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Abstract of the Dissertation

Generalized Cauchy-Riemann Operators in
Symplectic Geometry

by
Wladyslaw Lorek
Doctor of Philosophy
n
Mathematics
Stale Un.iversity of New York at Stony Brook

1996

We study applications of generalized Cauchy-Riemann opera-
tors (on Riemann surfaces) to symplectic geometry in dimension
four. Such operators (for the definition see Chapter 2) appear nat-
urally in the theory of J-holomorphic curves, and that is where
we look for examples. The following questions/problems are being

considered:

(1) A topological condition for a generalized Cauchy-Riemann op-
erator to be surjective. Surjectivity of certain operators im-
plies that spaces of appropriate J-holomorphic curves are man-

ifolds. The almost-complex structure J is then called regular.



In Chapter 4 we prove a simple but useful criterion of regular-
ity of almost-complex structures on 4-dimensional symplectic

manifolds (Proposition 4.3.2). The criterion is due to Gro-

mov, and 1t 1s an extension of a corollary to the Riemann-Roch

theorem. Having applications in mind we formulate the cri-

terion for singular as well as immersed pseudo-holomorphic

curves,

(2) Next, we look at the simplest non-generic almost-complex
structures on a four-dimensional manifold. We study them
through the associated moduli spaces of J-holomorphic tori of
virtual dimension 0. We show that the actual dimension of the
moduli spaces M(J, A, 1) can be 0,1, or 2 but no higher, and
stratify the space of almost-complex structures according to
that dimension (Proposition 5.0.5). We show that all strata
are non-empty, give examples of generic almost complex struc-
tures with arbitrarily large number of J-holomorphic tori, as
well as examples of generic almost-complex structures which

are non-homotopic (through the space of generic structures).

(8) In the last chapter we study the evaluation mapping on a
moduli space of J-holomorphic curves. We give an elemen-
tary construction of a generic almost-complex structure J, on

a four-dimensional manifold, for which an appropriate evalua-

tion mapping is not orientation preserving. This happens for




all values of the first Chern class for which the moduli space
is generically ol positive dimension. If, on the other hand, the
complex structure is infegrable then all evaluation maps are

holomorphic, hence preserve orientation. We study pseudo-

holomorphic curves of genus ¢ > 1 1n a symplectic 4-manifold

and show, by examples, that their behavior is typically differ-

ent from that of pseudo-holomorphic spheres.
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Chapter 1

Introduction.

In this paper we give examples of applications of generalized Cauchy-
Riemann operators in symplectic geometry, specifically in the theory of J-
holomorphic curves.

In Chapter 2 we define generalized Cauchy-Riemann operators, and give
several versions of the Similarity Principle, which is one of our main tools.

The simplest example is Proposition 2.0.9:

Proposition 1.0.1 Let a(z), and b(z) be complex valued functions of class L7.

We consider the operator O¢(z)+a(2)é(2)+b{2)¢(2) defined on complex-valued |

functions £(z) on the unit disc D C C.
(A) Let £(2) be o pseudo-analytic function i.e satisfying:
0E(2) + a(2)é(2) + b(z)é(z) = 0

Then there exists an analylic function n(z), and a continuous C-valued

Juncetion s(z),both defined on D, such that




:

Moreover, we can assume that s(zq) = 0 al any prescribed point.

(B) Let 5 be a holomorphic function on the unit disc D C C. Then there is
a conlinuous C-valued function t(2), and a pseudo-analytic function £

satisfying.-

06(2) + a(2)E(z) + b(2)é(z) = 0

such that n{z) = et®E(2). Moreover we can assume thal t{z) = 0 at any

prescribed point.

(see “Methods of Mathematical Physics,” (vol. 2) by Courant, Hilbert). Next,
we consider operators acting on sections of holomorphic vector bundles (for
our purposes mostly line bﬁndles) over Riemann surfaces. lere an operator
is called a generalized Cauchy-Riemann operator if it is equal to the classical
Cauchy-Riemann operator (the Dolbeaut operator) plus a zero-order term.
The point being that the zero-order perturbation is not necessarily complex-
linear. This has global consequences described in Chapter 3 that at least
locally sections in the kernel of a generalized Cauchy-Riemann operator (i.e
pseudo-holomorphic sections) behave much like holomorphic scctions, e.g every
zero contributes positively to the Huler characteristic of the underlying bundle
(see Corollary 2.0.10). An application to pseudo-holomorphic curves is given
in Coroliary 2.0.18.

Chapter 3 deals with global properties of Cauchy-Riemann operators, and
the spaces of such operators. We stratify the space of operators on a given

complex line bundle according to the dimension of the kernel of an operator.

The main stratum consists, of course, of operators whose kernel has maximal




dimension allowed by the Riemann-Roch theorem. Our interests lie however in
lower dimensional strata, especially in the space of operators one dimensional
kernel. Since our opcrators are not necessarily complex-linear that stratum
is, in gencral non-empty. As we show in Chapter 3 , this holds if the base

Riemann surface is not a sphere. Here a sample result is Proposition 3.2.3:

Proposition 1.0.2 Let (a(Aq, Aay ..y Ap), b( A1, Ay, ooy Ap) be @ generic k-dimensional

deformation of an operator ga(O)b(D) with two dimensional kernel. Parameters

(M, -+, Ar) corresponding to operators with one dimensional kernel form «

codimension one (non-linear) cone with vertex at the origin.

We give “hands on” examples of operators with one dimensional kernel,
the first being the example of a generalized Cauchy-Riemann operator with

constant coeflicients on the trivial bundle over a torus see Example 3.1.1.

[n Chapter 4 we prove a simple but useful criterion of regularity of almost-

complex structures on 4-dimensional symplectic mantfolds i.e Proposition 4.3.2:

Proposition 1.0.3 Let (M,J) be a f-dim manifold with an almost complex

structure J, and lel A be a 2-dim homology class in H*(M, 7).

(a) If c1(A) = 1 then J is reqular for all immersed J-holomerphic curves in
class A.
(b) J is regular for all singular curves u such that ¢(A) — Y (k; — 1) > 1,

where {k;} is the set of multiplicities of all singular points of wu.

Here ¢; = (T M, J) s the first Chern class of (M, J).




The criterion is due to Gromov, and it is an extension of a corollary
to the Riemann-Roch theorem. Regularity of an almost-complex structure
J implies that spaces of J-holomorphic curves are in fact smooth manifolds.
[Taving that application in mind we formulate the criterion for singular as well
as immersed pseudo-holomorphic curves. The criterion was also proved by
Hofer, Lizan, Sikorav [HLJ94] (in the non-singular case), and by Ivashkovich,
Sevchishin [1595].

In Chapter 5 we study the space of w-tame non-regular almost-complex
structures JJ on a compact symplectic 4-manifold (M, w) by looking at the asso-
ciated moduli spaces of J-holomorphic curves, If the almost-complex structure
J is sufficiently generic then the space of all J-holomorphic curves of genus ¢ in
a homology class A € (M, Z) is a smooth manifold M(J, A, g) of dimension
equal to the virtual dimension. If ¢;(A) > 1 (where ¢; is the first Chern class
of (T'M,J)), any 7 is generic (regular) in this sense, provided that we restrict
to immersed curves ([Gro85], [HLJ94]) or curves with controlled singularities
(see Chapter 4).

Here we consider the simplest non-generic case of J-holomorphic tori in
a class A with A- A = 0. Now, in contrast to the generic case, the moduli
spaces M(J, A,1) depend a great deal on J. As explained in Chapter 5 it is
then reasonable to consider only the case of embedded tori, where the virtual
dimension of M(J, A,1) is zero. However, the actual dimension of the moduli
spaces M(J, A, 1) can be 0,1, or 2 but no higher. We then stratify the space

of almost-complex structures. We denote by J; ; the space of all .J’s such that

for all uw &€ M(J,a,1), dimker(D,) < ¢ (with equality for some ), and so that

4




dim M(J, A, 1) = j. {Here D, is the Cauchy-Riemann operator cutting out the
moduli space ol pseudo-holomorphic curves, see Chapter 2) . Our main results
are in Section 4, where we show that all but two strata have codimension two

or higher:

Proposition 1.0.4 The set Jyo is open, and dense but with infinitely many
connected components. The sets Jap, Ja1, and Jy, all have codimension 2
(or higher), while J1 o has codimension one. Therefore two generic (in Joo)
almost complex structures can be connected by a path {J,} C Joo U Tho

Here a set S C J has codimension 2 ete. if a generic one parameter

family {J,} avoids S.

We show also thal all strata are non-empty, give examples of generic almost
complex structures with arbitrarily large number of J-holomorphic tori, as well
as examples of generic almost-complex structures which are non-homotopic
(through the space of generic structures).

In Chapter 6 almost-complex structure J on a four-dimensional manifold
with the property that an evaluation mapping defined on an moduli space of
J-holomorphic curves is not orientation preserving. I'his happens for all values
of the first Chern class for which the moduli space is generically of positive
dimension. Such behavior is in contrast to the case of integrable complex
structures where evaluation maps are holomorphic, hence preserve orientation.
We study pseudo—_holomorphic curves of genus g > 1 in a symplectic 4-manifold

and show, by examples, that their behavior 1s typically different from that of

pseudo-holomorphic spheres.




While writing this paper I learned that C. Taubes [Tau95] proved the
equivalence of the newly introduced Seiberg-Witten invariants and Gromov
invariants which are defined on symplectic manifolds by counting appropriately
pseudo-holomorphic curves (see [MS94]). Oune of the corollaries is the existence
of pseudo-holomorphic curves in symplectic 4-manifolds. In particular, there
are symplectic spheres in {CP? w) for an arbitrary symplectic form w, which
implics the uniqueness of symplectic structures on CP2% Such an existence
theoremn provides further motivation for studying pseudo-holomorphic curves.
So far, spheres have been the most useful and the most utilized of all pseudo-
holomorphic curves. In this chapter we explain why this is so, and point out the
main difference between pseudo-holomorphic spheres and pseudo-holomorphic
curves of higher genus.

We give two constructions (sections 6 and 7) of regular almost-complex
structures J for which the evaluation mapping ev is not orientation preserving.
To achieve regularity of J we work with homology classes B such that ¢, (B) >
1 (see Chapter 2). However, it is not difficult to construct examples where ev

does not preserve orientation for small values of ¢, (B).

In section 6, by cutting and pasting, we prove Theorem 6.4.1:

Theorem 1.0.5 Let (M,w) be a f-dimensional, compact, symplectic manifold
and B € Hy(M,Z) a homology class such that ¢,(B) = 1. Assume that there is
a positively symplectically immersed surface 3. of genus g > 1 in the homology
class B. Then there exist w-tame almost-complexr structures J such that the

evalualion mapping ev defined on M(J, B, ¢) does not preserve orientation.




Here an almost-complex structure J is w-tame if the Riemannian metric w(v, Jv)
(v € TM) is positive definite. A curve ¥ is called positively symplectically

immersed if all sclf-interscction points are two-fold with positive orlentation,

and the symplectic form w restricted to ¥ never vanishes ([McD92al). We

need such curves to cnsure that the space of psendo-holomorphic curves in

class I3 is nonempty (since every positively symplectically immersed curve is

J-holomorphic for an appropriate almost-complex structure J).

In section 7 we show thal a typical small perturbation of an integrable

complex structure will have the property that the evaluation mapping is not
orientation preserving. Thus, we can find almost-complex structures with the
required property which are arbitrarily close to integrable, complex structures.

This is the content of Theorem 6.5.1:

Theorem 1.0.6 Let (M*,J) be an almost-complez (compact, smooth) man- |
ifold, B € Hy(M,Z) a homology class with ¢;(B) > 1, and v : 5 — M an ‘
embedded J-holomorphic curve in elass B of genus ¢ > 1 such that J is in-
tegrable on a neighborhood of uw(¥). Then there are almost-complex structures

J' arbitrarily close to J (in the C' topology) for which the evaluation mapping

ev on M(J', B, g} does not preserve orientation.




Chapter 2

Generalized Cauchy-Riemann operators. The

Similarity Principle.

Throughout this paper we will use the notion of a generalized Cauchy-
Riemann operator. This chapter contains some facts about such operators
(including their definition) necessary for applications. The main part of this
chapter are different versions of the Similarity Principle (Proposition 2.0.2,

2.0.13, 14, 15).

Definition 2.0.7 A generalized Cauchy-Riemann operator on a holomorphic
line bundle L over a Riemann surface >) is a linear (over R) operator of the
form

O+ A: (L) - DA @ L)

where 4 € T(A% ® Endg(L)) is a (0, 1)-form on £ with values in the bundle
of real endomorphisms of I, and @ is the Dolbeault operator on L. In general

we will assume that A is either smooth, or in L°°, or at least of Sobolev class

W, A section ¢ € I'(L) solving the equation 9(£) 4+ A(£) = 0 will be called




pseudo-holomorphic or pseudo-analytic.

Remark 2.0.8 Such operators arisc as linearisations of the equation du 4 Jo
du o j = 0 characterizing pseudo-holomorphic curves u : (X, j) — (£, J). The

term A is typically anti-holomorphic.

Locally, the study of generalized Cauchy-Riemann operators is the same as
that of the generalized functions of Bers and Vekua [Vek62]. The first part of

the following proposition is known as the Carleman Similarity Principle (see

[Hei57], [FHS94)).

Proposition 2.0.9 Let a(z), and b(z) be complex valued functions of class L?.

We consider the operator O(z)+a(2)E(2)+b(2)E(2) defined on complex-valued

functions €(z} on the unit disc D C C.

(A) Let £(2) be a pseudo-analytic function i.e satisfying:

06 (2) + a(2)E(2) + HETE) = 0

Then there ewists an analylic function n{z), and a continuous C-valued

function s(z),both defined on D, such that

Moreover, we can assume that s(zy) = 0 al eny prescribed point.

(B) Let n be a holomorphic function on the unit disc D C C. Then there is
a continuous C-valued function t(z), and a pseudo-analytic function £

satisfying:

9€(2) + a(2)é(z) +b(2)¢(2) = 0




such that n(z) = e'¥E(2). Moreover we can assume that t{z) = 0 at any

prescribed point.

Proof: 5See, e.g, “Methods of Mathematical Physics” by Courant, Hilbert

(vol. 2). ' a
As a standard corollary we quote:
Corollary 2.0.10 ([CH63])Suppose that the function [(z) satisfies the above

equation only in the punctured disc 0 < |z| < 1. Then one of three possibilities

holds:

(a) f(z) has an essential singularity at z = 0, i.e images by f(z) of arbilrarily
small newghborhoods of the origin are dense in C,

(b) f(z) has a pole at the origin, i.e for some positive integer n, and a con-

tinuous funclion s(z) we have:

Jz) = W=

Z’n
(c) f(z) is regular at the origin. If f(0) = 0, then for a positive integer n,
and a continuous function s(z) one has:

f(Z) _ es(z)zn

If we assume simply that the functions a{z), and b(z) are C*°, and if £(2) is a

pseudo-analytic function in the whole disc satisfying:

06(z) + al2)é(z) + b(2)6(2) = O
£(z) = 0

10




R

then

i.e the first jet of £(z) is holomorphic.

This proposition as well as the similarity principle are true under much weaker
assumptions see below or [1lei57], [Ber54]. We will also use a global version of

the similarity principle true on the sphere 52 (see [FFHS94]).

Proposition 2.0.11 Let L — S? be a holomorphic line bundle of degree d >
1, and 3 + A a generalized Cauchy-Riemann operator on I, where A is of

Sobolev class WP with p > 2. Then:

(a) dimg ker(d+ A) = 2(d + 1).

(b) For any holomorphic section 5 and a point ¢ € 5 there is a continuous
function s, s(q) = 5? such that ¢®*n is pseudo-holomorphic. Moreover
the imaginary part of ¢**) is strictly positive for all z.

(¢) For any pseudo-holomorphic section & and a point q there is a continuous

function t, t(g) = 0 such that '€ is holomorphic.

Proof: To prove (a) compute: indexg(d + A) = 2(d + 1), and use the fact
that 0 + A is sutjective (just as @ is )(see Chapter 3, or [Gro85], [HLJ94]).
The second part is an application of Schauder’s fixed point theorem, and is

proved e.g in [CH63]. Part (c) is again the similarity principle. If ¢‘¢ were to

be holomorphic then:

11




which is equivalent to
- 0
3(t) mg—f 0.

Since % is a (0, 1)-form of class L™ and H%'(S%,C) = 0, this last equation
can be solved in-the Sobolev space Wh? for any p (with a prescribed value of ¢
at any given point). For details see again [CH63]and I'loer ef al. [FHS94]. The
assertion abourt positivity of the imaginary part of ¢*(*) follows from Liouville’s

theorem, sece [Rod87]. 0

This proposition, specifically part (&), fails on surfaces other than the
sphere. One can think of (b) above as a way of puiting a lincar complex
structure on the kernel of the operator & + A (specifically, multiplying by a
function given in (b) corresponds to multiplying by +/—1). Nothing like that
is possible on surfaces of higher genus. Tt will shown in the next chapter that
there are Cauchy-Riemann operators with one-dimensional {over R) kernel,

Here we give the following example.

Example 2.0.12 On a given line bundle L — T? of positive degree there is

an operator d + A, and a section v of class WP 2 < p such that:

(a) Jv + A(v) = 0 i.e v is a pseudo-holomorphic section

(b) If s is a bounded function then sv is not in the kernel of  + A, unless s

is constant, and real.

To construct such an operator we first pick a (0,1)form w such that the

equation:

gv—kw(ﬁ_v):()

12




has only one regular (i.e bounded) solution (one can insist that » = const,
be the unique solution.) Take e.g w to be a non-zero form with constant
coefficients, and use Fourier series to find the unique section {see Lemma 3.1.2).

Let then v be a solution to the equation:
Ov + wov = 0,

which exists by positivity of degree of L. Next, choose a complex anti-lincar
endomorphistn A (A € D(ACY @ Endg(L))) of [ which preserves v. For
example if A is a hermitian metric on L then lct : A(w) = %[%iff)lv ® w, where
w € L,, z € ¥. Now v is also a solulion to: dv + A(v) = 0. However there is no
section of the form sv where s is a bounded, non-constant function which would
also solve this equation. Otherwise s would satisfy equation: dv+w(v—v) =0

bl

which is impossible.
The following technical proposition will be needed later on.

