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Abstract of the Dissertation

Quaternionic Discrete Series

of Semisimple Lie Groups
by

Derel Gordon

Doctor Of Philosophy
in
Mathematics
State University of New York

at Stony Brook
1995

This thesis investigates the discrete series of linear connected semisim-
ple noncompact groups G. These are irreducible unitary representations that
occur as direct summands of L?(G).

Harish-Chandra produced discrete series representations, now called
holomorphic discrete series representations, for groups G with the property
that, if K is a maximal compact subgroup, then (/K has a complex structure
such that G acts holomorphically. Holomorphic discrete series are extraor-
dinarily explicit, it being possible to determine all the elements in the space
and the action by Lie algebra of G.

Later Harish-Chandra parametrized the discrete series in general. His
argument did not give an actual realization of the representations, but later

authors found realizations in spaces defined by homology or cohomology.
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These realizations have the property that it is not apparent what elements
are in the space and what the action of the Lie algebra & is.

The point of this thesis is to find some intermediate ground between
the holomorphic discrete series and the general discrete series, so that the
intermediate cases may be used to get nontrivial insights into the internal
structure of the discrete series in the general case.

The thesis examines the Vogan-Zuckerman realization of discrete series
by means of cohomological induction. An explicit complex for computing the
homology on the level of a K module was already known. Also, Duflo and
Vergne had given information about how to compute the action of the Lie
algebra of G.

The holomorphic discrete series are exactly those cases where the
representations can be realized in homology of degree 0. The intermediate
cases that are studied are those where the representation can be realized in
homology of degree 1. Many of the intermediate cases correspond to the
situation where G/K has a quaternionic structure. The thesis obtains full

results in special cases of this situation and partial results in general.
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INTRODUCTION

This thesis investigates the discrete series of linear connected semisim-
ple noncompact groups G. These are irreducible unitary representations that
occur as direct summands of L2(G).

It was Bargmann [Bar] who discovered that such representations can
actually exist. In classifying the irreducible unitary representations for G =
SL(2,R}, he found two countable families of discrete series , one in spaces
of analytic functions on the unit disk and one in the space of complex con-
jugates.

Later Harish-Chandra ([HC1|, [HC2] and [HC3]) was able to abstract
Bargmann’s construction and generalize it somewhat. Let K be a maximal
compact subgroup of G. The setting for Harish-Chandra’s generalization
is that G/K has a complex structure such that G acts holomorphically.
For each irreducible finite-dimensional representation of K whose highest
welght satisfies a certain negativity property, Harish-Chandra considered the
space of scalar-valued square-integrable holomorphic functions on G that
transform under a maximal torus of K by the given highest weight, with G
acting by translation on the functions. Harish-Chandra found that this space
gave a discrete series representation, and such representations have come to
be known as holomorphic discrete series. Holomorphic discrete series are

extraordinarily explicit, and one can read off with relative ease what elements




are in the space and how the Lie algebra of G operates.

Harish-Chandra’s early work on the Plancherel formula for semisimple
groups suggested that other groups should have discrete series, not just those
with G/K complex, and yet no such representations were discovered for a
number of years. Then in 1960 Dixmier [Dix] was able to classify the irre-
ducible unitary representations of G' = S0(4, 1), as well as its double cover,
and to prove that some of his representations were discrete series. Dixmier’s
student Takahashi [Tak] gave global realizations of these representations,

ostensibly explicit, and for the first time one had nonholomorphic examples.

In 1966 Harish-Chandra [HC4| succeeded in parametrizing all the dis-
crete series for all semisimple groups & for which the rank of G equals the
rank of the maximal compact K, and he showed that there were no discrete
series if the equal rank condition failed. His parametrization was in terms
of features of the global characters of such representations and did not give
a global realization of any kind, other than as an unspecified subspace of
L3 (@).

Global realizations were the subject of the Langlands conjecture [Lan],
which ultimately was proved by Schmid ([S1], [S2] and [S3]). It was shown
that the discrete series can be realized as spaces of L? cohomology sections
over G/T, where T is a maximal torus of G. Although the result was a space
that one could define, neither the methods of proof nor direct computations

showed how to produce a single nonzero element in the representation space.

Thus, except for SO(4, 1) and some similar examples that were consid-

ered afterward, there was no intermediate ground between the very concrete



holomorphic discrete series and the very abstract general discrete series.
And, in fact, closer examination of Takahashi’s construction shows that
it is less explicit than one might at first suppose. It does allow for the
computation of nonzero elements in discrete series, one representation at a
time, but it does not really show what the whole space is like nor what the
action of the Lie algebra of ¢ is.

The point of this thesis is $o find some intermediate ground between
the holomorphic discrete series and the general discrete series, with the hope
that one can use the intermediate cases to get nontrivial insights into the
internal structure of the representations in the general case.

Thus we seck a kind of discrete series, more complicated than the
holomorphic type, for which a global realization is relatively con;:rete. We
insist on being able to identify the elements in the space, and we want to
understand the action of the Lie algebra of G rather.explicitly.

There are by now several “constructions” of general discrete series. In
addition to Schmid’s, we mention the Hotta-Parthasarathy realization [H-R]
using a Dirac operator, the Enright-Varadarajan realization [E-V] using an
iterative cohomological construction, the Flensted-Jensen realization ([FJ1]
and [F'J2]) using a kind of spherical function for a dual group, and the Vogan-
Zuckerman realization ({[Vog) and [Zuc]) using cohomological induction.

One approach to the problem is to find one of these general construc-
tions that is relatively manageable in some sifuations. Another approach is
to look for a kind of realization that is valid only in special situations.

We shall in fact pursue both approaches. The general construction




that we examine is the Vogan-Zuckerman realization using cohomological
induction. This particular construction seems favorable since the homology
or cohomology is to be computed on the level of a K module from an explicit
complex and since Duflo and Vergne [D-V] have given information about how
to compute the action by the Lie algebra of G. All the cases of holomorphic
discrete series, and only those, turn out to be realizable in homology or
cohomology of degree 0, and we propose cases where the realization is in

degree 0 or 1 as the intermediate case.

The concrete realization that we pursue is suggested by Takahashi’s
extensive use of quaternions in his work with SO(4,1). A key ingredient
for Harish-Chandra’s treatment of holomorphic discrete series is the use of a
global decomposition of G that imbeds G/ K explicitly as a bounded domain
in some C". We try to find a similar decomposition when G/K has some

quaternion structure and to use it to construct representations.

Actually the two approaches have something in common. Wolf [Wol]
has classified those groups for which G/ has a reasonable quaternion struc-
ture, and it turns out that most of the situations where Vogan-Zuckerman
representations are realized in degree 1 are of the kind on Wolf’s list. The
study of discrete series that arise from Wolf’s situation is not new but has
been considered by Enright, Parthasarathy, Wallach, and Wolf ([EW1] and

[EW2]), although these authors had completely different objectives.

At this point we state the main results of this thesis. In Chapter 3,
rather than work with SO(4,1), the author considers the group Sp(1,1),

which is locally SO(4,1). Takahashi [Tak] exploits this fact as well.



In Chapter 1, the Vogan-Zuckerman construction of discrete series by
means of cohomological induction is described. Crucial items are the K

modules (1.12) and the maps 8, and 8% acting on these modules.

