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Abstract of the Dissertation
Connected Sums of Self-Dual Orbifolds
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1995

We give conditions to construct families of self-dual metrics on
the type 1 and tyﬁe II connected sums of self-dual orbifolds. The
conditions are given by the vanishing of certain cohomology groups.
This is the generalization of the works of Donaldson-Friedman [15]
and LeBrun-Singer [44]. It is achieved by generalizing the_concept
of comblex orbifolds to that of V-ana,lyﬁc spaces, and studying the

corresponding deformation problems.
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Chapter 1

Introduction

We will prove the existence of self-dual metrics on the connected sums of
self-dual orbifolds with some natural conditions. This is a generalization of the
results of Donaldson-Friedman [15] and LeBrun-Singer(44]. Such a result gives
a neW way to construct examples of self-dual metrics. It also shows that the
type of degenerations of self-dual conformal classes observed first by LeBrun
[41] is general.

Orbifolds are natural generaﬁzdtions of manifolds introduced by Satake
[57], which he called V-manifolds. They are topological spaces modeled on
quotient spaces of Euclidean spaces by discrete group actions. The simplest
examples of orbifolds are the orbit spaces of manifolds by; finite group actions.
Natural examples are given by the orbit spaces of manifolds by proper Lie
group actions with finite isotropy groups; indeed every orbifold can be real-
ized as the quotient of its “frame bundle’ by the natural action of the general
linear group [32]. It is natural to generalize the fundamental theories of topol-

ogy and geometry of manifolds to orbifolds, for example, deRham theory {57,




Hodge theory [7], Gauss-Bonnet theorem [58], index theory [32], theory of in-
stanton over 4-orbifolds [20], etc. However, the motivation of this thesis is
that sometimes the study of manifolds requires the study of orbifolds. For ex-
ample, the limit of Einstein metrics on 4-manifolds can collapse the manifolds
into orbifolds joined at the singular points [1]. It was first noted by LeBrun
[41] that similar phenomenon happens when we study the moduli of self-dual
conformal classes.

SeIf—dﬁali’ty is a spécia.l property of geometry in dimension 4. For an

oriented Riemannian manifold (M, ¢), one can define the Hodge star operator
*: A (M) — AN M).

In particular, * maps A*(M) into itself, and +* = 1 on A*(M). Hence we have
a decomposition |

N(M) =N (M) & NL(M),

such that ] AL (M) = +id. This simple fact has remarkable applications in
mathematics and physics, e.g., Donaldsoln theory [16], Seiberg-Witten theory
[66], gravity [19], etc. We will be concerned with Riemannian 4-manifolds or
orbifolds with self-ciuai Weyl curvatures. We call them self-dual manifolds or
orbifolds. They are the important ingredient of Penrose’s twistor program.
Self-dual Einstein manifolds are very important in both physics and mathe-
matics [3]. When we study the compactification of the moduli space of self-dual
metrics, we are led to the connected sum of manifolds or orbifolds.

The connected sum construction of manifolds can be generalized to orb-

ifolds in two different ways. One can either form the connected sum of two




orbifolds through two regular points , which is called a type I connected sum;
or more importantly, one can construct the connected sum of two orbifolds
across two compatible isolated singular points, which is called a type II con-
nected sum. The latter was defined by LeBrun-Singer [44], which they called
the generalized connected sum of orbifolds. The fact that (multiple) Type II
connected sums produce manifolds makes it very useful. When we have two
manifolds or orbifolds with some structure, we want to know when the con-
nected sum admits the same stru.cture. The solution of such a problem not
only provides a way to construct new manifolds with the structuré, but also
is an important ingredient in the study of the moduli spaces of this structure.
.In the study of self-dual conformal classes, Donaldson-Friedman’s theory gives
conditions for the existence of self-dual conformal classes on the connected
sums of self-dual 4-manifolds. It was generalized to the case of reflection orb-
ifolds by LeBrun and Singer [44]. This thesis deals with general orbifolds.
When Atiyah-Hitchin-Singer [6] used Penrose’s idea to study the instan-
toxs over self-dual manifolds, the only known examples were examples confor-
maﬂ& flat manifolas, Fubini-Study metric on CP3, and K3 metrics [29]. Poon
[53] found self-dual metrics on 2CP, . Generalizations to nCP; were made in

different ways by Floer [21], Donaldson-Friedman [15] and LeBrun [41]. The

~ last one was later generalized in [40], [43], [34] to construct scalar flat Kahler -

surfaces, which are special cases of self-dual manifolds. LeBrun’s metrics were
related to the Donaldson-Friedman construction by Kim-Pontercovo [35] and
Pedersen-Poon [51) using different special properties of the metrics. Though

we now have the recent theorem of Taubes [63], it is still interesting to give




new constructions of self-dual metrics. It is important to prove and generalize
the following conjectures of LeBrun [41]:

Conjecture 1. Donaldson-Friedman’s theory can be generalized to the
connected sums of self-dual orbifolds.

Conjecture 2. LeBrun metrics on nCPy can be constructed from the
connected sum of a LeBrun orbifold and o Gibbons-Hawking orbifold across
the orbifold points via the generalized Donaldson-Fr_iedman theory.

LeBrun-Singer [44} proved the Conjecturerl for the special case of reflec-
tion orbifolds, and showed that the generalized connected sum of two Eguchi-
Hanson orbifolds gives us. the self-dual metrics on 2CP,. The latter is the
Conjecture 2 when n = 2. This thesis will prove these conjectures in the
general case.

Donaldson and Friedman {15] used the twistor spaces of two self-dual man-

ifolds to construct an analytic space with normal crossing singularity, which is

called the singular twistor space . Using a suitable deformation of this singula,r:

twistor space to smooth out the singularity, they then got the twistor spaces

of self-dual conformal classes on the connected sum of the two manifolds by-

Penrose correspondence. The gene‘raﬁzation to orbifold case is straightforward
except for one difficulty. The twistor spaces of self-dual orbifolds are complex
orbifolds, i.e. they are locally the quotients of twistor spaces by finite group
actions. If one makes the natural modification of the above construction of
the singular twistor space, one gets a space which is locally the quotients of
analytic spaces with norrria.lly crossing singularities by finite group actions,

except in the case of reflection orbifolds. We call such a space a V-analytic




space, or V-space for short. Since we want to keep the local quotient struc-
ture, the natural deformation of the singular twistor space should then be the
deformation in the category of V-spaces, which we call a V-deformation. We
define and study V-deformations as a generalization of deformation theory of

singular analytic spaces.

The rest of the thesis is arranged as follows: Chapter 2 describes the

twistor theory of the self-dual orbifolds, connected sums of orbifolds and the
construction of the singular twistdr space; Chapter 3 studies V-deformation
theory, which is applied in Chapter 4 to prove LeBrun Conjecture 1; Chapter
5 prov‘res LeBrun Conjecture 2 ; Chapter 6 contains the computations of some

examples.



Chapter 2

Twistor Spaces of Self-Dual Orbifolds and

Connected Sums

2.1 Twistor Spaces

For details of twistor spaces introduced by Penrose, see 16]. Let (M*,g)

be a smooth oriented Riemannian four-manifold. The Hodge star operator

* /\Z(TM) — /\Z(TM)

is conformally invariant, and ** = 1. We then have a decomposition
N(TM) = A(TM) ® A2 (TM),

where A} and A% are the subbundles of self-dual and anti-self-dual 2-forms
respectively. Notice that the orientation on T'M induces natural orientations

on A% and A? respectively. Now the Riemann curvature tensor R, viewed as



an element in S*(A*(T'M)), has a corresponding decomposition
Wy+=I B

Bt W_+2I

where s is the scalar curvature, W, and W_ are the self-dual and anti-self-dual

Weyl tensor respectively, B corresponds to the trace-free Ricci tensor.

Definition. The oriented Riemannian manifold (M*,g) is called self-dual if

W_ = 0. Notice that this is a conformally invariant condition ([9], 1.159(c)).

For any * € M, and any almost complex structure J, on T, M giving the
reversed orientation, w, € A%(T,M) defined by we(X,Y) = ¢(J.X,Y) , for
X,Y € T, M, lies in A_(T M) and had length v/2. Let Z = 5 5(A_(TM)) be

the S%bundle
5% Z(M)

!

M

of vectors of length v/2 in A_(TM). The fibers F, = r~'(z) are called the
twistor fibers. The Levi-Civita connection induces a connection on A_(TM),

which induces the folloﬁring decomposition
TZ=TF O TM,

where TF denotes the tangent bundle along the fibers. Then at each point

.z € F, C Z, we define an almost complex structure J : TZ — TZ by taking




the almost complex structure corresponding to z on 77, M and the standard

one on the fiber F, which is 52 with Riemannian metric and orientation.

Definition. The twistor space Z of (M, g) is the manifold S z(A_(TM)) with

the almost complex structure J defined above.

Since the antipodal map on S? is anti-holomorphic, the map ¢ : Z — Z
defined by o(w;) = —w; for ws € S 5(A_(T,M)) is a fix-point free involution

such that

o = —Jo,.

It is clear that the twistor fibers are fixed by o.

Theorem. (Penrose Construction [52], [6])
1) The twistor space (M, J) is a complex maﬁzfold if and only if W_ =0, i.e.
(M, g) is self-dudl. | |
2) ‘When the condition of 1) is satisfied, 0 : Z — Z is antz’-holomorphic.
The twistor fibers are complex submanifolds of Z, biholomorphic to CPy with
normal bundles isomorphic to O(1) & O(1).

There is a converse to the above Penrose construction [6]:

Theorem.. [Let Z be a complex 3—manifold with the following properties:
1) Z has a free anti-holomorphic involution o;
2) Z has a o-invariant foliation by CP! with normal bundle O(1) e O(1).

Then there is a smooth oriented four-manifold M with a self-dual conformal

class such that Z(M) is Z.

,




An alternative description of the twistor space is very useful. Without
loss of generality, assume that M admits a Spin® stfucture [38]. This is the
case when M* is compact and oriented [33]. Let ¥+ and V- be tEe spinor
bundles. Then Z = P(V~) and the twistor fibers F, = n~1(z) & P(V,") has
normal bundles 7#*V_F ®. Or,(1). | |

2.2 Orbifolds

The notion of a smooth orbifold [57] is a generalization of that of a man-
ifold and that of the orbit space of a manifold by a finite group action. We
recall the the definition of orbifold by Kawasaki [32]. The original terminology
for orbifold was V-manifold in [57]. Since it is convenient to use terminol-
égy like V-bundles, we use V-manifold in the following definition, which is

interchangeable with orbifold.

Denote by M the category of connected smooth manifolds and open em-
beddings (we call an embedding open if its image is open). A subcategory
Mg (the category of manifolds with finite symmetries) is defined as follows.
The objects of Mg are the classes of pairs (M, ), where M is a connected

‘smooth manifold, and G is a finite group acting effectively on M. Let (M, 3),

(M, G") be two such object.s, morphism {¢} : (M,G) — (M’',G") is a family

of open inclusions ¢ : M — M’ satisfying:

1. For each ¢ € {¢}, there is a group homomorphism A4 : G — G’ that

makes ¢ be Ag-equivariant.




2. f gd(MYN ¢(M) # B for some ¢’ € G, then ¢’ € IhA¢.

3. G' acts on-the set.{¢} simply transitively, where the action is defined by
(¢ $)(e) = ¢ $(z), for o € M amd g € G

The morphism {¢} induces a unique open embedding of orbit spaces 44 :
MG — M'/G'. I T is the category of connected tépological spaces and open
embeddings, then we have a functor £ : Mg — T defined by L(M,G) =
M/G and L({$}) = i4. In fact, coﬁdition 1 implies the existence of ﬁaps
it M]G — M/ G , condition 2 implies that these maps are open inclusions,

condition 3 guarantees that they are all the same.

Definition. Let X be a paracompact Hausdorfl space and U be a covering
of X by connected open subsets, satisfying the following condition: for any
zeUnV, UV €U, there is U’ e-u such that z € U ¢ UnV. Let
T(U) be the subcategory of T consisting of all the élements of U and the
inclusions. Then a V-manifold structure is a functor V : T(U) — Mg such
that £ oV = Irq, (the identity functor).

I ¢’ is a refinement of U satisfying the same conditioﬁ as U, then there is
a V-manifold structure V' T(U') — Mg such that VUV : TUUU) — Mg
is a V-manifold structure. We regard V and V"' as equivalent, and consider
the equivalence classes of V-manifold structures. So we may choose I to be
arbitrarily fine such that the open sets in I form a basis of the underlying
topology.

Let (X,U,V) be a V-manifold, for each Ue U, denote V(U) = (U, Gyp),

we have a system 7y : (I:’ yGu) — U giving identification U = i /GU. It




is called a uniformization chart or simply a chart of the V-manifold and all -

of them together form a uniformization system. Uéing the uniformization
system, we can gi{re a Satake-type definition of V-manifold. Gy is called the
local uniformization group of U. For each 7 € X, G, = limgyepey Gu is called
the local uniformization group of X at z. |

We can define complex orbifold by replacing M with the category of
complex manifolds with finite symmetry. The morphisms are understood as
to preserve the holomorphic structures. Other structures on manifolds can be
generalized to orbifolds similarly, e.g. Riemannian metrics, conformal classes,
orientations, bundles, etc. In particular, we can define the notion of a self-dual

orbifold. The following are sofne examples of self-dual orbifolds.

Example. 2.1. (Global quotients) Let M’ be an oriented 4-manifold with
an orientation preserving action by a finite group T', then M = M’/T has the
structure of an oriented orbifolds. If [¢'] is a [-invariant self-dual conformal
class on M’, then it gives a self-dual conformal structure on M, for example,
oriented Euclidean 4-space modulo the action of a discrete subgroup I' of

SO(4). In particula,r; if the cyclic group Z,, acts on R* in the following way:
(21) 22) = (/\zls /\qzé);

where we identify R* with C?, and ) is a primary root of unity of order n, ¢ is an
integer. We denote the corresponding orbifold by C*/Z,.(1,q) or RY/Z.(1,q).
An orbifold singular point of-this form is called of type Z,(1,¢). It is easy to
see that such an orbifold has isolated singularity if and only if (n,q) == 1.
Z(C?) can be identified [9] with the total space of the vector bundle O

11
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O(1) — CPy. In fact, V™ can be identified with C? by fixing an element of
V. Let Aj, A; be the linear coordinates on V'~ and 2, z; be the coordinates
on C2, then |

Z(C*) = {({#1,22), [M1 : Aa]) € CEx P(VT)).
The map define by
((z1522), [M1 2 Aa]) = (= M/ Do,y = pt + 29, w3 = —pZa + 71)
when A, # 0, and by
((z1,22), M1 A2)) = (v = A/ Ay, 00 = v o2,y = — V70 + F4)
when Ay # 0, gives the identification
Z(CH = 0(1) @ O(1),

where p, v are local coordinates on CPy, (wy, ws) and (1,1%;) are local coor-

dinates of O(1) ® O(1) in the fiber direction. The action of Z,(1,¢) on Z(C?)

is given by:

A (pywi,wy) = (M7, A%y, Ay,
A+ (v, Wy, 109) = (A9, Aby, A" %4,).
In particular, if ¢ = 1, then the action on the singular fiber is trivial.

Example. 2.2. (ALE orbifolds [37], [26], [29])These are one-point conformal
compactifications of the the ALE spaces. If the fundamental group at infinity is

Z,, these are type Z,(1, —1) examples with respect to the reversed orientation.

12




Example. 2.3. (LeBrun orbifolds [40]) LeBrun constructed scalar-flat Kahler
metrics on the total spaces of the line bundles O(-n) — CP' with SU(2)

symmetry. The one-point conformal compactifications gives us type Z,(1,1)

examples.

Example. 2.4. (Galicki-Lawson orbifolds [25] and Joyce orbifolds [31]) Us-
ing the quaternionic Kdhler quotient construction, Galicki and Lawson con-
structed lots of example of self-dual Einstein orbifolds. In particular, they show
that these orbifolds are not global quotients. Joyce constructed many self-dual
orbifolds using his quaternionic quotient construction, which generalizes the

above.

Example. 2.5. (Self-dual reflection orbifolds [44]) Reflection orbifolds are
4-orbifolds which has only singulariﬁy of the form R*/+1.

Using these compact self-dual orbifolds as bﬁilding blocks in the connected
sum construction, we can get a lot of self-dual manifolds/ érbifolds from the
main result of this thesis. Notice that most of the above orbifolds are not. global
qubtients as Riemannian orbifolds. It is interesting nevertheless to observe that

a lot of them are pseudo-free orbifolds [20], hence are the quotients of smooth

manifold by Z,,.

Proposition. (Kawasaki [32]) Every orientable orbifold M™ is the orbit space

of a smooth SO(n)-action on a smooth manifold PM.

In fact [45], we can choose a Riemannian metric on M, and take PM to

be the principal SO(n) V-bundle of M. It is easy to see that PM is smooth.