Proposition 2.0.13 Let L — X be a holomorphic line bundle of degree g
such that dimg (ker d) = 2. There is an ¢ > 0 such that if for a smooth A €

(A% @ Endg(L)) we have ||A]|p~ < ¢ then dimg ker(d + A) = 2.

Proof: We will prove the proposition by contradiction. First note that

indexg(d + A) = 2 therefore dimg ker(g + A) > 2. Suppose that there is a

sequence A, € I'(A™ ®@Endg(L)) such that ||A| < — 0, but dimg ker(5+A4) >
1

3. Let p > 2. Choose triples of sections 7,72 7> € ker (0 + A,) orthogonal

n

with respect to the £? norm, and such that ||77||pes = 1, j = 1,2,3. We will

show that there is a convergent (in L? norm) subsequence {71 .72 .72 1 sa
ﬂ,k1 'n,kJ Ty 3 y

13
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limp, —co T’r?m =7/, 7 =1,2,3. It follows from the standard theory of elliptic
operators (applied to 8) that 71,72, 7% € ker(d), and hence dimp(ker @) > 2,
contrary to hypothesis.

2

. - o 1 3 :
To prove the existence of a convergent subscquence {7, 77,7, } we simply

notice that

Irillwae < e([A(r)llwos + 7 llwor) < ¢ (I7illwor) < ¢

for suitable constants ¢, ¢/ > 0 (see e.g [M594]). Since the inclusion of the
space of WP sections of I into the space of W%P-sections is a compact oper-
ator we can, indeed, choose a convergent subsequence of {r}, 72,77}, That is

enough to prove the proposition. ]

Remark 2.0.14 The assumption that dimg ker(d) = 2 is satisfied il the holo-
morphic structure on the line bundle I, is generic. This is a special case of the
“geometric” version of the Riemann-Roch theorem, see e.g [GHTS].

The above proposition is also true if we ask that A be generic (le in
an open, dense set in C! foplogy) rather than small. We will not need this

however.

We will now go back to the similarity principles. The similarity principle is a
useful tool that allows to reduce the study of almost-complex objects to that
ol holomorphic objects, besides its many applications in complex analysis and
geometry. Above (Proposition 2.0.9) we gave a first version of the Similarity

Principle as in [CH63]. We will state now a useful generalization (see [Ber54])

which extends to higher dimensions.

14




Proposition 2.0.15 If f(2,%) is a complex valued function on a disc D C

D*0,R) C C such that |%| < M|[] then for a conlinuous function s, and a

holomorphic g(z) (in D*(0, R)) we have:

Moreover:

|s(z)] < 4MR for zeD

[s(z2) = s(z1)| < (B, M, B)|z2 — 1 |°
Jor 0 < g < 1. Heve (R, M, 3) is a constant.

Here is a generalization of the similarity principle to higher dimensions. It is

due to Yau.

Proposition 2.0.16 ( [JY8%]) Let f € C™(B,C), be a complex valued func-

tion on a bounded domain B C C™. Suppose that for every v = {7, -, 1} C
{1,-+-,m} there is a constant c, such that
571-}-'4—77
|W| < ¢ | f]

in the domain B. Then:
flz) = Dy(z)
where s(z) is Holder continuous, and g(z) is holomorphic.

We will now give an example of a similarity principle for vector-valued

functions, which was used J.C. Sikorav [Sik95] to show that singularities of J-

holomorphic curves are C''-equivalent to singularities of holomorphic curves.




Proposition 2.0.17 ( [HZ§4], [Sik95]) Let 3(z) be a complex slructure on C
of class C* (here 0 < o < 1), and let J(z) € GLg(C") be a Lipschitz (in z)
complex structure on C*. If [ : (C,0) — C™ is a (germ of) conlinuous map,

such that:
|dfoj —Jodf] <C|f]

then there exists a (germ of) map ® : (C,0) — (GLg(C™),1d) of class C'~,
a holomorphic (germ of) mapping b : (C,0) — (C™,0), and a local diffeornor-

phism v of C of class CY% such thai:

J=&(hot).

Moveover, if j(z) = v (the standard complex structure on C) one can take
= Id. If J(z}) = 1, one can assume ®(z) € GLc(C"). Here the class C'~

denotes the intersection Ngey CF.

The proof is given in [Sik95]. A standard corollary, analogous to Corollary

2.0.10 follows:

Corollary 2.0.18 (/Sik95]) If [ : (C,0) — (C",0) is @ non-zero (germ of)

J-holomorphic curve then:
f(2) = zFa 4 0,_(2")

Jor some positive integer k, and a vector a € C™. Here 0,_(2*) denotes o func-

tion a-Holder continuous for all 0 < « < 1, whose Holder constant (computed

at a point z) behaves like o{|z["*~ ) (for every ).

16




Chapter 3

Number of solutions of a Cauchy-Riemann
equation. Local structure of the space of

Cauchy-Riemann operators.

3.1 Cauchy-Riemann operators on functions.

In this section we will prove elementary lemmas on Cauchy-Riemann op-
erators acting on the space of complex functions on the standard two dimen-
sional torus 7%, and use them to give an example of a 1-dimensional mod-
uli space of pseudo-holomorphic tori. We consider equations of the form:
Ou+wadz +wbhdz = 0, where u is a complex valued function u € Wk k> 2,

and adZ, bdZ are smooth forms of type (0,1).

Lemma 3.1.1 The equation Ou + TadZ = 0 has no solution if adZ is a

non-zero (0, 1)-form with constant coefficients.

Proof: We will make use of Fourier series. Let z = (2 +1y) be coordinates on

the torus T%, and let w = ¥ e+ 4 be the Fourier series of the function

17
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w. The necessary and sufficient condition that u Lies in W k2 is thal the series
S |timn |2 (2 -+ 20) |12 converges. Since k > 2 we have:

¢
2

Ou = D™y o —(m+in)dz.
n terms ol the Fourier series our equation Gu + tadZ = 0 becomes
3 etm:c-%my [(m -+ 3?1) sumn + auimin] = {}

Therefore we get (m+in) 3 Unn+ 0T m_n = 0forall (m,n). Replacing (m,n)

with (—m, —n) yields
—(m + in) % U o + QU = 0

If we solve these equations for u,,, we get

U (m? + n?) 9
: 2 = 0.
() )
It follows Umn = 0 for (m,n) # 0. The assumption a # 0 guarantees that
u = tgg is a solution only if u = 0. O

Using Fourier series we can also find examples of operators with one-

dimensional kernel.

Lemma 3.1.2 If ¢dZ is a non-zero (0,1)-form with constant cocfficients then
Ju+ (7 — u)edz =0

has ezactly one solution ( up to multiplication by real constants ).

Proof: As above let © = St e, then

Ou+ (T — u)edz = Ecimeri"y(%(m 4+ i) Un + (Tmen — U )€)dZ
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and we get
_ d ,
UYem—n = Umn — _(771 + 1n)umn

2c

By substitution (m,n) = —(m,n) we get a second equation

_ (2 .
Umn = U—gy—p + _(m + zn)u~mﬁn

2¢
which combined with the first one yields

i

QE(m — 1) U

U = (1 + i(m +1n))(1 Jr
2c

Thus if %, 7# 0 we must have 1 = (14 =(m +1n))(1 + QLF(m ~ 11) Y, O,

by separating into real and imaginary parts:

1 }
opim il =0,
T [¢(m = in) +E(m + i)} = 0.

It follows that %, = 0 for (m,n) # (0,0), hence u is constant. That is enough

to complete the proof of the lemma. O

Before proceeding to the next section we give a short example of a space
of pseudo-holomorphic curves for a non-generic almost-complex structure. We
will take 7% x C o be our ambient space, and consider psendo-holomorphic tori.
For an embedded torus the normal bundle Ny is trivial, hence the Cauchy-

Riemann operator acts on topologically trivial bundle T? x C, and we have:

Proposition 3.1.3 Let 3 + A, A € Q" (Endg(C)), be a Cauchy-Riemann

operator on T* x C. Then the index of 0+ A is 0, while the real dimension of

its kernel can be 0,1, 2.




Proof: Suppose that the kernel of 9 + A is at least three dimensional. In
that case, we could find a pscudo-holomorphic section 5 vanishing at a point.
By the similarity principle (see Corollary 2.0.8 or Lemma 4.3.4) cach zero of
n would contribute positively to the Euler characteristic of 7% x C making it
strictly positive which is not possible. (For an alternative proof see [Rod87].)

g

Therefore we can expect 2, 1, or 0-dimensional spaces of embedded tori.
The standard integrable complex structure admits two dimensional family of

pseudo-holomorphic tori.

Example 3.1.4 One dimensional space of pseudo-holomorphic curves. To

find a one-dimensional space of fori we take J to be given by

where B is a real 2 x 2 matrix, of the form , Jo denotes the standard

yaa 0
complex structure on C, and 7% = R?/7%. We will take B to be

0 —Yaa

where zy = z, + iyy are coordinates on the second factor in 7% x C, and ¢ is

a real constant. 1% x C is a symplectic manifold with the standard product

symplectic structure wy, and J is wy-tame on a neighbourhood of 17 x 0. We
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will check that J-holomorphic tori form a 1-parameter family of the form:

w:T? — T?xC

with ¢ being a real constant.

If uw = (21,%2) 1s a J-holomorphic torus then we have
du+ Joduoj= (duy +iduy o j,dus + Bdug 0 j + tdug 0 j)

where j is a complex structure on 72, It follows that j is equivalent to the
standard complex structure, and by composing with the inverse of u; we can
assume 7 = Jp, and uy(z,7) = z. Next we show that u, is constant. This follows
from Hopf’s maximum principle for elliptic equations (see [CH63], page 326).

Functions Reug, Imuy satisty
0:Reuq — JyImuy = 0

JpImuy + 0, Reuy = (Imug)a
hence O2(Reug) + 02(Reuy) = 0,(Reusza). Since this equation is satisfied on
a closed surface Reu, is constant (by the Hopf’s maximum principle). I is
then immediate Imuy, = 0. Finally we get (u1,u2) = (2,1), where { is a real

constant. This is a one parameter family of curves.

In Chapter 4 we construct more examples of non-regular almost-complex struc-

tures.

Example 3.1.5 Here is another example of a Cauchy-Riemann equation with

one dimensional space of solutions which works on a Riemann surface ¥ of




arbitrary genus g > 0. This example is due to Y. Rodin [Rod87]. For simplicity
we take once again ¥ = 7% (the construction however, is much the same
regardiess of genus), and the line bundle under consideration will be trivial. We
will find a form dz of type (0, 1) such that the equation du—uadz +uadz = 0,
where u is a complex-valued function, has exactly one solution v = 1. This is
equivalent to constructing the adjoint equation du — u A adZ + u A adz with
a singular solution » admitting a simple pole (see [Rod87]). Now u is a
differential form of type (1,0). To this end we'll identify the torus 72 with
C mod a lattice, in fact without any loss of generality it can be assumed
T? = C/7 & +/—1Z. In order to find @ one starts with a solution u of the form
u = 10v, where v has a function of special form, e.g v = In(2? + y?)g + &,

where both g, and & are real-valued functions. Then u = 1(iv, + v,)dz and

1
2

Ou — u A adz + u A adz is equivalent to the following equation for adz :

1
E(Um + vyy) = (@10, + azvy)

where ay + tay = a. Solving this equation for ¢; one gets: a; = ;}a(%(vm +
£

Vyy) — a2y ). To insure that @, is non-singular we rake a few choices:
(a) Let g(z,y) = g(2* + ¢?), and g = const for r? = 22 + y2 < § + ¢

Both ¢, and ¢ are as usual small positive numbers to be determined later.
Notice that v, = xf%ﬂg + gzIn(z* + y*) + ks, and with g as in (a) we have for

r? > 4

Do
:Bz——li—l:;ag + gmln(wz + y2) < A

for some constant A. To make the partial derivative v, non-zero:
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(b) Let A(z,y) = hi(2® + y*) + ez + dy, where h{x? + y?) is constant on the

disc r* < 6+ ¢, and ¢+ hy, > A.

This last condition implies that v, can vanish only on a disc r? < §, and that’s
where potential -singu]arities of ay are located. However, in that disc both ¢
and hy are constant; that implies v, +v,, = 0 and @y = az%i’-. Finally choose

a5 so that az%i is non-singular.
T

3.2 Local structure of the space of general-

1ized Caﬁchy-Riemann operators,

In the previous section we found examples of Cauchy-Riemann opera-
tors with one-dimensional {over R) kernel. Such examples are the reason why
S]ﬁaces of J-holomorphic curves in almost-complex manifolds do not behave
exactly like moduli spaces of holomorphic curves in algebraic varieties. A
simple study of the local structure of spaces of generalized Cauchy-Riemann
operators shows that operators with one dimensional kernel form a subspace
of codimension one, with cone-like singularities. To see this we will first study
bifurcations of Cauchy-Riemann equations near an equation with two solutions
on the standard torus 7. For simplicity we will consider operators on a triv-
ial complex line bundle over a torus 7% with the standard complex structure,
however our computations apply with small adjustments to non-trivial line

bundles over surfaces of arbitrary genus g > 1. Let a(A) = ap+ A(A, ..., Ag),

and B(A) = by + B(A) be k-parameter, smooth families of perturbations of
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(0,1) forms on 72, ag = «a(0), and by = b(0). We assume that the oper-
ator © — Ou+agu + by, where u is a complex valued function, has two

dimensional kernel. The lollowing propositions will be proved:

Proposition 3.2.1 For an open (but not dense) { in the C°°-Whilney topology
) set of two-dimensional deformations (a{ A1, A2), (A, X)) of ag, bo Odea({})b(o)
all operalors ga(,\)b{,\) (periurbalions of 5&(0)5{0)) have trivial kernel, except for

A=0.

Proposition 3.2.2 There is an open set of deformations (a(A, A2), (A1, A2))
of (an,by) such thal ?()"u(,\)b(,\] have one dimensional kernel for A in a one di-

mensional subsel of the space of parameters.

24

Proposition 3.2.3 Let (a(A, A, .., An), (A1, Ag, .oy Ap) e a generic k-dimensional

deformation of an operator gu(g)b(o) with two dimensional kernel. Parameters
(M, -, Ag) corresponding to operators with one dimensional kernel form a

codimension one (non-linear) cone with vertez at the origin.

We will now prepare the twrf for the proofs of the propositions. Denote
by F, and G the functions spanning the kernel of Ju + agu + byti. Let v,
and w be two functions spanning the orthogonal complement of the image of
an,bou = Ou+agu + boT .Here the orthogonal complement refers to the 12
inner product Re{ f;= fGdz A dy). We will assume that functions v, and w
are orthonormal. We will use the Lyapunov-Schmidt reduction to study the

space of solutions of du + au + b7 = 0. PFirst we make an observation that

Ou+tau+bu = Ou+tapu + boW + Au + Bu with A(0) = 0,and B(0) = 0.




Since the kernel of 8y 4, 13 two dimensional it follows that there is a family of
functions v = u(z,y, A) depending on the parameter A and two real variables

(2,y) such that

Oug o (T F + yG + u) + Al2F + yG 4+ u) + Bz F + yG + w) = 0 mod Imn(d,, »,)

and u(z,y,0) = 0, u(0,0,A) = 0. Such a family u{z,y, \) is very special; if
uy = u1(A), and uy = uy(A) are two k-paramcter families of functions on 7%

such that
5a0,b0ul + A +up) + B(F +uy) = 0mod Im(am,bo)

and
Tup otz + A(G + 1) + B{G + u3) = 0mod Tm (T 4, )

then u(z,y,A) = zui(A) + yua(A). To continue with our analysis we use

functions fi(A), g1(A), f2(A), g2(A) such that:
Dappots + A(F + ) + B(F Fup) = fro+ qrw

Tug oty + A(G + ug) + B(GF uz) = fov + gow
A parameter A represents an operator with non-trivial kernel if for some

{(z,y) #0

sfit+yfo =0
zg1 +yga = 0
A h
t.e if the matrix has rank 1 or 0. More precisely, if rank of the
g1 g2

matrix is one then the cor£esp0nding Cauchy-Riemann operator Ea(,\),b(,\) has




one dimensional kernel, and if the rank is zero the kernel 1s two dirmensional.
The space of 2 x 2 matrices is four-dimensional; the subset of matrices of rank
one is a cone over a two dimensional torus, therefore of dimension three. The
vertex of this cone is the zero matrix, the only 2 x 2 matrix of rank zero. To

see this notice that the equation

T e
det = T11Toz — Tia¥y = 0

Ta1 Loz

can be transformed into

|Z||2 - |22|2

in a suitable system of complex co-ordinates (21, 22). The sel of points satisfy-
ing this equation is a cone over a torus |z1|* = 1, |z3|* = 1. Notice that there
are plenty of 2-dim planes disjoint from the cone (such as z; = 0 etc.) except
at the origin, as well as planes (passing through the origin) that intersect the
cone transversally. Both sets are open in the Grassmanian of two planes.

