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Abstract of the Dissertation
Scaling Laws for Quadratic Maps
by
LeRoy Atwood Wenstrom, I1I
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1996

We explore two cases of scaling for one-dimensional quadratic
dynamics. The first case involves the parameter structure of the
standard complex quadratic family z*+c around the real Fibonacci
point. The second case involves the geometry of the critical orbit
for quadratic maps under particular combinatorial assumpiions.

In Chapter 2, we show that the scaling and asymptoti.c geore-
try of the principal nest Yoécoz parapuzzle pieces around the real
Fibonacci parameter point is similar to that of the principal nest
Yoccoz puzzle pieces for the Fibonacci Julia set. We also show that

the Mandelbrot set is “hairy”, i.e., the Mandelbrot set densely fills

11




the plane after dilating by factors determined by the parapuzzle
scaling.

In Chapter 3, we consider classes of topologically conjugate
unimodal maps with quadratic critical point and C? regularity.
Under certain combinatorial conditions we prove that there is a
finite upper bound on the number of parameters influencing the
geometry of the closure of the critical orbit within this class. In
fact, in a given class we assign each map a parameter vector which
in turn determines the critical orbit geometry of the map. We fhen
show that the parameter vector may be effectively varied. In other
words, to every map [ in a given class, its parameter vector has a
neighborhood in which any vector is a parameter vector for some
map in the class. Exploring various exampleé we show that for any
positive integer N, there are combinatorics such that the critical

orbit geometry is influenced by exactly N parameters.
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Chapter 1

Introduction to the Main Theorems

In this introduction we outline the text of the thesis as well as state the
main theorems to be proven. A basic review of the necessary background
material may be found in the first sections of Chapters 2 and 3. Chapter 2
focuses on complex dynamics, in particular, the Mandelbrot set. Chapter 3
is independent of Chapter 2 and explores the geometry of the closure of the

critical orbit for certain unimodal maps of the interval.

In Chapter 2, we focus on the small scale similarities between the dy-
na,m_ica,l_ space and parameter space for the Fibonacci point in the family of
maps z — 22 + c¢. There is a general philosophy in complex dynamics that
the structure we see in the parameter space around the parameter value ¢
should be the “same” as that around the critical value ‘¢’ in dynamical space
[DH85a). In the case where the critical point is pre-periodic, Tan Lei {Tan90]
proved such asymptotic similarities by showing that the Mandelbrot set and

Julia set exhibit the same limiting geometry. For parameters in which the

critical point is recurrent (i.e., it eventually returns back to any neighborhood




of itsell), the Mandelbrot and Julia sets are much more complicated. Milnor,
in [Mil89], made a number of conjectures (as well as pictures!) for the case
of infinitely renormalizable points of bounded type. Dilating by factors de-
termined by the renormalization, the resulting computer picturés demonstrate
a kind of self-similarity, with each successive picture looking like a “hairier”
copy of the previous. McMullen [McM94b] has proven that, for these points,
the Julia set densely fills the plane upon repeated rescaling, i.e., hairiness; and
Lyubich has recently proven hairiness of the Mandelbrot set for Feigenbaum
like points. We focus on a primary example of dynamics in which we have a
recurrent critical point and the dynamics is non-renormalizable: the Fibonacci
map.

The dynamics of the real quadratic Fibonacci map, where the critical
point returns closest to itself at the Fibonacci iterates, has been extensively
studied (especially see [LM93]). Maps with Fibonacci type returns were firat
discovered in the cubic case by Branner and Hubbard [BII92} and have since
been consistently explored because they are a fandamental combinatorial type
of the class of non-renormalizable maps. The Fibonacci map was used by
Lyubich and Milnor in developing the generalized renormalization procedure
which has proven very fruitful. The Fibonacci map was also highlighted in
the work of Yoccoz as it was in some sense the worst case in the proof of
local connectivity of non-renormalizable Julia sets with recurrent critical point
[Hub93], [Mil92].

| The local connectedness proof of Yoccoz involves producing a sequence

of partitions of the Julia set, now called Yoccoz puzzle pieces. These Yoccoz
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puzzle pieces are then shown to exhibit the divergence property and in partic-
ular nest down to the critical point, proving local connectivity there. Yoccoz
then transfers this divergence property to the parapuzzle pieces around the
parameter point to demonstrate that the Mandelbrot set is locally connected
at this parameter value. Lyubich further explores the Yoccoz puzzle pieces
of Fibonacci maps and demonstrates that the principal nest of Yoccoz puz-
zle pieces has rescaled asymptotic geometry equal to the filled-in Julia set of
z + 22 — 1 and that the moduli of successive annuli grow at a linear rate
Lyu93c].

We prove that the same geometric and rescaling results hold for the prin-
cipal nest of parapuzzle pieces for the Fibonacci parameter point in the Man-
delbrot set. Let the notation moed(A, B) (where B C A) indicate the modulus

of the annulus A\ B. (See Appendix for the definition of the modulus.)

Theorem A: (Parapuzzle scaling and geometry)

The principal nest of Yoccoz parapuzzle pieces, P, for the Iibonacei point

cpip has the following properties.

1. They scale down to the point csy in the following asymptotic manner:

lim mod(P* ', P*) [ n = %1112.

=00

9. The rescaled P® have asymptotic geometry equal to the filled-in Julia set of

zv 22— 1.

Remark. Concerning part 1 of Theorem A, we point out that in the paper

T'V90}, Tangerman and Veerman showed that in the case of circle mappings




Figure 1.1: P7 for the Fibonacci point, the seventh level parapuzzle piece with

a part of the Mandelbrot set.

with a non-flat singularity, the parameter scaling and dynamical scaling agree
for a large class of systems. They have real methods comparing the dynamical
derivatives and parameter derivatives along the critical value orbit. Here, we
use a complex technique for the unimodal scaling case since a direct derivative
comparison appears to have extra difficulties. This is due to the changes in
orientation, i.e., the folding which occurs for such maps, complicating the

parameter derivative calculations.

Figures 1.1 and 1.2 illustrate item 2 of the theorem. The reader is also
encouraged to compare Theorem A with Theorem 2.2.1 of Lyubich on page

21.

When dilating by the scaling factors given by the Fibonacci renormaliza-




Figure 1.2: The filled-in Julia set of z — 22 — 1.

tion. procedure, the computer pictures around the Fibonacci parameter also
exhibit a hairy self-similarity. (Compare Figure 1.1 with Figure 2.5 on page
40.) Using the main construction of the proof of Theorem A, we demonstrate
this hairiness. The appropriate scaling maps are denoted by K., and the

Mandelbrot set by M.

Theorem B: (Hairiness for the Fibonacci parameter)
Gliven any disc D(z, €) with center point z and radius € > 0 in the complex

plane, there exists an N such that for all n > N we have that

D(z,€) N R (M) # 0.

The sections of Chapter 2 are organized as follows. In Section 1, we re-

view some basic material of quadratic dynamics and the role of equipotentials
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and external rays. In Section 2, we review the generalized renormalization
procedure, where we define the principle nest in the dynamical plane as well
as in the parameter plane. In Section 3, we prove dynamical scaling and ge-
ometry results for the principal nest for parameter points which are Fibonacci
renormalizable n-times. These results and proofs are aﬁalogous to those given
by Lyubich ([Lyu93b], [Lyu93c]) for the Fibonacci point. In Section 4, we
construct a map of parameter space which allows us to compare it to the dy-
namical space and prove Theorem A, part 2. In Section 5, we complete the
proof of Theorem A. Finally, in Section 6 we prove Theorem B.

In Chapter 3, the focus is changed to unimodal maps of the interval with
non-degenerate critical point, i.e., the second derivative at the critical point
is non-zero. The main theorem of Chapter 3 deals with the geometry of the
critical orbit. Let us denote the closure of the critical orbit by @. Sullivan
has shown that for Feigenbaum maps, where the regularity condition for each
map is C' plus Zygmund, the geometry of O is rigid [Sul93]. Lyubich and
Milnor have shown that for Fibonacci maps with regﬁlarity assumption C?,
the geoﬁletry of @ is not rigid but depends on one parameter [LM93]. This
parameter may be effectively varied. In the paper [Lyu93a], Lyubich analyzes
a much larger class of maps and demonstrates some scaling properties of O(f)
similar to that of the Fibonacci map. In this larger class of maps, we wish
to determine which maps have a bounded number of parameters that can
influence the geometry of ©.

The main result of Chapter 3 is concerned with the relationship between

the combinatorics of a non-renormalizable map and the number of parameters




influencing the geometry of the closure of the critical orbit. The regularity
assumption in this chapter is that the maps are C%. The combinatorics con-

sidered are those which satisfy two properties.

First, we define a type of recurrence for the critical point called very-
persistently recurrent. This definition is to ensure a “fast” return time for the
critical point at all generalized renormalization levels. We also assume the
combinatorics is of stationary type. Stationary type combinatorics for non-
renormalizable maps means that the combinatorics of the return map at each
generalized renormalization level is independent of the level. The Fibonacci
map is an example of a unimodal map which has a very-persistently recurrent

critical point and is of stationary type.

We consider topologically conjugate non-renormalizable unimodal maps
f which are €2, have non-degenerate critical point, and the dynamics of which
are of very-persistent type and of stationary type. A collection of such maps

is denoted by the combinatorial class F.

Remark. In [Lyu93a], where all possible types of combinatorics for non-
renormalizable maps are considered, the condition on the maps is not C?
but negative Schwarzian derivative (a stronger condition). For the Fibonacci
case considered in [LM93], the assumption needed was just C?. The maps
we consider (very-persistently recurrent critical point with stationary type
generalized renormalization scheme) are combinatorially very similar to the

Fibonacci case and the maps with the C* assumption still exhibit a shrinking

of the scaling factors with nearly identical proof. One first shows that if the
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scaling factors do not shrink there is some limiting geometry where all intervals
and gaps of the generalized renormalization levels are comparable. Then,
just as in [Lyu93a], there is convergence to some Epstein class (or negative
Schwarzian derivative class) where the shrinking of the scaling factors holds

for some maps and hence all maps due to quasi-conformal conjugacies.

Before stating the main theorem we need one extra piece of notation. For
a fixed non-renormalizable map f with interior fixed point, we denote by I3 the
interval whose boundary points are the interior fixed point and its conjugate.
Then we can renormalize in the generalized sense and create a nested sequence
of central intervals I7, the principal nest, each containing the critical point.

We show the following,.

Theorem C (Critical Orbit Geometry)

For a given.combinatorial class F, with very-persistent and stationary
type combinatorics, we can find (independent of the maps in the class) an
N x N real-valued matriz A and constants K, so that we have the following
results.

1. Given any map f € F, there exists an N x 1 parameter vector 0(f)

such that the scaling factors satisfy

B tam i, (1.1)

e ()

The symbol ~ indicates that the logarithm of their ratio converges to zero at

. exponential rate and the operation [W]; on a vector W means to take the first

entry.




2. For any two maps f,g € F,

7 0(f) = 7¥(g)

if and only if these two maps are smoothly conjugate on ©. The operator =,
projects a vector onto the non-contracting space of the matriz A.

3. In the class F ,‘ the parameters may be effectively varied. For each f
and U(f), there is a neighborhood around ¥ in the non-contracting direciions
of the matriz A around O(f) such that, for any vector W in this neighborhood,

there is @ map g € F for which @ = ¥(g).

Remark. The term — [A™(#(f)], + K, tends to negative infinity at least at
linear rate since Lyubich in [Lyu93a] has proven that the scaling factors shrink

at least at exponential rate.

The sections of Chapter 3 are organized as follows. Section 1 reviews the
combinatorial model of the the generalized renormalization scheme. Section 2
gives the combinatorial definitions necessary to our Theorem C. Section 3 gives
results concerning the geometry of the generalized renormalization intervals.
Section 4 develops a recurrent equation for the scaling factors. Section 5
proves part 1 of Theorem C. Section 6 proves part 2. In Section 7, we work
through some examples. In Section 8, we prove part 3 of Theorem C. From

the examples of Section 7 of this chapter, we conclude that given any positive

integer IV there exists a class with precisely N effective parameters,




Chapter 2

Parameter Scaling for the Fibonacci Point

2.1 Introductory Material

We outline some of the basics of compiex dynamics of quadratic maps from
the Riemann sphere to itself so that we may build the puzzle and parapuzzle
pieces. We will consider the normalized form, f.(z) = 2* + c‘with parameter
value ¢ € C. The basin of altraction for infinity, A(co), are all the points z
which converge to infinity under iteration. The dynamics near infinity and
the corresponding basin of attraction has been understood since Bottcher (see

[Mil90]). Notationally we have that D, is the disc centered at 0 with radius r.

Theorem 2.1.1 The map f. : A(oo) — A(oo) is complex conjugate to the
map w > w? near infinity. There exists a unique complex map O, defined on

¢ \ B,(c), where r(c) represents the smaollest radius with the property that
feo @ (w) = B (w?),

and normalized so that ®.(w) ~ w as {w| — oo.

10
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By Brolin [Bro65] the conjugacy map ®. satisfies ﬁ
Jim log*(1/2(2)/2") = log |07 (2). 1) i

In fact, the left hand side of equation (2.1) is defined for all z € A(oo) and is
the Green’s function for the Julia set.

Equipotential curves are images of the circles with radii r > r(c}, centered
at 0 in C \ D, under the map ®.. Actually, the moment that the above
conjugacy breaks down is at the critical point 0 if it is in A(co). In this case, if
we try to extend the above conjugacy we see that the image of the circle with
radius (c) passing through the critical point is no longer a disc but a “figure

eight”. Despite the conjugacy difficulty, we may define equipotential curves

passing through any point in A(oo) to be the level set from Brolin’s formula.

Ezternal rays are images of half open line segments emanating radially from

Dy, ie., ®,(re?) with r > r(c) and 8 constant. In fact, these are the gradient

lines from Brolin’s formula. So again, we may extend these rays uniquely u
q P

to the boundary of A(oo) or up to where the ray meets the critical point or

some preimage, i.e., the “root” of a figure eight.

An external ray is referred to by its angle; for example the é--ra,y is the
image of the fay with 8 = —:1; A central question to ask is whether a ray extends
continuously to the boundary of A{oc). The following guarantees that some

points (and their preimages) in the Julia set are such landing points.

Theorem 2.1.2 {Douady and Yoccoz, see [Mil90]) Suppose z is a point

in the Julia set which is periodic or preperiodic end the periodic multiplier is .

11
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a root of unity or has modulus greater than 1, then it is the landing point of

some finite collection of rays.

One of the main objects of study in quadratic dynamics is the set of all
parameters ¢ such that the conjugacy @, is defined for the whole immediate

basin of infinity.

Definition. The Mandelbrot set M consists of all values ¢ whose correspond-

ing Julia set is connected.

The combinatorics of the Mandelbrot set have been extensively studied.
In [DH85a], Douady and Hubbard present many important results, some of

which follow below.

Theorem 2.1.3 (Douady and Hubbard, [DH85a])
1. The Mandelbrot set ts connected.
2. The unique Riemann map &y : C\D — C \ M, with ©p(z) ~ z as

|z} — oo, satisfies the following relation with the Béticher map:

3t (c) = 0. (c).