In Chapter 3, Section 1, we consider the case where G' = Sp(1,1) and
where the discrete series is of a special kind called Ay(A) (Definition 1.18).
Using the modules and maps just mentioned, we are able to determine a
basis for the multiplicity space (Definition 3.3a) of each K type (defined in
Chapter 1, Section 1) appearing in A4(A). This result is Theorem 3.17. As
a result of Theorem 3.17, we can determine a homology basis for each K
type appearing in the A () discrete series. This result is Definition 3.19.
A theorem of Duflo and Vergne (mentioned above) is then used in order to
compute the action of the (complexified) Lie algebra of G on a homology
basis for each K type. This result is Theorem 3.29. Hereafter, we will mean

the complexified Lie algebra of G when we write “the Lie algebra of G”.

In Chapter 3, Section 2, we continue with G = Sp(1,1) but now
consider a discrete;, series £1(Vie, 1e,) (see (1.3) and Chapter 1, Section 3) fof
which the corresponding Dixmier diagram (defined in Chapter 1, Section 3)
has two rows of K types. (The special discrete series Ay(A) mentioned in the
previous paragraph is £1(Cg., ) and has one row of K types.) An interesting
phenomenon occurs in each row. For the row of K types containing the
minimal K type, the space Im 83, used in determining the multiplicity space
for each K type, is 0. Theorem 3.32 exhibits a basis for the multiplicity space
of each K type in this row. In the other row of K types, the space Im 85 18

one-dimensional for each K type. Theorem 3.34 produces, for each K type



in this row, a basis vector of Ker 9" that does not vanish in the quotient
space Ker 8% / Im ag. Using these two theorems, we state Definition 3.30,
which provides a set of basis vectors in Ker J for each K type appearing in
L1(Viey e, ) With the property that none of these basis vectors vanishes in
the quotient space Ker 8 / lm 8;. Theorem 3.37 uses the Duflo and Vergne
result in order to compute the action of the Lie algebra of G on any vector

stated in Definition 3.36.

In Chapter 3, Section 3, we continue with & as in the previous two
sections but now consiaer the general discrete series £1(Vye, +(R—1)es ), where
Ris an integer > 1 and d is an integer satisfying d > R—1. The corresponding
Dixmier diagram has R rows. Based on Theorems 3.17, 3.32, and 3.34, we
state Conjecture 3.39, which gives for any fixed K type in any of the R
rows, a basis vector of Ker 8% that should not vanish in the quotient space
Ker & / Im 8§. Using that conjecture, we prove Theorem 3.40. This theorem
provides a framework for computing explicit formulas of the action of the Lie
algebra of G in each K type. In fact, using Theorem 3.40 in combination
with Corollary 2.12, one can readily calcutate explicit formulas like those

that appear in Theorems 3.29 and 3.37.

In Chapter 4, we address the more general question of Ay(A) discrete
series for G = Sp(1,n), n > 1. Proposition 4.2 gives a description of the K
types appearing, and Theorem 4.14 proves that the question of determining
explicit formulas for the action of the Lie algebra of G, as was done in
Theorem 3.29, is a solvable problem, under the assumption that we have an

explicit decomposition into irreducible components of the K representation



Adlp @ w(p,gy- The group K and the representation m(p,g) of Chapter 4 are

generalizations of those in Chapters 2 and 3.

In Chapter 5, we consider the discrete series Aq()) for any group G

satisfying the conditions of Theorem 1.6(a). The first main result is Propo-
sition 5.3, which states explicitly a basis vector for the multiplicity space of
the minimal K type. Other results include Proposition 5.5, which gives a
general form for any K type appearing in A (A). A consequence of the proof
of Proposition 5.6 is the relation (5.6g), which gives a general form for any
K type n that has C3{Cy)|, nonzero (C5(Cy)|,, defined in Definition 3.3a}.
Proposition 5.7 shows that computation of the action of the Lie algebra
of @@ on a homology basis for the minimal K type is a solvable problem.
Finally, Proposition 5.8 proves that there are K types 7 for which C3(Ci)l,
is nonzero. This result is important when determining a homology basis.
Theorem 6.7 of Chapter 6 defines a unitary equivalence between two

different realizations of quaternionic discrete series for .5 p(1,1). One realiza-

tion uses the fact Sp(1,1)/(SU(2) x SU(2)) has a reasonable quaternionic
structure, in the sense of [Wol], and the discrete series is defined in a way
that imitates Harish- Chandra’s work with holomorphic discrete series. The
other realization comes from Takahashi. It consists of a special subspace
of vector-vatued functions of L%(G) that are square integrable with respect
to a certain inner product. Under the assumption that every function in
Takahashi’s space can be extended to a function on a larger set satisfying
certain properties, we give in Theorem 6.7 an explicit unitary equivalence

between the realizations.




CHAPTER 1

CONSTRUCTION OF DISCRETE
SERIES BY COHOMOLOGICAL INDUCTION |

1. Discrete Series

For a unimodular group @, an irreducible unitary representation m is
in the discrete series if it is a direct summand of the right regular repre-
sentation on L*(@), or equivalently if some (or equivalently every) nONzero
matrix coefficient (w(g)vy,vq) is in L*(G) [K-V,pg.20].

Let ¢ be a linear connected semisimple noncompact Lie group, and \
let K be a maximal compact subgroup. The discrete series representations
for G were parametrized by Harish-Chandra {HC4]. A key result is that the
discrete series representations exist for G if and only if a maximal torus T of
K is maximally abelian in G. This is equivalent to saying rank G' = rank K.
For an exposition, see [K3, pg.454], especially Theorem 9.20.

The Vogan-Zuckerman construction known as cohomological induction
is a way of constructing discrete series. At this point we shall give a brief
sketch of cohomological induection, omitting details of a number of definitions.
In the course of our description, we shall note under what conditions the
construction yields discrete series. We shall give a more detailed description
of cohomological induction in the next section. Motivation for cohomological

induction may be found in [K-V,Introduction], particularly sections 3 and




5, or [K1, Section 1(Setting)].

We begin with (¢ and K as stated above. For T' a torus subgroup of
K (not necessarily maximally abelian), we let L = Z(T) be the centralizer
of T in G. Eventually we shall assume that I C K, but we do not make
this assumption yet. Let go be the Lie algebra of G, g = (QU)C, let & and
[ be the complexifications of the Lie algebras of K and L, respectively, and
let q be a 6 stable parabolic subalgebra of g of the form g ={®u, where u
is the nilpotent radical. Here and elsewhere, we shall use the notation m,
with subscript 0, to refer to a real Lie algebra, and we shall use the notation
m without subscript to refer to a complexified Lie algebra ( m = (1m10)°).
Define § = [ @ #, where bar denotes conjugation of g with respect to go.
Theng=ud{di

What follows mirrors closely the discussion in [K-V, pgs.26-27]. Sup-

pose Z is an irreducible (I, L N K) module. We define Z% an (LLNK)

module, by

(1.1) 7* = 7 @ \*Pu,

where top = dim(u). Here and eclsewhere we use the notation ® with no
subscript to mean @, the tensor product over C.
We regard Z# as a (g, L N K) module on which i acts as 0. The next

step is to apply an ‘algebraic induction’ functor to form a (g, LNK ) module

(1.2) ind® 027 = U(g) @5 2% 2 U(w) @ Z%.




g,

After this we apply the j* derived functor of the “Bernstein functor” TI D LK

to obtain a {g, ') module:

(1.3) L£;(2) = (MY F )i (indS g (%)),

As mentioned above, under certain conditions, namely for the particular
value 7 = § = dim(u 1 &) and for certain irreducible modules Z, the (g, K)
module £;(7) is a discrete serics representation. We will state these con-
ditions on Z presently, but first we finish discussing how discrete series are
constructed using £;(Z). Under the assumption that the conditions for j
and Z are satisfied, £;(7) can be computed directly by means of 2 complex.
See formula (1.12) of the next section for details. Although £;(Z)is a (g, K)
module, the complex whose members come from (1.12) will provide us With a
(¢, K) module. This (¢, K) module is the S homology of the complex, and
we can reimpose the full g action on this (&, K') module by using a theorem
of Duflo and Vergne [K-V,Proposition 3.80} in combination with another
result [K-V, Proposition 3.83]. Examples where this g action is reimposed for
G = Sp(1,1) are provided in Chapter 3 ('Theorems 3.29 and 3.37). Because
these theorems will be cited extensively in this thesis, we present both of

them now.