13




Proposition. (Liang [45]) Let M be a compact orientable orbifold with only
Abelian local uniformization groups, and assume that the singular set of M
has codimension > 1. Then M is the orbit space of a smooth fixred-point free

S'-action on a closed manifold N.

Definition. (Fintushel-Stern [20]) A pseudo-free S-action is a smooth S!-
action on a smooth (2n + 1)-manifold such that the action is free except for
finitely many exceptional orbits with isotropy Z,,,---,Z,,, where a,---,a,
are pairwise relatively prime. The total wsotropy is the product @ = @y - - a,,.
A pseudo-free oszfold X = @°%/5" is the quotient of a smooth 5-manifold Q°

by a pseudo-free St-action.

Proposition. (Fintushel-Stern {20]) Let X be a pseudo-free orbifold with sin-
gular points {z1,--7,z,} and total wsotropy . Then there is a smooth closed

4-manifold M(X) with a smooth Z ,-action and a branched cover

A M(X) - X

branched over FU{zy,---,x,}, where F' is a surface contained in X —{z,---,z,}.

For the examples of self-dual orbifolds discussed earlier, the Riemannian
metrics have the singular points as the orbifolds. Hence cannot use the above
branched covering to study them.

We now follow [44] to define the twistor space of a self-dual érbifold.

Locally on each unformization chart (I/,T") on a self-dual orbifold M, we have

14




a local twistor space Z(U’) for U’. But I' acts by conformal maps, so the
action lifts to Z(U’) to an action by biholomorphic maps. We can then patch
up U'/T, and get a complex 3-orbifold Z = Z{M). The twistor fibrations
Z(U'") — U’ induce a map # : Z — M, which we call V-twistor fibration. We
call F, = m71(z) & CPy/T'; twistor fibers. It is clear that the singularities
of Z are conta;ined in the twistor fibers over the singular points in M. The
theorem of Penrose construction can be easily formulated for the orbifold case,
since its proof is of local naturé. Similarly, the theorem on inverse Penrose

construction can be also generalized to the orbifold case.

2.3 Connected Sums

Let (M, 1), (M3, g2) be two oriented Riemannian 4-manifolds, and z; €
M; two points. For i = 1,2, we can identify a neighborhood U; of each point
z; with a neighborhood V; of 0 € T, = T, M; by geodesic normal coordinates.
Chqose an orienfation reversing linear isometry A : Ty — T3, when ¢ is a small
enough positive parametér, the map fa.: 71— T deﬁnedr by

A(v)

ol

induces an orientation-reversing diffeomorphism between a pair of annular re-
gibns in U/;. The connected sum M,#M, is formed by removiﬁg small balls
around z; and gluing these annuli.

If My, M, are two orbifolds, and z1, z3 are smooth points of them respec-

tively, the above construction still applies to give the connected sum M,#M,.

15
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We call it the type I connected sum.

LeBrun-Singer [44] gave the following generalization: let p; be isolated
singular orbifold points 0f M;, with the same local group T', let m; : (U/,T") — U;
be the uniformization charts centered at p;. Let T; =. ToU{. If there is an
orientation reversing isometry A : 77 — T3 which intertwines the action of ',
that is to say, we have a commutative diagram:

(idp,A) .
P x T1 — I'x T2

! !

T — 1,
i A

where the vertical arrows give the group actions. We can then use the map

fa.e to construct Uj#U;. But now I' acts freely on Uj#U), we can pass to the

quotient. The resulting space is called the I'-connected sum of M; and M,
across two orbifold points pq, pe, and denoted by Mi#rM, We call it a type
IT connected sum.

Donaldson-Friedman [15] gave twistor interpretation of connected sum
of two self-dual manifolds.r This was generalized by LeBrun-Singer in the
following way: if in the above construction M; are self-dual orbifolds, let Z (Ui’ )
be the blowing-up of Z(U}) along 7'~1(0), let Q' be the exceptional divisor, the
T-action lift to Z(U!), A induces an identification of Q} and )}, the T-actions
on Q! are compatible with this identification, so it acts on Z(UJ!) Ug: Z(Uy),
passing to the qﬁotient, we then form a singular V-space Z;. Besides possible
orbifold singularity from other orbifold points, Zp has V-semistable normal
croésing singularity along Q./T', that is to say, near Q!/T', Zy is the quotient

by I of an aﬁalytic set with only normal crossing singularity.




Example. (Flat models) Z,(1, ¢)-action and Z,(1,—¢)-action on R* are in-
tertwined by A : R* — R* | (21,23, 23,24) = (23, 29,23, —24), if we identify
R* with C? by (a1, 20,%3,24) — (%1 + ix3, 73 + 1z4). The blowing-up space
Z(R*) of Z(R*) along 771(0) can be identified with the total space of the line
bundle O(1,-1) — CP1.>< CP;. The map A induces a map CPy x CPy —

CPy,(z,¥y) — (y,) and a quadratic form ¢ : O(1,—-1) ® O(-1,1) — 0. We

can use the explicit formula in Example 2.1 to write down the Z,-actions
on O(1,—1) and O(—1,1), and check that ¢ is Z,-invariant. Now Z, —
Z(R*) Ucp, xcr, (R = {(z,9) € O(1,-1) ® O(-1,1) | g(z,y) = 0} has
a smoothing by Z: = {g{z,y) = t}, so Zy = Z}/Z, has a smoothing by
Zy = Z,[1,, which is the twistor spaces for (R*/Z,.(1, q))#z,(R*/Z(1, ~¢)).
‘We will develop the deformation theory for general singular twistor space
constructed above modeled on this example. This has been done by LeBrun-
Singer [44] in the case of reflection orBifolds, they got a theory similar to that

of Donaldson-Friedman and some interesting examples.
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Chapter 3

Deformation Theory

We define in section 3.1 the V-analytic spaces and V-deformations. Sec-
tion 3.2 reviews the deformation theory of differential graded Lie algebras,
which is used in Sections 3.3 and 3.4 to study V-deformations. We extend the

results to the relati\fe case in Sectioﬁ 3.5,

3.1 V-Analytic Spaces

We define V-analytic space similar to the definition of V-manifold (orb-
ifold) by Kawasaki [32] as in Section 2.2. Forr reader’s convenience, we give
the details here. Let M den.ote the category of open analytic sets and open
embeddings (we call an embedding open if its image is open). A subcate-
gory M {the category of open analytic sets with finite symmetries) is defined
- as follows. The objects of My are the classes of pairs (G, M), where M is
an open connected analytic set, and ( is a finite group acting effectively on

M by analytic maps. Let (G, M), (G',M') be two such objects, morphism
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{¢} : (G, M) — (G', M’} is a family of open embeddings ¢ : M — M’ satisfy-

ng:

1. Tor each ¢ € {4}, there is a group homomorphism X, : G — G that

makes ¢ be Ag-equivariant.
2. H g'¢(M)N (M) # @ for some ¢’ € G, then g’ € Im).

3. G’ acts on the set {¢} simply transitively, where the action is defined by
(¢ - ¢)(z) =g ¢(z),forz € M and ¢’ € G".

The morphism {¢} induces a unique open embedding of orbit spaces
iyt M/G —» M'/G'. T T is the‘caiegory of connected topological spaces
and open embeddings, then Wé have a functor £ : Mg — T defined by
L(G,M) = M/G and L({¢}) = iy. In fact, condition 1 implies the exis-
tence of maps 14 : M/G — M'/G', condition 2 implies that these maps are
open erﬁbeddings, condition 3 gﬁara,ntees that they are all the same. Notice
that the effectiveness of the group actions and equivariance of the embéddings

imply that the homomorphisms {Ay} are injeciive:

Definition. Let X be a paracompact Hausdorff space and U be a covering
of X by connected open subsets, satisfying the following condition: for any
e e UNV, UV €U, there is U' € U such that 2 € U' C UNV. Let T(U)
‘be the subcategory of 7 consisting of all the elements of 2/ and the inclusions.
Then a V-analytic space structure on X is a functor V : T(U) —>.M3 such

that £ oV = Iz (the identity functor).



If U’ is a refinement of I{ satisfying the same condition as I/, then there
is a V-space structure V' : T(U') — M such thét Vuv  TUuU) — Mg
i1s a V-space structure. We regard V and V' as equiva.lent,’a,nd constder the
equivalence classes of V-space structures, so we may choose ?/{ to Be arbitrarily
fine such that the open sets in I/ form a basis of the underlying topology.

Let {X,U,V) be a V-analytic space, for each U € U, denote V(U) =
(Gu,U), we have a given identification U = [/ /Gy, We call my Gy, U) = U
a uniformization chart or éimply a chart of the V-space and all of them together
form a uniformization system. Using the uniformization system, we can give a
Satake-type definition of V-spaces. Gy is called the local uniformization group
of U. For each z € X, G x = limgevey Gy is called the local uniformization
group of X at z; when there is no risk of confusion, we denote it simply by
-

(GGiven two charts my : (GUl,ﬁl) — Uy and 7y : (GUQ,ﬁg) — U,, the
transition between .them is given by charts =y : (Gv,V) — V such that

V C Uy N Uz, But we have the following

Lemma. Ifm : (G‘Ul,[}]) — Uy and my : (GUQ,ﬁg) — U, are two charts
with Gy, = Gy, Abelian (for simplicity of notation, we will denote them sim-
ply by G}K and Uy N Uz is simply connected. Then we have a G-equivariant
isomorphism: . |

o WU NTR) — n Y (U N U).

Proof of Lemma. Cover Uy N U, by {V,} such that there is a chart 7,

(Ga, f/a) —+ Va, then {#7}(V,)} covers x; (U3 N U,). Since V, C Ui, we have
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an injection of group homomorphism G, — G, and the following commutative

diagram .
~ fai

l

Va e U,',

7
!

where f.m- is a G -equivariant open embedding. Set A,; = Imf.;, then there is
a Gy-equivariant isomorphism 9, : A1 — Aaa. Now 77 (Vo) = Uyeag © Awis
s can be extended to G-equivariant map ¢q : 75 (Vi) = 73 (Vo). {¢o} may
not glue together nicely. But on 771 (U,N Us), b = Gap - ¢p for soﬁle dop € G,
and |
9ap = Gpa>
Jap 9o Gra =1 € G,

50 {gap} defines a cohomology class in H'({V,},G). Since U; N U, is simply
connected, we can choose {V,} such that H'({V,},G) = 0, then there exist
{ha} € G such that gop = b3 hg. So do = b hgdp, hence hodo = hpdp. Set
&, = hyde, then @a.: g, hen(?e {®,} define a G-equivariant isomorphism
® w7 (UL N UY) — 73 (U N UL). Q.E.D.

By a result of H.Cartan [11], the quotient space of an analytic set by
a finite group of analytic automorphisms is also an analytic set.. Hence V-
analytic spaces are analytic spaces if we forget the V-space structures.

Using the uniformization charts, we can easily to define V-analytic sub-
space, V-analytic maps between V-analytic spaces, etc. For simplicity, we

consider here only the ma,p- f: X — Y from a V-analytic space X to an
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ordinary analytic space Y. f is called V-analytic if for any € X, there is a
uniformization chart ry : U — U such that f-my: U - Y is analytic and
" (Gy-invariant. It is easy to see that a V-analytic map is itself analytic when we
forget the V-analytic structure. A V-analytic map f is called V-flat if all the
maps f - my above are flat maps. We refer to [17] for definition of flat maps

and the relationship between flatness and deformation.

Definition. Let Xy be a V-analytic space. A V-deformation of X is a V-
flat V-analytic map p : & — S from a V-analytic space X’ to an ordinary
analytic space S such that X, is isomorphic as a V-analytic space to p~1(0)
for a distinguished point o € 5.

In other words, Vz € X, there is a uniformization chart 7y, : (Gu,l;{ y—= U
of X near w, such that the composition pomy : ¥ — S is a flat morphism;
and if z € p~Y{o) = Xy, there is a uniformization chart xy : (GU,[} ) - U
near zin X, and a uniformization chart my : (Gy,U) — U such that U =

UNp~Yo), Gy = Gy, and there is a G-equivariant embedding ¢ : U — If such

that the following diagram is commutative.

&

@
—_

d
o
R o—

g

>

where the lower horizontal map is the inclusion. We call such a uniformization
chart m, : (Gy,U) = U of X én extendable chart with respect to X.

It is easy to see that if 7y : (Gy, U ) — U is an extendable chart of X,
my : (Gy, V) — V another chart with V C U, then it is also extendable. From

this, we know that G, x = G, x for z € X.
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Proposition. let p: & — S be a V-deformation of a V-analytic space
Xo = p7Yo) for some o E S, IfQ C X is a compact V-subspace, such that
there is a chart 7 : (G,U) = U D Q in X with G Abelian. Then there is a

chart @ : (G,U) — U in X which restrict to the above chart in X.

Proof. Cover ) by extendable charts {m, : (G, ﬁa) — Uy} such that U, C U,
and if {w, : (Ga,?}a) — U, } are their extensions, U, N Ug and U, N g are
simply connected. |

Since U, C U, G, is a subgroup of G, #71(U,) is isomorphic to |G/G,]
copies. of U,. Hence there is a G-action on [Lieq/q, U, which restrict to
the G,-action on each copy of U.. This action extends to a G-action on
Vo = ice/ca U,, With V./G = U,. So we have charts w, : (G, f/o,)-—r U,
which restrict to the charts Tlerway @ (G, 77 (Ua)) — Us. By the above
lemma, there are transition maps ®,p and ¢qg for them respectively, and @4
restrict to ¢op. Now @,3P4,P., € G, but we have ¢opdp,dra = 1 since
71U, N Up) glue to give U. Hence 8,3®5,3.,, = 1. So we can use @45 to
glue @, : (G, Va) — V, to a chart @ : (G, H) — U in X which restrict to the

above chart on X. ‘ ' Q.E.D.

Corollary. If X = X/G is a compact V-space with the natural V-space struc-
ture, and 7 : X — S a V-deforma.tion of X, then there is a deformation

#: X — S with G-action, which covers the deformation of X.

A V-deformation is clearly a deformation of a V-space in the category of

V-spaces. But we will see that it also gives an ordinary deformation when
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we forget the V-structure. We need some simple algebraic fact, which we list

without proof .

Let A be a commutative ring with unit, M an A-module, and & a finite
group acting on M preserving the module structure (G doesn’t act on A). Let

ME be the set of G-invariant elements of M, then

(1) M€ is also an A-module, and there is an averaging homomorphism of
A-modules a : M — MC, defined by m > %ngegg(m). Hi: MY > Mis

the inclusion (it is also a homomorphism of A-modules), then a -7 = 1.

(2) ¥ My, M; are A-modules and h : M; — M; is an A-module homomor-
phism commuting with the group actions of G as module automorphisms, then

we have the following commutative diagram of A-module homomorphisms:

i il

Ml-—)'Mg

all agl

MlG — s MBS,

(3) If we have a sequence of G-equivariant homomorphisms of A-modules

o 8
M1——*M2—“——*M3
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and fBa = 0, then the commutative diagram:

GG ‘BG
ME 2 MS —— MS

! ! !

Mli)MgLMg

! ! !

a o a 8% a
My — My —— M,

identifies ker3% /ima® with (kerfB/ima)C. In particular, if M; — M, o M;

is exact, MS — ME — ME is also exact.

Lemma. Let A be a commutative ring with unit, M be o flot A-module, GG a
finite group acting on M as automorphisms of A-module. If M@ is the set of

elements in M fized by G, then MC is also a flat A-module.

Proof of Lemma. 1t is easy to check that M % is an A-module. Now if E is an
A-module, let G act on the second factor of E ®M, then EQ M — (Ex M)¢

is an inclusion, since for any ¥;¢; @ m; € (E @ M), we have

1 .
Z&; Xmy; = EZQ(Z%@WI&)
1 geG 7
| 1
] Z&;@ @Eg(mz) EE@MG,
9 9€G

hence E® MY = (E ® M)%. Now if
0> FE —FE;,— k3 —0
is an exact sequence of A-modules, since M is A-flat,
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is also exact. Using (3) above, it is easy to see that it induces an exact sequence

of A-modules:
0— (B @ M) — (B @ M) — (E; 0 M)® 0.
Under the identification (E; @ M)% = k; ® M€¢, it gives a,ﬁ exact sequence:
0= By ® ME — Fy @ M® — By ® MS 0.

But it is easy to see that this is just the same as tensoring the original sequence

with M, so M© is a flat A-module. | - Q.E.D.
As a corollary, we have

Lemma. If7:X > § isa flat morphism of analytic spaces and G is ¢
finite group of automorphisms of X, and 7 is G-invariant, then the induced

morphism 7 : X = X/G = § is also flat.

~ From this it is clear that a V-deformation is also an ordinary deformation
if we ignore the V-space structure.
If 7 : X — 5 is a V-deformation, f : T' -» S an analytic map between

ordinary analytic spaces, then we can form a fibered product
X xsT ={(z,8) € X x Tr(z) = f(1)},

- which is easily seen to have an induced V-space structure. Let f*(7) be the nat-
ural projection X xgT' — T, then f*(7) : A XsT — T is also a V-deformation,

we call it the induced V-deformation by f and we have a commutative diagram:
X Xg 7 —— X

| "

T —i—)S.