[+

With the Riemann map @54, we can define equipotential curves and exter-
nal rays in the parameter plane analogous to the dynamical case above. From
the second result of Theorem 2.1.3, it can be seen that the external rays and
equipotentials passing through ¢ (the critical value) in the dynamical space are

combinatorially the same external rays and equipotentials passing through c

12
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in the parameter space. Since the Yoccoz puzzle pieces have boundary which
include rays that land, it is essential for the construction of the parapuzzie
pieces that these same external rays land in parameter space. Before stating
such a theorem, we recall some types of parameter points. Misiurewicz points
are those parameter values ¢ such that the critical point of f, is pre-periodic.
A parabolic point is a parameter point in which the map f. has a periodic
point with multiplier some root of unity. For these points, their corresponding

external rays land.

Theorem 2.1.4 (Douady and Hubbard, [DHS85a]) If ¢ is a Misiurewicz
point then it is the landing point of some finite collection of external rays
Rar(8;), where the 0; represent the angle of the ray. In the dynamical plane,

external rays of the same angle, Ry (8;), land at ¢ (the critical value of f.).

Theorem 2.1.5 (Douady and Hubbard, [DH85a}} If ¢ is a parabolic
point then it is the landing point of two external rays (ezcept for ¢ = 1 which
has one landing ray). In the dynamical plane for this c, these external rays

land at the root point of the Fatou component containing the critical value.

Usiﬁg rays and equipotentials in dynamical spacé, Yoccoz developed a
kind of Markov partition, now called Yoccoz puzzle pieces, for non-renormal-
izable {or at most finitely renormalizable) Julia sets with recurrent critical !
point and no neutral cycles [Hub93]. Combining Theorems 2.1.3 and 2.1.4,
Yoccoz constructed the same (combinatorially) parapuzzle pieces for the pa-

rameter points of the non-renormalizable maps.

13




For our purposes we will now focus on the maps exhibiting initial behav-
ior similar to the dynamics of the Fibonacci map. Thé Fibonacci parameter
value lies in what is called the %~wake. The %—wake is the connected set of
all parameter values with boundary consisting of the i- and Z2-rays (which
meet at a common parabolic point) and does not contain the main cardioid.
Dynamically, all such parameter points have a fixed point which is alla.nding
point for the same angle rays, ; and 2. In fact, for all parameter points in
the %-Wa,ke, the two fixed points are stable; we may follow them holomorphi-
cally in the parameter ¢. We are now in a good position to review generalized
renormalization in the -wake. We point out that this procedure, developed
in [Lyu93b], is not restricted to the -wake and the construction given below

is readily generalized from the following description.

2.2 A Review of Puzzles and Parapuzzles

Initial Yoccoz Puzzle Pieces

We now review the Yoccoz puzzle piece construction essentially without
proofs. (See [Hub93] or [Lyu93b] for more details.) For each parameter in the
2-wake, we begin with the two fixed points commonly called the o and 3 fixed
points. The f fixed point is the landing point of the 0 — ray {the only ray
which maps to itsell under one iterate). The « point is the landing point of
the %- and %—rays for all parameters in the -;-—Wake. By the Béttcher map, it is

easy to see that the 1- and 2-rays are permuted by iterates of f.. The initial

Yoccoz puzzle pieces are constructed as follows. Fix an equipotential £. The

T S e e B it T g e BT R T T
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top level Yoccoz puzzle pieces are the bounded connected sets in the plane with
boundaries made up of parts of the equipotential £ and external rays. (See
Figure 2.1.) For the generalized renormalization procedure described below,

the top level Yoccoz puzzle piece containing the critical point is labeled V.

e

2/3 ray

Figure 2.1: Beginning generalized renormalization.

The Principal Nest

The generalized renormalization procedure for quadratic maps with re-
current critical point proceeds as follows. For each parameter value ¢, iterate
the critical point 0 by the map f. until it first returns back to the set V.
In fact, this will be two iterates. Take the largest connected set around 0,
denoted V!, such that fé(%l) = VJ. Note that we suppress the parameter ¢

in this discussion, V* = V*(c). This is the level 1 central puzzle piece and

15
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we label the return map f? restricted to the domain V§ by g1. (= q1,e). Mt is
easy to see that V! C VJ and that ¢, is a two-to-one branched cover. The
boundary of V! is made up of pieces of rays landing at points which are preim-
ages of «, as well as pieces of some fixed equipotential. Now we proceed by
induction. Iterate the critical point until it first returns to V3, say in m iter-
ates, and then take the largest connected set around 0, denoted VJ***. This
gives fm(V@') = V*. Inductively we get a collection of nested connected sets
VW o V) o VZ o V..., and return maps ¢,(Vy") = V1. Each of the V{ has
boundary equal to some collection of pieces of rays landing at preimages of «
and pieces of some equipotential. Each g; is a two-to-one branched cover. The
collection of V{ is called the principal nest of Yoccoz puzzle pieces around the

critical point.

To define the principal nest of Yoccoz parapuzzle pieces in the parameter
space it is easiest to view the above procedure around the critical value. In
this case, the principal nest is just the image of the principal nest for the crit-
ical point, namely f.(V3) D fo(Ve) D fo(VE) D fo(VP).... Notice that again
the puzzle pieces are connected and we have that the boundary of each puzzle
piece to be some parts of a fixed equipotential and parts of some external rays
landing at preimages of «. If we consider these same combinatorially equipo-
tentials and external rays in the parameter space we get a nested collection
of Yoccoz parapuzzle pieces. By combinatorially the same we mean external

rays with the same angle and equipotentials with the same values,

Definition. Given a parameter point ¢, the parapuzzle piece of level n, denoted

16
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by P"(c), is the set in parameter space whose boundary consists of the same

(combinatorially) equipotentials and external rays as that of (V™).

We mention the essential properties about the sets P™ used by Yoccoz.
(The reader may wish to consult [Hub93] or [GM93].) The sets P are topo-
logical discs. For all points ¢ in P", the Yoccoz puzzle pieces of the principal
nest (up to level n) are combinatorially the same. This structural stability
also applies to the off-critical pieces {up to level n) which are defined below.
Hence, all parameter points in P™ may be renormalized in the same manner
combinatorially up to level n. We also point out that the set P™ (n > 0)

intersects the Mandelbrot set only at Misiurewicz points.

Off-critical Puzzle Pieces

If a quadratic map is non-renormalizable, then at some level the principal
nest is non-degenerate. In other words, there is some N such that for all
n > N, mod(Vy, Vi't!) is non-zero. For these same n > N, we may iterate
the critical point by the map ¢, some finite number of times until landing in
Ve~ \ V§ (otherwise the map would be renormalizable). Hence, to keep track
of the critical orbit the generalized renormalization incérporates the following
procedure. Let us fix a level n. For any point @ in the closure of the critical
orbit contained in VZ" 7'\ Vi, we iterate by f. until it first returns back to the
VP! puzzle piece. Denoting the number of iterates by I, we then take the
largest connected neighborhood of x, say X, such that FHX) = Vgt We
only save those sets X, denoted V;" (2 > 0), which intersect some point of the

critical orbit. We point out that the collection of V;* are pairwise disjoint for

17




n > 1. The return map f'(V;*) restricted to the set T/:-.” will still be denoted
by ¢.. The boundary of each V;* must be a union of external rays landing at
points which are some preimage of a and pieces of some equipotential. Also,
the return maps g, restricted to V;* (¢ # 0) are univalent. To review, for each

level n we have a collection of disjoint puzzle pieces V" and return maps,

The Fibonaccl Combinatorics

Let us denote the Fibonacci sequence by u(n), where u(n) represents
the n-th Fibonacci number. The Fibonaccl numbers are defined inductively:
u(0) = L,u(1) = 1 and u(n) = u{n — 1) + u(n — 2). The dynamical condition
for fo,, (recall cgyp is real) is that for all Fibonacci numbers u(n), we have
|74™0)] < |F40)] < |F0)], w(n — 1) < i < u{n). So the Fibonacci

combinatorics require that the critical point return closest to itself at the

Fibonacci iterates.

The generalized renormalization for the Fibonacci case is as follows. (See

[LM93] and [Lyu93c]| for a more detailed account. There is only one off-critical
piece at every level, V;*. The return map of V/* to Vo' is actually just the
restriction of the map g,_1 : VI~ — V&2, We point out that the map ¢n_1

is the iterate f*™ with restricted domain. In short we have |

18




In (2 Gn_20ga1) : V& — V3! (analytic double cover),

Gna1 V= VL (univalent).

Figure 2.2: Generalized renormalization: Fibonacci type return with n = 7.
Finally, we define the puzzle piece V"t to be the set ¥;**! which map to

the central puzzle picce of the next level down under g,. Namely, V**! is the

set such that

Fibonacci Parapuzzle Pieces
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Figure 2.3: Fibonacci puzzle piece nesting.

A TFibonacci parapuzzle piece, P", is defined as the set with the same
combinatorial boundary as that of f(VJ*). We also define an extra puzzle piece,
Q™. In particular, @™ is a subset of P*"! and hence may be renormalized in
the Fibonacci way n — 1 times. The boundary of the set Q™ is combinatorially
the same as f(V*!). Finally observe that P* C Q™ C P"'. Properties for

P and Q" are given below.

ceEP" = g,(0) € V!
cc Qn+1 S gn(o) c Vln

ce P == 4,(0) eV

We warn the reader that the parameter value ¢ has been suppressed as
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an index for the maps g and puzzle pieces V. Also, it is useful to use Figure
2.2 when tracing through the above properties of Q™, P*, and P™*', keeping
in mind that ¥, although too small for this picture, is contained in V{* (see

Figure 2.3).

Lyubich’s Motivating Result

The main motivating result of Lyubich is stated below. We will give a
brief review of the proofs and also point out that the proof of part 2 of the
theorem may be found in Lemma 4 of [Lyu93c], while the proof of part 1 is
a direct consequence of part 2 and the scaling results of [Lyu93b] (see pages
11-12 of this paper). Finally, we point out that similar scaling results were

obtained on the real line in Lemma 5.4 of [L.M93].

Theorem 2.2.1 (Lyubich) The principal nest of central Yoccoz puzzle pieces
for the Fibonacci map has the following properties. -
1. The puzzle pieces scale down to the critical point in the following asymptotic

manner:

1
lim mod(V* ', V@) [ n = 3 In2.

00

2. The rescaled puzzle pieces VI have asymptotic geometry equal to the filled-in

Julia set of z — 2% — 1.

The scaling factor in the theorem is exactly half that for the parameter
scaling. This is because here the scaling is done around the critical point as

opposed to the critical value.
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2.3 Beginning Geometry and Scaling

In studying the parameter space of complex dynamics, one first needs a

strong command of the dynamics for all the parameter points involved. lence,

before proceeding in the parameter space we shall first study the geometry of

the central puzzle pieces, V§*(c), for all c € Q™. E
|

Before stating a result similar to Theorem 2.2.1 for ¢ € @™, we indicate
precisely how the rescaling of Vy*(¢) is to be done. For the parameter point
csin, we dilate (about the critical point) the set V*(cs) by a positive real
constant so that the boundary of the rescaled Vi*(cyu) intersects the point
(1 + +/B)/2, the non-dividing fixed point for the map 2% — 1. If we dilate
all central puzzle pieces VJ*(cs;) this way, we can then consider the rescaled
return maps of g,, denoted G, which map the dilated Vj*(csa) to the dilated i
Ve (csa) as a two-to-one branched cover. The map G, restricted to the real
line either has a minimum or maximum at the critical point. To eliminate .
this orientation confusion, let us always rescale (so now possibly by a negative
number) V*{¢s) so that the map G, always has a local minimum at the
critical point. 1a

The point which maps to (1 + v/5)/2 for V*(csis) under this dilation we |
label 8,. Note that it must be some preimage of our original fixed point « |
and hence a landing point of one of the boundary rays. (Puzzle pieces may |
only intersect a Julia set at preimages of e.) This point 3, is parameter
stable in that it may be continuously (actually holomorphically) followed for

all ¢ € @*t'. Hence we may write Bn(c). So for ¢ € Q"', the rescaling
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procedure for V*(c) is to linearly scale (now possibly by a complex number)
by taking B.(c) to (1 +/5)/2.

The geometric lemma below gives asymptotic structure results for the
central puzzle pieces Vi*(c) for all ¢ € @"*. In particular, the lemma indicates
that as long as we can renormalize, the rescaled central puzzle pieces converge
to the Julia set of 2 — 1. The notation J{z% — 1} is used to indicate the Julia
set for the map 2+ 2% — 1.

Before proceeding we give a brief review of the Thurston Transformation
(see [DH93]) needed in the next lemma. Consider the Riemann sphere punc-
tured at oo, —1,0, and li‘«zﬁ The map 8§ : z — 2% — 1 fixes oo and LI:%@ while
—~1 and 0 form a two cycle. Consider any conformal structure  on the Rie-
mann sphere punctured at these points. We can pull this conformal structure
back by the map #. This induces a map 1" on the Teichmiiller space of the

four punctured sphere. A main result of this transformation 7' is as follows.

Theorem 2.3.1 (Thhrston) Given any conformal structure v we have that

T™v) converges at exponential rate to the standard structure in the Teich-

muller space.

