Conformal measures in polynomial dynamics

A Dissertation Presented
by
Eduardo Almeida Prado

to

The Graduate School
in Partial Fulfillinent of the Requirements
for the Degree of
Doctor of Philosophy
in
Mathematics

State University of New York
at
Stony Brook

August 1995




State University of New York
at Stony Brook

The Graduate School

Eduardo Almeida Prado

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of the dissertation.

Pl gl

Mikhgll Lyubich ~
Associate Professor of Mathematics
Dissertation Director

John Milnor
Distinguished Professor of Mathematics
Chairman of Defense

Associate Professor of Mathematics

—
1! ' AFotkért Tangerman
Visiting Assistant Professor

Department of Applied Mathematics and Statistics
Qutside Member

—

This dissertation is accepted by the Graduate School.

e Mok

Graduate School




Abstract of the Dissertation
Conformal measures in polynomial dynamics
by
Eduardo Almeida Prado
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1995

We study some geometric and analytic properties of polynomial
dynamical system using conformal measures.

Our main results are:

1) We show that conformal measures are ergodic for polyno-
mials having definite complex bounds. That implies ergodicity of
conformal measures for all real quadratic polynomials.

2) We show that for certain classes of infinitely renormalizable
polynomials (namely Sullivan and Lyubich polynomial), the infi-
mum of all exponents for which there exists a conformal measure is

equal to the Hausdor{T dimension of the Julia set of the polynomial

in consideration.




3) We show that for a certain class C of generalized polynomial-
like maps (which includes Yoccoz, Lyubich, Sullivan and Fibonacci
generalized polynomial-like map), the Teichmiiller pseudo-distance
is a distance. In other words, we show that if two generalized
polynomia-l—like maps in C are quasi-conformally conjugated by

conjugacies having arbitrarily small dilatation, then those maps

are holomorphically conjugated.
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Chapter 1

Introduction

Our goal in this work is to study geometric and analytic properties of
polynomial (or polynomial-like) dynamical systems using conformal measures.
Let f : C — C be a polynomial. Sullivan showed in [Sul80] that it
is possible to construct a conformal measure for f with support on J(f), the
Julia set of f, for at least one positive exponent §. By a conformal measure {or
§5-conformal measure, to be more precise) we understand a Borel probability

measure p sabisfying the following condition:

p(r(A) = [ DS du(2)

whenever f restricted to the set A is one to one.

We say that p is ergodic if u(X) = 0 or g(X) = 1 whenever we have
X = f~1(X). Notice that usually when one talks about ergodicity of a measure
it is assumed that the measure is invariant. In our case, due to the definition
of conformal measure we are not dealing with an invariant measure but rather

a quasi-invariant measure.




A quadratic polynomial is a Yoccoz polynomial if it is at most finitely
many times renormalizable, without indifferent periodic points. A Lyubich
polynomial is an infinitely many times renormalizable quadratic polynomial
with sufficiently high combinatorics as described in [Lyu93] (see a precise def-
inition of such Isolynomials in Subsection 2.2.2). A real unimodal polynomial

is a polynomial of the form f(z) = z' 4+ ¢ where ! is even and ¢ is real.

QOur goal in Chapter 3 is to show the following:

Theorem 1 Let f be either a Yoccoz, a Lyubich or a real unimodal infinitely

many times renormalizable polynomial. Let p be any conformal measure for

f. Then p is ergodic.

If we remember that any real quadratic polynomial can be holomorphi-
cally conjugate to a polynomial of the form f(z) = 2% + ¢, ¢ real, then we get

the following Corollary from the previous Theorem:

Corollary 2 If f is any real quadratic polynomial and p is any conformal

measure for [, then u is ergodic.

Ergodicity of conformal measures is known if f is expanding on J(f) (see
[Bow75], [Sul80] and [Wal78). If J(f) is disconnected {and f has just one
critical point) then f is an expanding polynomial when restricted to J(f). So
we will assume that J(f) is connected.

The situation studied in Chapter 3 is the complex counterpart for the er-

godicity result in [BL91] where the Lebesgue measure is showed to be ergodic




under S-unimodal maps.

Conformal measures are one of the tools for the study of the Hausdorft
dimension of Julia sets. From the work of Bowen, Sullivan, and Walters (see
[Bow75], [Su180]- and [Wal78]) we know that if f is expanding on J(f), then
the Hausdorff measure (which is finite and non-zero) is the only conformal
measure on J(f). In other words, there exists only one exponent ¢ for which a
§-conformal measure for f exists. This § is the Hausdorff dimension of J( f)
Denker and Urbariski showed in [DU91] (with a technical problem solved in
[Prz93]) that the hyperbolic dimension of the Julia set of any rational function

f is equal to inf{§ > 0:3 &§ — conformal measure for f} (see section 4.1).

Let us call this last quantity ;..

Urbaniski showed in [Urb94] that if f is a rational function with no recur-
rent critical point then the Hausdorff dimension of the Julia set of f is equal
to 8;s. In this case critical points are allowed to be inside J(f). In [Prz93]
Przytycki showed this same result if f is a non-renormalizable quadratic poly-
nomial. The goal of Chapter 4 is to extend Przytycki’s result to some infinitely
renormalizable polynomials: the Lyubich polynomials (see Section 2.2.2 for
the definition of such polynomials) and Sullivan polynomials (real infinitely
renormalizable quadratic polynomials with bounded combinatorics, see sec-

tion 2.2.3). We use Przytycki’s techniques in order to do that. In other words

we show the following:

Theorem 3 For any Lyubich or Sullivan polynomial f we have the following




equality:
inf{8 : 3 § — conformal measure for f} = HD(J(f})},

where ID(J(f)) stands for the Hausdorff dimension of the Julia set of f.

We will also give a more geometric proof of the Denker-Urbanski Theorem
mentioned above concerning hyperbolic dimension and conformal measures for
the specific case of Lyubich and Sullivan polynomials (see section 4.1).

In order to prove the renormalization conjecture for infinitely renormal-
izable real polynomials of bounded combinatorics, Sullivan in [Sul92] used a
space of analytic maps where the renormalization operator is defined: the
space of polynomial-like maps of degree two and bounded combinatorics mod-
ulo holomorphic conjugacies (see [DH85] and [dMvS93]). In this space it is
possible to define a distance, dr called the Teichmiiller distance. This distance
measures how far two polynomial-like maps are from being holomorphically

conjugated (see Definition 5.1.4).

It is obvious from the definition that the Teichmiiller distance is a pseudo-
distance. It is not obvious that this pseudo-distance is actually a distance. To
prove this is a distance it is necessary to show that if two polynomial-like maps
f and g are such that dr(f,g) = 0 then they are holomorphically conjugated
(this can be viewed as a rigidity problem). Sullivan showed in [Sul92] that
for real polynomials with connected Julia set this is true. He makes use of
external classes of polynomial-like maps (as defined in [DHS85]) to reduce the

original rigidity problem to a rigidity problem of expanding maps of the circle,




previously studied in [SS85]. The last result concerning expanding maps of
the circle depends on the theory of Thermodynamical formalism.

In Chapter 5 we will show that the Teichmiiller metric for a class C of
generalized polynomial-like maps (see Definition 5.1.1) is actually a metric, as
in the case Sulli;\ra,n studied. The class C contains several important example
of generalized polynomial-like maps, namely: Yoccoz, Lyubich, Sullivan and

Fibonnaci. We will show the following:

Theorem 4 Let [ and g be two (generalized) polynomial-like maps belonging
to the class C. Suppose that dr(f,g) = 0. Then f and g are conformally

conjugate on a neighborhood of their Julia sets.

In our proof we can not use external arguments {like external classes). In-
stead we use hyperbolic sets inside the Julia sets of our generalized polynomial-
like maps. Those hyperbolic sets will allow us to use our main analytic tool,
namely Sullivan’s rigidity Theorem for non-linear analytic repellers stated in
Section 2.3.2.

Let us denote by m the probability measure of maximal entropy for the
system f : J(f) — J(f). In [Lyu83] Lyubich showed how to construct a
maximal entropy measure m for f : J(f) — J(f) for any rational function
f. Zdunik classified in [Zdu90] exactly when HD(m) = HD(J(f)) and when
HD(m) < HD(J(f)). The following is a particular case of Zdunik’s result if
we consider f as a polynomial. It is however an extension of Zdunik’s result if

_is a generalized polynomial-like map. The proof follows from the methods




Corollary 5 If f belongs to the class C and m is the measure of mazimal

entropy for f, then HD(m) < HD{J(f)).




Chapter 2

Background material

2.1 Construction of Conformal Measures

We will describe how to obtain conformal measures with support on J(f)
as proposed in [Sul80]. This construction was first described in [Pat76] for
Fuchsian groups (see also [Nic9l]). We will fix our attention o quadratic
polyﬂomia,ls .

Let f : C — C be a quadratic polynomial and let z ¢ J{f). Define the
following function:

1
#D=2 2 BT

There exists do = inf{§ : ¢s(2) < oo}. One can show that 0 < & < 2.
The number &, is called the critical exponent of the map f. It’s easy to see
that if § < 8o then ¢s(z) = oo and if § > & then ¢5(z) < co. We say that [ is

of divergence type if ¢s,(2) = oo and of convergence type if ¢5,(z) < oc.

Now let us consider the following family of probability measures:




1
Ym0 Zowef~n(z) B m)P e

"= $s(2)

where m,, is the probability measure concentrated on w and d > &.

If fis of divergence type, then any weak limit of v5 as § — éo is a
conformal measure of exponent & concentrated on the Julia set of f.

If f is of convergence type, then one can find h : R — R, a continuous,
monotone function with a proper asymptotic behavior near infinity (see [Nic91]

for details on that) such that the new function

7 — 1 Y (w §

n>0 we f—(z)

has the same critical exponent, but with the divergence property at do. Simi-
larly to what was done before, we can create a family of probability measures

i such that any weak limit of such family as § — & is a conformal measure

of exponent &, concentrated on the Julia set of f.

2.2 TRenormalization and combinatorics

2.2.1 Yoccoz polynomials

We will briefly describe how to construct the Yoccoz puzzle pieces for a

quadratic polynomial. See [Hub] and {Mil91] for a complete exposition of such

construction.

In this section we will just consider quadratic polynomials f with repelling

periodic points.




We say that g : U — U' is a quadratic — like map if it is a double branched
covering and U and U/’ are open topological discs with U properly contained in
U'. In addition to that we require the filled in Julia set of g to be connected.
By filled in Julia set of g we understand the set {z € U : g"(2) is defined for
all natural num';)ers n}. There are two fixed points of ¢ inside its filled in Julia
set. One of them, the dividing fixed point, disconnects the filled in Julia set
of ¢ in more than one connected component. The other does not. Usually the
dividing fixed point is denoted by .

Remember that f is renormalizable if there exist open topological discs
U c U with 0 ¢ U with R(f) : U — U’ being a quadratic-like map,
R(f) = f¥|lv, with k the smallest natural number bigger than 1 satisfying
this statement (we call k the period of renormalization). Here R(f) stands for
the renormalization of f. We can ask whether R{f) is renormalizable or not
and then define renormalizations of f of higher orders. So, each renormaliza-
tion of f defines a quadratic polynomial-like map.

