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Abstract of the Dissertation

Fundamental Groups of Riemannian

manifolds, Sigma Constant

by

|
and Scalar Curvature
Gabjin Yun

Doctor of Philosophy
in ‘
Mathematics

State University of New York at Stony Brook

1995

This thesis is divided into two parts. In the first part, we look
into some propeties of the fundamental groups of Riemannian man-
ifolds satisfying some geometric conditions. We show the funda-
mental groups for a class of compact Riemannian manifolds whose
volume 1is uniformly bounded from below, diameter is bounded
from above and the Ricci curvature is almost non-negative must

be almost abelian and in the low dimension case, the same prop-
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erty holds for a class of compact Riemannian manifolds with almost
non-negative sectional curvature without volume condition if we re-
strict the growth of fundamental group by its dimension. Key tools
are Gromov-Iausdorff distance, equivariant Hausdorff approxima-
tion in the sense of Fukaya , splitting theorem and some geometric
and algebraic group theory related with finitely generated nilpotent
group.

In the second part, we prove the sigma constant of a compact
manifold surgered by a sphere embedded in it is greater than or
equal to that of given manifold if the sigma constant is nonpositive.
We use Gromov-Lawson technique and maximum principle as key

tools.
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Chapter 1

Introduction

One of the main topics in Riemannian geometry is to study the relation
of geometric features like curvature, diameter and volume with the topology
of manifolds. The simplest topological invariants of Riemannian manifolds
are homotopy and homology groups of them. Among other higher homotopy
groups, the first homotopy group, called the fundamental group, is well-known
and developed much more. The reason is the following. Let (M, g) be a
compact Riemannian manifold and (3,§) its universal Riemannian covering
with covering metric §. Then the fundamental group m1(M) of M acts on M
isometrically and the action is properly discontinuous and fixed point free if
we fix base points in M and M. In other words, we can consider m, (M) as a

subgroup of [ som(H }, the isometry group of M.

One of the important tools in studying the property of the fundamental
group of a Riemannian manifold is to measure how large it is, namely, the

growth of group. It is well-known that the growth of the fundamental group is

very much related with the growth of volume of geodesic balls in the universal




covering.

Let us recall the definition of the growth of a finitely generated discrete
group. Let I be a finitely generated discrete group with generators {~,..., v},
v € I'. Then every element of I' can be expressed as a word in {v,..., 7}

Now define the .growth function ® as

&(r) == #U(r)

where #U(r) is the number of distinct words in I" of length < r

T is said to be of polynomial growth of order k if there exists a positive constant

C such that

| #U(r) < Cr*

It is well-known ([23]) that the property of polynomial growth is independent
of the generating set {+;}. Obviously a free abelian group has polynomial
growth. More generally, it is known that a finitely generated nilpotent group
has polynomial growth ([16], [30]). A group T is called nilpotent if denoting
[, 7] = T and [I',T®] = I+ inductively, then we have I'™) = {1} for

some m, where 1 is the identity element.

M. Gromov proved the following remarkable result:

Theorem 1.0.1 (M. Gromov [16]) A finitely generated discrete group has

polynomial growth iff it is almost nilpotent, i.c., it contains a nilpotent subgroup

of finite indez.




Example 1 (Heisenberg Group) ILet N be the Heisenberg group and T’

the integer lattice :

N=< 0 1 :CL‘,y,ZEH?*,F:'{ 0 1 b :a,b,C€Z>.

¥

0 01 001

(A / ) A / )

Then the quotient space M = N/I' is orientable compact 3-dimensional

manifold and the fundamental group is T', ie., m(M) = T. It is easy to see

that .
f( p
1 0 ¢
[F,F]:Z: 0 1 0 :CEZ}.
0 01
\K ) r
and so

I/[0,T]=2Z&Z and by(M)=2.

It is also known ([23]) that the growth is

growth(l') = 4 > 3 = dim(M)

)

There are several fundamental results for the fundamental groups of Rie-

mannian manifolds. We first state the Milnor’s theorem,




Theorem 1.0.2 (J. Milnor [23]) Let(M,g) be a complete Riemannian man-
ifold of non-negative Ricei curvature. Then any finilely generated subgroup of

71 (M) has polynomial growth of order < dim(M).

In fact, he proved this theorem by using the relation of the growth of the
fundamental group of a manifold with the growth of the volume of geodesic
balls in the universal cover. J. Cheeger and D. Gromoll improved Milnor’s re-
sult by using their splitting theorem which is one of the fundamental structural

theorem in Riemannian geometry.

Theorem 1.0.3 (J. Cheeger and D. Gromoll [10]) If (M,g) is e com-
pact Riemannian manifold of non-negative Ricci curvature, then the funda-
mental group w(M) is almost abelian,i.e., it contains an abelian subgroup of

finite indez.

One of the main problems in Riemannian geometry is to extend the prop-
erties on manifolds of non-negative curvature to manifolds of almost non-

negative curvature. Recently, G. Wei (]29]) proved that the fundamental group

71 (M) of a Riemannian manifold M with almost non-negative Ricci curvature,
diameter diam(M} < D and volume vol(M) > v is of polynomial growth of
order < n.