We will now supply proofs of the propositions listed at the beginning of
this section.
Proof of Proposition 3.2.1.: We will show "by hand ” how to choose
an appropriate perturbation. Let <, > denote the standard inner-product in
the space of square integrable functions on a torus. Since for A = 0 we have

A(0) = B(0) = u(0) = uy(0) = 0

S ahi A ) =< 1 (A) @ F +5G) + o (B) (T T y0) on >

ax




and similarily
Sz bye) =< (A) (eF 3G+ (B) (GFF G0N va >
8/\ T yg?) — a)\ €T Yl dA T gia)), v

all this at A = 0. Choose o7 , of, o) , a2 | 81, B2, By, 32 so that for A = 0

the following holds modulo Im 8, 4,

d 0 —
a(A)F—}— 3_)\1(B)F = ajvy + aduy
0 J — L 5
g)\T(A)G + a—)\](B)G = fivr + By
J 0 —
“a—}";(A) + “(,E(B)_F = CY%,J’UI -+ agvg
d i} —
E(A)G + %(B)G = fBivy + Biu,
fl fg &:{Al + Ct’%/\g ﬁ{'/‘\l —+ ﬁ%)\g
Then is equal to modulo terms of
g1 G2 oA+ aghy BiA + A5

second order O(|A]%). The determinant of the last matrix is nonzero ( except
at the origin (A, A;) = 0 ) for a choice of numbers of through $? from a
nonempty open set in R* { to see that such a choice is at all possible, take o =
oy = fi = ] =0, then the determinant gets reduced to A dq(alf? — adfh)
which can be made non-zero outside the origin ). Finally choose the functions

a(A), b(A) according to a choice of af through 2 . O

Proof of Proposition 3.2.3: When considering generic k-dimensional

perturbations a(Ar, Az, ..., Ap) , b(A1, Ag, ooy Ak) we choose o, o, B, 57 so that

d

A, (A + —

1 (B)F = ajvy + v,

OA;
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B R

hof Yajh; LB

modulo the Im d,,;,, for § =1, ..., k. 1s equal to

g1 g2 20{?/\1’ Eﬂjz)\j

mod terms of second order O(|A]*). This matrix is a linear combination of

1 1
aj f

maltrices If £ < 4 we can choose those matrices to be in general
2 42
a; p;

5A

E3)

position by choosing SAR) gt A =0 appropriately (notice that “being in general
7

position” is an open condition). Therefore we can guarantee that the inverse
mmage of the cone of rank 1 matrices is itself a cone of codimension one, with
vertex at the origin. Hence the set of operators with one dimensional kernel
will also be a cone. If & > 4 then choose the perturbation so that the first four
matrices form a basis, then the inverse image of the cone of rank one matrices
will be a product of a cone by a linear & — 4 dimensional space, hence itself a
cone. The set of operators with two-dimensional kernel is homeomorphic to a

linear k& —4- dimensional space. That is enough to prove Proposition 3.2.3. O ‘

Proposition 3.2.2 can be proved by choosing the first two matrices so
that the vector space spanned by them cuts the cone of matrices of rank one
transversally.

We will now consider generalized Cauchy-Riemann operators on non-

trivial line bundles over Riemann surfaces. Let 8+ A be a generalized Cauchy-

Riemann operator on a holomorphic line bundle I — ¥, where A € Q%! @




Endg(Z). In this section we will assume that the index of @-+ A is non-negative.

In what follows we will need special bases of kernels of 8 4 A, and its adjoint

(8 -+ A)*.

Definition 3.2.4 Let [ be a pseudo-holomorphic section of L. If [ vanishes
at potnt p then in local co-ordinates centered around p, f(z) = az™+ h.o.t. We

define the degree deg f(p) = n, and deg f(p) = 0 if [ does not vanish al p.

Definition 3.2.5 Let I — % be a line bundle, 9+ A o Cauchy-Riemann oper-
ator and (84 A)* its adjoint. Let {g;}7,, and {w; 12y be linearly independent
subsets of kernels of 0 + A and its adjoint.

A point p € X will be called generic if there are linearly independent

subsets {fi};-,, and {v;};_| of the kernels of @+ A, and its adjoint such thal:

(0) The vectors {f:}, and {v;} are linear combinations of {g;}, and {w;}.

(1) The vectors fi(p), falp), and vi(p), vo(p) are patrwise independent {over
R) in the fiber L,.

(2) deg filp) < deg fiva(p), and degvi(p) < degwiyi(p).
() |deg fi(p) — deg fira(p)l < 1, and | degvi(p) — degwia(p)] < 1.
(4) If deg fi(p) = deg fir1(p) then, in local coordinates:

filz) = aizdegfi(f)) o fil(z) = aiﬂzdegf,-ﬂ(p) p..

and a;, a;y1 € C are independent over R. Analogously, if degv;(p) =

deg vig1{p) then, in local coordinates:

Ui(z) — {bizdegm(p) A4 .}gg Q,Z.H(z) — {bmzdeg“iﬂ(?’) 1. .}%
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where b;, biy1 are independent over R.

Lemma 3.2.6 For any choice of linearly independent subsets {g;}7,, and
{w;}7_y of the kernel of &+ A, and its adjoint, the sel of gencric points is

open, dense and non-empty.

Proof: The proof (by inductipn on m, and n) follows easily from the following
observations. The conditions (1) — (4) (with the exception of (2) which can
be satisfied by replacing sections g, and w; by their linear combinations, and
by renuwbering them) define the set of gencric points as a complement of
closed subset of ¥ cut out by a finite number of equations (sec below). As
1t can be seen by inspection the complement of the set of generic points is
a union of isolated points, and one-dimensional arcs. Moreover, it is enough
to consider one operator at a time, and then take intersection of both sets of
generic points. We will consider 8 + A. Let {¢,17, be a basis of the kernel
ot this operator. The proof proceeds by induction on m. If m = 1 then
observe that the complement of the generic set is simply ¢, *(0), and, by the
Similarity Principle, is a collection of isolated points. FFor m = 2 consider a
point p € X — g7 (0} — ¢5'(0). If ¢1(p)/g2(p) & R then p is generic. I, on
the other hand, ¢;(p)/g2(p) = ¢t € R, then consider a complex valued function
n = "’—1% This function satisfies an equation of Cauchy-Riemann type, and
n(p) = 0 hence, in local co-ordinates, n(z) = az® + ---. It follows that 5 1(R)

is a set of codimension 1 in 3. The complement of the union of those arcs

(including the zero locus of both sections) is the required set of generic points.

Here one can set f) = g1, f2 = g2. The remaining part of the proof proceeds

30




in similar fashion. 0

Corollary 3.2.7 Ifindex(d+A) > 0 then dimg ker(G+A) < index{d+4)+2g.

Proof: Suppose that dimgker(d 4+ A) > index(d + A) + 2¢ + 1. Choose
a basis {f;}17, of the kernel of 3+ A, and let p be a generic point. Then
deg f, > index + ¢ + 1, and therefore ¢;(L) > index + g + 1. This contradicts

however the assumption that the index of d + A is positive. O

Let L — 3 be a holomorphic vector bundle of rank one on a Riemann
surface 2. Let CR denote the space of generalized Cauchy-Riemann operators
on L of the form & + A, where 9 is the Cauchy-Riemann operator defining
the holomorphic structure of £, and A is an endomorphism of the bundle. All
such operators have the same index, index = 2(1 — g) + 2¢,(L). Let NR(s) be

a subsgpace of operators with s-dimensional cokernel.

Proposition 3.2.8 If the index of the operator § + A is at least 2 then the

codimension of N'R(s) is grealer or equal to [%1} X {s + index).

Proof: We will consider only the case s = 2. The proof for s = 1, and s > 3
is similar. Let d + A be a generalized Cauchy-Riemann operator on a line
bundle L — %, g(%) > 1, A € Q% ® Endg(L). Let s be the dimension of the
cokernel of 8 + A and let r = dimg(ker(0 + 4)). Let &+ A+ B(A\), A € R™
be a perturbation of the given operator such that [%}‘] x {s + index) < n.
We need to show that for a generic perturbation B{A) the set of values of the

parameter A for which the operator 8 + A 4+ B()) has s-dimensional cokernel

has co-dimension [ﬂ] X (s + index) or higher. Tt is equivalent to consider

2
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parameters such that the kernel of 8 + A + B(A) is »-dimensional. Recall that
the space of generalized Cauchy-Riemann operators on L is an affine space
modelled on O™ ® Endg(L) = Q% ® Bndc(L) + N ®@ Bnde(L). We let
B(A) = XA A; + hood be the perturbation term with B(A) € Q%' @ Endg(L).
Let fi, ..., f» span the kernel of 3+ A, and vy, v; be two sections complementary
to the image of & + A. To find the kernel of the perturbed operator we solve
equations (0 4+ A)u; + B(f; + u;) = 0 mod Im (@ + A), for sections u; in a
fixed complement of the kernel of & + A. Let then p;, € R be such that
(O Ayu; + B(f; +uy) = piavn + pii0vs. Then alinear combination Sa;(f; +u;)

with real coeflicients x;, 2, ... is in the kernel of the perturbed operator if
(@+ A)(Ez;(f; + ug)) + B((Bai(fi +w;) = (Szypn )0 + (Swjpm5)vz = 0,

Le when X7 z;u;, = 0 for s = 1,2. The perturbed operator has r, r — 1

J=r,s=2 .

or r — 2-dimensional kernel if the rank of the matrix C'(A) = [J”J',S]jﬂ sy 1

0, 1, or 2 respectively. The perturbation will be called generic if at least
[ﬁz’—l} X (s 4 index) entries of C'(A) are linearly independent (as functions of
A) at the origin A = 0. We will now show that generic perturbations exist.
We will insist that B(A) be anti-linear since such endomorphisms arise from

perturbations of almost-complex structures on M. Recall the definition of y;,

and differentiate with respect to A = Ay :

O+ Au; + B +w) = pjavi + pgave

= J 0 J d
= At + Fy Hi2tl

(@4 A) gy + (57 BN +uy)

X
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The last equation implies that at A = 0

%, ) 0 -
EXB(O)UJ) = apﬁj,l([))'ul + EX,LLj,g(O)vj mod Im (@ + A).

Let JaX[B(O) = Bk € Q%' @ Endg(L). To find a generic perturbation B we
consider a generic point p of vy, vy and fi, -+, f,. We may assume that in local
coordinates, and a local trivialisation of the bundle L, v1(p) = 1, and vy(p) = 1.

We arrange notation so that:

deg(f1)(p) = deg(f2)(p) > deg(fs)(p) = deg(fa)(p) > ...

and if deg f;(p) = deg fi(p), then in local coordinates near p:

filz) = a;2™ + hot
filz) = apz™ + h.ot

ay 1 132 m C

We work in local co-ordinates, and look for anti-linear ,’s with small support,
so that By(f;) = {bx(2)(¢;2™ + h.o.t)}dz for some complex-valued functions
by with a small support. The proposition will follow if we observe that func-
tions ;2™ + h.o.t(vi(2)/(dz)) are linearly independent in L? on any open
neighborhood of the generic point p. It is then possible to choose the functions
b so that r of the entries of (' are independent (as functions of A). The gen-
eral case is proved in exactly the same way if we work in a neighborhood of a

generic point, and use bases provided in the lemma 3.2.6. n

In the borderline case of line bundles of degree ¢ — 1 one can prove a

proposition analogous to Proposition 5. Assume that d + A is a generalized
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Cauchy-Riemann operator on a line bundle £, degl, = ¢ — 1, with two dimen-

sional kernel. Then

Proposition 3.2.9 For a generic 3 < k-parameler perturbation 9 + A(A) of
8+ A there is a codimension one cone in the space of parvamelers corresponding
to operators with one dimensional kernel. The vertex of the cone is al the
origin which corresponds to @ + A. If k > 4 the space of operators with two-

dimensional kernel is homeomorphic to RF1.

Proof: 'The proof is exactly as that of Proposition 3.2.3.

3.3 EIEstimates of codimensions of singular curves,

and curves with self-intersections.

We will now prove some estimates of the codimension of J-holomorphic
curves with triple sell-intersections. The proofs, much like in the previous

section rely on the notion of transversality.

Definition 3.3.1 Let u: X — M be a J-holomorphic curve. A point P ¢ M
is a triple self-intersection point of u if there are three distinct points zq1, 29,23 €

% such that u(z) = u(z) = u(z3) = P.

Proposition 3.3.2 For a generic almost-complex structure J (i.e in a set
which is « countable intersection of open, dense sets) the evaluation mapping

[GAY

ev: Mxg(ExExY) - MxMxM (83)




(U, 21, 22,23) —  (uz1),u(z2),uz3)) (83)

(where M denotes the set of paramelrized curves, und G the reparametrizalion

group) has the following properly. The tnverse tmage of “the triple diagonal”

i.e the set{(u, z1, 23, 23) : none of the z;’s is a singular point, and u(z)) = u(z;) =

u(z3)} is of real codimension 8. For a generic J, if M contains an immersed |
curve then it also contains an immersed curve without triple self-iniersection

points.

Proof: Let J denote the space of almosi-complex structures on M. Recall

that for a generic J (in a set of second category) the moduli space M is a
manifold, it will be enough to work with such almost-complex structures. We

will work with an extended evaluation map:
VT XxMxg(ExENx¥) - MxMxM. (§3)

Let A be the triple diagonal in M x M x M. The proposition will follow if we
can show that 8V is transversal to A. Let P be a triple point, and (zy, 22, 23)
three non-singular points which are mapped onto P by a parametrized curve
u. We will use local charts on ¥, and on M. Those can be chosen so that

i 0
J = ;and J = Jy at the origin. Moreover we can ensure that u,(2) =

0 Jz

(2,0). Let uy = (3, ws), and us = (vs,ws). After choosing local co-ordinates

near z, s, z3 it can be assume that v’s, and w’s are defined on a common disc

in €. The point now is to manufacture enough perturbations of J which will




move the three branches of « through P in all directions transversal to A. For
that we constder a small annulus A @ (6/2 < |z1| < §) x C. Il {vg,w9) € A,
then: fwy(2)] > c|z}7’?/"3 > ¢dy, where all constants come from the expansion:
v2(2) = wez® + hoot, and wy(z) = by2™ + h.o.d. If v, = 0, we replace the above
inequalities by |ws(2)] = ¢|z|. Similar inequalities hold for ugz, in A : |wy(2)| >
clz|Ps/® > ¢y, or |if w3 = 0, take p3 = g3 in the last inequality. We will now
consider a particular perturbation wy., € € R, of u, and show it is a path of
Je-holomorphic curves (for an appropriate perturbation J, of J). Consider
Ty = (2,€), and connect it Lto uy to obtain wie = (2, n(jz]) + (1 — 5(]2]))).
Here 7 is a cut-off function chosen so that (for small ¢) w, is immersed, necar
P, and without extra intersection points, and so that the connecting annulus
lies in the region 6/2 < || < &, |2a] < ¢6;. Such a choice gnarantees that
the connecting neck is disjoint [rom u,,us. Now perturb J to J. which makes
u1e a psendo-holomorphic curve. (This construction is taken from [McD94].)
Now repeat the same with uy, and uz in place of 1y to show that if {7, z;, z3)
are non-singular, and v € TpM then for 2 = 1,2, 3 there exists a 1-parameter
family J;, and u; such that iut(z,-) = v, uy(2;) = u,;, j # i. The proposition

follows by standard arguments of perturbation theory. 3

We will now show that for generic almost-complex structures singular
curves have codimension at least two in the moduli space of pseudo-holomorphic

curves.

Definition 3.3.3 A mapping v: X — M s called singular if there is a point

p € X such thal the differential du(p) does not have the maximal rank. The
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point p is then referred to as a singular point of the mapping w. In particular,

immersed curves are not considered to be singular in this section.

Proposition 3.3.4 Let A€ H(M,7) be an arbitrary homology class that can
be represented by curves of genus g. For a generic almost-complex structure J
(i.e i a sel of second category) the set of singular curves w € M(J, A, g) is of

real codimension 2 or higher in M(J, A, g).

Proof: Here is an outline of the proof. Consider the space of parametrized

curves Jﬁ(j , A, 1) and a partial differential ¥ of the evaluation mapping:

T M(JG A D) X, TS — TM

(J,u,2, U) - (u(z)v du(v)).

where (1 denotes the reparametrization group of 7%. Let @ denote the zero
section of 1T'M. The proposition follows from standard arguments iz pertur-
bation theory if we can show that ¥ is transversal to . That in turn follows
immediately from arguments either in Sikorav’s article ([Sik94]) or in an at-
ticle by McDuff ([McD94]). We will use a combination of both. Let 4 be a
curve singular at a point p € X, 1.e du(p) = 0. Let v be an arbitrary vector in
TupyM. We need to find a I-parameter family (J;,u;) of pseudo-holomorphic
curves such that (Jo,u) = (J,u), and duy(0) = vt. A theorem due to J.C
Sikorav ([Sik94]):

Theorem 3.1.1. [Sikorav]. Let (V,Jp) be an almost complex manifold of

class C" for some r > 1. Fix a point v € V. Then:
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(1) For every X € T,V small enough there exists a Jy-holomorphic map f

(D,0) — (V,v) such that df(0)-1 = X.

(ii) Let fo : D — V be a Jy-holomorphic map. Then there exists a > 0, a

neighborhood call/ of Jy in J7(V) and a map of class C” :

FrUuxDla)=V

such that F'(Jy, ) = fo and F(J,-) is J-holomorphic.

gives us a lamily (Jy,w) of pscudo-holomorphic maps %y : D? — M such
that d@;(0}) = vi. These can be extended to maps u; : & — M, which arve
Ji-holomorphic for some almost-complex structures which agree with J on a

neighborhood of u(p) = wi(p). Now recall that there are only finitely many

singular points on u, and repeat the above for all of them, and for v = vy, v5- a
basis of T'M{ at an image of a critical point. That is enough to show transver-
sality of W to O. It follows that for J in a set of second category the restriction

of W:

Mxg, TS — TM

is transversal to the zero section, and hence the set of singular curves in M

has co-dimension 2 (or higher). 0




Chapter 4

Regularity of almost-complex structures in

dimension four.

In this section we prove a simple but useful criterion of regularity of
almost-complex structures on 4-dimensional symplectic manifolds (Proposition
4.3.2). Having that application in mind we formulate the criterion for singular

as well as immersed pseudo-holomorphic curves.

4.1 Set-up

Our working space is the space Mapk‘p(E, M) of maps of a closed Riemann
surface ¥ into M which are somewhere injective, and locally of class (k, p). We
fix k, and p once and for all so that & — }2} > 2. This guarantees that all our
maps are at least of class C?. If the genus g of ¥ is greater or equal to one, we
allow for variations of complex structures on the surface. Let then 7, denote
the Teichmuller space of ¥, which parametrizes the space of such complex

structures (up to modular group). There is a smooth map 7 — j, from the
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Teichmuller space to the space of smooth complex structures on ¥ (McDult-
Salamon [MS94]). Given an almost complex structure J on M and a homology
class A € Hy(M, Z) we define the space of parametrized psendo-holomorphic

curves
M, A g) = {{u,7) € Map™® (3, M) x 7T, : Dy(u) = duocj, —Jodu=0)

The spaces of unparametrized curves M(J, A, g} are obtained by dividing by
relevant reparametrization groups G/, ( [MS94]).

