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Abstract of the Dissertation
Singularities of Maps Between 4-Manifolds
by
Robert Paul Stingley
Doctor of Philosophy
in
Mathematics

State University of New York at Stony Brook

1995

In this work we study rank two singularities of smooth maps
between compact 4-manifolds without boundary. In the stable case
we explicitly determine when the points can be pairwise cancelled

by deformation. In particular we give the exact obstruction to

removing such points.
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Section 1

INTRODUCTION

In the study of smooth maps between manifolds it is often useful to as-
sociate local invariants to singularities which, when collected in some fashion,
give global invariants. In general one cannot do this for all smooth map-
pings but only for some select collection. One examnple is the theorem of Hopf
[or sections ol a tangent bundle and their relation to the FEuler characteris-
tic. Another example of a different nature is the study of Morse theory, with
its restricted class ol Morse [unctions, where relations are given between the
homology of the manilold and the index of the singularities of the maps.

One of the early examples is given by the Riemann-Hurwitz formula.
In this case we take holomorphic maps between compact Riemann surfaces
otherwise known as ramified covers. If f: ¥, — Y, is a holomorphic map

between two compact Riemann surfaces we get the Riemann-Hurwitz formula:

(deg Px(Xs) — x(B:) = Y7 brind,(f)
peEL,

where deg [ is Lhie degree of the map f, ¥(X') is the Ituler characteristic of X,

and brnd,(f) is the branching degree associated to each singularity p of f.

.




'To each point p € ¥ and f(p) € ¥z we can find complex coordinates so that
f(z) = 2" in those coordinates. The integer n — 1 is the branching index and
is independent ol the chosen coordinates.

The aim of the first two sections of this thesis is to give a formula of
Riemann-Hurwitz type for oriented 4-manifolds. Assume that f : M — N
is a smooth map between two compact oriented 4-manifolds. The further
restriction that we take 1s to require the points where f is of rank two to be
isolated and thus finite in number. It should he pointed out that not all maps
satisfy this but thai it is an open and dense condition. In the first section
we will give an integer index, ind2(f), associated to these isolated rank two
singularities. Then in section 2 we prove the equation

(deglYp, —p, = Z i'n.d;‘j(f)
peEM
where deg [ is still the degree ol [ but p_ is now the first Pontryagin number
of X. For transverse maps, where m([;‘j(f) = &1, this goes back to the work
of MacPlersou, [MacTl] and Ronga, [Ron71].

It is a peculiarity of mathematics that what is generally true is not often
true of the examples that we initially understand. A good example is given by
polynomials versus smooth maps. In the setting of maps between 4-manifolds
it 1s generically true that the maps have isolated rank two degeneracy but it is
nol the case {or most known examples. A good collection of examples is given
by ramified covers along 2-dimensional surfaces. In this case the rank two

points are exactly the ramificalion surface and thus certainly not isolated. In

section 3 we show liow to canonically perturb such a map so that it has isolated



rank two singulavities. We [urther calculate the index of the singularities when
they do occur, Note that this can only give transverse singularities when the
ramification is degree 2.

Although we prove the 4-dimensional Riemann-Hurwitz formula for maps
with isolated rank two degeneracies, a more restricted class of functions is
already residual. [{ s an amazing resull of Mather that stable maps between
two n-manifolds are generic when n < 9. In seclion 4 we give the necessary
information about stable maps belween 4-manifolds and their corresponding
singularities, The stable singularities are of two main types. The first type,
the Morin singularities, is given as the rank 3 singularities and occurs along
a 3-dimensional submanifold. The second type, the umbilics, is given as the
rank two singulavities and occurs at isolated points.  The umbilics further
divide into two Lypes called the hyperbolic and elliptic umbilics. It should be
pointed oul that both types of umbilics can take the indices &1 as defined in
section 1,

From tlis we see that the new Riemann-Hurwitz formula gives a lower
bound on the amount of rank two degeneracy that a map f: M — N must
have given a fixed degree. Tt is one of the main results here that this lower
bound can be oblained by isotopy. In all that follows isotopic means homotopic

through smooth maps. In section 5 we state the main theorem.

Theorem I [ : M — N isisolopic to a map g with exactly [(deg f)pn—par|

wintbilics of tnder 1 and no other rank two degeneracies.

We hurther note that this implies the



Corollary:The number (degf)pn — pm 18 the exact obstruction to removing

the rank two degencracy by isotopy.

In this section we also give the outline of the proof which is dependent on
the results of sections 6, 7, and 8 and the language of section 4.

In section 6 we show that each map isotopes to a map that has only
hyperbolic umbilics. This is done by giving a local isotopy which converts
elliptic umbilies to hyperbolic wmbilies. In section 7 we show that we can
isotope a map so thal the complement of the singularities has two components,
one where Lhe map is orientation preserving and one where it Is orientation
reversing. This gives us a path between any two singularities that does not
have any olher singularities. Finally in section 8 we show that we can cancel
two hyperbolic winbilics of opposite signed index.

[linally we point out that these results shed an intevesting light on the
understanding of the smooth structures on 4-manifolds. If we take two smooth
homeomorphic 4-manilolds, A and N, and a smooth map, f, near an home-
omorphism we now see that it is isotopic to a map which has only rank 3
singularitics occurring exactly along a smooth closed 3-dimensional submani-
fold. Although the results ol sections 6, 7, and 8 ave given to prove the main
theorem ol section 5 they can also be used to gain insight into the nature
ol this 3-dimensional submantfold. With all the new results about smooth
4-manilolds it would be interesting to know how they are determined by these

associated submanifolds. What then remains to be understood is when they

can be removed to give dilfeomorphisms.




Section 2

INDICES

In this section we introduce the notion of the index of an isolated zero
ol a section ol an oriented vector bundle. TFrom this we can then define the
indices that will he used throughout the rest of this work.

Take [ R* — R where f~1(0) =0 and n > 2. Let

S5 (e) = {o € B"| |2| = ¢}

have the induced orientation given from R™. This is given by taking

Yat ¢ if [v, vy, .y vn_4] is the stan-

[t1, ..y 20—1] to be the orientation of 5™~
dard orientation of B and v is the outward pointing normal vector at ¢. Now
we can define /(2) = fa)/|f(a)] as a map from S !{c) to S”7*(1) and take
the index of [ at 0, written wndy([f), to be the degree of F(z). This is well-
defined independent of ¢ because the degree is a homotopy invariant and the

F.(x)'s are homotopic,

Take XN to bhe a smooth, oriented n-dimensional manifold. Further take ¥

o be a real oriented n-plane bundle over X with a section s and projection =.