Let f be a degree two non-renormalizable polynomial and let G' be the
Green function of the filled Julia set of f. There are g external rays landing
at the dividing fixed point of f, where ¢ > 2. The ¢ Yoccoz puzzle pieces of
depth zero are the components of the topological disc defined by G(z) < G,
where (g is any fixed positive constant, cut along the g external rays landing
at the dividing fixed points. We denote Y°(z) the puzzle piece of depth zero
containing =. We define the puzzle pieces of depth n as being the connected
components of the pre-images of any puzzle piece of depth zero under f".

Again, if z is an element of a given puzzle piece of depth n we denote such



puzzle piece by Y"(z).

Suppose now that f is at most finitely renormalizable without indifferent
periodic points. Let a be the dividing fixed point of the last renormalization
of f. Let G be the Green function of the filled in Julia set of f. In that
case we define tile puzzle pieces of depth zero as being the components of the
topological disc G(z) < Go, G a positive constant, cut along the rays landing
at all points of the f-periodic orbit of . As before we define the puzzle pieces
of depth n as being the connected components of the pre-images under foof
the puzzle pieces of depth zero. The puzzle piece at depth n containing x is
denoted by Y™(z).

We will consider the Yoccoz puzzle pieces as open topological discs. Under
this consideration the Yoccoz partition will be well defined over the Julia set
of the polynomial f minus the set of pre-images of the dividing fixed point of
the last renormalization of f (which is f itself in the non-renormalizable case).

A quadratic polynomial is a Yoccoz polynomial if it is at most finitely
renormalizable without indifferent periodic points. We will need the following

result:

Theorem 2.2.1 (Yoccoz) If fis a Yoccoz polynomial then (50 Y™ (z) = {z}

for any z where the Yoccoz partition is defined.

2.2.2 Lyubich polynomials

Let us pass to the second class of polynomials that we will be considering,

namely the Lyubich polynomials. See [Lyu93] for a detailed exposition on this

10




matter. We will need some technical definitions.

Let us start with a quadratic polynomial f without indifferent periodic
points. Given a Yoccoz puzzle piece ¥;* of f and a point z such that fi(z)
belongs to Y;*. We define the pull back of Y along the orbit of z as being the
only connected component of f=7(Y;") containing z. If moreover = belongs to
Y and j is minimal and non-zero, then we say that j is the first return time
of  to Y*. A puzzle piece is said to be critical if it contains the critical point.
Notice that if we pull back a critical puzzle piece Y*(0) along the first return
of the critical point to ¥™(0) we get a new critical puzzle piece.

Under certain conditions (referred in [Lyu93] as not Douady-Hubbard
immediately renormalizable), it is possible to find a first critical puzzle piece
such that the closure of its pull back along the first return of the critical
point to itself is properly contained in itsell. Let us denote such puzzle piece
V0, We say that this is our puzzle piece of level zero. The pull back of V®°
along the first return of the critical point to ¥ will be denoted Vol We
keep repeating this procedure: define V%!, the puzzle piece of level t +1, as
being the pull back of V', the puzzle piece of level ¢, along the first return
of the critical point to V% This procedure stops if the critical point does
not return to a certain critical puzzle piece. If we assume that the critical
point is combinatorially recurrent, then we can repeat this procedure forever,
so let us assume that (as the opposite case is a well understood case). The
collection V% for ¢ being a natural number is the principel nest of the first

renormalization level

Now we have a sequence of first return maps f/(9 : VO — VOt By

11




definition V*° properly contains V®!. This implies that each V®* properly
contains VOl It is also easy to see that each f0 : VOl o VO ig a
quadratic-like map.

We say that f/® : VOl 5 VO is a central return or that ¢ +1 is a
central return level if f10({0) belongs to V¥, A cascade of central returns is
a set of subsequent central return levels. More precisely, a cascade of central
returns is a collection of central return levels t = to+ 1, ...,%0 + N followed by
a non-central return at level g + N + 1. In this case we say that the above
cascade of central returns has length N. We could also have an infinite cascade
of central returns. Notice that with the above terminology a non-central return
level is a cascade of lcentral return of length zero,

It is possible to show that the principal nest of the first renormalization
level ends with an infinite cascade of central returns if and only if f is renor-
malizable. In that case, denote the first level of this infinite cascade of central
returns by ¢(0)+1. Then we define the first renormalization R(f) of f as being
the quadratic-like map fiO) ; YOO+ 5 oMY, The filled-in Julia set of
R(f) is connected (it is also possible to show that Vor = J(R(f))). Again
we can find the dividing fixed point of the Julia set of R(f), some external rays
landing at it and define new puzzle pieces over the Julia set of B(f). The rays
landing at the new dividing fixed point are not canonically defined (remember
that R( f) is a polynomial-like map). We are not taking the external rays of the
original polynomial. Instead we need to make a proper selection of those rays
to be able to state the Theorem at the end of this Subsection (see {Lyu93]).

As before we can construct the principal nest for R(f), provided that E(f) is

12




not Douady-Hubbard immediately renormalizable. The elements of this new
principal nest are denoted by V1, Vi Vb . and the nest is called the
principal nest of the second renormalization level. If this new principal nest
also ends in an infinite cascade of central returns, we repeat the procedure
just described aﬁd construct a third principal nest. We repeat this process as
many times as we can.

Now we define the principal nest of the polynomial f as being the set of

critical puzzle pieces

V0,0 ) VO,I 5.0 VO,t(U) > VO,t(O)-{-l 5 VI,O > Vl,l ») -..,Vl't(l) >

> Vl,t(l)-l—l 50D V'm,O > V'm,l 5.0 Vm,t(m) », V'm,t(m)+l 5 ..

In order to go ahead with the definition of the class of polynomials we are
interested in, we need the notion of a truncated secondary limb. A limb in the
Mandelbrot set M is the connected component of M \ {cg} not containing 0,
where ¢g is a bifurcation point on the main cardioid. If we remove from the
limb a neighborhood of its root ¢, we get a truncated limb. A similar object
corresponding to the second bifurcation from the main cardioid is a truncated
secondary limb.

A Lyubich polynomial is defined as being an infinitely many times renor-

malizable polynomial satisfying the two following properties:

(i) First select in the Mandelbrot set a finite number of fruncated

secondary limbs. We require all the quadratic-like renormalizations

to be in these limbs.

13




(i) We also require that in between two quadratic-like renormalization
levels we have a sufficiently high number of non-central returns

(called height) which depends on the a priori selection of the limbs.

Such class of polynomials was originally introduced and studied in [Lyu93].

Before we go to the main theorem that, we will be using concerning Lyu-
bich polynomials we will need one last notation. If V** is an element of the
principal nest then we denote by n(k) the number of central cascades in be-
tween V¥ and V**. Remember that a non-central return is viewed as a central
cascade of length zero.

The following result in [Lyu93] will allow us to create the “Koebe space”

for Yoccoz and Lyubich polynomials:

Theorem 2.2.2 (Lyubich) The principal modulus mod(V** \ Vi*+1) grows
linearly with nfk} for any Lyubich polynomial, if V¥ is on top of a cascade of

central returns. Moreover, mod(VW\ Vi) > ¢ > 0.

2.2.3 Sullivan polynomials

Let f(z) = 2% + ¢ be a quadratic polynomial with ¢ being a real number.
We say that f is a Sullivan polynomial if it is infinitely many times renormal-
izable and has bounded combinatorial type. See [dMvS93] for a more detailed
definition.

We will describe one specific example of a Sullivan polynomial, namely

the Feigenbaum map. For this map we will describe the construction of the

14



Figure 2.1: Renormalization of the Feigenbaum polynomial

principal nest as we did with Lyubich polynomials {(see [HJ]). A similar con-
struction can be carried out for any other Sullivan polynomial following the

Feigenbaum exarmple.

The Feigenbaum map F'(z) = 2% + cp is the only infinitely renormalizable
real polynomial with all periods of renormalization equal to 2. Let ¢; = F(0)
and K,q = [can,ceni]. Denote K, ; = Fi(Kng), t = 1,.,2" — 1. Let us
consider a homeomorphism h, = F? 1 K,1 — K,o with inverse g,. Let
P,o=C\ (R\ [ezn-1,czn2]). Then g, can be extended to a schlicht function
Gn on Png. Let P,y = Gu(P,p) and P,_5 be the closure of the union of
the pre-image of P, .; under the two inverse branches of F'. Let S be a large

equipotential of the Julia set of F and S, = F~*"(5). Define V™! as being the

15




region in F,_; bounded by S, and V™0 as being the region in P,y bounded
by 3. One can see that F#" : V™! — V™% is a quadratic-like map. This is the
quadratic-like renormalization of the Feigenbaum map (see Figure 2.1). We

have the following properties (which follows from Sullivan’s complex a priori

bounds, see [dMvS93]):
(i) mod(V™P\ V™) >e> 0

(i) diam(V™°) — 0 asn = oo

2.2.4 Infinitely renormalizable real unimodal po‘lyno-

mials

Let f(z) = 2 4+ ¢ be an infinitely renormalizable polynomial with ¢ a real
number and { an even integer (the class of Sullivan polynomials is a subclass of
this class of polynomials). We say that an infinitely renormalizable polynomial
admits complex bounds if each renormalization of f admits a polynomial-like
restriction with modulus bounded away from zero. In [LvS95] Levin and van
Strein showed that this class of polynomials admits complex bounds {see next
paragraph). The works [LY95] together with [Lyu93] also give a proof of com-
plex bounds in the case | = 2. This sort of result was first shown by Sullivan

in case f is a Sullivan polynomial (see [{MvS93] and previous Subsection).

Theorem 2.2.3 Let f(z) = z' + ¢ be an infinitely renormalizable real polyno-

mial of even degree . If a, is the period of the n'* renormalization of f, then

there exist topological discs V™ and V™' such that:

16
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(i) 0 € V™,
(i) (V™) c v,
(iii) mod(V™O\ V™) > e > 0
(iv) for V™l — V8 s a polynomial-like map of degree ;

(v) diam(V™®) — 0 as n — oo.

2.2.5 Unbranched renormalization

We take the following from [McM94].

o Definition 2.2.4 Let f be a polynomial which is renormalizable and admits the
polynomial-like map f* : U, — V.. as renormalization. We say that this renor-
malization is unbranched if V,, ( Post(f) == Post,. Here Post(f) stands for the

. post-critical set of f and Post, for the posi-critical set of the renormalizalion

of f, f* U, = V,.

Let us fix some notations: V,(3) stands for f*(V,) and if X is any subset of
the complex plane, X' = —X. We will need the following basic fact concerning

unbranched renormalization:

Proposition 2.2.5 If f* : U, = V,, is an unbranched renormalization then

V(i) is disjoint from the post-critical set of f fori # n.

n

Proof. The small post-critical sets are disjoint. We also have the inclusion:

Ff(Post, (i — 1)) C Post,(z). So when f* : U, — V, is unbranched we have

V() Post(f) = Post,(¢). Since V,,(i) and V(i) have the same image under




f, any point in V/(i) N Post(f) must lie in Post,(z). But V,(7) and V(i) are

disjoint whenever we have ¢ # n. m

Lemma 2.2.6 If f is an infinitely renormalizable real unimodal polynomial
or a Lyubich polynomial, then infinitely many renormalizations of f are un-

branched and admit complex bounds.