Recall (Theorem 1.0.1) that a finitely generated group is of polynomial
growth if and only if it is almost nilpotent. So, together with this, =y (M) is

almost nilpotent in the Wei’s theorem. In this thesis, we proved the following

theorem which improved the Wei's theorem.




Theorem 1.0.4 Given n and D,v > 0, there exists a positive number ¢ =

é(n, D,v) > 0 such that if a closed n-manifold M salisfies
Ric(M) > —¢, diam(M) < D, vol(M) > v
then m (M) is almost abelian.

In chapter 4, we consider fundamental groups of manifolds of almost non-
negative curvature. Namely, we will show the same property of the fundamen-
tal groups of manifolds of almost non-negative sectional curvature without
volume condition. In [13] , K. Fukaya and T. Yamaguchi have proved that
there exists a positive small number ¢, depending only on the dimension, such
that the fundamental groups of manifolds satisfying Kprdiam(M)? > —e must
be almost nilpotent. If we restrict the growth of the fundamental group by

dimension, we get the same result as Theorem 1.0.4 for the low dimension.

Theorem 1.0.5 Letn < 4. There exists a positive number € = ¢(n) such that

if M is a closed Riemannian n-manifold satisfying

(1) Kuydiam(M)? > —¢

(2) m (M) has polynomial growth of degree < n,
then w1 (M) is almost abelian.

The proof of this theorem depends on the fibration theorem and classification

theorem of almost non-negative curvature manifolds of dimension 3 due to K.

Fukaya and T. Yamaguchi ([13], [33], [34]).




In chapter 5, we will discuss the scalar curvature and relation of it with
topology of manifolds focused on the sigma constant. For the purpose, we
consider an invariant o(M) of a smooth closed manifold M, which is called the
sigma constant of M, defined as the supremum of u(M,C) over all conformal

classes C of Riemannian metrics on M,
o(M) = sup u(M,C)
[

where u(M,C) is the Yamabe constant defined as

d
u(M, C) = int 0% (L.1)

9EE (fag dvg) ™

where s, is the scalar curvature of ¢ and n = dim(M).

0. Kobayashi has proved the following theorem.

Theorem 1.0.6 (O. Kobayashi [20])  (a) If My and M; are compact man-

ifolds of the same dimension n > 3, then

¢

—(Jo (MO + o (M2)["?)*™ if o(My) < 0 and o(Mz) <0
J(M]#Mg) 2 3

min{o(My), (M)} otherwise

\

(b) If M is an S™ ! bundle over S* with n > 3, then
o(M) = o(S™) = n(n — )wol(§™)*/",

Note that $®! bundle over S can be obtained from surgery on 0-sphere

in S". Gromov-Lawson and Schoen-Yau have proved ([17], [27]) that if M

is a compact manifold which carries a Riemannian metric of positive scalar




curvature, then any manifold which can be obtained from M by performing
surgeries in codim > 3 carries a metric of positive scalar curvature.

So, we can consider the same property as Kobayashi’s result for the surg- |
eries on p-sphere, p < n — 3 and we will show the following similar result for

the manifolds with non-positive sigma constants.

Theorem 1.0.7 Let M be a compact smooth manifold and assume o(M) < 0.
Let M, be a manifold obtained from M by surgery on a homotopically trivial
SP forp<n—3. Then o(M,) > o(M).

The one of the crucial steps is to show that for given metric g, we can
control the volume of surgered part, namely, we have to verify we can make

the volume of surgered part sufficiently small so that the total volume of M,

Now let M and N be two smooth closed manifolds of the same dimension
n and S?,p < n be a homotopically trivial p-sphere embedded in M and N,
respectively. Take off tubular neighborhood D" x 5 in M and N and then
glue them along their boundary. We denote the resulting manifold by M * N

Then we can show the following which is similar to the above theorem.

Theorem 1.0.8 If both sigma constants of M and N are nonpositive and 57

|
is almost equal to the volume of (M, g).
|
|
\
|
s homotopically trivial, then l

o(M * N) > min{oc(M),c(N)}




Chapter 2.

Gromov-Hausdorff Distance and Related

Results

In this chapter, we state some notions and related results for the conver-
gence of metric spaces. Gromov has introduced a notion of Hausdorff distance
on the set of isometry class of all metric spaces and some equivalent defini-
tions are known. This concept makes it possible to produce several important

results in Riemannian geometry.

Definition. A (not necessarily continuous) map f : X — Y between metric

spaces is called an e - Hausdor{f approzimation if

(1) [d(f(z), f(y)) —d(z,y)] <eforall z,y € X

(2) The e-neighborhood of f(X) covers Y.

Then the Hausdorff distance dg(X,Y) is defined as the infimum of € such that

there exist e-Hausdorfl approximations from X to ¥ and from Y to X.




The IHausdorff distance actually defines a distance on the set of all compact
metric spaces. For unbounded spaces, this metric is not useful, but the no-
tion of pointed Hausdorff distance is effective. For pointed metric spaces
(X,p) and (Y,q), the pointed Hausdorff distance dp.ir((X,p),(Y,q)) is de-
fined as the infimum of ¢ such that there exist e-Hansdorfl approximations
FiBy(l)e,X) = By(1/e+¢,Y) and g: By(1/6,Y) — B,(1/e+ ¢, X) between

metric balls with f(p) = ¢ and ¢{q) = p.