D




The expected dimension ol the zeroes of a generic s is 0 and we will assume
that the zeroes are isolated. We assume nothing about the transversality of
s at the isolated zeroes, Take p € X such that s(p} = 0 € E. If we take a
small neighhorhood about p the bundle F can be trivialized. Take U C X
to he such a neighborhood which is also a coordinate chart for X about p
and let ¢ : (U,p) — (R",0), and ¢ : =z~ (U) — U x R". Assume that ¢
takes the orientation on U to the standard orientation of R™ and that ¥ does
the same thing for the fibers. Take f : ¢(U/) — R* as f = mpo0poso¢™!
where mp : {7 x R* — R"™ is the projection onto the second factor. Define
ind,(s) = indy(f). This is well defined independent of U, ¢, and . In the
case that /7 is the tangent bundle of X this is just the Hopf index of a vector
field with isolated zeroes.

Now assume thal we have a smooth map g @ A — N where M and N
are smooth d-manilolds. 1t is [urther necessary to have M oriented. We say
that g bas rank &, writsen rk,(g) = &, al p € M if (dg), : T,M — Ty, N has
rank £ as a linear map, where dg is the derivative of g. We also assume that
rhy(g) > 2 lor all p € M and rky(g) = 2 at isolated points, ¥. Associated
to each of the isolated rank 2 poiuts we will give a corresponding integer.
In this case ¢ = Gro(T'M) is defined as a smooth orientable manifold of
dimension 8, where this corresponds to the Grassmann bundle of 2-planes
in the tangent space over each point of M. This comes equipped with a
projection @ ¢ — M. We can also define H = Hom(Uy(T M), 7* 0 g*TN) as

an orientable 3-plane bundle over ¢ where U,(T'M) is the tautological bundle

over (L From ¢ we also get a section s of I over G with isolated zeroes exactly




al those points (p, ) where (dg,)| P vanishes. This is given by restricting dg
to the subplane /7. To apply the previous index we must fix an orientation
for G and H. We know that TG o~ T'M @ Hom(Ua(T'M), U(TM)*) and thus
we can take the orientation on T'A but we still need to fix the orientation
for Hom(Us(T'MY, Us(TM)L). We can take this case and H at the same
time. In both cases we have Hom( £, F') where IV and I are even dimensional,
Taking any bases eq,...,eq; and fi,..., fo, of E* and £ we fix the orientation

of Hom([lZ, I7} as
€ @ .}(.1762 ¢ ]Ll'} vy €1 & f?k? oy €25 & f’ZL

Because 25 and 24 are even this is well-defined independent of the bases taken.
Now this fixes the necessary orientations to define the index,

im!i(g) = tndp, ry(s)
wliere p is the point where the rank drops to 2 and I = ker{dg), is the kernel
planc.

At this point we have defined the index that will be used in the next
section to prove the d-dimensional Riemann-Hurwitz equation. On the other
hand it is olten uselul to have an easier and more direct method of computing
this index. In particular we wish to calculate the index associated to certain
mapping germs it various ways.

First note that if f @ (R™,0) — {R™,0) is a smooth proper map and
F7HOY = 0 then deg(f) = indy([), where deg [ is the degree associated to a

proper map. Often times the maps ol interest are of the form

l/_‘ : HTH % H'l! s R'Iﬂ. X Hn




(assumed proper) where f(z,y) = (z, s(x,y)), i.e. an R™-parameterized collec-
tion of maps from R” to R”, In this case we immediately get s(0,7) : R* — R”
is proper and deg{f) = deg(s). This can be seen by taking a regular value
v ol 5. Then (0,0) is a regular value for [ and if s7*(v) = {wy,...,w;} then
F7N00) = {{0.w),...,(0,w;)} and f 1s orientation preserving (reversing) at
(0, w;) when s is al w;,

When calculating the index of an isolated rank two degenerate point one

can show that the map locally is given by

glaoy, = ow) = (g, Ala,y, z,w), Bla,y, z,w))

where (z,y,z,w} = 0 is the only rank two point.

Lemma 2.1 [f the section s associaled Lo g s proper then ind2(g) = —deg(§)

where gla,y, z,w) = (AL, B, Aw, By).

Note Lhat we could take —deg(g) as the definition of the index of an isolated
rank Lwo point instead of the one given here.
Proof: The kernel, K5, of (dg)g is given by < £, 2% >, Thus we can take

fz? f':,

a coordinate chart about the point {0, ') in G given by

o i J 9} (') Y J o ’
q’)(.?,jf, w., < O +F}()’U + ()~ (’)1 -+ bay - >) - (_."L.,y,,,,w,a,ﬂ,'y,5)

dhw
7

and take the previously defined orientation as given by [£5,. ?aa] Then H is

trivial over this chact with oriented coordinates given by

d

d
oot T e} @

T{ae] © — + aze; @ —

) = (a1, az, ..., ag).

9
or

Q_')
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‘Then the section s is given by

sla,y, 2, w, a, /2, s 5) =

(o, y, As+aAp+9A,, Bo+aB,+vB,, 3,6, Ay + A + 64y, By + BBy +6B,).

Alter an orientation reversing permutation of the coordinates of H we get
é(R:? y,.z’q'{)? a’ﬁ?’y’ 6) =

(A, a4+ 84, B+ aB, 68, Ayt B4, +06A,, By + 8B, +6B,, a, B,7,8).

It this is proper we then have mndg(s) = deg(s) = deg(g).) On the other hand
we have indi{g) = —indy(§) so indi(g) = —deg(g).

It should be pointed out that the conditions on s are not really necessary.
The cases where we use the lemma satisfy the extra condition and thus we
include it to get the easier proof.

In the next section we will take the index, ind2(g), and give a Riemann-

Hurwitz Lype lornmula for the fivst Pontryagin number.




Section 3

4-DIMENSIONAL RIEMANN-HURWITZ

Il we have a nonconstant holomorphic map f : X! — %2 between two

compact Riemann surlaces then the Riemann-Hurwitz formula is:

(deg IN(E?) — (B = 3 brind, (),
peXl

where degf is the degree of [, x(X) is the Fuler characteristic of X, and
brind,(f) is the branching index of f at p. Because f is holomorphic the
points where [ is ramified are isolated. Because L' is compact this means
that there is only a flinite collection ol points where the index is not one. Thus
the sum on the right makes sense.