Lemma 2.3.2 (Geometry of central puzzle pieces) Given ¢ > 0, there
exists an N > 0 such that for all ¢ € @' where 1 > N we have that the
rescaled Vi (c) is e-close in the Hausdorff meiric around J{z* — 1}, where

i>j4+1>N.

| Proof: First observe that the Julia set for © : 2 — 2® — 1 is hyperbolic. This

means that given a small é-neighborhood of the Julia set there is some uniform
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contraction under preimages. More precisely, there exists an integer m and
value K > 1 such that for any point in the é-neighborhood of J{z* — 1} we

have

max dist(y, J{z* —1}) < Tl{dist(:n, J{z* —~1}). (2.2)

Returning to our Fibonacei renormalization, it is a, consequence of the
main theorem of Lyubich’s paper [Lyu93b] that the moduli of the nested cen-
tral puzzle pieces, i.e., mod(V{, Vi™'), grow at least at a linear rate indepen-
dent of ¢. Hence, independent of our parameters ¢ (although we must be able
to renormalize in the Fibonacci sense), we have a definite growth in Koebe
space for the map g¢,. (This is somewhat misleading as the map g, is really
a quadratic map composed with some univalent map. Thus, When we say the
map g, has a large Koebe space, we really mean that the univalent return map
has a large Koebe space.) The growing Koebe space implies that the rescaled

maps (G, . have the following asymptotic behavior:

Grel2) = (22 + (n, ) (1 + O(")). (2.3)

The bounded error term O(p™)} comes from the Koebe space and hence, by the
above discussion, is independent of c.
We claim that k(n,c) — —1 at an exponential rate in n, i.e., |k(n,¢) + 1|

exponentially decays. This result was shown to be true for k(n, cf;) in Lemma

3 of [Lyu93c]. We use this result as well as its method of proof to show our

claim. First, we review the method of proof used by Lyubich in the Fibonacci
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case. 'This was to apply Thurston’s transformation on the tuple co, Gy, (0},
0, and 1—’%@ Pulling back this tuple by G, results in. a new tuple: oo, the
negative preimage of G-'(0), 0, and l—‘tj& Next, two facts are used concerning
the negative preimage of G,*(0). The first is that it is bounded between 0
and —1—‘%@. (This is shown in [LM93].) The second is that the puzzle piece
V"t is exponentially small compared to V' (a consequence of the main result
of [Lyu93b]); therefore, after rescaling, the points G;'(0) and Gp41(0) are

exponentially close. Hence, the tuple map

14+5
2

1++/5

(00, Gr(0),0, ) = (00, Gny1(0),0, 5 ) (2.4)

is exponentially close to the Thurston transformation since the pull-back by
G, is exponentially close to a quadratic pull-back map (in the C? topology).
The Thurston transformation is strictly contracting; hence, the tuple must
converge to its fixed point (o0, —~1,0, lﬂ%@) Hence, we get k(n, cp) — —1 at
a uniformly exponential rate. This concludes the summation of the Fibonacci
case,

To prove a similar result for our parameter values ¢, let us choose some
large level n for which the ¢y, tuple is close to its fixed point tuple and such
that the Koebe space for g, is large, i.e., G, . is very close to a quadratic
map. Then we can: find a small neighborhood around ¢y in parameter space
for which we still have a large Koebe space for ¢, (notationally g, is now ¢

dependent) and its respective tuple is also close to the fixed point tuple. Then

as long as the values c in this neighborhood are Fibonacci renormalizable, we

claim the |k(n,c) + 1| exponentially decays. We know that the Koebe space
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growth is at least linear and independent of the value ¢; hence by the strict
contraction of the Thurston transformation we get our claim of convergence

for k(n,¢). Thus we may replace Equation {2.3) with

Gue(2) = (% = D)(L + O(p")). (2.5)

Returning to Equation (2.2), we can state a similar contraction for the
maps G, .. In particular, in some small 6-neighborhood of J {z* — 1}, we can
find a value k (K > k& > 1) and large positive integer Ny so that for the same

value m as in Equation (2.2) and for all = > Ny, we have

max dist(y, J{z* — 1}) < %dist(m,d’{z2 — 11, (2.6)

YEG T} 1.0 mgmz,c00Cne(®)
as long as ¢ is renorm&liza,ble in the Fibonacci sense, i.e., n 4 m times.

From Equation (2.6), we conclude the lemma. We take the rescaled V'

and note that it contains the critical poini and critical value. Hence we see

that the topological annulus with boundaries 8D, r large, and OVg* under pull

backs of Gy, . must converge to the required set. This concludes the lemma. &

The geometry of the puzzle pieces provides us with sufficient dynamical
scaling results for the central puzzle pieces as well as for the off-critical puzzle

pieces for ¢ € Q™.

Lemma 2.3.3 Given ¢ > 0 there exists an N so that for allc € Q", n > N,

we have the following asymptotics for the moduli growth of the principal nest
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mod(Vi'(c), V' (¢))

1
—=In2 . 2.
” 311 <€ (2.7}

Proof: Notationally we will suppress the dependence of the parameter c.
By Lyubich ([Lyu93b], page 12), the moduli growth from med(Vy!, V*) to
mod(Vy", Vgt') approaches 2(—capeo(J{z* —1}) —capo(J{z* —1})). (See Ap-
pendix for the definition of capacity.) The proof of the growth relies only on
net1

the geometry of the puzzle pieces. The map g, takes the annulus VJ" \ 1§

as a two-to-one cover onto the annulus V1 \ ¥;*. Hence we have the equality

1 ~
mod(Vy', Vgt!) = §m0d(%”‘1, Vi), : (2.8)

Using the Grotzsch inequality on the right hand modulus term, we have

mod(Vy, V%) = mod (V™" V) + mod(Vy, 77%) + a(Vg ™, V7)., (2.9)

where the function a(Vg?, ffl"”) represents the Grotzsch error. By applying
‘the map gp_1 to V* we see that mod(V}*, V) is equal to mod(V Y, V7). The
term mod(Vy ™2, Vi*) converges to mod(Vg' ™%, V*™'). This is easily seen by
applying the map g,_; which is a two-to-one branched cover with the crit-
ical point image being pinched away from V3! as n — oco. Finally, the
Grotzsch error @ depends only on the geometry of V§* because of the linear
increase in modulus between both V™! and V**! and hence is approaching
~capoo( V) — capo(V§) (see Lemma A.0.4 in the Appendix). But this is ap-

proaching —cape(J{z* — 1}) — capo(J{z* — 1}) by Lemma 2.3.2 and the fact
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that the capacity function preserves convergence in the Hausdor{f metric (see
Lemma A.0.3). Finally, —cape(J{2® — 1}) — capo(J{2? — 1}) is shown to be
equal to In2 in the Appendix. Using the notation m, = mod(Vy"!(c), Vi*(c)),
we may rewrite Equation (2.9) as

1 1 1 .
Mut1 = 5Mn + 51 + 5@ + o(1),

where ¢ = In 2. The asymptotics of this equation give the desired result. ©

2.4 The Parameter Map

Dynamical puzzle piece rescaling

Now that we have a handle on the geometry of the central puzzle pieces
for values ¢ in our parapuzzle, let us comsider rescaling the VJ* in a slightly
different manner. For each ¢ € Q" dilate V* so that the point g *(0) maps
to —1. Notice this is just an exponentially small perturbation of our previous
rescaling since there we had G;'(0) approaching —1 uniformly in » for all
¢ € " Hence Lemmas 2.3.2 and 2.3.3 still hold for this new rescaling. Let
us denote this new rescaling map by r,.. Therefore, fixing ¢ € @, the map

Tn,c i the complex linear map z — (1/¢;%(0)) - z.

Lemma 2.4.1 The rescaling map r,, . is analytic in c. In other words, g7 1(0)

is analytic in c € Q.

| Proof: The roots of any polynomial vary analytically without branching pro-

vided no two collide. We claim the root in question does not collide with any




other. But for all ¢ € Q" we have that the piece V{"t'(c) can be followed

univalently in ¢. Hence, we have our claim. ©

We remind the reader that the map g, . is just a polynomial in ¢, Let us

define the analytic parameter map which allows us to compare the dynamical

space and the parameter space.

The Parameter Map: The map M,(c) is defined as the map ¢ — r,. -
Int1.0(0) with domain ¢ € Q™.

Since the map r, . is just a dilation for fixed ¢, we see that if M, (c) =0
then this parameter value must be superstable. This superstable parameter
value, denoted c,, is the unique point which is Fibonacci renormalizable n
times, and for the renormalized return map, the critical .point returns precisely
back to itself, i.e., g.(0) = 0. Equivalently, this is the superstable parameter
whose critical point has closest returns at the Fibonacci iterates until the n+1

Fibonacci iterate when it returns to itself, f2"1(0) = 0.

Lemma 2.4.2 (Univalence of the parameter map.) For sufficiently large
n, there exists a topological disc S™ such that P™ C S™ C Q", the map My(c)

is univelent in S™, and mod(S™, P™) grows linearly in n.

The proof of Lemma 2.4.2 is technical so we give an outline for the reader’s '
convenience. We first show that the winding number is exactly 1 around the i
image —1 for the domain P™. This will be a consequence of amﬂysis of a finite

" number of Misiurewicz points along the boundary of P*. Using Lemma 2.3.2

we will locate the positions (up to some small error) these selected Misiurewicz *

29 _ i

2 |



points must map to under M,(c). Then we prove that the image of the seg-
ments in dP™ between these Misiurewicz points is small, where “between” is
defined by the combinatorial c;rder of their rays and equipotentials. Hence, the
¢ € 8P™ have to follow the combinatorial order of the points of J{2%—1} with-
out much error. Since we wind around —1 only once when traveling around
J{z% — 1} the only way we could have more than one I:I)reima,ge of —1 for the
map M,(c) would be for one of these segments of P™ to stretch a “large”
distance and go around the point —1 a second time. But this cannot happen
if the segments follow the order of J {2? — 1} without much error. Finally, we
show that this degree one property extends to some increasingly large image

around —1 in Lemma 2.4.3.

Proof: We will again use the map O(z) = z* — 1. Let by = 5@@ be the non-
dividing fixed point fof the Julia set of ©@. The landing ray for this point is
the 0-ray. Taking a collection of pre-images of by under the map © we may
order them by the angle of the ray that lands at each point. (Note that there
is only one angle for each point.) The notation for this combinatorial order of

preimages will be by, ...b;, g1, ..., bo.

Since the point by is in the Julia set of ©, the set of all preimages of by is
dense in the Julia set. Given that this Julia set is locally connected we have
the following density property of the preimages of by: given any ¢ > 0, we
can find an [ so that the collection of preimages ©-!(bg) is such that the Julia
~ get between any two successive points (in combinatorial order) is compactly

contained in an e-ball. In other words, for this set ®@~!(b), given any b; and
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b;.11, the combinatorial seétion of the Julia set of ©® betweeﬁ these two points
is compactly contained in an e-ball.

For each ¢ € ™ we define an analogous set of points b;,(c} along the
boundary of the rescaled puzzle pieces V§*(c). First let us return to our old
way of rescaling V*(c), taking the point 3,(c) to 1+ V/5/2 (see page 22). For
our value I above we take a set of points to be preimages of (1 + /5)/2 under
the map Gu_1 © ... a Gn_; for each c¢. These points are on the boundary of
the rescaled V;*(¢) and in particular are endpoints of some of the landing rays
which make up some of the boundary of the rescaled V7. In particular, we
may label and order this set of preimages b;,(c) by the angles of their landing
rays. Hence we may also refer to a piece of the rescaled boundary of V{'(¢) as
a piece of the boundary that is combinatorially between two successive b; n(c).

We claim that for n large enough we have that for all ¢ € Q" these
combinatorial pieces of r, .(V{), say from b;, t0 biy1n, 18 in the exact same e-
ball as their b; to biy piece counterpart. For this claim we first want b;(c) —
b; as n — oco. But this is true (for this rescaling) by the proof of Lemma 2.3.2
since the rescaled maps (7, converge to © exponentially.

Now that we have a nice control of where the Misiurewicz points of 8P
are landing, we focus on the boundary segments of P" between them. Note
that by Theorem 2.1.3 of Douady and Hubbard, we have a good combinatorial
description of OP" in terms of rays and equipotentials. Combinatorially the
image of these boundary segments under the map M, will be in the appropri-
ate boundary segments of the dynamical puzzle pieces. Therefore, we focus

on controlling the combinatorial segments between the b;, along the central
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puzzle pieces in dynamical space. With precise information on where these
combinatorial segments are in dynamical space we make conclusions on the
image of dP".

Now we prove that the combinatorial piece between b; ,(c) and biy1.(c)
converges to the combinatorial piece from b; to b;1; in the Hausdorff metric.
Let us take a small neighborhood around cy such that the rescaled Vi are
in some small neighborhood around J{z*> — 1}. For all ¢ in this neighbor-
hood, take the combinatorial piece b;,(c) to bip1.(c) such that the distance
(in the Hausdorff metric) is greatest from b; to b;y1. Suppose this distance is
&, then after m preimages (the value m being the same as in Lemma 2.3.2,
see Equations (2.2) and (2.6)), the distances between these preimages is less
than §/A™, where A > 1 and is independent of the parameter. Iinally, notice
that for the b; segments, any preimages of a combinatorial segment must be
contained in another b; segment (the Markov property). Hence, we actually
get convergence at an exponential rate.

To review, the points ¢ € P™ under the map M, (¢) must traverse around
the point —1 with each appropriate Misiurewicz point landing very near b;
since for all ¢, b;,(c) — b;. But each combinatorial piece is also very near
the combinatorial piece for the Julia set of © and the Julia set has winding
number”l around the point —1 which completes the winding number argument
for this rescaling. Now if we rescale by r, . instead of the old way (they are

exponentially close) the same result holds. This completes the proof of the

" univalence of the map at least in some small image containing —1. The lemma

below will complete the proof of this lemma. ®
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Lemma 2.4.3 For all sufficiently large n, there exists R(n) — 0o asn — oo

such that the map ¢ — M, (c) is univalent onto the disc D(—1, R(n)).

Proof: The image of any point ¢ € @™ under the map M, (c) is contained in
the set r, (V" (¢)). But the boundary of r,.(Vy"™*(c)) under the rescaling of
T 18 very far from r, o(VJ*(c)) by the modulus growth proven in Lemma 2.3.3
(see Appendix, Proposition A.0.5 and reference). Let R equal the minimum
distance from the image of Q" to the origin. Note that @™\ P" cannot contain
the point —1 in its image under M, (c) since the closest these points can map
to —1 is when they map into a small neighborhood of J{z* — 1}. Since we
showed in the proof above that the winding number around —1 for M,(9F")
is one, we must have the same result for M,{0Q") since —1 can have no new
preimages in this domain @™\ P". Hence, the winding number is one for all
points in the disc of radius R. Thus, the map M, must be univalent in some
domain with image (at least) the disc centered at 0 and radius . Taking the
preimage of this disc will define the desired set in parameter space, S". The

result follows and hence does Lemma 2.4.2. o)

Lemma 2.4.2 also allows us to give the geometric result of the Main Theo-

rem. As n increases we have an increasingly large Koebe space around the im-

age of P, Since the image of P™ under the map M, (¢) must asymptotically

approach that of J{z? — 1}, the parapuzzle pieces must also asymptotically

approach this same geometry by application of the Koebe Theorem. Hence,

by Lemma 2.4.2, we get the geometric result of the Main Theorem. a
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Theorem 2.4.4 (Theorem A, part 2) The rescaled parapuzzle pieces P"
converge at an exponential rate in the Hausdorff metric to the filled-in Julia

set of 22 — 1.

2.5 Parapuzzle Scaling Bounds

To understand the scaling in parameter space, we focus on the image of
the parapuzzle pieces P" and P**! under the parameter map M,,. Since M,
is nearly a linear map for the domain P*, we are in a good position to prove

the scaling results of the Main Theorem A.

Theorem 2.5.1 (Theorem A, part 1.) The principal nest of Yoccoz para-
puzzle pieces P* for the Fibonacci point cpiy scale down in the following asymp-

totic manner:

lim mod(P™*, P"*!) /n = =1In2.

R— 00 3

Proof: We begin by defining two bounding discs for tﬁe J{z% — 1}. Take as
a center the point 0 and fix a radius T so that the disc D(0,7) compactly
contains J{z:2 —1}. Also take a radius ¢ so that the disc D(0,¢) is strictly
contained in the immediate basin of 0 for J{z% - 1}. (See Figure 2.4.) This

gives

J{z* — 1} C D(0,T)\ D(0,1). (2.10)

Let us calculate the scaling properties of the image of 3P"t! under the

same map M,. Again we will have that the image of dP™"' “looks” like
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J{2* — 1} although at a much smaller scale. We remind the reader that M,
maps the point ¢,y to —1. Now we claim that the point ¢,.; acts as the
“center” of AP™*! in the following sense:

M’ M!

n+1 . n _ n
Ma(0P™!) € D(=1, 3= T)\ D(=1, 32-0) (2.11)

where M/ represents the derivative of M, at the point ¢,. To prove the claim
we note that M,y (8P"")  D(0,7)\ D(0,t). Pulling this image back by
the univalent map M, o M7}, and noting that this map has increasing Koebe

space for our domain proves this claim.