The operator J;(x) can be thought of as a section of a bundle over
Map*? x 7,. An almost complex structure J is called regular if the lineari-

sation D, of 9;(u):
D, = DEJ(U.) : I/V""’p(u*TM) — Qo'l(u*TﬂJ)

is surjective for every curve uw € M(J, A, g). For applications we need an

explicit formula for D,,. If we fix a connection on M such that V.J = 0 then
Dy, = Dd;(u) : W2 (w* T M) — WhE=Lp(19Y @ w*T M)

Du(E) = 5(VE+ J@)VE 0 jr + tor(D(w), )

at a point (u,7). Here tor(ds(u), &) = Tor(8s(w), &) + J(u)Tor(d;(u),£), and
Tor is the torsion of V. Note that the connection V induces holomorphic
structures on u*TM hence the usual operator 8. The operator [}, is of the
form 8+ A where A is a linear zero order term, i.e a (0,1)-form with values in

the bundle of endomorphisms A € W*=12(7™ Y] 3 w*T M) hence a generalized

Cauchy-Riemann operator.
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4.2 Reduction of D, to the normal bundle.

The regularity of an complex structure J means that the operator D, is
surjective. By the very definition this is an operator on a bundle of rank
two or higher. -IL‘ 1s easier, however, to deal with opcrators on line bun-
dles. By allowing variations of complex structures on ¥ we can reduce D,
to N, = w*TM/TY, the normal bundle to ¥ in M, provided that the curve
u is immersed (or with mild singularities). The tangent bundle u*1'df is
equipped with a holomorphic structure so that u*: T :— 7'M is holomor-
phic, therefore N, becomes a holomorphic line bundle, and D, a generalized
Cauchy-Riemann operator on a line bundle.

We will now outline the reduction process. Let u be a pseudo-helomorphic
curve. For simplicity we assume that w is embedded, but the construction
goes through in the immersed case as well. Let g be a J-compatible hermitian
metric on (TM,.J). We then choose a J-compatible connection V on T'M
which makes the embedding 7% — TM holomorphic. Namely, let V be a
hermitian connection on T'M with additional properties:

a) 9y = don TS

b)Tory = Nijg

Where Nijy is the Nijenhuis tensor of J. To find such a connection let
vy be the g-normal bundle to 'Y, so that TM|y = T @ vy. Extend the
splitting to.a neighborhood U of X, TM|y = Ly @ Ly, where L; are com-

plex line bundles, g-orthogonal extending 7% and vs. Let Vi be the unique

torsion-free, hermitian connection on ¥ extended to Ly, and Vy be a hermitian




connection on Ly. We define V = V; & V, on U, and extend it across M. By
subtracting components of torsion of ¥V we can obtain b). The dy operator on
T'M|y defines a holomorphic structure on 7'M |z (which is in fact canonical,

)

see Taubes [Tau95]), and by property a) above the embedding TS — T'M

is holomorphic. We defline the holomorphic structure on the normal bundle

Ny =TM/Ty, by an exact sequence of holomorphic bundles
0— 1% > uTM— Ng — 0.
Gur operator D,, composed with projection onto Ny descends to an operator
Dyt WEP(Ng) — WELP(101 % @ Ny).

(This follows from properties a) and b) of V. The second property guarantees
that the zero order part of D, vanishes on 7'% because the Nijenhuis tensor
of an almost-complex structure on a surface is always zero). Since we allow
for variations of complex structures on X, surjectivity of D, restricted to Ny

18 equivalent to surjectivity of D, on u*T' M.

4.3 Regularity of almost-complex structures.

To state Proposition 4.3.2 we recall the definition of a multiplicity of a
singular point. Let (M, J) be an almost-complex manifold, and u : ¥ — M
a J-holomorphic curve. Such a curve has a finite number of singular points
(see McDuff [McD92b]), let zo € % be one of them. There are local coordinate

- systems z, and (z,2;) on ¥ and M such that:

u(z) = (w1, uz) = (2%,0) + (a,0)z% " + O(zP+) (§3)




and J = Jy at the origin (Jy being the standard integrable complex structure

on CZ).

Definition 4.3.1 Let uw : ¥ — M be a J-holomorphic curve, with a singular

point zg € 5. The multiplicity of zp is the number ky in equation §3 above.

Proposition 4.3.2 Let (M, J) be a 4-dim mantfold with an almost complex

structure J, and let A be a 2-dim homology class in H*(M, 7).

(8) If «1(A) = 1 then J is regular for all immersed J-holomorphic curves in

class A.

(b) J is regular for all singular curves u such that ¢ (A) — S(k; — 1) > 1,

where {k;} 1s the set of mulliplicities of all singular points of u.

Here ¢y = ¢ (I'M, J) s the first Chern class of (M, J).

Proof: First we consider the case of immersed curves. The regularity of an
complex structure J means that the operator D, is surjective. As explained
in Section 4.2 by allowing variations of complex structures on X we can reduce
the bundle ¥*T'M to Ny , the normal bundle to 3 in M. The surjectivity
of D, on w*T'M is equivalent to surjectivity of the reduction D,|n,. Ny is a
holomorphic line bundle, and if J is integrable the operator D, is exactly the
Cauchy-Riemann (or the Dolbeaut) d operator on N,, and the proof is reduced
(via Serre duality) to a simmple fact: a holomorphic line bundle N3 @ Ky with

negative first Chern number has no holomorphic sections. If N& ® Ky had

a holomorpic section £ then its intersection with the zero section would be
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positive which implies positivity of the degree. Exactly the same proof works in
the non-integrable case if one can show that similar positivity of intersections
holds. More preciscly, surjectivity of £, is equivalent to injectivity of the
adjoint operator D7 : I'(Nyg) ® Ky, — I'(Ng). In local coordinates this is an
operator of the form —d + B. It is then enough to show that if this operator
has a non-trivial kernel then the Euler class of Ny @ 7% is negative, which
would contradict positivity of ¢;(A). It will be more convenient to use cornplex-
conjugate bundle Nz @ T%1 since upon identification of this bundle with Ny ®
T%! the conjugate operator assumes the more {amiliar form 9 + B, with B €

Endg(Ng @ T%, Ny). Finally we are reduced to a simple fact.

Lemma 4.3.3 Let Ly, Ly be two holomorphic line bundles over ¢ Riemann
surface ¥, and let D : ['(L1) — T'(Ly) be a generalized Cauchy-Riemann op-
erator, i.c in local trivialisations D = 8 + B, where B(z) € Endg(C). If the

kernel of D is non-trivial then the degree of Ly is non-negative.

Proof: We will reduce the proof of the lemma to a local statement about
pseudo-analytic functions. Let B € C°°(D? Endg(C)) be a function on a disc
D? C C (centered at the origin) with values in the space of real endomorphisms
of C. Let f{z,z) be a complex valued function in the kernel of a generalized

Cauchy-Riemann operator:

%Jf(zjé) + B(2,2)f(2,2) = 0. (83)

First observe that the function f(z,z) has only isolated zeroes, all of finite

order. This follows directly from the similarity principle. Assume now that f

has only one zero in the center of D* which we take to be the origin.
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Lemma 4.3.4 The graph Uy of [ in C x C has posilive intersection with C x (
in Hy(C x C,0(C x C)).

Proof: If the differential df|(0) # 0 the intersection is transversal, and we can
compute the intersection index directly. Write f = u+1v, and % = £(0,+18,),
where z = 1 + is. Since Of|) = 0, df(3;) = (us,vy), and df(ds) = (us, vy).
Then

Aoy (B0 A Bs) = ((ue)* + (us))0, A 8, # 0

which proves positivity of the intersection.
If df|i) = 0 we need to put the graph of f in a transversal position. Let

k be the order of f at 0i.e j*=Vf(0) = 0, but j*£(0) s 0 then:
f(z,2) = az* + h.ot
(this is because f satisfies the elliptic system §3). The following two estimates
follow readily. For appropriate constants ¢, § :
£ > Jol el — hodl > ol e — clef+ > ol

if |z] < 28, Therefore:

la]

'f(Z,é)l > 511»?

The second estimate:

_ . 2lalék
|f{z,2)| < 2|a||z|]“ < L—l

holds for |z| < £ and a sufficiently small 6. Let now 7 be a positive number

2]a g—z <n < {a|%i, and p(t) any non-negative cut-off function such that:
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(a) p(t) =nift < 126
% (b) p(t) = 0if t > 15

We defline a perturbation of f :

@(Z,E) = f(zuwzn) - ap(|z|)
Then ¢ = 0 implies that £ < lz| < & Since p is constant on this annulus

we have that d¢ = df at any point where ¢ = 0. Now df (9, A 9,) = (|g—£~|z -

|%|2)dt A ds. Since

af o ka k
5, = kaz""" + O(]=]%)

and

we see that
18, f1? = 10:1]" > 0

provided that |z] is small enough, what we can guarantee by choosing § suffi-

ciently small. That is enough to prove the Lemma 4.3.4. 0

To prove Lemma 4.3.3 suppose that D(n) = 0. Apply Lemma 4.3.4

to every zero of 5 to conclude that the first Chern class ¢;(L;) > 0, or that
e1(Ly) = 0 if » never vanishes. O

That is enough to prove the non-singnlar case. We will now extend the

proof to the case of singular curves. The first step is to define Ny, and D, :




Ny, — Ny @ T%'. For this one needs to replace u*T'% by a line subbundle
of w*{'M . Recall that a pseudo-holomorphic curve u : ¥ — M has a finite
number of singular points, and that given a singular point zy € ¥ there are

local holomorphic coordinate systems on 33, and M such that:
u(z) = (u1,us) = (2M,0) + (a,b)z"2F1 4 025+, (§3)

Let now {z1,...,2.} be the collection of all singular points, {ki,..., k. } their
multiplicities. The embedding 4*TY — w*TM is well defined on the comple-
meni ol singular points. It extends across the singular set since according to

the equation §3 the vector field:

1 Ou B4
}CZk—la - (170) + (CI, b) k’

z+ 0(2%)

is of class C*. That allows us to define a linc subbundie of w*T M. More pre-
cisely if we let L = TE ®]_, O(zF") then there is a ! embedding 4 of L into
w*T'M. Il .J is integrable then of course the embedding is holomorphic. We
will use (L) instead of u*T'%. Our analysis wilt be done in the bundles v*7'M,
and T%'%) ¢ w*T'M hence the fact that (L) is only C?, but not smooth will
not be an obstruction, The reduced bundle TS & w*T' M /(L) will be used
only to extend Lemma 4.3.3, where C-smootheness is sufficient. Suppose now
that 1), is not surjective. Then there is a section n of T9'Y ® w*T'M in the
kernel of )}, which is orthogonal (with respect to L2-inner product) to the
image of D,,. Now D, is the linearisation of the equation du-.Joduo j, where

Jr is a complex structure on X. Since we allow variations of such structures, let

y € Endg(71X), yoj, = gy oy. Then Dy(y) = Joduoy € D(TE @ u*TM).
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Sections of this form are dense in I'(T%'Y @ u*T'M) (in L? topology). It follows
that i is pointwise orthogonal to T** &7, and hence to 19 @{L). There-
fore 7 can be canonically considered a section of T®' X @ u*T M /+)(L). Suppose
now that ey(w*T'M) — X1_ (k; — 1) > 0, so that ¢, (7% @ u*T'M/H(L)) > 0.
We will show, as before, that existence of 5 implies that the Euler class of the
quotient bundle 7%'Y & v*T'M /(L) is in fact non-positive. If  has no zeroes
then the quotient bundle is trivial with zero Euler class. Therefore assume
that % has zeroes. There is only a finite number of them. If w is a zero of
but not a singular point of % then our analysis of the “immersed case” applies
and we sce that indeed w contributes negatively to the Euler characteristic of
TV @ wT'M [1(L). Suppose now that n(z;) = 0 for some singular point z;,
say z. From the local formula for D7 (on the “full” bundle 7% ¢ v*T M) we

see that in local coordinates on M, and ¥ :
dn+B(n)=0

where B is a C*-function with values in the space of real endomorphisms of

C?. It then follows as in Lemma 4.3.3 that:
n=(m,m) = (Z(0,d) + O(z""))d=.

(Here we are using the similarity principle applied to 5 thought of as being a

section of 7% @ v*T'M.) This implies that z is an isolated zero of 5. Recall

that 4(L) is locally trivialised by =k 5% = (1,0) + (a, b)E 2 O(2%) so that

T9YE® u*TﬂJ/¢(L) is trivialised by ((0,1)+ O(2)) @ dz and the projection of

7 is of the form 2'd[(0,1) + O(z)] @ dz. As in Lemma 4.3.3 this is enough to
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claim that z; contributes negatively to ¢;(T%'% @ u*TM). We can then claim

that the condition ¢ (u*TM) — %7_ (k; — 1) > 0 implies genericity of J.




Chapter 5

Non-generic almost-complex structures in

symplectic manifolds of dimension four.

In this chapter we study the space of w-tame almost-complex structures
J on a compact symplectic 4-manifold {M,w) by looking at the associated
moduli spaces of J-holomorphic curves. If the almost-complex structure J is
sufficiently generic then the space of all J-holomorphic curves of genus ¢ in a
homology class A € Hy(M,Z) is a smooth manifold M(J, A, ¢) of dimension
equal to the virtual dimension. If ¢;(A) > 1 (where ¢, is the first Chern class of
(T'M,.JY), any 7 is generic in this sense, provided that we restrict to immerse‘l
curves ([Gro83], [HLJ94]) or curves with controlled singularities (i.e such that
e1(A) > Y(m; — 1), where the sum is taken over all singular points, and m;
denotes the multiplicity of a singular point, see Chapter 3). In that case, if it
also happens that the unparametrized moduli space M(J, 4, ¢) is compact, all
moduli spaces M(J, A, g) are diffeomorphic (for all J, but keeping g, A fixed).

In particular, if for one J the moduli space is non-empty, then it is non-empty

for all almost-complex structures.
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Here we consider the simplest non-gencric case. The condition ¢;(A4) > 1
is equivalent to ¢ (Ng) > 2¢—1 (here N denotes the normal hundle of a curve
C C M), so we see that the simplest case violating that condition is of tori
(genus g-: 1) in a class A with A- A = 0. Now, in contrast to the generic case,
the moduli spaces M(J, A,1) depend a great deal on J. It is not difficult to
see, using the adjunction formula ([McD92b], [McD91b]) , that if M(J, A, 1)
contains one cmbedded torus, then all J-holomorphic tori are embedded. On
the other hand, if therc is an immersed, or singular torus in M(J, A, 1) then
the virtual dimension of the moduli spaces is at mosl —2. Hence, in this case,
for a generic J, as well as for a generic path J; of almost-complex structures
the moduli spaces are empty (Section 4.4). It is then reasonable to consider
only the case of embedded tori, where the virtual dimension of M(J, 4,1) is
zero. However, as we argue in Section 4.1, the actual dimension of the moduli
spaces M(.J, A,1} can be 0,1, or 2 but no higher. We then stratify the space
of almost-complex structures. We denote by 7; ; the space of all J’s such that
for all w € M(J,a,1}, dimker(D,) <1 (with equality for some u), and so that
dim M(J, A, 1) = j. (Here D, is the Cauchy-Riemann of)erator cutting out the
moduli space of pseudo-holomorphic curves, see Chapter 3) . Our main results
are in Section 4.4, where we show that all but two strata have codimension

two or higher:

Proposition 5.0.5 The set Joq is open, and dense but with infinitely many

connected components. The sets Joo, Jaq, and J11 all have codimension 2

(or higher), while Jyo has codimension one. Therefore two generic (in Jop)
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almost complex struclures can be connected by a path {J,} C Top U J1p.

Here a set S C J has codimension 2 elc. if a generic one parameler

Jamily {J,} avoids S,

We show also that all strata are non-empty, give examples of generic almost
complex structuves with arbitrarily large number of J-holomorphic tori, as well
as examples of generic almost-complex structures which are non-homotopic

(through the space of generic structures).

Remark 5.0.6 In this chapter we deal only with pseudo-holomerphic tori.
However, all examples, as well as the above proposition are easily extend-
able (with appropriate changes) to curves of higher genus g. In general, the
borderline case, in which the regularity of almost-complex structures is not
automatic, is that of embedded curves €' in class A with A - A = 29 — 2. The
Cauchy-Riemann oper&tor D, on the normal bundle Ny admits at most dg —2
linearly independent (over R) sections, and we can stratily J = Uj%Z5 Ji ;. An
analogue of Proposition 5.0.5 would say that all strata except Joo, and Ji

have codimension two or higher. Any two generic almost-complex structures

Jo, J1 € Jop can be connected by a path {1} C JopU T

The reduction of 1, to the nogmal bundle NZ works if the curve w :
% — M is non-singular (or if it has mild singularities). It is therefore nec-
essary to show that for a generic almost-complex structure J singular curves
torm a subset of high codimension. Let 7 be the space of all w-tame almost-

complex structures on M, and M(7, A, 1) the universal moduli space of all

pseudo-holomorphic curves. Furthermore, denote by M (J, Al) the space of
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all parametrized pseudo-holomorphic tori in M. We need only to quote Propo-

sition 3.3.4:

Proposition 5.0.7 Let A € H(M,Z) be an arbitrary homology class that can
be represented by curves of genus g. For a generic almost-complex structure J
(i.e in a sel of second category) the set of singular curves u € M(J, A, g) is of

real codimension 2 or higher in M(J, A, g).

Before proceeding to the next section we recall two lemmas, and a proposi-
tion needed later. The following two elementary lemmas deal with Cauchy-
Riemann operators acting on the space of complex functions on the standard
two dimensional torus T2 They were proved in Chapter 3, and used to give
an example of a 1-dimensional moduli space of pseudo-holomorphic tori. We
consider equations of the form: du +Tadz = 0 where u is a complex valued
function v € W52 k > 2, and ad?, bdz are smooth forms of type (0,1). We

have Lemma 3.1.1:

Lemma 5.0.8 The equation du +wadZ = 0 has no solution if az is a non-

zero (0,1)-form with constant coefficients.
The second Lemma 3.1.2:

Lemma 5.0.9 [f c¢dZ is a non-zero (0,1)-form with constant cocfficients then

Ou+ (T u)edz =0

has exactly one solution { up to multiplication by real constants ).