In this section we will prove a corresponding formula on 4-dimensional
manifolds, The ISuler characteristic will be replaced by the first Pontryagin
nunibers and the vamification index will be replaced by the index associated
to isolated rank two degenerate points from the last section. Thus we will get

the formula:

((l@_q\/’)pj\r_ —p, = Z i??-fl;i(./f)a

pext

L0




where degf is still the degree of f, p is the first Pontryagin number of X,
and ind%([) is the index previously defined for the isolated rank two points.
We also extend #nd;(f) to be 0 if p is a point where the rank is greater than
2.

Now assume that we have two smooth, compact 4-dimensional manifolds,
M and N. IPurther assume that A4 is oriented and that we have a smooth map
I M — N In this case define (degf)p, — p,, to be the relative Pontryagin
number of [.

Now we can state the resuli of this seciion:

Theorem L1 Ll | be w smooth map belween smooth, compact §-dimensional
manifolds M and N with isolaled poinls where the rank drops to 2. Then

(d(—ggl/')p‘\r — pi\-{ — Z Z??dﬁ(}‘)

pEM

Proof: From [+ M — N we get the bundle H = Hom(Uzx(TM),n*T'N)
over (= Gy (T'M) with projection # and section s given as in section
one. In {H-L] they construct a smooth §-form ,\/5 on (< and prove ar*xg =
P pi(NY — pi(M) where pi{X) = o50r((BTY)?) is the Pontryagin form on
X associated to 7Y, the curvature given from a connection on X. Thus
(ﬁx.\il,[ﬂ.ﬂ) = ((/*p (N) — p (M), [M]) = deg/p, —p,, where (w,[X]) is
the pairing given by integrating w over the space X. On the other hand

(-7:*,‘.\‘{_’?[, (M]) = (¥ =" [M]) = (,\'é", [Z]} = x,(H), the Fuler number of the

i

bundle [{-over (¢, It thus remains to show that x_(H) = ¥ epm 'iﬂd%(f). But

11




the definition of ind(f) was given at the level of G and H. Thus it is enough
to show x_(H) = Yy indry(s) where ind(, k)(s) is again 0 unless p is a
point where the rank drops to 2 and K is the 2-plane kernel of (df),. The

result then {ollows [rom the

Lemma 3.1 Gliven « smooth section s of a smooth oriented 2n-plane bundle
Voover the simooth oviented 2n-manifold X we gel xx(V) = 3, ind,(s), where

we have assumed that & has tsolated zeros.

Proof: The proof is by the same method as given in the fundamental

paper hy Chern, [Chedd], We use

X V)= 0D = [

XX
Tete v¥ e the crmeoth o fre ¢ defaed ne WV o PP =l VY o
where X, i the smooth n-form on X defined as X, = Pf(5: ") given by a
. - . - *V
connection, 2, on V. In this case we gel vV = s*x{£™Y) where we have taken
X

the pull-back bhundle #*V over ¥ with the pull-back connection. Thus

WV = [l = [ = R
Now take D,(X) = U,ezs(Bdp)), 2 = Zeros(s) C X, B(p) as closed e-balls
about the zeros of s, S{X) and S.(p) as their boundaries. Away from X
Harvey and Lawson give x(R™Y) = do where ¢ is a smooth (2n — 1)-form
which vertically is just the volume form of a sphere normalized to 1 and pulled

back by radial projection to V' minus the zero section, [HL]. Thus

V(R™Y) = lim / y(R™Y) = lim ‘ do
.[s(.\'j\ e s(.\’)—Df(.\')\( ) =0 Jo(X)=D(X)

= lim / = ind,{s).
5e(X) 2 indh(s)

—0
¢ pEZ

Thus the lemma and the theorem follow.

12




Section 4

RAMIFIED COVERS

Although rank two degeneracy generically occurs at isolated points this
is not true for most explicit standard examples of maps between 4-manifolds.
One such class of maps is given by ramified covers. In this case the rank two
singularities occur along the ramification surface which is 2-dimensional.

o fix the setting take f: X — Y, a ramified cover of degree n along %
where X and ¥ oare complex 2-dimensional surlaces. Here we take ¥ to be the
smooth, connected complex curve embedded in both X and ¥ and denote by
n, and g the normal bundles of ¥ in X and ¥ respectively. Take AC(E, F)
to be the bundie of anticonformal homomorphisms from & to 7. In this case

we get the following

Theorem I Vo cach section A € Tg(AC(n , [*n.)) there corresponds a
perturbation of flo « map [ with vank two degeneracies precisely at points of

Nowhere A vanishes, If A vanishes al lsoluled poinls the index of the umbilic

s (n— 1) fimes the index of the zero of A.




14

Then from a calculation we get the

Covollary: If we Liave a degree n ramified cover, f : X — CP?, over a smooth,

connected curve of degree n we get py = —n{n — 2)(n + 2).

Proof(ol corollary):

(deg [lpep: —p, = (n — 1)x(AC(n,, f*n,)) = (n = V)x(n, ® f*n,)]

= (n—1D)x{n.) + v(n, N=(n—Dn+n?=n—1nn+1)

and thus

py =3n—(n - Unn+1)=—n(n—2}(n+2).

Proot(of theorem): IMix ¢ tubular neighborhoods of & in X and ¥ and

identily theny with  and gy . Also lake local trivializations of the bundles
N lu=UxCuly=UxC

so that w0 = [(z) = z® where z and w are the normal coordinates for U in

X and ¥ respectively, Now define M = muar,ex(|A(p)|) where |A] is the
metric induced on (AC{x_, ™)) from unilary metrics on n, and 7. Take

fle,y,z) = (o, y,2") in some coordinate chart. Further fix a smooth function

p: Bt — [0, 1] with the following properties:
Lop(r)=11forall r <1,

2. there exists K so that p{r) = 0 for all r > R,

30 <5 forn >3 and 0 < [p'(r)] < 7% for n = 2,




Now define f(nz,y,;) = (@&,y,2" + pez) where € = e(z,y) is A in the local

coordinates and p = p(%l;i) or p(i%). Clearly / is rank two if and only if

| = ji,; = (). This occurs when nz"'M + p'ezz = 0 and peM + p'ez? = 0.
If 2 =0 weget pe =0. But at z = 0 we will have p = 1 so we get rank 2
along ¥ only at points where € = 0, i.e. where the section A vanishes, The
claim then is that this is the only case of rank 2 degeneracy. Assume z £ 0. If

¢ = 0 then we gel nz""" = 0 and thus »z = 0. Thus we can also assume ¢ # 0.