The following theorem due to M. Gromov is the standard precompactness

theorem.

Theorem 2.0.9 (M. Gromov [15]) Let k be an arbitrary real number and
D > 0. Then

(1) The set of all closed n-dimensional Riemannian manifolds M with Riccipy >

k and diampy; < D is relatively compact with respect to the Hausdorff dis-

tance.

(2) The set of all pointed complete n-dimensional Riemannian manifolds (M, p)
with Riceiyr 2> k is relatively compact with respect to the pointed Haus-

dorff distance.

Example 2 (Continued) In the example 1, N is a nilpotent Lie group and
so M admits a left invariant Riemannian metric, In fact, with respect to the

standard coordinate z,y, z, the metric g = dz® + dy? + (dz — zdy)? is a left

invariant metric with curvature —1 < K, < 1. For every ¢ > 0, define the left




invariant metric g. on M by

( Yy ([

00 v | €N, =u? 40?4 u?,

w
/ \ )
where e 1s the identity element of N. Then the sectional curvature and diam-
eter of g, satisfy [K, | < 24¢*, diam(M) <2 and (M, g.) converges to a flat

torus T2 with respect to the Hausdorff distance. h

Next we define the concept of equivariant Hausdorff distance due to K.

Fukaya ([12]).

Definition. We say that a triple (X, T, p) belongs to M., if every metric ball

in X is relatively compact, p € X and if T' is a closed subgroup of I'som(X),

the group of isometries of X. For r > 0, we put

I(r) = {y €T [|d(y(p),p) <r}

For (X,T,p),(Y,A,q) € M., we say that a triple (f,,%) represents an ¢-

pointed equivariant Hausdorff approzimation from (X, T, p) to (Y, A, q) if

(1) f: By(1/e,X) — By(1/e + ¢,Y) is an e-Hausdorff approximation with
fp) =«




(2) ¢:T(1/e) > A and ¥ : A(1/€) — I satisfy the following:

(2.1) Ity € T(1/¢) and z,9(u)(z) € By(1/e, X), then
d(f(ve), o (1)(fx)) < e
(2.2) fue A(l/e) and z,9¥(p)(z) € Bp(l/e, X), then

d(f ($(p)(2)), p(fz)) <.

We remark that it is assumed neither that f is continuous nor that ¢, are

homomorphisms.

Now the pointed equivariant Hausdorft distance d,...m((X,T,p), (YA, q)) is
defined as the infimum of € such that there exist e-pointed equivariant Haus-

dorfl approximations from (X, T, p) to (Y, A, ¢) and from (Y, , A, ¢) to (X, T, p).

Example 3 Let v; be the isometry of R? defined by v;(z,y, 2) = Ri/(z,y), 2+
1/4?), where Ry denotes the rotation on the (z,y)—plane around the origin with
angle 0. Let 1'; be the group generated by ;. Then (R® T',0) converges to
(R?,S" x R,0). Note that the limit depends on the choice of reference points.
For instance, if we take p; with dist(0,p;) = ¢ as the reference points, then

(R?,T;,p:) converges to (R, R x Z,0). )

K. Fukaya and T. Yamaguchi proved the following theorems which play an

essential role in proving the Theorem 1.0.5 which is one of the main theorem.




Theorem 2.0.10 ([13], [33], [34]) Let (X;,Ty,p;) € M., and assume that
(Xi,pi) converges to (Y,q) with respect to the pointed Hausdorff distance.
Then there exists a closed subgroup A of Isom(Y) such that for a subsequence
(X;,Ti,pi) converges to (Y, A, q) with respect to the pointed equivariant Haus-
dorf] distance.

Theorem 2.0.11 ([13], [34]) Let (Xi, Ty, pi) converge to (Y, G, q) and G' «

normal subgroup of G, and suppose that
(1) G/G is discrete.
(2) Y/G is compact.

(8) X; is simply connected and the action of I'; is free and properly discontiu-

ous,

(4) There exists a positive number R, such that G' is generated by G'(R,).

Then G[G' is finitely represented and there exists a normal subgroup 1", of T

such that

(5) (Xi,Ti,p:i) converges to (Y, q) for a subsequence.

(6) T';/T is isomorphic to G/G' for sufficiently large 3.

(7) For every ¢ > 0,1} can be generated by TR, + €) for sufficiently large .
In the case when (' is the identity component of &, the group I' con-

structed above is called the collapsing part of ;. For example, in the conver-

gence (R%,T;,0) — (R*,R x Z,0} in Example 3, the group I/ generated by +

is the collapsing part.

12




Chapter 3.

Ricci Curvature and Fundamental Group

3.1 Preliminaries

We start with the Wei’s theorem. That is,

Theorem 3.1.1 (G. Wei [29]) Givenn and D,v > 0, there exists a positive

number € = €(n, D, v) such that if a closed n-manifold M satisfies
Ric(M) > —¢, dieam(M) < D, vol(M) > v
then w1 (M) has polynomial growth of order < n.

As we said in chapter 1, 7y { M) is almost nilpotent in the above theorem.

On the other hand, note that for any nilmanifold N™ which is not a torus,
m1(NN) has polynomial growth of order > n (See [23], [30]). This shows that
the conclusion of Wei’s theorem may be extended to a stronger result and this
thesis gives an affirmative answer.