Finally, Proposition 3.1.3:
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Proposition 5.0.10 Let 8+ A, A € O Endg(C)), be a Cauchy-Riemann
operator on 1 x C. Then the index of 0+ A is 0, while the real dimension of

its kernel can be 0,1, 2.

implics thal we can expect 2, 1, or 0-dimensional spaces of tori embedded in

the manifold 12 x C.

5.1 Stratification of almost-complex structures.
Examples of almost-complex structures

with non-generic properties.

Let (M",w) be a symplectic manifold with an almost-complex structure
J. Let A € Hy(M,Z) be a homology class with A - A = 0. The main purpose
of this section is to stratify (coarsely) the space J of w-tame almost-complex
structures according to the dimension of M(A, J,¢) and to the dimension of
the kernel of the Cauchy-Riemann operator ID,. To clarify the statements we

make a few observations.

(i) Hw : 7% — M is an immersed (but not an embedded) or a singu-
lar J-holomorphic curve then by the adjunction formula ([McD92b),
[McD91b]) the first Chern class of the normal bundle Ny, is negative.
Hence, the virtual dimension of M(A, J,1) = 2(c;(Ny:) +1 —¢) < -2

1s negative, and generically we do not expect to have immersed or sin-

gular curves. Moreover, the same remains true of (generic) paths {J,},




since the dimension dim U, M(Jy, A, 1) = dim M(A, J,1) +1 < 0, and
so UJ; M(Jy, A, 1) is empty.

(i1) In view of the above we may assume that A can be represented by em-
bedded tori. In that case it follows from the adjunction formula that all
tori in M(J, A,1) (for any .J) are embedded (observe that c;(4) = 0 if
there is an embedded torus in class A, but that ¢ (A4) < 0if A can be

represented by a singular or immersed torus).

(iii) Let now w: 3 — M be an embedded torus in M(A,J,1). In Section 3,
Proposition 3.1.3 we made an observation to the effect that the dimension
of D, is either 0,1, or 2. It then follows that the moduli space M (A4, J, 1)

can be zero , one or two dimensional.

We can now stratify 7.

Definition 5.1.1 Let J;; denote the space of all w-tame almost-comples struc-

lures J such that:

(i) For allu € M(J,A,1) the operator D, has kernel of real dimension less
or equal to 1. Moreover, we require that for some u, dim ker(D,) = 1.
(ii) The real dimension of J.\/I(J,AJ 1) is less or equal to 7. There exist com-

ponents of the moduli space of dimension j.

In particular, Jo is the set of generic almost-complex structures. For J Jop

the moduli space M(J, A,1) consists of a finite number of embedded tori.
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Proposition 5.1.2 The set Joo is open, and dense bul with infinitely many
connected components. The sets Tao, Ton, and Ty all have codimension 2
(or higher), while J\ o has codimension one. Therefore, two generic (in Jop)
almest complex structures can be connected by a path {J;} C Top U Jy0.

Here a set S C J has codimension 2 etc. if a generic one parameter

Jamily {J,} avoids S.

By way of comparison, if A- A = 1 {or is greater then one) then any J is
regular for all embedded tori. As above, if one torus in M is embedded then
all of them are. If A can be represented by a singular, or immersed torus then
the virtnal dimension of M is negative, hence for a generic J the moduli space
is empty (same holds for generic paths {J;}). We will postpone the proof until

the end of the section, and first provide examples illustrating the proposition.

5.2 Non-homotopic regular almost-complex

structures.

Here we will construct examples of almost-complex structures on 72 x §2
which are regular (for tori in the homology class A = {1 x pt]), but which can
not be joined by a path of regular almost-complex structures, i.e they b(_%long to
different components of 7. In fact, there are infinitely many connected compo-
nents of regular complex structures on 72 x S%. An almost-complex structure

J on T? x 52, regular for tori in [T? X pt] admits a finite number of J-

holomorphic tori. If two such structures Jy, and J, admit different num-
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ber of pseudo-holomorphic tori, then they are non-homotopic through regular
almost-complex structures. The example of an almost-complex structure on
T? x 8% whose description [ollows is a warm up to a slightly morc general
almost-complex structures on 723, where £ is an arbitrary Riemann surlace.

Given a vector field ¥ on 5%, we define an almost-complex structure J =
Jy on T? x 5% standard in the direction of S* (so that all spheres pt x 52 are

J-holomorphic) but such that no 7% x pt is J-holomorphic unless #(pt) = 0.
[

Definition 5.2.1 Let z = 2, + iy, be coordinates on T2, and d,,, &, the

vector fields spanning 7'(7%). Then deline
JV(aﬂfl) - ayl + v, and JV(ayl) = ﬁaﬂw’l — Jo¥

If o € 1(S?), pub Jy (@) = Jo. Here Jy denotes the standard complex structure

on 5%, as well as on T2, In other words

Jo 0
Jy = ;

B Jy

_ J

where B (in local coordinates) is a matrix with the first column %, and the

second Jo(o).
T? x S is a symplectic manifold with a standard product symplectic form

wp. It ¥ is sufficiently small (pointwise) then Jy is wp-tame.

In the following lemma o/ will be holomorphie, i.e in a local holomorphic coordi-

nate: ¥ = (h+1ig)0. = £ [0, — g8, + i(hd, + ¢8,)], with h+ig a holomorphic

function. Under the standard identification of TgS? = T ¢ = L(hOy — gd,).
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Lemma 5.2.2 Assume thal ¥ is a holomorphic vector field on S?. Let i be an

almost-complex structure on T?, and
w: (T2 5y — (T? x 8%, Jy), w = (uy,us)

be a Jz-holomorphic torus in the class [T? x pt]. Then uy is constant, and
P

(uy) = 0. Also, j is isomorphic to the standard complex structure fo.

—

Proof: 1If, at a point p € S2, ¥(p) = 0, then Jv is equal to the stan-
dard product complex structure (jo, j1) along the torus 7% x p, which is then
Jy-holomorphic. Since the self-intersection number of 1% x pt] is zero, and
distinct pseudo-holomorphic curves have positive intersections, it follows that
all distinct Jy-holomorphic tori in the given class are disjoint. Since the Tu-
ler characteristic of 5% is 2, our vector field ¥ vanishes at least once. We
can remain in the complement of a zero of ¥, and work entirely in 7% x C
by introducing a local chart on S2. Let (21, 23) denote coordinates on T2 x C,

21 = 21 + Y1, and zy = 2y + tye. Let ¥ = —hd,, + ¢0,,. Then

Jo 0
Jy = ,
B J
and
—h g
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If u = (w,1) is & § — Jy-holomorphic torus for some complex structure j on
T%, then dutJyoduoj = (dug+Jyodu,j, dug+Boduyoj+Jyodusj) = 0. Since
duy + Jy o duy o 7 = 0 the complex structure j is isomorphic to the standard
complex structure Jy, and by composing u with the inverse of u; it can be
assumed that w(z,2Z) = (2z,u2(2,%)). The above equation is then equivalent to

a system ol equations:

Oy Reuy — 9,Imuq = —g(uy)

OpImuy 4+ 9,Reus = —h(uy)
or simply to a single equation:
O,y = Fug)

where £ = —(g + ih), so that F' is holomorphic. To prove that us is constant
we need to show that F' vanishes on the image of uy. It is enough to show
that /7 vanishes at a single point p in the image of ug, for then T? x {p} is
J-holomorphic and intersects u. By the positivity of intersection of pseudo-
holomorphic curves the intersection number [T? x {pt}]* would be positive
which is false unless F'(u,) were identically 0. Suppose, to the contrary, that
F' does not vanish at any point on the image of uy. Let (¢ be a Tunction on
T% x C such that G = &, then d(G(u)) = 1. Therefore G(u) = % + ¢(z), for
some holomorphic function ¢ : 7% — C. However, no complex valued function
on a torus can have this form, hence we reach a contradiction. F vanishes on

the image of u,, and ug is constant. _ ad

Next we prove that under mild assumptions on ¥ the almost-complex
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structure Jy is regular. To prove regularity of Jy one only needs to consider
the restriction d, of D, to the (canonically topologically trivial) normal bundle
of Jyholomorphic torus u : 7% — T? x 5%, We need to prove that the kernel
of 8, is trivial. ‘We use notation as in the proof of the previous lemma. We
will work in local holomorphic coordinates which are normal at a fixed point
on the sphere S%. Ict ¢ = —hd,, + gd,, in those coordinates. We choose the

local chart so that uw = (uy,0).

Lemma 5.2.3 If, for every Jy-holomorphic torus, the determinant

Op b Ok
det ( 0 )

Orog  Oyy

is not an integer then the almost-complex structure is regular.

Proof: The proof follows from a direct computation of @, in local coordinates.

Let V be a connection on C x T? preserving Jy, e.g:

! 1 0 0
—d - =] —d_ =
V 9 J ¥ d J 'd d 9 )
Jg odB 0
—dh dg
where d denotes the trivial connection, and dB = is a matrix of
dg dh

L A
I-forms. The bundle normal to w is trivial, hence its section can be thought




of as a complex valued function. The operator J, becomes a generalized
Cauchy-Riemann operator on complex-valued fuiictions on 72, Let n =3+t
be a section, then a computation shows that the equation d,n = 0 becomes,

n Jocal coordinates:

1 1
Opys — Oyt + Es(ﬁxzh — Oey9) + Zt(aygh —d,9) = 0

1 1
axlt + ayas - Zs(arzh + 8@9) - Et(a&'gh + a’!)‘?g) = 0

This is a system of equations with constant cocllicients (recall that w, is con-
stant). Such a system has no non-trivial solutions if the determinant of the
zero-order terms is not an integer. A computation shows that this determinant

is equal to —1 [(0us 1){(9y,9) — (D,9)(8,,1)], hence the lemma follows. 0

There is a useful corollary to Lemma 5.2.3.

Corollary 5.2.4 Suppose that along each J-holomorphic torus ¢ = grad H is
the gradient of a function (with respect to the standard metric on the sphere).
Then Jv s regular if the determinant of the Hessian of H is not an integer

(in particular such an H is a Morse function).

After this warm-up we will construct more general almost-complex struc-
tures (of the same type Jz) on 7% x 33, where (3, J) is a fixed Riemann surface.
In the previous example we utilised holomorphic vector fields on S2. To use
the same tool here, we first choose a Morse function H on T, and cut the sur-
face into regions containing critical points of H (topologically pairs of pants

or discs) and “transitional” regions between the critical points (topologically

cylinders). The cutting circles D; (boundaries of all regions) must lie on the
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level sets of [I. Denote the regions sorrounding critical points by {P;}7-,, and
the transitional cylinders by {7}}. Our second step is to construct a vector
field v on 3} which is holomorphic on £;’s and “spirals” in the cylinders 7T}
Also, v will be tangent to all circles D). There are three cases. Suppose that L
15 a disc. Identify F; conformally with a disc in the plane C. Define & = Xg,
where G{(z,%Z) = ¢; - |z|>. Here ¢; is a constant, (positive or negative depend-
ing on whether [7 has a minimum or a maximum in P;) and Xg denotes the
Hamiltonian of G with respect to the standard symplectic structure on €. The
point is that since & is harmonic the vector field # is holomorphic. In fact,
U = —die;z0,. Next, suppose thal F; is a pair of pants, conformally equivalent
to a disc in C with two smaller discs removed. For simplicity, we assume that
F; has been identified with D(0,1) — D(e,r) — D(—e,r), where ¢ is veal, posi-

tive. Here D(a,r) denotes a disc with center at «, and radins =. It will be clear

£z (2| 2te |2

that the assumption is non-essential. Define G/(2,%) = 5 - In | E2 P EE P,

and ¥ = Xg. Since G is harmouic the vector field ¥ is holomorphic. We note
in passing that G has a unique critical point at the origin z == 0, which will
give rise to a Jy holomorphic vector ficld. Since (¢ is constant along the outer
boundary ¥'is tangent to 0.D(0, 1). To make it tangent to all components of the
boundary we redefine the domain of #. Instead of circles D{e, ), and D(—e,r)
we will remove region {2z : (/(z,Z) > r}}. For large v this region is a disjoint
union of two topological discs, so that we still deal with a pair of pants. Fi-
nally consider a cylinder 7. Let 97} = Dy U Dy. The vector field @ is already

defined on Dy, and D,. Extend it to the cylinder 7} in such a way, that if

v = ady + b0, (in polar coordinates {#,r}) then b > 0, with equality only
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along the boundary. Since we want ¢ to be smooth, the abo;fe construction
requires some smoothing out which is better lelt implicit. There is one impor-
tant property of ¥ which will be needed. It is possible to choose the constants
¢, and 7} that were used above so that ¥ has no closed orbits on circles 1
with rational period. We will assume that such a choice has been made. Tt is
also possible to arrange that that v and H have the same critical points.
Finally we can go back to 7% x ¥. Recall that ¥ comes equipped with a
complex structure J. Let wy be the standard symplectic structure on 72, and
wy a symplectic form on ¥ compatible with J. Then w = wy X w is a symplectic

form on T2 x %.

Lemma 5.2.5 Choose « Morse function H on % and let ¥ be a vector field on
as described above. Define the almost-complex structure Jz on T? x 3, If ¥ s
small enough that J, is w-tame and regular for all tori in the homology class
[T? x pt]. Moreover Jy-holomorphic tori in thal class correspond preciscly lo

critical points of H (these are the same as critical points of 7).

Proof: First of all we observe that (as in Lemma 5.2.2) every critical point
p of ¥ (or H) gives rise to a Jy-holomorphic torus T2 x p. It follows from
Lemma 5.2.3 that for small ¥ all those tori are regular. In fact this is true
for generic v not necessarily small. Next observe that if w : 7% — ¥ is a Jx
holomorohic torus in class [ x pt] then the image of u does not intersect any
of the circles 1;. This is because the three dimensional tori T2 x D; are foliated

by Jg-cylinders. Specifically, let ¢,(q) denote the flow of %, then the cylinder

{(z,9,¢,(q) is Jp-holomorphic. This cylinder does not closes to a torus since
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the orbit of v on I); has irrational period. The foliation defines a current, hénce
a homology class, say [a] in T% x . [t easy to see that the intersection number
[7% % pt] - [a] = 0 so that by positivity of intersections of psendo-holomorphic
curves the leaves of foliation and the J,..,-holomorphic tori we are looking at.
do not intersect. Therefore, the image u(7?) lies either in one of the Pis, or
one of the T7s. If it is embedded in a region P; we can repeat the proof of
Lemma 5.2.2 to show that w(7T?) = 77 x p, with p a critical point of . II,
on the other hand, w(1®) C 7} then observe first that it lies away [rom the
boundary 07;. However, on a subcylinder S; compactly embedded in 7; the
vector field ¥ is diffeomorphic to a holomorphic vector field z - @, on a cylinder
in 57, Therefore, it can be assumed that once again we are in the situation of
the Lemma 5.2.2, and use that proof. That is enough to conclude the proof of

the lernma. O

The above lemina allows us to construct almost-complex structures with
different numbers of pseudo-holomorphic tori. As we mentioned at the begin-
ning of this section such almost-complex structures are non-homotopic in the
space of regular almost-complex structures. The following proposition should

now he clear.

Proposition 5.2.6 Let Hy,and Hy be two Morse functions on the sphere
and Jg, and Jg two almost complex structures as defined above. Suppose
that Hy, and I, have different number of critical points. Then the induced

complex structures Jg, and Jz on T* x S* are regular (for small vy, and v,
p 13 2 g 7

for tori in the homology class [T* X pt], bul cannot be joined by a path of
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reqular almost-complex structures.

Remark 5.2.7 The above example can be modified to an example of almost-
complex structures J;, J, which are non-homotopic through regular almost-
complex structures, and yet the moduli spaces of J;, Jy-holomorphic tori have
positive dimensions. Consider e.g X = 7 x 5% x $2, and let A be the homol-
ogy class A = [pt x T% x pt] + 2 [pt x pt x S?]. Let, as before, ¥ be a vector
N Jy 0
field on 5? and consider almost-complex structure Jy = (where Jy

0

1s the standard complex structure on S?). The expected complex dimension
of the moduli space is 4 (since ¢;(A) = 4). All tori can be found explicitely.
Let u : 7% — X be a Jy-holomorphic torus, v = (u,uy,uz). Then (as in
Lemma 5.2.2) it can be assumed that u,(2) = 2, and that the complex struc-
ture on 77 is the standard one. The third component, wz can be thought of as a
meromorphic function on the torus with two poles. The prool of Lemma 5.2.2
applies here, and we conclude that the necessary, and sufficient condition for
the mapping u to be pscudo-holomorphic is that u; be constant, and that
U{uy) = 0. Iinally we notice that the space of meromorphic functions with
two poles on 7% is (complex) four-dimensional (the location of poles provides
two complex parameters, the residues gives one more parameter, and the value
of the function at a lattice point gives the final parameter). Choosing a small

(or generic) ¥ related to a Morse function H, as in the aabove construction one

can produce regular almost-complex structures with arbitrary (even) number
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of components of moduli spaces of tori. As before they are not homotopic

through regular almost-complex structures.

5.3 Examples of non-regular almost-complex
structures.

We now turn to examples of somewhat pathological almost-complex struc-

tures which admit 1-parameter families of pseudo-holomorphic tori.

Example 5.3.1 In the first example the ambient space X = 7% x T?, the

almost-complex structure has the familiar form

Jo 0
J = ,
B J
L |
where
B =
g h

We will be looking for J-holomorphic tori in the class [T? x pt]. Take g = 0
and / vanishing on two circles which cut 72 in two strips. Let z = ¢ + 1y be a
complex coordinate on the torus. We will assume that & = k(y) is a function of

one variable, that it vanishes at two points only, and that these points are the

only inflection points. If those assumptions hold, we will show that each of the
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circles parametrizes a component of the moduli space of pseudo-holomorphic
tori, and that all J-holomorphic tori appear in that way. Let u: T? — X be
a J-holomorphic torus, u = (u1, us). We need to show that u, is constant, and
that ~(ug) = 0. Notice that wus, is a map between tori of degree zero, and that

it satisfies a system of equations:
I lmug + GReuy = —h(Tmuy)

O dmuy —~ OReus = 0
where z =z + iy is a local coordinate on 7'2.