P e I A .
Then p' = =2 implies [p| =

%[4”_3. This means that p’ # 0 and thus

. al=? =1 Ay 0 A .
z[ > 1. Now |pl = %;—M > 2 > when n > 3 and |pf| = 2 > 2

)
"> = el elz]|2 — R

when no=2 but these contradict the third condition on p.

Thus we have exhibited a local perturbation associated to A which has
rank two degeneracies precisely when 4 vanishes. It remains to determine
whatl the index is at an isolated point where A vanishes. IFirst assume that the
zero of A is transverse. Also write R = Re|(u-iv)*] and 70 = Imn[(u+iv)?]

where we have z = u + 1v.

Lemma 4.1 Assume Flay) = (A, y), Bla,y)) has a transverse 0 at 0 and

Heg u,v) = (a, g, U+ Aw 4 Bo, IV — Av + Bu). Then
ind3(f) = (n = \)deg(f) = %(n — 1)

with the sign given by the sign of A8, — A, B,

Note that along ¥ f now looks like this where A = Re(e) and B = Im(e).

Also note that M thought of as a map on all of R is proper.

15




Proof: From the lemma in section 2 we have that ind?(f) = deg(f) where

fla,y,w,v) = (RO 4 A I Y 4 B, —nf=Y £ B nRU-Y — 4), But
] = 4n?(n — 1)} (AaBy = ABo)[(1)F + (R

=dn*(n —~ 1)*(A.B, — /‘i.yBx)('MB + vH)2,
Now because [ is transverse A.B, — A, B, # 0. If it is positive(negative)
then |df] > 0 (< 0) provided (u,v) £ (0,0). Thus ali points (z,,u,v) with
(1. 0) #£ {0,0) are regular points and count positively (negatively) towards the

degree. T'hus it suffices to count the number of preimages of some point with

(u.v) #(0,0). Take ‘/ﬁ'(;r:,_ g u,v) = (@, de, a3, aq). Then we get RN = ﬂlﬁ*,
{0 = A e M2 and B o= 932'1 Provided either a; + a4 # 0 or

ty — iy 7 0 the solutions for R™=1 and 7= are the n — 1-roots of a nonzero
complex number, By (he transversality ol 17, F_l(‘—"i"_z'—“i,ﬂz—"%ﬂ*"-) 1s one point
and the number of preimages of _ft_]((r,l,(.',-z,(t_g, ay)is{n—=1)-1=n-1 and
the result follows.

To finish the computation when A is not transverse we recognize that a
local perturbation ol the section of A near a point (ag, yo) will give transverse
points. On the other hand the total degree is perturbation invariant as is ind®
and thus the general result follows.

1t should lurther he pointed out that a result simnilar to the theorem can
be shown [or double fold maps. These would be maps f: X — Y with ¥,
a surlace within botl, where the normal bundle to ¥ in both X and Y is
trivial and the map along ¥ looks like f(x,v,z,w} = (2,y,2% w?). Natural

examples of where this would occur are given if we take f; : X1 — % and

16
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i 2 85— 83 where B! are smooth surfaces and the f; only have folds. In this

case f1 X fo 1 81 x 8 — T% x %2 would be as described.




Section 5

SINGULARITIES

In this section we will give enougl information about singularities of stable
mappings between 4-manifolds to proceed with the results in the rest of this
work. For a more complete picture of stable maps and their singularities see
[GGT3]. With only the condi.t.ion that the map is smooth the singularities
can he quite complicated. To simplity the structure of the singularities we
will restricl Lo the space of sl‘.a.ﬁle mappings. Let M and N be two fixed
smooth 4 dimensional 1'1‘;&1.1'1il'o.lds, and C°(M,N) be the space of infinitely
smooth mappings belween them with the Whitney topology. Then we say
that f e C™(M, N} is stable if there is some neighborhood Ny of f so that
for ail g € Ny there are diffeomorphisms, £ and j, of M and N, respectively,
so that jo f=qgoh, In gmwml this restriction is too much to ask but it is
one ol the amazing cesulls of Mather that in dimensions below nine, the stable
mappings are dense, [Ma.t?l]. In particular, in four dimensions the space of

stable mappings s dense.

With this global vesult the nex( natural question might be to ask what

18




the singularities can look like. We say that p € M is a singularity for f if
v = rk(df,) < 4. In the stable case there are actually only two possibilities.
Either » = 2, which we call an umbilic point, or r = 3, which we call a Morin
singularity. In the simplest case of a Morin singularity, there are local coordi-
nates around p and f(p) so that flooks like f(z,y,z,w) = (z,y, z,w?), called
folds. There are really only two things which we need to know about Morin
singularities. In the stable case these arve that the space of Morin singularities
forms a smooth 3-dimensional submanifold £y of M and that all points but a
stooth Z2-dinensional submanilold ¥, of ¥, have local forms which are the
same as folds, It were not for the umbilics ¥y and £,; would be closed

submanifolds.

Whereas we needed to know little about the Morin singularities, we need
to know a little more about the umbilics. The first thing to note is that they
are 1solated. This means that they ave isolated [rom each other but not from
other singularities. In fact, the reason that ¥y and 2, are not closed is that
the umbilics would locally form the vertex to a cone over a torus for ¥y and
the vertex Lo a cone over S1’s for.E]‘-]. Thus closing 3 in M only adds the

umhilics.

The second thing ol interest aboul wmbilics is that they come in two
types. The first type of umbilic is called elliptic. It appears as the generic
perturbation of a ramified cover of degree two over a surface. Similar to folds

we can give a local normal form by

Sleoy, zow) = (e, y. 25 —w® + 2z + yw, 2w — 30 + yz).
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The second type of umbilic is a hyperbolic umbilic and its tocal normal form
is given by
jl(ﬂ;’ y) 27 T'U) = (9:? y’ 22 + y‘lU’ w2 + mz)

and appears as the generic perturbation of a ‘double fold” along surface. Be-
cause there ave two types ol umbilics it is desirable to have some way to
separate them other than from their local forms. One method is to under-
stand their local mapping rings. Since this will only be necessary for poly-
nomial maps between R¥s we will only give the definition in this case. If

Flasy, zow) = (1, fay fa, fa) then the local mapping ring M, is given by
ﬂ/ff:H[? vx“’]/(/laj?a /31/3)

where Rlw,y.z,w] is the polynomial algebra in variables 2,y,2 and w and

(Sre fas fa. fy) ds the ideal gehe.t;é\..tzé.c.[.by the fi’s. In the elliptic case
l"’:[_f o~ H[ w] — w?, zw)
and in the hvperbolic case .
My ﬁH{",ur]/(,z, w?)
If fla,y, zow) = Loy, j:-;(.fr,y,'3.,3;.'['_..)."-_../7_:,.(.}1'7y.J z,w)) and the mapping ring is 4-

dimensional over B then with 'o'.nl';s". the further condition that |dF| £ 0 at 0,