Figure 2.4: The centering property for the Julia set of 2* — 1.

Now let us observe what is happening dynamically for all ¢ € P™..
We have that ,.(V{*)(c) is also centered around —1 by the construction of

rne. Hence we have a result similar to that in expression (2.10), although
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perhaps with different radii. Most importantly, however, the different radii
must preserve the same centering ratio seen in expression (2.11), i.e., ":

To compare the centerings of the dynamical and parameter sets above, we
focus on the Fibonacci point ;. We have that the point M, (¢4 ) is contained
in the topological annulus of expression (2.11). But this image must also be
contained in the centering annulus of rmcﬁb(@f»}lﬂ) in the dynamical space.
Geometrically the point M, (css) is to the sets vy, (V) and M, (8P™) as

the —1 point is to the Julia set of z ~» 2* — 1 up to exponentially small error.

Hence we have the following equivalent centerings

M), M)

Preran( OV M epn) € D(=1, T)N D(=1, 5521), (2.12)
n+1 n+1
ML(OP™) C D(~1,—22-7) \ D(~1, ~20) (2.13)
n+1 Mn+1

Let us rewrite the scaling estimate of Equation (2.8) from Lemma 2.3.3,

lim mod (V” Yegn), Vs (cf,b)) /n= ln2

k[ Rand® )

Since the modulus function is preserved under rescalings, we apply 7y, to

get

limn m0d (e, (Ve ™ (€1)); Paeyin (V7 (c10))) [n=3 2102, (2.14)

H—+00

Expressions (2.12) and (2.13) and Equation (2.14) combined with Lemma 2.4.2

give
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lim mod (Ma(P™), Mo (P™)) [ 1= s, (2.15)
which completes the proof of Theorem A, part 2. ®

2.6 Hairiness at the Fibonacci Parameter

Let us define the Mandelbrot dilation for the Fibonacci point given by
the renormaiization. We wish to dilate the Mandelbrot set, M, about the
Fibonacci parameter point by taking the approximating superstable parameter
points ¢, to some fixed value for each n. Of course, we have been doing a similar
kind of dilation in the previous section so we will take advantage of this work

and rescale in the following more well-defined manner.

Mandelbrot rescaling: Let R, be the linear map acting on the parameter
plane which takes ¢f;; to —1 and ¢, to 0. Notice that this is nearly the same
map as our parameter map M,. The maps M, have an increasing Koebe

space, take ¢, to 0, and asymptotically takes ¢y to —1.

The proof of hairiness will be a consequence of the geometry of the external
rays which make up pieces of the boundary of the principal nest puzzle pieces,
V(c). Before proving this theorem, we first give a combinatorial description
of how these rays lie in the dynamical space for the Fibonacci parameter.

We remind the reader that B, is on the boundary of Vi and is the

landing point of two external rays. We label the union of these two rays of
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Bno s ¥(Bno). The curve ¥(By0) divides the complex plane into two regions.

We label the region which does not contain the piece puzzle V§* as I'(8.0)-

We also define similar objects I'(z) and «y(z) for the other Julia set points
# on the boundary of V*. To start, we have the symmetric point 8, of B0,
and note ¢,(Bn1) = gu(Bno). We can exhaust all other Julia set points on the
boundary of Vg, denoting them as f8,; where gn—it1© gn—i—10...0 nlBni) =
Bu—io for 2 < i < n. Of course this representation is not unique in the variable
i but we will not need to distinguish between these various f,; points. For
each of the £,; points we can define ¥(f,;) as the union of the two external
rays which land there. Similarly we define the I'(5,, ;) region as we did for 3, 0.

In particular, I'(8, ;) has boundary ¥(f,,;) and does not contain Vg

The combinatorial properties for the v and [ sets are easy to determine
for the Fibonacci parameter. First we have that |8,0] < |fn-10| where the
absolute values are necessary since the #’s change orientation (see page 22).
If the 8,0 and 8,_1,0 have the same sign then ['(8,0) D Tn-1(Bn-1,0), other-
wise we replace B, with its symmetric point to achieve this inclusion. By

application of pull-backs of g, it is easy to see that

UT(Bas) 2 UL (Bemr)- (2.16)

Since this is just a combinatorial property depending on the first n Fi-
" bonacci renormalizations, this property holds as we vary our parameter c in

Q™. As a direct consequence of expression (2.16}, we conclude that
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N (Ve () \ V5'(e)) € UTa(Basile))- (2.17)

‘By the dynamical scaling results we know that if we rescale the left side
of expression (2.17) by r,. then V7' tends to infinity while Vj*(c) stays
bounded (see Appendix, Proposition A.0.5). Hence for connected Julia sets
the appropriate connected pieces must “squeeze through” the I' regions in
Vo1 \ V*. We will be able to conclude the hairiness theorem by application
of our map M, and by the geometry of the [' regions, i.e., the controlled
“hairiness” of J.. We show that the rescaled I' regions, i.e., r.,.(I'n(8n0{c)))
are converging to the 0-ray of J{z? — 1}. (Compare Figures 2.5 and 2.6 with
2.7.) Also we show that r_,(Fni1(Bat10(c))) converges to the inner O-ray of

the Fatou component containing 0 for J{z? — 1}.

Lemma 2.6.1 For ¢ € P" the linear rescaling maps rn. and rypc,,, have

asymptotically the same argument, |arg(rn.c) — arg(rp,ep,)| — 0 modulo .

Proof: The return méps gn are asymptlotically z? — 1 post-composed and pre-
composed by a linear dilation. When oﬁr return maps have a large Koebe space
we see that the rescaling argument difference (as in the Lemma) converges to a
constant modulo #. For the Fibonacci parameter case we are always rescaling

by a real value so the difference is 0 modulo 7. Since we are scaling down to

~ the Fibonacci parameter we get the desired result. ©
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Pigure 2.5: Parapuzzle piece P® with Mandelbrot set.

e

Figure 2,6: Dynamical central puzzle piece V¢ for the Fibonacci Julia set.
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Figure 2.7: The 0-ray and some of its preimages for the Julia set of 2% — L.

Lemma 2.6.2 For discs D(0,p) in the plane, there exists an N(p) > 0 so
that for ell n > N the curves ry, (T(fn0(c))) converge to the 0-ray of the Ju-
lia set of z v 2% — | in the Hausdorff metric in D(0,p). Also, the curves

Tl L (Brt1,0(c))) converge to the inner O-ray of the Fatou component contain-

ing 0 for the Julia set of z v+ 2% — 1.

Proof:

By Lemma 2.6.1 the rescaling maps r,, . converge to a real dilation. Hence
there is a decreasing amount of “rotation” in the return map g, .. In particular,
the return maps g, are close to 22 — 1 post-composed and pre-composed with
a real rescaling in the C! topology. Let us focus on the curves 7, .(T'(8n0(c))).

Since we know that the pull-backs are essentially z? — 1, the curves shouid con-
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verge as stated in the theorem. However, there are two difficulties. First, our
G, pull-backs are not defined in all of C and second, 22 —1 is contracting under
preimages. Hence, we check that after pulling back our curves 7, (I'(Hn0(c)))
by (', that their extensions (i.e., the rescaled pull-back of the whole curve by
the appropriate f iterate) have some a priori bounds.

Let us take the set 4, NV*~? and pull-back by g, 0gn—;. Taking the appro-
priate branches we get (¥(Bn+1,0) U Y(Bnt1,1) U{Bnir,2)) N VY. In particular,
the endpoints of v(Br41,0) lie on the boundary of V. Hence their extension is
determined by property (2.16) (the geometry of the rays of the previous level).
In particular, we have that y(Bat1,0) N (Ve \ V) is combinatorially between
[(Bn0) and [(Bnz2). The piece of ¥(fBny1p0) contained in Vit is controlled by
the nearly 2?2 — 1 pull-backs (the maps gn_; © gno after rescaling) of again
lesser level rays as constructed above. So let us assume the sets v(8;0), 7{5j1)
and ¥(B;2), J = {n,n — 1} nicely lie in the appropriate half-planes, where nice
means that r,(7(8;0)) is in the right-half plane, 7.,(v(5;1)) in the left-half

plane, and 7.n(7(Bi2)) in the upper-half plane. Then by the above argument

“we have that the collection ruy1o(Y(Bi0))s Tas1,c(7(Fj1)) and Potre(Y(Bi2))

with 7 = n+1 is also nice in that they lie in the appropriate half-planes. This
completes the induction step.

The initial step comes from the fact that the geometry is nice in the Fi-
bonacci case. More precisely we have that 7.,{7(8n0)) is contained in the
right-half plane just by symmetry. If we pull-back as above we see that
Tem(¥(Bnp)) must be contained in the right-half plane. Hence we may per-

turb this set-up in a small parameter neighborhood to start the induction
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process.

Because the return maps (,, uniformiy (in parameter ¢) approach z* -1,
we may use the a priori bounds and the coordinates from the Béttcher map of
z% — 1 to conclude that the rescaled rays r.,(I'(8,,0) must uniformly approach
the O-ray of z2 — 1 in compact sets. Finally, viewing this same pull-back
argument inside of r,, (V) for the curves r, (I'(Bnt1,0(e))) yield convergence
to the inner O-ray and completes the lemma.

©

We are now in a good position to prove hairiness in an arbitrary disc
D(z,¢}) < C. We point out that if z is in J{z* — 1}, the theorem holds by
Lemma 2.4.2. In this lemma we showed that the Misiurewicz points on the
boundary of P™ under our rescaling map, M, converge to the preimages of
the g fixed point of 2> — 1. Note that the preimages of the 3 fixed point
are dense in J{z%? — 1}. Given that the map M,(c) is an exponentially small
perturbation of R,(c) we must have hairiness for neighborhoods of such z and
this claim is proven. In fact, the above argument shows that it suffices to show

that images M, (M) satisfy the Theorem B.
Proof of hairiness:

Proof: We first focus on the structure of J. for parameters ¢ in @*. By
Lemma 2.6.2, we have that r.,,(I'(8.0(c))) converges to the 0-ray of J{z* —1}
in bounded regions. Hence, for ¢ € M N P™ we must have that its Julia set
in this region, i.e., ren(I'(Bno(c))) N J., also converges to the 0-ray (compare

property (2.17)). Now the image of M,(M N Q") must map into the set
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Uren(T(Bno(e))) N J;). Also, this domain contains the Misiurewicz point,
say ¢, which lands at the rescaled 8 point req(Ba—10). But re (Vg™") is
growing at an exponential rate while r.,(fn0), the “other” end of this image,
converges to the § fixed point of 2° — 1 for all ¢ € . Note we must have a
Misiurewicz point landing near this 8 point as well. Because the Mandelbrot
set is connected we get that a piece of the image M,(MNQE") converges to the
0-ray of J{z?—1}. Similarly we have convergence of Usrn(I'(Bn41,0(c)}NJ;) to
the inner O-ray of J{#?—1}. Hence pieces of M,(MNE") also have convergence
to this inner 0-ray.

So given an arbitfary disc D(z,¢), we iterate it forward by z* — 1 until
it intersects the O-ray or inner O-ray of the Julia set of z — 2> — 1. By the
above we have that this image will eventually intersect all Julia sets of P"N1M.
Pulling back by our almost z +— 2% — 1 maps shows that all Julia sets P*"NM
must eventually intersect D(z,€). Applying our parameter map and arguing

as above yields hairiness. o)
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Chapter 3

Geometry of the Critical Orbit

A unimodal map is a map which takes an interval into itself, mapping
boundary into boundary, and has exactly one interior global maximum or
minimum. The Fibonacci map of the previous chapter, when restricted to the
interval with appropriate boundary (the beta fixed point and its conjugate),
is an example of a unimodal map. We assume our unimodal maps have 2
regularity, are symmetric, and have their critical point at 0. We also assume

that the critical point is non-degenerate, i.e., f#{0) # 0.

One particular class of maps studied in [Lyu93a] (page 9) are the non-
renormalizable persistently recurrent maps. A renormalizable map is one in
which there is some interior interval containing the critical point which maps
unimodally into itself with boundary mapping to boundary for some iterate
of f. To define persistently recurrent we remark that it is the opposite of
reluctantly recurrent. A unimodal map is called reluctantly recurrent if there
exists a point z in O(f) and neighborhood U such that there are arbitrarily

long monotone pull-backs of U under the backwards orbit of points in U NO(f)-
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To understand the combinatorics for non-renormalizable maps we will review

the generalized renormalization procedure developed in [LM93] and [Lyu93al.

3.1 Generalized Renormalization

A unimodal map is a map which takes an interval into itself, mapping
boundary into boundary, and has exactly one interior global maximum or
minimum. The Fibonacci map of the previous chapter, when restricted to the
interval with appropriate boundary (the beta fixed point and its conjugate),
is an example of a unimodal map. We assime our unimodal maps have C*
regularity, are symmetric, and have their critical point at 0. We also assume
that the critical point is non-degenerate, i.e., f*(0) # 0.

One main class of maps studied in [Lyu93a] (page 9) are the non-renormal-
izable persistently recurrent maps. A renormalizable map is one in which there
is some interior interval containing the critical point which maps unimodally
into itself with boundary mapping to boundary for some iterate of f. To
define persistently recurrent, we remark that it is the opposite of reluctantly
recurrent. A unimodal map is called reluctantly recurrent if there exists a
point  in O(F) and neighborhood U such that there are arbitrarily long
monotone pull-backs of U under the backwards orbit ‘of points in UNO(f).
To understand the combinatorics for non-renormalizable maps, we review the
Qenemlized renormalization procedure developed in [LM93] and [Lyu93al.

The generalized renormalization procedure was first developed for the Fi-

bonacci case in [LM93] and was enhanced for the recurrent non-renormalizable
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case in section 2 of [Lyu93a]. This procedure gives a nice combinatorial de-
scription of the dynamics of @. We briefly describe generalized renormalization
and reyiew the main results of [Lyu93a| as it pertains to this chapter.

The generalized renormalization procedure is a kind of Markov partition
for the dynamics of f. To begin take the interval whose boundary consists of
the interior fixed point and its symmetric point. This is an example of a nice
interval ({Mar94]), an interval in which the forward orbit of the boundary never
lands in the interior of the interval. We denote this interval by Ij. We now
iterate the critical point until it first lands back inside I}. Under this iterate
take the domain around 0 which maps unimodally into I} with boundary
mapping into boundary. This interval is denoted by IZ and is contained in /3.
Notice that I? must be nice as well. Now consider the set Ij \ I3. Take any
point z in this set which lands in I# under some iterate. Take the interval
containing the point x which maps onto I} under this first return for z, with
boundary mapping to boundary. After applying this procedure for all z €
I3\ I which return to I? we save only those intervals which contain points
of O(f). We index these intervals by I? (¢ # 0). All of these intervals map
diffeomorphically to I under some iterate of f. The inductive procedure 1s
to start with I as the nice interval and construct intervals I'*' (where the
interval I3*! always denotes the interval containing the critical point). This
completes the generalized renormalization procedure.