Lemma 5.3.2 If uy : T* — 1% is a degree zero map, which satisfies the

system ( §3), then uy is constant, and h vanishes along u,.

Proof: Again, we will use the Hopf’s maximum principle. Pirst we notice
that A(uy) has to vanish somewhere. If not, i.e if uy stays away from the
zero locus of A then we can think of Imu, as a (single-valued) function, which
satisfies a second order elliptic equation (differentiate both equations in the

above system, and add them up):
0.2 Tm ug + &yzlm tig & § modulo d,Imusy, d,.Imu, (§3)

It follows from the Hopf’s maximum principle that any function satisfying the
equation ( §3) is constant. Now go back to equations ( §3) to see that if Tmu,

is constant, then in fact, A(us) = 0, and Reus is constant too. O

It follows that w is a pseudo-holomorphic curve if and only if u; is constant,

and A(uy) = 0. That is enough to prove our claims about the moduli space.
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Example 5.3.3 Wenow give another example of an almost-complex structure
admitting a onc-parvameter family of tori. This time we consider J on X =
T? x 5%, and require that for every J-holomorphic torus appearing in a 1-
dimensional family the kernel of D, is 1-dimensional (over R). It means that
J 1s as regular as an almost-complex structure admitting a l-parameter family
of curves can be. In the notation of the previous section, we take J = Jerad I,
where H is a Morse function satisfying the condition of Corollary 5.2.4, ex-
cept for a circle of critical points. For simplicity we will assume that in a local
holomorphic chart 12 x € C 1 x S% we have H(wy,ys) = c{a -+ y2 — 1)* on
an neighbourhood of the unit circle. Lemma 5.2.2 shows that that the mod-
uli space of pseudo-holomorphic tori in the class [T x pt] consists of a finite
number of isolated tori (which correspond to isolated critical points of 4}, and
a 1-parameter familly of tori parametrized by the unit circle. A computation
shows that &, acting on a section of the normal bundle of a J -holomorphic
torus is given by:

"5“6 = Of+ %c(mg — iyg) [($2 — yz) — 3(12 + 92)]'5

—|—%c($2 +aye) (2 — ya) — (e +92)) €

where as before the section ¢ is thought of as a complex-valued function.
If we change variables 7 = ¢lc(zy — 4y9)4, then the equation G, = 0 is

transformed into: dy + (y — 7)az = 0, where @ is a non-zero constant. It is

proved in the Lemma 3.1.2 that such an equation has exactly one solution (up

to multiplication by real constants).
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Example 5.3.4 Next we construct examples of regular almost-complex struc-
tures which are locally non-homotopic in the space of regular almost-complex
structures. More precisely, let X = 72 x D° with its standard symplectic

structure, and let Jy be the set of almost-complex structures on X equal

to the standard almost-complex structure J, = along the central

0 2

torus 7% x {(0,0)}. Each such structure J € 7, admits at least one pseudo-
holomorphic curve, namely the central torus. We will show that there are
almost-complex structures in 75 which are regular for the central torus, but
which cannot be joined by a path {J,} < 7y of almost-complex structures
remaining regular for 7% x {(0,0)}.

Let J € Ty, and let ; be the induced generalized Cauchy-Riemann opera-
tor &; on the normal bundle of the central torus. The normal bundle is trivial,
and the equation 8, = 0, ¢ being a section of the normal, ts equivalent to the

system:
Ops — Oyt -+ 50y, +tayy, = 0
Opt + 0ys + sagy +tag, = 0
where £ = s+ 2t. Here a4, ..., as; are real valued functions, which will be be

referred to as the zero-order coeflicients of 53-. We will denote the determinant

U311 dy2

det by det(J).
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Proposition 5.3.5 Let J;,.Jy € Ty be two almost-complex structures such that
the operators 5‘7-1, and 5;'2 have constant coefficients. Suppose lhat det(J;) < 0,
and 0 < det{Jy). Then both almost-complex structures are requiar, but they are

non-homotopic in Jo.
Proof: The proof follows immediately from the following lemma.

Lemma 5.3.6 Let s, and ¢ be real valued functions on T?. The system of

equations with constant coefficients:

Oms — ayf + sy + TfCl.]_g = 0

5215 + @ys + sa9 + t(tgg = 0

has a non-trivial solution if and only if there are integers n,m such that:

G112
det = n®4+m?
31 dag
§ ]
n{azs + a1y) + mlag — a3) = 0.

Proof: To prove the lemma expand both functions in their Fourier series. O

O

We will now retwrn to Proposition 5.1.2, and supply its proof.
Proof of Proposition 5.1.2: Assume that A is a homology class with

A+ A =0, which can be represented by embedded pseudo-holomorphic tori.

Let J be an almost-complex structure, and C a J-holomorphic torus (the




image of u : 1% — M). C; is embedded, and there is a convenient model for
the space of pseudo-holomorphic tori which are (-close to (see Gromov
[Gro85],and for a detailed presentation, which we will follow here, Hofer-Lizan-
Sikorav [IILJ94]). We recall the description [rom {IIL.J94] in a set-up adapted
to our needs. Let NV denote the normal bundle to Cy, and D, the Cauchy-
Riemann operator on N (section 2.1). If D, has a non-trivial kernel then
choose a pseudo-holomorphic section 7. Since N is topologically trivial, n never
vanishes (each zero would contribute positively to the Euler characteristic of
N) and we trivialize N = 1% x C so that 5 becomes the constant section
1. If the kernel of D, is trivial then trivialize N by any sectiox'l of norm one
{recall that TM, hence N, is equipped with a metric). Let V denote the trivial
connection on 7% x C. V induces a splitting T'N = T'Cy & N, and we deline a

~canonical almost-complex structure Jy(p) :
i(z) 0
Jo(p) =
0
Here x is the point in the base underlying p, and j is the complex structure

on Cp = T? induced by J. In general .J, is equal to J only along Cj, but there

is an endomorphism ® of TN such that: J(p) = ®(p) T o(p)®(p). ® breaks

mto blocks:
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where:

a(p) € Endg(TCy), B(p) € Homg(N, TCh)

v(p} € Homg(TCo, N),  &(p) € Endg(N).

A surface C' close to Cy is a graph of a section ¢ € I'(N¥). C'is J-holomorphic if
and only if ¢ satisfies a non-linear equation: 3,(¢) = 0. Here 9, is a first-order
non-linear operator, which takes sections of N to Q%1(N). 8, is defined on a

neighbourhood U of the zero section by:

au:P((]S)Oj—iOP(gﬁ)

where:

P(8) = (7(8) + 8(4) Vi) - (a(¢) + B(¢) V)

so that P(¢) : TCy — N is an endomorphism. Finally, we have a hands-on
formula for Dy : T(N) — Q%(N), obtained by linearisation of 8, at the zero

section. It is given by D, = 8 + «, where:

a($h) = (y(0) - gpoj —io(dy(0)-¢),  aeQ(N)

where @ is the standard Cauchy-Riemann operator on T2 x C. Note that o
depends on the complex structure j on 7% = (.
The proposition will follow from the following elementary lemma which

shows that curves u : 7% — M such that D, has two dimensional kernel can

be always avoided. Denote by CR the space of generalized operators on the




trivial bundle 7 x C of the form d; + a. Here 0; depends on a complex struc-
ture j on 1", so that there is a fibration CR — 7;. The above construction
gives us a mapping from the universal moduli space M(7, A, 1) to the space
of generalized Cauchy-Riemann operators CR. More precisely, since the con-
struction is local we can cover M{J, 4, 1) with a countable family of sets {U/,,}
so that there is a smooth mapping ¥ : U/, - CR, u — D, = 5:; + a. We
choose the sets so that their subsets V,, C V., C U, cover M(J, A, 1). Abusing
notation however, we will write ¥ : M(T, A1) = CR, u— D, = B‘} + a.
Similarly, for a given (J,u) € M(J, A, 1) let Jy denote the set of all almost-
complex structures which agree with J along u(72). By restriction, we have
a smooth mapping: W : M(7, A, 1) — CR. Denote by CR(2) the space of
operators with two dimensional kernel, and by CR(1) operators whose kernel

is one dimensional.

Lemma 5.3.7 C'R(2) has codimension 4, and CR(1) codimension I in CR.

For every U, the mapping ¥ is transversal to both subspaces.

Proof: We will describe a local model for CR(2) near an operator with two
dimensional kernel. o this end we fix a complex structure 7 on 72, and use 9 in
place of 8;. This is sufficient for our purposes because of the fibration CR — 77.
Let ¢ — 3¢ + agf + bof be such an operator, and let £ — 9¢ + af + b be its
perturbation. Here a = ap + A(A) € Q%' and similarily b = by + B()) € Q%1
A € A which is a finite space of parameters. Let u;,7, span the kernel of

the unperturbed operator, and let v, and w be two orthonormal (0,1) forms

spanning the orthogonal complement of the image of Ou + agu + by . We'll
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use the Lyapunov-Schmidi reduction to find out about the space of solutions
of Ou4au+5% = 0. Thereis a family of functions n = n(=z,y, A) depending

on the parameter A and two rcal variables (x,y) such that
Baopo (21 + ym2 + 1) + Alem + yns + ) + B@n T yms +7) = 0

Modulo the image of 8,4, with 2z, y,0) = 0,7(0,0,A) = 0. Such a family
n(x,y,A) Is very special; if & = £&(X), and & = &2(A) are two (amilies of

functions on 1" such that

Dagpobs + Alm + &) + Bl + &) =0 modulo the Image of @, 4,
and

Oag oz + Alny + &) + B(n:+ &) =0 modulo the Image of Oay b,

then n{z,y,A) = xi(A) + y€a(A). Let now fi(A), g1(2), f2(A), g2(A) be fanc-

tions such that:

Baopolt + Al + &)+ B(m 1 &) = fiv + gw

Dagpola+ A +6) + Bna + &) = fov + gaw

A parameter A\ represents an operator with non trivial kernel if for some

(z,9) #0:




e,

A f2(A)

1.e if the matrix has rank 1 or 0. If the rank of the matrix

7N gl A)

is one then the corresponding Cauchy-Ricmann operator Ja(ryp(») has one di-

mensional kernel, and if the rank is zero the kernel is two dimensional. The
space of 2 x 2 matrices is four-dimensional, the subset of matrices of rank
one is a cone over a two dimensional torus, therefore of dimension three. The
vertex of this cone is the zero matrix, the only 2 x 2 matrix of rank zero. (To

see this notice that the equation

Tir o iz
det, — T11%9y — X12Z21 = 0
ZTa1 Lz
can be transformed into {z;/* = [23]* in a suitable system of complex co-

ordinates (z1,22). The set of poinis satisfying this equation is a cone over a

torus |z1]* = 1, |2,[* = 1.) Suppose that A is a k-dimensional perturbation, i.e
A(A) = A, Az M) 5 B(A) = B(AL, Mg, ooy Ag), and choose real constants

1.2 g1 g2 ,
oy, o, 7, B7 so that

5, J
5};(1‘1)7?1 + a—)\j(B)W = ooy + v
J J — 1 2
W(B)Uﬁ + 5;(8)7?2 = ﬁj'”l + )83' g
7 2
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modulo the image of Jyp,. is cqual to modulo

a1 ng 2%2‘)\.?' Eﬁf)\jj

terms of second order O(]A]?). Now this matrix is a linear combination of

o

matrices If £ > 4, and any four of the above matrices are in

o B

general position then the set of parameters A corresponding to operators with

two dimensional kernel forms a codimension 2 submanifold. The set of A giving

operalors with one dimensional kernel is a cone of codimension one.

To complete the proof of the lemma we only need to observe that the
mapping ¥ can yield such generic perturbations of 1),. Any k-parameter family
of almost-complex structures A — J(A) = &1/, gives rise to a k-parameter
a p

family A — D, = 3+ a()). Here & = , and v is arbitrary as long as

v 6

it vanishes along Cy. Recall now the definition of Db = 0t + (dy(0)) -4 o j —

i o (dy(0) - &), and of the entries o, 35 of the above matrices:

L 0 oy
o = fulgrt@) m)
, d
5 = [Gr@ m)
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since v is arbitrary it can be seen that an appropriate choice would yield

matrices in general position.

o

That is enough to prove the lemma for the case of CR(2). The case of

CR(1) s anabgous. 0

Corollary 5.3.8 1t follows from the previous lemma by standard arguments

of perturbation theory that:

(1) A generic path {J;} does not meet Jop, Jo1, and Jaa, i.€ those slrata have

codimension 4 (or higher).

ii) For e generic path {J,} the restriction ¥ . |J M{J, A1) — CR is
¢
transversal to CR(1). The set of pairs (J,u) for which D, has one di-

menstonal kernel is discrete in the moduli space |, M(J;, A, 1).

(iii) For a generic path {J;} the space |J; M(Ji, A,1) is @ 1-dimensional man-

ifold. Therefore, it follows from (ii) above, that {J;} avoids T, ;.

To complete the proof of our theorem we need only to prove that all strata
are non-empty, and that the stratum Jpo has infinitely many components.
The first statement is shown in examples in Sections 4.1 and 4.2. To see the
latter we find regular almost-complex structures with a different number of
pseudo-holomorphic tori in class A. As observed in Section 4.1, such almost-

complex structures can not homotopic through regular structures. Let Cjy

be a fixed embedded symplectic torus. A small neighborhood U of Cj is

7




symplectomorphic to T% x C with the standard product symplectic structure.
Let (z1,2;) denote the complex coordinates on the product, and J, be the
standard complex structure. All tori 72 x {pt} are holomorphic. Choose a
finite number of them, 7% x {pt,} (k=1,---,N) and perturb J, to a regular
J but so that all of the tori remain J-holomorphic. Each_perturbation can

a g

be written as ¢~ Jy®. To obtain regular J we choose ® = so that
v oo

Y(z1, %1, 22,%2) = ¥{Z3), and so that 5%7 is constant, and non-zero. It follows

from the explicit form of D, (see above), and Lemma 3.1.1 that such J is

regular along the tori 72 X pt,. Now perturh it further to obtain a regular J.

It is clear that one obtains .J’s with arbitrarily many pseudo—holoxlaorphic torl.

M
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Chapter 6

An example of a moduli space of
pseudo-holomorphic curves with orientation

reversing evaluation mapping.

We give an elementary construction of a generic almost-complex struc-
ture J on a four-dimensional manifold with a rather unpleasant property. An
evaluation mapping defined on an moduli space of J-holomorphic curves is not
orientation preserving. This happens for all values of the first Chern class for
which the moduli space is generically of positive dimension. Such hehavior is
in contrast to the case of integrable complex structures where evaluation maps

are holomorphic, hence preserve orientation.

We will now sketch both constructions, and introduce the main “tools” of
the proof i.e homogenous almost-complex structures and generalized Canchy-
Riemann operators. For the most part we work in a local model of an embed-
ded pseudo-holomorphic curve, i.e we specialize to the case where M = F(L),

the total space of a complex line bundle L on a surface X, and B is the ho-
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mology class of the zcro section of L. This is because the property of pseudo-
holomorphic curves we want to establish is local and it is easy to prove our
main theorems once we carry out local constructions. This reduction allows
us to introduce homogenous almost-complex structures on #(L) i.e the ones
which are invariant under multiplication by real scalars in the fibers of L (sec-
tion 2). The advantage in using a homogenous almost-complex structure J
(rather than an arbitrary almost-complex structure) is that the moduli space
M of J-holomorphic curves becomes simply a linear subspace of the space of
sections of L. There are two consequences of this fact. The first is that every
J-holomorphic curve has a canonical parametrization. As we shall see in sec-
tion 5, this considerably simplifies the evaluation map ev. The second is that
we can use effectively our main tool i.e R-linear generalized Cauchy-Riemann
operators (section 3). More precisely, M is equal to its own tangent space
T,y M at the zero section oy . This is a finite dimensional subspace of the
space of sections of L, and the kernel of a generalized Cauchy-Riemann oper-
ator 0, defined on L. The construction of the operator d, (which, in general,
is non-linear) due to Gromov [Gro85] and Hofer et al.[HLJ94] is presented in
section 4. Ior a homogenous almost-complex structure J the operator 0, turns
out to be linear (over H), and the differential of ev (at the zero section o)
splits into a complex-linear part and 8,. OQur construction is based on a simple
observation that 0, is R-linear but not C-linear, and that for such operators,
on a Riemann surface of genus g > 1, the Carleman Similarity Principle does

not hold. (It does hold on 5? which is the reason why pseudo-holomorphic

spheres behave quite like holomorphic spheres.) We show (Proposition 6.3.1)
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that ev will not preserve orientation if 9, has the following property. There are
N (2N = dimg M) points 21, ..., 2y, a section o € ker(d,) with simple zeros at
21, .., 2y such that o is the only (up to multiplication by real scalars) section
vanishing at z,..., zy. We give elementary constructions (sections 6 and 7) of

almost-complex structures J together with a section o with just such property.

Remark 6.0.9 As we mentioned above, regularity of the constructed almost
structures is achieved by stipulating ¢, () > 1. We will outline an example of
a moduli space of tori in a class B where ¢,(/3) = 0 for which the evaluation
map ev does not preserve orientation. Let M = CP?*#,CP? be CP? blown
up at nine points (with the standard integrable complex structure J extended
from CF?), and B be the homology class of the proper transform of a torus
passing through all points. Then ¢,(B) = 0, and the moduli space M(J, B, 1)
of pseudo-holomorphic tori in M is generically zero-dimensional and finite,
Recall that moduli spaces M are canonically orientable, and in the current
case of M(J, B,1) the number of tori counted with signs is one because there
is only one torus passing through nine generic points. Now take the nine points
to lie on the intersection of two different tori. Then there are (at least} two
J-holomorphic tori in the blow up (in fact the blow up is fibered by tori), and
one can perturb J to a regular almost-complex structure J' for which these
two tori are still pseudo-holomorphic. Since the algebraic number of tori is
one, there are tori in M{J', B,1) counted with negative signs. It can be seen

that the evaluation mapping ceases to preserve orientation at these tori. For

details see [MS594].
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The following notation will be used:

2 will denote a Riemannian surface of genus ¢, 1 < g,
- m: L — ¥ a complex line bundle over %,

- £ = E(L) the total space of L. — 3,

{y: or o the zero section of L.