To extend the well-known results for manifolds of almost non-negative

sectional curvature to manifolds of almost non-negative Ricci curvature, a

13
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main problem is the splitting phenomena conjectured by K. Fukaya and T.

Yamaguchi ([13]). Recently, J. Cheeger and T. Colding have announced that

they have solved this conjecture.

Theorem 8.1.2 (Splitting Theorem [8]) Let (X,p) be the pointed Haus-
dorff limit of a sequence (M;,p;) of complete n-manifolds with Ric(M;) >
—¢; — 0. Then the splitting theorem holds for X, i.e., if X contains a line,

then X splits R x X' isometrically .

Now we state the following fundamental results about estimating the lengths
of closed geodesics and finiteness theorem for fundamental groups due to M.

Anderson.

Theorem 3.1.3 (M. Anderson [1]) In the class of compact n-dimensional

Riemannian manifolds M such that
(#) Rie(M) 2> —(n— 1)k?, wol(M) > v, diam(M) < D,
there are only findtely many isomorphism classes of m(M).

Theorem 3.1.4 (M. Anderson [1]) Let M be a compact n-manifold satis-
fying the bounds (#). If v i3 a curve in M with [y # 0 in (M) for all
p <N =vi(2D) /v, then the length of v satisfies

where vi(r) denotes the volume of a geodesic ball of radius r in the space form

of constant curvature —k.




Using these theorems together with other results, we can prove the fol-

lowing theorem which improves the Wei’s thoerem :

Theorem 3.1.5 Given n and D,v > 0, there exists a positive number € =

e(n, D,v) such that if a closed n-manifold M satisfies
Ric(M) > —e¢, diarn(M) < D, vol(M) > v

then 71 (M) 1s almost abelian, i.c., m (M) contains an abelian subgroup of finite

indez.

3.2 Algebraic Lemmas

In this section, we prove several algebraic lemmas which are needed. First
let us describe a result which is related with the splitting phenomena and
isometry group. Let ¥ be a compact metric space, and (¢ a closed subgroup of
the group of isometries of the product R* x Y. Since G preserves the splitting
R* x Y, the projection ¢ : G — Isom(R*) is well defined. Then we have the

following lemma.

Lemma 3.2.1 ([13])  For each 6 > 0, there exists a normal subgroup G5 of
G such that

(1) G/Gs is discrete.

(2)  There exists an ezact sequence :

lwr Gy =G —=A—1

15




where A contains a finite index free abelian subgroup of rank not greater than

dim(R*/ $(@)).

Proof. Let us remind just how to construct the normal subgroup Gs. For a
complete proof, see [13], lemma 6.1, p.29.
Let K be the kernel of ¢, which acts on Y. We let

Ks = {{v € K |d(y(z),z) <6, for all 2€Y})

where () denotes the group generated by the set inside. Then Kj is
a normal subgroup of ¢ and the natural projection 7 : G — G/K;s is well-
defined. Moreover, we can show that G/Kj is a Lie group.

We now define

Gs = 77 ((G/Ks)o),

where (G/Kjs), denotes the identity component of G / Ks. Q.E.D.

Remark 1 In particular, note that if G5 == {1}, then @ is almost abelian.

Lemma 3.2.2  Lel T be a finitely generated group, and A a subgroup of

finite indezx. Then A s also finitely generated.

Proof.  Let [I': A] = m and let S = {yA} be the set of all left cosets so that

|S] = [I' : A] = m is finite.

16




Define

7:['— B(S) 2 Sym(m)

by 7(7) := 7y, where 7, : 5(S) — %(S) is a map defined by 7.,(yA) = v7'A
and Sym(m) denotes the symmetric group. Then it is easy to check that

everything is well defined and the kernel of 7 is the core of A,i.e.,

ker(t) = () vAyL

~el
Moreover , by the first isomorphism theorem, I'/ker(7) is finite. So since I is
finitely generated, so is ker(7). In particular since ker(r) C A, by viewing the

following exact sequence
0 — ker(t) > A — Afker(r) - 0
we can see A is finitely generated. Q.E.D.
A solvable group 7 is called polycyelic if there is a normal series
'=T,>2IhD>...0={1}
with every quotient I';/T';;; finite or infinite cyclic.

Lemma 3.2.3  Let I' be a finitely generated group of polynomial growth.

Then I' contains a torsion free nilpotent subgroup of finite index.

Proof. Theorem 1.0.1 implies that I' is almost nilpotent. That is, there is a

nilpotent subgroup A of finite index. And then A is also finitely generated by

Lemma. 3.2.2.

17
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Now, it follows from [24] that every subgroup of A is finitely generated.
Thus, by [30] (Theorem 4.1 and 4.4) , A is polycyclic and so contains a torsion

free subgroup of finite index. Q.E.D.

In the next section, we prove the main theorem.

3.3 Manifolds of Almost Non-negative Ricci
Curvature

We are now in position to prove the main theorem.

Theorem 3.3.1 Given n,v > 0 and D > 0 ,there exists ¢ = e(n,v, D) > 0

such that if a closed n-manifold M satisfies that
Ric(M) > —e, wvol(M)>v, diam(M)< D,

then 71(M) is almost abelian.