Proposition 3.80 (Duflo-Vergne). Let (g, L) < (g, K) be an inclu-
sion of pairs, and let V be in C{g, L). Regard A"c as a trivial (g, L)
module, and make FV into a (g, L) module so that its action is the
same as in V. Let ®, be the Mackey isomorphism relative to (I, L)

and (€, K). Then the C(, K') map «, that makes the diagram
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5 ®c (RUC) B (A" <@ FV)) — R(K) @, (a@c A< ®c FV)

3.81 .
(3.812) '1 / 1@n(ancr V)
&«

R(K)®L (A"c®c FV))

commute is given by

(X Q(TOw)) = T®(AL(-) ' X  for X € g, T € R(K),
and we A"c® FV.

Proposition 3.83. Put
VI = A"c®c FV ®c (A™¢)".

Then the C(§, K) diagram

{mi‘?le(f%a%i“vm} — o)

g ®c IK(F(V &c (A" ")) —E— TE(FV @c(A")*)

commutes.
For our purposcs, the important portion of Proposition 3.80 is the map an.

In Proposition 3.83, we may ignore the term (A™¢)*, since it is not relevant



bK

e derived functor of P’
&l

for our situation. Also, the functor Hff is the n
(see {1.9b)), F = f;,lf (see (1.10)), and the map p is “multiplication by g”,
i.e., the g action.

At this point, we describe the the conditions on the irreducible ([, LNK)
module Z in order that £5(Z) be a discrete series. The first condition is that
L be compact, so that L C K. Under this condition, let us fix a maximal
torus B in L. B will be a maximal torus also in K, and we let b be the
complexified Lie algebra. Form the roots A = A(g, b), and choose a positive
system AT compatible with q. If Z is an irreducible (I,L) module with
highest weight A, then the infinitesimal character of Lg(Z) is A+6(g), where
§(g) is one half the sum of the positive roots of g. The necessary condition
for £4(Z) to be a discrete series is that A-+-6(g) be dominant and nonsingular

for g. In other words,
(1.4a) (A+6(gla)>0  foral ae AY,

In this case £s(Z) is the discrete series with Harish-Chandra parameter
X + 6(g), in the sense of [HC4]. It turns out that 8(g) = 6([) + 6(u), and
because I is compact for our cages of interest, then A+6(1) is the infinitesimal
character of Z. We have arranged that A(u), the roots of u, are all positive,
and we have seen that 6(u) L A(T). Because A + §(I) is strictly dominant
with respect to the roots of I, we see that A + 6(g) is automatically strictly
dominant with respect to AT(I). Therefore, the inequality (1.4a) can be

rewritten

(1.4b) ((infinitesimal character of Z) + &{u),a) >0  for all & € A(u).



We mentioned in the introduction that the value S = dim(u N ¢) may be of
interest in singling out special families of discrete series representations. We
therefore state theorems that classify the groups G and parabolic subalgebras
q corresponding to the cases S =0 and S = 1. The proofs may be found in
Section 4 of this chapter.

Theorem 1.5 Let G be a noncompact simple group with rank G =
rank K, and suppose that the @ stable parabolic subalgebra g = [Guofg
has S = dim(u N &) equal to 0. Then cither g = g or else G/K is Hermitian

symmetric with [ = & and u = p* in a suitable good ordering on the roots.

Theorem 1.6 Let & be a noncompact simple group with rank G =
rank K, and suppose that the 8 stable parabolic subalgebra q = {® u of g
has S = dim({uN€) equal to 1. Let # be the unique positive compact root in
A(u). Then {f, B} is a simple component in the root system of t, and the
following is a classification of the possibilities for the Dynkin diagram of g

and the roles of [ and u:

(a) A(u) contains exactly one simple root fy of g, fo is noncompact,
all roots of | are compact, 3 is the largest root and contains Sy in
its simple-root expansion with coeflicient 2, and fy s character-
ized as the unique simple root nonorthogonal to

(b) A(u) contains exactly one simple root Ay of g, Bo is a node in a
Dynkin diagram of type A, with n > 2, o is noncompact, exactly
two other simple roots are noncompact and they are adjacent,
and f is the sum of the simple roots from fo through the nearer

noncompact simple root of [

13



(¢)

(d)

(¢)

(f)

(8)

(h)

(i) A{u) contains exactly two simple roots By, and Ba, go is sp(2, R)

A(1) contains exactly one simple root fy of g, o 1s a node in a
Dynkin diagram of type A, withn > 2, 8y is noncompact, exactly
one other simple root is noncompact and it is the other node, and
{3 is the sum of all the simple roots

A1) contains exactly one simple root fg of g, B is a node in a
Dynkin diagram of type A, with n > 2, o is compact, the simple
root adjacent to By is the one and only noncompact simple root,
and 4 equals fy

A(u) contains exactly one simple root 8y of g, go is sp(2,R) of type
C,, By is compact and short, the other simple root is noncompact
and long, and # equals Bo

A(u) contains exactly one simple root g of g, go is split Ga, o 18
long and noncompact, the other simple root is short and compact,
8 contains f in its simple-root expansion with coefficient 2, and
3 is the largest short root

A(u) contains exactly two simple roots Sy and f,, the Dynkin
diagram of g is of type A, with n > 2, ; and f; are the nodes,
B, and B, are noncompact, all other simple roots are compact,
and § is the sum of all the simple roots

A(u) contains exactly two simple roots 81 and B2, 1 i3 noncom-
pact and f; is compact, the Dynkin diagram of g is of type A,,
B, is a node, B is adjacent to B2, the simple roots of [ are all

compact, and 18 B2



(¢) A(u) contains exactly one simple root gy of g, 8o 1s a node in a
Dynkin diagram of type A, with n > 2, f 1s noncompact, exactly
one other simple root is noncompact and it is the other node, and
B 1s the sum of all the simple roots

(d) A(u) contains exactly one simple root fo of g, fo s 2 node in a
Dynkin diagram of type A, with n > 2, fy is compact, the simple
root adjacent to B is the one and only noncompact simple root,
and 3 equals

(¢} A(u) contains exactly one simple root §y of g, go is sp(2,R) of type
Cy, B is compact and short, the other simple root is noncompact
and long, and § equals By

(f) A(u) contains exactly one simple root By of g, go is split Gaq, B is
long and noncompact, the other simple root is short and compact,
8 contains fy in its simple-root expansion with coefficient 2, and
f is the largest short root

(g) A(u) contains exactly two simple roots S and f;, the Dynkin
diagram of g is of type A, with n > 2, f; and f, are the nodes,
B; and B are noncompact, all other simple roots are compact,
and A is the sum of all the simple roots

(h) A(u) contains exactly two simple roots B1 and f2, B1 is noncom-

pact and f; is compact, the Dynkin diagram of g is of type An,
B, is a node, f is adjacent to fa, the simple roots of [ are all
compact, and 3 is Fy

(i) A(u) contains exactly two simple roots 1 and fa, go 1s sp(2, R)



of type C,, at least one of 1 and 3, is noncompact, and /3 is the

unique positive compact root.