A V-deformation = : X — S is called versal for Xy = 77'(0) if any other
V-deformations are locally induced by maps to \5; it is universal if all such

maps are unigue.

3.2 Algebraic Deformation Theory

We start with the general philosophy of P. Deligne [47): “In characteristic
zero a deformation problem is controlled by a differential graded Lie algebra.”
Some results in this section is taken from [27] with certain changes of notations.

Throughout this section, & will be a fixed field of characteristic zero.

Differential Graded Lie Algebra
A graded Lie algebra over k is a graded k-vector space I = @;50L" with

bilinear maps [-,-] : L' x L7 — L7 satisfying the {graded) skew-symmetry:

[.’L‘, y} = _(_l)m.n[y: $],

and the (graded) Jacobi identity:

[,y 2]] = [[2, 9], 2] + (~1)""[y, [z, =]},

for z € L™,y e "

A derivation of degree I of a graded Lie algebra L is given by k-linear
maps d : I! — L7 such that dfz,y] = [dz,y] + (—1)"™[z,dy] for @ € L™,
Hence for any = € L, the k-linear maps [z,+] : L' — L**! is a derivation of
'degre_e ! by the graded Jacobi identity. Let Derg(L) be the set of derivations
of L of degree [ and Der(L) = ®Deri(L). If dy € Der(L),dy € Dern;(L),
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set [dy,dy] = dy o dy — (—1)"™d; 0 dy, then [dy, d;] € Deryppn(L). 1t is easy to
check that [, -] defined above gives Der{L) an induced structure of graded Lie

algebra.

Remark. In the above definitions, we can replace ¥ by any commutative
k-algebra, so we also have gfaded Lie algebras over commutative k-algebras.
A differential graded Lie algebra (DG Lie algebra) is a graded Lie algebra
with a differential d, 1.e. d is a derivation of degree 1 and d? = 0. For a
DG Lie algebra (L,d,[-,]), define H*(L) = H*(L,d) = Kerd/Imd. It is easy
to see that H*(L) has an induced structure of graded Lie algebra. Let z; €

Hi(L),zy € HI(L), if yy € L', yy € L’ are their representatives respectively,

-then dly1, 2] = [dyy,v2] + (=1)[y1,dys] = 0. it is direct to see that the class

of [y1,y2] in H'M¥(L) is independent of the choices of yy, 42, we denote it by
[1, 4], then this operation giveé H*(L) a structure of graded Lie algebra. A
construction [55] generalizing the above gives the Lie-Massey bracket [z - - - z,,]
for @y, -+, &, € H*(L). I (L,d,[,]) is a DG Lie algebra, for u € Derp,(L),v €
Dern(L), let [u,v] =uov— (-1)"wou,du=dou~—(~1)"uod= [d,u],
then (Der(L),d',[-,-]') is also a DG Lie algebra. It is easy to éee that the map
L - Der(L),.x — [z,+] is a homomorphism of DG Lie algebras. By abuse of

notation, we denote its image also by L.

Deformation of DG Lie algebra

Let S be a commutative local noetherian k-algebra with unit element and
maximal ideal m, (L,d, [-,-]) a DG Lie algebra over k. Consider L®;S We can
extend d and |-, ] by defining d(z®s) = (dz)@s and [2Q 5,y Q1] = [z, y] R (s)
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for z,y € L,s,t € S, then (L ® S,d,[-,-]) is a DG Lie algebra over S. A
deformation of d over S is a differential D € Dery(L ®; ) such that D* =0

andw:=D—-de L ®@m.
Given any deformation D, from D? = 0 we deduce the following funda-
mental equation:

dw + %[w,w] =0.

We call it the Maurer-Cartan equation since it has the same form as the
equation sat‘isﬁed by the Maurer-Cartan form on a Lie group.

Let (Lo ®S)* be the set of invertible elements in Ly .5, then it is a group.
Two deformations Dy, D, are said to be equivalent if there is g € (Lo ® 5)*
such that ¢- Dy = Dy-g. Let D; = d + w;, then wy = g~ wag + g~ 1dg. This

manifests the following ‘gauge invariance’ of the Maurer-Cartan equation: if

w is a solution, so is g lwg + g~ 1dg for any g € (Lo ® S)*.

Let T be another commutative local k-algebra with maximal ideal mz.
If f:8 — T is a k-algebra homomorphism and D : L®; 5 — L @, Sis a
deformation of d over S, then I & T = (L ®; 5) ®s 1. Let (f*D)(2®st) =

(Dz) ®s t, then (f*D)? =0, and f*D —d = f*(D — d) € Ly @ mr, hence
f*D is a deformation of d over 7', it is called the deformation induced by f. A
deformation D : L®S — L®S is called a versal deformation if any equivalence

class of deformations is induced by a k-algebra homomorphism.

Deformation and Cohomology

We now examine the relationship between deformations and cohomology

of DG Lie algebra.
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Let D = k[t]/(¢?), then a deformation D of d over D is called an infinitesi-
mal deformation (or a first order formal deformation). Let T'(L} be the set of
equivalencel classes of infinitesimal deformations of d. Then T%(L) is in one-to-
one correspondence with H'(L). Iu fact, for any class in H'(L), let uy € Ly be
a representative of it, write D) = d-+tuy, then du; = 0 implies D? = 0,1. e. Dis
an infinitesimal deformation of d. If u; +dv is another representative, for some
v € Lg. Now (1+tv)~! = 1 —tv, hence (1 +tv) " D(1 +tv) = d+t{u; +dv). So
we get a map H(L) — T(L), it is direct to check it is an identification. An-
other w#y to interpietate this identiﬁcation is the following: let O = Op1(1y,0,
and m be the maximal ideal of 0 € H'(L), then there is a deformation D ovér
Sy = O/m?, such that for any deformation D' over a local k-algebra T' with
maximal ideal rﬁT such that m% = 0, there is a homomorphism f : 5y — T,

such that f*D = D',

More generally, given any deformation w € Ly ® m, it gives an element in
L; ® (m/m?), Maurer-Cartan equation implies that this gives an element in
H'(L) ® (m/m?). Since m/m? & (T°S)*, it induces a linear map: p: T°5 —

HYL). It is called the Kodaira-Spencer map of the deformation D.

Given an infinitesimal deformation d +tu; of d over k{t}/(¢?), we want to

extend it to the second order: d-+ fuy + t2us. Maurer-Cartan equation implies:
1
' dUQ + E[ul,uﬂ = 0.

Let z be the class of uy in H'(L), then this equation has solution iff [z, z] =
0 € H?(L). So we have a quadratic map f; : H'(L) — H?(L) describing the

30



first obstruction. The equation of next order is
du;; + [u1,u2] ={.

It is easy to see that dfuy, up] = 0, so it has solution if and only if { the class of
[r11, 2] is zero in H*(L). Notice now this class depends on the choices of uy, uy.

By induction, we see that the higher obstructions all lie in H*(L). Lie-Massey

bracket can be used to describe these obstructions.

Existence of Formal Versal Deformation

From the above discussion on inductive extension of deformation, we see
that it is hard to construct a versal deformation for each n € N, in the category
“of local k-algebras S with m} = 0, where mg is the maximal ideal of S.

A local k-algebra S with mé,ximal ideal mg is called an Artin algebra if
me = 0 for some n € N.

To establish the existence of versal deformations, it is useful to use a
language due to Grothendieck [59]. Let C be the category of Artin local k-
algebras, a covariant functor F' from C to the category S of sets is c‘;aulled

pro-presentable if it has the following form
F(A) = Homg,(R,A),AeC

where R is a complete loc_a,l k-algebra with maximal ideal m such that B/m" €
C for all n > 1 (R is a complete local k-algebra if R ofm R/M™, see [5]).
Schlessinger [59] gave a criteria for pro-presentabilty of such functors.

Now if dimH'(L) < oo, let C*(L) be a comf)lement to the l-boundaries

BY(L) C L, then the Maurer-Cartan equation tells us that the set of equiv-
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alence classes of deformations over an Artin local k-algebra S with maximal

ideal mg is giifen by
1
Yi(A4) = {n € CY(L) ® msldn + 5[n,n] = 0}.
Goldman and Millson used the Schlessinger criteria to prover the following

Theorem. ([27], thm. 1.1) The functor Yi.(A) is pro-presentable; that is,
there is a complete local k-algebra Ry and e deformation D of (L,d) over Ry

such that for any deformation D' over an Artin local k-algebra S, there is a

homomorphism f : R, — S such that D' = f*D.
Using a construction due to Deligne, they also proved

Theorem. ( [27], thm. 4.1) The isomorphism class of Ry, doesn’t depend on
the choice of C*(L).

Remark. Lie-Massey brackets [55], [60] provide an algorithm to construct
Ry

Analytic DG Lie Algebra and Kuranishi Theory
The above result does not give us a versal deformation over the analytic

algebra. We need more structures on L. A Banach DG Lie algebra is defined
to be a DG Lie algebra (Z,d, [, -]) with norms |- |; on L; such that

1. (L;,]- |;) 1s a Banach space;

2. d': L; — L;yy is continuous;
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3. |- |s: Lt ® Ly — Ly is continuous

for all . An analytic DG Lie algebra is a Banach DG Lie algebra with finite
dimensional cohomology in degrees 0 and 1, and continuous splittings of the

foiloWing two short exact sequences:

0 — Z/(L) — L; 5 B*Y(L) >0,

0 — B(L) — ZI(L) —» H(L) — 0.

Under the slittings, let B! be the image of B#*}(L) in L;, and H’ the image
of H¥(L) in Z?(L). Then Bi*! and H? are closed subspaces of L;. We have

the following decompositions:
Z(Ly=B(L) e M

Li=ZY(L)® B! = B (L) H @ B!

and the projection of L; to all three factors are continuous.

Let § be the compositions of the following maps:
Li— Bt gitl L,

where the first map is the projection, the second is given by the splitting and

the last one is the inclusion. Then it is easy to see that §% = 0 and
d o] 6 -|— (5 0] d = I —H

where H is the projection from L; — H*. This is very similar to Hodge theory

for elliptic operators.



Define the following polynomial map of degree 2 (for polynomial maps on
Banach spaces, see [17]) F : Ly — Ly by € — £ + 16[¢,£]. Since §F(£) = &€,
F maps B? @ H! = Keré to itself. By implicit function theorem, it is easy to
see that

F:BoH - B oM
is a local analytic isomorphism near 0.

The Kuranishi map K : U — H? is defined by

K(n) = H(F(n), F (),

where U/ C ‘H! is a neighborhood of 0. Since K is a composition of analytic
maps, it is also analytic. So the Kuranishi space K, = K~1(0) is an analytic

space[ce[Bee[ce in the finite dimensional space H! & H*{(L).

Theorem. (Kuranishi) Let Y = {¢ € B® @ H'|d¢ + 1[£,¢] = 0}, then F
induces a homeomorphism from a neiglhborhood of 0 in Y to a neighborhood of

0 in ]CL.

Developing the formal Kuranishi theory, Goldman and Millson then prove

the following ( <f. [27], thm. 3.3, cor. 3.10):

Theorem. The functor A — YL(A) on the category of Artin local k-algebras
is represented by the analytic germ (Kr,0). And Ry is the completion of the

local ring O = O, .

The versal deformation P over @ is also versal for deformations over

complete local k-algebras. In fact, for any deformation D over a complete local
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k-algebra S with maximal ideal m, for n > 1, S/m” is an Artin local k-a,lgebra

and D induces a deformation D, over S/m™. So there is a homomorphism f, :

O — S/m™ such that f*D = D,, passing to the limit, we get a homomorphism
f 1O — § such that f*D = D. Hence Kuranishi theory gives us a formal

versal deformation.

Artin’s Lemma

Let © be an analytic algebra, and D a deformation over ¢ which is
formally versal. We will see that it is & versal deformation in the category of
analytic algebras. Now lét k be a field of characteristic zero with a non-trivial
valuation. A convergent power series is defined to have non-zero radius of
convergence. Let k{zy, - -,z,} and k[[zy,---,2,]] be the sets of convergent
and formal power series respectiﬁe}y, then they are both Noetherian local &-
algebras, and k[[z,- - -, %,]] is the completion of k{zy, -, z,} with respect to

its maximal ideal < zy,--+,z, >. Then we have the following

Artin’s Lemma (2] Let f(z,y) = (fi(z,¥), -, fm(2z,¥)) be convergent power
series in the variables ¢ = (z1,---z,) and y = (1, -+ ,yn). Suppose that
g{z) = (f1(z), - gn(z)) are formal power series without constant term satis-
Jying f(z,3) = 0. Then any integer ¢, there exists a convergent power series
y = y(z) such that f(z,y(z)) =) and y(z) = y(z) mod m®. Here m is the
mazimal ideal of kf[z]].

A useful generalization is the following
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Lemma. [65] Let Uy, - ,Um, V1, -, Vi be proper ideals in C{z}. Let

filz,y) € C{z,y}, i=1,---,m.

Let uy,- - uy € C{z}. Suppose that for each k we have y¥) € C{z} with no

constant term such that
fi(m,y®(2)) € U+ MM,y 2w, (mod (V + MFH)),

where M is the mazimal ideal of Clz]. Then there are y, € C{z} with no

constant term such that

fi(way(w)) € Z/{i: Yo = Uy, (mod V,,)

Now let @ be an analytic algebra and D a deformation which is versal
for Artin local k-algebras. Given é,ny deformation D) over an analytic algebra
S, we need to find a homomorphism f : O — S such that f*D = D. This
can be formulated as a problem of solving a family of analytic equations as
in the above lemma. Tt has solution in any finite order by the versality of D.

Applying the above lemma, we get the following

Theorem. Let D be a deformation over an analytic algebra O. If it is formally

versal, then it is versal in the category of analylic algebras.

Strategy
In Kodaira-Spencer-Kuranishi theory of deformations of complex mani-

folds, the DG Lie algebra is given by (QO'*(TM),d, [-,-]}, where [-,-] is given
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by Nijenhuis [24]. Put an Hermitian metric on TM and use the Hodge theory,
we can get an analytic DG Lie algebra. It remains then only to see that the
deformations of complex structures correspond to the deformations of this an-
alytié DG Lie algebra. The defofmations of compact complex analytic spaces
are more involved, since. local deformation of germs of analytic spaces is not
trivial. For a complex manifold, we cover it by charts, a deformation is given
by the deformation of the way they are glued, i.e. the deformation of the
transition functions. For a compact analytic space, we cover it by local model
spaces, which are zero sets of analytié functions on complex linear spaces. It is
a nontrivial fact that the deformation of these model spaces can be embedded
in the product of the base space and the same complex linear spaces, hence are
related to deformations of the locally resolutions of their structure sheaves in
cn. Thé global deformation can described by gluing all the local deformations
of the local resolutions, from this we can construct a DG Lie algebra [50]. The

~analytic DG Lie algebra structure is constructed using a privileged covering

[18].

Our approach to V-deformation theory is then to modify the above. We
first study the corresponding model spaces, then show that under mild condi-
tions, a V-analytic spaces can be covered by the models spaces in a suitable

way, so that we can construct a DG Lie algebra to describe its deformation.
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3.3 Local Theory

We first study the equivariant deformation of an analytic algebra, then
relate it to the V-deformation of the germ of V-spaces. We follow closely the

approach of Palamodov [49] and Donin [14].

Invariant Tate Resolution and Associoted DG Lie Algebra
Let R be a commutative Noetherian ring with unit element, 7 an ideal of

R. Then a Tate resolution [61] of A:= R/T is an exact sequence:
R4S R, SRS AS0,

where Ry = R, ¢: Ry = R — R/T = A is the induced ring homomorphism,
{R.} are free R-modules such that

1. B, = @R, is a free graded commutative R-algebra: R, - R, C By,
andz-y=(-1)""y-zforz € R,y € R,,; and z% = 0 for z having odd

degree; .

2. 5 is a differential of degree 1 on R,: s? = 0 and s(z-y) = s(z) -y +

(=1)"z-s(y) forz € R,y € R,.

Tate gave a construction of a Tate resolution of R/Z for any ideal T C R.
Using the Noetherian property of R, we can assume that we have only finitely
many genéra.tors at each degree.

Given a Tate resolution R, of A = R/Z, let Deri(R,) be the set of Ry-
derivations of degree /, i.e. u : R, — R,y such that u(z - y) = u(z) -y +

(=1)™z . u(y) for ¢ € Rn,y € R,. Deﬁne.[u, v] = wow—(=1)"™vou for
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u € Der(R.),v € Derp,(R,). Let d = [s,:], Der(R,) = @Der;(R,), it is then

easy to check that (Der(L),d,[-,"]) is a DG Lie algebra. H*(Der(R,),d) with
its Lie—Ma,sséy bracket independent of the choice of Tate resolution [55], we
denote it by H*(A).