Proof. For Sullivan polynomials we can find a nest of domains of renormal-
ization in the complex plane {admitting complex bounds in all renormalization
levels) such that their intersections with the real line is a nest Ko of sym-
metri(; f-periodic intervals around the critical point (see Subsection 2.2.3 and
[1J]). The result follows because the intersection of the orbit of those complex
domains with the real line is the same as the orbits of the intervals K, . It
is possible to take the intervals K,o such that Ko, f(Kno)y .o, o (Knpo)
are disjoint intervals, where a,, is the n** period of renormalization of f. The

Lemma now follows for Sullivan polynomials because the critical orbit is con-
tained inside the real line.

For all other infinitely renormalizable real uﬁimodai polynomials we can
make a similar construction. Some extra care should be taken in this general
case where we need to exclude the renormalization levels close to parabolic
bifurcations. See [LvS95] and [LY95] for that.

For Lyubich polynomial we used puzzle pieces to build the renormalized
polynomisl-like maps. The Lemma follows from the Markov property of puzzle

pieces and from Theorem 2.2.2. a
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2.3 Some facts from thermodynamical for-

malism

2.3.1 Classical results

We refer the reader to [Bow?75] for a detailed introduction to the classical
theory of thermodynamical formalism. See also [PU} for a more modern ex-
position of the subject. The goal of this Section is to introduce notations and

classical facts.

Definition 2.3.1 Let f be any conformal map. In what follows by a hyperbolic
or expanding set for f we understand, as usual, a closed set X such that
F(X) C X and {D(f*)(z)| > ck®, for any @ in X and forn > 0, where ¢ >0

and & > 1.

Consider a hyperbolic set X as defined above. If ¢ : X — R is a Holder
continuous function, we say that the probability measure p1y is a Gibbs measure

associated to ¢ if:

sup{bu(f) + [ ¢dv} = by (5 + [ ddus

where h,(f) is the entropy of f with respect to the measure v and the supre-
mum is taken over all ergodic probability measures v of the system f : X — X.
In this context we call ¢ a potential function. The pressure v of the potential

$ is denoted P(¢) and defined as P(¢) = sup,{h.(f)+ [x ¢dv}, the supremum

is taken over all ergodic probability measures.

"The following Theorem assures us the existence of Gibbs measures.
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Theorem 2.3.2 (Ruelle-Sinai) Given f : X — X hyperbolic and a Holder
continuous potential ¢ : X — R, there exists one Gibbs measure py associated

to this potential. Moreover this Gibbs measure is unique.

One needs to know when two potentials generate the same Gibbs measure.

We have the following definition and Theorem to take care of that:

Definition 2.8.8 We say that two real valued functions ¢, : X — R are coho-
mologous (with respect to the system f: X — X) if there exists a continuous

function s : X - R such that ¢(z) = P(z) + s(f(z)) — s(z).
Theorem 2.3.4 (Livshitz) Given f : X — X hyperbolic and two Hélder

continuous functions ¢, : X — R, the following are equivalent:

(i) po = iy
(it) ¢ and ¢ are cohomologous;

(iii) For any periodic point © of f : X — X we have:

T HF @)~ v = n(P() - P(#)

where n is the period of x.

Of special interest is the one parameter family of potential functions given
by ¢i(x) = —tlog(|Df(z)]). Notice that by the definition of hyperbolic set, the
functions ¢ are Holder continuous. One can study the function P(t) = P(¢y).

Here are some properties of this function:

(i) P(t) is a convex function;
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(i) P(t) is a decreasing function;
(iii) P(¢) has only one zero exactly at t = HD(X);
(iv) P(0) = h(f) = topological entropy of f: X — X.

One can show that if f : X — X is hyperbolic, as we are assuming,
then the Hausdorff measure of X is finite and non-zero. That is because
one can show that the (ibbs measure associated fo the potential given by
$up(xy = —HD(X) - log(|Df[) is equivalent to the Hausdorff measure of X.
Notice that P(¢up(x)) = 0. The Gibbs measure fig,-p(g,) associated to the
potential ¢y — P(¢o) = —P(¢o) = constant is the measure of maximal entropy
for the system f : X — X. Notice that P{¢o—P(¢o)) = 0. Instead of denoting
this measure by fig,—p(s,) we will simply write peons:.

Let us denote m = preonst and v = gy .. The following is a consequence

of the previous paragraph and Theorem 2.3.4.

Corollary 2.3.5 Let f : X — X be hyperbolic. The measures m and v
are equal if and only if there exists X such that for any periodic point z of

Ff: X = X we have |Df*(z)} = A", where n is the period of .

2.3.2 Sullivan’s rigidity Theorem

We refer the reader to {Sul86] and [PU] in order to get a complete proof

of the results in this Section.

Definition 2.3.6 An invariant affine structure for the system f : X — X is

an atlas {(0;, U;)kier such that o; : Uy = C is conformal injection for each i
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where X C \U; U; and all the maps 0,07 and o;fo;" are affine (whenever they

are defined),

Definition 2.8.7 We say that f 1 X — X is topologically transitive if there

exists a dense orbit inside X.

Suppose that f: X — X is hyperbolic. Then transitivity is equivalent to
the following: for every non-empty set ¥V C X open in X, there exists n > 0
such that U, f*(V) = X. That is due to the existence of Markov partition for

f:X—-X.

Lemma 2.3.8 (Sullivan) Let f : X — X be @ transitive and hyperbolic
system. The potential log(|Df|) is cohomologous to a locally constant function

if and only if f: X — X admils an invariant affine structure.

We call f: X — X a non-linear system if it does not admit an invariant
affine structure. Let g : Y — Y be another system and let h: X =+ Y be a
conjugacy between f and g. Then we say that h preserves multipliers if for

every f-periodic point of period n we have |Df*(z)| = |Dg"(h{z)}|.

Theorem 2.3.9 (Sullivan) Let f: X - X andg:Y — Y be two non-linear
transitive and hyperbolic -systems. Suppose that f and g are conjugated by a

homeomorphism h : X — Y preserving multipliers. Then h can be extended to

an analytic isomorphism from a neighborhood of X onto a neighborhood of Y.
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Chapter 3

Ergodicity of conformal measures

3.1 Density Estimates

From now on g will denote a conformal measure with exponent é concen-

trated on the Julia set of f.
The analytic tool that we will use is the well known Koebe distortion

Theorem:

Theorem 3.1.1 (Koebe) Let A C B be two topological discs contained in the
complex plane. Suppose that f is univalent when restricted to B. Also suppose

that B\ A is a topological annulus with positive modulus m. Then

1 Df(2)
K < Df() ="

for all z; and 2y in A, where the constant K depends only on the number m.

Let f be a Yoccoz polynomial. Notice that if a periodic point of f in

J(f) is expanding then the set of all its pre-images has zero p-measure. As




we used just expanding periodic points to construct puzzle pieces, given any
closed subset X of J(f), we can create a cover K; of X {up to a set of zero
measure) built up by puzzles pieces and with limp(K;) = p(X). This follows
from Yoccoz Theorem (see Theorem 2.2.1) and the regularity of conformal

measures.

Definition 3.1.2 The density of o set X inside a set Y is defined as the fol-

lowing: dens(X|Y) = %

Lemma 3.1.3 Let f be a Yoccoz polynomial and X C J(f) be any measurable
subset. If n(X) > 0, there is ¢ € X such that limsup(dens(X|Y™(z))) = L.

Proof. Assame p(X) > 0. If X is not closed, take K C X compact
with (X \ K) small. Notice that dens(X|[Y™(z)) > dens(K|Y™(z)) for any

Y?(z). For all ¢ > 0, there exists i(¢), such that | —¢ < &j{ﬂ?) < 1if

p(Ki

i > i(g) (remember that K; are the covers of X made out of puzzle pieces).

So we have for 4 big dens(K|K;) = &I:(Qj{—'l > 1—¢. As K; is the union of
puzzle pieces we can certainly find a puzzle piece in K, say Y™ (z;) such that
dens(K!Y“(")(mi)) > 1 —&. Now replacing X by X NY™(}(z;) and repeating

this argument we will end up with the desired resuls. a

Definition 3.1.4 The point x € X oblained in the previous Lemma is called a

weak density point of X.

Proposition 3.1.5 Let A C B be two p-measurable subsets of the complex

plane. Suppose that [ restricted to an open neighborhood of B is one to one,

Also suppose that there exists a positive constant K such that
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1 |Df(21)l -
E S Df) =

for all z; and z; in B, then

%dens(AlB) < dens(f(A)|f(B)) < K’dens(A|B).

Proof. Follows from the definition of conformal measure and the definition

of dens(A|B). |

If U is a subset of the complex plane, we will denote by U¢ the complement

of U inside the complex plane.

Lemma 3.1.6 Let f be any Yoccoz and p a conformal measure for f. Let U

be any neighborhood of the critical point. Then the sel
{z € C: f*z) € U, for all positiven}
has zero p-measure.

Proof. It is enough to show this Lemma for ¥*(0) because by Yoccoz’s
Theorem any neighborhood of the critical point contains some Y*(0), for i
sufficiently big. Suppose that the set A = {z € C: f*(z) € Y(0)°, for all
n positive } has positive measure, for some % fixed. Then this set has a point
of weak density z, according to Lemma 3.1.3. So we can find some sequence
n(j) — oo such that dens(AjY"?)(z)) — 1.

Notice that fmi-i(y™U)(2))} is a puzzle piece of depth i and none of

the puzzle pieces Y™ (a), fF(Y ™) (z)). .., fAU=4(Y™(z)) contains the crit-

ical point. That is because of the Markov property of puzzle pieces and
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the fact that Y™ (z) contains elements of the set A. So for all YU (z),
=iy} (2)) is a puzzle piece of depth 7 distinct from Y#(0). As there
exist just finitely many puzzle pieces of depth 7 then there is a fixed puz-
zle piece Y(y) (distinct from the one containing the critical point) such that
f”(j)_’:(Y“(j)(a:))- = Y*(y) for infinitely many n(j). Passing to a subsequence
and keeping the same notation we will assume that the above property is true
for all n(y).

We will construct a neighborhood of Y(y) where the inverse branch
F~00)=) along the orbit z, f(z),..., f*)7(z) is defined as an isomorphism
(remember that z is a weak density point of A).

Let ¢; > ¢ such that mod(Y*(0) \ Y*(0)) is positive. This is possible by
Yoccoz’s Theorem.

