1{c). By taking @ = 2"52—'5(1 + h)ﬁ in the above formula,

rHX,v) = r(X,v)— (n—3)Q(UDxdQ,v) — 2dQ(X)dUv))

h 1—-~h
1+h*T(X’V)1+h

= ?T(X, v) —2r(X,v)

where X is a vector field tangent to A 1(e). Since r! = 0, we have r(X,v) =0
or h = 1. By the assumption on A(otherwise A =1 on N, and & is Ricci-flat),

we have
E{W) = 2(Dgdh,dh) = 2hr(E;,dh)
= 2AWYir(E;,v) = 0.

Now we claim that there is no critical point of & in N. We will prove this in the

following lemma. Iaving this, it implies that the boundary has one connected

16
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i

]

(AN

component. Since the Weyl tensor W vanishes, the Riemann curvature tensor E
is determined by the Ricci temsor only. For v, = Q%g, & = Q(&), and for
X € Th™1(e) for some c, ‘
| 4o 29 da .
1 P X - X - Q 1"'_ 2 - — )2 i\
(X, X) r(X,X)—-(n—-3) dhhr(X X) — Q7% dhI*[Q T + (n —4) dh) ] :
df} aa dQ |

J— —_ —_ 1_ —_— X —_— 2 1\:

= (XX~ (0= BT k] — QAP + (0= 45V |

Let £} = 2_753—'"5(1 + h)ﬁ, then we have r'(X, X) =0, and
Y a5 | 9

r(X,X) = Q7RPQ—S + (n = 4) ()1 - (n = 3)0 —f]
2|dh|?
(n—3)(1+4) g
Hence :
| H(X,X) = (DxnX) = dlhl(Dth X) = Id—f;'r(x X) |
2h|dh)|
(n—3)(1 +A)’
and :
1I(X,Y) = (Dxv,X) = |dh|(Dth Y = o r(X,Y) = ;f;

where the last equality follows from a similar computation for r{X,Y"), with i

orthonormal vector fields X and Y tangent to A7 '(c).

Lemma 5 There is no critical point of h in N.

Proof By Assumption 1, we have |dh| = O(1/r"%). From the Bochner for- i
mula 3

0 = [Ddh? ~ %A|dh|2 + o(dh, db), |




%AW - iﬁiﬂ;wfhw_(m = |Ddh|* > 0,
which implies that the function W = |dA|* cannot have its maximum in the
interior of . Suppose there is a critical point ¢ of A with i(q) = ¢,. Consider
the domain S = {z € N|e, < h{x) < 1}. Note that W is a function of A only.
Since W = 0 on A7%(¢,) and W tends to 0 as h tends to 1, it should have its

maximum in the interior of S, which is a contradiction.
O

By the elementary Morse theory and Lemma 5, the topology of N is
homeomorphic to A71(0) x R4, and since we assurme that the topology at the
infinity is simple, the boundary A~1(0) is simply connected and diffeornorphic
" to §™ 2. Also each A(e) is diffeormorphic to S™72,

It is also easy to see that 27*(c) are constant curvature hypersurfa,ces of

codimension 2 in M from Gauss equation
Ko =K.+ 117

and from

5

(n —2)(n — 3) + " — 3(?“(33,55’) +r(y,y)) + Wiz, y,z,y),

R(z,y,z,y)=—

for any orthonormal z,y in T%. Note that W vanishes since the metric § is
conformally flat. It follows that each level set of h is isometric to spheres of

appropriate radii. In fact, the sectional curvature of each level set is given by

4)dhf* L+ c+c?

=3¢ (I+to? (18)

I{hml (e) =

18




Thus the metric ¢ is spherically symmetric and g is isometric to the hy-

persurface of n—dimensional Riemannian Schwarzschild metric.

Remark. (1) A 4—dimensional manifold is spherically symmetric if there
ts an isometric action of the special orthogonal group SO(3) on M each of
whose orbits is either a 2—surface of constant positive curvature or a single
point(n--dimensional spherically symmetric manifold is similarly defined). It
should be noted that even having the spherical symmetry, an Einstein manifold
of nonzero constant A does not have to be unique. It is easy to show that a
spherically symmetric Einstein manifold M* of constant A(not zero) can be

written, locally at points where df # 0, as
§=dt* + fl()2du? 4 F()*(d6? + sin®0dg?), (1.9)

where f? = 1—% f 2—|—?, for some constant ¢ [Bes87]. Especially, for any positive
a, take b = (2a+5;) "1, u = by, and f the unique function on [0, oc) such that
F(0) = ) f(0) = 0, f' > O and 3 f/ 4 fP=3f% = 1, [ = 14 fP—a(1+a) 7.
Then the above metric on R? X ;2 5% is complete and Einstein with A = —3.
Thus we have a one-parameter family of such metrics, depending on a. It
should also be noted that a spherically symmetric Einstein manifold M™ is
homeomorphic to R?* x S"% or §1 x R x §"~2,

(2) Assumption 1 is a strong condition on the asymptotic geometry of the

manifold. It may be the case that the assumption can be weakened to the

bound

Bl =

(1.10)

r2+£’
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where R is the full Riemannian curvature tensor and ¢ is a positive constant.