Let G be a finite group acting on B as ring automorphisms, 7 a G-invariant

ideal of K. Then we can construct a Tate resolution of A = R/T
te —si'R_g —S>‘R_1 —S>R0"E‘>Aﬂ*0,

such that the G-action extends to R, preserving all the generators and com-
muting with s. G acts naturally on Der(R,), presérving the DG Lie algebra
structure, let Der(R,)% be the set of G-invariant elements of Der(R,), then
(Der(R,),d,[-,"]) is a DG Lie subalgebra of (Der(R,),d[-,+]). Using an aver-
aging process, we c&n see that H*(Der(R)%,d) =2 H*(Der(R,),d)°.

Tyurina Resolution

Let C{z, -, 2.} denote the algebra of convergent power series in n com-
plex v.a,riables. It is called a regular analytic algebra. If 7 is an ideals of
C{z, +, 22}, A= C{z, -+, 2.}/T is called an analytic a,lgebra.- It is a com-
mutative algebra with unit. A Tyurina resolution [50] of an analytic algebra

A is a Tate resolution of A:
"“E)R_zi)R_l—s?Rg—EPA—JfO,

such that Ry is a regular analytic algebra over C. T*(A) = H*(Der(R,),d)
is called the ¢-th tangent cohomology of A. Tt is independent of the choice of

Tyurina resolution and concentrated on non-negative degrees.
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Every analytic algebra then has a Tyurina resolution, and different Tyu-
rina resolutions of the same analytic algebra are homotopic [50]. Furthermore,
for any morphism of analytic algebras A — B and Tyurina resolutions R(A)
and R(B), there is a morphism of Tyurina resolutions R(A) — R{B) such

that we have the following commutative diagram:

2y R(A)ey —2 R(A)1 —2 R(A)y 229 A —— 0
AN R(B}_ 2, R(B)_1 7, R(B)o ", B » 0.

Now a deformation of A is defined to be a homomorphism of analytic
algebras f : 5 — A which makes A a flat S-module and such that AQsC = A,
where C is made an S-module by the canonical epimorphism § — C, see [28)].
A deformation of A can be given by a deformation of s in the Tyurina resolution
[60]:

e R®8 —— B®S —— Ro®S
-such that 3 =0, § € Dery(R) ®S. Let D = [5,], then D is a deformation of
. d of Der(R,) over S. Hence, when dimcT™(A) < 0o, we have a formal versal
deformation of A.

Now let G be a finite group of automorphisms of A. By a result of
H.Cartan [11], there is a regular analytic algebra By = C{z,---, zn‘} with an
G-action induced by a linear group action on C*, and a (-equivariant epimor-
phism p : By —» A. Z = kerp is G-invariant, we can take a G-invariant finite
set{f;} of its generators (take any finite set of generator, ra,dd all the trénsfor-,
mations under (7), we then form the Koszul complex B! = K(Ry, f), which is

a graded differential Ry algebra with generators ey, - -, e, of degree —1, and a
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to A is a complete intersection, H*(R!) = 0 for n < —1, and H°(R') = A4
If not, H™*(R") # 0, we add generators ef,-z) to kill the cohomology, and use
the induction to kill all the other cohomologies in the same way. We then get
a Tyurina resolution of A (this is a modified Tate construction). Now G acts
naturally on Ry, commuting with the differentials in the resolution. So we
get a G-invariant Tyurina resolution for A. Similarly we can see that any two

(G-invariant Tyurina resolutions are (G-équivariantly homotopic.

Given a G-invariant Tyurina resolution R(A):

. > R_2 > R—l ¥ R{) * A ¥ 03

let G act on Der{R) by u — gug'. Then Dery(A)® is the set of u : R,(4) —
R, k(A) such that

. u

Ro(A) —— Bnpil(A)
| I
Bo(A) " Ruyi(4)
is commutative for all g € G. It is easy to see that [Der;(A)%, Der;{A)%] C
Dery;(A) and dDer;(A)° C Deryy (A%, hence (Der(A)%,d) is a DG Lie

subalgebra, define
T*¢(A) := H*(Der(A)%,d) = H*(Der(A),d)".

It ts independent of the choice of the G-invariant Tyurina resolution, hence is
an invariant of A. T*¢(A) has an induced structure of graded Lie algebra, it

is isomorphic to the graded Lie subalgebra T*(A)% of T*(A).

differential s, defined on generators by s:(e;) = fi. If the germ correspondi_ng‘
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While T%%(A) corresponds to G-invariant derivations of A, T'9(A) and

T?%(A) govern the G-equivariant deformations of A, which are deformations

f:8 — Aof A admitting G-action on 4 which restricts to that on A, and f

is G-invariant. Then S — A€ is also flat, so it gives us a deformation of A%.

Now if dim¢T'%(A) < oo, there is a formal versal G-equivariant deformation
of A.

Donin relate.d the deformations of the germs of complex spaces to the
deformation of analytic algebra described above, through Proposition 1.1, 1.2,
1.3 of [14]. In the same fashion, we will relate the V-deformation of the germ of
V-spaces to the equivariant deformation of analytic algebras described above.

The definition of V-deformation of a germ of V-spaces is similar to that
of'a V-space, it is actually simpler, since we need just to study the equivariant

deformation of a germ of complex spaces.

Proposition 1. Let 7 : X — S be a morphism of analytic spaces with distin-
guishéd points. A finite group G acts on X analylically, preserving the fibers
with respect to S. If (}5 Xo = 7=10) — C”® is an embedding, such that G
acts linearly on C" and ¢ is G-equivariant. Then ¢ can be extended to an
embedding ® : X — C" x 5 such that G acts linearly on the first factor of
C" x S as above and trivially on the second one. Furthermore, <I)_ can be taken

to be G—eqm’mﬁant and such that the following dz’agmm'

X -2, cnxg

1k

S —— S
id
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is commutative, where py 1 C" xS — § is the projection onto the second factor.

Proof. By Proposition 1.1 of [14], there is an embedding ¢ : X — C" x §
extending ¢ : Xo — C". Let ¥(z) = (a(z), n(z)), define @ : X ~C' xS by

2(2) = | g T alge), 7(o)

9€G
For any h € G,
1 -1
Y9 a(ghe) = = D h-(gh) " a(ghe)
’G| ged l | gEeG
1
= k- > g ofga),
61 27 )
hence ®(hz) = h - ®(z), ® is an embedding extending ¢. Q.E.D.

Proposition 2. Let D be the germ of neighborhoods of zero in C*, X a germ
of complex subspaces, and X, X' complex subspaces in D x S which induces X
in the distinguished fiber D x 0. A finite group G acts analytically on X, X, X',
and linearly on C”, such that the inclusions X < X(X’) — D xS are G-
equivariant. Then each fiber-preserving G-equivariant morphism- : X — X'
which is identity on X can be extended to a fiber-preserving G-equivariant map

U:D x5 — D x5 which is identily on D x o.

Proof. By Proposition 1.2 of [14], there exist a fiber-preserving map 8 : D x
S — D x S extending . Let

U(v, 5) |G| Zg $(gv, s),

g€
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then for any A € (5, we have

1 _
U(hv,s) = —= > g 'd(ghv,s)
Gl jez
= LY h(gh) ' g(ghv,s) = h- U(v,s),
Gl jez
then ¥ is the G-equivariant map extending ¢. Q.E.D.

Now by [11], a germ of complex space X with finite group action by G
can be identified with a G-invariant germ of complex subspaces in the germ
D of neighborhoods of zero in C® acting linearly by . We fix such an inclu-
sion. Then any G-equivariant deformation of X over S can be considered as a
(F-invariant complex subspace of I} x § invariant under the natural G-action
on D x 5, such the distinguished fiber in I x o is identified with X together
with the G-action, and the natural projection X — D x § — S is flat. If
Al s .inother such equivariant deformation, then A" and A" are equivalent as
equivariant deformations if and only if there exists a fiber-preserving equiv-
artant isomorphism DD x S — D x § which is a;n identity in the distinguished
fiber and induces an isomorph_ism of X and A”’. This follows from Proposition

1 and Proposition 2.

Similar to the construction of G-invariant Tyurina resolution of an ana-

lytic algebra, we can construct a G-invariant Tyurina resolution of Ox over

D

RI"'—*)R_Q—>R_1—>/R,0—)O4}(—>O.

Using Proposition 1.3 of [14] and a similar averaging process, we can prove
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Proposition 3. a) Let v : X — 5 be ¢ G-equivariant deformation of the germ
X given in D X S, then the G-invariant resolution R of Ox can be extended

to a G-invariant free resolution of Oy over D x S.

b) Conversely, if one is given a germ S and a G-invariant complex of free
sheaves C over DD x S which restricts to R with the group action, then C is a
free resolution of the structure sheaf of some G-equivariant deformation of the

germ X with base S.

From the above propositions, it is easy to see that a G-equivariant de-
formation of the germ X can be considered as G-invariant deformation of a

G-invariant Tyurina resolution of its structure sheaf.

The privileged neighborhood theorem [17] gives us a way to get the re-
quiréd Banach space structures on Der(R)% and the splittings. Applyiﬁg the

generél machinery, we get the following

Theorem. Let X be a germ of complex spaces, invariant under a finite group
action by G, such that I = dimcT % (X) < oo, where T'¢(X) = T9(A), A is
the analytic algebra corresponding to X. Then there exists a versal effective

family of G-equivariant deformation of X :

X — X

Lo

o —— §

such that dimeT,5 = 1.
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3.4 Global Theory

V-Polyhedral vaering

Let X be V-analytic space, 7y : (Gy,U) = U a uniformization chart of
X, such that there is a Gy-equivariant em'bedding $: U — C* with values in
a neighborhood V of the unit polydisc D™ in C”, Where Gy a&s linearly on
C" preserving D® and V. Set P = ¢~ 1(D"), P = my(P). P is then called a
V-polyhedron in X. |

By a result of H. Cartan [11}, any analytic ﬁnite,group.action can be
locally linearized. If the finite group is Abelian, we can assume the action is
given by diagonal matrices, hence preserves the unit polydisc. Hence if G’_,,,-is
Abelian for any ¢ € X, X is covered by V-polyhedra.

In general, given any covering ¢ = {U,}a € A} of a topological space X,
the nerve A of i is defined to be the set of finite subsets A C A such that
Uy = Ngeally is not empty. N has the structﬁre of a simplicial complex,
with A above as a -simplex of dimension |A| -- 1, where |A| is the number of
elements in A. Inclusions of simplices are clearly induced by the inclusions
of finite subsets of A. A simplicial complex can be considered as a category,
whose objects are the siinplices, and morphisms are the inclusions of simplices.

Now let P = {P,|a € A} be a covering of a V-analytic space X by V-
polyhedra P, = ¢ (D) given by uniformization charts 7 : (Ga, ffo,) — U,
and G,-equivariant embedding ¢, : U, — V, C C"= with G, acting linearly on
C"e preserving the unit polydisc D™ and its neighborhood V. C.on'sider the

nerve N of P. For A € N, set Py = Naealo, Us = Naealiosna = Toca a-
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Taking U, small enough, we can assume that there is a uniformization chart

74 (Gy, I?A) —+ Ug, then the composition of maps

[Té¢a

QSA : ﬁA — HQGA ﬁcx _ HaeA Cra X Cra

is a G 4-equivariant embedding of [/, into a G 4-invariant neighboi"ho_od of D"

in C"4, and this gives P, the structure of a V-polyhedron.

Definition. A V-polyhedral covering of a V-analytic space X is a covering
P - {Ps} by V-polyhedra such that for any A € A nerve.of P, P4 has the

structure of V-polyhedron as above.

Remark. A V-polyhedral covering is clearly a functor from the category

defined by A to the category of V-polyhedra of X.

A V-analytic space X with G, Abelian for all z € X admits a V-

polyhedral covering.

V-Resolutions

Let A be the nerve of a covering viewed as a category, a covariant functor
F : N — F is by definition the following assignments: to each A € N, an
object F(A) € F; to each inclusion A — B, a morphism FE 2 F(A) —
F(B) such that Fj‘f."—* id and if A,B,C € N,A — B < C, f§o f8 = f9.
Contravariant functors can be defined in a similar way. |

Let G acts linearly on C”, Z a G-invariant closed analytic subspace in a
G-invariant open set U C C" Z = Z/G is called a model V-analytic space.

We have an epimorphism of sheaves of analytic algebras: Ogn|U — Oj. Set
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Ro = O¢n|U, a complex of Ry-sheaves:

s = RS Ry >Ry

on U is called a V-resolution of the model V-space X if it has the following

properties:
1. it gives a Tyurina resolution of Oy ; when restricted to each € Z;

2. there is a subset e of sections over U/ of R, which defines in each fiber a

distinguished set of generators for the resolution;

3. the G-action on R induced from the action of G on C™ can be extended
as a group of automorphisms of sheaf of differential graded algebras fixing

e,

For éach model complex V-space we can construct a V-resolution for the
open V-subspace Z N (U'/G) if U’ is compact in U. We can prove this by
'repeating the construction of inva,rianf Tyurina resolution in the preceding
section with obvious changes.

The V-resolution of model V-spaces form a category: if Xi, X, are two
model V-spaces given By X, = )N(t-/G,-, for X; c U, C C™, and G; acts on
C® linearly preserving U; and )”{,-, and R® are Gj-invariant two Tyurina res-
olutions with generator sets e; fixed by ;. Then a morphism consists of the

' foﬂowing:
1. an injective group homomorphism A : G, — Gy;

2. a coordinate projection p : C™ — C™ | G,-equivariant with respect to A;
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3. a (-equivariant map of sheaves ¢ : p*(R(M) —» R@ such that % com-
mutes with the differentials, ¢(e;) C e, (1) maps generators to genera-
tors, hence preserves the degree) and 1, : p*(’R,gl)) s ’R[()z) is induced by

p* . Ocnj — Ocﬂz.

Definition. Given a V—polyhedra,l covering P = {P,} of a V-space X with
nerve N, a V-resolution R of X on P is a contravariani functor from A
to the category described above. If R and R’ are two V-resolutions oﬁ P,
then in degree zero, they coincide. A morphism from R to R’ is a covariant
functor from A to the category of sheaves of graded differential algebras with

‘symmetry that is identity at degree 0.

Proposition. For any complex V-space X with pofyhedml covering P, there
is a V-resolution R onP. If R and R’ are two V-resolutions on P, then there

is at least one morphism m : R' — R.

This can be proved by induction on dimA for A € A as in the proof of

the corresponding results for ordinary analytic spaces ([50], th. 2.1, th. 2.2).

Relative V-Resolution

Let p: X — 5 be a V-deformation of la V-space over an ordinary analytic
space S. Let w : (G,U) — U be a chart on X, and @ : U —C'xSa
(-equivariant embedding, where G acts linearly on € énd trivially on S.

If G preserves the unit polydisc D™, w(®~HD"™ x §)) is called a relative. V-

polyhedron in X.
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A relative V-polyhedral covering P of X and its nerve A" can be defined
similar to the absolute case. We note that if 0o € S is a distinguished point,
Po =Pn Xois a V—polyhedral covering of X, = p~!(0), we call Py a V-
polyhedron of X, extendable in X'. Use proposition 1 of the preceding section,

it is easy to prove the following

Proposition. Let p : & — § be a V-deformation of Xy = p~t(0) for a
distinguished point o € §. Then any V-polyhedral covering of Xy is extendable
in X,

We can define a relative resolution of X' similar the absolute one but with
the following modifications: for any A € N, C*4 is replacéd by C* x 5,
Oc¢ra by Ograxy, Da = Dra by D4 x Y Let P be a relative V-polyhedral

covering on X', Py the induced V-polyhedral covering on Xj, and R a relative

V-resolution on P, then Rg = R]x, is a resolution of Xg on Py. Ry is called

an extendable V-resolution.

Proposition. Let p: X — § be a V-deformation of Xy = p~Y(0) for a distin-

guished point 0 € 5, P a relative V-polyhedral covering of X which restrict to

a V-polyhedral covering Py of Xy, Then every V-resolution of Xy on Py can

be extended to a relative V-relative resolution of X on P.

V-Tangent Sheaves, Complex and Cohomology

Let X be a V-analytic space, P a V-polyhedral covering of X with nerve

N and R a V-resolution on P. For each &, R defines a sheaf 75 whose stalk
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at each point = € X is given by T*(Op )%, where =, : (Gw,(j) — U is
a chart centered at 2. 7§ = H7E¥ is a sheaf of graded Lie algebras. Since
T*(A)G with its graded Lie algebra structure for a G-invariant analytic algebra
Ais indepen.dent of the choicé of the G-invariant Tyurina resolution, 7§ is
independent of the choice of the V-resolution R and the V-polyhedral rcovering
P, we call it the V-tangent sheaf of the V-space X.

A derivation of R of degree k is given by u = {us}aen such that for
each A € N, uy : R(A) - R(A) is G 4-equivariant mapping of degree k
of graded sheaves, and commutes with the differentials s4, (we write uy €
Dery(R(A))%4, and for A C B,A,B € N, ugorf = r§ o (p§)*ua. Lef
T*V(R) be the set of all derivations of R, it is then a vector space graded by
degrees. The collection of differentials s = {s4} is by definition an element of
TV{R).