The intervals of the form I™ are said to be of level n. The return maps
for the level n intervals will be denoted by . Hence, we have for i # 0

the diffeomorphism f¥ mapping I* onto Ij~'. For i = 0, the return map
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f9 of I? to IF™ is unimodal with the endpoints of If mapping to one of
the endpoints of I7~'. The collection of return maps for level n are denoted

by g,. Hence we have,

g JIF = I (3.1)

We state without proof properties of the intervals I and their return
maps. (Again see [Lyu93a] or [Lyu93b] for details.) It is important to notice
that there are extensions for these return maps f®% to a much larger domain

that preserve the diffeomorphic or unimodal properties (see 3 and 4).

Combinatorics for level n:
1. For a fixed n, (nj1), the intervals I} are pairwise disjoint and contained in
It
2. The union of the intervals If" contain the set O(f) N5~
3. (Koebe space for f(I*)) The diffeomorphic return map [ for
the interval f(I") extends to a larger domain. There exists an inierval JI"
containing f(I) such that f9-1.Jr — I7~% is a diffeomorphism mapping
boundary into boundary.
4. (Nesting property) For any interval I* and positive integer j < (n,1),
if fi(Ir) is a strict subset of I§ for some k, then there exists an [ such that
Fi(IF) C IF.

Before stating a result of Lyubich regarding the scaling factors, we need
to remark on a special kind of return. This special case is when ¢,(0) C I,

i.e., the critical point immediately returns to the n-th level. This is called a
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central return of level n. We denote the number of levels, less than or equal
to n, with non-central returns by x(n). If the return for level n is non-central, Al
then &{n) = k(n — 1) -+ 1; otherwise, £(n) = x(n — 1). We now state one of
the main results of [Lyu93a] concerning the scaling factors |13|/|£5"|, which

are denoted by . ;;.

Theorem 3.1.1 (Lyubich)

The scaling factors, ji,, shrink to 0 al least ezponentially in k(n).

The fact that the _scaiing factors tend to zero allows for a control of the
non-linearity of the maps f(™% for the domains I*. This is because there is a
large Koebe space around the image. (See rules 2 and 3 above,} In particular, i ;
given a non-renormalizable map f (as above), there exists a p < 1 such that i
the map f(™9 may be rewritten as the composition of rarquadreimtic map and an 5
approximately linear map. In other words we have that f (ni) = p o &, where o
®(z) = 2® + ¢ and h(z) = Cz(1 £ O(p"™). The constant error term O(p) i

:
depends only on the non-linearity of the original map f. Ti
|

3.2 Combinatorial Assumptions

In this section, we define the sufficient combinatorial conditions for The-
orem C. Notice that by rule 1 of Section 3.1, every interval of level n 41 is E
contained in the central piece of level n. Therefore, we may apply the map
9 o any interval of level n + 1. Let us take the central interval I and

inductively apply iterates of the type fU%), j < n, as “efficiently” as possible, B
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i.e., by applying the following inductive procedure. To start, we apply f*~1%)
to the interval I3, Next suppose we have L = f0% o ., o f0=ON3+!) and
L ¢ If, but L ¢ IFF for k < n (note that this may not be a monotone de-
creasing sequence of (z,0)). Then we apply the map f (%9} 4o [,. (It can happen
that our interval I, Hes in I} but not [Z. In this case, we use the return map
f@9 where I, € I2.) We continue this induction until the interval I+ re-
turns to I?. This procedure results in an efficient decomposition of f (#0) with

respect to I?. The next lemma shows that this is in fact a decomposition.

Lemma 3.2.1 The map f™® is equal to fU% o .. o fu0 yhere this is the

efficient decomposition of f0),

Proof: The map f™® represents exactly the number of iterates for I to
first return to Jj. So we must show that this is the same for the efficient
decomposition of f(n’o).. There must be at least as many iterates of f in the
efficient decomposition of f(™9 as in f{»® itself since we do not stop the
efficient decomposition until I3+ lands in IZ. But it is easy to see that we
cannot apply more iterates since when L (notation from above) is a subset of

I¥ but not IF™* we apply the map which first allows L be in I e, flko0),

The result follows. ©

We are now in a good position to define a particular type of return time
for the critical point. Choose a level n. The efficient return time of level n is
the number of iterates of the form fU9 used, counted with multiplicity, for

our efficient decomposition of f9).
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Definition. The map f has very-persistent combinatorics if there is an upper
bound on the efficient return time of the central intervals. This upper bound

is the very-persistent type.

Example. The Fibonacci map has very-persistent combinatorics. For any
level the efficient return time is always 2 as f~19 o f0x0) (1) = 12 Hence

the very-persistent type would also be 2.

The other combinatorial assumption imposed on the maps we are consid-
ering is that of stationary type. First let us label the intervals I} of the n-th
generalized renormalization level so that the index ¢ numbers the I? from left
to right with I} being the central piece. For example, /", would be the second
interval to the left of [J. We point out that in the next section, under our
combinatorial assumptions there are only a finite numlber of intervals I for

each level.

Definition. A map f has stationary type combinatorics if the interval I7* has
the same itinerary through U,I*~* under iterates of g,_; until the first return

to I3t independently of n.

Example. The following combinatorics demonstrate both the very-persistent
property as well as the stationary type property. For all generalized renormal-

ization levels, i.e., for all n, suppose we have

n n—1 yn—-1 n-1
rr, — N0

i/ n—1 yn—1
r, — I
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- Lt Rttt i
o It i
where — indicates the itinerary of the interval via the map g¢,_;. For example,

|

the first line indicates the following: g,_1(I%,) C I} gn10ga_i(I%,) C I} |
\

L

|
i
and g,_1 0 ¢gn_10 gn——l(ﬂz) C Ip . ' ‘

3.3 Generalized Renormalization Geometry

Let us fix a combinatorial class F as defined in the Introduction before

Theorem C.

Lemma 3.3.1 For f € F, there are no central returns.

Proof: If there is a central return at some level then, because of the stationary
type combinatorics, there must be a central return at every level. This implies
that the map is renormalizable in the classical sense and we have a contradic-

tion. @

. Due to Lyubich’s Theorem 3.1.1, Lemma 3.3.1 above implies that the

scaling factors y, tend to 0 at exponential rate in n. Also, using Liyubich’s

Theorem 3.1.1 and rule 8 on page 48, it is easy to see that the lengths of the I

for all ¢ are becoming exponentially small as compared to I3~". In short, with P




our combinatorial assumptions, we have the following immediate corollary of

Lyubich’s theorem.

Corollary 3.3.2 Given a map [ € F, there exists a value p, 0 < p < 1 such

that for allz,

|17

Now we wish to show that there is a finite number of intervals on each
level independent of the level. In fact, this is really a statement about very-
persistence and hence the following two lemma do not assume stationary type

combinatorics.

Lemma 3.3.3 Kvery interval I* contains a point of the critical point orbit of

some efficient decomposition.

Proof: We define the set O(0)(0) to be the set of points in the orbit of 0
along the efficient decomposition of f(}(0). Note that the number of points
in 5(;‘0)(0) is the same as the value of the efficient rreturn time of level [
We will show that if f4(0) N I* # @ for some ¢ < (/,0) then we must have
Ob,0)(0) NI # B for some b < [. This will prove the claim.

Suppose we have An I where the claim is not true. Because IT contains
some part of the orbit of 0 for the map f, there exists an ! such that f2(0)NI} =
B for all ¢ < (I -1,0) and f2(0) N I # @ for some ¢ < ({,0).

Let us take an interval J which is an iterate of Iit! with respect to the

efficient decomposition of . We denote the next iterate of the efficient
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decomposition for the interval J as fY¥°). So J is chosen so that for some ¢

with 0 < ¢ < (4,0), we have
[y c iy,

759() ¢ 1.

Now take the interval I? such that fUO(J) C I3, where s is chosen as large
as possible. Hence we must have that s > 7 -1, as an interval may move to a
lesser level by just one step per eflicient iterate.

Our contradiction argument has two cases. First we consider the case of
n > 7. We have a contradiction of the existence of ¢ since fU? is the first
return map for the interval J to the central interval 13"1(3 J). The second
case is n < j. Then we have J C Il with j < . Hence we contradict our first
assumption since we have some ¢ < (7,0) < (1,0) such that FUETYN I £ 0.
This concludes the claim that _@_(;,51(0) NI # @ for some [, and hence the fact

that each I7 is “hit” by some efficient decomposition. ®

Lemma 3.3.4 Given a unimodal map f which is of very-persistence type, the

number of intervals I on a given level n is uniformly bounded depending on

the type.

Proof: By the previous lemma we know that at a fixed level n that each
interval I* contains some point of Oyey(0). Also notice that in an efficient
decomposition of f49, an interval can move back to at most (o one lesser

level for each iterate of U9 k < I. Starting with any central interval If,
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and taking the very-persistence type to be M, the condition implies that this
interval can at best reach intervals of level n — M and no lesser level under
efficient decomposition. Putting these two facts together, each I, ¢ # 0, for
a fixed level n must be visited by some central interval Ié""”k, k< M by an
efficient decomposition. Since this is a collection of finite central intervals they

may visit no more than M - (M — 1) intervals for any level n under eflicient

iterates. This completes the proof. ®

Now that we have established that there are a uniformly bounded number
of intervals at each level (in fact a constant number for stationary type), we will
establish some asymptotic geometry of the intervals IF~" inside I} independent
of the map f in a given class F. In particular, the main lemma of this section
deals with the limiting geometry of the intervals I" as they lie inside I~
There is a special case of this limiting geometry due to islands. So before

stating the lemma we review the notion of islands and also define ghost islands.

The definition of an island is introduced in [Lyu93b]. An island is an
interval J contained in some If and containing at least two intervals of the

form IF*'. A ghost island is a special preimage of an island.

Definition. A ghost island is an interval J contained in some level k, i.e., J C
I¥, and containing at least two distinct intervals, IF*! and I f“. This interval J
is mapped monotonically or unimodally into an island with boundary mapping
to boundary under the composition of decreasing level returns, i.e., Flr—il} o

.0 fn=20t o f(n=10)( J), The value j is the rank of the ghost island.
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Definition. ‘A critical ghost island is a ghost island which contains the critical
point.

We would like to define the value j above as the rank for an interval I
which lies in a ghost island. But because ghost islands (as well as islands) may
be nested we must avoid any ambiguity. Hence, given an interval I which
lies in a critical ghost island we define the rank of I? to be ghost island rank
for the smallest ghost island containing I?. In other words, the critical rank j
represents the minimum number of (decreasing) level returns (as in the ghost
island definition) needed until I7* and any other I} of level n map into different

intervals.

The first step for proving a limiting rescaled geometry of the intervals
It in P (except for those in critical ghost islands) are establishing a priori
bounds. The following lemma says that the geometry of some gaps, or more
precisely the distances between an IT, i # 0, and the point 0, are uniformly

comparable to the interval IJ™!, provided I* does not lie in a critical ghost
island.

Lemma 3.3.5 (A priori bounds) Given f € F there exisl constanis k
and ko such that

dist(Z7, 0)}

115~

for all levels n and intervals IT, i # 0, which do not lie in critical ghost islands.

0 <k, < <k <1, | (3.2)

Remark. We prove the limiting geometry Lemmas 3.3.5 and 3.3.7 without

the requirement that the class of maps F be of stationary type.
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Since we are concerned primarily with the small scale structure around the

- critical point, we adjust our maps f(™% by rescaling (by a positive constant)

so that each central interval I§ is equal to the interval [—1,1]. The rescaled
maps are of the form F,o(z) = (cz® + b)(1 + O(p™)) for some b and ¢, with
the restrictions —1 < b < 1 and 0 < ¢ < 2 or ~2 < ¢ < 0, depending on the

orientation. In other words, for x € I we have

n 151 {2 n
frO(x) = 02 Fro X1 ) x €I

We denote the images of I} under the rescaling of I3~! by I*. The proof

of Lemma 3.3.5 is be broken up into two parts. First we prove the upper

bound.

Proof: (Existence of k, )

We now consider any interval I with ¢ s 0. We begin by applying the
efficient decomposition of central maps for this interval until an iterate fails to
lessen the image one level. In other words f(n=10 o fln—(-10} o f(r-10}( 2}
It Now using our rescaled maps F;q it is easy to that Fy,_;q 0 B g-1)00©
w0 Fy_1o(I7) = O(p") with p < 1 (compare Corollary 3.3.2).

It is also easy to see that preimages of the point 0 uniformly stay away from
the boundary points —1 and 1 for a uniformly bounded number of composed
maps F;o. This is because the derivatives of the endpoints —1 and 1 under
preimages of Fjo are bounded below by (1 + O(p")); The intervals I? are
nearly points as compared to [—1,1] when n is large. The preimages of /7~ ¢~V

under the inverse of the map F,,_; g0 F, —(i-1),00+..04%,_1 o must also be uniformly
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bounded away from —1 and 1 since very-persistence gives a uniform bound for
the number of F,_;q in this composition. Finally, we note that the existence

of £y is certainly scale invariant and hence we have the desired result. ®

The existence of &y implies that our maps F, o(z) = (cx®+8)(1+O(p™)) are
further restricted by —1 < —k; < b < £ < 1. Now we complete the proof of
Lemma 3.3.5 with the following stronger a priori bounds lemma which provides

information on the gaps between intervals.

Lemma 3.3.6 (Existence of %, )
For maps f € F there exists a value K > 0 such that for any level n, the

distance between any two intervals of level n has the property that
dist(/}, I} > K - [,

provided they do not belong to a common island or ghost island.

Proof: Take any two intervals I;" and I;” Then it is easy to see that, if they
are some bounded distance apart, then under pull-back of F, ¢ they are still
bounded apart with the distance depending only on their initial distance. Now
take preimages until one is pre-central, where pre-central means the critical
point first maps to thé,t preimage under Fjq for some k. Then the other
interval is not pre-central at that same number of preimages. This uniformly
finite pull-back can have a contraction on the gap between them by at most
some value C. More precisely C < (4 - (1 £ O(p™)))"" since the maximum

derivative of any point z € [~1,1)] for F, o is less then or equal to 4 times the
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Koebe error. But once we pull-back by this last F, o, we have an expansion
in distance by the square root map. Hence if the distance was originally z,
then after some uniformly finite pull-back the distance is now \/;:/—C’ . This
map & — y/x/C is definitely expanding near zero and we bave the desired
result provided the original intervals I and I;" are not created arbitrarily
close together {independent of n), i.e., they are not in a common ghost island.

©

Using the a priori bounds given by the above lemmas we wish to show
that the rescaled picture for any two combinatorially similar maps is nearly
the same when n is sufficiently large. More precisely, after rescaling the central
interval of any level n, the placement of the intervals I;f“"l is asymptotically

independent of the choice of f within combinatorial types.

Lemma 3.3.7 Given two maps f, [ € F, there exists a ¢ < 1 such that the
following equation holds for any two conjugating intervals I and f;" which do
not lie in a critical ghost island:

dist(I7,0) | Ia
\I37Y dist(IF,0)

=14+ O(q").