We will not keep track of the ever changing complex structure on 3. Unless

stated otherwise we will work in the smooth ((C*) category.

6.1 Homogenous almost-complex structures

It will be convenient to make use of an almost-complex structure J which
is mvariant under multiplication by scalars in L. Let u, : % — E denote

multiplication by a real number s in fibers of L.

Definition 6.1.1 An almost-complex structure.J on I preserving the zero
section Oy, and equal to multiplication by +/—1 in the fibers will be called
homogenous if

o] = J for every s € R

where p7J denotes the pull-back of J by the diffeomorphism s

Remark 6.1.2 The tangent space T'F restricted to the zero section 05y splits

into 7% @ L. J preserves both factors and in particular defines a complex

structure j on . We will always assume that the base ¥ is equipped with this




-
TEE
224
o

induced complex structure j. It is also worth observing that a homogenous
almost-complex structure J tames a symplectic form w (which depends on J )
on a neighborhood of the zero section of .. The complex structure J on X
tames a form wy (on %), On the other hand by choosing a Hermitian metric
h and a Hermitian connection V we can introduce a holomorphic structure on
L so that £(L) becomes a complex manifold. Let ¢(v) = k(v,v) v € L. Then
wy = /183t is a closed form on E tamed by J in the fibers. For k large
enough w = kn’wp 4wy is a symplectic form tamed by J at least on a small

neighborhood of the zero section.

We will now prove that homogenous almost-complex structures are fairly

abundant.

Lemma 6.1.3 Let J' be an arbitrary almost-complez structure on I presery-

ing the zero section and fibers. Then

lim g0’

5—0
exists and defines a homogenous almost-complex structure.
Proof: Convergence of the limit follows easily from a computation in a local

trivialisation 9 : U x C — L. We will denote the tangeni bundle to the first

factor by H (for “horizontal”), and to the second by ¥V (for “vertical”). We

write
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where o € FEndg(H), f € Endg(H,V), and ~ € Endg(V). Let (21, z;) be the
co-ordinates on U x €. Note that along the zero section § =0, i.e Bz, 29) =

O(23). Then for a horizontal vector h al a point (2, z;):

B30 (21, 22) () = (a1, 522)(B), ~B(z1, 522)(h))

)
&

and the right-hand side converges to

(01(21, U)h, Zg-;aﬁ(z-l ) U)h + Eg aﬁ

Ozy Za

(21, 0)R).

For a vertical vector o tangent at the point (2, z,):

30 (a1, 22)(0) = (0, 2131, 322)(0)

which converges in turn to (0, y(z;,0)(v)). That is enough to establish existence
of J. O

In sections 3 and 6 we will need an explicit construction of homogenous
almost-complex structures. Recall that £ is a complex line bundle. We fix a
Hermitian connection V and define a holomorphic structure on I, via V. Then
the total space E(L) becomes a complex manifold whose complex structure
will be denoted by J' = J'(V). 1t follows from the very definition of J/ = J' (V)
that this complex structure is homogenous. The tangent bundle T E splits into
horizontal and vertical subbundles T'F = H@V both preserved by J'. We have
immediate isomorphisms # = #*7'E and V = «*L. For any & ¢ Endg(TE)

we can define an almost-complex structure J by:

J=0"0J 0,

¢ will be called homogenous if ® o u* = u* o &,
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Lemma 6.1.4 The almost-complex structure J is homogenous if and only if
there exisls a Hermitian connection ¥V and a homogenous endornorphism O
such that J = ®~ 1o J'(V) o @ Morcover one can arrange that ® have the

form.

where v € Endg(H, V) is homogenous i.e o py = ps oy for all s € R,

Proof: II J' and @ are homogenous then so is .J. To prove the other direction
we simply note again that J induces a ‘complex structure 7 on & and that by
introducing a connection V on L we get an auxiliary complex structure J' =
J'(V) on E. Since J = J' along the zero section we can write J = &L o J' o &

for some ®. ¢ = Id along the zero section. Now write

Here oo € Endg(H),7 € Bndg(H,V),8 € Endg(V, H),6 € Endg(V). Along
the zero section o = id, § = id, # = 0, v = 0. As in the previous lemma this
is enough to show that the limit lim, o p*® exists and defines a homogenous

endomorphism of T'E. Since J is homogenous we have:

J=limpsd = lim ((a3®)7" 0 J'o (1;0))

= (limuf®) oo (lir% 1 d)

s—0
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and we can replace our original choice of @ by the homogenous ¢ = lim, ., pid.

Thal is enough to establish the first part of the lemma.

If & is already homogenous and ® = Id along the zero section then it has

a special form:

v id
and all entries of this matrix are homogenous under multiplication by real
scalars. Upon making the identifications H = #*T'% and V = 7*/, the ho-
mogeuelty translates into the statement a(sp) = «, for all s, where pE L,.

Hence a(p) = a(z) = id. Note also that y(sp) = sy(p) which is exactly what

we wanted. O

Remark 6.1.5 A local version of this computation will be used to construct
almost-complex structure J in section 6. [ix a local trivialisation P UxC—
L of L. Then take V to be the trivial connection defined over IJ. The subbundles
1, and V of T'IJ are just the subbundles tangent to the factors of Ux C and are
trivial bundles with fibre C. Let now p = (z+14y) be a point in the fibre, define
v(2+1y) = &y1+y72, where v1,7; are functions supported compactly in U/ and
id 0
with values in Endg(C). Finally let & = .Then J =9 to S od is

v id

a well defined homogeﬁous almost-complex structure.
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6.2 Moduli spaces of pseudo-holomorphic curves.

[n this section we describe the space M of pseudo-holomorphic curves for
a homogenous almosi-complex structure on the total space £ of a line bundle
L.

First, we define paramctrized pseudo-holomorphic curves. Let (M, J ) be

a smooth manifold with a smooth almost-complex structure J.

Definition 6.2.1 A parametrized J-holomorphic curve in M in a homology

class B € (M, 7) is a mapping v : ¥ -+ M such that

T T M ST

duoj=Jodu
for a complex structure j on 3. We allow § to vary.

An unparametrized curve may be considered to be either the image u( %)
of a parametrized curve or an equivalence class of J-holomorphic maps u,
and one could make corresponding definitions of the moduli space M of un-
parametrized curves (see D. McDuff, D. Salamon [MS94]). The case at hand,
however, is simpler because all J-holomorphic curves are graphs of sections
of L and hence have a distinguished parametrization. Thercfore, we have the

following characterisation of the moduli space M.

Lemma 6.2.2 Let J be a smooth (C%) almost-complez structure on FE(L)
which preserves fibers and the zero section of L. Then the moduli space M of
unparametrized J-holomorphic curves in the homology class [0})] i3 diffeomor-

phic to the space of C*-sections o € T'(L) such that the tangent space of the

graph of ¢ is invariant under J.




Proof: Let u : ¥ — £ be a J-holomorphic section in the class of the
zero section. Since J is smooth it follows from elliptic regularity ([MS94])
that u is a smooth mapping. Purthermore, J preserves fibers (as it hap-
pens in the case of homogenous almost-complex structurcs) i.e fibers become
smooth pseudo-holomorphic discs. It then follows from the intersection the-
ory of pseundo-holormorphic curves that every pseudo-holomorphic u intersects
every fiber only once, and the infersection is transversal i.e the intersection
number is 1. (see ‘I'heorem 1.1 [McI)91al). In particular u can not be singu-
lar, since a singular point of u would contribute at least 2 to the intersection
number ol u and a fiber through that point. Hence the image u(%) is a graph

of a section of L. This establishes the isomorphism between the spaces. O

It turns out that for a homogenous ./ the moduli space is simply a linear
space. In fact, when J is homogenous, it is the kernel of a generalized Cauchy-

Riemann operator on .

Proposition 6.2.3 The moduli space M of J-holomorphic curves of class
{OE} is canonically isomorphic to the kernel of a generalized Cauchy-Riemann

operator 0, on L.

Proof: Tirst, following Gromov [Gro85] and Hofer, Lizan, Sikorav [ITLJ94]

we construct an operator 51, on {:
3, : (L) = T(A* © 1)

whose kernel is the space of J-holomorphic curves in F for an arbitrary

almost-complex structure J which preserves the zero section. In general 9,
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is non-lincar. We will see, however, that if the almost-complex structure ./ is
homogenecous the operator is R-linear, and is a generalized Cauchy-Riemann

operator as defined in the previous section. The result follows.

Let J be an almost-complex structure on £(L) preserving the zero section,
and j denote the induced complex structure on % (i.e .J restricted to the zero
section). As before we pick a Hermitian connection V on L and split the
tangent bundle to & into horizontal and vertical spaces, T/ = H © V. We
have H = #*T%, and V = x*L. The connection V defines a holomorphic
structure on L |, and the corresponding complex structure Jy on TE has the

form:

Jo

where ¢ denotes the multiplication by +/—1 pulled-back to V, and j is the
complex structure on T2} pulled-back to H. Then for a point p close to the

zero section

Here o € Endg(H ), 8 € Endg(V, H), v € Endg(H,V) and § ¢ Endg(V). Tor
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a section ¢ € I'(L) define an auxiliary operator P(a):

Ple): T8 — L

Plo) = (o) + 8(0)Va)(efo) + f(a) Vo)™ :

Here Vo, y(o) ete. are to be interpreted as R-linear endomorphisms in Endg(7'%, L).

We use the identifications H = T2, and V' = n* L to make sense of this inter-
pretation. The reason for introducing P(o) is that o defines a J-holomorphic |
curve only il the tangent spaces of the graph I', of ¢ are J-invariant. I'his is
equivalent to ®(T(I',)) being Jy-invariant. However, it is not hard to check
that ®{7(I';)) is equal to the graph of P(c) (in TX x L), so that o defines a
J-holomorphic curve only if P(o) is complex linear. Now define the operator

3, by:

d, : INE) — A%

B(0)= P(o)oj — ioP(o)

A section o defines a J-holomorphic curve, i.e the tangent space to the graph

of o is preserved by J if and only if 9,(¢) = 0. For more details see [HLJ94].
We now show that 0, is a linear operator if J is homogeneous. Recall from

section 2 that if J is homogenous then we can arrange a simple ®:

The endomorphism v € Endg(H, V) is homogenous, i.e v o Ty, = Ty, 0, or

(if we identify H with #*T'%, V with #*L) ~(sp) = sy{p) for a point p € L.




That gives: P(o) = (o) + Vo. Moreover 8,(0) = 0 and is homogeneous:

3,(s0) = Plsg)oj—ioP(so)
= (7(s0) + V(s0)) 0 j — 0 (y(s0) + V(s0))
= s(y(s0) + V(30)) 0 j — s(i o (7(s0) + V(s0))
= 50,(0)
It follows that 8, is equal to its linearisation along the zero section i.e:
9u(0) = 8(a) + (d7(0)o) 0 j — i 0 (dy(0)o)

where dy(0)o is the derivative of v in the direction of o ,and dv(0) is under-

stood as an endomorphism
dy(0) : I'(L) — I'{Lambda®" ® L).

Since this is a R-linear operator we have proved the proposition. O

6.3 The evaluation mapping

The lemma 6.2.2 gives a simplified point of view of the moduli space M.
For a homogenous J we identify M with the kernel of a R-linear operator 3,
on L, so that a J-holomorphic curve is simply thought of as a section o of L.

We can now define the evaluation mapping by:

ev: Mx 2N o pgN

ev(o,wy, .o wy) = (o(wr), .., o(wy))
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where 2V = ding ker(d,) (so that both sides of the above equations have equal
real dimension 4N). Since M is a vector spacc, it is a stable almost-complex
manifold hence orientable. If J is integrable then 8, is complex linear, M is
canonically a complex space and the evaluation map ev is complex linear. In
particular, ev is orientation preserving. It is no surprise however that this fails
it J is not integrable, and the surface T is not a sphere. If ¥ = 5% then, using
the Carleman Similarity Principle, we can define an almost complex structure
on M and use it to show casily that ev is orientation preserving). To construct
a counter-example we first look at the derivative ev,q abt (op,w) € M x nh
where w = (wy, ...,y )} is apoint in £V and &y is the zero section . Let d, be
the linear generalized Cauchy-Riemann operator introduced in the previous

section:

0, T(L) - T(A" @ L),

The tangent space T,, M is canonically identified with the kernel of 3, i.e with

M itself. If (op,w) is point in M x 5V then
eVaw : ooy (M x B¥) — TEN,

Now ev, 1y restricted to the factor Twzﬂis just the differential deg which is
a complex linear mapping. If we identify 7,, M with the kernel of 8,, and

TUO(QJEN with Ly, & ... B Ly, DT, 26 ... 6 [hyy 2 then the composition

& 1 Tog M = Ty un), o) B Logug) © oo ® Liogfuony = Ly @ oo @ L,
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becomes simply the evaluation

ker(8,) — Loy & oo P Loy,

n = (n(w),.,m(wN))

Proposition 6.3.1 Let L be o complex line bundle with ¢, (L) > 29 1,7
a homogeneous almost-complex structure on L and M the moduli space of
J-holomorphic curves in K in the homology class of the zero section. Let
dimpM = 2N. The evaluation mapping ev does not preserve orientation al all
points of M x N if there are points (#z1, .., 25) on the surface 3 such that
there is o section 1 € ker(d,) with simple zeros al {z,...,zx} and the space of
pseudo-holomorphic sections (i.e in kex(d,)) vanishing al {zy, ...,z } has real

dimension 1.

Proof: In view of the decomposition of ev, it is enough to prove that
TV, does not preserve orientation at all points w . The assumption made
in the lemma (that 7 is the only, up to multiplication by real scalars, pseudo-
holomorphic section vanishing at {z,...,zx}) implies that &7, has rank
2N — 1 ab (z1,..., 2w ). Let {m,...,man-1,m2n} be a basis of T, M such that
M2y 18 & section vanishing at zy, ..., zy. By changing indexing of z, ..., zy and

fiddling with the basis we can assume that &7, restricted to the first 2N — 1

sections has rank 2N — 1, and that the matrix of &V, at z,..., zx is of the
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form

wd 0

* 0
L i

where ¢d denotes the (2V -~ 1) x (2N — 1)} identity matrix. This requires

choosing trivialisations L,. = R? which we extend over small neighborhoods of
g ; g

the z;’s. Then, in local co-ordinates w; around z;, we have:
2
Nan (w;) = a;w; + O(wy), a; £ 0
ag, if w; = s; + 21, and a; = o, + 25;:

faN — (OfiS,; — ﬂzﬁz) + i(ﬁ,;si + Of{tg') —|— O(wf)

Then at a point (wy,...,wy) close to zq, ..., zy we have:

Q8 — 1'51}61

Bty -k o8y

A
Ve = + O(w?)

”

* Busn + anty
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where Ais a (2V — 1) x (2N — 1) matrix with a non-zero determinant, and the
last column of ev, ,, is (crysy—t1 B, frsi+anty, ..., ansy—tn By, Bvsn+anty).

The determinant of &7, is of the form

det(&850) = Bvsy + antn + f(s1,11, - 8N—1,tv—1) + hoot

where “h.o.t” denotes quadratic and higher order terms, and f is a linear form
in s;, 4. It follows that det(ev, ) viewed as a function of the 2V real variables
8iyt; has non-zero gradient at z,...,2y. Therefore the set where det(ev.,)
vanishes is of codimension one and separates non-emply sets where the deter-

minant is positive/negative. That proves the proposition. O

6.4 Construction of an almost-complex struc-

ture

Here we prove the first main theorem. The notion of an w-tame almost-
complex structure, and a positively symplectically immersed surface are ex-

© plained in the Introduction.

Theorem 6.4.1 Let (M,w) be a {-dimensional, compact, symplectic manifold
and B € Hy(M,Z) a homology elass such that ¢;(B) > 1. Assume that there is
a positively symplectically immersed surface ¥ of genus g > 1 in the homology

cluss B. Then there cxist w-tame almost-complex structures J such that the

evaluation mapping ev defined on M(J, B,g) does not preserve orientation.




Proof: We will indicate how to reduce the theorem to local results, i.e to
Proposition 6.4.2, and Proposition 6.4.4. Let ¥ be a positively symplectically
immersed curve of genus ¢ > 1. It will follow from the proofs of Proposi-
tion 6.4.2, and Proposition 6.4.4 that we can assumec that 3 is embedded.
Then by a version of Darboux theorem due to Weinstein ([MS94]) we can
identify a small neighborhood of ¥ with a total space E of a holomorphic line
bundle L. Let J denote the complex structurc on 7. We can arrange that J
extends to an w-tame almost-complex structure on M. Since ¢;(B) > 1 the
degree of I, is greater or equal to 29 — 1 > ¢. We can furthermore assume
that our line bundle L and the complex structure J are constructed from a
holomorphic line bundle on a sphere 5? via the following cutting and pasting
procedure. Start with a holomorphic line bundle I/ — S? of degree ¢, connect
this line bundle with a copy of a trivial bundle $* x C along two fibers to ob-
tain a holomorphic line bundle of degree g over a surface of genus 1. Perform
this operation ¢ times to obtain a holomorphic line bundle of degree g on a
surface 2. If necessary form tensor products with divisor line bundles on ¥ to
increase the degree of the constructed line bundle.

We will show (Proposition 6.4.2,Proposition 6.4.4) how to construct an
almost-complex structure ./ on I for which the evaluation mapping (defined
on the moduli space of J-holomorphic curves in E) is orientation reversing
at the zero section of L. By construction J will be a small perturbation of
J. Since J is well defined on M we can easily modify J away from the zero

section and extend it across the whole manifold M. Since we preserve J near

the zero section the resulting almost-complex structure on M , still denoted
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J, will not lose the property that the evaluation mapping does not preserve
orientation. We also note that .J is close to J hence is w-tame. That is enough

to prove our theorem. O

We now turn to the local results needed to establish the above main the-
orem. We will show how to construct an almost-complex structure J on the
total space £ of a line bundle I, which satisfies the conditions in Proposi-
tion 6.3.1. It will be implicitely assumed that our line bundle 7 is constructed
in the way which was outlined in the probf of Theorem 6.4.1. We will use two
different methods. The first one (by cutting and pasting) is presented here, the
next section contains an alternative construction via perturbations of complex

structures.