If u, v are two derivations, then it is easy to ldeﬁné their composition o v

by u4 0o v4. Set [u,v] =uowv "—‘(—1)“9“"{59% ou. Then
[, 0] = —(=1)%s* [, u],
[ [0, wl] = ([, v], w] + (=1)** %" [o, fu, w]].
Hence T*V(R) is a graded Lie algebra. Let d = [s, ], then d? = 0 and
dlu, v} = [du,v] + (—=1)%%[u, dv].

So (T*V(R),d,[,-]) is a graded differential Lie algebra. It is called the V-

tangent complex of X defined by R.
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Let 1% = H*(T*Y(R),d). 1t is a general fact that the cohomology of a

graded differential Lie algebra has an induced structure of graded Lie algebra.

It can be checked that T with its induced structure of graded Lie algebra is

independent of the choice of the V-resolution R and the V-polyhedral covering
P. |
In general, a double complex leads to two spectral sequences. Consider

the double complex given by {Der(R(A))94}, we get a spectral sequence
EP? = HP(X, 7Y = T,

This can be used to compute the global V-tangent cohomology from the local
V-tangent sheaves. In particular, we have T = H°(X,79") and the following

exact sequence

0— H1(X, TOV) — T}(V — HD(X, TIV) . Hz(X, TDV)

— JQ(V — HI(X,'rlv) & HO(X, Tzv‘).

Relai:ive V-Tangent Complex

Letp: X = § bel a V-deformation of Xy = p~*(0) for 0 € S, P a relative
V-polyhedral covering of X’ which restrict to a V-polyhedral covering P on Xy,
R a relative V—resolutipn of X on P which restricts to a relative V-resolution
| Ro of Xp on Py. R then defines a relative V-tangent sheaf T}‘/’S on /X, it is
independent of the choice of R and P. Tt restricts to 7% on Xo.

For any open set U of §, put Xy = p~H(U), consider the relative V-
resolution Ry = R ® Oy of Xy, Define T*V(Ry) to be the graded vector
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space of derivations of Ry which conﬁnutes with multiplications by elements
in I'(U, Os). Define the differential d and [-,-] in 7*Y(Ry) similar to the ab-
solute case. .Thus (T*Y(Ry),d,[-,"]) is DG T'(U, Os)-Lie a,lgebra,; Consider
the germ of neighborhoods of 0 € 5, we get a deformation of T over Og,.
Conversely, such a deformation induces a V-deformation of X; over S. So the
V-deformation of the V-space Xj corresponds to a deformation of its V-tangent
complex, which is a DG Lie—algebra. So we can use the general machinery. In
particular, a V-deformation defines a V-Kodaira-Spencer map . The deforma-
tion theory of DG Lie algebra enables us to construct a deformation of T ol
over a complete algebra A, which is formally versal. Forster-Knort's method
method can be used to prove that A is the completion if an anaalyt»i.c alge-
bra A. Let S be the analytic space corresponding to A, then we get a versal

V-deformation of Xy over 5. So we have

Theorem. Every compact V-space X has a versal V-deformation p : X —
(S,0) such that the V—Kodaz'm-Spencer. map T,S — TV is an isomorphism.
In particular, when T2 =0, S can be taken to be the gerfﬁ of the neighborhood
of 0 in TY . |

3.5 Deformations of Relative V-Spaces and
V-Maps

It is easy to generalize the above discussion to the cases of relative V-

spaces and V-maps. They are similar to the generalization of ordinary compact
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analytic spaces to the deformations of relative spaces and analytic maps [50].

3.5.1 V-Deformations of Relative V-Spaces

By a relative V-space we mean a V-space X togefher with a V-map f
into a fixed V-space Y. We denote it by X/vY. A V-deformation of X/yY

with base (5,0) is a commutative diagram

Fr
X —— Y x5S

pl [or

where p : X ~+ § is a V-deformation, together with an isomorphism ¢ : X -
p~'(0) such that Foi = f. Isbmorphism of V-deformations and V-deformation
induced by an analytic map ¢ : T — S can be defined in the natural way.
Two particular cases are worth mentioning. The first is the case where Y’
is a point, which i just the case of the (absolute) V-deformation. The second
is the case where f : X ~ Y is an embedding, which gives us the deformation

of a V-subspace of an fixed V-space.

The V-deformation theory of relative V-spaces can be described by the

relative V-tangent cohomology T)*(‘//VY’ which can be defined using relative V-

polyhedral covering. It can be computed by the following long exact sequencé

0y oy oV 1V
0 — Tvay — TX — TY,OX — TX/vY —F v

where Tﬁ‘g,x is the V-fangent cohomology of ¥ with coefficients in the Oy-

sheaf Ox.
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3.5.2 V-Deformations of V-Maps

Let f: X — Y be a V-map between two compact V-spaces X and Y. A
V-deformation of the V-map f over a base consists of a triple consisting of a
V-deformation p: X — S with isomorphism i : X — p~'(0), a V-deformation
g:Y — S with isomorphism j : ¥ — ¢7%{(0), and a V-map F : X — Y such
that ¢/ = p and Fi = jf, ie., we have the following commutative diagrams:

) r

X > X » S

i | |7 i

Y'_>y + 5.

7 g

The other concepts in a deformation theory such as isomorphisms of V-deformations
can be defined in the natural way.

The V-deformation theory of V-,aps can be described by the V—té,ngent
cohomology T}V of the V-map f. It can be computed by the following long

exact sequence:

Oy Ov oV iV
0Ty 2T =1y — X/yy ~F

This long exact sequence is related to the long exact sequence for relative space

by the following commutative diagrams:

v iu iV (v
oy —— 1Y —— Ty —— Ty y

| i ! i)

iV , OV oV 1V .o
TX/vY TX TY,OX TX/vY H
where the horizontal lines are long exact sequences. It is an easy exercise in

diagram chasing to prove the following



a6

Lemma. If we have the following commutative diagrams

y Al y BY s (O AV L

ia | | ia

» Al » Dt y B y AL L

Then we have an induced long exact sequence

"'ﬁBi—Pci@Di%Ei—}Bi-}-lH’"'.

Hence we have a long exact sequence
. : . . Y
---—)T}V—)T}VGBTQV——) ;-Eé)x—)T}H) — e

It is the generalization of the corresponding long exact sequence in [54].



Chapter 4

Connected Sums of Self-Dual Orbifolds

The V-deformation theory of the last chapter is used to study the con-
nected sums of self-dual orbifolds. We generalize Friedman’s deformation the-

ory [23] of spaces with normal crossing singularities in two different ways.

4.1 Type I connected Sum

V-Space with Normal Crossing Singularity

Assume that X, X are two V-spaces with Abelian local qniformjzation
groups, and that for ¢ = 1,2, X; are smooth near smooth hypersurfaces D;,
such that there is an isomorphism f : Dy — D,. Let X, = .Xl Uy Xo, fi:
X; — Xo the natural inclusions, and D the common image of D; in X,. We
call Xy a V-space with normal crossing singularity at D. Let i : D — X, bé
the inclusion, ¢ : X’ = X, [[ X; — X, the natural map formed from f; and

fa, and v; the normal bundles of D; in X;. It is easy to see that

30 = fidT¥) ® fou(TY) @ (14 ® 1),
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Ty = ful(1%,) @ fz*(TXQ)
and there is an exact sequence of sheaves on Xg:

ov oV o
0— Tx, — q*'rX, DyuD; = z*TD — 0,

where 73 p.up, is the sheaf of V-tangent vector fields tangeﬁt to Dy and D,.
Since X is smooth near D;, the support of 1,(v; @ v;) is away from the supports

of fi(7%"). So from the exact sequence for a general V-space X:

0 — HYX,7% )—)T}{V—>HO(X,T}(V)——>H2(X,T§V)
- T¢ — HY(X,7")® H'(X, 7%’
we get the following exact sequence:
0 — H! (X(),TXO) — }{X
— HO(XI,T_Xl) HO(Xz, )@HU(D V1®V2) —)HZ(XQ,‘TXO)
- }%KﬁHl(XlﬂTXi)eaHl(X% )@Hl(D V1®L/2)
SH(X,7%,) & H(Xa, 7%,)-

We call D) a semistable normal crossing singularity of Xy if v, @ v = Op.

Proposition. Let X, be as above and semi-stable, 7 : X — A(C C) a V-
deformation of Xo such that the V-Kodaira-Spencer class p¥(8/0t) generates

1 @ vy £ Op at all points of D. Then X is smooth near_D.

Since the proof of the corresponding result in the ordinary analytic space

~ context by Friedman (Proposition (2.5) of [23] ) is of local nature, it also proves

the above proposition.
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Application to Type I Connected Sum

We can now apply the above results to study the type I connected sum of
two self-dual ;)rbifolds with only Abelian local ﬁniformiza,tion groups. Recall
that if X, X, are two orbifolds, Ty € Xl,x§ € X, two smooth points, then
the connected sum across zy,z; is called a type I connected sum of X, and
Xy and we denote it by X;#X,. I fori = 1,2, X; afe self-dual orbifolds,
let m; : Z; — X; be its twistor space, L; = 77 (z;). Blow up Z; along L; to
get Z; and the exceptional divisor Q;. Then Z; are complex orbifolds smooth
near ;. Now an orientation reversing isometry qS s Ty Xy — T, X5 1nduces
an isomorphism [ : @ — Q5. Then Z, = 21 Uy Zg 1s a V-space with normal
crossing singularity along ), which is the comnion_ image of (1,2 in Z.

Following Donaldson-Friedman [15], we make the following

Definition. A standard I deformation of Z, consists of the following:

1. a V-deformation 7 : Z — §, where S is a neighborhood of 0 in C* and

7r_1(0) & 7o

2. antiholomorphic involutions o on Z and 7 on § compatible under p such

that o|r-1(0) is the natural one on Z.

In addition, we assume that near any point of Q@ C Zy C Z, there are local
coordinates 21,73, %3, 23, ta, -+, 1y on Z such that (21, 22, 23, 24, Tg, +y 1) =

(leg,tg, Tt 1tn)'

Theorem. Ifr: Z — S is a standard I deformation of a V-space Zy as

above, then Jor su]ﬁciently'small vector s in the fized locus 5% of o, not lying
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-in the hyperplane {t, = 0}, 7=(s) is the twistor space of a self-dual conformal
structure on the orbifold X #X,.

Proof. The proof of Theorem 4.1 of [15] works with the following modification;
near the fibers coming from orbifold points, Z, is locally the quotient of a
twistor space by finite group action, since Z is a V-deformation of Zg, these

twistor fibers have neighborhoods in Z which are quotient by finite group

actions. o Q.E.D.

To study the existence of standard deformation of Z, = Z, U f 22, notice

first that since Z; are orbifolds, Ty =73

2 =0, for i = 1,2, s0 the exact

sequence gives
0— H'(Z,75)) = Ty — H%Q,0q) =C — H¥Z,7%)
— 13 — HY(Q,00) =0.

OV)‘

So we need to compute H i"(Zg,'rza Since Z; is smooth near @;, a similar

computation as in [15] yields the following

Proposition. For Z; = Z Uy Zy as above, we have
HX(Zo, 75 ) = HY(Zy,73" ) ® HYZo, 73 ),

and an ezact sequence:

0 — 79 — H(Z,v3)) ® H(Z,, Tzz)—’HO(Q,TQ)

— H1(Z0,'Tg;{) —r Hl(Zl,TZ] )@ HI(ZD,TZD ) - 0
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Hence if H?*(Z,,73)) = f'lr2(Z2,frZ2 ) = 0, we have H*(Zy,75") = 0, and

the following exact sequence:
TYV(Zo) = H(Q,0q) = C — 0 — T (Zy) — 0,

SOITW(ZO) = 0, therefore every direction in 7"V (Z,) can be.realized by a
V-deformation of Z;. In particular, since TV (Z,) — HO(Q,C’)Q) = C is
now surjective, we can choose a direction in 7'V (Z,) whose restriction to Q
is nowhere zero, any oneﬁimensional V-deformation having it as V-Kodaira-
Spencer class then gives a sinoothing of Zy near (). To take care of the real
struéture,- notice that the trick in Section 6.1 of [15] can be extended to the

V-space case. Hence we have the following

Theorem. For any two compact self-dual orbifolds X1, X; with only Abelian

local uniformization group, lel Z, and Z, be their twistor spaces }espectively,
and 1,2, two smooth points of X, X, respectively, construct Zy = 7, Uy Z,
as above. If H¥Zy,73)) = H*(Z5, 1Y) = 0, then Zy admils a standard [
deformation, hence the type I connected sum of X and X, admits a self-dual

orbifold metric,

4.2 Type 1l Connected Sum

V-Normal Crossing Singularity
Now let ¥3,Y; be two compact V-spaces, again with only Abelian local

unjformization groups, E; C Y; compact subset, such that there are uniformiza-

tion charts m; : U; — U, =, /G near E;, where U, are smooth and the finite
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group G acts on U; and freely outside the smooth hypersurfaces K; = n} YE;).
If there is a G-equivariant isomorphism ¢ : £y — £, which induces an i.somor—.
phism ¢ : Ey — E,, then Y5 = Y, U, Y; is also a V-space. Let E,-_: Y, = Y,
be the natural inclusion, and E the image of E;, p : Y’ = Y{[[ Y2 — Y, the
obvious map formed from hy and hy, j : E — Y, the inclusion. We call Y, a
V-space with V-normal singularity at E. If #; is the normal bundle of E; in
U, then G acts holomorphically on # — E;. If we identify £y, B, with their
common image in U, U 3 U, and regard iy, Iy as line bundle on £ , then 7 acts
holomorphia;;a]ly on i @ vy. |

In general, assume that G is a finite group actingon X, 7 : X — X/G be
the natural projection, and F is a sheaf on X, such that there is a G-action on
F covering that on X. Then the assignment that for any open set U C X/@,
gives U — D(x7(U),F)¢ is a pfesheaf. It induces a sheaf on X/G which
we denote by #GF. Now let = : [ Uz U, — Uy Uy U, be the natural map
constructed by gluing 7, and 7y, and let £ = #%(#y ® #7), then it is easy to

see that:

Tyo hl*’ryl v hz*ﬁ@ B,
Tyg = hl*TYI & hz*'ryz )
and we have an exact sequence:

|4

oV D
0— 'TY — p*TYf S UE, — _7* — 0.

Hence we have the following exact sequence:

0 — HY(Yo, 7y )Ty — H (Y, 137) @ H(Ya, 1)) @ HO(E, £)




- Hz(Y;}’TS’:) - l?':/

— H'(Yy,m))® H' (Y, ) @ HY(E,£) & H°(Y,, ).

In particular, we have a natural map: TV (Yy) — HO(E,&). If iy @ iy =

Op and G-action on it is trivial, then we say that Y, has semistable V-normal

crossing singularity at E. In this case, we have £ = Op.

Proposition. Let Yy be a V-space with semistable V-normal crossing singular-
ity at F as above, andw: Y — A(C‘ C)a V—deformatibn of Xo = 770) such
that the V-Kodaira-Spencer class p¥ (8/8t) is mapped to a nonzero element
in HY(E,E). Then there is a neighborhood U of E in Y, a smooth complex
manifold U with G-action, and a G-invariant map p : U — U which identifies
U with |G, such that (po)~2(0) = U and the G-action restricts to that on

U.

Proof. Since m : & — A is a V-deformation, there is a chart p: (Zz? ,G) = U of
Y near E which extends the chart near E in Y}, then I/ — A is a deformation

of I whose Kodaira-Spencer map generates 'ré, everywhere, so by the result of

Friedman [23], ¢ is smooth. ' Q.E.D.

Type Il Connected Sum
We now use the above discussion to study the type II connected sum of two
self-dual orbifolds. Recall that if X, X, are two orbifolds, z; € Xy, z, € X,

two isolated orbifold points with the same (finite) local transformation group

G. I fi: (G, ﬁt) — U; are uniformization charts centered at z;, f~1(z;) = %
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and if there is an equivariant orientation reversing map ¢ : Tj, le ;..,, T;, ﬁz,
then type II connected sum can be formed by gluing U, with U, then modulo
G. Denote if by X #¢X3. If Xy, X, are self-dual orbifolds, the twistor space of
X; can be defined by taking the twistor space over U; to be Z(TU;)/G. Let ; :
Z; — X; be the twistor projection over X;, L; = w7 '(z;), we can ‘blow up’ Z;
in the following way. Let 7; : Z (ﬁ,) —s [; be the twistor projection over U;, we
blow up Z(ff,;) along L; :77?1-‘1(5:,-) to get Z(ff,) with exception set Q;. Modulo
G, we can constructed the blown-up twistor space Z; With exceptional set
@:. The G-equivariant orientation reversing isometry induces a G-equivariant
isomorphism 1 : Q; — Q, which descends to an isomorphism ¥ : @y — (. It
is easy to see that Zy = 74 Uy Z,is a V-space with semistable nérmal crbssing

singula,rity at ¢J, which is the common image of the inclusions of @4, Q3 in Zp.