Proof. By Wei’s theorem 3.1.1, there is a positive ¢, = €,(n,v, D) such that

if a closed n-mantfold M satisfies that

Rie(M) > —e¢,, wvol(M)>v, diam(M)<D

then wy (M) is finitely generated group of polynomial growth of order < n.




Suppose the theorem does not hold. Then there is a sequence of closed

n-manifolds M; with
Ric(M;) > —; = 0, € <e, vol(M;)> I'u, diam(M;) < D,

and that m (M) is not almost abelian.

By Lemma 3.2.3, there is a torsion free nilpotent subgroup T; of my(M;)
of finite index. Then I'; is also not almost abelian. Moreover, by Theorem

3.1.3, we may assume that
(*)  theindex [m(M;):T;] is uniformly bounded.

Passing to a subsequence, we may assume that M; converges to a compact
length space X. Since X might not be a manifold, we need to consider the
action of T'; on the universal cover M;. For p; in M;, cousider (ﬂfz, Ti,pi)-

Then Theorem 2.0.10 shows that there exist a length space (Y,q) and
a closed subgroup G of Tsom(Y) such that (]\E,I‘,:,pi) converges to a triple

(Y, G, g) with respect to the pointed equivariant Hausdorff distance.

Splitting theorem 3.1.2 shows that Y is isometric to a product R* x Y,

where Y, is compact.

On the other hand, by Theorem 3.1.4, there exists a positive number
6 = &(n,D,v,¢,) > 0 such that Ty(8) := {y € T\ : d(pi,v(p:)) < 6} = {1},
which implies that G(6/2) = {y € G : d(v(q),q) < §/2} = {1} and so the

corresponding normal subgroup Gz in Lemma 3.2.1 above is trivial in viewing

19
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of the construction of Gj. Therefore by Lemma, 3.2.1, G/Gsja = G is discrete
and (7 contains a finite index free a,behan subgroup of rank < n.

Moreover, by (*), H""XY/G is compa,ct In fa.ct dzam(M /1) < 2(diam(M;)+
(maz.index) - diarm(M;)) < 2(1 4 maz. zndem)D L

Thus, by Theorem 2.0.11, I; 1s isomorphic to G for Iz;r.g_é:_.i}_,z a contradiction

to the fact that I'; is not almost abelian. - Q.E.D.




Chapter 4

Sectional Curvature and FundamentalGroup

4.1 Preliminaries

We say that a manifold M is almost flat if for any € > 0, there exists a. - '_'.:':"_:::;.": :

metric g on M such that

K pr|Pdiam(M)* < e.

M. Gromov classified the almost flat manifolds. Namely,

Theorem 4.1.1 (M. Gromov [7], [14]) If M satisfies |Ky|*diam(M)? <
€n for a posilive number ¢,, then ¢ finite covering space of M is diffeomorphic

to a quotient of a simply connected nilpotent Lie group by its lattice.

If a manifold M satisfies Kypr - diam(M)? > —¢, then we say that M is of
e-nonnegative curvature. We also say that a closed manifold M is of almost
nonnegative curvature if for any € > 0, M has a metric of e-nonnegative
curvature. K. F'ukaya and T'. Yamaguchi generalized the almost flat manifold

theorem in the mi-level.
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Theorem 4.1.2 ([13]) There exists a positive number ¢ = ¢(n) > 0, depend-
ing only on n such that if the curvature and diameter of a compact Riemannian

n-manifold M satisfy Kar - diam(M)? > —c , then 7;(M) is almost nilpotent.

Next we state the fibration theorem and classifying theorem of dimension three

for the almost non-negative curvature manifolds due to Fukaya-Yamaguchi.

Theorem 4.1.3 ([34]) Let M be an e,-nonnegative curvature with infinite

fundamental group. Then a finite covering of M fibers over S.

Theorem 4.1.4 ([13], [84]) There exists a positive number ¢ such that if a
closed three-dimensional manifold M is of e-nonnegative, then a finite cover-
ing of M is either homotopic to 5° or diffeomorphic to one of S x S2, q

nilmanifold or a torus.

Finally we need simple algebraic lemmas.

Lemma 4.1.1 Let A= B =17 and let ' a torsion free nilpotent group satis-

Juing the following exact sequence:
1-A—-T—=B->1

Then 1" is abelian and so

'zzg¢7.

Proof. We can consider A = Z as a subgroup of I". Since I'/A 2 7 = B is

abelian, for any o, 8 € T,

(ad)(B4) = (BA)(ad)
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Le.,
afa'f e 4
So [I,I'] ¢ A. If [I',T] = [1], then nothing to prove . Suppose that
[0, 1] # [1].

Then there exist «, 8 € ' such that of # fa.

Let I'y =< a, 8 > Heisenberg group C T. Then
2=, IycI,TjcA=Z
Therefore, all are the same,i.e.,
Z=[,0Y]=TT=A=1Z

Hence

17 =T /[Ih,T /T 2T /A B>1Z,

a contradiction. Q.E.D.

Lemma 4.1.2 Let a group I' admits an ezact sequence :
l-2A->T—7Z—-1

where A is a finite group. Then I' is almost abelian. In fuct, T' contains 7 as

a subgroup and the index of it is finite.