The situation described in Theorem 1.5 where S = 0 leads exactly to
holomorphic discrete series, but in a realization as vector-valued holomorphic
functions on G/K. Alternatively these representations are being presented
on the level of (g, K') modules as generalized Verma modules, which are
reasonably well understood. Qur approach toward finding intermediate cases
of discrete series using cohomological induction will be to look at situations
where S = 1. The main case of Theorem 1.6 is (a), the other cases corre-
sponding to particular groups. Case {a) is closely related to work of Wolf
[Wol] on quaternion structure for G/K. See also [Sud], [Bes], [F1], [F2] and
[F3]. We do not have a complete theory of discrete series for case (a) of
Theorem 1.6. Therefore, we are going to start with the example Sp(1,1),
see what features of the theory for this group generalize to Sp(1,n), and see
what features of the theory for Sp(1,n) generalize fully to case (a). The
term quaternionic discrete series will be used to refer to discrete series
representations of a group G whose complexified Lie algebra g satisfies the
conditions of case (a) in Theorem 1.6. We consider Sp(1,1) in Chapter 3,
Sp(1,n) in Chapter 4, and the general case in Chapter &.

Section 2 of this chapter gives a more detailed description of coho-
mological induction, providing definitions and giving concrete formulas for
the complexes used in determining discrete series representations. Section 3
gives a description of some diagrams introduced by Dixmier [Dix] and used

in determining K types (defined below) for Sp(1,1) discrete series. Section 4

15



restates Theorems 1.5 and 1.6 and provides proofs of these theorems; this
section may be skipped on first reading.

In order to define the term K type, we need some theory. The Peter-
Weyl Theorem [K3, Theorem 1.12] states that L£s(Z), when thought of as
a K representation, will decompose as the direct sum of irreducible, finite-
dimensional K representations. Fach of these irreducible representations is
parametrized, up to unitary equivalence, by its highest Weight (Theorem of
the Highest Weight, [K3, Theorem 4.28]). The highest weights that appear
with nonzero multiplicity in such a direct sum decomposition are called the

K types of Lg(Z).

2. Cohomological Induction

We begin this section by defining some terms used in our discussion
of cohomological induction. After these definitions are stated, we present a
more thorough analysis of the objects and maps used in constructing discrete
series representations by means of cohomological induction. This will be the
underlying structure for most of the work done in this thesis.

Definition 1.7 We shall define the Hecke Algebra R(K) as the

direct sum

R(K) = PV @ (V)
HER

where K is the set of equivalence classes of irreducible representations of
K, (=,V,) is an irreducible representation of K of highest weight p and
(7*,(V,)*) is the contragredient representation. A more detailed definition

is given in [K-V, (1.33)]. From this reference we see that both [ = left regular
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representation and r = right regular representation are defined on R(K). A
fact we shall use repeatedly throughout this thesis is the following: For any

pure tensor v @ v* in a summand V, @ (V,)* of R(K),

() (0 ® v*) = (=)o) @ v"
(1.7a)
r{k)v®@v*)=v® (7*(kp").
This extends to linear combinations of pure tensors, as well as finite sums
of the summands V, ® (V,)*. A thorough discussion of R(K} can be found
in [K-V,Chapter 1. The summands V,, ® (V,,)* of R(K) are called the K
isotypic components of R(K) of type y. See [K-V,Proposition 1.18] for

a further discussion.

Definition 1.8 We define the Hecke Algebra R(g,K) to be the

tensor product

R(K) @y Ulg),

where U(E) is the universal enveloping algebra of £, contained in U(g), the
universal enveloping algebra of g. Technically speaking, this tensor product
is isomorphic to the actual Hecke Algebra R(g, K) [K-V, Corollary 1.71], but
for our purposes the tensor product is sufficient. Note that R(I) is a right

U(€) module via the action

(1.8a) Tv = r(v*)T,

t

where T' € R(K) and v € U(t). The transpose map v +— v* is an antiauto-

morphism of U(¥) characterized by

(1.8b) Xt=-X and (uw)t = vful,
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for X € ¢ and u,v € U(€). In (1.8a), r is right regular representation
extended to [7(£). Note also that U(g) is a left U(£) module in a natural way,
namely by left multiplication. A thorough discussion of R(g, K) is given in
[K-V, Chapter 1]. In the first section of that chapter is a discussion of the

transpose map and the extension of r to the universal enveloping algebra.

Definition 1.9 Suppose that i:(h, L) — (g, K) is a map of pairs [K-

V,(2.6}], i.e., a pair of maps

talg - 0 — @, a Lie algebra homomorphism

tgp L — K, a Lie group homomorphism
satisfying the compatibility conditions

(1) tag 0 tp = tx © digp, Where digp is the differential of igp;

(1) 4a1g 0 Adp(l) = Adg(igp(l)) 0 tayg for I € L.

For V an approximately unital (B, L) module, the functor P(-) is defined by
(1.9&) P(V) = P[?,’II,{(V) = R(g: -'K) ®R(l),L) V.

This is a (g, K) module. A special example of the P functor occurs when
b = g. For V an approximately unital (g, ) module, the Bernstein functor

P;?,’I{{v denoted by Hg:g, satisfies the K isomorphism

(1.9b) PEE(V) =TS (V) = R(K) @ree,y V-

18



This is proved in Proposition 2.69 of [K-V]. Another example of the P functor
occurs when I = K. For V an approximately unital (), L) module, the

functor P[f"f , called Lie algebra induction, satisfies the equality

(1.9¢) EE ind®7 (V) = U(g) ®uwy Vs

with L acting by the tensor product of Ad and the action on V. This 1s

proved in Proposition 2.57 of [K-V).

The previous definition was given for a general map of pairs. In what
follows, we specialize to the case of quaternionic discrete series, so that q is
a parabolic subalgebra of g, L C K is compact, 1 is the nilradical, q = [Py,
and g =@

Definition 1.10 The functor F(-), the forgetful functor, will arise
in two ways in this thesis. For the first case, supposc V an approximately
unital (I, L) module, fﬁf’(V} is the (I, L) module V, extended to be a (4, L)
module by defining Xv =0for X c¢tand v € V.

In the second case, g = @ p is the Cartan decomposition of g; this
is discussed more fully in Chapter 2, Section 1. The functor }";:f(V) is the
(g, L) module V, reduced to a (¢, L) module by ignoring the action of p on
V. A precise definition of the functor 7 can be found in [K-V, pg.109].

We now state precisely what complexes are used in determining £ g(Z).
For this discussion we will continue with the notation for groups and Lie
algebras stated in Section 1 of this chapter. We will assume that appropri-

ate choices have been made for § and Z so that £s(Z) is a discrete geries

19



representation (see Section 1), If we abbreviate indg’i(z #) by Vg, then the

precise complex used consists of the (g, K) modules
(1.11a) _ R(g, K)or (A" @) ® Vz)

and a map On, which maps from A" to /\n—i, defined on a module (1.11a)

as

A(RQYiA - ANY,®v))

S =)HRY® (Y A AY A A Y, @)
(1.11b) ;

+Z(—1)’(R®(YlA---AﬁAA--/\Yn(@Ev))
=1

for R € R(g,K), Y1,...,Ya € 4@, and v € Vz. The value n in (1.11a)
ranges between 0 and N = dim{g/l). This complex is discussed thoroughly
in [K-V, Chapter 2,Section 7}. Formulas (1.11a) and (1.11b) above are taken
from formulas (2.128a) and (2.128b) of this reference and modified to fit our
situation. Using this notation, £5(Z) is the (g, K ) module Ker 3/ Im Os+1.
Although we could calculate the discrete series in this way, we choose
to modify this construction somewhat and produce the discrete series in
steps. More specifically, the construction above gives us a (g, K) module,
which is what we desire ultimately. However, we proceed by first changing
“the complex (1.11a) to a (¢, ) module and then reconstructing the full g
action by means of the theorem of Duflo and Vergne (Proposition 3.80 of