In order to obtain a similar result with the weaker condition 1.10, one should il

apply the arguments of [BKN]. It will appear later. [ 1

1.3 A metric with large symmetries

By an ingenious argument, Weyl[Syn66] proved that a 4—dimensional ax-
ially symmetric static metric is determined by one axially symimetric harmonic

function on a domain in R®. In other words, such a metric corresponds to a

harmonic function of S' symmetry locally defined on R3. In this section we
generalize this fact to higher dimensions. Assume that a Riemannian manifold

(M™,ds?) admits (n — 2) — 5* actions such that the metric can be written as:

g= gndﬂﬁf + 2¢gqoda dzy + gzzdﬂcg + Zgﬁdw?, (1-11)

i=3
where the g¢’s are functions of z,, and z;. The topology of the manifold is
R% x (S1)"2, Let & = R, x §' = R?. Using isothermal coordinate on 2,
equation 1.11 becomes
g = &?(day + d2d) + Y fidal, (1.12)
=3

where f? = gy4. By straightforward calculation, the surviving components of

the Ricci tensor are the following:

—rn = 31(

3106) 3205 )+ Zauﬁ u 8;04(2 51]‘} 320! Za}fz) :ié'_':ff |
i=3 1. z i T




—r2 =

1
NNy

“ (320531fz+510432fz awf-i)

=3 Off.,' f;
d n 8 i 8 n ,..’ 8 a 2
—ra2 = Of S ) + Oy(—— 20{) + Z 22.f QQ(Z Oa ICV(Z lf
, o = fi L L p
—ry = j’ Af; + i O fiO f; +52fg52fj) ’
o 23 i
where ¢ > 3, and
Afi = 0u fi + On fi (1.13)
We note that
S o= Alyafi) (1.14)

i T
i>3 A5 f;

Now consider the case when the metric is Ricci flat(in fact, it suffices to assume
that > iss ri = 0). Then by the equation 1.14, r = Il;53f; is a harmonic
function of (zy, ;). Then there exists globally a conjugate harmonic function

z(zy, x2) using the simply connectedness of R?, such that
r+ iz = i{z) + tzq),

where ! is an analytic function. Making a conformal change of the metric we

have

o?(dz? + dx3) = A*(dr® + d2%). (1.15)

Thus we can get the metric in the form of

2 n
)ate St g

k>d

g = A*(dr® +d2*) + (
( ) >4 f;

where (A, f;), ¢ > 4 are functions of (r, z).

Let A = e’ Lir=s M fr = e, k>4, Then

ds? = 2 Dhee W (dr® 4 d2?) + e b Mda + 3 ePrdal. (L17)
E>d




Thus (in the following computations, 1 means r-coordinate and 2 means

z-coordinate) we have

1 : 0
o= Av— Y AN — = S0+ (80 + (00 — 2L,
k>4 k>4 ka4 k>4 r
Oyt - .
—riy = e = (3 AR (Y 0aA) = D B eda s,
r k>4 i>d k>4
1 J
—rm = Av =3 AN == A+ (30840 + (&) + L,
k>4 Y k>4 ke r
1
—T33 = HT26-2V(Z A)\k + - Z 81)\;0),
k>4 " k>4
82Aé 61)\3 .
e = & . > 4.
Tid ez(v—zkzi Ag) (&/\‘a + r ) y t24
Moreover, we find that
1 1 1 ,
“5(?”11 +rm) = Av - AN - - >0+ 5[(2 1 A:)
kod k>4 k>4 ‘
F(D B+ D (01h)* + D {627,
k>4 k>4 k>4 LR
6 it
—ri b = (AN — (8 + (@) — Y (@) — 25 ]
k>4 k>4 k>4 k>4 r }‘
For a Ricci flat metric, we have “
it
A+ 2 g sy (1.18) I
r

Ay = g[(z NN - (3030 (3 ) — (307, (1.19)

k>4 k>4 k>4 k>4 i

Gav =[O 1 A6) (O] 02Aj) + D ik, (1.20) i

k>4 524 E>4 ; :

280 + (32000 + (3 00) 4+ Do) + 3 (8 h)? = 0. (1.21) |
k>4 k>4 k>4 k>

If the equation 1.18 is satisfied, then 1.19 and 1.20 are integrable, and 1.21

is implied by the other equations. Thus in any domain £ in which the metric N




is Ricci flat, we obtain the metric with Ay, & > 4 satisfying 1.18, and » defined

by
v o= fg[(Z ) — (D2 0N+ 3 {8 — (82 dr
k>4 k>4 k>4 k>4
-{—T’[(Z (91 »\k)(z 82)\3-) -+ Z (91)\;;62)\)6]012
k>4 i>d k>4