The boundary of Y#(y) is composed by pairs of external rays landing at
points in the Julia set and equipotentials. The intersection of this boundary
with the Julia set is finite, Let z be a point of such finite intersection. Consider
all puzzle pieces of depth ¢; having z as vertex. The closure of the union of
those puzzle pieces is a neighborhood of z in the plane. Let us call such
neighborhood V,. Notice that each equipotential and the pieces of external
rays landing at z outside V, are at some definite distance from the Julia set.
Take a small tubular neighborhood (not intersecting the Julia set) of each one
of the equipotentials and pieces of external rays belonging to the boundary

of Y(y). Now we define the neighborhood N of Yi(y) as being the union of

each V, with all tubular neighborhoods described above and Y#(y) itself (see

Figure 3.1). Notice that we can make N into a topological disc if ¢; is big and
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the tubular neighborhoods small. Also notice that since the distance between
the boundaries of Y?(y) and N is strictly positive, we get that mod(N \ Y*(y))

is strictly positive.

tubular neigborhoods

Figure 3.1: Construction of the neighborhood N of Y(y)

Now let us prove that we can pull NV back isomorphically along the orbit
Z,..., frO-(g) for any n(y).

The pull back of Y(y) cannot hit the critical point because Y™ (z) con-
tains points in the set A (by the Markov property of puzzle pieces and the
f-invariance of the set A). None of the pull backs of the tubular neighbor-
hoods can hit the critical point because those neighborhoods are outside the
Julia set. The pull backs of the sets V, do not touch the critical point because

each puzzle piece in each V; is at depth ¢;. So if it would enter Y?(0) when
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we pull it back it would touch the boundary of Y*(0) because the pull back
of Y¥(y) never enters Y*(0). By the choice of 4; (i.e., mod(Y*(0) \ Y*1(0)) is
positive ) the backward orbit of V, can not hit the critical point.

So we can pull N back isomorphically along the orbit x,..., f)~(z)
for any n(7). By the construction of N we have: mod(N \ Yi(y)) > 0. So
we conclude that f9)-: Y*l)(z) — Yi(y) has bounded distortion with the
Koebe constant not depending on n(j).

Using the above bounded distortion property, Proposition 3.1.5 and the
fact that z is a density point for A, we conclude that dens(A|Y*(y)) is arbitrar-
ily close to one. On the other hand there exists some pre-image of Y*(0) inside

Yi(y), so dens(A|Y?(y)) is bounded away from 1. Contradiction! O

Let us prove a similar result for the classes of infinitely renormalizable
polynomials that we are dealing with (Lyubich and real unimodal infinitely

renormalizable):

Lemma 3.1.7 Let f be any Lyubich or any real unimodal infinitely renormal-
izable gquadratic polynomial and p a conformal measure for f. Let U be any

netghborhood of the critical point. Then the set
{z e C: f*(z) € U, for all positiven}
has zero p-measure.

Proof. Let us denote the set in the statement of this Lemma by A. We have

A=J(H\ U f5U). So A is a nowhere dense forward invariant set. Notice

that AN O is empty (because of the definition of A and minimality of @ in the
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case where f either a Lyubich or a real infinitely renormalizable polynomial).
In view of the Lebesgue density Theorem (see Theorem 2.9.11 in [Fed69}), the
set of density points of A has full measure inside A. Here by density points
we mean ¢ € A such that lim,dens(A|B(z,r)) = 1, where B(z,r) is the
Euclidean ball v?ith center at « and radius r. Suppose that p(A) is positive.
Then we conclude that there exists a density point  in A. There also exists
y inside A and a sequence of natural numbers k; -3 co such that f%(z) -~ y.
We can pull back a ball of definite size centered in y along z, f(z), ..., f¥(z)
(to be more precise, the size of this ball is dist(y, ©)}. That implies that we
can fix a positive number 7 and pull back the ball B(f*(z),7), for k; big along
z, f(2),..., f¥(z). Since A is nowhere dense and p is positive on non-empty

subsets of the Julia set, for large n; we have:

wB(f%(2), 5)\A4) 2 u(Bly, )\A)

As a consequence of Koebe’s Theorem, the definition of conformal measure

and the invariance of A we have:

I&’#(B(w,K"lgIDf’“"(w)l"l) \A) < [DfY (@) u(B(fH (=), 5) \ A) <

L\Dl-:s

< Ku(B(e, K5|Df5(2)| )\ 4).

Let us denote r = K'2|D f%(2){~!. From the above and from the definition

of conformal measure we get:

u(Bz, )\ A) _ |DIS @)K (B (@), H\A)

w(B(z,r)) ~ w(B(z,r)) -




_ _E|Df(z)p
= W75 (BGm)

D74 (@)K u(B(M (), 5)\ 4)

BB (@), D\ A) | p(BUS(2), D\ A)
= WA BEn) 1 -

That implies that

w(Bly,$)\ A) = e > 0.

#(B(z,r)\ 4)
#(B(z,r}))

which contradicts the choice of = as a density point of A. a

limsup, _,, > 0,

Note that in Lemma 3.1.7 we used the fact that f reétricted to O is
minimal which is not necessarily true for a Yoccoz polynomial. On the other
hand, in Lemma 3.1.6 we used the fact that we have a partition for the entire
Julia set by puzzle pieces whose pre-images shrink to points. We do not have
that for Lyubich and real unimodal infinitely renormalizable polynomial.

From the previous Lemmas we conclude that the set
W={ze€J(f):0€ w(z}

has full measure, i. e., (W) = 1. Here w(z) denotes the w-limit set of z. Let
X C W be any measurable set. If f is a Yoccoz polynomial we can create a
cover of X by puzzle pieces as follows: fix V®™ (remember that in the case of
a Yoccoz polynomial the first index of the principal nest is always 0. That is
because we don’t have renormalization levels). For every € X there exists

a first time m such that f™(z) € V%" So we can pull VO along the orbit

of z back to a puzzle piece containing z. Changing © € X we will obtain the
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desired cover. Let us call this cover O,. We can make a similar construction
for any Lyubich and any real unimodal infinitely renormalizable polynomials
using the sets V™! (constructed in sub-section 2.2.2 and section 2.2.4). We

have the following properties:
(i) O, is an open cover;

(ii) Onn C On—l;

(iv) #(On) = p(X) as n — oo.

The first and the second properties are trivial. The third one is a conse-
quence of Yoccoz Theorem, if f is a Yoccoz polynomial. The same fact is also
true for Lyubich and real unimodal infinitely renormalizable polynomials due
to the complex bounds (Lyubich Theorem and Theorem 2.2.3, respectively)
together with Lemmas 3.2.1 and 3.2.2. The last one follows by regularity of
the measure p.

To simplify the notation, elements of O, will be denoted by the letter U
(indexed in some convenient fashion). In other words, if we say that U is an
element of O, we mean that I/ is some univalent pull back of V%", in the case
f is a Yoccoz polynomial. If f is either a Lyubich or an infinitely many times
renormalizable unimodal real polynomial and U is an element of O,, then U is

some univalent pull back of V™1,

Lemma 3.1.8 For all i, there exists U’ in O; such that dens(X|U') — 1, as

7 — 00,
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Proof. Similar to Lemma 3.1.3. O

3.2 Proof of Theorem 1

Before we pass to the next Lemmas, remember that by definition Vi*+!
is the pull back of V** along the first return of the critical point to V* (see

sub-section 2.2.2). We will denote the critical point of f by 0.

Lemma 8.2.1 Let f be a Yoccoz polynomial, U be in O, and let m be the
smallest time that 0 € f™(U) = VO". Then we can univalently pull VOn-1

back along the orbit z,..., f™(z), z € U.

Proof. If not, f~*(V%"!) would contain the critical point, for some ¢ less
than m (here f~* means the branch of f~* along the orbit of z). That would
mean that ¢ is greater or equal to the first return time of 0 to V"=, That
would imply f~HV%"~1) € V%" by the Markov property of puzzle pieces. In
other words, x would hit V*" on a time strictly less than m, contradicting the

definition of m. i

Lemma 3.2.2 Let f be any Lyubich or any infinitely renormalizable uni-
modal real polynomial. Let U be in O, and let m be the smallest time that
0 € f™U) = V™. Then we can univalently pull V™° back along the orbit

&y, ™), z€U.

Proof. Suppose that fi» : V™! 3 V™ is the first return map of the critical

point to V™, Remember that the above renormalization of f is unbranched

(see Lemma 2.2.6).
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Suppose we cannot pull back V™ univalently along the orbit of z. In that
case the pull back of V™ would hit the critical point before reaching U/. Then
there would be a time ¢ such that f~4(V™") would contain the critical point,
for a time ¢ < m (here the pull back is made along the orbit of =, ..., f™()).
Let us follow th;e orbit of f7'(V™°). Remember that as we are assuming that

the critical point belongs to f~*(V™°) we would have:

FFHv™) ﬂPost(f) # 0 for any 3 (3.1)

Obviously, fH{{(fH(V™®)) = V™ so f1(f~H{V ™)) is either fin~1(V™1)
or —fn~Y (V™). From Proposition 2.2.5 and from (3.1) we conclude that
VY)Y = fieel(V1), Finite induction with the same argument
would shows the following equality: fi=Us=U(f~{(V"®)) = f(V™). If we
make one more pull back we will see that the only possibility is to have j, =t
(remember that ¢ > j, because 3, is the first return of the critical point to
V™0 ) and V™! = f~HV™%). That would mean that f™ *({/) C V™! which is
a contradiction with the definition of m as the first time the orbit of z reaches

V'ﬁ:,l |

Let us prove Theorem 1.

Let Y CW = {2 € J(f) : 0 € w(z)} C J{f) be an f-invariant set

(remember that W has full measure). Suppose that x(Y) > 0.
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If fis a Yoccoz polynomial we use Lyubich’s Theorem to conclude that
mod(Vo™ 1\ Vo) > ¢ > 0, for all n. From Lemma 3.1.8 we can find U™ in
O, such that dens(Y1U”) — 1. Let us assume that f4™ : U® - VO is an
isomorphism (given by the definition of O,). That means by Lemma 3.2.1 and
by Koebe’s Theorem that f4* has bounded distortion, i.e.:

D) ()
K = D) () =

for all z; and 23 in U™, where K depends just on ¢, the constant that appears

in the statement of Lyubich’s Theorem.

Now let us apply Proposition 3.1.5 to the sets Y[\ U™ and U™ with respect
to the map fi"). Due to the fact that the set Y is f-invariant and that
S U™) = VO we get grdens(Y°|U™)) < dens(Y°{VO™) < KPdens(Y°|U™)).

We know that dens(Y|U") — 1. Passing to the complement of ¥ we
get dens(Y°|U™) — 0. From this and the above inequalities we conclude that
dens(Y¢[V?™) — 0 or dens(Y V") — 1.

Notice that if u(Y°) > 0 then we can repeat the argument changing Y by
Y. Doing this we get dens(Y°{V®™) — | and that contradicts the previous
limit because dens(Y|V%™) + dens(Y¢|VO") = 1,

So we conclude that p(Y¢) =0, or equivalently, u{Y) =1. This finishes

the proof of the Theorem if f is a Yoccoz polynomial.