Again following Donaldson-Friedman [15], we make the following

Definition. A standard II deformation of Z, above consists of:

1. a V-deformation = : X — § where 5 is a neighborhood of 0 in C", such

that #71(0) = Zy;

2. antiholomorphic involutions ¢ : 2 — Z and 7 : § ~ S which are
compatible under x, such that ¢|,-1(g) is the natural antiholomorphic

involution on Z,.

In addition, we assume that near any point of Q C Zy C Z, there are lo-

cal coordinates {z, 2, 23, 24,89, -+, %,) in a uniformization chart such that

%(zla 29, 23, 24, t2) e 7tn) = (21227t27 e 1t'n,)'
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Similar to the proof of the theorem in the preceding section, Donaldson-
Friedman’s proof with the obvious modification can be used to prove the fol-

lowing

Theorem. Ifn : Z — § is a standard II deformation of a V-space Zg
constructed above, then for sufficiently small vector s in the fized locus S7 of
the involution o, not lying in the hypersurface {t; = 0}, the fiber x=1(s) is the

twistor space of a self-dual conformal structure on Xi#aX,.

To study the existence of standard IT deformation, notice that since Z,, Z,

are orbifolds, we have 71V

% Tz

2V = 0. So we have the following exact sequence

0 = HY(Zo,75) =T (Zo) — H(Q,0q) =

— H¥Zo,79)) — T (%) — H'(Q,0q) =

To compute H*(Zy, 73" ), we use the following exact sequence:

v oV « 0V
0 TZy 7 PeTzl00Q, —T KTg — 0

to. get a long exact sequence:
0 — HZo,75)) = H(Z1,73 o) ® H(Z2, 73 o) = H(Q,78Y)
— Hl(ZO,TE;’) — Hl(Zl,TZ Q. )P Hl(Zz, T%Z,Qz) — HI(Q,TEV)

¥ Hz(Z{), Tg(‘;/) —* HZ(Z]_,TZ Q )@ H2(22)T§ZQ2) - HZ(Q)TCDQV)'

we use the exact sequence:

"To compute H(Z;, T%VQ_),

oV oV Vv
O_"TZ.,Q._)TZ — — 0
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to get the following long exact sequence:

0 = HZordg) ~ H(Zr) — H@ )
— HI(Z TgVQ,) - Hl(Zn ) - HI(Q""V‘V). |

~ H?(z 20 = B Ziy 1) = H Qi v)).

So we need to compute H?(Q,78") and H¥(Q;,»]"). This can be done using |

the Dolbeault theorem on orbifolds [7}:
HY(Q,v]') 2 H(CPy x CP1,0(-1,1))% =0
for § = 1,2. Similarly Hj(Q,TCgV) =0 for = 1,2. We then have:
H? (ZOaTZD) H2(Zh ) & H*(Za,73) ).

So when H*(Zy,73)) = H*(Zs,73)) = 0, we have H*Zy,73Y) = 0, and

therefore the following exact sequence:
TV (Zo) = H(Q,00) =C — 0 - T (Z,) — 0.

Therefore, T?V(Z,) = 0, and given any non-zero sectioﬁ of £, it is the re-
striction of some vector v € T (Z%,). Since there is no obstruction, there
is a V-deformation with V-Kodaira-Spencer class v, this gives us the desired
smoothing. We again can use Donaldson-Friedman’s trick in Section 6 of [15]

to prove the following

Theorem. Let Xy, X, be two Self-dual orbifolds with twistor spaces 7, and

Zy, z1 € Xy is an orbifold point of type Z,(1, —q) and z; € Xz of type L,.(1, q),
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construct Zy as above. If H¥(Zy,730) = H¥Zy,7Y) :.0, and all local uni-
formization groups of X, X, are Abeli.an, then Zy admits a standard II defor-
mation, hence the type II connected sum of X, and X; across z1,z; admits a

self-dual orbifold metric.

Remark. [t is easy to see that the results of the last two sections can be

generalized to self-connected sums, multiple connected sums, or a combination

of type I and type Il connected sums, etc.
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Chapter 5

Explicit Degenerations of LeBrun Metrics

In this chapter, we prove that the degenerati_on of LeBrun’s metrics on
nCPg into a connected sum of a LeBrun orbifold and a Gibbons-Hawking
“orbifold can be described in (generalized) Donaldson-Friedman picture using
explicit description of the twistor spaces. It is interesting to notice that corre-
sponding to the rescaling process to manifest the GibBons-Hawking orbifold,

we need a weighted blow-up construction in the family of twistor spaces.

5.1 Weighted Projective Varieties

To compactify the twistor spaces of the ALE spaces, we need weighted
projective spaces and weighted blow-up. We reformulate some materials in

[13] where they were presented in the language of scheme.

68



5.1.1 Weighted Projective Spaces

Let K = (ko,-+,kn) be an ordered set of positive integers, consider the

action of €* on C**! — {0} defined by
t- (20, y2n) = (208", - -, zntFm).

Since every k; is positive, all the orbits of the action are closed subset of
C™t1 — {0}, so we can take the quotient. Let CP,(K) = C™** — {0}/C* be
the complex analytic éuotient space. It is called the complex weighted pro-
jective space with weight K. It is compact since it can bé identified with
S /S kg, -+, k), where S*(ko,---,k,) means S action on S**t! is in-
duced by the above action of C* on C**! — {0}. Alternatively, CP,(K) can
be identified with the symplectic quotient of C*** by §(kg,- -, k,)-action.
Let [z.-- - : 2,]k denote the K-homogeneous coordinates, we then have a

natural map:

CP, — CP,(K)
[tho 1 -+ uy) [u’g":---:uﬂ 1%

which gives an isomorphism:

CPL(K) 22 CP,/(Z, X -+ % Iy,).

And so CP,(K) is an orbifold. Let U; = {[z0: - - : za]k | 2 # 0}, then we

have a map:
Ui -3 Cn/zk;(k‘o, tee }ki—h k‘i+13 e 7kn)1

20 Zi-1 Zi41 Zn

2o 1z —

@Ry G Ry TR

]

69



where Z‘,-l/k" is any k;-th root of z;, and Z;,(kg, -, ki1, kiy1,- -, kn) means

that Z, acts on C" by:

6211‘\/—1/19,‘ i (20

,"'7zt'—1azi+1a"')zn) =

(627r\/_——fl'ko/k;

2w/ =1ki_1/ki 2/ —1k¢ ki 20y —1kn [l
Z(),"',eﬂ- § 1/ szi_l,e'ﬂ' e+1/ lzi+1,_'.’€ n/ !zn).

Hence each U is a global quotient, for i = 0,---,n. By suitable choice of the
weights, we see that CP,(K) may havé singularities of different types, but
nevertheless, 1t is a global quotient.

It is easy to see that if d is a positive integer, and dX = (dko,- - dkn),
then CP,(dK) = CP,(K). In fact, {zo: -+ : za]ax = [20 1 -+ & 2n] s an

isomorphism. So we can divide the greatest common divisor of kg, - -, &y, and

assume that ged(koy <+ -, kn) = 1. Then we have the following

Proposition. (Delorme [13]) Let K = (ko, -, kn), and ged{ko, -, k) = 1,
let
di = ng(kO'; T, ki—l) ki+1) Ty kﬂ)v

m; = lcm(do, o 7di—1a di+11 Tty dﬂ)v .
m = lem(dy, -+, dy),
li = ki/m‘isL = (103' " ’ln)~

Then CP,(K) 2 CP,(L).

Proof. Since ged{ko,---,ks) = 1, we have (k;,d;) = 1, and (d;,d;) = 1,
for 7 # . Hence m; = dy---di_1diy1---d, and m = dy,---,d,. Let P =
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(doko, - -, dyk,), define a map:

CP.(K) — CP,?(P),

: . do . . d

(201t znlg = [25° i -+ 1 200 ]p.
It is clearly surjective. To see it is also injective, notice that [zo,- -, 2]k
and [tg" 2o, -+, 2,]k have the same image, where for ¢ = 0,-.« ., n, t; =

exp(2my/—1/d;}, and m; is an arbitrary integer. Let ¢ = exp(2m/—1/m). To
see that the above two points are the same in CP,(K), it suffices to find an

integer p such that

for each ¢, i.e., it suffices to solve the following system of congruence equations:
Lip=mj(modd;), §=0,---,n.

Since (1;,d;) = .1, there exists r;, such that k;r; = 1(modd;). So we just need

to solve the following system:
p = lrj(modd;), j=0,---,n.

But now (d;,d;) = 1, for j # I, this always has solution by Chinese Remainder

Theorem. So we have an isomorphism:
CPu(ko, -+, ky) =2 CPL(kodp, - - -, knd,,).

But ged(kodo, <+, kndn) = lem(do, <+, d,) = m, since kyd;fm = k;/m;, we

have

IR

CPn(ko/mg, Tty kn/mn).

CP,(kodo, -« - , kndy)
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Q.E.D.

Here are some examples: CP3(2,3,6) = CPy, CP,(k,---,k,1) 2 CP,, in

particular, CP3(2,2,2,1) & CPs.

5.1.2 Weighted Projective Varieties

A polynomial f(z,---,2,) is called quasi-homogeneous of degree d with

weight K = (ko,-« -, kn) if
f(tkuzo, cea ,tknzn) = tdf(zl)a' - 7Zn)yt c C,

It fi,--+, fm are quasi-homogeneous polynomials with the same weight K of

degrees dy,- - ,d,, respectively, they define a weighted projective variety

Pr{fo="= fm =0} CCP.(ko, -, k).

It is called: quasismooth in CP.,,,(K ) if the affine cone {f; = --- f,, =0} in C"*!
is smooth outside 0.

Using local charts as in Section 5.1.1, it is easy to see that a quasismooth
weighted projective variety has an induced orbifold structure from that of the
weighted projective space {13]. -

For example, zy — 2z is a quasihomogeneous polynomial of degree 2n if

(z,y, z) have weights (n,n,2). We have a map
CPl ¥ {:Pg(n, m, 2),

[21 1 2] = [2] @ 25 ¢ z122)(nnie)
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which identifies P2 {2y = 2"} in CPy(n,n,2) with CP{/Z,, hence it is a
global quotient. We can also see this from the orbifold structure of CPy(n, n, 2).

Consider the weighted hypersurface:
X =Planan{ey = (z — wla) - (z — v'a,)} C CPs(n,n,2,1),

where (z,y, z,w) have weight (n,n,2,1), and a;,- - -, a,, are fixed complex num-

bers. X contains the rational curve
C= P(n,n,?,l){my =" w= 0} = P(n,n,Z){wy = Zn}:

we now want to show that near C, X is a global quotient by Z,,.

Lot Uy = {[z:5: 2 wlnanle £ 0}, and Uy = {[o 1y : 2 wlunanly 7
0}, we have local charts over X N U, and X N U, given by:

b C*'—> Xn Us, (z1,01) = [1 1 {21 — wfal) o (2 — wfan) DR wl](n,n,2,1)

by : CE— X n Uy, (z2,w2) — {(22 — wiag) -+ (22 — wian) 1 1: 2 : Wa)(nm,2,1)-

There are small neighborhéod U of (C— {0}) x {0} C C?, such that
flz,w) = ((z = wiay) -+ (z — wia, )"

is well-defined and f(z,0) = z. Let V = f(U). Choose small neighborhoods
We, W, of (0,0) in C?, glue U UW, with V UW, to get a space ¥ by the map

U= Vilzmywn) = (f(:ﬂ,wl)” f(zhwﬂ) ’

‘notice that the Z,(2,1)-action on U U W, is glued with Z,(—2,—1)-action

on V U W, to give us a global action of Z, on Y, whose quotient is clearly
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a neighborhood of €' in X, and C is the global quotient of a rational curve
(when wy = wy = 0) with normal bundle O(1) in Y.

Under the identification of the weighted projective spaces in Section 5.1.1,
the weighted projective varieties can also be identified with each other. For
~example, under

CP3(2,2,2,1) = CP,
[z,9, 2, €l@221) — (2,9, 7, €]
we have an induced identification of P35, 1 {zy = (z — eza;)(z — €%ay)} in
CP3(2,2,2,1) with P{zy = (2 — tay)(z — taz)} in CPs, where a1,z € C. It
is easy to see that the rational curve P{zy = z" } has normal bundle O(2) in

Pley = (z — ta;)(z — tay)}.

5.1.3 Weighted Blow-Up

Consider the space:
Cirt = {((z0,- ", 2)y  [wo i+ :wy]) € T X CPL(K) | 25 =ty
teC, 5= 0,"'77?'}'

We have a natural projection x : €3 — C"*+1, For v € C— {0}, 7= Y{v) is just
a point, but 771(0) 2 CP(K). We call 3! the weighted blow-up of C*1 at
0 with weight K, we also say that we blow up C™*1 at 0 with weight K, and
E = n71(0) is called the exceptional set. |

C! is an orbifold. In fact, if C*t1 is the usual blow-up of C"*1 at 0, we

have a-map:

Cn+1 s C%-l-l,
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((5501" 'amn)a[yﬂ Dl yn]) b= ((37{(;0:' _"wﬁn),[ygo Lt y:"]K),

this gives us an identification:
Cett = CHY(Zy, x -+ 1)
HU; = {{wo: 1wk | wi # 0}, Ui = o~ HU;), we have:

U — C 24 (0,koy - -+, kimyy kigay -+ 5 ),

To T
king > 0 7 fking, 2
zi/ By (a} ki
Tip1 Ty

(‘,L.}/ki)k.‘u o (:L--J_‘/ki)kn )’

3

((3301 e ?mn)a [yO e yn]) (2,

hence each U; is an orbifold, for 7 = 0,...,n.

Simﬂar to the discussion in Proposition 5.1.1, we have the foliowing:'
it = &,
Cpt = C /(Zay % - Y Z,,),
where K, L, dy,- -+, d, are as in Proposition 5.1.1. In particular, we ha,.ve
Clan/Te = ¢

If X C C*' is an affine variety, Xxg = X — {0} C €2 is called the strict
transform of X in é%“. Ex=XnNE is called the exceptional set in Xk.

Consider the map C? — C3 defined by

(21522) = (37-,(!‘,{,2) = (Z;L,Z'g,zlzg),




the image is X = {zy = 2"}, it induces a map C? — C?ﬂ,n,Z)’ defined by
((21, 22), [wi, wal) = (27, 25, 2122), [w], WE, wiwa] (nm,2))-
This gives us an identification:
CYZ,(1,-1) = Xpuna)y

where Z,(1,—1) means the Z,-action on C? is induced by the following Z,-

action on C%

621r\/—_1/n . ( e27r\/—_1/nz1, e~‘2ar\/:i‘/nz2)’

21y Zz) = (
hence the exception set Ey in X(n'n’g) is a rational curve, and Xisa global
quotient of O(~1) — CP; by Z,-action.

We now consider the following affine Varieﬁy:
Y ={zy = (z — wa;) - (2 — w?a,)},

where (z,y,z,w) € C*, and a4, -, a, are fixed complex numbers. Blow up Y’

at 0 € C? with weights (n,7,2,1), then
By = Pnan{ey = (z — wlay) -+ - (2 — wla,)}

is the weighted projective variety we described in last subsection. We have
a natural projection 7 : ¥ — C,7(z,y, z,w) = w and an induced projection
e ff{n,n,Z,l) —C,let Y, = W‘l(w),Yw = 7~ 1(w), then Y, =Y, forw # 0, and
Yo = By U Yor, where Y, & 18 the strict transform of Yj, it is easy to see that

Y, = X and I}DK = )ﬂf(n,nig)'. Notice that

C = Ey N Yy = Panmaizy = 2" w =0} Z Py {zy = 2"}
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Near C, we have local charts on ¥,
¢z : C* > Y, (24, 21, wy) > (27, (71 — wiay) - - (7 — wfan),;cle,mlwl),

¢y: C° — Y, (y2, 22,w2) = ((22 — wiay) - (22 — w%an),y’;_, 322, Yat0s).

We can use the same trick as in last subsection to see that near ¢, Y is a
global Zx-quotient of a smoothing of some normal crossing singularity, each

fiber of the smoothing is preserved by the Z,-action.

5.2 Twistor Spaces

We review in this section the explicit description of the twistor spaces of

some self-dual spaces.

5.2.1 LeBrun Metrics and LeBrun Orbifolds

We begin with the twistor spaces of the self-dual LeBrun metrics on nCP,
constructed by the hyperbolic ansatz [41]. Let p = (P1,p2,-+-,pn) be an
unordered set of arbitrary points in M3, not necessarily all distinct. Each
point p; corresponds to a polynomial P; € T(CP; x CPy, O(1,1)). If ([
za], [w1, w,]) are homogeneous coordinates on CPy, then P; can be written as
a;z1wy + bizywa + cizpwn + dizgws, P; is real in the sense that @; = a;,b; = &,
and d; = d,.