The equation 1.18 is recognized as Laplace’s equation in cylindrical coordi-
nates (r, ¢,%) in Euclidean space R® for a function which is independent of .
After appropriate relabeling, we have the following
Theorem 5 A metric of form 1.11 is Ricci flat if and only if the metric § is
given by
n—3 -3 n—3
g = il M (dr? ¢ dg?) 4 rle liin Ndgk + 3 P! (1.22)
=1

where AA; + Q‘%i =0, fori=1,.n—3, and v is given by

y = ]%[(Zmi)z = (D2 0A) + V(0N ~ 30 A)dr
+T’[(Z 3,,/\,)(282)\:,) -+ Z@T)\,'azA,,;]dz,

b4

where each summation takes from 1 to n — 3.

We can say that the metric § is generated by n—3 functions. We call a metric in

Theorem 5 a (7,,_3-metric, and a manifold with such metric a G\,_s-manifold.

Example. (1) For a 5-dimensional G-manifold with Ay = @ in(r) and Ay =
bz, v =a? In(r) — %bzrz + abz, and the metric bécomes
g = T_Qm(a.—-l)e_b2r2+2b(m—1)z(d,r2 + dz2) + ?‘26—2(& In(r)+bz)d$g + TZadx% + e2bzd$§,

(1.23)




which is Ricci-flat. Then we have the curvature of order

) e 2.2
P 204420 266 T 2abz+26z,

as r goes to oo.

(2) For (k 4 3)-dimensional Gy-manifold with all \; = In{r), 7 = 1,...,k,

v = Lk(k -+ 1}In(r), and the metric becomes

2
k
= rk(k_l)(dr? + dzz) + T'?”%da:g + 7 de?, (1.24)
j=1
which has curvatures of order ;1; when k = 2, and of order T% when £ =3. In

—k(k=1)

fact, it is of order r ~% for general k.

If we take X\; = 2z, ¢ = 1,..., k, then v = —}Tf'gk(k' + 1), and the metric is

given by

k
7= e—k(%y-?(k—}-l)-i—?z)(dTZ + dz2) + TZGﬁEkzdmg + Zﬁzzdfﬂfa
=1

k1) +2kz

. . 1,2 .
which has curvatures of order 27 *( as r goes to oo.
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Chapter 2

Metrics of Constant Scalar Curvature

2.1 Motivation

Let M denote the set of all stmooth Riemannian structures on a closed
n-manifold M, and M; those of volume 1. Einstein and Hilbert showed that
critical points of the scalar curvature functional S : M; — R, ‘WhiC].’l is given
by ¢ — S(g) = [y s,dv, are exactly Einstein metrics, where s, denote the
scalar curvature of the metric g, and dv, is the volume form. As mentioned in

the chapter 0, we introduce the space of Yamabe metrics,
C ={g € M;, s, constant}.

When we restrict the domain of the scalar functional & to C, the equation for

a critical point{metric) becomes
2y = Dydf ~ (8yf)g = fry (2.1)

where z, is the traceless Ricci tensor, ry is the Ricci tensor, and [ i3 a function

on M with vanishing mean value.

25




J. Lafontaine showed that if a solution to the equation is conformally flat,
such a metric is Einstein[Laf83,p71]. It has been conjectured that the only
solutions to these equations are Einstein metrics, with either f = 0 or f a
first eigenfunction of the Laplacian on S™(1)[Bes87, 4.48]. If a solution is Fin-
stein with nonzero f, it is isometric to the standard sphere due to [Oba62](see
Section 2.2). It 1s not known yet whether it is true or not in general, but we
have obtained several convincing partial results in dimension 3. An immediate
consequénce of the equation is that s,/(n—1) is in the spectrum of the Lapla-
cian, if [ is not identically zero. Using a simple calculation we have proved
that if f > —1, then g is Einstein. In general, we have developed numerous
so—rcalled Robinson-type identities for these equations in dimension 3. These
impose quite strong restrictions on the structure of solutions. Especially we

prove the following result:

Theorem 6 Iet (g, f) be a 3—dimensional solution to 2.1, Then the region
where f < —1 is either diffeomorphic to a 3-ball with conver boundary home-
omorphic to S?, or there is compact minimal 2-spherefor projective plane)

contained in it which is locally of least area.