If f is either a Lyubich polynomial or an infinitely renormalizable real

unimodal polynomial the proof of Theorem 1 is basically the same. The only

differences are that we need to use both Lyubich’s Theorem and Theorem 2.2.3
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in order to get bounds for mod(V™*\V™!), and we need to refer to Lemma 3.2.2

instead of Lemma 3.2.1. This finishes the proof of Theorem 1.




Chapter 4

Conformal measure and Hausdorff dimension

4.1 Conformal measures and hyperbolic di-

mension

Definition 4.1.1 ([DU91] [Shi91]) We define the hyperbolic dimension of f as:

hypdim(f) = sup{HD(X) : X C J(f) is hyperbolic for f}

Qur goal in this section is to give an alternative (more geometric) demon-
stration of a Theorem due to Denker and Urbanski (see [DU91}). The original
Theorem is true for any rational map and depends on a result from [Prz93].
Here we will proof it in the particular case of Lyubich and Sullivan polynomi-

als;

Theorem 4.1.2 If f is either a Lyubich or a Sullivan polynomial, then

inf{d : Ja & — conformal measure for f} = hypdim(f).
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In order to prove this result, we will describe a way of constructing con-
formal measures. Let U be a neighborhood of the critical point. Then we

define
Ay ={z€ J(f): fi(z) € U, ¥j > 0L

Here U° means the complement of U inside C. Notice that the set Ay is forward

f-invariant,

Lemma 4.1.3 The map f restricted to Ay is hyperbolic if f is a Lyubich or

a Sullivan polynomial,

The above Lemma is a special case of Lemma 5.2.1. We will not prove it
here.

Let U, be a sequence of neighborhoods of the critical point such that
diam(U,) goes to zero. Define the sets A, = Ayp,.

Lemma 4.1.3 allows us to use the classical theory of thermodynamical
formalism to construct probability conformal measures for the hyperbolic sys-
tems f : A, — A, We will call those measures v, (see [Bow75] and [PU]
as references to thermodynamical formalism). Notice that 14, is a conformal
measure for f : A, — A, but not for f: J(f) = J(f) because A, is not
backward invariant,

If the Hausdorff dimension of A, is §, then again by thermodynamical
formalism 1, is a d,-conformal measure on A,. Notice that as A, C An

then d, is an increasing sequence. Let &, = sup &,. We claim that if x is any

weal limit of the sequence vy, then it is a d,-conformal measure on J(f) for
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f. To see that we need to show that the Jacobian of p is |Df|*. Let z € J(f)
and let B,.(z) be a ball not containing the critical point in its closure. Take
n big enough so that B.(z)U, is empty. Notice that in this case we have
J(B-(z)NAn) = f(Be(2)) N An. If we consider », as a measure on J(f), then
un(F(Bo2) = valF (BN A)) = S0 1D dn = S0 1D 5wl
so if r is sufficiently small and n is sufficiently big (and then &, is close to 4,)
we get vn(B,(2))(IDf(2)* — ) < vn(f(B,(2)) < vl B())(IDF(2) + e).
We get that u(B.(=)(IDS(2)5 — &) < u(f(Bo(2)) < u(B (DI + <),
if we pass to the limit, provided that pu(0B,(z)) = 0. So we conclude that y
is d.-conformal on any set not containing the critical point. We now just need
to show that u is é,-conformal at the critical point. That is the same as to

show that u(f(0)) = 0. This follows from the following Lemma:

Lemma 4.1.4 If f is either a Lyubich or a Sullivan polynomial, then we have:
limsup |Df*{f(0))| — co.

Proof. Let f be a Sullivan polynomial. One can find a sequence of sym-
metric intervals containing the critical point I, such that IJI%J is asymptotic
to a constant as n goes to infinity. Such intervals have the property that
their diameters shrink to zero and that f“(”)  Ihy1 = I, is a unimodal map
(i.e., the map has only one critical point) for an appropriate integer a{n) (see

[dMvS93]). One can also prove that the map -1 : f(I,,) = I, is a dif-

feomorphism with bounded distortion (not depending on n). Putting all the

previous information together we conclude that |D(f*™~1(£(0)))| — oo.

38




(this fact follows because we have hyperbolicity, and then bounded distortion
for f~ inside A,). In that case, if we take any cover of A, by ball B, (z)
with r; sufficiently small, we get 78 < O v(B,,(2)). As v(Ay) is zero (see
Lemma 3.1.7) then we can make the last sum as close to zero as we want. That
implies that the Ha;usdorff dimension &, of A, is at most 6. As the previous
argument is true for any A,, we get that &, = sup &, < 4. Taking the infimum
over all §’s we get 8, < §;,;. So we conclude that 8, = &7, This finishes the

proof of the Theorem.

4.2 Modified principal nest

The goal of this section is to construct a new principal nest that we will
call the modified principal nest, starting from the principal nest constructed in
[Lyu93] and described in section 2.2.2. The elements of the modified prin-
cipal nest will be related to each other via maps which are compositions
of a quadratic map and an isomorphism with bounded distortion (depend-
ing just on the map f). To simplify notation we will denote the elements
of the principal nest of the first renormalization level (see section 2.2.2) by
Ve V1 .., V", ... We can divide as usual this principal nest in disjoint unions
of cascades of central returns (remember that a non-central return level is a
cascade of central returns of length zero or a trivial cascade). Let n(k) be the
number of cascades of central returns before the level &.

Beginning of the construction of the modified principal nest: The

elements of the modified principal nest will be denoted by W' Let n + 1
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be the first level of the first non-trivial cascade of central returns. We define
Wi =Viforalli=1,..,n+2. Suppose that this first non-trivial cascade
has its last element at level n + k, i. e., the first non-central return appears

on fin+k) . Ytk s ynth—1 We will construct the next element W™+ of our

modified principal nest as being a puzzle piece satisfying:
(1) yrthtl — etd o Yvbk and 0 € WS,

ii) the puzzle piece W2 is mapped as a branched covering of degree
p £

two onto V7?2 = Wnti,

(ii1) The above map is the composition of a pure quadratic map and an

isomorphism with bounded distortion;
(IV) mod(V”+k \ Wn+3) 2 %ﬂ'n = [nt1-

We can obtain W"*t3 by the procedure described in what follows (see
Figure 4.1). As we are in a cascade of central returns there exists a number p
such that f* = fO: Vi 3 Vi-lforalli =n+1,...,n+k. It is also true that
fiP(0) € Yrdh=i yrbh=l for § = 1, ...,k (where 0 is the critical point). In
particular fE=1r(0) € Y\ vtz

We know that the orbit of f¥~UP(0) should enter ¥V™*2. That is be-
cause the orbit of V™t#+' should enter V™*? in order to return to V7*,
Let us call $%~! the pull back of V**? along the orbit of f*~12(0). To be
more precise, let t > 0 be the first time that fi(f#-7(0)) € V™2 Then

Sk-1 = f={(V™¥?) Here we are considering the branch of f' that takes

FHEIP(0)) to fEDP(0). Now we define S = frik=imr(SE1), where
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Figure 4.1: Construction of Wn»t?

we consider f~(F=i~1P a5 being the branch taking f:=17(0) to f(0), for
i=1,.k—1,

Notice that fP(0) € S'. So we finally define W2 = f~P(5), where we
understand f77 as the branch taking f7(0) to 0.

Having this definition of W™+, the first property is obvious by construc-
tion and from the Markov property of puzzle pieces. The next property follows

from the fact that each one of the maps f7: 5% — §1 i =1, k—2is an

isomorphism. That is true because we are inside a cascade of central returns.
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Let us prove the third property. There exists a puzzle piece vg’;“ of level
n + 2 not containing the critical point such that $¥~! C Vz—’;""z. This is true
because otherwise we would find a non-central return at some level between
n+1 and n + k ~ 1. There also exists a puzzle piece Vi?"'i of level n + 1 such
that f2(V 1) C V+L Again, V2! is not critical (because we are inside of a
cascade of central returns).

We have mod(V;2 ™\ f2(V,I1?)) > py, (it follows from the Bernoulli prop-
erty of the principal nest, see [Lyu95]). The map f:=1p ; ynh=t .y V" has
all its critical points inside V™** (because we are inside a cascade of cen-
tral returns). As VP 3 V) we conclude that we can isomorphically
pull V" back along the orbit S, 5%,..., 5571, f7(S*7!). That means that
mod(f~*-DrP(V2HY\ S1) > p,. If we make one extra pull back we will get
mod(fH (V) \ W) > Ly,

Remember that f is a quadratic polynomial. Putting this fact together
with the information from the last paragraph we conclude that we can decom-
pose fP%: W™t — Sk into a pure quadratic map followed by an analytic
isomorphism of bounded distortion (by Koebe’s Theorem). The distortion
depends only on the principal modulus g, which is definite.

The inverse of the map f*: $¥7' — V™2 can be extended to V™" (see
Lemma 3.2.2). That means, by Koebe’s Theorem, that the distortion of f* is
brounded (depending just on g,4;) when restricted to S*=1.

Putting the information of the last paragraphs together we can show the

third property. Property number four also follows from the previous argument.

We will now define the element W™ following W™t in our modified

43




principal nest. This new element W7 will be defined as a certain pull-back
of W3,

Immediately after the first non-trivial cascade of central returns we will
find either another non-trivial cascade of central returns or a trivial cascade

of central return, We need to consider both cases.

Continuation of the modified principal nest through a non-trivial
cascade: Suppose first that we have another non-trivial cascade of central
returns. In that case, we would find central returns on all levelsfromn+ &+ 1

to n -+ k -+ m ~ 1 (so this new cascade of central returns has length m). We

can find W™t such that:

(i) Vn+k+m+1 C Wn+4 C Vn+k+m and 0 c Wn+4;
(i) W™ is mapped as a branched covering of degree four onto W™+,

(iii) The above map is the composition of a pure guadratic map fol-
lowed by an isomorphism with bounded distortion, an other pure

quadratic map and an isomorphism with bounded distortion;
(iv) mod(VrHhtm \ Wntdy > 1y 1.

The above properties and their justifications are similar to the ones for
W™t3 stated before (see Figure 4.2). This finishes the construction of W7+

in the case we have a non-trivial cascade of central returns following the first

non-trivial cascade of central returns.
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Figure 4.2: First construction of Wnt4

Continuation of the modified principal nest through a trivial cas-
cade: In this case we suppose that we have a trivial cascade following the
first non-trivial cascade of central returns. In other words the first return map

filatktl) o yntktl Ytk i 5 pon-central return. In that case we can find

Wnt4 gquch that:

(i) Vrtkt2 c Wntd C Ytk and 0 € W,

(i) W™ is mapped as a branched covering of degree two onto W+,
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(iii) The above map is the composition of a pure quadratic map and an

isomorphism with bounded distortion;

(iv) mod(V L\ W) > Imod(Vrte \ Wot3) > Lu,.

n+k
Wn+3 @

n+k+1

Figure 4.3: Second construction of W=t4

Again with the same type of argument we used to show properties of

W3 we show the above properties (see Figure 4.3).

The definition of the modified principal nest: It follows now by in-
duction. We assume that we have the definition of one of its elements, say
W*. Such element is inside the last level of a given cascade of central returns.
We can construct the next one, W*! following the constructions just as we

described in the previous two cases.