.[K—V]) and one other result (Proposition 3.83 of [K-V]). These results are
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stated in the previous section. The reason for this change is that our new
complex replaces R{g, K} with R(K }, which is much easier to manipulate.
To make the change, we use Corollary 3.26(c) of [K-V], which allows us to
N SUNIRET R bE L. 10,0 :
replace (Hg’g,)s(zndg,LZ#) by (Mg, S(fg,L(md?],LZ#))- If we abbreviate
f;:i(indg:iz#) by F(Vz), then (3.27) of the same reference tells us that

the complex whose S* homology is (Hgf) s(F(Vz)) is given by a complex

whose modules are

(1.12) RK) 2L (N (v 8)NE) @ Vy)

and whose maps 0, are the same as that of (1.11b), except for notational
changes. Note, however, that the domain of n decreases when considering
the (¢, K) modules (1.12) instead of the (g, K) modules (1.11a). The (¥, K)
module (X )s(Fop(indd} Z#)) is given by Ker Os/ Im 41, with 95 and
Bs.41 being maps on the modules (1.12).

A special kind of discrete series we will consider occurs when the (1, L)
module Z mentioned before (1.1) is one dimensional.

Definition 1.13 Let B be a Cartan subgroup of G with §) the complex-
ified Lie algebra of B. Let A be an analytically integral linear functional on b
that is orthogonal to all the members of A(I), and let Cy be the corresponding
(§, B) module. By [K-V, Theorem 4.52], there is an irreducible ([, L) module
Z with highest weight A. Since A_L A([}, Z is one dimensional, i.e., Z = Cj.
Thus Z becomes a one dimensional representation of L. We define a (g, K)
module by |

Aq()‘) - E.S‘(CA),
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where, as before, S = dim(u N1 £). For a fuller discussion see [K-V, Chapter

5, Example 2}.

To make our calculations with @, simpler, we will work with the space

of I invariants_of

(1.14a) RIK)® A {(udu)nE) ® Vg,
denoted
(1.14D) (R o A((@o©NY e Vz)",

rather than with the space of L coinvariants of (1.14a), namely (1.12). We
can lift @, from (1.12) to (1.14a) where the formula for dy is still the same
but we no longer expect 9% = 0. If £ denotes the representation of L on Vz,
then L acts on (1.14a) by r ® Ad ® £ and we can recover (1.12), apart from
a canonical isomorphismn, as the subspace (1.14b) of (1.14a). The advantage
of doing this is that we now are working with a subset of vectors rather than
equivalence classes of vectors. For a fuller discussion, see K-V, pg.193].

We can simplify the process of determining elements in Ker 8, for the

(¢, K) modules
(1.15a) V.oV, o N'((ueun)nt)@ V), ‘

where g is a K type in the discrete serles L5(Z) and V, ® V,," is the K
isotypic component of R(K) of type p. We do this by first considering a

puretensor'u@v*@Yl/\---/\Yn@)zin

(1.15h) V.,V o AM(udn)n) @ Vz.
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Here v @ v* € V, ® V,,* and z is a pure tensor in Vz. From (1.11b) and (1.8)

we have
0@V QYT A AY, ®2)
| =S (D) @) OV A ATIA A YR ®2)
(116) =1

FS (D@ QYA ATIA - AY, @ Viz).
{=1

:Z(ﬁl)t(w@w*(lﬁ)v*@}qA.../\ﬁ/\.../\gfn@z) | ‘
=1

=§:U®[(—1)’(W*(l’1)v*®lﬁ/\---/\ﬁ/\--:/\%@z)
i=1
+(—1)I(U*®Y1/\"'/\i’\'l/\---/\Yn®le)]
:u@)zn: (1) (Vv @ Yi A AYiA - AYn ®2)
=1
(D @Y A ATIA- A Y, @ Yi2)].

n i
+ 3 () (rver e Ao-AViA-AY,®Yiz)  from (1.7a) f
=1
Here, r(Y;) and 7%(Y}) refer to the differentials of the representations r and
7*, both of which are defined on the group K. Here and elsewhere, we omit
writing 7* and simply write the element of the Lie algebra acting on a vector.
With (1.16) as motivation, we define the map A% on the vector space
(1.17a) Vio AN {vot)nt)e Vs {
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N QYL A ANV, ®2)

(1.17b) :_Z(—l)’(W*(Yz)v*@Yl/\---/\?}/\---/\Yn@z)
=1
F (=D @Y A AV A AY, @ Yi2).

This descends to a map that we shall also denote by o on the space of L

invariants
(1.17¢) (Vi ® A'((ud i) Ne) e Vz)h.

Because 9, and 531 both commute with the invariants functor, we sec that
producing an element of Ker 0, for (1.15a) amounts to first producing an
element of Ker 1 for the space (1.17¢) and then tensoring it with any ele-
ment of V. This is the procedure we will follow when determining elements
of Ker 0 in Chapters 3-5. Here and elsewhere, when n = 1in 8, or 84, we
shall drop the subscript 1 and simply write 8 or O

As a final note about calculating Ls(Z), in particular the (€, K ) mod-
ale that comes from the complex with modules (1.14b), it is important to

remember that, for ¥; € (u@u) Nt and T € R(K),
(1.18) TY, = —r(Y)T.

We used this relation when computing the formula (1.16). It is also of
particular importance when checking if a certain vector is in Ker ds or if

a certain vector is in Im Jg.41-



The author wishes to thank A. W. Knapp, who provided the proofs for these

theorems.

Theorem 1.5 Let G be a noncompact simple group with rank G =
rank K, and suppose that the § stable parabolic subalgebra q = {Qu of g
has § = dim(u N €) equal to 0. Then either q = g or else G /K is Hermitian

symmetric with [ =% and u = p+ in a suitable good ordering on the roots.

PROOF. Let by be a Cartan subalgebra of &, introduce a positive
system AT((,b) for [, and let A(g,b) = AT(1, 5)UA(u) be the corresponding
positive system for g. Since 5 = 0, the compact positive roots are all in
AT(1,8). Therefore [ contains the semisimple part of €. Since center(¥) C

b C I, [ contains €. Consequently
Alp) = A(TNp, b) U A(u) U Adu),

with each corresponding subspace of g invariant under ad®. If Au) # 0,
then A(il) # § and Problem 16 on pg. 166 of [K3] shows that A(lnp,b)=0

and center(f) # 0. Then =8 u=p*, and A =p~.