The boundary B of the set f < -1 has special properties. I is a convex
submanifold of M. Also the functions W = |df|* and |dW| are constant on

B{Theorem 9). Especially, on B, we have
2 .9 2
|2|* = §Z(N= NY,

where N is the normal vector field on 8. This is equivalent to saying that

the traceless Ricci tensor z has eigenvalues z; = 23 = —2z3, where z3 means

26




the eigenvalue corresponding to the normal vector field N, and z; and z; to
the thngent vector fields to the submanifold B. Note that if we set s, = 0,
thé equation 2.1 reduces to the static equations 1.2 and 1.3 in the chapter
1. Thus we can think of a solution to 2.1 as a compact manifold version of
the static equations. In the static metric case, the solutions with eigenvalues
of 2, = 23 = —223 everywhere are called “degenerate”, and classified by Levi-
Civita[IKSHMS80]. If a solution to 2.1 has the same eigenvalues everywhere, it
is shown that the solution is Finstein. More generally, we prove the following

result as an analogous result holds for static equations[KinT71].

Theorem 7 Let (g, f) be a 3—dimensional solution to 2.1. If g(df,df) is a

function of f only, then the metric g is Finstein.

2.2 Properties of Critical metrics

We start with the following observation, see 4.47 in [Bes87].

Proposition 1 Let g be a metric in C with scelar curvature s, such that
sg/(n —1) ;'s not in the spectrum SptA, of the Laplacian. If the metric g
is a critical point of the scalar curvature functional restricted to C, then (M, g)
s Finstein.

From now on we investigate the case when s,/(n — 1) € SpTA,. The
restriction of the scalar curvature functional § to C will have a critical point
metric g if and only if there is a function f with vanishing mean value such
that

zg = Dydf — (Ao f)g — fry.
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This is equivalent to the one of following equations

(1+ f)rg = Dydf + nnznlj'lszQQa (2.2)
(14 f)zg = Dydf + JE%T)Q’ (2.3)

where ry, z, is the Ricci tensor, and the traceless Ricci curvature tensor, re-

spectively, and Ay f = 2L f.

Theorem 8 [Oba62] Let (N,v) be a compact n—dimensional manifold of
constant scalar curvature. Assume that it admits a nontrivial solution ¢ of
Dyd¢ = %{‘—bg. Then (N,v) ts isometric Lo the standard sphere of appropriate

radius.

Thus, if g is both a solution to 2.1 and Einstein, (M,g) is isometric to the

standard sphere.

We shall denote by B, the set {& € M|(1 - f)(z) = ¢}, and M, the set
{z € M|(1+ f)(z) < c¢}. We identify B by By. Also we denote by |z| the

norm of the traceless Ricci tensor of the metric g.

Proposition 2 If either f > —1 or |2| =0 on My, then (M, qg) is Finstein.
Proof From 2.3,

fM(1+f)|z|2 = /M(l-l-f)zijzi:i

= [ (df)ur = [ (dp)s)i =,
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where the last equality comes from the following equation:

1
5z:5(r—§g):5r+d( ) = br = —zd(s) =0.

8
11

O

Remark. We show later that z = 0 on B suflices to prove that the metric is

Einstein(see (3) in the Remark after Theorem 9).

1

Proposition 2 suggests that the study of the sets My = {z € M|(1-+ f)(z) < 0}
or B = {x e M|(1+ f)(z) = 0} may be useful. The rest of this section will

be devoted to such a study.

- Suppose that the function f is critical at a point p € B. On the set B,

we have
Dydf (£,6) = o g50(6,6) > 0

for any tangent vector £ in the tangent space T,M at p. Thus the point p is a
non-degenerate critical point of f. Since the index of f at p is 0, p is a local
minimum(case I in figure 2.2). Since such points are isolated, the set B’ of
critical points in the compact set B should be finite. Suppose that B = B, i.e.,
every point in the set B = f~'(—1)} is a critical point of the function f. Then
the value —1 should be the global minimum of f, which implies that the metric
g is Einstein, by Proposition 2. From now on we can assume that B # B’
Then components of B\B’ are co-dimension 1 submanifolds of M (case II, III,

IV in figure 2.2). The following is the summary of behavior of tensors on the

set(submanifold) B.




Figure 2.1: Topology of the manifold near the submanifold B

Theorem 9 We have the following results:
(i) the function W = |df|* is constant Wy on each component of B,
(i1) each component of B\B' is a convex submanifold of M. The second fun-

damental form Ilg at the set B is given by

Wg} the mean curveture
L .

mpg at B is ;ﬁm, and the norm of the second fundamental form at B is given
B

2

by |IIIZB = n2(ni1)WBJ
(iii) the function Q = |dW|? is constant on B,

(iv) N(z(df,N)) = —22(N,N) on B.

Proof (i) By definition, on the set B, W = |df|* = 0. On a component of

B\B', for the tangent vector field X € T'B,
X(W) = 2(Dxdf,df) = 2Dydf (X, df) = 2(1 + f)z(X, df) = 0,

from the equation 2.3.

(ii) For a normal vector field N = df /W'/? to the hypersurface B in M,

S

_ — 172 w2
Iy = DyN = W™Dyl = Wt —isg,
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where the last equality comes from 2.3,
(iil) We have

2.5*

= (Dawdf, df} = %(dW, dw),

Ddf(dW, df) =

where W = |df|*. Hence {2 = |[dW|? is constant on f = —1, or B, and equals

to — ( 1)2W In fact,

2s

W = n(n —1)

df
at B.