The modified principal nest as constructed has the following properties.

(iven any cascade of central returns with last element V™t
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(i) There exist W in the modified principal nest such that V™! ¢
W C V* with mod(V" \ W) growing linearly with the number of

cascades of central returns;

(ii) If W' is the element following W in the modified principal nest,
then mod(W\ W’) is growing linearly (with the number of cascades

of central returns);

i1} W' is mapped as a branched covering either of degree two or degree
pPp g g 23

four onto W;

(iv) The map in the previous item is the composition of a pure quadratic
map and an isomorphism with bounded distortion in the degree
two case. In the degree four case, this map is a composition of two

maps as in the degree two case.

The last three properties of the modified principal nest are true by con-
struction (the third one is a consequence of the first). The first property is
obvious except perhaps in one case, namely when we have more than one triv-
ial cascade of central returns together. Notice that in our construction of the
modified principal nest through a trivial cascade (see Figure 4.3 } we got the
following estimate : mod(VPHe+I\ I H) > Imod(V"+*\ W™+?), One can ask
whether we will keep dividing by two the bound for the modulus comparing
the principal and the modified nests at a certain level, if we have several trivial

cascades, one following the other. If that would be the case we would spoil

our estimates concerning the modified principal nest.




Let us analyse what happens when we have two consecutive trivial cas-
cades. On Figure 4.4, if V**? is a non-critical puzzle piece of level n -+ 2, then
mod (V7™ \ V;**?) > lu,41, which is definite because ny1 is the principal
modulus at the top of a (trivial) cascade of central returns. This is enough to

show that mod(V™? \ W™t2) > 14, ., and then a definite number.

Figure 4.4: Two consecutive trivial cascades of central returns

From our considerations we see that for each cascade of central return we
have one element of the modified principal nest. Therefore we can enumerate
the elements of the modified principal nest counting the cascades of central
returns. So W™ is the n** element of the modified principal nest, i.e. , the
element at the end of the n** cascade of central return,

Suppose that the first principal nest of f ends in an infinite cascade of cen-
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tral returns. Then the modified principal nest also ends in an infinite cascade
of central returns. The construction of the modified principal nest through
the renormalization level is the same as the construction of the principal nest
defined in [Lyu93] through the renormalization level. Now we complete the
modified principal nest repeating the construction that we have just described

forever,

4.3 Proof of Theorem 3

4.3.1 Lyubich polynomials

We will use the following notation: if @, and b, are two sequences of
positive real numbers, then we write a, < b, if there exists K such that
K'< P SK

Let f be a Lyubich polynomial and p a é-conformal measure for f. Take
W and W’ being two consecutive elements of the modified principal nest and

f*: W' = W the first return map of the critical point to W".

Lemma 4.3.1 Let f be any Lyubich polynomial and assume that W and W’
are lwo conseculive elements of the modified principal nest belonging to the

same renormalization level. Then

(W) wW')
oW = K (Gamm))?

where K is a constant depending just on the selection of the secondary limbs.
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Proof. Suppose first that f*: W' — W is a degree two branched covering,

Then the map f*~!: f(W’') — W has bounded distortion (by construction of

the modified principal nest). That implies that { di;g{}%),))))g X7 di:r%,‘)/))&. So

we conclude that there is a constant K such that:

(diam(f(F)) _ i FEW)) (4.1)
5 = M ' '

(G (7)) W(W)

As f: W' — f(W') is pure quadratic we have the following inequality:

diam(W") < L|Df(z)|~ diam{ f(W")), where L is a constant that just depends

on the degree of the critical point of f and « is any element in W’. As p is
conformal we find 2, in W’ such that pu(f(W")) = 1D f(z0)’ s{(W").

Putting last two observations together we get:

(diamW')’ 51 (W)
[@am(FOVY)Y = 2R

Multiplying equations {4.1) and (4.2} we get the Lemma. Remember that

(4.2)

we are assuming that f: W — W' has degree two.

Suppose now that f*: W’ — W is a degree four branched covering. Then
it is a composition of two maps which are themselves the composition of a
pure quadratic map followed by some map with bounded distortion. Then we

repeat the previous argument twice to get the same result. 0

For the next Lemma we will consider two consecutive elements of the
modified principal nest W and W’ such that f* : W’ — W (the first return

map of the critical point to W’) has connected Julia set. In other words, we

will be considering the level of the modified principal nest corresponding to a
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|
|
change of renormalization level. Let W be the first element of the modified |
j

principal nest following W'

Lemma 4.3.2 Suppose that f*: W' — W has a connected Julia set. Then

p(W’)
(diam(W"))é

p(W")

= F (W

where W is the first element of the modified principal nest following W' and

K depends just on the selection of the secondary limbs.

Proof. Suppose that the a fixed point of g = f*: W’ -+ W is the landing
point of p external rays. For each puzzle piece of level zero Y for ¢ we define
S; = Y N J(g). Let us define Y! as being the intersection of J(g) with the

critical puzzle piece of level zero for g. We also define W; = —S;.

a

f =g

Figure 4.5: Renormalization level

The pieces S; can be enumerated following the orbit of the critical point.

It follows from bounded geometry of the puzzle pieces in Figure 4.5, as shown
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in [Lyu93], that g : S; — S;3; has bounded distortion for ¢ = 1,...,p — 1
(depending only on the choice of the secondary limbs). The same happens to

the map g : S,_1 — Y. This implies that for s = 1,...,p — 2 we have:

p(S)  _ pl(Sin)
dia.m(S,;)‘s - diam(5i+1)3

and

pSp-1) ()
diam(S,_1)* " diam(Y?1)$

By the hypothesis of Lyubich polynomials we know that there is a time j
(this being minimal) such that ¢7(0) € W;, for some i. According to [Lyu93],
W is the pull back of W; along the critical orbit, back to the critical point. As
this map 1s the composition of a pure quadratic polynomial with an isomor-
phism with bounded distortion (again by bounded geometry), we can repeat

the proof of Lemma 4.3.1 to get:

pW") o W) )
diam(W7¥ = " dlam(W,)* ~ diam(5;)*

Last equality follows from the fact that S; = —W;. Notice that Ky depends
just on the selection of secondary limbs. There exist an integer & such that
g* : W; = Y''. This map has bounded distortion (again because of bounded

geometry). Then we get:

pWo) _ _w(Y?)
diam(W;)¢ ~ diam(Y1)’

Putting all the previous estimates together we get the following (remember

that p is the number of external rays landing at «, which depends just on the

selection of the secondary limbs):




a3

W) _uYh)
L VAP
pdiam(W”)‘s = 7 diam{Y1)* i Z dlam

wYY) + 55 p(5) . w(W)
2 B ey = 8 Gy

So we get the Lemma. o

Lemma 4.3.3 The diameter of the puzzle-pieces of the modified principal nest

decreases superezponentialy fast, i.e.,
diam(W") < e In
for any L, if f is a Lyubich polynomial.

Proof.  According to our construction of the modified principal nest, the
principal modulus A, = W™" \ W™"*! grows linearly with n in between
to renormalization levels. That means that mod(W™?\ W™*) > C' .5, L"
(remember that n counts the number of central cascades in a given renormal-
ization level). The constant L is uniform according to {Lyu93]. The Lemma

follows from that. O

Now if we put Lemmas 4.3.1, 4.3.2 and 4.3.3 together we conclude that
for any element of the modified principal nest W" we have (here we are enu-

merating the whole modified principal nest with just one index):
p(W™) p(W°)

> K(C’)”W.

(diam(W=))¢ —
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!
In other words, i

p(W™) o

St S SN )
(diamw )y = 4 i
If we take & > & then }
p(Wm) p(Wn) 1

(diam(W™))" ~ (diam(W"))? (diam(W"))7—3"

As diam(W™) goes to zero superexponentialy fast, we have:

p(W™)
U

This last inequality implies that HD(J(f)) < 8. That is because we can now
construct a family of covers (U, (z)), n natural, of almost all J(f) (with respect
to the measure y, see Chapter 3). This family of covers has two properties. One
is that diam(U.(z)) goes to zero as n goes to infinity. The second property
is that di:{g{}nﬁ)) > (' > 0. That is due to bounded distortion properties
(see in [Lyu93] the proof of local connectivity of J(f), when f is a Lyubich
polynomial). Remember that &;,; is the infimum of the exponents of conformal .
measures. Putting this together with the result in Theorem 4.1.2 that says

|
that &;,; = hypdimJ(f) we conclude that HD(J(f)) = &ys. This finishes the !

proof of the Theorem 3 for Lyubich polynomials.

4.3.2 Sullivan polynomials

Let f be a Sullivan polynomial and y a é-conformal measure for f. As we

described in section 2.2.3 f/") : V™! — V™0 is the renormalization map of f.

Notice that ,5, V™ = U contains an open set (see Figure 2.1). This open
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set intersects the Julia set of f in a non-empty set. As the conformal measure
of any open set intersecting the Julia set is strictly positive, we conclude that

p(U) > 0. In that case we have:

Using exactly the same argument as in Lemma 4.3.1 we get:

p(V™)
(diam(V™1))

5> C 20,

Now the conclusion of the Theorem follows in the same way as in the Lyubich
case.




Chapter 5

Teichmiiller metric

5.1 Statement of the result

Definition 5.1.1 Let U and U; be open topological discs, 1 = 0,1,...,n. Sup-
pose that cl(Uy) C U and U;N\U; = O if i is different than j. A generalized
polynomial-like map is a map f : UU; — U such that the restriction f|U; is a

branched covering of degree d,d > 1.

We will not use the above Definition in full generality. From now on, all
generalized polynomial-like maps on this work will have just one critical point.
We will fix our notation as follows: f|Up is a branched covering of degree d

onto U/ (with only one critical point) and flU; is an isomorphism onto U, if

The filled in Julia set of f, denoted by K(f), is defined, as usual, as
K(f) = Nf™UU;). The Julia set of f, denoted by J(f), is defined as
J(f) = d(K(f)). Douady and Hubbard introduced in [DHS85] the notion of a

polynomial-like map. Their definition coincides with the previous one when




the domain of f has just one component (the critical one). They also showed
that a polynomial-like map of degree d is hybrid conjugate to a polynomial of
the same degree (in some neighborhoods of the Julia sets of the polynomial
and the polynomial-like maps). The above definition was given in [Lyu91]. It
was also showea that a generalized polynomial-like map is hybrid conjugate
to a polynomial {generally of higher degree but with only one non-escaping

critical point).

Definition 5.1.2 A generalized polynomial-like map(or a polynomial) f is said
to be in the class C if for any neighborhood of the critical point, the set of
points of J(f) which avoid this neighborhood under the dynamics is hyperbolic.
We also ask f to have its eritical point inside of its Julia set and not to be

conjugate to a Chebychev polynomial, in a neighborhood of its Julia set.

There are several important examples of generalized polynomial-like maps
(or polynomials) belonging to the class C. Some example are the following
(see Lemma 5.2.1): Sullivan polynomials (see [dMvS93] and [Sul92]), Yoccoz
polynomials (see [Mil91]), Lyubich polynomials (see [Lyu93]) and their re-
spective analog classes of polynomial-like maps. Also Fibonacci generalized

polynomial-like maps of even degree (see [LM93]) are elements of the class C.