, 24 ﬂ—), we gel that there are local coordinates

. ,_’ BY ”
where (2,1 52 Puw

so that f is locally given ].)y either the normal form of the elliptic umbilic or
the hyperbolic umbilic. It should be pointed out that the rank 3-singularities

near an umbilic do not distinguish between the two iypes because both sets

are cones over a torus with the umbilie point as the vertex.
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With just these basics about singularities between 4-manifolds we will be
able to show exactly when wmbilics are really necessary and when they can
be removed, Remembering that umbilics are stable we can see that it does
not suffice to perturh the mappings to remove them. It is natural to ask if we
can isotopy the map (o eliminate them and certainly the results of the first
two sections Lells us that this is not the case in general. In fact it will turn
out that the ouly obstruction to removing rank two degeneracy is the relative

Pontryagin number of a map. This is essentially the main theorem of the next

section.
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Section 6

MAIN THEOREM

In this chapter we will state the main result and its corollaries and give
their prools dependent on the results in the following three sections. Again
take [0 — N o be a smooth map between two smooth closed 4-manifolds.

Then we get the

Theorem IV: [ s isolopic lo « map g with exactly |(deg f)pn — par| wmbilics

all of index 1 or all of index —1 and no other rank two degeneracies.

Remark: By the results ol seciion 2 we know that all the indices must be
ol the same sigu. Also from the proof it is clear thal we can insist that all the

umbilics be hyperbolic. From this we get the immediate

Corollary: The nuber {deg[)pn — pag is the exact obstruction to removing

rank 2 degeneracy hy isotopy.

II'we start with two smooth manifolds M and N that are homeomorphic

then we also get the
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Corollary: There is a smooth map f: M — N that is everywhere rank 3 or

higher.

Remark: Because the set of maps that are rank 3 or greater is an open
subsel of the sel of maps we know that [ is then isotopic to a map with Morin
singularities precisely along an embedded 3-dimensional submanifold and no
other singularities.

Proof (of the second corollary}: The space of smooth maps is dense in the
space ol continuous maps and thus we can apply the preceding covollary to a
simoolh map cose 1o a homeomorphism, But the first Pontryagin number is
a Lopological invariant and the degree will still be one. Thus the obstruction
vanishes and the result follows.

Proof (ol theorem): We know that f is isotopic to a stable map. Thus
assunie it was stable in the beginning. Now by the work in section 6 we can
take all umbilics to be hyperbolic. Then in section 7 we show that we can
isotope f so thal there is a curve between any two umbilics that does not
cross any olher singularities.  Lastly in section 8 we show that under such
conditions we can isotope further (o pairwise cancel the hyperbolic umbilics
with indices of opposite sign. Note that it may be necessary after cancelling
a pair of umbilics to repeal the process of section 7. As the work of section
T only chianges the lold locus this does not create any new umbilics. Thus we
cancel wntil there are only wmbilics ol one sign.  As they are all hyperbolic

umbilics their index 15 either £1.

[n the next three sections we will prove the results needed in this proof.
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Although the results are only used to prove the theorem they also shed further

light on the fold locus and more generally, all the Morin singularities.




Section 7

CONVERSION OF UMBILICS

In thus chapter we show that up to local isotopy elliptic and hyperbolic
umbilics are interchangeable. Heuristically this can be done by showing the
existence of a map f: R* — R* which outside a ball in the domain looks like
the elliptic umbilic and near the origin looks Hke the hyperbolic umbilic. Then
m local coordinates we can take an elliptic umbilic and take the straight line
1isolopy to this map. It is clear from the proof that going from hyperbolic to

elliptic umbilics is shnilar. From this we will get the following result.

Theorem V:  (Hven a stable map g : M -~ N there is an isotopic map h

that has only wnbilics of one type,

fn the prool of the main theorem we convert all elliptic umbilics to hy-
perbolic umbiics.
Proof: The real problem is to show that this can be done in a neigh-

horhood of cach nmbilic. Thus the problem is to show the existence of f

above. The idea is Lo study the straight line homotopy of a positive elliptic to
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a positive hyperbolic. To this end define

Py s, w, ay = (w, yag(ma Y, %, (!.), h‘(ﬂ;} Y, ¥, w, (5))7
2

gla,y, z0,a) = a(z? — w0 + 2z +yw) + (1 — a)(2? + yw),

by, z,w,a) = a(22w — 2w + yz) + (1 — a)(w? + 2z),

as maps [rom R x {0, +o0) to B and [, (2, y, z,w) = [z, y,2,w,a) as a map

from R? to B! [or fixed a. For lixed a df, has rank 2 if and only if

w2z 4 )+ (1 —a){2z) =10

aly —2w) + (1 —a)ly) =0

a(Zw+y)+ ({1 —a){z) =0

a{2:

<)
I
,.
=
+
il
-
|
=
2
=
™
N
=
=
[
fam)

By simple linear algebra this yields @ = y = z = w = 0. Thus we further
get that /' 0 B® — R is rank two exactly when @ = ¢ = z = w = 0 and

a is arbitrary. Because these terms are linear in @, y, = and w we also get

thalt [ # 0 Tor Fa,y, 5w} = (S, Siale Buls 2uds) This gives one of
the two conditions [rom section 5 to guarantee that the rank two points are

umbilics.

If we know that the local mapping ring is 4-cdimensional over R we get

the other condition. Then we know that each point is either an elliptic or




hyperbolic umbitic., But the local mapping ring of f, is given as

My, = Rz, w]/ (27 — aw?, 2azw + (1 — a)w?).

Jall [ = (27 —aw?. 2azw+() —a)w?). For example, « = 0 gives R[z,w]/(22, w?),

the expected local mapping ring of a hyperbolic umbilic.