Theorem 1.6 Let G be a noncompact simple group with rank G =
rank K, and suppose that the § stable parabolic subalgebra = [ u of g
has S = dim(uNE) equal to 1. Let 8 be the unique positive compact root in
A(u). Then {f, —B} is a simple component in the root system of ¢, and the
following is a classification of the possibilities for the Dynkin diagram of g

“and the roles of [ and w:

(a} A(u) contains exactly one simple root By of g, Po is noncompact,
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all Toots of | are compact, 8 is the largest root and contains Py in
its simple-root expansion with coeflicient 2, and Ay is character-
ized as the unique simple root nonorthogonal to §

(b} A(u) contains exactly one simple root Bo of g, Bo is a node in a
Dynkin diagram of type A, withn > 2, By is noncompact, exactly
two other simple roots are noncompact and they are adjacent,
and f is the sum of the simple roots from o through the nearer
noncompact simple root of 1

(c) A(u) contains exactly one simple root Bo of g, fo is a node in a
Dynkin diagram of type A, withn > 2, B is noncompact, exactly
one other simple root is noncompact and it is the other node, and
£ is the sum of all the simple roots

(d) A(u) contains exactly one simple oot f of g, fo is a node in a
Dynkin diagram of type A, with n > 2, o 1s compact, the simple
root adjacent to fy is the one and only noncompact simple root,
and A equals o

(e) A(u) contains exactly one simple root By of g, g0 18 5p(2,R) of type
Cs, Bo is compact and short, the other simple root is noncompact
and long, and 3 equals fy |

(f) A(w) contains exactly one simple root B of g, go is split Gg, o 1s
long and noncompact, the other simple root is short and compact,

§ comntains By in its simple-root expansion with coefficient 2, and
3 is the largest short root

(g) A(u) contains exactly two simple roots By and P, the Dynkin



S

=

e

diagram of g is of type A, with n > 2, By and f, are the nodes,
#; and B, are noncompact, all other simple roots are compact,
and f is the sum of all the simple roots

(h) A(u) contains exactly two simple roots 8; and s, fh is noncom-
pact and fB is compact, the Dynkin diagram of g is of type An,
B2 is a node, fi is adjacent to [, the simple roots of { are all
compact, and f is By

(i) A(w) contains exactly two simple roots B1 and P, go is 5p(2,R)
of type Cs, at least one of By and §; is noncompact, and A is the

unique positive compact root.

REMARKS.

1) Only case (a) is fairly general. It is immediately clear that at most
one situation fits case (a) per complex simple Lie algebra. For type Ay, no
coefficient 2 occurs in a root expansion, and case (a) is never applicable. But
for the other types of irreducible Dynkin diagrams, case-by-case inspection
shows that case (a) is applicable.

2) The cases other than (a) apply only to special groups. In cases (b),
(¢), (d), (g), and (h},the Lie algebra go is su(n —1,2). In cases (e) and (i),
go is sp(2,R). In case (f), go is split Go.

3) The proof will make repeated use of the following fact. A sum of
distinct simple roots is always a root if the set of simple roots in question is
connected in the Dynkin diagram.

4) The proof will make use also of the following fact. In a Dynkin

diagram other than A,, any simple root other than a node has coeflicient
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> 2 when the largest root is expanded in terms of simple roots.

Proor. Let by be a Cartan subalgebra of By, introduce a positive
system A (1, b) for [, and let A*(g,b) = AT (1, b)UA(W) be the corresponding
positive system for g. Since § =1, thereis a unique compact root 3 in A(u).
Let s be the 51(2,C) generated by 8. We claim that s is an ideal in €. In
fact, let A’ be the set of compact roots not corresponding to s, let b' be the
orthogonal complement to CHg = [gg, g_p)in b, and put v/ = b'® > weat Ja-
Then ¢ @ s = & as vector spaces. Take a € A'. Then « is in A(!, b) since
S = 1. If a+f is aroot, then a+ ff is compact and is in A{u), contradiction.
Hence [ga,0g] = 0 and similarly [0—a,8s] = 0. From the latter we have
[0, §—p) = 0, and thus g, brackets into 0 the algebra generated by gg and
g.g, namely s. Since [b',5] = 0, it follows that [¢',s] = 0. Thus [¢s] C s,
and 5 is an 1deal in &,

Let us prove that

(1) If 5, and f, are simple roots within A(u) and if all
simple roots lying between them in the Dynkin diagram
of g are in A(l,b), then all simple roots lying between
them are compact. If the set of such roots is nonempty,

then 8, and 3, are noncompact.

In fact, the roots 81 and B, are both in A(u) and hence cannot both be
compact. Without loss of generality, let f; be noncompact. If there is a
noncompact simple root between f; and s, let ay be the closest such to £,

and let ap be the closest such to 3. The sum 7 of the simple roots from
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8, through o is compact in A(u), and hence the root By in A{u) cannot be
compact. On the other hand, f; cannot be noncompact, since then the sum
of the simple roots from ay through f#, would be compact in A(u). Hence
all simple roots between f; and 8, are compact. If there is such a root, let
a be the closest such root to f3. We have normalized matters so that §; 1s
noncompact. If B, were to be compact, then 8, and B, + a would be distinct
compact roots in A(u), and we would have a contradiction. This proves (1).

Next let us prove that

(2) If $, and @2 are noncompact simple roots within A(u)
and if all simple roots lying between them are in A(l, b),
then By and By are nodes in the Dynkin diagra;m of g,

and the Dynkin diagram is of type A.

Assuming the contrary, suppose that 81 is not a node. Let & be the sum of
the simple roots from By through fz, and let v be a simple root adjacent to
#, but not contributing to a. From (1) we know that « is compact in A(u).
If ~ is compact, then a + <y is a second compact root in A(u), while if v 1s
noncompact, then By -+ v is a second compact root in A(u). In either case
we have a contradiction, and we conclude that 8, and B2 are both nodes.
To complete the proof of (2), we still have to show that the Dynkin
diagram is of type A. First suppose, continuing with arguments by contra-
diction, that the Dynkin diagram has a triple point e, necessarily between
By and 8. Let g1 be the sum of the simple roots from f; to «, and let &2

be the sum of the simple roots from S, through a. Let v be the first root
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on the third ray from «. The expression € = €1 + €2 — & is the compact root
in A(u). If v is compact, then ¢ + v is another compact root in A(u), while
if v is noncompact, then e; -+ v is another compact root in A(u). In either

case we have a contradiction, and thus there is no triple point.

Next suppose that the diagram is of type B, with f1 = e1 - ez, Bn =
€n, and n > 3. Then e; and e + e, are distinet compact roots in A(u),

contradiction.

Next suppose that the diagram is of type Gy, with 51 = €3 —eg, Bn =
2e,, and n > 3, Then e; e and ey + e, are distinct compact roots in Alu),
contradiction.

Next suppose that the diagram is of type Fy with consecutive simple
roots %(el —eg—e3 —e4), €4, €3 - €4, €2 — €3, the first two being short. The
sum of the simple roots, namely v = %(el + ey — €3 — e4) is compact and is
in A(u). But y+es = %(81 + ey — €3 + €4) is another compact root in A(u),
and we have a contradiction.

Finally suppose that the diagram is of type Gg. Since £, is equal to
su(2) @ su(2), there are two positive compact roots. Since one of them is in
u, the other must be in [. Thus [ has a nonempty set of roots, and not every

simple oot can be in A(u). This completes the proof of (2).

We can now prove that A(u) contains at most two simple roots of g. In
fact, let By, B2, and B3 be simple roots in A(w). Without loss of generality, we
may assume that no simple root of A(u) lies between 81 and f, or between 3
and (3. Referring to (2), we see that b and f; cannot both be noncompact,

and nor can 8 and B3. On the other hand, at most one of these three simple
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roots can be compact, since they are all in A{u). We conclude that 5 and
8, are noncompact and By is compact. From (1) we see that fi, B2, and
3, are consecutive. Then f; and By + f2 + f3 are distinct compact roots in

A(u), and we have a contradiction. Thus A(u) has at most two simple roots.

Suppose A(u) has exactly two simple roots, f; and B5. If they are
both noncompact, then (2) shows that we are in case (g) of the theorem.
Otherwise let us show that we aré in case (h) or (i). The roots f1 and 2
cannot both be compact. Thus suppose that f; is noncompact and fy is
compact. By (1} these roots are adjacent in the Dynkin diagram. Let us see
that B is a node. If, on the contrary, v is another simple root adjacent to
it, then v cannot be compact since f3 and 83 + would be distinct compact
roots in A(u). And vy cannot be noncompact since f; and £, + Bz + v would

be distinct compact roots in A(u). We conclude that f; is a node.