(iv) From the Bochner formula and the equation 2.2,

= G(dA S df) = DA~ LA+ o(df, )
g{df,dW) n—1+4+nf
21+1)  nln—-1)(1+))
where W = g(df, df) = |df|*. Thus we have

g(df, dW) sW

= |Ddf|* — %AQW +

1
[ —_
|ngf| = 2AHW 2(1 n f) + n(n — 1)(1 n f) (2_4)
Note that we also have
2VIel' = 2V | DA - (S 5= VDT + ”(imf)}
= v - 25 W fAf
= VAW -V 2(df,dW)+n( )(V2+ = )
g dW 25 . fdf
= divf % )+ n(m — 1)dw( v ),
since
fdf W JAf W

W) = v+ T
FAf YW W FAF W

v v T vE Ty Ty
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where V = 1 + f. Hence we have the following equality;
1, dW 28 fdf '
2_ = :
Viz|* = 2dw( v + Y N7 ). (2.5)
From the equation 2.5 we have
' 1. AW 2s fdf
2 1 -1
2|27 = V7 div( v )+ n(n—l) dw( )
. AW 28 fdf 28 fW
= d dW.d —.
w(V2+ (n%l)Vg) V(<W V)+n(n—1)v3)
Take an € so that ¢ is not a critical value of V. Then
dW 2s  fdf 2s
0ot = [ d W, d
/M_e 12 M il V? + n(n 1) V2)+ M. V3(< W.dV)+ n(n—l)W)

:/ VAW + e )fIfV”?}Jrf_E],,2 VI,V f)
:2f V(YN +2/ V2V, V).

Using the co-area formula, we take the derivative with respect to ¢ at € = 0 of

the following equality:

[l = [ v [ v,

Then we have

LUl = [ =VRa(df df) + VNG, N)) 4 2(df, N)m) + V(. df)
- / VYN (2(df, N)) + 2(df, N)m).

In other words, on B, with (ii) above,

N(2(df, N)) = —2(df, Nym = ~2(df, N)(—3) = =~=(N, ). (2.6)

O




Remark. (1) The equation 2.4 implies that the function W cannot

have its maximum on the set {2 ¢ M; f(x) < —1}. Hence if the function [ is
nontrivial, the maximum of W should be taken on the set {z € M; f(z) = —1}.

(2) Let us consider the pointwise conformal class of an Einstein metric go,
denoted by Confy(g), and take the intersection of this class with the constant
scalar curvatures space C, denoted by C,,. It is easy to prove that every metric
in the class Cy, is Einstein. The proof follows from the following arguments,
c.f. [LP87]: we can take any metric g in Cy. By definition, there is a positive
function ¢ such that ¢ = ¢%gy, or gg = ¢~*¢. Then we have

0 =2, = 25+ @;—Q(ngqs — %qusg). (2.7)

Let & denote the divergence. Then
/ ¢\Z|2=f ¢Z¢jzij
M M
1 g g
- - —2fDd S Adg)i = — —2/'Dd (7
(n=2) [ (Ddp~ ~Adg)isz' = ~(n =2) [ (Ddg)y;z
= —(n—2) [ dai(6) =0,
(n—2) » $i(82);
where the last equality comes from the equation in the proof of Proposition

2.

(3) From the equation 2.5, we obtain the following equality;

/Mo Viel* = fMo v (i@f + n(;f_d);)v) = /Bz(df, N). (2.8)

Thus if z = 0 at B, || vanishes in Mp. It implies that the metric ¢ is Einstein

by Proposition 2. In other words, z = 0 at B suffices to prove that the metric

¢ is Einstein.
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2.3 The 3 dimensional Case

In this section we consider the case when the dimension is 3. Iirst we
prove Theorem 6. We shall need the following results. Let M] be a component

of My. and B = U, B, be the boundary of MY, c.. case Il in Figure 2.1. Then

we have

Theorem 10 At least one of B, is homeomorphic to §°.

Proof Let {e1, e2,e3 = N} be an orthonormal basis nearby B, with the normal
vector field N on B. Also let K, ., be the sectional curvature of the subspace
generated by X and Y, and Kp the intrinsic Gauss curvature of B. Then we

have

Koo = %—T(N,N),

Kg = K. .+

Since Ilp = —kpg as in (ii) of Theorem 9,
B

Ko = 5 r(NN) 4 — = 5 (N, M)+ 5) + i
P79 ’ 18Ws 2 ’ 37" 18Wp
= )
T o6 18wy M)

i.e., for each «,

Wi Kp = gWH!(1+ 55—) = 2(N, V).