Proof: The proof of this lemma uses Thurston’s contraction pril_lciple for ratio-
nal maps of the sphere [DH93]. For a more detailed account of the Thurston
transformation, see Appendix B.

Using our rescaled central intervals and maps F,o we again treat the

associated rescaled intervals I7 of level n inside of the rescaled 1571 as virtual
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points. Also the ghost islands, being just a uniformly bounded number of pull-
backs of these “points” under the map F), o, are also asymptotically points.

To use the Thurston contraction map we construct a punctured sphere
for each level n. In particular our sphere will be punctured at 0, 1, oo and one
arbitrarily chosen point from each If unless there is a ghost island containing
it. For the case of ghost islands we just choose one point from the ghost island
of least rank and no other points in this ghost island. IHence for maps in
F we have a uniformly bounded number of punctures at each level and the
punctures are uniformly bounded apart by Lemma 3.3.5.

We now pull back along the composition Frynp © ... 0 Froyie. If each
F: ¢ is exactly quadratic, then there is a definite contraction in all directions
of the Teichmiiller space of the punctures unless all poles of the quadratic
differential pull back to poles. But our finite string of pull-backs can produce
only a uniformly bounded number of punctures at each level by Lemma 3.3.4.
Hence, there must be a contraction since we run out of punctures for the poles
to pull-back to. So in fact, for type N we would have a definite contraction at
least after N preimages in every direction of Teichmiiller space. Of course, our
chosen punctures do not necessarily pull-back to the punctures on the previous
level but they converge at exponential rate to them.

Now since the Fjo are asymptotically quadratic and the intervals are
asymptotically points, it is enough to point out that since our punctured spaces
for f and f Temain in a compact set in Teichmiiller space (by Lemma 3.3.5
and the above construction of punctures), we must have a definite contraction

for all sufficiently large levels in the rescaled geometry between the two maps
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f and f. This concludes the proof of the lemma. ©

3.4 A Recurrent Equation for Scaling Factors

For our fixed class F we will suppose throughout this section that the
very-persistent type is M + 1. To start the proof of part 1 of Theorem C we
establish a recurrent equation for the u; = |I2|/|I5™|. We begin by defining

the following geometry constants motivated by Lemma 3.3.7.

Definition. Given a class F, we choose an arbitrary map f in this class and
define the constants C; below for all ¢ in which [ does not lie in a critical
ghost island.

O — i 8L ,n0)1
nes (1/2) |15

It is clear from the definition that for the arbitrarily chosen f, the con-
stants C; represent the rescaled distance from fhe interval I to the critical
point 0. We know by Lemma 3.3.7 that if we had chosen a different f within
the fixed combinatorial class F, then we would obtain the same constants and
for each f we obtain convergence at an exponential decaying rate. Finally, we
point out that Lemma 3.3.7 also gives convergence at an exponential rate for

the above limit.

Case 1: No ghost islands
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To set up a recurrence relation for the p,, we analyze the long term
derivative of fi»0)-1(£(0)), i.e., the derivative of the orbit of the critical value
until its return to the central interval IF~'. Then using the chain rule to
differentiate the efficient decomposition of f(0-1(f (0)) we compare these two
long-term derivatives. When we decompose "% (0) into our efficient iterates
we count the multiplicity of each fU®, § < n, and denote this by a;. (This
doesn’t depend on n because of the stationary type assumption on our class.}
Just counting the total number of iterates of f gives

n~1

(n.0)= Y a;-(n—1i,0) (3.3)

i=n—M

The sum starts at » — M because our return is very-persistent of type M + 1.
Also note that the a; are non-negative.

To calculate the long term derivative of f™®=1(f(0)), we take any point
f(z) where z € I. Because our return is non-central one of the two following
estimates must hold by application of the Koebe Theorem. Equation (3.4) is
for high returns, i.e., the image f0»9(I#) covers more than hall of I7™!, and
Equation (3.5) is for low returns. The denominator for each represents the

length of the domain f(I7), while the numerator represents the length of the

image f*O~1(f(13)).

£ oo = SR 0 06, (3.4

L po(p(a)) = EEENEL 4 o)), (35)
dz |5 ™|
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The error term incorporates both the Koebe error for the map f™9-1( £(0))
as well as the error in the constants C;. Hence, the above equations hold
independently of the map f, although the value of p < 1 may differ.

We wish to compare the estimates (3.4) and (3.5) with estimates obtained
when differentiating the efficient decomposition of f{m0=1 je flr-10-14
e

fn=20) o fln=t0) o o flr=i)0) So Suppose is not in a critical ghost

island; then for & € I/, ¢ # 0, we have

& i a) = O [T LSO (f() (140, (36)

The right side of Equation (3.6) may now be easily simplied by using
Equation (3.4) or Equation (3.5), depending on whether the return is high or
low. In any case, we have the following simplification, where.the value K; is

some non-zero constant independent of the map f:

1377

d n—3j 7 O
T/ 0) = Kol (4067 s ETig0 (3)
0

Using Equations (3.3), (3.4), (3.5) and (3.7), we can compare the deriva-
tive estimate of f%9)-1( £(0)) with the derivative estimates of its efficient de-

composition. Combining all of the constant factors, we get
L

- ( ) | (113-‘5)62 | ( ) -

IIS—(M-&-I}I M+l
N === (1+0(™).
(g~

15|

llg+1|2

|15
|15 |2

1157

1157

(3.8)
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The constant K is positive and independent of f. The error term 1 + O(p")
incorporates the Koebe error of the map f and the exponential small error
obtained from the constants C;.

Let us make the substitution A; = —In g; and create a recurrent equation
for the X;. We simplify Equation (3.8) by first multipling both sides by |3].
Then taking the natural logarithm of both sides, dividing by 2, and using our

A; substitution yields

M—1
Ap = (Z @ )\n—i) - K + O(pn)v (39)
=1
where our new constant K and non-negative constants ¢; are independent of

our choice of f € F.

Case 2: Ghost Islands

The ghost island case is more technical but we can still establish a recur-
rent equation like (3.9) although the a; will not match 'the efficient decompo-
sition iterate as before. Let us take the collection of I contained in a critical
ghost island. Then we apply iterates of the efficient decomposition of f (,0)
until these IP* cover I§~!. Then the large Koebe space allows the following

estimate for ¢ € I':

 dist(I7,0)
= LG i oo fOTIO(f(a))| (140G, (3.10)

where f("=P0) o . o f(n~19) yepresents the efficient decomposition of f("%). To

estimate this derivative we can make use of Equations (3.4) and (3.5), as long
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as this efficient decomposition does not land in any ghost islands. Hence,
we take care to inductively compute this derivative estimate of (3.10} by the
natural hierarchy of the intervals I which lie in ghost islands. In other words

we compute those in order of least rank. After doing this Fquation (3.10)

becomes

M
dist(17,0) = Ki- I3[ - TT(pa-3)"" - (1 +O(")), (3.11)
J=1
for nori-positive ,,. This may be further simplified to -

¢ A
dist(I7,0)/|I5| = K- I] oy - ] (s} (3.12)

k=1 i=l

Now using Equations (3.4) and (3.5), we can estimate the derivatives

along the efficient decomposition just as before and obtain

d
af(k 9 (z)

£C + I . ' 3
:L__l__zlLﬂ.z.Ixi-lfgl'H(#m H #n=g)’* - (1 +0(p"))

TET
{Compare with Equation (3.7).) By simplifying the constants we have for

z e If

L 0100 = K- [Lng) - 04067, G1)

1=0

where K. is some constant independent of the map f and d;; are some non-
positive integers also independent of f. In particular, this may now be easily

incorporated into Equation (3.8) and the recurrent Equation (3.9) for the case
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of critical ghost islands. Also, we may now use this estimate for simplifying
Equation (3.10) for intervals of higher rank completing the induction.
Proceeding as in the non-ghost island case, we can determine our recurrent

equation for the A, = —In y,,. This yields

Ao = (ij,-.,\n_,-) + K + O(p"), (3.14)

=1

with constant K and non-negative constants B; depending only on the class

F.

3.5 Scaling Factor Parameters

This section is motivated by the recurrent equation for the scaling factors,
i.e., Equation (3.9) or (3.14). These equations essentially give a linear model

for the asymptotics of the scaling factors. Let us define an M x M matrix A

equal to
BM BM_]_ . 0 B]\
1 0 .. 00
0 1 .. 00
\0 0 .10

where the entries B; come from Equation (3.14). Let us define the vector

—

Tn = (Any ey Aneprs1). Then we may rewrite Equation (3.14) as

Tps = AT, + K +OF™), (3.15)
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where O(p™) represents the vector (O(p"),0,...,0).
Showing that we have finitely many parameters controlling the scalings
of the A, is equivalent to solving the following linear algebra problem. (Since

K does not depend oo f we have excluded it for convenience.)

Lemma 3.5.1 Given a vector ¥ and maps A, (¢} = AV + G, where the con-
stant vectors @, we have ”(.jn” = O(p"™), p < 1, there exists a constant vector

7 * such that

A © An_s 0.0 Ay(&) — AT} — 0, (3.16)

where — 0 indicates convergence to zero at an exponential rate. As © varies,
the minimum number of free parameter of v* is equal to the number of eigen-
values, counted with multiplicity, of our matriz A, which have modulus greater

than or equal to one.

Proof: Without loss of generality we assume that our matrix A is in Jordan
canonical form. Given a vector © we claim that the following limit exists and

satisfies Equation (3.16):

T = me(6) + fj A (), (3.17)

i=1

where the map =, is projection onto the non-contracting Jordan block spaces,
i.e., those corresponding to the eigenvalues with modulus greater than or equal
to one. Hence, the inverse map, A~", makes sense there.

We show that ¥'* exists by showing that the sequence
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7" = 7, (¥) + iﬁ_i’fre(@)

i=1

forms a Cauchy sequence. But this is easy fo see as

Jp1 - 7] = @) =0t

with the last equality coming from the fact the inverse iterates of A (in the
non-contracting direction) can expand vectors at only a polynomial rate.

Using the triangle inequality,

| An 0 Auy 0 ... 0 Ay (T) — A™()]| (3.18)

< | et © .0 Ag(B) = AP(FON 4+ [ A H )Y — A"(T )]

+]

The second term of the right-hand side of (3.18) is seen to be converging

at exponential rate as the following simplifications show:

”An —*('n.) __An(ﬁ'*)

- [ (Sma)] <

We analyze the first term of the right-hand side of {3.18) and obtain

< O(p").

=n

llAn o An-—l ¢..0 Al(g) - An(.{;(ﬂ))”

(o) r o o)

fe=]

(oo gra))
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The notation w, represents projection of the vector onto the contracting Jordan
block spaces, i.e., those corresponding to the eigenvalues with modulus less
than one. We let r be the largest eigenvalue of A with modulus less than one.

Distributing the 7, and A™ gives

o (g @)

< 00" + 3 Al

= 0(™)+ 206" -0

= O(e"),

where ¢ = max(r,p). Hence the first term of the right-hand side of (3.18) also
converges to zero at exponential rate as n goes to infinity. This completes the

proof of the lemma. ®

Applying Lemma 3.5.1 to our recurrence Equation (3.14) and incorporat-
ing the constant K gives us the following asymptotic description of the scaling

factors:

i O]

For a given f, the parameter vector ¥(f) is defined as the ¥* from the above

L2101 N LE'eY e o (3.19)

lemma. The term K,,n > N +1, comes from the following equation

n—N+1 .
K,=[ Y AR (3.20)

i=0
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where £ = (K,0,0,...,0) with K from Equation (3.14) or (3.9) This

completes the proof of Theorem C, part 1.

3.6 Smooth Conjugacies of O

Using Theorem C part 1 we will prove part 2. We also point out that
the lemmas and proofs contained in this section essentially follow [LM93], in
particular, Lemmas 3.7, 5.5, and 5.7 of that paper. The main idea is to push
the central scaling results to all points of @. We review the definition of a

smooth conjugacy between two Cantor sets O{f) and Ofg).

Definition. A conjugacy ¢ between O(f) and O(g) is called smooth if for any
point 2 € O(f) the following limit exists:

19(=) — )

lim
|z — y]

#0
as y — z along O(f), and depends continuously on z.

First we construct a covering of O(f). We let the set M™ be the union of
the intervals I and their forward orbit until just before their return to 15"
(n,d)—1 i
w=U U
3 k=0

Theorem 3.6.1 For the map f, the sets M™ form a nested sequence of closed

sets MY D M? D M3 D .- whose intersection is equal to the set O(f).

Proof: The intervals of level n, I?, are contained in I{™'. By construction of

the I? we know that I3~ 'NO(f) C W;I". Since we are iterating each I until
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just before covering Io™!, we must have M™* > M™ D O(f). The scaling

results of Lyubich prove that the limiting intersection of the M™ is O(f). ©

We wish to develop some notation to indicate different intervals of the
collection M™. Consider the infinite bi-cylinder ¥ = [sy, 83, 84...] where each
s, corresponds to some pair of integers {k,z}. The integer k& must satisfy
0 < k < (n,i). (Recall that (n,%) represents the number of interates of f
needed for the first return of 17 to I3~} In what follows we use the notation
M7 . torepresent the interval fEa(Ir) where s, = {kn,i,} and the added

restriction that for s; = {k;,;}, j < n, we have the following containment:

Fo(Iy ¢ for(E.

i1

Given a point z ¢ O we can assign the string s,, s3, sa4... such that for each
3; = {k,2} we have z € F*(I7). Tt may happen, however, that this representa-
tive string is not unique. Suppose we have two representations s;, 3, 84, ... and
ty,ta, 4, ... For the first term in which they disagree, say s, and i, suppose
we have M™ DO M", ; then we only use the ..., s,, ... representation in our
infinite bi-cylinder. If the two sets are always equal, i.e., M" = M", 6 for
all n we mod out our infinite bi-cylinder by this relation. With this restricted
bi-cylinder i], every point z in O{f) has a unique representation.

We wish to estimate the ratio of any two intervals M, . O Mz = .
Theorem C (part 1) gives an asymptotic formula if all s; = (0,0)." So we make
estimates for |I*|/|I3*|. Let us take a point = € f(If*). Then we have the

following estimate because of the large Koebe space around the interval f{I}')

for the map f*9I(Ir) = I.
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-1

el

15~

. w e fIM). (3.21)

d 7,0
ZlEf( ()

To estimate the right side of Equation (3.21), we may usc the efficient
decomposition methods for the map f™. In particular, we know that this
decomposition has at most M + 2 iterates of the form f*%) with £ < n (by
very-persistence type M -+ 1). The estimates for these maps are contained in
Equation (3.6). Using the same method as in Section 4 to calculate this long-
term derivative estimate we obtain Equation (3.22) in the following lemma.
Before the statement we need some extra notation. In this lemma, a map of
the form L,, acts on a vector to return a real value and is linear in each of the

components.