In this situation the remaining simple roots must be compact. In fact,
if & is a noncompact simple root other than f; and (2, we may assume that
«a is as close as possible to f;. Then the sum of the simple roots from o

through £ is compact in A(u), and so is J,, contradiction.

Thus a root is compact or noncompact according as the coefficient of
By in its expansion in terms of simple roots is even or odd. To avoid a second
compact root in A(u), the coeflicient must never be even and greater than
0. Hence it must always be 0 or 1, and it must in particular be 1in the case
of the largest root. Assuming that the rank is greater than 2, so that 3y is
not a node, we refer to Remark 4 and see that the coeflicient of By in the

expansion of the largest root is at least 2 except when the Dynkin diagram
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is of type A,. Type A, gives case (h} of the theorem. If the group has rank
exactly two, then [ has no roots. Hence £ has only one positive root, and
G, and s0(4,1) are excluded. The only remaining rank 2 cases are A and
5p(2,R), which are covered by cases (h) and (i). Thus if A(u) has exactly

two simple roots, we are in one of cases (g), (h), or (i).

Now suppose A(u) has exactly one simple root fy. Suppose first that
Bo is compact. To avoid having more than one compact root in Alu), we
note that any simple root adjacent to fy must be noncompact. If there are
two such simple roots a; and ag, then a; + fp + @z s a second compact
root in A1), contradiction. Thus fg is a node. The simple root B adjacent
to By must be noncompact, and all other simple roots must be compact. If
the rank is > 3 and if g is not of type A,, then Remark 4 shows that the
coefficient of By in the expansion of the largest root is > 2, and it follows
that there exists a root for which the coefficient of f; is 2. If such a root
does not involve flp, the sum with 8y will be a root. Thus there exists a
root in A(y) for which the coefficient of 4 is 2. Such a root is compact and
distinet from fo, contradiction. We conclude that g is of type A, asin case
(d), or else g has rank 2. In the latter case the possibilities for gg are s0(4,1),
sp(2,R), and Go. In s0(4,1) the short root is noncompact, and the long root
is compact. Hence | corresponds to the short root, and both compact long
roots are in A(u), contradiction. In sp(2,R} the situation is as in case {e).
In G, we have seen that A ([, b) must contain one compact root, and thus
the unique simple root of [ cannot be noncompact. We conclude that if Bo

is compact, the situation is as in case (d) or case (e).
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Next suppose that Gy is noncompact. First suppose that { is compact.
Then a root of g is compact or noncompact according as its expansion in
terms of simple roots contains fy with coefficient even or odd. Exactly one
root has coefficient 2, and that root is 8. Computing {8, 8) by expanding
one of the factors B in terms of simple roots and by using the orthogonality
of A with the other members of AT(E, B), we see that 8 has positive inner
product with fy. Again using the orthogonality of 8 with the other members
of A*(k,b), we see that § has positive inner product with each positive
noncompact root. I ¢ is not of type Gg, it {follows that # + « is not a
root when a is positive noncompact. Consequently the expansion of § has
coefficient 2 for fB,. Since A + @ is not a root when a is positive compact, it
follows that 8 is the largest root. This is case (a). If g = Ga, we still have
case (a) when § is long. But the argument breaks down when § is short.
The other positive compact root is long, being orthogonal to /3, and is the

positive root of [. This is case (f).

With 8y still noncompact, we now suppose that | is noncompact, 1.e.,
that some simple root of [ is noncompact. Let a be a noncompact simple
root, of [ as close as possible to fp in the Dynkin diagram. The sum ¢ of the
simple roots from « through By is one compact root in A(u). Let us show
that Fy is a node. Let v be a simple root adjacent to By but not contributing
to ¢. If 7 is compact, then v +¢ is a second compact root in A(u), while if v
is noncompact, then v+ fo is a second compact root in A(u), contradiction.

We conclude that fy is a node.
Since I is noncompact, A1 ([, b) has a noncompact simple root. Let ag
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be such a root that is as close as possible to fy in the Dynkin diagram. The
sum ¢ of the simple roots from ag through fo is compact in Alu). If ap 18
not a node, let a; be an adjacent simple root not contributing to €. Then
@7 must be noncompact to avoid having ay +¢€ as a second compact root in
A(u), and all remaining simple roots must be compact. (In particular, ap
cannot be a triple point.)

To complete the proof that we are in case (b) or case (c), we prove that
the Dynkin diagram is of type A,. Let A’ be the Dynkin diagram obtained
by including the simple roots ap through fg, together with the full third ray
extending from a triple point, if any, that lies between ao and Fg. Then the
case-by-case argument for (2) that concludes type A ig applicable here and
shows that A’ is of type A. In particular if ap is a node, we are in case (¢).

Now consider the full Dynkin diagram. We claim it contains no triple
point. Since A’ contains no triple point, a triple point has to be at a; or
beyond. Then we can form a Dynkin subdiagram of type D, with §y as
ey — €g, (g A8 €f..g — €1 ANd Of 88 €k—1 — €k, k < n—1. The root e; +e€x—1
within this subdiagram, when expanded in terms of simple roots, is of the

form

e +ep—1 = Po+ - tapt e+,

and is therefore compact. Since it is in A(u), we have at least two compact
roots in A(u), contradiction. Thus there can be no triple pomt.

In a diagram B, or Cy,, we know that By must be e; — eg, since Al is of
type A. Let g be ex—1 - €k, and let oy be the next simple root. In By, the

roots ey — ey and e + ey are compact in A(u), while in Cyp, the roots e — eg



and e, + ex_y are compact in A(u). In either case we have a contradiction.

Since the rank is = 3, we are left with Fy. Since A is of type A, the
roots flg, ag, 1 are consecutive with fSo as a node. The diagram generated
by these three simple roots 1s of type By or Cs, and we have just seen how

to produce a second compact root in A(u) in cither of these diagrams. Thus

F, is excluded, and the proof that we are in case (b) is complete.




CHAPTER 2

BACKGROUND FOR Sp(1,1)

1. Notation for Sp(1,1)

This chapter consists of technical results that will be used in later
chapters. The reader may skip this chapter on first reading and refer back
to it as needed.

In the first section, we introduce notation for Sp(1,1) that will be used

in this chapter, as well as Chapters 3 and 4. To begin, on the Lie algebra

level,
do = 5?(17 1)1
and
g= (Go)cv
According to [K3, pg. 1],
go =t & o

is a Cartan decomposition for go, where ¥ is the set of skew-Hermitian
members of gg, and py is the set of Hermitian members. We can repre-
sent these vector spaces as matrices by using [K3, pg. 27, Exercise 21]. The

matrices listed below are obtained from this exercise by applying the map
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aij "~ Uo(i)o(y) B0 each entry of a matrix A = (a;;), where o € G4 1s the

transposition (23). Hence, if ur,...,ws € R, then a matrix in & looks like

?:Ul —Uz — Z"U.g 0 0
g —dug  —iug 0 0
0 0 iwl —Wg — I"UJ3
0 0 Wy — E'U)g ~z'w1

The complexification € is given by

t =t @l
Also, for j,...,24 € R, 2 matrix in Po looks like
0 0 i) -+ ?:1132 —&3 — ?:334
0 0 rg — i$4 r1 — 3'3’.72
r — ?,’Lg x3 -+ E'$4 0 0
—&'3 +?.’L4 T +’L’l’,‘2 0 0

The complexification p is given by

p = po D 1ho-

This is one possible choice for &, o, £, and p. 1t is the choice we will use in

this thesis. From the matrix formulas of &, and ¥ we see that

By = su(2) @ su(2),
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and

£ = (8)° =s1(2,C) @si2,C).