By the homogeueity of g and A in @, y, z and w, [ is generated, at most,
by two honiogeneous quadratic terms. Thus the dimension of M, > 4 and
My, is. al least, genevated by {1.z.w,olher quadratic term}. Now the claim
s that My has mull,iplic-.il:_y.:—‘l provided (I — a)* # 4a® which is true except
at one poinl ay € [0, 1] . {11|'IC‘.I'(-‘SUH‘ 1s immediate in the two cases ¢ = ( or
I'so assume a # 0 or [, We show that {l,z,w, zw} is a basis for M;, . Take
w{z? —ww?}, w2azw+ (1 —a)w?], and z[2azw0+ (1 —a)w?] € I. Now these three
elements are in the vector space spanned by {z*w, zw*, w?} and generate it if
and only il they are linearly independent. This occurs when {1 — a)? # 4a°

Further note that =(z? — aw?) € [ then gives that 2* ¢ . But w? = 24 7w

oy
2q°

and =¥ = 2=z shows that dimgM;, < 4 provided (1 — )* # 4a®. Thus
dimgdy, = 1 unless {1 — a)* = 4¢”. Now we know also that the umbilics
arc stable and thus all umbilic points « < ap are hyperbolic umbilics and all
vimbilic points @ > ay are elliptic umbilics. Figure 7.1 sums up the acquired
imlormalion and gives the picture of the embedded R?.

The proolis completed al this poinl by embedding an R* in R* x R that
i sulliciently vertical so that 7 restricted to it is rank 3 or higher except when

it crosses Lhe line © =y = = = w = 0. Near this line it should be entirely

contained in a fixed B x {a*}, with «* < ag. Outside some compact set of
k
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Figure 7.1:

R* x R it should be entirely contained in a fixed R* x {a} with @ > ag. Then
restricting ' to this embedded R* gives a map f : R* — R* with the desired

properties.

A couple of comments are in order. First it is clear that converting to
elliptic umbilics 1s no different. More important is the statement that an
umbilic has coordinates where it looks like its normal form but only perhaps
for a small portion of the domain R*. Thus it may only be possible to give f
on some small subset of R* which does not contain B. The point here is that
this 1s not the case because the normal forms for both umbilics are in a sense
self-similar. If f: B(e) — R* is given by f(z,y,2,w) = (h1,h2,h3,h4)AWhere
each h; is homogeneous in the variables z, y, z, and w and B(e) is an e-ball

in R* then through a linear change of coordinates in both the image and the

domain f can be defined by the same equations but on any size ball desired.
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But clearly all the f,’s are of this form.

Now the straight line homotopy between f; and f gives the local is.otdpy_

N .

[rom a map with an clliptic umbilic to one with a hyperbolic umbilic and the =

theorem loliows.

As mentioned in the introduction it would be interesting to know how
this allects the Maorin singularities in a neighborhood of the umbilics. The?
total rank 3 degeneracy is a cone over a torus but the higher order Morin
singulavities are different and it is unclear how this difference comes about. In

the next two sections we will be taking similar transformations of f and we

will be able to describe the effects on the Morin singularities.




Section 8

CONNECTIVITY OF THE REGULAR

LOCUS

The essence ol this chapter is that by an isotopy of a stable map hetween
two oriented 4-manifolds one can fix it so that there is only one component
of regular points where the map is orientation preserving and one where it is
orientation reversing. I'his procedure will give us the necessary curve between
points in the proof of the main theorem but is also of independent interest as
mentioned in the introduction. In the case that there is no rank two degeneracy
bul the map is still stable we get that the complement of the submanifold

vepresenting the Morvin singuiarities, the rank 3 degeneracies, only divides the

manifoid into. al most, two picces. 1t should also be pointed out that this
connection can bhe done regardless of the dimension of the manifolds. The

more general prool would [ollow in exactly the same manner.
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Thus assuime thal we have a stable map [ : M — N between two 4-

manifolds. Then we get the

Theorem V:  There is an isolopy of [ to « map g fiving all lower order -

31

Movin singularitics and the rank two points and where the complement of all -~

singularilies has ol most two components. If theve is only one component then

the map g is an tmmersion.

Although we keep fixed the lower order Morin singularities of f the map
g will have new rank 3 singularities.

First we shall take the local case where we have a map
o ) = it A -
/(i‘ Iy veeydd ,.|) = (.i.] EnalS N o TS R )

In this case we show that we can give a hounded isotopy of f to a map #' where
the components ol the fold locus of I are connected. Essentialty the fold locus
of i a connected sum of {w; = —1} and {z; = 1}, the fold components of

I

Lemma 8.1 /i ¢ > 0. There is an I isolopic to [ and equal to | outside
@ ball. This I has the Jurlther property that the complement of the space of

singularilies hias fwo componends.

Prool{of lemma):

IFist fix a smooth R-parameterized {amily f, of functions from R to R

witl the loliowing properties:

Lo fula) = % = Baw for o] < 0 (0 > mea(0, V3a),




2. fo(z) = 2 - 3z for [z| > ¢ for (¢ 5\/37),

3. fal@) #0,0 <z < 4

3
§dex - 3X

A
.F(x)=13-—3°\¥

Figure 8.1:

Note that it is necessary to have ¢ — 3¢ > #° — 348 to satisfy condition

3. Also note that ¢ can be made as close to /3 as desired. Now define

F(:cl, iy 1,'4) = (fp(TZ)(wl)’ gy, T3, :1}'4)

2

where 7 = 23 + 23 + 2} and p: R* — R is any smooth function given by the

following properties: .
1. there is an ro > 0 with p(r) = —efor r < ry:

2. there is an Ry > 1 + ¢ with p(r) = 1 for r > Ry;

3. p'(r) = 0 for all r.
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Essentially we take p(r) = max(min(—c,r — €),1) smoothed out near r = 0
and r =1+ ¢

Under these conditions £ has vank > 3 with equality precisely when
Foery ) = 0. From the definition of f, this is only possible when = p(r?) is
nonnegative and then @, = +£v/3a. I we take the line y = 23 = 2, = 0 we have
a 1s negative and thus there are now only regular points and we have a function
which we can isolopy to which has joined the original two components. Also
by the definition of p we see that, oulside of some compact set, £ is the same
as f. In elfect we liave taken an isotopy which has given a connected sum
of the two planes {&) = 1} and {a; = ~1} and given a tunnel between the
two components that had previously been seperated. Note that we have not
crealed any other components of the complement of the rank 3 points. We
see this because there are only zero, one, or two fold points over each point
ol the (g, rm. g )-plane. The poiuts with two are the extensions of the old
components and the points with only one are where they are connected. With
this normal [orm connection we can now proceed to the prool of the theorem.

Proof{of theorem):

Assume Lhat we have a map with the fewest possible number of compo-
nents of the complement of the rank 3 points hut that the number is greater
than 2. Then without loss of generality we can assume that there must be at
least two components where the map [ is orientation preserving. Take a point
P i one component and ¢ in the olther.