Proof. 1t is trivial since I'/A =7 Q.E.D.
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4.2 Manifolds of almost non-negative sectional

curvature

In this section, we state and prove the following theorem which is one of

the main theorems:

Theorem 4.2.1 Letn < 4. There exists a positive number ¢ = e(n) such that

if M is a closed Riemannian n-manifold satisfying
(1) Kpydiam(M)? > —¢
(2) m(M) has polynomial growth of degree < n,

then my (M) is almost abelian.

Proof. If dimension is less than or equal to 3, then it is trivial. In.fa(':.f;, by the
Theorem 4.1.2 and Lemma 3.2.3 , 74 (M) contains a finitely geﬁéfated torsion
free nilpotent subgroup I' of finite index. Then growth(I') < n < 3. So,if T'is
not abelian, it contains a Heisenberg group as a subgroup and the growth of
Heisenberg group is exactly 4 by.. .'Ei'(ﬁmple 1. Therefore I must be abelian,i.e.,
7y (M) is almost abelian. i

Now consider case di'm.(l\../.[)- = n = 4. Fibration theorem 4.1.3 implies that

there exists a finite cover M™* of M such that

F o M - 8

is a fibration with fiber F.




In particular,
dim(F) = dim(M*) — 1.
Moreover, we have an exact sequence:

1 ->m(F)>»m(M)—=7—1.

Since

growth(m {(M™*)) = growth(m (M)) < n =4,
Gromov's splitting theorem ([16]) implies that
growth(my (F)) = growth(x (M*)) -1 < 3.

Thus we get

growth(m(F)) < dim(F) = 3.

Therefore, m (F) is almost abelian since F' admits a metric (pull-back metric)

of e-nonnegative as above.

On the other hand, by classifying theorem 4.1.4, there exists a finite cover
F* of F such that

(i) F*~5° (homotopic). |
(i) F* = 5'x 5% (diffeomorphic)
(iii) F* = T3 (diffeomorphic)

Note that the nilmani fold cases are excluded because the fundamental group

of F'is almost abelian.
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case i) F* ~ $% (homotopic)
Then m(F*) = 0 and so 7 (F) is finite. Recall the following exact se-
quence:

1 —>7r1(F) —m (M) =7 -1,

Note that
m(M*)/ker = m(M*)[m(F) = Z

Since m(F') is finite, 7;(M*) is almost abelian and so is 7 (M).

case ii) F* 22 51 x §?
Then we have

m(F)=7@&A,

where A is a finite group.
Recall we get
12 ZHA (M) -7 -1

and my (M™*) is almost abelian.
Let T be a torsion free nilpotent subgroup of »; (M*) of finite index. Then

I'N0&® A = 0. Therefore, we get the following exact sequence:
l=wZ—-T->o7Z-—1,

So, by Lemma 4.1.1, T' is abelian and so my(M*) is almost abelian and so is

m(M).




case iii) F* 77

In this case, we have

by(F) = by(F*) = 3

and so F' 2 T° by Yamaguchi’s theorem ([33]). Thus we have
T M* - 5t

and

122 am(M) =7 1.

Then we have

growth(my(M*)) =4

Let I’ be a torsion free nilpotent subgroup of 71 (M*) of finite index. We claim
that T is abelian. Note that growth(I') = 4. So if T is not abelian, then there
exist a, f € I such that af # fa. Let Ty =< , 8 > Heisenberg group C
I'. Then growth(I';) = growth(T') implies that I' = T'y. Also note that I' = T,
does not contain Z* as a subgroup. But Z® C m;(M*) and since T is torsion

free, I’ contains 73, impossible. This is a contradiction and so T is abelian.

Q.E.D.

Remark 2 If n > 5 then the theorem is false. For example, take a left-
invariant metric g. on a nilpotent Lie group N with the sectional curvature

KN4 > —e and canonical metric g, on 2-sphere 5%, Then consider the prod-

uct M = N x 5% with product metric ¢ = g, X g,. Then (M,g) satisfies
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the above conditions in the theorem, but the fundamental group of M is not
almost abelian. However, in higher dimension case, I believe that such a split-
ting is the only possibility. Namely, if M satisfies the above conditions, then

maybe (M) is almost abelian or M is a bundle with nilmanifold fiber over

a compact space S with finite fundamental group.
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Chapter 5

Scalar Curvature and Sigma Constant

5.1 Basic Facts on the Yamabe Problem

In 1960, H. Yamabe ([32]) proposed and attempted to solve the following
problem using techniques of calculus of variations and elliptic partial differen-

tial equations.