First we construct a suitable almosi-complex structure.J on a line bundle
L of degree ¢. Later we will show that by tensoring with bundles O(p), p € &

one can increase the degree of L arbitrarily while extending J.

Recall that according to Proposition 2.0.13, and remark 2.0.14 a general-
ized Cauchy-Riemann operator 0 ++ A wich is sufficiently close to the standard
Cauchy-Riemann operator & on a line bundle L — % of degree ¢ with a
generic holomorphic structure has a two dimensional kernel, spanned (over i)
by two sections. T'his applies to operators @, associated to any almost-complex
structure J on the total space # of L which is sufficiently close to a generic
holomorphic structure. Proposition 6.3.1 applied to such an operator 8, says

that the appropriate evaluation map ev will not be orienation preserving if we

can find two sections, say ¢ and 7 spanning kerg(J,) and a point ¢ where o
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has a simple zero, and (g} # 0. We will construct J with such property.

Proposition 6.4.2 There is a complex line bundle L — %, with deg(L) = ¢
and a homogenous almost-complex struclure J such that the following holds.
There are two sections o and T spanning ker(0,) and a point ¢ where 7 does

nol vanish, but o has a simple zero,

We will need the following lemma about generalized Cauchy-Riemann opera-

tors on holomorphic line bundles over S2.

Lemma 6.4.3 For an arbitrary generalized Cauchy-Riemann operator 8 + A
on a holomorphic line bundle L' — 5% {deg(1') = 1) there are two sections
0,7 € ker(d + A) with simple zeros and a sequence of pairwise distinct points

{Q>Q1>Ph---,qg,pg} such that:
@) o(q) =0, 7(q) #£0,

b) the pairs of vectors {o(q;), 7(g;)} and {c(p;), 7(p;)} are lineariy indepen-

dent (over R), and positively oriented in the fibres Ly, and L, respectively.

Proof: Start with a triple of holomorphic sections 7, in and " with simple
zeros, and a point ¢ where n(q) = 0 but 7'(¢) # 0. Choose 7’ to be close (in G
toplogy) to 4. Use Proposition 2.0.11 to obtain pseudo-holomorphic sections
o, o’ and 7 (corresponding to 7, in and 7') such that o(¢) = 0, and 7(g) # 0.
It follows from the proof of this proposition that all zeros of o and T are simple
if the same is true about  and 7. It follows also that ¢’ and 7 are pointwise

close if n" and 1 are close. Now choose the points {g;, p;} away from the zero

locus of T and o', If the sections ¢’ and 7 are sufliciently (pointwise) close (and
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this can be gunaranteed by an appropriate choice of 5 and ') then the points

{¢;, p;} have the required properties. =

In particular, if J’ is any homogenous almost-complex on I/ then this
lemma applies to the associated @, operator.
Proof of proposition 6.2. Start with a holomorphic line bundle L' —
5% of degree g and an arbitrary homogencous almost-complex structure J’
on K'(L"). Denote by Ji the unique holomorphic structure on /. Let o, T
and ¢,q1,p1,-., 44,0, be as in the above lemma. Trivialize I/ near points
41,015 > 9, Pg Using the sections o and 7, let ¢,, : U x C — L’ be the local

trivialisation around ¢; defined as follows:

bo (2, + 1) = 2o (g, (2)) + y7 (g, (2)),

where 9, : U - ¥ is a local holomorphic chart near ¢;, +,,(0) = ¢. Since
for all fixed z and y € R, xo + y7 is a J"-holomorphic curve, and since J'

preserves fibers we have

(ﬁqi*J" —
0 J

It is then easy to modify the pull-back of J[’ by ¢q, on a neighborhood of

0 x C = L, so that it becomes the standard complex structure near

0 2

the central fiber 0 x C, and remains homogeneous throughout. For that simply
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write J; = , where be = —1 — a®. Then let @ — 0, and ¢ — 1. This
c —a
defines an almost-complex J” which is standard near the central fiber but not
necessarily homogenous. To {ind a homogenous structure simply homogenize
by taking the limit lim,_gptJ”. Now we can form the fiberwise connected
sutn L'#t g, o S* x C along the fibers L., Ly, and extend J' as if it were an
integrable complex structure. We perform this cutting and pasting so that
the genus of the underlying surface increases by one each time the surgery

is performed. To form the connected sum we identify S x C with U x C

(where U as above is a neighborhood of the origin in C) near a point » € 5

(r = @1, P15 92, P2y -y 4g» Py )

h: UxC— 5% xC,

The gluing map in local trivialisations has the form: (z,z +1dy) — (e2,z +1y)
where z is a local co-ordinate on U C C and (z + 2y) is a co-ordinate in the
fibers of U/ x C. After performing this at all points {¢;,p;}_, one gets the
desired bundle L. Notice that J' extends across to L as do both sections o
and 7 ( simply because in all trivialisations ¢(z) ~ (2,1), and 7(z) = (2,1)).
We will denote the extension of J' by J, and the extensions of ¢ and 7 by the
same letters. The almost-complex structure J obtained is homogenous since
the gluing mapping é.nd the complex structure on $? x C are homogenous.

The extended sections ¢ and 7 are J-holomorphic curves or, equivalently, are

sections of I in the kernel of the associated operator d,. Also there is a point
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¢ on the surface 3 where o has a simple zero, but 7(g) # 0. It follows from
this construction that all the zeros of o,and 7 are simple since we started with

sections with that property and did not add any extra zeros.

To ensure that o, and 7 span ker(3,) we need to apply Proposition 2.0.13.
We will be able to apply this proposition if we can arrange for J to be arbitrar-
ily close to a generic holomorphic structure Jy which is fixed at the beginning
of the construction (see Remark 2.0.14). This is easy to achieve. Observe that
we could carry through our surgery with Jj instead of J/, and with holomor-
phic sections 7, ¢y (notation as in Lemma 6.4.3) in place of o, and 7. We would
obtain a holomorphic structure Jy on L and a holomorphic section 7 of L. If
J and J' are close then so are Jy, and J. Now I is the divisor line bundle of
the zero divisor of 7 which depends only on 5, and is independent of J'. We
can choose % so that the zero divisor of 7 and the holomorphic structure Jy
on L will be generic in the sense of Proposition 2.0.13, Having fixed n we now
choose J' to be (C°°) close to Jj, and observe that ¢, and 7 will be close (also
in C'°° topology) to n and ). It follows that the almost-complex structure J
will be close to the generic holomorphic structure Jy which is what we needed.

That is enough to prove the proposition. (1

To increase the degree of L to ¢ + r we form tensor products of L with

divisor bundles O(p), p € 3.

Proposition 6.4.4 Let o, 7, ¢ be as in the previous proposition. Let {e;}7_, €

3. be a sequence of distinct points on ¥ such that o(c;) and 7(¢;) are linearily

independent in L. Then the almosi-complex J and sections o,and T extend to
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the tensor product LRO(c))®..80(¢.). The exlended almost-complex struc-
ture, still denoled by J, is homogenous and the exlended sections, still denoted
by o, and 7, are pseudo-holomorphic sections for the ussociated operalor J,.
The section & is lthe only section, up to real scalars, vanishing at (¢, ¢y, ..., ¢,)

and has simple zeros al those points,

Proof: As before we use sections ¢ and 7 to trivialize I near ¢;. Let

de, UxC — L

boi(z v +iy) = (2o(e(2)) +iyT (e (2)))
be a local trivialisation, where v, : U — ¥ is a local chart. The pullback of J is

diagonal, and as in the previous proposition can be modified on a neighborhood

of L., so that it becomes the standard integrable structure . After this

0 =

is done we can form tensor products as if J were an integrable structure. J, o
and 7 all extend to LRO(c1)®...80(¢,) for | < . To ensure that this works
we make the following simple observation. If we modify J as above then J re-
stricted to F| e V) is an integrable structure, namely a holomorphic structure
on L|¢ci(U) and 1t extends to the total space of L®O(cl)®...®(9(cr)|¢C€(U). On
the other hand each bundle O(¢;) has a standard holomorphic section n; van-
ishing only at ¢;. By tensoring with 7 ®n,®...®n, we construct a linear (over

R) isomorphism

’{b . L®O(Ci)®---®O(CT)|Ef{q,..-,Cr} — L
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with which we pull back J, i.e ¢*J is the extension of J on X — {¢q, ..., ¢, ).
since 1 is holomorphic with respect to J |¢7r;(U ) —¢; and the holomorphic
structure on O(e;) for every ¢ = 1,...,r both extensions agree. To extend
the sections o and 7 just tensor them with 5,@9,®...®n,. The extended
almost-complex structure J is still homogenous since ¥ was a linear mapping.
The new associated generalized Cauchy Riemann operator operator d, has
2(r-+1) independent sections, but none of them vanishes at {q, ¢, ..., ¢, } except
o and real multiples thereof. For if £ were such a section then by tensoring

with all the

we would get a J-holomorphic section of L vanishing at g,
hence a multiple of #. That would imply in turn that ¢ = sv for some s € R.
We notice that by the construction o has simple zeros at {g,¢i,..., ¢, }. That
is enough to prove the proposition. 0

This proposition applied with Proposition 6.3.1 concludes our first con-

struction of the required almost-complex structure J.

6.5 Alternative construction.

In this section we prove our second main theorem.

Theorem 6.5.1 Let (M*,J) be an almost-complex (compact, smooth) man-
ifold, B € Hy(M,Z) a homology class with ¢;(B) > 1, and u : & — M an
embedded J-holomorphic curve in class B of genus ¢ > 1 such that J is in-
tegrable on a neighborhood of u(X). Then there are almost-compler structures

J' arbitraridy close to J (in the Ct topology) for which the evaluation mapping

ev on M{J', B, g) does not preserve orientation.
?
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Proof: We will outline how to reduce this theorem to a local statement. Asin
the prool of Theorem 6.4.1 we identify a neighborhood of the curve ¥ with the
total space £(L) of a holomorphic line bundle L with a generic holomorphic
structure. Although we cannot assume that the almost-complex structure J
on M restricts to the linear complex structure on F we can arrange that both
structures agree along the zero section. Now we introduce an auxiliary complex
structure J' on M which is equal to J away from the zero section, and which
is equal to a generic linear complex structure Jy on a neighborhood of the
zero scetion of L. Needless to say we can arrange that J and J' be €' close.
Our local results presented below let us approximate J' on E by an almost-
complex structure J” with desired properties. J” is also an approximation
of J. Moreover since it is (C") close to J it can be extended to an w-tame

almost-complex structure on M. That is enough to prove the theorem. (W]

We now turn to local results, and prove how to perturb a given integrable
generic complex structure Jy on L (with deg(L) > ¢) a little bit to find an
almost-complex structure such that the appropriate evaluation mapping does
not preserve orientation. We need to find an almost-complex structure J near
Jo to which we can apply Proposition 6.3.1. Tirst we consider perturbations
on the level of generalized Cauchy-Riemann operators. We will show that it is
always possible to perturb  to get a generalized Cauchy-Riemann operator 9+
B which has the property of Proposition 6.3.1 i.e there are points {zy, ..., zn }

and a section o € ker(d + B) vanishing at {z,...,2y}. Also we require that

{z1, ..., 25} are simple zeros of o.
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Let A be a (0,1)-form on ¥ with values in the bundle of endomorphisms
of L i.e a section of A% @ Endg(L), and consider d+tA where { is a small real
parameter . Choose a basis of the kernel of the unperturbed operator & of the
form 1,59 = 101,03, ..., 0251, oy = 102y—y. Since we assumed deg(L) > ¢,
and that J’ is generic, the Dolbeault operator J is onto (this is a special case
of the “geometric” version of the Riemann-Roch theorem, see [GHT8]). If we
fix a subspace complementary to the kernel of @ then by the implicit function

theorem we get the perturbed sections of L spanning the kernel of 3 + ¢ A:
o;(t) = o; + th; + O(tz) where b; & I'(L).
Lemma 6.5.2 If A is anti-holomorphic then oy;(t) = iog;_1 —tibs;_1 + O(#2).

Proof: Let og; = 035 + 109 +---, and 0951 = 0951 + tog;_1 + - . Since the
sections b; are unique, in order to see that by; = —iby;_ it is enough to check
that (8 + tA)(oo; — itoy; 1) is of order O(t?). But that is immediate from the

fact that A 1s anti-holomorphic. O

Proposition 6.5.3 Assume that L is a holomorphic line bundle such that
for a choice of points zy,...,zx5 there is a holomorphic section unique, up to
multiplication by complex numbers, with simple zeros at z, ..., zy. Then there
is @ dense open subset A in the space of anti-holomorphic endomorphisms such
that for A € A and a small { the operator 8 + tA has the following property:

there are points {w,, ..., wy} and a section o in kerg(d -+ tA) with simple zeros

at {wi,...,wy} which is unique, up to multiplication by real scalars.
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Proof: We use the notation developed so far. We may assurme that the section
oon(t) = o has N simple zeros at 21, ..., zn. Let go; 1 () = o1 +1 by HO(22).

Then according to the Lemma 6.5.2 (since A is anti-holomorphic)
!
O'g,;(t) = Og; + tbgi + ()(1'12) = ?:0'21'__1 - 31", bgz’_l -|~ O(fg) l

Let z;(t) be the zero of oyy(t) developing from z;, i.e z;{0) = z;. In local

co-ordinates we have z;(t) = z; + 1d; + O(¢?) with

B ng(Zj) o 52]\7“1(23:) _

dj - acsz - 80‘2;\:_1
0z 824

1t follows

Tan—1 ()7 (1)) = oamw_1(z;(2)) + than—1{z;(t))

= 1d; 732+ iy (z5) + O(12)
= 1 Pbhav-a(z5)] + O(F).
The assumption that oy is the only section (up to complex scalars) vanishing
at zp,...,zy implies (after possibly reordering zy,...,zy) that the evaluation

mapping

ev i ker(9) — L, @ ol
when restricted
€V |span{or,moaw_s} - SPAN{ 01, o, 0oy} = Ly B L,

is an isomorphism. To prove that gon(f) is the unique (up to real scalars)

section vanishing at {z;(¢)}, we need to prove:

evy : ker(g + 'tA) — -Lzl(t) & ---LzN(t)




is of rank 2V — 1. This is a computation similar to that done in Proposi-
tion 6.3.1. By writing down a matrix of ev, we can easily see that this would
[ollow if we could show that oon_1(£)(zx (%)) can be chosen independently of
can—1(t)(7; (1)) for j < N, or , that byy_1(2n) is independent of byy_1(z;) (for

7 < N). Since by is only constrained o be a solution of
(%) Oboy 1 + Aloan_y) =0,

we can choose byy_1 to be holomorphic on a small neighborhood U of the
zero divisor of opy_y (in particular around zy, ..., zy) with arbitrary prescribed
values at zy,..., 2y and extend it smoothly across ¥ (in order to do this we
multiply byy_; by a smooth cut off function with support in I/). There is then
an anti-holomorphic endomorphism A such that () is satisfied. That proves
existence of the perturbations we are after. We define ¢ = oq5. Note that
bow 1 depends linearly on A and, by adding perturbations, we can alter any
giv-'-en one perturbation so that the appropriate evaluation mapping ev, has
rank 2V — 1. This proves that there is a dense set of perturbations A such
that & + 1A has (for small ¢) the properties stated in the lemma. This set of

perturbations A is obviously open. =

Let now Jy denote the given linear complex structure on the total space

of a holomorphic line bundle 1.

Proposition 6.5.4 There are arbitrarily small perturbations J of Jy such

that 9, has the property that there are poinis {wy, ..., wy} and a seclion o

in ker(0,) vanishing at {w.,...,wn}, which is unique up to multiplication by
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real scalars., Moreover il can be arranged that such section has only simple

zeros at {wy, ..., wy}.

Proof: We will adapt the proof of Proposition 6.5.3, and show that the
perturbation A that appeared in that proof can come from a perturbation
of complex structures (and not just an abstract perturbation of operators).
First change the holomorphic structure on I to ensure that there exist points
#1,..., 2y and a unique section ¢ with simple zeros at these points. We will

look for an almost complex structure .JJ” of the form:

-1

id 0 id 0
JH: J[)

v id v id
where v 1s homogenous as in Proposition 6.2.3 . For such an almost-complex

structure J” we have an explicit formula for the associated operator d, (sec

Proposition 6.2.3):

=
<
Ii

d+a, where

ar = dy(0)r o) —iody(0)r.
The equation + now reads
(') Oboy_1 + acay_y =0

where (in the notation of Proposition 6.5.3) tooy_1 = o9y = o, and byy 1
is a section of L. As before we choose byy_y to be holomorphic on a small

neighborhood U of the zero divisor of gy (which is equal to the zero divisor
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of o) and, multiplying by a cut-off function, extend it across the surface 3.
For conventence we arrange that 7 be a disjoint union of co-ordinate charts
centered around points in the zero divisor of oyn_y. Let p be a zero of oon_y
and z € U, be local co-ordinates near that point. We will construct J” by
prescribing . It we trivialize L near p and z + 1y parametrizes fibers of L then

we can write

(x4 1Y) = 27 + ¥y

for 74,92 € Indg(C). In addition we ask that v, and ~, satisfy iy, = —~,.

Then for any local section 7 of L we have

dy(0yr = dy(0)(my +47)
= T+ Ty

= (11 —im)m
It then follows

ar = (1) —in)(yoj—ioy) =7

where 47" denotes the (0,1)-part of ~y. Since dbyy_; is a form of type (0,1)
supported in a collection of local charts we can apply this local computation,
with 7 = ogy_1 in a local chart, to solve (%'). We see immediately that our
equation is solvable for v, (recall that Ob,y_1 vanishes on a neighborhood
of the zero locus of oyy—1). Having done this we define v = 2+, — yi,, and

observe that + is globally well defined and prescribes an almost-complex struc-

ture J”. This discussion shows that the perturbation term A in the equation
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LLD

(*) (Proposition 6.5.3) indeed comes from the required perturbation of the

complex structure Jo. o
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