Now take a curve, ¢ : I - M, from p to ¢ whose singularities are a

minimum number of fold points. This is possible because the other singularities

33




A exdended € &)
f/ \
," Z J

Oﬁg‘u\ al ¢ (_ﬂl

e :mqge O'F b"'H"

\ —

2

Figure 8.2:

are codimensionl two or higher. Further assume that there are only two fold
points, f; and f,. If this is not the case we can take two points that are closer
on ¢(l) whereit is ¢ : {a,b) = J C I — M,c(a) = f1,c(b) = f3, as a curve from
J1 to fa through regular points of M. Clearly we can take ¢ where ¢(J) and
foce(J) are embedded by perturbing ¢ if necessary. Finally assume that the
reflection through the fold extends ¢ smoothly at the fold. This can be done
by a C° perturbation. The point of this is that we want ¢ to exactly come into

the fold locus in the normal direction to the fold.

With these conditions we define a new curve ¢ in M extending ¢ to the
preimage of f o ¢(J). Geometrically we extend ¢ by lifting the image of ¢
in N to the other leaf of the fold. Take any nonsingular parameterization

¢: K — M. The picture is given by Figure 8.2.

This can be thought of merely as maps of curves and then by suppressing
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Figure 8.3:

the other three directions we get Figure 8.3.

Note that a and b will be points in the same component as p and ¢

respectively. Thus it suffices to connect them.

Now the point is that we continue this extension until one of four things
happens. Either this closes into a loop, or hoth extensions fold again, or one
extension folds and the other exits, or both exit. By ‘exit’ we mean that to

extend the curve we would have to leave the preimage of f o &(J).
See Figures 8.4 to 8.7.
In each case we have chosen an ¢ and a b. In the first case note that we

already have a curve from a to b without folds. The point in the last three

cases is that we can apply the local normal form connection to connect them.

The idea is that each of them has a region which looks like Figure 8.9.

Although initially this may not be true for Figure 8.5, Figure 8.8 describes an




Figure 8.4:

isotopy where this is the case in a neighborhood of the curve.

Now it remains to show that near &K’) = L and f o & K’) = L there are
local coordinates so that f looks like the local normal form where K’ is the
subinterval of K which parameterizes ¢ in the region described in Figure 8.9.
It 15 enough to show the z;-coordinate part and then extend to the normal
bundle. The fact that we can coordinatize so that fi(z) = z°—3z is immediate.

The extension to the normal bundle is slightly more difficult.

We already know that we have coordinates near both f; and £, so that

Figure 8.5:
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Figure 8.6
Figure 8.7
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Figure 8.8:

Figure 8.9:




fla,y,z,w) = (2%, y, z,w) from section 3 where both f; and JF(fi) would cors 7

respond to 0 € R'. Ignoring the last three coordinates we can give an explicit
change of coordinates so that f(a,y, z,w) = (&% — 32,y, 2,w) with f; corre-
sponding to {(—~1)%,0,0,0) and f(/;) corresponding to ((—1)712,0,0,0). Take

the original coordinate that gave x = 3?2

where z is the coordinate for N
and @ for M. Il we are near f; we take the change of coordinates given by
o= o (=2 ()Y and o= 2 + (=1 This clearly gives
w=u'— 3¢ and can he inverted. Thus we have coordinates near the f; and
S0 ol the desived Torm.

The trick now is to extend the coordinates in N and then lift them to M
by f. This works away from the folds points because f is nonsingular there.
Of course we will have a three valued function but the choices are clear by
extension from the ends. We do have to take care to make sure that @ = 0
cnds up seperating the images ol @ and b so that we can apply the earlier result
to the local normal form. But we can now extend to L the a-coordinate by
choosing any point between f(a) and f() along I, and assigning to it the value
0. Now take any smooth extension. Note that g in the lemma can be taken
arbitvarily near | lromi above and thus we will be able to apply the lemma.

[t remains Lo show thal we can extend the coordinates in the normal
divections to L. We show thal we can give normal bundle coordinates and then
since the normal bundle is trivial we are done. Thus take any trivialization
ol Lhe normal bundle along L. Then altering the trivialization so that it is

compalible with the ends gives the desired result, Take U C N, ¢ : U — RY,

to be the coordinate chart that gave the local normal form f(z,y,z,w) =




Figure 8.10:

(2*,y, z,w). Further take v : p, — R* where 7, 18 any normal bundle to L.
Assume both ¢ and v take the orientation on N to the standard orientation
of R* and further assume that v o ¢~1(x,0,0,0) = (2,0,0,0) where we assume
that this curve corresponds to L.

In Figure 8.10 we see the fixed Z planes for 5y, compared to the vertical
fixed z-planes for U. The point is to flatten these out as in Figure 8.11.

Take

A(z,7,z,%) = pov™(Z,7, Z,0).

Now we would like to take
T = L= p(@)|(&,5,7, ) + p(a) Az, 5,7, )

as an intermediate chart for the normal bundle between I/ and n; where we

discard the trivialization of ¢ and v where they do not match with 7. As
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Figure 8.11:
always we will take a lunction p which in a neighborhood about f(f;) is 0 and

stinilarly for sone point on L that is not f(f;) we will take p to be 1. This all

works provided 7' is a trivialization. Thus we need d7" # 0. But
AT = [l = p(F)) Ly + pl3)dA + P(2)[A — (2,7, %, @)

At (#,0.0,0) we have A = (.0,0.0) and thus dT = [1 — p(2)|14 + p(2)dA. But
this is nonsingular provided dA does not have negative eigenvalues which can
he guarantecd since hoth ¢ and ¢ were orientation preserving charts. Although
it is not the case that there will be no negative eigenvalues we can always
multiply pairs of coordinates by —1 if necessary so there will be no negative
eigenvalues. Ouce this is the case we sce that d7'v = 0 implies dAv = {1 ——;(1_%—)]0
giving the desived result provided p(¥) # 0. On the other hand p(z) = 0 gives

Iy, she identity on R'. With this we have a coordinate chart which gives the

transition from {7 o y; and the rest [ollows. Note that the calculation of dT
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was only along L and thus we may have to take a smaller neighborhood of L
than either {7 or .

Onece in Lhis nornmal form we apply the vesults on the lemma to finish the
prool. Again note that there is nothing really special in this argument about

being in dimension 4.