Definition 5.1.8 We say that two generalized polynomial-like maps are in the

same conformal class if they are holomorphically conjugate in some neighbor-

hoods of their Julia sets. The conformal class of f will be denoted by [f].
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Definition 5.1.4 Let [f] and [g} be two arbitrary conformal classes of general-
ized polynomial-like maps. Let ho be @ homeomorphism conjugating f and g on
their Julia sets (for other maps on the same conformal class, we just compose
ho with the holomorphic conjugacies given by the definilion of the conformal
classes. We wé’ll also call this conjugacies by hg). Suppose that there exist U
and V neighborhoods of the Julia sefs of fiin[fland g1 in[g] and h: U =V
a conjugacy between fi and ¢g,. Assume that h is quasi-conformal with dilata-
tion K, and that it is an extension of hg. Then we define the Teichmiiller
distance between [f] and [g] as dr([f],g]) = inf; log K}, where the infimum is
taken over all conjugacies h as described, between all the elements fi and ¢

in [f] and [g], respectively.

Notice that dr([f],[g]) = 0 and dr([f],[g]) < de([f],[2]) + dx([t]. [4]),

where f, g and ¢ are polynomial-like maps. In order to say that “dr” is a
distance we need to show that if dr{[f],[g}) = 0 then [f] = [g]. This is exactly

what we will show, if f € . We prove the following Theorem:

Theorem 4 Let f and g be two (generalized) polynomial-like maps belonging
to the class C. Suppose that dr(f,g) = 0. Then f and g are conformally

conjugate on a neighborhood of their Julia sets.

5.2 Hyperbolic sets inside the Julia set

Let f : UU; — U be any generalized polynomial-like map (or any poly-

nomial) belonging to the class C. Let U be any neighborhood of the critical
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point. As in Chapter 4 we define:
Ay ={z e J(f): fi{z) € U, V5 > 0}

Here U¢ means the complement of the set U inside the complex plane. Notice
that the set Ay is' forward f-invariant. According to the Definition of the class
C (see Definition 5.1.2) we know that f : Ay — Av is hyperbolic.

The next Lemma will show us that several important classes of polyno-

mials and generalized polynomial-like maps are subclasses of the class C.

Lemma 5.2.1 The map f restricted to Ay is hyperbolic if f is either @ Yoccoz
polynomial-like map or a Lyubich polynomial-like map or a Sullivan polynomial-

like map or a Fibonacci generalized polynomial-like map of even degree.

Proof. This fact is true because we can construct puzzle pieces for the set Ay
if f belongs to one of the classes mentioned in the statement of this Lemma.
Let us describe how to do that. If f is a generalized polynomial-like map we
will assume that the domain of f has just one component (we will treat the
other case later). We can find neighborhoods U, of the critical point such that
their boundaries are made out of pieces of equipotentials and external rays
landing at appropriate pre-images of periodic points of f and the diameter of
U, tends to zero as n grows (reference for this fact: [Hub| or [Mil91] if f is
Yoccoz, [Lyu93] if f is Lyubich, [HJ] if f is Sullivan, [LvS95] if f is Fibonacci).
Let us fix U, such that U,, C U. Taking all the forward images of all the

external rays and pre-images of the fixed point belonging to the boundary of

Uy, will give us a forward invariant set. So we have a Markov partition of our
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set Ay. Fach connected component of the plane without this invariant set,
intersecting Ay and bounded by a fixed equipotential of J(f) is by definition
a puzzle piece of level zero. We define the puzzle-pieces of level k as being the
connected components of the k' pre-image of the puzzle pieces of level zero
that intersect Ag.

As we are at a positive distance from the critical point (by the definition
of the set Ay) it is easy to see that the pull backs of the puzzle pieces shrink to
points (using Schwarz Lemma, as in the case of off-critical points for a Yoccoz
polynomial. Tt is shown for that case that the puzzle pieces containing one
oft-critical point shrink to this point. See [Mil91]}).

C Now one can show the hyperbolicity of f : Ay — Ay. Take any point
in Ay. Let X be a puzzle piece containing = with arbitrarily small diameter.
As X is a puzzle piece, then X = f~"(Xj), where Xy is a puzzle piece of
level zero and f~™ is some inverse branch of f*. Notice that there are just
finitely many puzzle pieces of level zero. From this fact we conclude that
diam(X,) > min{diam(Yp) : Yy is a puzzle piece of level zero } > C > 0.
So f*|X : X — X, maps a set of arbitrarily small diameter to a sct of
definite diameter. Shrinking X, a little, we can assume that f™ has bounded
distortion. Those observations together with the fact that Ay is compact yield
hyperbolicity.

The same type of argument can be carried out if f is a Fibonacci gen-
eralized polynomial-like map. If this is the case, then the domain of f has
more than one component. In that case the puzzle pieces of level zero are

the connected components of the domain of the map f. The puzzle pieces of
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higher levels are the pre-images of the puzzle pieces of level zero. It follows
from [LM93] (in the degree two case) and [LvS95] (in the even degree greater
then two case) that the puzzle pieces shrink to points. The rest of the proof

is identical to the previous case. O

Let f be any polynomial-like map in the class C. We will now construct a
sequence of sets that we will call B,,. As the sets Ay, the sets B, will also be
f-invariant and hyperbolic. The dynamics when restricted to this new family
of sets will be transitive. This is the main reason why we will need this new

family of sets.

Let us pass to the construction of the sets B,. In order to do that, for
each non-postcritical periodic orbit of f inside J(f), take one periodic point
p; belonging to it. Let the period of p; be n,. We denote the orbit of p; by
O(pi).

We define the set B; as being simply O(p1). We will now define the set B,
Let U; be a small neighborhood of p; such that f~(U;) C U; ¢ = 1,2. Here
JF7(U;) stands for the connected component of the pre-image of U; under f=™
containing p;. There exists a pre-image 1; of p; (suppose that f*(y;) = »)
inside U;, {3,7} = {1,2}. The orbit v, f(1),.... " (y:) = pi will be called a
bridge from O{p;) to O(p;), for i # j. There exists a small neighborhood
U; C U; containing p; such that y; € f”s"(a‘) CU;,i4# 7.

In what follows ¢ € {1,2}. Consider the pull back of the set U; along

the periodic orbit p;, f(pi), ..., f¥(ps) = piz Ui = UL, UTE, . UT™ME U™,

Here U7% = f~*(;) for k = 0,1,...,n;. Consider also the pull back of the
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set U along the orbit y;, f(yi), ..., f*(yi) = pi U, =U; ,U; .U ‘. Here
ﬁ;_k = f~*(U;) for k = 0,1,...,5;. We have the following collections of inverse
branches of f: the first collection is f~' : U7' = U772 for 1 = 0,1, ...,n; — 1

{ ——i—1

and the second is _f‘l U, = U; for I =0,1,...,8i — L.

The union of the two collections of inverse branches of f described in
the previous paragraph. will be called our “selection” of branches of f~! for
B, (notice that we are specifying the domain and ima,ge of each one of the
branches of f~! in our “selection”). Consider now the set of all possible pre-
images of p;, i = 1,2 under composition of branches of f~! in our “selection”
of branches. We define the set By as being the closure of the set of all such

pre-images.

We can define B, in a similar fashion: instead of letting ¢ in last para-
graphs to be just in {1,2}, we let i to be in {1,2,...,n}. For each p;, U;
is as before a small neighborhood around p;, 7 = 1,2,...,n. There exist y; ;
pre-image of p; (suppose that f*(y; ;) = p;) contained inside U; (those points
define the bridges between any two distinct orbits). There exists a small neigh-
borhood U;; of p; contained in U; such that y;; € f=%9 (U;) CU; i # 4. As
for B, now we can define the suitable “selection” of branches of f~! for B, in a
similar way. Consider now the set of all possible pre-images of p;, 1 = 1,2,...,n
under composition of branches of f ~1 in our “selection” of branches. We de-
fine the set B, as being the closure of the set of all pre-images just described.

Notice that we can carry on our construction such that we have B, ; C B,.

The sets B, have the following properties:
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(i) Each set B, is f-forward invariant;

(ii) Each B, is compact;
(iii) fiBy : Bn — By is hyperbolic;

(iv) If we fix 7, the set of all pre-images of p; is dense inside B,, for

1= 1,2,..,n;
(v) f|By : B, — By is topologically transitive (see Definition 2.3.7);

(vi) U, Ba is dense inside J(f).

The first and the second properties are true by construction. The third

property follows because we are excluding from our construction periodic

points which are images of the critical point by some iteration of f. That
implies that the distance from the set B, to the critical point of f is strictly
positive (depending on n). Property (iii) follows now, if f belongs to the class
C. of generalized polynomial-like maps.

Let us show the forth property. It is clear that the pre-images of the set
{p1,p2, ..., pn} under the system f: B, — B, is dense inside B,. So, in order

to show that the pre-images of some p; are dense inside B,, we just need to

show that given any 1 < j < n, there exist pre-images of p; arbitrarily close
to p;. That is true because there exists a pre-image y; ; of p; inside Uj, the
neighborhood of p; used in the construction of B,. If we take all pre-images

of y; ; along the periodic orbit of of p; we will find pre-images of p; arbitrarily

close to p; (remember that all periodic points are repelling).




Let us show (v). By (iv), inside any open set V #£ (, there exists a
pre-image of p;, for each 7 = 1,2, ...,n. Then, for some m;, f™(V) is a neigh-
borhood of p;, for each p;. Let z be any point in B,. There are j and &
positive such that f~*(z) € U;. That is because of the construction of B,.
So f~*(x) € U;. Pulling f~*(z) back along the orbit of p; sufficiently many
times we will find a pre-image of = inside‘ f™ (V). That implies that for some
positive s, & € f*(V). So we conclude that B, C Uskso FEVD).

The last property is obvious because |J,, B, contains all the periodic points
inside J(f) with the exception of at most finitely many (in the case that the

critical point is pre-periodic or periodic).

5.3 Non-existence of affine structure

In this Section we will show that if f is a map belonging to the class C then
f+ Bp — By does not admit an invariant affine structure (see Definition 2.3.6),

for n > ng, for some ngy depending on f.

Lemma 5.3.1 Suppose that f : B, — B, and f : B,y — By admit
invariant affine structures. Then the invariant affine structure in By extends

the invariant affine structure in B,,.

Proof.  We will start by taking n = 1. Let {(¢, Vi)} be a finite atlas of
an invariant affine structure for f : By —» By and let {(0;,U;)} be a finite

atlas of an invariant affine structure for f : B, — B,. We will show that the

collection {(a;,U;)} U{(¢:, Vi)} is an atlas of an invariant affine structure for
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f : By = B,. Notice that the invariant affine structure for f : By — B is
unique, given by the linearization coordinates of p;.