Lemma 3.6.2 Given a map f ¢ F we have linear maps L,, and constants
K, with s, = {i,0} depending only on the class F, so that the following

estimates hold:

Pl L o LenOnehne)Kon (3.22)

.
o~ Lan (A" TN ~Kin (3.23)

Proof: Equation (3.22) follows directly from the preceding paragraph. To prove
Equation (3.23) we first recall that in the previous section we established that
each ), equal to [A"#(f)]; up to some exponentially small error. Substituting

these linear combinations into Equation (3.22) completes the proof as long as
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the coefficients of I; are bounded for all n and . But we claim this is true
because the map is of very-persistent type. Our efficient decomposition has at
most M + 1 iterate terms of the form F%0) (counting multiplicity). Hence the
coefficients for the linear maps L; are bounded by M + 2 for all » and i. This
completes the claim and hence the proof since Estimate (3.23) has at most

some exponentially small error in n. ' 0)

To this point we have estimated the ratios of the size of the intervals
|M3”;Sn|/|Ms’:13n_l| with s; = (0,0) for j < n and s, = (4,0) using just the
combinatorics of the map and the parameter vector ¥{f). The next lemma

shows that we may also make similar claims for the ratios of any two nested

intervals of M™ and M™"1,

Lemma 3.6.3 There exist linear maps L,, and constants K,, depending only
on the tuple s, = (1, k), such that for any map f € F and respective parameters

7 we have the following estimates:

PSP S e W WPV S (3.24)

| M2, |
$2 4 p8n—1

~ 6—Lan{A"ﬁ'}mﬂran‘ (3.25)

Proof: We consider the corresponding intervals f¥(/?7') = M2~'  and
fEIr) = M2% . lterating the first interval by FO1=k results in a first
return map, i.e., the first time it covers the crifical point, with image being

precisely I3~2. Because this map has a large Koebe space we have the following

estimate:
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LRI s ()]
(M. 77

82 ey

(3.26)

In particular, we have that f*==F(M7 ) is contained in some in-
terval of level n — 1. If we iterate further, our inferval will eventually cover
I"'. Let us take the iterate p which does this. Because this map, f?, has

a large Koebe space around f"~1-%(M7 ) we may estimate the size of

......

ffn—l,i)—k(M;;,m,sn) by

ety L) 1xopr),  (3:27)

82,0080

_ d
-1 e

where s, = {i,k} and = € fO=VI=k(Mr ). The long-term derivative of
the right-hand side may be estimated with exponentially small error using its
efficient decomposition. The method of proof then follows exactly as that for

Lemma 3.6.2. This completes the proof. ©

Theorem C (part 2) Given two maps f,g € F with the same parameter vector

B(f) = B(g) we have that the conjugacy map ¢ :O(f) — O(g) is smooth.

Proof: It follows from Theorem C (part 1), Lemma 3.6.2, and Lemma 3.6.3
that for any sequence s = sy, 3, ... that the following limit exists, converges

at an exponential rate, and depends continuously on s:

i IM;; ..... s,,(f)l ' 328
A (@) (529
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3.7 Examples of Maps with Many Parame-

ters

We now explore some examples of families F satisfying the assumptions
of Theorem C. In particular, given an arbitrary positive integer M we will
construct a family F in which the combinatorics of these maps has a matrix

A in which there are M eigenvalues of modulus greater than 1.

To assist in the understanding of the combinatorics of the maps which
will be discussed, we consider an adjustment of the labeling of the intervals.
Previously, we denoted the non-central intervals as I* where n indicates the
Jevel and ¢ indicates its placement in relation to the central interval /7. For
example I, is the non-central interval second to the left (with respect to all
other non-central interval of level n) of the central interval. Our adjusted
indices will still indicate the central interval of level n as I. The adjustment
to be made is in the labeling of the intervals I, ¢ # 0. The subscript 7 will
now refer to the order that the off-critical intervals of level n are visited by the
critical point with respect to iterates of f. For example I3 will now indicate
that this off-critical interval is visited by the orbit of the critical point after the
'interval I7 but before all other non-central intervals of level n. Through-out

this section this adjusted labeling is used.

As mentioned on page 46, we can follow the orbit of I with respect to
the map g, by keeping track of which intervals of level n —1 it passes through

before landing in Ij™'. To keep track of multiplicity let Iy — »- ot
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indicate that as the interval iJ travels through the intervals of level n — 1
under the map ¢, it lands in 77! % times in a row and then finally falls
in I37*. Given this notation consider the following renormalization scheme
below. Notice that there are two free constants n and M. The number M +1
is the number of intervals for each level and M will end up being equal to
the exact number of parameter values influencing the geometry of the critical
orbit, i.e., the number of eigenvalues (counted with multiplicity) of the matrix
A with modulus greater than or equal to 1. The value 5 will be chosen once
the recurrent equation for the scaling factors g; has been established and in

particular will depend on M.

Renormalization Scheme for M parameters inﬂﬁencing [@]

Ip o= o BTN G T I (3.29)
P R B S O W il iy

n -1 yn—1 n—1 n—1 rn-1
Iz — 7?',[3 -,14 ’“"IM—I’IM ?ID

Lioe — 0L g7

n n—1
I, — I

Remark. The Fibonacci case has M =1 and n =1

Notice that this renormalization scheme has no islands since each interval
of level n lands in a different interval of level n — 1 with respect to one iterate

of .. Hence there are also no ghost islands. We claim that this example is of
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very-persistent type. This will be made more clear after following the example
below.
Combinatorial Realization Criterion

Before calculating the recurrent equation for the scaling factors, we briefly
review the following conditions, established in Section 2 of [Lyu93al, for a
generalized renormalization scheme to be in fact realizable: the monotonicity
character of ¢, (1) for i # 0 (i.e., whether the map is monotone increasing or
decreasing}), and the linear order of the intervals I in J§~'. The monotonicity
character of the map ¢,(I) is determined by the intervals of level n — 1 (and
in particular the itinerary of I* through these level n — 1 intervals). Since
all monotone characteristics are determined inductively, once the top level
map g; is determined, this condition is unimportant for our problem. The
second condition is important since the itinerary of all of the intervals I
through the intervals of level n — 1 is initially determined by the same map
gn—1 (which is unimodal on f}~'). So the unimodal condition of g, (I5™1)
does put restrictions on the placement of the intervals I? in I7~*. Hence there
is a realizability issue to resolve for the Renormalization Scheme (3.29).

If the placement of the intervals I mimics that of a realizable quadratic
super-attracting orbit (up to reversing orientation), then we have realizability
([Lyu93al, Section 2). For example in Chapter 2, we have that the placement
of the puzzle pieces V", VJ' mimicked that of the super-attracting orbit for
the map z — 2% — 1. A better example is the period 4 case where there
are two possible realizable orders (again up to reversing orientation) for the

super-atiracting orbit of a quadratic map f: f(0) < 0 < f3(0) < f%(0) or
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F(0) < f3(0) < 0 < £%(0). So for the scheme (3.29) above, with n = 4, we may
have the placement of the intervals as I} < I < [§ < I or I} < I < I§ < I3
(where I? < IP if z; < z; for z; € IT',z; € I'). In general, the placement of
the intervals in the renormalization scheme 3.29 must mimic some realizable
super-attracting orbit of a unimodal map.

Scaling Factor Equation

First we claim that the recurrent equation for the scaling factors is

M
Mgt =3 Bi Asi + K +0(p™). (3.30)

i=1

To better understand the coefficients B; for this example recurrent equa-
tion, we develop the following procedure. Since there are no ghost islands
the B; simply represent the number of times the critical point visits the set
=\ Iy ~4+1) for the efficient decomposition of f(™9), Take the orbit of Iy
through the (n — 1)-st level, and replace each I k # 0, with its itinerary
through I7~*. Repeat this procedure inductively replacing the remaining non-
central levels, I7*, k # 0 and m < n — 2, with its itinerary through ™"
until all non-central intervals have been replaced with central ones. Then the
resulting itinerary shows how many times each A,_; appears in the recurrent
equation. A simple example is done below, and its resulting recurrent equation

is written.

Example. Here is an example stationary renormalization scheme:

B oo on BTG ET
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N

n n—1
Iy — 1

Working through the above suggested method of replacement to calculate
the recurrent equation we have the following itinerary of the critical point with

respect to central intervals only.

IR Y - (3.31)
= I - g (e 37 7Y, 7

= I = (- (70, 577, 7% B

By disregarding the order of the central intervals appearing in the model

(3.31), but respecting the coefficients # we see that the recursive equation is

2 Aapt = A+ (74 Dracr + (1) A2+ K+ 0(p").

The number of times I3~ appears in model (3.31) is equal to the coefficient
for Aq—i1. The constant K is as in Equation (3.8} and, in particular, is
independent of the map in this class.

One key element demonstrated by this example is that the coefficients
have increasingly larger powers of  for the lesser level )\n_,-.‘ 'This is true in

general for our above renormalization scheme (3.29).

Lemma 3.7.1 For a fived positive integer M the coefficients B;, 1 <1 < M,

of the renormalization scheme (3.29) are polynomials of degree i —1 in 7.
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Proof: The replacement scheme outlined above for the renormalization scheme

(3.29) yields the following, independently of the level n > M + I:

Ibn - (’? : (17 ! (IS_M)nIOn_(M—-I))'" IO —-2), I(?_l‘ (332)

Hence the orbit (with respect to the efficient decomposition) of I must
fall in each set I¥ \ I¥*! the same number of times as I¥ appears in Equation

(3.32). The claim follows. 0

Lemma 3.7.1 will allow us to easily analyze the solution of the recurrent
Equation (3.30). First let us drop the constant term and error term from the

recurrent equation. This yields the equation

M
2 g1 =B As (3.33)
=1 '

Now an explicit solution of the above recurrent Equation (3.33) may be deter-

mined.

Theorem 3.7.2 The recurrent Fquation (3.33) has M independent solutions

provided n is chosen sufficiently large.

Proof: We need to find solutions of the recurrent equation
M
2. An+1 = ZB, ¢ )\n_,f.
=1
To solve we need only replace A, by t" and determine the roots of the polyno-
mial equation 2tM — B;tM~1 — BytM-2 — . — By = 0. By Lemma 3.7.1 if  is

sufficiently large our polynomial has roots which are just small perturbations
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of the roots of the equation 2t — By, = 0. It is now clear that we have
M unique solutions with modulus greater than one for our polynomial if 5 is
chosen sufficiently large. Let us denote the roots of our polynomial equation

by ay through aps. Then our recurrent Equation (3.33) has solutions

An = kol + kyagy + .o+ kyragy
where the k;’s are free constants. Hence the claim is proven. ©

It is easy to see that the eigenvalues of the matrix A are precisely the
roots of the polynomial equation above. Since all roots have positive modulus,

each will contribute in the scaling of the central intervals.

3.8 Robustness of the Parameters |

In this section, we show that the parameters influencing the geometry of
the critical orbit may be effectively varied. This will complete the proof of
Theorem C. Let us take a combinatorial class F and any map f in this class
with its parameter vector 4(f). We demonstrate that there is a neighborhood
around #(f) (in the non-contracting direction of matrix A = A(F)) such that
for any vector @ in this neighborhood there is a map g € F which realizes this
parameter vector. For simplicity, throughout the rest of this chapter, we will
omit mentioning that the neighborhood of #(f) is actually just a neighborhood
in the non-contracting direction of the matrix A.

We begin by outlining the construction. In order to show that there exists

a neighborhood of #(f) in which all & in this neighborhood are realized for
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each n, we perform a continuous deformation of f for each of the generalized
renormalization levels n + 1 through n + N for sufficiently large n, creating an
N-dimensional parameter space of maps in F. This N-dimensional continuous
deformation space is constructed by rescaling the factors A,y; through A, n
without changing any A;, ¢ < n. Given that the deformation space of maps is
continuous, we show that the error term in Equation (3.9) varies continuously.
So for each n we have a continuous change in Equation (3.9) and this will result
in all vectors & in a neighborhood of #( f)} being realized by our N-dimensional

family.

Creating an N-parameter family of maps in F through f

At some renormalization level n + 1 for the map f, we wish to create our
N-parameter family of maps by linearly adjusting the sizes of A1y, ..., Anan
and their respective return maps g,4:0. Of course, if we simply rescale a A4,
the resulting map may not be in F so we must take care to remain in this
family. To start we show how to change the scaling factor 7)\“4_1 continuously

while remaining in F.

Let us take the n-th renormalization level of f and denote the interval
I7 by [—ag,aq). Recall the map g, which maps I} unimodally to IJ~". As
before, there is an extension of g, to an interval which we denote by [—az, a,]
which maps unimodally into I7~2. Finally, we take an intermediate interval
[—ay, a1] = [—+/Goaz, \/Gotz]. Now we construct a 2-parameter family of maps
Fr . and show there exists a 1-parameter family of maps Fror) in F passing

through f. For z € [3‘5{-, %], in place of the return map g, we put
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GT,c(w) = T(gn(w) - gn(o)) + gn(o) +c

We point out that for our family Fr . that we do not chahge any other branches
of g,. For points ¢ € [—as, —a;] and [a1, as] we just smooth the map F, C? in
the variables ¢ and T, so that it agrees with the boundary map of g,. Note
that g.(z) = Fie(z) for = € [a1,8,]. Finally, for the above to make sense in T
and ¢, we require that v/T' € (42, 00) and c satisfy g.(0) + ¢ € [7". (Recall that
I has the property that it contains ¢,,(0).) The parameter T' varies the central
interval I? as follows: |IF(T,¢)] — 0 as T — oo and If{T,¢) — [—ay, 4] as
VT — ag [ay.

Taking all maps Fr, which are renormalizable with respect to the com-
binatorics of F, denoted by Rx, we may rescale A,yq by a factor of 1} just
as above. Proceeding inductively, we apply R, 1 < N, and rescale A,4; by a
factor of 7. This forms an N + 1-parameter family of méps Fpy.. Ty with the
parameter ¢ further restricted by the combinatorial condition that we be able
to renormalize N times. Now we show that there is an N-parameter subset

which is in F and passes through our original map f.

Lemma 3.8.1 For the variables T\, ..., Tx and c there is a N -parameter family
Py el Ty SO that the resulting dynamics of the deformed f is in F and

passes through f. Also, the map (T, ..., Tn) is smooth.

Proof: We first work through the proof with N = 1. For each fixed T} if we

vary the parameter ¢ in its domain we get a “full family” in that all possible
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combinatorics exists between the extreme points of ¢ [Lyu93a]. In particular,
for each T} there exists at least one ¢ such that after the resulting perturba-
tion of g, Fr, o(zy) is in F as in the lemma. To prove that ¢(71) is smooth we
take long term parameter derivatives in ¢ and 7' with respect to the orbit of
the critical point. We then apply the implicit function theorem to a partic-
ular limiting sequence of parameter values, namely, those values, denoted by
¢m{T}), for which the map has a super-attracting orbit following the combina-
torics of F up to level m. In other words, we have that RZ(F7, «1))(0) = 0,
and we have created a sequence of submanifolds, each éubmanifold consisting
of maps with the same super-attracting combinatorics, and the limit of these
submanifolds is again a submanifold with our desired combinatorics.