The Yamabe Problem. Given a compact Riemannian manifold (M,g) of

dimension n > 3, find a metric conformal to g with constant scalar curvature

Suppose (M, g) is a compact Riemannian manifold of dimension n > 3.
Any metric conformal to g can be written § = unss g, where u is a positive
smooth function on M. If s, and § denote the scalar curvatures of g and §,

respectively, they satisfy the transformation law:

2

MAu—sgu+§u%§5 =0 (6.1)

n—2
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where A is the Laplacian in the g metric. Thus, § = = ¢ has a constant
scalar curvature § iff f satisfies the Yamabe equation:

Lu = §uss (5.2)
where [ = —%A -+ 84, called conformal Laplacian. This is a sort of ‘non-
linear eigenva,lue.problem’. Yamabe observed that equation (5.1) or (5.2) is
the Fuler-Lagrange equation for the functional restricted to conformal classes

Slg) = A2
(far dvg) ™

Hence, by viewing the equations (1.1) and (5.1), we have

4(n--1) d 2 2 d
,M(M,C): in n—2 fM(I ¢| +Sii) UQ"
HEC (M), $>0 ( fM (}5% dv )—;r

g

where g is a base metric contained in C. It is now known by contribution of
several people ([4], [25], [28], [32]) that the Yamabe problem is always solvable.
In other words, for given constant §, there always exists a solution u > 0
satifying the equation (5.1). Now by using the standard minimax procedure,

we can take the supremum, i.e.,
o(M) = sup u(M,C)

We will call such a geometric invariant the sigma constant.
There are very few manifolds for which the sigma constant is known. In

fact, the only ones known to the author are given by the following,

Theorem 5.1.1 (T. Aubin [4], [5]) o(S") = n(n—1)vel(S*(1))", and for

any n-manifold M, o(M) < o(5%).
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Theorem 5.1.2 (R. Schoen, O Kobayashi [21],[26],[Theorem 1.0.6])
o(S7t x SY) =a(S™), o(F:(S"F x S1)) = a(S™).

Also it is reasonable to expect c.f. [6], that (M) is a critical value of S,
i.e., any metric g, with unit volume such that Sg, = u(M,lg,]) = o(M) is
an Kinstein metric. This remains unknown for the positive case. But for the

negative case, we have

Theorem 5.1.3 ([6], [26]) Ifo(M) <0, then any metric g with unit volume

realizing o(M) is Einstein.

5.2 Sigma Constant of Surgered Manifolds
Gromov-Lawson and Schoen-Yau have showed the following theorem:

Theorem 5.2.1 ([17],[27]) Let M be a compact manifold which carries a
Riemnnian metric of positive scalar curvature. Then any manifold which can
be obtained from M by performing surgeries in codimension > 3 also admits a

metric of positive scalar curvature.

Due to Yamabe, Trudinger, Elfasson, and Aubin, it is known that there
is no obstruction to constant negative scalar curvature. Namely, any manifold
of dimension > 3 admits a metric of constant negative scalar curvature. How-
ever, there is a topological implication of scalar curvature which provides an

obstruction to positive scalar curvature for certain special manifolds. In fact,

we have




Theorem 5.2.2 ([22], [31]) If the scalar curvaiure is positive on a compact

even-dimensional spin manifold, then Hilzebruch A genus must vanish.

Thus, if A genus, A(M) % 0 for a compact even-dimensional spin manifold M,
then M does not carry metrics of positive scalar curvature. So it is valuable
to consider when or under what condition, manifold does not admit metrics
of positive scalar curvature. o(M) < 0 for a compact manifold M implies
by solution of Yamabe problem that M does not admit metrics of positive
scalar curvature. Theorem 1.0.6 due to O. Kobayashi can be viewed as a
quantitative version of (a special case of) Theorem 5.2.1. which gives us a
relation of the sigma constant of connected sum of two manifolds with each
sigma constant. In particular, roughly speaking, in the negative case, we can
see the sigma constant of connected sum of two manifolds is greater than or
equal to negative of sum of absolute value of each sigma constant up to power
related with dimension. On the same line, we can show the following theorem

(Theorem 1.0.7).

Theorem 5.2.3 Let M be ¢ compact smooth manifold and assume o(M) < 0.
Let M, be a manifold obtained from M by surgery on a homotopically trivial
S, forp<n—3. Then o(M,)> o(M).

Proof. Given ¢ > 0, we can take a metric ¢ on M with unit volume, i.e.,

vol(M, ¢g) = 1 such that

sy 1= scal(g) = (M, [g]) = o (M) — ¢
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where scal(g) = s, denotes the scalar curvature of the metric g on M. Then,

using Gromov-Lawson technique (see [17]), we can construct a metric g, on

M, such that

scal(gs) > scal(g) ~ T,

where 7 = 7(¢) — 0 as e — 0.

We claim that we can construct M, so that
vol(Ms, gs) = vol(M,g) = 1.

We start the embedded submanifold S?(p) x D" ?(§) 3 M where § is suffi-
ciently small positive real number which will be decided later. The metric ¢

on S?(p) x D™?(§) is given by
g 7 dr® 4+ r’dsga_pn + FP(r, z)dsk,

and
f=1 as r—0 (5.2)
So the volurne of SP(p) x D™ F(§) is

vol(S?(p) X D" 7P(8)) = /Sp(p)xbn—p(a) P (r,2)dy,
> (1 —8)Pvol(S?(p))vol(D™(6)) by (5.2)
= (1 6)Pp"8" Puol(SP(1))vol(S™P1(1)) (5.3)

Now recall the Gromov-Lawson construction again (see [17]) :

Ni={(y,z,1) : (ll2],1) € v} € S7(p) x D*P(8) x B, r(z) = ||
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We can choose 6, > 0 sufficiently small so that for ¢ > 6/2 (This implies
that v(t) = 6, << 6 for t > §/2),0(SP(p) x D""P(,)) can be homotoped
to the product metric on S*(p) x D"?(§,). Then cut-off N along S?(p) x
D™72(8,)) x {t = 6/2} and glue S5 (p) x S77P1(6,), where ST (p) denotes
the upper-hemi sphere in S7+1(p).