By taking integration, >, [,

2 S WHX(B) = LW [ K,




NS /
= -Wg' (1 A —
D2 gWal (Ut g Area. — [ (N, 1)

8 1/2,, 8 / : 2
pr— — LN = J—
= Ea GWB“ (1+ W, JAreaB, Mé(l + )lz]* >0,

where the last equality comes from the equation 2.5, i.e.,

/M'(l + f)z* = /ML; div (W + v ) = /Bz(df, N).

0

And so we can conclude that at least one of the sign of y(B,) is positive.

O

The following lemma is the topological Lemma in [Gal93]. Iu our setting,

the “black holes” are empty.

Lemma 6 Le‘t M be a & dimensional orientable compact Riemannian mani-
fold with boundary OM which is mean convez, and has at least one component
diffeomorphic to S*. Then either there is a compact minimal 2-sphere(or pro-
jective plane) o contained in M\ OM which is locally of least area, or else OM

is a Z-sphere and M is diffeomorphic to a closed 3-ball.

Combining Theorem 10 and Lemma 6 it follows that either the region M,
is diffeornorphic to a closed 3-ball with a convex 2-sphere boundary, or there
is a compact minimal 2-sphere(or projective plane) in My \ B. This proves

Theorem 6.

Now we prove Theorem 7. We first need the following technical theo-

rem(Theorem 11).
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Definition 1 Let W be the Wegl-Schouten tensor field defined by

. 1
Wa,bc = I{abc = Tabse — Tacib + Z(.qac‘g;b - gabS;c)a

where we denote by 7 the covariant differentialion.

Tt is well known that the tensor W vanishes if and only if (M?®,g) is confor-
mally flat. The equation (i) in the following theorem has the same flavor as a

Robinson equality, c.f. {Rob77]. The equation (ii) follows from (i).

Theorem 11 We have the following equalities:

(i) On M, we have
V= VAW 4 3[dW 1 %idfﬁ Y|, (2.9)

or

Loty — g (G TN o p
4V %% y—dw(v +3V = 2V]z|"

(it) At B, we have
o = 22N, VY, (2.10)

where V =1+ f, W = |df|?, and N = W12,

Proof (i) For the time being, we write tensors in a given coordinate system.

From the equation 2.2 we have

- f;ab 2+3f 1-
— 1+f+ 6(l+f)‘sga.b7 (ZJ‘J‘)

Tab




and from the definition 1

1
Rabc = Tabje — Taeib -+ i(gacs;b — gabs;c)
f;abc N f;abf;c + 3ﬁc(1 + f) - (2 -+ Sf)f;cs
1+f () 6(1 1 /)2 Job
_ S fucfp  3fp(+ F) =24 3N)fs
R Ryt 61+ /) Ja
f;u.bc - f;acb (f',a.bf;c B f;acf;b) ;
1t Qt0? ey ese  adec)
By Ricci identity, we have
f;a:bc — f;a,c:b == Rbcfa,fﬂ' (212)
In dimension 3, we have
s
Rij = _g(gikgjl — gigir) + (ragi + rigie — ragie — riega). . (2.13)
Thus
. 3 . .
Reo = mé(gbtgca — Grabet) ¥ (FoiGea 4 Teallst — Thalet — TetGba) F
s . . N
= E(gbuf;c "“ gcaf;b) + (T'bigcaf’l 4 T’caf',b - T'ba.f;b - r"qclgba.f’l)
3 ) . .
= a(gbaf;c - gca.f;b) + (TblgcafJ - rclgba.f’l) + (Tcaf;b - rbaf;b)-

On the other hand, we have
g fuf? 243f
T'blgcaf — l_l_fgca+ 6(1 +f)3f;bgca

W, L 2+3
21+ /)7 " 6(1+ /)

'Sf;bgcaa

and

f;caf;b 2+3f
1+f + 6(1+f)39caf;b-

Tea f;b =




Therefore we obtain

3

2(1 i f) (gbaf;c ““gcaf;b)

-+ (Wf;bgca + + fsf;bgca - Wf;cgba - f

Ra.bc =

Sf;cgba)

201+ /)? 3 y
i +1 el t : ngsgwf s~ fnfe - +fs3fsgb“j"°)
_ug&;ﬁ?MLhm:jpwﬂw—m%a
_ aﬁiﬁwmh#%ﬁmgyfﬂﬁﬂmwﬂ+ﬂ
Pl it 4 S Wot = W)
— S0y g fe)
T o )

Then, since [W|? = Rap R, we have

v 10 : 32f2 4-(2|Ddf|2W . %|ClW]2)
W= T a gy
1 0o 2F o
+m(4|dW| )+ Q +f)4(2AjW (df,dW))
) N
+—"(1+f)4(2Af(df, W) — W) + gy (U dW))
_ SPW | GIDYPW —2dW[?) | |dW]
(1)) TENiL 0 f)
—2sf 9 )
—%—(1 + f)4_(SfW+ (df,dW}) — 0T f)4(sf(df, AW + [dW )
1+ )