Section 9

CANCELLATION

In this section we prove the final step in the main theorem. Here we
cancel oppositely signed hyperbolic umbilics that have a path between them
which does not intersect any other singularities. The ideas were inspired by
the work in section 1 on perturbing ramified covers to maps with isolated
rank two points. We do similar things here except that we are working with

serturbations of & double fold [{a,y, z.w0) = (2, y, 2%, w?).
J o )LJ” * ’g)f? 3

Theorem VI: Lol [ M — N be a map with hyperbolic umbilics at p; € M
with index (—1), (1 = 1,2). Assumc that there is a curve between p, and
po which docs ollierwise meel the locus of singularities of f. Then taking an
appropriate curve ¢ la bl = 1 — M with ola) = py and c(b) = py there is
an wsotopy of |, fiving [ ouwlside of a neighborhood of I, to @ map that has no
runk two degencrucy in this neighborhood . In other words, the umbilics have

been cancelled.

Belore we cancel umbilics we give a lenuna necessary for the proof.




Lemma 9.1 Assume that (A;(x,y), Bila,y), (1 = 1,2), wre two smooth func-

tons from R* io R? which are the same outside of some compact set J. Fur-

ther asswme thal |A, B < M < 1 for some positive constant M. Take
filayy, z,w) = (@, y, 2% + Az, y)w,w? + Bi(z,y)z). Then there is an isotopy
Jrom fi defined on R* x B(K), with K > 3M?%, to a funclion F with the

Jollowing propertics:
Lo Py, zow) = [i(ey, zow) = Lle,y, z,w) for (v,y, 2,w) € J x B(K),
Jothcre s an > 0 widh Flayy, 2 e) = folae,y, z,w) for
(w,y,z,w) € R? x Ble),
g there s a positive 0 < K so thal Fla,y, z,w) = fi(z,y, z,w) for
(., z.0) € RE X {B(K)\ B(H)},
4. has rank Two degencracy only when Ay = By = 0 and z = w = 0.

I particular, if there ave no poinis (v,y) where Ay = By = 0 then F has no

rank lwo degeneraecy.

Note that we have taken B(R) o he the 2-hall of vadius R.
Prool(of lemma):
Take p(r) to be any smooth function from R to R that has the following

properties:

L. there is an e > 0 50 that p(v) = 0 lor r < ¢,

2. there is a 0 < A so that p(r) = 1 lor + > @, and




3. 0<p'(v) € i
Such a [unction exists provided K > 3M?.
Now define
Plesy, o) = (09,2 4 [ + (1= p)Asko,w? 4 [pBy + (1 — )Bal2)
where p = p(z7 + w?). F is rank two il and only if
2+ (AL — 43)(2zwp") = 0

A+ (1 — Ay + (A — A)2uwPp) =0
By + (1= p) By + (3 — Ba)(2:%0) = 0
2w —+ (.’31 — Bg)(g.?’b'_}f_)f) =10,

The claim then lollows by showing thal this is the case only when w =2z =0
and Ay y) = By{a,y) = 0. Il w =2 =0and Ay(e,y) = Balz,y) = 0 we get
rank two because p = p’ = 0. Thus assume that the rank is two. If 22 +w? < ¢
then we gel p = 0. w =2 =0 and Ay(o,y) = Ba(w,y) = 0. If w = 0 we get
= =0 from the lirst equation and thus 2% +w? < ¢, The same is true for z = 0,
Thus assume that z,w # 0. Also nole that Ay = A, gives 2 = 0 and similarly

for the By’s. Thus assume that A # A, and By # By. Then we get that
L (A — Agwp’ = 0.

By eliminating w from this and

[pAy + (L= p)As) + (A~ A)(2wp') = 0
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we pet
—
(_/111 — r{lz)[fiz + (/11 — /42)’0] )

!

p:

But this gives

1 9

i

"N >
P T A+ (= Al — 3

which contradicts

Thus the lemma is shown,

Wity this we are now in a position Lo cancel hyperbolic umbilies,

Prool{ol theorem):

Because the pi's are umbilics we know that there are coordinates about p;
and f{p;) so that [{e,y, z0w) = (vy, 2+ ow, w?+yz). Now we wish to choose
a curve connecting py and py which does not meet the locus of singularities of
[ except at the endpoints. Further require that the curve in the coordinates
about each p; is entirely contained within the (z,y)-plane and its image by f
s emibedded in N. Note that this is possible il f(p¢) £ f(p,) and that this is
trne generically,

The problent of taking the curve within the (&, y)-plane is the reason that
we work with hyperbolic umbilics as opposed to eiliptic umbilics. In each case
the vank 3 singularities locally are given by a cone over a torus. This cuts
the complement into two conmnecled components. In the case of hyperbolic

ambilics both components contain portions of the (2, y)-plane. This is not the

case lor the clliptic umbilics. The equations [or the lold locus are given by




vy = zw for the hyperbolics and by 2% 4 y* = 2% + w? for the elliptics. If
= w = 0 we have 2y = 0 and 2% 4+ y* = 0 and thus the fold locus restricted
to the (=, y)-planc is given by the coordinate axes in the first case and only by
a point in the second. But clearly a point does not seperate the components.
Thus we may have Lo take smaller coordinate charts to get the curve where
we want it. By a change of coordinates in the (a,y)-plane both in M and N
we can [urther insist that our curve is the a-axis and also that the p; go to
((£1),0,0,0). The ellects of such a change is that our normal forms hecome
fla,y, =) = (&, y, 22 4+ A, yw, w? + Bla,y)z) for some [unctions A and B
which stilt only have simultaneous zeros when (2,y) = (&1, 0}.

Now we are in the same position as in section 7 where we extend the
coordinates about the image of the curve in N. On the other hand, in section
7 we then used the normal lorm, [(e.y, z,w) = (@ — 32,y,z,w), to lift the
coordinates back nupstairs. This worked becaunse it was nonsingular outside of
where it was already defined. We can do Lhe saime thing here once we extend
the function [, Al present, we only have [ defined in small neighborhoods
aboul ((41),0.0.0). As we already have Lhe general form of it is only nec-
essary Lo exlend Lthe A and f3’s. The only condition of the extension that
is needed 1s that they do not vanish. We need this to have a nonsingular
map. This can be extended provided the (A, £2)'s on each end are in the same
quadrant. Because the (z,10) coordinates on the ends are still independent in
M we can adjust by (£,w) = (&=, £w) with an appropriate choice of signs

to make A, 3 in the same quadrant. Now we can extend. With our function

Ty oow) = (e, 22 Al y)w, w4 B, y)2) we can now lift coordinates to
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M as in section 7. As always this can only be done in the small neighborhood

about the z-axis W

we can apply [he le

theoren [ollows.
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