Let N, denote the resulting manifold. Then
5/2 '
wol(N,, gs) ~ ] vol(S7(p) x S™ P71 (x(t))) dt
0
+ vol (S7(p) x §*7(5,) (5.4)
Since, on the level set of N, the metric is product, so the metric g, on the
(87(p) x S™=P=(7(t)) is given by
gs & fz(’}'(t), :l’:)dsgsp + dS%n_p—:(,y(t))

Thus,

vol (S7(p) x 8" (4(1)),9.)

P

Q

fS"(P)XS“‘P‘l(W(t))
S (L8 pPool(S™7P7H (7(1)) Jwol(S7(1)) by (5.2)

= (L4 8o (v(1))" " ool (S™PH(1) Jool(SP(1))
< (L4870 (—2(1 - 6,/8)t + 8)" P wpwn_pa

where w, denotes the volume of p-sphere, S?. Since we can choose 8, and &,

sufficiently small so that §, < §/2 for given 6, it is easy to see that

/ o — s et ot = —L O (e gy
0 ° = 2n_p)s—3s, °

np
L gy <2

IA

(n —p) “n—p
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So

/05/2 Uol(Sp(p) X S”"’_l('y(t))) di

§f2
< (Y Pupnpet [ (=21~ 6,/6)t+ 6y dt
oy
(n—p)p?

Wyln_p.1

and the second term in (5.4) is

1
UOJ(S-IID-H(P) x §*P7HE,)) = §pp+15?_p—lwp+1wn—io—l

Hence

vol( N, ¢s)

(A

w?(l _|_6)p6n—p P 1 p+1 en—p—1
( (n "'*P) P+ 210 50 Wpt1 | Wo—p—1

_ wi‘?(l + 6)1)6%—;0 l n—-p--1 P
- ( (’ﬂ *_p) -+ gpéo Wpt1 | P Wn—p-1

Now since n — p > 3, for fixed p > 0, we can choose § > 0 sufficiently small

so that
(14 6y
(n—p)
and then choose é, > 0 so small that

P8 wpir S (1 — )P, 8
Then by (5.3}, we have
vol(Ns, ga) < vol(§%(p) x D"7P(6), g)

This proves the claim.

If then, by the maximum principle, we have

o(M,) > u(M,[g)) = 7 > o(M) — e~ 7




In fact, if p(M,,[gs]) > 0, then there is nothing to prove. If u(M,,[g;]) < O,

then there exists unigue metric § € [g,] such that

3 := scal(g) = p(Ms, g,]) < 0

and

vol(M,,g) =1

This implies that there is a positive function u € C*°(M,) such that

5 do,, = 1 5.5
J, v do,, (5.5)
and
n -1
unEs = —il-(n——u)-Ag,u + scal(gs)u
n—2
—1
> —gr-?—_-—z—)/.&gau + (scal(g) — T)u

Consider maximum of « on M, and let maxas, u = w(z,). Then Au(z,) < 0.
Since vol(M, g;) = 1, we can see u(z,) > 1 from (5.5).

Note that 5 and seal(g) — 7 are negative constants. Hence we have
§ = scal(g) > scal(g) — 7
Therefore,
o(M,) 2 p(M,[g]) = 5 2 seallg) — 7 = p(M,[g]) — 7 =

Since € is arbitrary, we have




37

Q.E.D.

Next we will prove the Theorem 1.0.8.

Theorem 5.2.4 Let M; and M, be compact manifolds of same dimension
> 3. If both sigma constants of My and My are nonpositive and SP is homo-

topically trivially embedded p—-sphere in both My and M, then
O'(Ml * Mg) 2 mz'n{o‘(Ml), O'(Mg)}

Proof. As theorem 5.2.3, given ¢ > 0, we can take metrics ¢; on M;(i = 1,2)

with unit volumes such that
8g; = #(M;, [g:]) = o(Mi) — €
Then the same argument implies that there exist metrics §; such that
§ > 854 — 0

for some small number § > 0.

If p(My + Mo, (51 U §2]) > 0, then we have obviously
O’(M1 * Mg) 2 p}(Ml * Mg, [§1 U §2]) 2 min{o(Ml), O'(MQ)}

If (M, * Ma, [§1 U §2]) < 0, then there exists unique metric g € [§; U g2 such

that




nt 4(n—1
ueE s = ———E—?_—Q)Au + scal(§lu  where §=g,Ug,
Hn —1 .
> MDA mings, — 65, — 6))u

Considering the maximum of u on M | we get ,similarly as above,

§ > min{sy, — &, 85, — 0} = min{o(My),0(M2)} ~e—§

Therefore,

o(M) = o(M, x My) > min{c(M,), (M)}

QED.

Remark 3 By viewing theorem 1.0.6 and some examples, we also can expect . E

that the same property holds for the positive case or nontrivial sphere surgery. i i

Namely, we conjecture o(M;) > (M) for any compact smooth manifold M : G

and surgered manifold M,.
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