SfIW 2sfldf,dW)  3|dWI2  8|DdfI*W

I Y 5 T S T (A T T T

From the equation 2.3,

21,12 _ .2_32f2
Vel = DafP - S, (2.14)




il I
i
39 :
fi
where V =1+ f, we have :‘ *1
Fill |
i
. lit
VAWE = —s*f2W — 2sf{df,dW) — 3|dW|* + 8| Ddf W [
o2 2 i
— S FUW — 2sf(df,dW) — 3[dW|* + 8(VE|z|t + 1?; W :
ol
_ ﬁgngzﬂ/— —9sf{df,dW) — 3ldW|* + SWV?|2|". i
i
! Also from Bochner identity 2.4, tf
VAWE = W — 20 f(df, dW) — 3|aw ]’
(df, dW)  4sW? i
AWAW — 4 . Wl
o
Note that, if g is Einstein, then N

c=aw+Z f df (2.15) .

\

| i

will vanish. Since we have 3
i
\

i

2 £2 4
3107 = 3|WE + 25 (df, dW) + 2L
|

i

7 W, (2.16)
we have |i'::

Y = VWP +3ILP =8V W]z

— AWAW — AWV (df, dW) -+ g-stV_l - apw §
< AWAW — AWV, dW) + 2oWPV 4 ZefWAY.

Thus T }
15
1oty _ -t -2 E_VK If}_f_ ‘
LVIIWTY = VAW - VAW + 2 + 450 h
dW d :
= ain( @)+ a5 = 2viep, i
i




where the last equation 15 2.5.

(i) From (i) we have

VA2 4 3|dW + 2Ldf|*
8V2W

|of* =

V2 b
rr

SWV2

We observe that nearby B, in fact, where df is not zero,
dW = 2Dy df.

Thus we obtain that

Vzldf,-) = Dydf + %g(df, ) = §dW + f

Therefore we have

127 = W + Lo = 4v? 3 o(df, i),

i

|a’.'W+ dﬂz.

(2.17)

(2.18)

(2.19)

for an orthonormal basis {e;}iz1,2,3 with e = N. Thus we obtain the following

equality near B:

of = g VP + g (e

Now at B, or V = 0, we have

jof? = g;:zuv, )
For a tangent vector field X to A7'(c) nearby B, we have

(2.20)

(2.21)




and at B we have

_ {DydW, X} -+ (dW, Dy X)

z(df, X) = e . (2.22)
On B we have
. dWw 1 )
(DpdW,X) = (DxdW, N) = {DxdW, Ql/2> = 291/2X|dfﬂ/| =0,

since 0 = [dW|? is constant on B by (iii) in Theorem 9. Also we note that

on B
dW = %df
and so
3 3 S . }
(dW, Dy X) = §(df’ DxN) = W(df,Dxdf) = WX(W) =0. (2.23)

It follows that, on B,
z(df, X) = 0.
In other words, z{(N,e;) = 0 for « = 1,2. From the equation 2.21, we can

conclude that

2 = gz(N,N)ﬁ.

Now we are in a position to prove the theorem.

Proof of Theorem 7 Let {X = e,Y = ey, N = e3} be a coordinate
frame on each B, being N a normal vector field of B,. From
II(X,X) = (DxN,X)=W"*Dxdf,X)
WYX X) - 2,

IHX,Y) = WYDydf,Y) =W V4(X,Y),




and Kxy = § —r(N,N), we have

Kp, = Kyxy+II(X,X)I(Y,Y)—II(X,Y)

[}

Ky, = %- (N, N) + TI(X, X)II(Y,Y) — II(X,Y)
_ :c'i . _l__ 7 _ ﬁ 2 . fi _ ng v h2
= &= AN N+ G (VAX, X) = L) (VYY) — =) = el X, Y)
s, sf? sfV ﬁ P 2
= E(J.—FW)—I—Z(N,N)( o -1+ W(z(X,X)z(LY) z(X,Y)").

Thus if W = W(f), then Kp, is constant on each B, if and ouly if z(N,N)
and 2({X, X)z(Y,Y) — 2(X,Y)? are constant on B,.. Note that

(taw,df) 1)

1

N,N)= —
is a function of f only. Also, from the equation below 2,16, the function |z|*
is a function of f only. Thus G, = |z|? — 22(N, N)? is also a function of f

only. Since

G = (=X, X) = 2V, Y)Y + 220X, V),

we have

1 1
2 XY} = §Gc—1

2 X, X)z(Y,Y) = 2(X,Y)? = 2(X,X)z(Y,Y)~ éGc +

((X, X}~ 2(Y,Y))
L
4
1 . 1 2 ] !
= EZ(X’X) +ZZ(Y’Y) +~2~Z(X,X)z(Y,Y)—§Gc

(2(X, X) — 2(Y,¥))?

= LE0OX) + (VY - 56,

1 , 1
= ZZ(N,N) ~"2“Gc,

implying that 2(X, X)z(Y,Y) — z(X,Y)? is a function of f only. This implies

that B, 1s of constant curvature.