We define an algebraic variety

2(p) C P(O(n—1,1) & O(1,n— 1) @ O)
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by the equation
i)
zy =t H b,
i=1

where t € O(n—1,1),y€ O(1,n—1),t € O.

Z(p) contains two surfaces ¢ = ¢t = 0 and y = ¢t = 0, the canonical

~ projection identifies them with the base CP; x CPy. These surfaces don’t con-
tain ahy singular points of Z{p) their normal bundles in Z(p) are respectively
O(1 —-n,—1) and O(—1,1 —n), so they can be blown down to rational curves
with nofmai bundles O{1 —n)@®O(1 —n). Denote the resulting space by Z(p).

Z(p) has some singular points, we will consider two special cases. First

assume that all {p;} are distinct, and no three lie on a common hyperbolic

geodesic in H°. Let C; be the curve in CP; x CP; corresponding to the

polynomial P;, then the above assumption is equivalent to the condition that
no three of these curves pass through a common point. Then the points
z=y=01t#0,F =P for some j # k are easily seen to be the only (iso-
lated) singular points on Z(5), we can then make suitable small resolution of
them and the resulting smooth threefold is the twistor space of some self-dual
LeBrun metric on nCP; constructed by the hyperbolic ansatz with centers
D1, Pn- Por details, the re.ader is referred to [41].

We may also consider the case when py = p; = --- = p,, = p for some point
p, corresponding to a polynomial P, which defines a curve C in CP; x CPl.A

The singular set in Z (p) is then:
C={z=y=P=0,t#£0}

In local coordinates near C, Z(§) has the form y = 2™, so we have a family of
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A, singularities parameterized by C = CP,. We can easily check that Z (»)
is the (singular) twistor space of the self-dual LeBrun orbifold obtained by the
one-point conformal compactification of the scalar-flat Kahler metric on the

total space of the line bundle O(—n) — CP; for n > 2 constructed in [40].

5.2.2 Gibbons-Hawking Spaces and Orbifolds

A Riemannian manifold (M*, g) is called asymptotically locally Euclidean
(ALE) if there is a compact set K ¢ M, such that M — K is diffeormorphic
to the quotient of the complement V of the unit ball in R* by a discrete
group I’ aﬁd the 1ift of g to ‘V is asymptotically Fuclidean, and T acts on V
as isometries with respect to this metric. We call I' the fundamental grou:p
of M at infinity. Recall that (M*,g) is called hyperkahler if it admits three
complex structures I, J, K compatible with the metric which gives three closed
Kahler forms, and such that /J = K. Hyperkihler manifolds are Ricci-flat,
hence scalar-flat. In dimension four, it implies that (M*,g) is self-dual with
respect. to the orientation reverse to the canonical one defined by the complex

structures [39], [12], hence it has a complex twistor space.
Hyperkahler ALE spaces with I' € SU(2) C SO(4) have been classified

by Kronheimer [37]. The special cases of I' = Z,, C SU(2) were studied earlier
by Gibbons-Hawking [26] and Hitchin [29], we call them Gibbons-Hawking

spaces. The twistor spaces of them were explicitly described by Hitchin [29],

they are similar to those in Section 5.2.1.

Let ¢ = (@1, ,¢n) be an unordered set of points in R?, they correspond
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to polynomials ; € T'(CP4, O(2)). Consider the variety
W={ze On),y € On),z2 € O2) |zy = (2 — Q1) - (z — Q)}.
When ¢;,- -, ¢, are in general positions, W has isolated singular points at:

t=y=z-Q=2-Q=0,j#k

They are in the fibers where ; = @, we can use suitable small resolution to
get the the twistor spaces of ALE metrics constructed by Gibbons-Hawking
ansatz [29].

The case when ¢ = -+ = ¢, == ¢ is not interesting. If ) is the corre-
sponding polynomial, we can use a coordinate chanée 2z — Q — z to identify
W with {zy = 2"} C O(n) & O(n) GBI O(2). But this is just (1) ® 0(1)/Zn,
so it corresponds to the flat orbifold metric on R*/Z,,.

If (M*,g) is an ALE space with finite fundamental group T at infinity,

let M be the one-point compactification of M, M is then an orbifold with a

single singular point at infinity. The ALE condition allows us to extend gtoan

orbifold metric g on M after a conformal change. Since the sclf-dual condition
is conformally invariant, if (M*, g) is also hyperkahler, (M,3) is then a self-
dual orbifold. The twistor space of (M, 7) is then a compactification of the
twistor space Z(M) of (M, g).

For Gibbons-Hawking orbifolds, the blown-up twistor spaces are easy to

describe. Consider the following variety:

Vo = P(n,n,z,:a){x,y € O(n),z 6 O(2),w € Olzy = (z— wle) e (z— w2Qn)},
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where (x,, z,w) have weights (n,n,2,1). The open subset of V, where w # 0

is exactly the space

W = {2,y € O(n),z € O2)|ey = (2 — Q1) --- (2 ~ Qn)}
discussed above; at infinity where w = 0, we have a quadric:

Q = Puazniz,y € O(n),z € OQ2),w € Oley = 2", w = 0}
= P(n,n,Z){$7y € O(n)a z € O(?)]my = Zn}

~ (P(O(1) ® O(1))/Z, = (CP, x CPy)/Z.,,

where the first factor is from the fiber, and the second from the base. Using
the trick in Section 5.1.1, it is easy to see that near Q, v, ris a global quotient
by Z,,, and @ is covered by a quadric with normal bundle O(1, -1). So after
resolving the singularities suitably, we get the blown-up twistor space of the
Gibbons-Hawking orbifold, we can blow down the second factor in the quadric
to get the twistor space. It can be constructed from a weighted projective
variety by small resolutions [4]. .

When n = 2, we can use the i&entiﬁcation CP3(2,2,2,1) = CP3 to see
that
Va 2 P{z,y,2 € O2),t € Olay = (2 — tQ1)(z — 1Qy)},
after the coordinate change 2’ = z — (@1 + @), @) = —Q% = 2(Q2 — Q1)
can be identified with

P{z,y,z € O(2),t € Olzy = 2* — t?a?}

which is used by LeBrun and Singer in [44]. Under this identification, @ is a

quadric with normal bundle O(2, —2).



5.3 Explicit Degeneration: n =2 Case

Consider the following variety:
Z =P{ey = 3(P + €Py)- (P +ePy)}

in P(O(1,1)90(1,1)@0) xC — CP, x CPy, where 2,y € O(1,1) ,t € O, e €
C are variables, P, Py, P, are fixed sections O(1,1). Without loss of generality,

we can assume that Py = —P,. We have a natural projection Il : Z — C, let

£, =11"(e).

The open subset {t # 0} in Z can be identified with

{ay = (P +eP)(P ~ ¢P)} C (O(1,1)  O(1,1)) x C,

it contains all the singular points of Z:
{:r::ny-{—ePl=P—6P1=0}={:ny:P:eP1=O}.

When € # 0, £ has a conjugate pair of singular points at P = P, = 0; when
¢ = 0, the singular set becomes {P = 0}. To éimultan‘eously resolve the
singularity, we blow up Z along the rational curve {# =y = P = ¢ = 0} in
(O(1,1) ® 0(1,1)) x C. In suitable local coordinates, the singularity has the
following form: |

zy = (2 + w){z — w),

it is independent of ¢, so they can be simultaneously resolved, and since they
appear in conjugate pairs with respect to the natural real structure on 2 , we

‘make suitable choices as in [41] to guarantee that the real structure lifts to a
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real structure on the resolved space. Similar to the discussion in Section 5.2, we
also notice that we can simultaneously blow down {z =t = 0} and {y = ¢ = 0}
in Z to get rational curves CP; with normal buﬁdle O(1,1). Denote the space
we get after the above two opera.tiéns by Z. |
The projection 11 : Z — C gives a projection 7 : Z — C , let Z, = ().
By construction and Section 5.2, for each real € # 0, Z, is the twistbr space of

somerself—dua.l metric on 2CP;. We will now examine 7.

First notice that Zo = B U Zo, where E is the exceptional set of the
blow up and %0 is the strict transform of H;I(O) = {zy = P? ¢ = 0}. Since
P,P, e T(CPyxCP O(1,1)), z,y € O(1,1), E = P{z§ = (z+€P,)(2—EP,)} C
PO2)® O2)a 0(2) @ O), where %,y,2 € O(2), € € O are variables, P, is

the restiriction of P, to the rational curve {P =0} C CPy x CPy, which can

be identified with a section of (2). So from Section 5.2, E is the blown—up-

twistor space of Eguchi-Hanson orbifold.

Secondly, @ := EN .;2’0 = P{;ng: z%,&€ = 0} is a quadric CP; x CPy,
where the first factor is in the fiber of P(O(2) @ 0(2).65 O(2) & O), and the
second factor is the base. Again from Section 5.2, we have vg g = O(2,—-2),
since ) 18 the blown-up si.ngula.r twistor fiber in .

Thirdly, %0 can be identified with the strict transform of P{zy = t2P?}
when we blow up X = P(O(1,1) & O(1,1) @ O) along the rational curve
C =P{z =y =P =0,t+#0}, we denote the blow-up of X by X, and the

exceptional set by Y. Now

vex = (0(1,1) @ O(1,1)) |o ®(T(CPy x CPy) |¢ /TC = O2) B O2) B O(2),
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so the exceptional set ¥ = P(O(2) ® O(2) @ O(2)) = CPy x CPy), and vy, 3 &
O(—1,2). Since we have the following commutative diagram of embeddings:

Q — Y

JE

Zy — X

“we know that T %0 lo /TQ — (TX ly /TY} |g is injective bundle homomor-

phism of these two line bundles, hence v 0d =W, tlo 2 0(-2,2). Hence 20
is also the blown—ﬁp twistor space of Eguchi-Hanson orbifold.

So Zy is the singular space with normal crossing singularity defined by
LeBrun-Singer [44], it is then straightforward to check that 7 : Z — C is a
standard deformation of Zo. Since when ¢ is real and € — 0, @ — €@y — €
and Q — ey — @, so the above shows explicitly, in the picture of Donaldson-

Friedman-LeBrun-Singer, the degeneration of the self-dual Poon-LeBrun met-

‘rics on 2CP; to two Eguchi-Hanson metrics when the two points used in the

hyperbolic ansatz approach a common point in a suitable way.

5.4 Explicit Degeneration: n > 2 Case

We now study the general case of n > 2. It is similar to the discussion of
Section 5.3.

Consider the variety:
Z =Pley =13(P - P) - (P - &P,)},

where ¢ € O(n —1,1), vy € O(l,n — 1) and t € O,¢ € C are variables,



P P, P, are fixed real sections of O(1,1) over CP; x CP;. There is a
natural projection: II : Z — C by mapping (z,y,1,¢) to €, let Z, = I1=1(¢).

The open subset of Z where ¢ # 0 can be identified with
{ey = (P - &PR).--(P - 2P)} C (O(n - 1,1)® O(1,n — 1)) x C.
It contains all the singulai points of Z, which form the following sets:
ir={z=y= P - &P, =P — P, =0}

For € # 0, Z, has coﬁjuga’ce pairs of singular points at the places where P —
€?P; = P—¢*P, = 0; when ¢ = 0, the whole rational line {P = 0} € CP; xCP,
is the singular set of Z,. To simultaneously resolve the singularity, we blow
up Z along the rational curve {z =y = P = ¢ = 0}in (O(n—1,1)® C’)(l,.l -
n) & O) x C with weights (n,n,2,1) for (z,9, P, e).l We denote the blow-up
space of Z by £, we then have an induced projection: II: £ — £ — C. Let
Z = 1I7(¢). We then have

A

Zo =TI7Y0) = Z, U E,

where Zo is the strict transfofm of Zo under the weighted blow-up, E is the

J

exceptional set in Z. VNOW
EZPana{2y = (z = &P)-- (2 - EP,)},

where Z,5 € O(n), 2 € O(2) are variables, Py,--+, P, are the restrictions of
Py, -+ P, to the rational curve P = ) in CP; x CP,. Hence E is the biown—up

twistor space of a Gibbons-Hawking orbifold along the singular twistor line by
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Section 5.2. Moreover,
Q = ZonE

= Pm,n,2,1){Z7 = (# — 32151) ooz —&PB,), e =0}

Iie

P(n,n,?){a_:g = zﬂ}

= P(O(1)® O(1)) =2 CPy x CPy,

where the first factor is from the fiber, the second from the base.

One can identify %0 with ther strict transform of P{zy = ¢*P™} when
we blow up X = P(O{n — 1,1) @ O(1,n — 1) @ O) along the rational curve
C =Pz =y =P =0,t# 0} with weights (n,n,2) for (z,y,P). From
Section 5.2, L%g is the blow-up twistor space of the LeBrun orbifold along the
singular twistor line. |

Now the singular set of Z , in some suitable local coordinates, can be put
into the form:

vy = (2 — filz,w)) -+ (2 — falz,w)),

it is independent of ¢, so we can simultaneously resolve the singularity, notice
that on each Z., the singular points appear in pairs, we use the techniques in
[41] to make suitable resolution such that _t.he real structure on O lifts to the
resolved space Z. Again the surfaces z = ¢ = 0 and y = ¢ = 0 have normal
bugdles O(—1,1—n) and O(1 —n, ~1) respectively in Z.. They can be blown
down to rational curves with normal bundle O(1 —n) & O(1 — n), denéte the
space we get by Z.

There is an induced projection 7 : Z —» C, then Zy = 771(0) is the

singular space with V' —normal crossing singularity defined by LeBrun-Singer
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[44]. One can easily see that 7 : Z o Cisa standa,ra V-deformation of Z.
Since when € — 0, P - €P,---,P—€P, also go to P, so the above gives us
the explicit degeneration of self-dual LeBrun metrics on nCP; in the picture of
Donaldson-Friedman-LeBrun-Singer when the points in the hyperbolic ansatz
approach a common point in a suitable way. This was conjectured by LeBrun
[41). |

Notice that there is a Z;-symmetry on Z by mapping € to —e, when n

is even, the Z,-action on Zp is trivial, and the quotient by Z, also gives us

a standard deformation, when n = 2, this is what we discussed in the last

sectlon.




Chapter 6

Examples

- We will give some examples of self-dual orbifolds with H?(Z,79") = 0.

6.1 LeBrun Orbifolds

Recall that we can get the twistor space Z of a LeBrun orbifold from
Z=P{zeOn~1,1),y € O(1,n — 1),t € Olzy = t2P"}

by blowing down two surfaces ¢ = ¢ = 0 and y = ¢ = 0 to rational curves
Ly, Ly with normal bundles vy, = vy, 2 O(1 — n) & O(1 — n). Now from the

short exact sequence:
oV oV
0= 7700, = 77 ~ v, @ vy, =0
we have a long exact sequence

0 — H(rgup,) = H(r3") = H(vy, & v1,)
- HI(TE'TE,1UL2) - Hl(TZD'V) - HI(VLl @ VLz)

= Hrgu,) = HY(15) = B vy, © vi,) 2 0.
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In particular, H P, — H 2(79YY is surjective. By Leray spectral se-
quence for the blowing down map Z — Z, we have HY (9 o) 2 H “'('rgv) So
to show that H*(Z,79") 0, it suffices to show that H iy =0.

We now apply Leray spectral sequence for the natural projection p : Z =
F"{&:y = {*P"} — CP, x CP,. At points where P 79 0, the fibers are smooth
qﬁadrics (= CP,) and 7%¥ce; & O(2) ® O @ O. Hence HHCPy,73Y) = 0
for ¢ > 0. At points where P = 0, the fibers have normal crossing singulari-
ties. They are singular quadrics isomorphic to CP; vV CP, and TZQ,V|CP1\,CP1 =
8p,vep, ® O, using the normalization of CP; V CP; as in [15], it is easy
to show that H'(CPy V CPy,78p,vcp,) = H(CPy V CP,0) = 0, hence
H(CP, V CPy, 1Y lepyvep,) = 0 for § = 1,2, Hence ph(rd¥) = 0 for i = 1,2,

'S(.) Hz(ﬁ,rgv) = H*(CPy x CPy,p,r3"). From the following exact sequence
ov

. *
0—)V—+TZ —+p TCP;xCiPl_,C —)0

where V is the sheaf of holomorphic tangents along the fibers, and C is the
curve in CPy x CPy defined by P = 0. Since the above argument can be used

to prove that pi} = 0 for 7 = 1,2, we have the following exact sequence
0= pV — p7y — 7ep,xcp,,c — 0.
We can use the following exact sequence
0 — Tcpyxepy 0 — Tepyxepy — Vo= O2)) — 0
to see that H*(CPy x CPy,7cp, xep, c) = 0, hence

H*(CPy x CPy,p,V) — H*(CP; x CPlsp*Tgv)
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is surjective. Now on P{zy = at?}, when a # 0, ma yay,Zat 2 -I—yat,Qatg%-i—
span all the holomorphic vector fields; when a = 0, z-= 3.’:: —Y ay Y2 35 T at , & 3‘1 +
y% span all the holomorphic vector fields. so we have the following exact se-

quence

8 o8 .8 8.8 9
0%0{.:8:9}- a—tha +y52Pt5- a)a

— pV— Og{ma—m + y—a—y} — 0.