Let us suppose that V. U; # 0. We will check that the change of co-
ordinates o;(¢;)7" is affine. We can assume that the closure of Bo(NV; N U;
is not empty, oth;erwise we can shrink U; to U; \ Vi. Let 2 be an element
belonging to this intersection. We can assume for simplicity that V; is a chart
in By containing p; and U; is a chart in By containing p; (remember that p;
is the enumeration of periodic points used to construct the sets B, and that
B, C By). As the affine structure for periodic orbits is unique, we conclude
that (o;, U;) and (¢, V;) are the same (up to an affine map) in a neighborhood
of p;. So we can assume that U; C V;. We can pull & back by f™ [ times along
the (periodic) orbit of p; until the moment that we find y € B, pre-image
of  under f'™ belonging to U;. Because (¢, V;) is a linearization coordinate

1 is affine from a

around the periodic point p;, we conclude that ¢;f™ (¢;)~
neighborhood of &(y) to a neighborhood of ¢:(z). On the other hand, as
y € ByNU; and 2 = f* (y) € ByNU;, we conclude that o; f™ (e;)7! is affine
from a neighborhood of o;(y) to a neighborhood of o;(z). Keeping in mind
that o; is the restriction of ¢; (up to an affine map), we get that the change of
coordinate a;(¢;)~! is affine (see Figure 5.1). From that follows trivially that
any composition of the form o; f(¢:)~! and ¢;f(e;)~" is affine, whenever they
are defined. So we prﬁved the Lemma in the case n = 1.

Now suppose that we have some invariant affine structure {(¢;, V;)} in

B, and {(o;,U;)} in B,y;. We want to show that {(¢;, Vi)} U{(o;,U;)} is an

invariant affine structure in B, 1. Suppose that U; intersects a chart of one
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Figure 5.1: Commutative diagram of charts

of the periodic points p1,ps, ..., pn in B,. Then the change of coordinates from
U, to one of those charts is affine (same as the proof for n = 1). Now let U;
and V; be two arbitrary charts with non-empty intersection. We can assume
that there exists & in the closure of By NU; NV, (otherwise we can shrink
Uj to U;\ Vi). Let ¥} be the chart around p, in the affine structure for B, and
[/; be the chart around p; in the affine structure for B, ;. Then ViU is a
neighborhood of p;. Inside B,, we can pull back V; until we find a pre-image
(of V; with respect to f: B, — B,,) strictly inside Uy NV} (this is possible by
hyperbolicity). So f~4V;) C Vi Ui Then it is clear that ¢; f(¢1)~" is affine
in f~4(V;). On the other hand, o;f'(01)™" is affine in in a subset of f~'(V})
containing the pre-image y of z via f~' (remember that z is the element in B, 44
contained in U; NV;). As oy and ¢y are equal up to an affine transformation

in a neighborhood of y (because both are linearizing coordinates around a

periodic point), we conclude that the change of coordinates ¢;(c;)™" is affine
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(just imagine an appropriate diagram similar to the one in Figure 51). It
is trivial to check that the affine structure defined by {(¢:, V;)} U{(s;,U;)} is

invariant under f. O

We would like to point out that with exactly the same demonstration as
above we show that if there exists an invariant affine structure for the system

f: B, = B,, then it is unique.

Lemma 5.3.2 If [ belongs to the class C, then there is a positive number ng

such that  : B, — B, does not admit an affine structure if n > ng (ng depends

on f ).

Proof. Suppose that f: B, — B, admits an affine structure, for infinitely
many n. Then all those structures coincide when defined in common subsets
by Lemma 5.3.1. This implies that we can define the set X = U, B, and an
invariant affine structure for f : X — X (notice that X is f-invariant and
dense inside J(f)). Let us denote the elements of the atlas defining such afline
structure over X by (a;, U;).

There exists n such that some element of f~"(0), say yo, belongs to some
Ug (here we need to have the critical point inside J(f)). There exists m
such that some element of f~™(f%(0)), say 11, which is not a pre-image of
the critical point 0 belongs to U,, for some a (notice that this is not true
if f is a Chebychev polynomial-like map). We can take U, and Up small
enough such that f™ : U, — f™(U,) = U, and f*: Ug — f*{Up) = Uj are

isomorphisms (see Figure 5.2). We can also assume that f*(U;) = U,. We

can find z € X U} because X is dense inside J(f). Then f*(z) € U,. We
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can take charts from the atlas on X, say (o,,U,),U, C Uj and (o,,U,),U, C
Uy containing x and f?(z) respectively. Let o = o5f™" and o}, = aof™™,
where the inverse branches f~ and f~™ are defined according to our previous
discussion. Notice that oy and o, are isomorphisms onto their respective
images. Let A- = ¢, f?0'. The map A is affine (because A is the map f?

viewed from the atlas over X).

Uy U
0B 0;3 O, o, a, a,
Y
A4 \ 4
. e, {____
4 7 - g m .1
o,.f 0IB A vi O,
Figure 5.2: Commutative diagram
Notice that

ol f oyt = (o, fmo ) T Aoy frogt)

when we restrict both sides of the equation to the set o3(U, ).

The left-hand side of the above formula is a restriction of a degree two

branched covering, namely o, f ™™ f%f*(c5)"!. If we restrict the right-hand
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side of our equation to of4(U,) we get an affine map. That is because the:__': o
right-hand side of our equation is equal to a f~™ f2f*(0g) ™" (see Figure 5.2). . i
This map is affine when restricted to o4(U,) because 0, and og belong to the: '
atlas of the affine structure for f : X — X (remember that X is f-backward
invariant). Sc.; the right-hand side of our equation has constant derivative.
Contradiction! Therefore we conclude that it is impossible for f : B, — B,
to admit an affine structure, for n arbitrarily big. The Lemma is proved.

O

5.4 Proof of Theorem 4

We will present in this Sectiog the proof of Theorem 4. Let f: UU; — U
and g : UV; =+ V be two polynomial-like maps or two generalized polynomial-
like maps belonging to the class C such that dr(f,g) = 0. This implies that
there exists a homeomorphism h : J(f) — J(g) conjugating f and g that
preserves multipliers. That means that if ¢ € J(f) is an f-periodic point of
period n, then A(z) € J(g) is a g-periodic point with the same period n and
[Df*(x)] = |Dg" (h(x))].

We define the hyperbolic sets X, = B, C J(f) (as introduced in Sec-
tion 5.2) and Y, = f(X,) C J(g). By definition, the conjugacy h maps X,
onto Y,. In other words we have the following family of homeomorphisms:
ho = h|X, : X, = Y,. 1t is clear that A, conjugates f{X, and g]Y,.

The systems f: X, = X, and g: ¥, — Y, do not admit invariant affine

structures if n is big (see Lemma 5.3.2). In other words, f : X, —+ X, and




g : Y, — Y, are non-linear systems, for n big. We also know that h, preserves
multipliers (because it is true for A : J(f) — J(g)). So by Theorem 2.3.9
we know that there exist open neighborhoods O, of X,, and O’ of Y, and
holomorphic isomorphisms H, : O, — O, extending h,,. We can assume that
O C Opy1 and O; C 0;,4. Notice that by analytic continuation we have
that H, = H,y inside O,.

We define two open sets, O = |, 0, and 0" = U, 0. We can define
I : O — O by the following: for any z € O there exists some n such that
2 € O,. Then we define H(z) = H,(z). The map H is well defined. The map
H is holomorphic because locally it coincides with I, for some n. It is also
injective. The map H conjugates f|X and g|Y, where we define X = {J X,, and
Y =UY,. The sets X and Y are dense subsets of J(f) and J{g), respectively.
So the conjugacy H is defined in a open neighborhood of a dense subset of
J(f). Our goal is to extend H to a neighborhood of the whole Julia set.

Suppose that z is a point in J(f) not belonging to 0. If z is not the
critical value, then there exists n and an element z_, of f~"(z), such that
Z_p € O, and the iteration f” restricted to a small ball around z_,, is injective,
Consider the holomorphic map defined in a small neighborhood W of z by
¢ =g"Hf™™, where by f~" we understand- the branch of f~™ that takes z to
z_n. If W is sufficiently small, then ¢ is an isomorphism. It is clear that ¢ and
h coincide where both are defined. By analytic continuation, that means that
¢ also coincides with H where both are defined. In this way we managed to

extend H to an open neighborhood of J(f)\ {f(0)}. We will keep calling this

extension H. If z is the critical value, then instead of looking for pre-images




of z in order to repeat the previous reasoning, just look for the first image
of z. Remember that now the second iterate of the critical point belongs to
the domain of H. We can define an isomorphism in a small neighborhood of
the critical value given by ¢ = g7 Hf. The same argument as before goes
through to show i’;hat we have extended H to an open neighborhood of J(f).

This proves the Theorem.

5.5 Other consequences of the non-existence
of affine structure

It follows from the results in Section 5.3 that if f is in the classC and nis a
big natural number, then the system f : B, — B, does not admit an invariant
affine structure. In this Section we will derive some other consequences from
this non-existence of affine structure.

_ According to Lemma 2.3.8, the non-existence of invariant affine structure
for f : B, — B, is equivalent to log(|f)| not cohomologous to a locally
constant function in B,. In particular, the non-existence of an affine structure
implies that log(|Df}) is not cohomologous to a constant function inside B,.

This last observation together with Theorem 2.3.4 implies the following:

Corollary 5.5.1 If f belongs to the class C, then there is no A such that for

any j and any f-periodic point p of period 3, |Dfi{(p)} = N.

Proof. By our previous comments, we conclude that if n is big, then there is

no A such that for any § and any f-periodic point p of period 7, |Dfi(p)| = M
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inside B,. That implies the Corollary. a

Definition 5.5.2 If p is a Borel probability measure in J(f), then we define the
Hausdorff dimension of i as HD(p) = inf HD(Y') where the infimum is taken

over all sets Y C J(f) with p(Y) = 1.

Remember that the measure m = fieons: 18 the measure of maximal entropy
for the hyperbolic system f : X — X. In [Lyu83] Lyubich showed how to
construct a maximal entropy measure m for f: J(f) — J(f) for any rational
function f. Zdunik classified in [Zdu90] exactly when HD(m) = HD(J(f))
and when HD(m) < HD(J(f)). The following is a particular case of Zdunik’s
result if we consider f as a polynomial. It is however an extension of Zdunik’s

result if f is a generalized polynomial-like map:

Corollary 5.5.3 If f belongs to the class C and m is the measure of maximal
entropy for f, then HD(m) < HD(J(f)).

Proof. It was shown in [PUZ89] that it is enough to check that log(|Df])
is not cohomologous to a locally constant function in J(f). By that we mean
the following: there is no real function h which is equal m-a.e. to a continuous
function in a small neighborhood of any point in J(f) without the post-critical
set and log(|Df}) = ¢+ h(f(2)) — h(z). |
Suppose that log(|Df|) is cohomologous to a locally constant function, in

the sense defined in the previous paragraph. Remember that the sets By, are at

a positive distance from the closure of the critical orbit. So we would conclude
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that log(| D f]) is cohomologous to a constant (in the sense of Definition 2.3.3).

Lemma 2.3.8 and Lemma 5.3.2 imply that this is impossible. O
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