Note that there is no critical point of f in My due to (1) of the second

Remark in section 2.2. That each hypersurface is of constant curvature means
that the manifold M? is foliated by constant curvature surfaces. Especially
My is foliated by constant curvature spheres since there is no critical point of
f in My and OM, is isometric to S* up to some constant factor. Thus in M,

we can write a metric by
g = c*dt* + H*(t)(d6* + sin’0de®), (2.24)
with ¢ < 0, and constant ¢. It comes from the metric form

g = bl 0+ sind?)

odt = \/%df. | (2.25)

Note that W # 0 in M,. Since this metric 2.24 is conformally flat, by applying

by taking

the result of Lafontaine, we can conclude that the metric is standard, But we
will prove this by straight computation.

Claim. The metric 2.24 is standard on My, i.e., H(t} = ¢ cos(t).

Proof Given the metric form of 2,24, we have

H”
K(ataaﬁ) - —WEIB?
K(d:,05) = B,

1 H?
K(0,0s) = (l-—)=aq

r(@t, at) = 2ﬁ62,

r(05,00) = (c+ B)H?,




r(0g,05) = (a+ B)H sin’0,

r(0u ) = 1(0h,0y) =1(85,04) =0,

2 H? 2H"H
Iz -

s, = 2a+2p)= ).

o2 c?

Without loss of generality, we can take ¢ be (£ 8)1/2, Then we have

CZ _ 3 + ([{!)2 + 2_H”
H? H? H

Thus
¢ =3H+ (H) +2H"H.

Using 2.25, it is obvious that f is depends only on ¢, since |df|* =

From 2.3, we have

Ve@.0) = (Dadf,0) + L

fI{Q

Vz(09,00) = (Da,df,0s) +
Vz(9,,0,) = <Da¢df,a¢)+?fﬁr23in29,

Af,

|
g
1

which is equivalent to

Fef~3) = fut L

VHY o+ B — %) = HH’ft Sf

%stinzﬁ.

VHX o+ 6 — f)sinzﬂ =5 0 o inio 4

ftt + fi( Sf = 0.

2H)

(2.26)

W A 0.

(2.27)

(2.28)
(2.29)

(2.30)




From the definition of e and 8 and 2.27, we have

2 H” f N
Ve (2(—-“——62}1) — 3) = fu+/,
., 2H"
V(“"_ﬁr““ _2) = futf
‘Hﬂ -
fut f==2V(57+ 1). (2.31)

. In the metric 2.24, let ¢ € [{p, t2] with V(#2) = 0. We observe from 2.24
that H(t) is not zero in My except the point where ¢ = #y. It can be proved

that H'(t) is not zero in My. Suppose that H'(3) = 0 for V(¢) < 0. From

2.30,
2H'
fue + fi I +3f =0,
or
2fiH + (fu+3f)H =0, (2.32)

Since H'(t,} = 0, we obtain an equality
Jults) +3f(t) = 0. - (2.33)

Let ¢ = —V/(¢;). Then by definition of {1, ¢ > 0 {Note that on By, H'(t) # 0
and fi(#) # 0. In fact, fi({)H'(t) = H(t) on Bp). By 2.31 and 2.33, at ¢4,

fatf = -2f=2(1+¢)
H o
l+e  H
€  H +1,

which gives the equality H" = LEI— > 0. In other words, if there is a critical
point of H in My, then it is always a local minimum. But this is impossible,

since H(to) = 0 for tp < ty. Hence H'(t) # 0 in M,.




-~ By writing P = H’, the equation 2.26

¢ =3H* | (H') +2H"H

reduces to a first-order differential system of the form

dH dpP P
e — Q(H, P) = —(-—
7= b QUL P) = (57

- )P — G(H), (2.34)

2

where G(H) = (34 - %I-) Then, by Cauchy’s existence theorem, if the

function I = F(H, P) satisfying

AP o QULP) P GH)
T = F(H,P) = T = () - S (2.35)

is Lipschitz continuous in P in a neighborhood U of a point (Hy, Fy), then
there is a unique and continuous integral P = P({) with P{Hy) = Py, Note
that the function F is Lipschitz if the domain U is away from H(t) = 0 and
P = H'" = (. But from above, P # 0 on My and H(t) = 0 only at t = ;.
In other words, the nonlinear ordinary differential equation 2.26 has a unique
solution on (#g,t;]. Since H is a smooth function on M;, we can extend it
to [to,tp], which is Mp. Since Hi(t) = c.cos(t) is a solution to 2.26 with
Hy(to) = 0 and H{(ty) = ¢, by the uniqueness of the solutions to 2.26 by the
preceding arguments, this H;(%) is the unique solution to 2.26, and so the

metric g is standard.
|

This claim implies that on region My, the metric is Einstein. Then Theorem

7 follows from Proposition 2.
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