So we fix 7} and take all such ¢ so that Frp, . is renormalizable with respect
to the combinatorics of F [ times. We then show in following Lemma 3.8.2

that

4
de

(RE(Fr.(0))) and % (RS Fro(2) lo=rr.))

are comparable uniformly in {. In other words, the parameter derivative grows

like the dynamical derivative. Then we show that

(B 0))

is at most comparable (if not smaller) than the above derivatives. Using this
fact together with the implicit function theorem, we obtain a unique smooth
function ¢, (1) for all 7} in our domain. We also find that taking the limit

in m of the solutions ¢, (7}) gives a smooth 1-parameter family of maps F
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with parameters 7} and ¢(7}) all of which are in F., This limit exists because
the derivatives with respect to ¢ are comparable {or much larger) than the
derivatives with respect to 7} and hence our solutions ¢, (7} have a uniformly
bounded derivative in m. We will prove these derivative results below for all
1! provided we start at a sufficiently high renormalization level. Applying the
same implicit function argument for the parameters 11, ..., Ty will complete

the proof of the lemma. ©

The following Lemma is motivated by the parameter and dynamical com-

parison theorems for circle mappings in [TV90].

Lemma 3.8.2 Given any K < 1 there ezists an ng so that for all n > ng if

we perturb the map g, as above we have the following estimales.

d d :
K l% (Rt}T(FTu....TN,c(iU))) z=Fpy . Ty () < :{E (Rz}'(FTj,...TN,c(O))) (334)
B IR d
K- \ﬁ (R P o 0)))| < 5 (Rbe(Fy....1yc(0))) (3:35)
for all1 >0,

Proof: We use the following notation:
o Df(z) = dfde(f(z))]s
o Af(Fi(0)) = dfde(f.(z)), evaluated at & = fH0).

By the chain rule we may differentiate with respect to ¢ using the following

formula:
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k
=30 FEF0)) - ALLFEN0)).

Using this formula, we calculate the long-term derivative in ¢ for the

Fr, .1y iterates of 0, to obtain

Z;DF’“—*'(F*'(O)) - AF(FH0))
DI (FH0)) - (HZZE; iﬁfﬂiﬁﬁﬁi-wmwo»). (3.36)

where we write /' instead of Fr, 1. t0 avoid cumbersome equations. To
obtain Equation (3.34), it suffices to show that the sum in Equation (3.36) is
less than one in absolute value for a sufficiently large reno;‘malization level.
First note that AF.(F5.'(0)) is either 0 or 1. Hence, it suffices to show that

the sum of the amount of increase with increment of £, i.e.,

>3

k=2

is finite. Simplifying Equation (3.37), we get

DFk 1(F*(F(0) k+1 DFk— (F (F(O)))

Z DFEED)

But this converges by the exponential scaling results (compare [LM93], Lemma
5.9). We see that Equation (3.36) gives the first part of the lemma.

The second part of the lemma follows in the same manner by observing

the inequality
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A F(FTH0)) > E%F(F"“l(()))- (3.38)

and the fact that the following are comparable,

PO (DRAFO) ™, P (@), (339)

The extra constant term (D R%(F(0)))~" is certainly bounded with respect to

7, 1 <7 < N. This completes the proof of the lemma. ®

Moving the parameters

Now that we have created our N-parameter family of maps in F passing
through the given map f, we examine the scaling factors for our new maps
F(Ty,...Tn, (T, ..., T)). Starting with F(1,...,1,0), if we vary T then we
get the scaling vector A, n(f) + InTn, Apynv-1(f)s oo dnga(f).  If we adjust
Tn_1, this changes Ty by the amount given in the recurrent equation up to
some small error (see Equation (3.14)). Inductively, we see that adjusting 7}
changes T, ; through T, by some linear amount up to a small error. In this
whole family of F(T1,...Ty, (11, ..., Tw)) the error terms remain small because
the Koebe error and the error in the C; constants remain small. Hence, for
now we ignore the error term and calculate how adjustment of the 7; changes
the scaling factors at levels n + 1 to n + N. We obtain the following formula

with the constants d;; defined below.
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( /\n+N(-F.'['1,-.~,TN)

At N1 (P, Ty)

K /\?’L-I-I(FTI v--nTN)

( 1 d12 d13 . le \ In TN ( )\ﬂ—l-N(f) \
0 1 dyy . dow InTar1 Ansn-1(f)
~0 o . + : (3.40)

oo 0.1 lmn )\ s
The N x N matrix is a constant matrix and independent of the level. Let

us call this matrix ). The entries of matrix D may be calculated from the

recurrent equation, (3.14).

dg,j = 0 for z > j, (341)

dz',j = 1 for ZZJ, (342)
=i

and dm‘ = Ebldz‘-l,j for : <j (343)
I=1

Since D is invertible we see that by varying the T; we obtain a neigh-
borhood around Apyn(f)s-es Ant1(f). Pulling this neighborhood back (in the
non-contracting direction of A) by our recurrent equation we obtain a neigh-
borhood around #(f). We now estimate the size of this pulled-back neighbor-

hood (still ignoring the error terms). Recall that +/T; may vary over (£,00).
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Hence, the extremes of In T} (one negative, one positive) grow at least linearly
in n by [Lyu93a). Hence, for a Jordan block direction of A with eigenvalue r we
see that the size of the pulled-back neighborhood around #(f} is of size R(n)
where R(n) is bounded from below by O(1/r"). The error terms of Equation
(3.14) at level n and beyond we perturb this neighborhood on the order of
o(2), (0 < p < 1,jr| > 1), uniformly over our created family. Note that this
error term also depends continuously on our constructed family. By point-set
topalogy, if we homotopically include this error term when pulling back we
end up with a neighborhood which contains a ball of radius R(n) — O(ﬁ%)
Hence, for any n (sufficiently large) we have a neighborhood of the parameter
vector v(f) of size at least on the order of O(1/r"). Hence, any point in this
neighborhood is realized by a map in our constructed f&mily. This concludes

Theorem C, part 3.
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Appendix A

Geometry of Sets in the Plane

Topological dises in the plane.

We define capacity for sets in the plane and reference the perturbation
result, used in this paper. We point out that there are many equivalent defini-
tions of capacity, many of which may be found in the book of Ahlfors {chapter
2, [Ahl73]). We give one such definition. Take a topological disc, U in the
plane with boundary U = I'. Fix a point z € U. Let R be the Riemann map

of the unit disc onto U/ with R(0) = 2.

Definition. The capacity of U (or I') with respect to the point z is

cap,(U) = In R'(0).

We can calculate the capacities needed for this paper. For cape.(J{z*—1})
we proceed as follows. Using the Bottcher map and Brolin’s formula, we see

that the dynamics for the attracting basin is conjugate to the complement
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of the unit disc under the z + 2? map. The conjugacy is in fact the Rie-
mann mapping which has derivative precisely 1 at infinity (in the appropriate
coordinate system). Hence, capoo(J{z* —1}) =1n1 = 0.

Similarly, we may calculate capo(J{z* — 1}). (Note we must only con-
sider the connected component containing 0 for the capacity definition.) The
dynamics around the critical point 0 is z — 22? (two iterates of z + 2% — 1).
Again we can conjugate the immediate basin of attraction for the critical point
to z — z? with domain the unit disc (again by the Béttcher map). Comparing
the two maps, z — 22% and z — 2%, we see that the conjugacy (Riemann map)
must have derivative equal to 1/2. Hence capg(J{z? — 1}) = In z

To state a perturbative result of capacity, consider all topological disc
boundaries I' in the plane with the Hausdorff metric dg. The foilowing result
says that if we fix a point z bounded away from some ['y,, then exponential
convergence to this curve in the Hausdorff metric yields exponential conver-
gence in their capacities. The result is due to Schiffer and may be found in his

paper [Sch38] or the book of Ahlfors [Ahl73] pages 98-99.

Theorem A.0.3 (Schiffer) Given a sequence of disc boundaries I'; with con-
vergence af an exponentially decreasing rate to some 'y, dy(I'n,T'ss) = O(p"),

and a point z bounded away from Ty, then cap,(I'n) = capa{l's) + O(p")

Topological annuli in the plane.

We take two topological open discs Uy and Us in the plane such that U,
is compactly contained in U;. Then we may form the-annulus A = U; \ 0.

Every such annulus can be mapped (a canonicel map) univalently to an annulus
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{z] 0 <71 < |z| < ry}. Although an annulus can be mapped to many different
such annuli, there does exist a conformal invariant, namely the ratio of the radii
ro/ri. There are many equivalent definitions for the modulus of an annulus,

one of which is given here.

Definition. The modulus of an annulus A, modA, is the conformal invariant

log %2 resulting from a canonical map.
1

Theorem (Koebe: Analytic version) Take any two topological discs Uy,
U, with Uy CC Uy, and a univalent map g with domain Uy. Then independently
of the map g, there exists * a constant K such that

14'(2)]
gl ="

for z,y € Uy, Also K =14 O(exp(—mod(Uz\ U1))) as mod(Us \ Uy) — 0.

Theorem (Grotzsch Inequality) Given three strictly nested topological ¢

discs, U3 C Uy C Uy in C,

mod(U1 \ Ug) + mod(Uz \ U3) S mod(U1 \ U3)

Now suppose we take a sequence of Us(2), containing 0 and converging to
0, and a sequence Uy(i) with boundary converging to infinity. The set U, will
remain fixed. Also, suppose Us(z) C Uy C Uy(4) C C, then the equipotentials
for the topological annuli U;(2) \ Us(z) in compact regions of C\ 0 converge to

circles centered at 0. One consequence is the following proposition.
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Proposition A.0.4 Given U(i), U, and Us(i), the deficit in the Grétzsch

Inequality converges to capo(Us) + capas(Us).

Finally, we mention one extremal situation {(see [LV73], Chapter 2 for
actual estimates). Suppose we take a topological annulus A € C with inner

boundary I'y and outer boundary I's.

Proposition A.0.5 If A is normalized so that the diameter of I'y is equal to

1 then dist(I'y,I's) — o0 as modA — co.
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Appendix B

Thurston’s Teichmiuller Transformation

We review some of the concepts treated in the paper of [DH93] concerning
the contraction of Thurston’s Teichmiller transformation. Somne statements
are slightly more general, although we restrict ourselves to the quadratic case.
As seen in Chapter 2, the generality comes from considering compositions of
different Thurston Transformations. However, the contraction theorem stated
below is nearly identical to that of the Thurston Transformation. The reader
may also wish to review the report titled “The Spider Algorithm” by Hubbard

and Schleicher.

We outline the mathematics which follows. We first define a marked Te-
ichmiiller space of a finitely punctured sphere. We then define an admissible
map (each a Thurston Transformation) from one such space to another, al-
lowing for spaces of different dimension. Finally, we compose many admissible
maps (and hence use potentially many different Teichiiller spaces) and give
a contraction result (Thurston’s Contraction) depending on the number of

compositions and the dimension of the Teichmiiller spaces involved.
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We denote the quadratic maps by Fy(z) = (1 —¢)z® +¢, ¢ € C\ {1}.
We wish to fix a set P; ;; which will be our marked points for the Teichmiller
space defined below. In particular, the fixed set P ;) is a set of ordered

(¢-+ 1+ ) -tuples of real numbers such that

P(i,j) = (p(“?’.‘)?p(m(i - l)): "'ap(j - l)ap(j) = 1)7

p(0) = 0, p(j) = 1,
1l <plk)<plk+1) —i<k<j—1.

We define the space 7 ;) as the space of all qu;asiconformal deforma-
tions of the sphere which fix the points p(0) = 0,p(1) = 1, and oo. Observe
that this space contains the space constructed in the proof of Lemma 3.3.7.
The inﬁnitesiﬁal metric we put on the space 7 ; ;) is the Fi‘nsler metric. In

particular, we have that the complex tangent space is

. P, " o _
T(T(i,j)) = {(} :=({=ip o Cons Gy oy Goa) | G = Ckm € TomC.

Finally, a point Pj; ;) € Ty; ;) is represented by some (i +1+7)-tuple of complex
numbers (p(~1), p(—(z — 1)),...,p(0) = 0,...,p(j — 1), p(4)).

We wish to form the map from one space 7, j,), to another such space
T (is,7») Which is induced by a quadratic map. To do this we first fix a space

T (ia,in) With a marked tuple entry p(k*), —iy < k* < ja.

Definition. For a fixed space 7 (;, j,) with marked tuple entry p(k*) we say the
pair (T ¢y.51), X) 18 quadratic admissible provided x is a map from the integers

in [—iy, k1] to the integers in [—1,, j»], which satisfies the following:
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x(0) = &7,
x(f) <x(I-1) 1<,

X(D) < x(1+1) 1> 0.

Now given a point P, ) € Tiij) with marked tuple entry p(k*), we
may consider the quadratic map Fypey = (1 — p(k*))2* — p(k*). We say the
quadratic map [y ) respects the quadratic admissible pair (7, j,),x) if for
any point P, j,) €7 (iy,ip) it induces a unique point P, 1y €7 (;,,4,) such that
for each tuple entry pi({) € P, ;) we have Fpy(pi(1)) = (p2(x(1)).
Definition.Thurston Transformation Pulling-back points P, ;,) in the
space T, ;, via the map Fy.() with respect to some quadratic admissible pair

(7 (31,51} X1) results in the analytic map

’T('iz Wzl = T(il 1)

Given the notion of admissible pairs we now define an M-string of admis-
sible pairs.
Definition. The following diagram is an M-string of admissible pairs
Txnr_ Ty pf— a a
Tipasina) = Tlingorsira1) R Tiiz,g) = T3 (B.1)

T iiees) 2 Tiviy i admissible for all integers k € [1, M — 1].
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Theorem B.0.6 (Contraction of the Thurston Transformation) Sup-
pose we have an M-siring of admissible pairs (as in equatton B.1) with the
extra condition that iy + 1+ 5, < M + 2 for all integers k € [1, M]. Then the

Thurston Transformation is strictly contracting from T, 5,0 to Tiy 4, b0y
| d(oxa © Txry 000 O UX1(P(€1,J'1)) < 1.

Proof: (Outline) Just as in [DH93], in place of the map T, ., iruy) Jhl; Tird)
one may instead look at the transpose map F,. This is the map from the space
of quadratic differentials Q(7;, 7)) t0 Q(Tiyy gser)) Where the single poles of
a quadratic differential exists only in the (i +1 + k) -tuples of points. Also
each space Q(Zy, i)} is equipped with the It-norm.

The transpose map (outside of critical values) is defined as

F(q) = (qu(2) + qu(2))d(2)%,

where ¢ and ¢, represent g at the two preimages of any point in C' under the
map Fy«r). In particular, one has that || Fi.(q) [|<]| ¢ |- The only possibility

for equality, 1.e.,

[0 + @@l = [la@i+ [ la@)

is if all preimages of poles of F.g under the map Fy(x) are also poles. But
since all points except the critical value and infinity have two pre-images 1t is
easy to see that provided one starts with k& > 3 poles for g one will then create

k + 2 poles for F,q. Now given the facts that every ¢ must have at least 4
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poles and that each pole can occur only at the (é1 + 1 + ki) -tuples of points

(which is bounded in number by M by assumption), we have our result. ©
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