From this we get H*(p.V) = 0, hence from the above results, we have the

following

Proposition. If Z is the twistor space 'of a LeBrun orbifold, then we have
HY(Z,79") =0.

6.2 Weitzenbock Formula

The deformation of self-dual conformal classes near [g] on a closed oriented

4-manifold M can be described by the following complex:
L) S (ST M) B (S2A2),

where DW_ is the linearization of W_. Tt is an elliptic complex with index
3(15e(M) — r(M)), if we denote the cohomology of this complex by H S(M),
then there is an analytic map ¢ : U — H? with Tppp = 0, where U in a
neighborhood of 0 € H}, such that ¢~'(0) is isomorphic to a neighborhood of

[9] in the moduli space of self-dual conformal structures [19], [36]. Furthermore,




Penrose transform gives us isomorphisms H*(Z,7Z) = H ; ®@Cflori=0,1,2
and H3(Z, TZ)‘ = (0, where Z is the twistor space of (M, [g]).

All theser can be generalized to ofbifolds. The reason is that most of the
arguments used to get the above results consist of two parts. The first is of
of global nature, which uses results on Banach spaces, having nothing to do
with the orbifold structure. the second is of local nature, near orbifold points,

we can use the uniformization system and consider invariant objects.

V-bundles over orbifolds were defined in (7], we can then consider elliptic
operators on the spaces of sections of V-bundles. They are Fredholm operators
and the index theorems are given by Kawasaki [32]. By abuse of notation, we
use the same notations to denote natural V-bundles over orbifolds, the corre-
sponding differential operators and cohomologies. Then the moduli space of
orbifolds self-dual conformal structures can be locally be described bfy i
as above. The Penrose transform caﬁ also be performed on éelf—dual orbifolds.
This is because Dolbeault theorem holds for complex orbifolds. Following [36],

we start with the Dolbeault complex
77 3T 0 T2) & (@2 e 17) 3 MO @ TZ)

use the exact sequence 0 — T, 7Z — N — 0, where T} is the bundle of vertical
tangent vectors, and Salamon’s cohomology lemma [56] once, we get Floer’s
exact sequences for orbifolds [21], use Salamon’s lemma again, H*(Z,TZ) is

identified with the cohomology of some complex:

I(TM) 2 T(S2T"M) 23 T(52A2).
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The identification of Dy, Dy can be done using local uniformization systems.
By [21], they are given by linearizations of the group action and anti-self-dual

Weyl tensor. To surh up, we have the following

Proposition. Let (M,q) be a self-dual orbifolds, Z its twistor space, TZ the

tangent V-bundle of 7, then
H'(z,7§") = H'(%,TZ) = H,
fori=0,1,2 and H3(Z,7%") = 0.

If (DW_)* is the formal adjoint of DW5, the elliptic operator theory over
orbifolds can be used to see that H? ~ K ér(DW_)*. Using spinor formalism,
DW_ : SET*M — SZA? is given by the following compositions [21]):

DW. SV, 0SV. V.oV, @ V. B V. @ V. @ SV, 1 StV
where Vi are spinor bundles, D; is the Dirac operator on fhe i-th factor and
71 1s symmetrization map. Here we don’t require M to be a spin manifold,
even though V.., V_ may not be defined globally, the tensor product we need is
defined globally nevertheless, -and we use uniformiza,tion.systems near orbifold
points. It is easy to see that the formal adjoint of DW_ is given by the

composition of the following maps:
DOW): SV B v eV, esV. B v, ev, @ V. 3 SV, @ SV,

where 7, is the symmetrization map, hence

(DW_) : (.DW_)* = TlDleﬁgDID;.




l

By direct computations, : 1
D} (v, @ v @ 5°) |

|

= (V) ® (emp) ® % + 1. ® (Vi) @ 5™ + v, ® (ejus) @ (V's™),

Dy D3 (v @ (ejvy) ® )
= (ejVjV"va) ® (es) ® % 4 (6.jv£’b"a) & Vj(e.,-'vb) ® 5%
+(ejViva) R (evp) ® Vg 4 (ejVjva) ® (eiV"vb) ® s

+(ejva) ® V(e Vi) ® 5™ + (e;0,) @ (,Vivy) @ Vs

+(e,-vaa) ® (é,;vb) ® (Vis“b) + (e;v,) ® Vj('e,;vg,) ® (Vis"’b)

+(e;v,) @ (eivp) ® (vafs“b)
= (6;V'.) ® (e:Vi0) ® 5™ + (¢;Viv,) ® (&, Vivy) ® ¥

+(e;V70,) ® (e;18) ® Vs + (e03) ® (e;Viv,) @ Vs

+(ejv2) @ (e:Vivp) ® VIs™ 4 (;Vi0p) ® (e5v,) @ Vs

+(eva) ® (6;VVI0) ® 8™ 4 e;(VIVY — B Yoy, @ (e0,) ® 5%
+:‘12—(e,-va ® €1y + €50 ® €iv,) ® V' VI

—I—%ewa ® 6j'l}b:® nggv_s“b,

where Ry_, Ry are the curvatures of the cor_responding'bundles,,for sim-
plicity of notations, we ﬁrill 6niy use RY. Tt is easy to see that the only terms

which is possibly not symmetric are:

= 1 .
(e,‘-'va) ® ejRg_Ub & P 4 5(6,‘?)@) & (63"01)) & Rg'zv_sab

= w(I @ R v, ® v) ® s + w_i(I ® B (v, ® vs) ® 5%

1 w1 S
+504i(va @ 0) @ BHs™ + cwi(v, ® v) ® R™'s™,
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where R = B2 + B*, etec. wii(1 @ BT (v, ® vp) @ 5% lies in $?V, ® S?V_
because by Schur’s lemma, an invariant map S*V, @ (VL@ V.) - V, @ V,
has image in S*Vy; wyi(v. ® vy) ® R**s% is zero since any invariant map

|
i
|
|
|
S, @SW_V, @V, is Zero; w_i(I®R ) (v, Q) @ s = %w_.;(lr@w“.;)(va ®
v5) ®s%b = 0 since any invaraint map 5*V. — V, @V, ® S2V_ is zero; similarly,

|

wi(v, @ vp) @ B7%s% = 2w (v, ® 1) @ w5 = 0. Hence m D3 D} = D3D;.

12

A similar computaion gives:

DD} — D3 DY (v, ® vy ® s%)
= R0, @ v, ® ejup @ s + e, @ ¢; Rvy @ 5%
+ wii(ve ® ) ® BYs® + w_i(v, ® 1) ® R's™
= wpBT (v, ®v) @ +w_ R (v, ® vb_) ® s

+ wiilve @v) @ RTs% + w_s(v, @ vp) ® Rs%

= 0,

by using Schut’s lemma as above. IHence D;D; = DiDj;. Taking formal

adjoint, we get w1 Dy Dy = my D D;. Hence
(DW_)(DW_)* = WIDngD;D; = ']TlDngD;‘D;.
The same type of computation gives:

(D1Dy — Do DY) (ve @ up ® s“b)

= Ry, @ (ejup) ® s 4 (e;v,) ® ejRijub ® s + (eivq) ® (e51) ® R¥ g%

= wii(BY QD) {v, ® 1) ® s® + w_i(I ® R ){v, ® v3) ® ¥

+ w*,-(R_" R v, ® vp) ® PLNE wyi{l ® R+i)(va @ vp) ® 5%




+ wii(ve ® v) @ RMs® + w_i(v, @ vy) @ R7's

= wyilve ®vy) @ R — i(
12
$(vs ® up ® 5°°) — -—-alz(ub ® v, @ ),

U Ve @ Sab)

where ¢ depends linearly on traceless Ricci curvature and oy, is the linear map

which switch the the fisrt and second factors of the tensor product. Now since
DiD} = DoD; = V'V 4w R = V'V + 2,
we have

(DW_)(DW_)* = ’JT]_DngD;_D;
= ’FT]_D]_(D;D* ¢ -|- 0'12)D2
8 ' E:
. = (V*V+ 5)2 — 7T1D1¢)D§ + ?T'}']‘_"é‘
" 13s 75

= (V'V) + 5 (V') + 5 = mDiéD;

*
0'12D2D2

So when (M, g) is Einstein, we have the following:

13s 73%

(DW_YDW_)* = (V*V): + 1 —(V*V) + TR

Prosposition. Let (M4,g) be an oriented compact Riemannien 4-manifold

or orbifold. If (M, g) is self-dual Finstein with positive scalar curvature, we
have Ker(DW_)* = 0 hence H¥(Z,TZ) = 0; if (M, g) is self-dual Ricci-flat,
any element of Kér(DWH)* is parallel. If (M,qg) is self-dual Einstein with

negative scalar curvture but —3 and —1 are not eigenvalues of V*V, we also

2

have Ker(DW_)* =0, hence H*(Z,TZ) = 0.
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To get examp.les, notice that self-dual Einstein manifolds/orbifolds are
quaternionic Kéihlér with reversed orientaﬁion, hence can be constructed by
éua_ternionic Kahler reduction [25]; self—auai Ricci-flat manifolds Jorbifolds are
hyperkiihler.with reversed orientation, they can be constructed by Gibbons-

Hawking ansatz.

6.3 Quaternionic Kahler Reduction

A manifold (M, g) of dimension 4n (n > 1) is quaternionic Kahler if its
holonomy group is contained in S PnSPl C S0O(4n). To describe the quater-
nionic Kahler reduction, it is better to use the following equivalent picture: let
G C Hom(TX,TX) be a 3-dimensional subbundle such that near each point

we have local smooth sections J, Jy, J3 such that
J; o Jj = —5,;de + eijk-]k

and g(J;V, Jt-W) = g(V,W). Using the metric, we get an iéometric embedding
G C A*T*M by J — wy, where wi(V,W) = g(JV,W). Let Q = T3, wy, Awy,,
then {2 is globally defined and Q* = (2rn+1)!dvel,. Then (M, g) is quaternionic
Kéhler if and only if V§2 = 0, where V is the Levi-Civita connection. We call
{2 the fundamental 4-f6rm of (M,g). It becomes self-dual if we reverse the

orientation.

Regard the Riemann curvature tensor as a symmetric endomorphism

R : A — A if (M,g) is quaternionic Kihler, we have R|g = Mdg for

some constant A. So an oriented Riemannian 4-manifolds is defined to be




quaternionic Kahler if it satisfies the above property. In this case § = A,

Rlp,. = (51d+ W, ® Z), so (M*,g) is quaternionic Kahler if and only if it is

anti-self-dual Einstein.

Let (M,g) be a quaternionic Kahler manifold of dimension > 4, then
VY = 0 implies d = 0. If a Lie group H acts on M by isometries and
preserves {1, Galicki-Lawson [25] gave an analogue of Marsden-Weinstein re-
duction. Let H denote the Lie algebra of H, the group action induces a
homomorphism H — Vect(M), where Vect(M) is the space of vector fields
on M. Denote the image of V € H by V. When the scalar curvature of the

quaternionic Kahler manifold is nonzero, there is a moment map
f:H—=T(G) cA?

defined uniquely by Vv = Z;00pw) @ w;. fis H-equivariant and can be
thought of as a section of H* ® § C T(Q*(H*)). Let Zy ={z¢ X|f(z) = 0}.
It I acts freely on Zg, then Zyr/H equipped with the submersed metric (the
one which makes Zyg — Zg/H a Riemannian submersion) is a quat‘_ern'ionic

Kéhler manifold. H H = S* and H acts locally freely on Zg (i.e. all the

isotropy groups are finite), Zy/H is then a quaternionic Kahler orbifold.

Let (go, ¢1,42) be the linear coordinates on the quaternionic vector space
H3 with multiplications from the right. The quaternionic projective space
HP, = (H*—{0}/H* has the canonical symmetric space metric which is quater-

nionic Kéhler and Sps-invariant. Notice that all isometries of HP, preserve

Q. Let ng,n{,ny be three natural numbers with (ng,ny,n,) = 1, consider the
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following action of S! on HP; defined by

eit . (QO:QI: Q2) — (enuitqo, enzitql, enzitqz).

Then the zero set of the moment map is

Z = {(90,91,92) € HP2|nodoiqo -+ nidrigy + nageige = 0}

Proposition. We have the following identification of orbifolds:

Z/8t = CPyytna,

nz-tnpnotng - ) |

Proof. Let V1 = ur + vij, then the equation is equivalent to
[ol® + [ua|* + Jua]? = [wo]® + Joal* + |vaf?,

Uo-?.—?-() + 'U.]_'UH + 'U.Q'U_g = 0.

The action of H* on these homogeneous coordinates are give by 1
(u, vr) = (wz —~ v, vy + vz), ' ' :
Whefe r+yy e H*. Hence werhave

Z 2 {(u,v) € € x Clu| = |v] = 1,u L v}/SU(2).

This can be further identified with $° by

(% 'U) = (Zo, 2‘1,22) = (ulvz — UgVy, Uzlp, UgUz, Uty — uﬂ»’o)»




\

It is direct to see this map has image in $° and it induces a diffeomorphism

Z 22 55, Now the S'-action on Z is identified with the following action on §°:

¢zt . (ZG; 21122) — (ei(nl-i-nz)tzo, ee(ng-}-ng)tzh6a(n1+n2)tz2)-

Hence Z/S' 2 CP, 11, nytmomotns - Q.E.D.

- Notice that the action of S* on Z is locally free, so we get many examples
of weighted projective spaces with self-dual Einstein metrics of positive scalar
curvature. When (n; + ny,ns 4+ ny) = (ng + no, Mo + n1) = {(no + ny,ny +
72)s CPou 4y ms-momosms has only isolated orbifold points admitting self-dual
Einstein metrics. In particular, we can take (ng,m1,n3) = (1,n,n + 1) for

n > 1, o1 (no,n1,n2) = (2,2n +1,2n + 3) for n > 1, etec.

6.4 Gibbons-Hawking Orbifolds

Gibbons-Hawking ansatz can be used to construct examples of hyperkihler
manifolds or orbifolds. Let PR q}c be k distinctive points in R® with Eu-
clidean metric ds?, and ny,--- , g positive integers with n = n, + -+ + n,.

Define
=3 E

on R®. If * is the Hodge star operator on R3, then the integral of =+ dV on

‘h'

the boundaries of small balls centered at ¢; is n ;, since such rspheres generates

Hy(R® — {;},7), we have [ * dV] € H*(R® — {¢;},Z) — H2(R® — {g;},R).

By Chern-Weil theory, there is a principal Si-bundle 7y : My — R3 — {g;}
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with connection 1-form w € (M) such that
7g(*dV) = dw.

The connection form w is unique up to gauge transformations, since R® — {¢;}

is simply connected. We define the following metric on Mp:

1
g= v Ow + V(nkds?).

It is a Ricci-flat Kiahler metric and anti-self-dual with respect to the c;rientation
defined by the complex structure. We construct a space M by adding a point
p; for each ¢;, then M is an orbifold with singular points p; of type Z,;(1,1)
if n; > 1. Using a similar argument as in [41], we can see fhe métric extends

to an orbifold metric on M , it is an ALE hyperkahler orbifold metric, so if

M is the one-point compactification of M by addding a point oo at infinity,

the M is an orbifold with an extra orbifold point co of type Z,(1,—1), and
the conformal class of the metric g on M — 0 extends to a self-dual conformal

structure on M with respect to the reversed orientation.

Proposition. Let Z be the twistor space of M with the above conformal struc-

ture and TZ be its orbifold tangent bundle, then HXZ,TZ) = 0. Proof. By

Penrose transform, we need to prove Ker(DW_)* = 0, by conformal invari-
ance, the elements of KerD(W) correspond to the solutions of (DW_)*a =0

with the following decay condition:

o] = 0(™), [Va] = 0(r), [V*Va| = 0(~"®).
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Now the Weitzenbdck formula for hyperkihler metric is (DW.)(DW_)* =
(V*V)?, hence |

/M |V*Veal|* = /M((DW—)(Dw_)*a,a) 0.

This implies |V*Val? = 0, S0

f Val? = / (V*Va,a) = 0.
M M
Hence Va = 0, s0 a is‘pa,ra,llel, but the decay condition force it to vanish. O

If we denote by X(n) the self-dual LeBrun orbifold constructed by com-
pactify the total space of O(~n) — CP,, and by Y(n;nq,---,ny) the self-dual
orbifold constructed above. For each n; > 1, we can remove the corresponding
singnlar boint by gluing with Y (ns;n,---,n;4,), repeat this arbitrarily until
we get only Y{(m;1,---,1). This tree of orbifolds has compatible singularities
: indicatéd by the-tree, and at the root, Y(n;ny,--+,n;) has a singular point
compatible with that of X(n). Since the obstruction groups vanish for all of
these orbifolds, the multiple connected sum admits a family of self-dual met-

rics. It is easy to see the multiple connected sum manifold is nCP3, so this

shows that the degeneration of self-dual metrics on it can be very complicated.
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