As a representative matrix of the Cartan subalgebra ho we choose, for uy

and wy € R, the matrix

11U 0 0 _ 0
0 —wuy O 0
0 0 1101 0
0 0 0 —un

Then the Cartan subalgebra of g is given by
b = ho & the.

The notation for linear functionals on § 1s

0 0 0 —3

Here j = 1 or 2, and 1,02 € C.

Using matrices of £ and p, we can make assignments of root vectors
in g. Let E;; be the mafrix of al(4,C) with 1 in the (i,7)"* coordinate, 0
elsewhere. Then we define
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Root Vectors for &

4 —_
AZel — E12 X42c1 - E21

(2.1&)
: Xoe, = H34q X _9e, = Ey3.

Root Vectors for p:

Xejter = —Fra + L2 X ey =—En + Fas

(2.1b)
Xeyey = Brs + Eygo X _eites = Fag + En1.

Basis Vectors for b

(21(2) Hl = En - Egg Hg = E33 - E44.

In the decomposition of Ad|, ® 7(p,q) (next section), it will be important to

know the lengths of root vectors in p. For this purpose, we use an altered

version of the Hermitian form
(U, V) = -B(U, 917),

where B is the Killing form on g, U,V € g, and V 6V is conjugation of g
with respect to the compact form € @ ipo [K-W, (2.4)]. The altered version

replaces B by % Trace form. It is also true that the Hermitian form
1 _
(2.2) (U, V)= _iTT(U’ gv)

is a positive definite inner product on g for U,Veaq
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On the group level, when

G = Sp(1,1),

then

K = SU(2) x SU(2).

According to the discussion in Chapter 1, Section 2, the discrete series rep-
resentations come from modules (1.12) and (1.17¢) and maps 8, and 84. In
order to describe more explicitly these modules and maps, we need to know
the groups T and L and the Lie algebras [, u and {i (see Chapter 1, Section
1). For g = sp(1,1)%, we choose T' = S* x {Id} C SU(2) x SU(2). It follows

that

(2.3a) L= S'"x SU(2)

(2.3b) [=h @ CXae, ®CX s,

(2.3¢) u=CXs,, ®CXo 4, DCX., e,
(2.3d) i=CX_ 9., ®CX_ ., DCX . 4o,

11




and

(2.3e)

|
Il
=l
&

In Chapter 3, we will be computing L invariant vectors for G = Sp(1,1).

Important bracket relations that will be used in those sections are

[X2627X31_e2] = Xe1+ez
(2.4)
[X2621X31+32] = [XZBNX%J = 01

which follow from the definitions (2.1a) and (2.1Db).
Throughout the remainder of this chapter, all symbols will refer back

to notation defined in this first section.

2. Decomposition of Ad|, ® m(p,q)

Our goal for this section is a concrete realization of the decomposition
of the K representation Ad|p ® T(p,@), Where m(p ) is an irreducible repre-
sentation of K with highest weight Pej 4- Q@es. This will be accomplished by
{irst presenting a concrete realization of P,Q)-

To begin, we note that, with AL = {2¢;,2e,}, all irreducible repre-
sentations of K are parametrized by the ordered pair (P, @), P and @ both
nonnegative integers. This is a consequence of the Theorem of the Highest
Weight [K3, Theorem 4.28]. Therefore, the notation m(p gy means P and @
are both nonnegative integers. In constructing m(p g, we construct first an

irreducible representation of SU(2) of highest weight Peg, call it mq, and
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then an irreducible representation of SU(2) of highest weight Qes, call it my,

and then define m(p gy as

Tpg) = M1 & M.

The representation 7y is given as follows:

Vp = {Space of homogeneous polynomials in z and zz of degree P },

() =7 (4 (3):

for ky € SU(2), 79<21> € Vp. The weight vectors we shall be using for our
Z2

and

calculations are denoted by v(p_2i,)e;, 0 < 21 < P. Specifically,
(2.52) V_pe, =71 5

and v(p_ziy)e, 35 defined so that

. U(P——2‘i1+2)t’£g_! for 1 S 2']. S P
(2'5b) AQEl ’ 'U(P—Zil)el = .
0, for 7; = 0.

For the action {2.5b), we think of X3,, as the left upper block of the 4 x 4
matrix Eyq, but eventually, X, will be Eyq. With weight vectors defined

in this way, it follows that

(2.5¢)
(P - 7:1)(3-1 + 1)U(P-‘2i1—2)e15 for0 <4y <P -1
X~2e1 ) U(P“?.h)e] =

07 fOI'ilZP.
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For the action (2.5¢), we think of X _,., as the left upper block of the 4 x 4
matrix Fqq1, but eventually, X 5., will be Fa,.

Using the inner product

(2.6) (P,Q) = 9(P)L",

. 23 2
where the operator 9 is defined on ’P( ) = zf 2} as
23

ak+l

and Q — QF is conjugate linear conjugation (the coeflicients of @ are con-

jugated), we sec that

(PIY(P —iy)!

!

(2.7) [o(p—2in)e [I* = :
1.

Notice that this inner product is unitary with respect to my and is linear in
the first coordinate, conjugate linear in the second.

Similarly, we can define an irreducible representation my of SU(2) with

highest weight Qlea, where the vector space is
Wg = {Space of homogeneous polynomials in 2 and zy of degree @ },
and the weight vectors wig-2i,)e,, 0 < t2 < @), sabisly

(2.8a)



W(Q—2iy+2)e2s for 1<é, <@

(2.8b) Xae, - W(Q-2iz)e2 =
0, for 15 =0

(2.8¢)
(Q — i9)(f2 + Dw(@2iy—2)e,, for0<iz<@~—1

X—282 S W(Q—2ia)er T ,
0, for 1p = @

and

s (QP(@=ia)

2-2!

(2.9) [[w0(g—2iz)e.

In formulas (2.8b) and (2.8¢), Xae, and Xz, are, for the.time being, the
lower right blocks of the 4 x 4 matrices E3q and Ey3, respectively.
As mentioned earlier, m(p ) = 1 & 2. With Xae,, X2eyr X—2e15 and
X_4., now given by the formulas (2.1a), we have
Kooy (V(P—2iy)er ® W(Q—2ir)es)
(2.10a) V(P--2i+2)ey © W(Q—2iz)ess for 1< <P
0, foriy =0

(2.10b)
X—‘Zel(v(P—Qi]_)e1 ® w(Q_?i2)ez)

(P — z'1)(3.1 + l)U(P—Zh—Z)ﬁ & W(Q—2iz)ers for0< < P-1

0, for iy =P

X282 (U(P—Z'il)cl ® T'U(Q_2i2)f32)

(2.10¢) V(p—2ir)er ® W(Q-2ir42)esr X1 S g <Q
0, for i, =0
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(2.10d)
X“QEQ(U(P_2i1)e1 ® "‘“U(Q—'Z‘ig)eg)

(Q = i9)(62 + 1)0(P2ir)e; ® W(Q2ip—2)es, for 0=z <Q—1
0., for iz = Q
and

(PHQDA(P — i)(Q = ia)!

i1tig!

(2106) ““(P"‘Qil Yey @ TU(Q_%Q)&EH(; =

REMARKS. In subsequent text, we will use the notation (-, ), as op-
posed to {-,-), when refering to the inner product on Vp @ Wg. However,
when refering to the inner product on Ad[, ® Vp ® Wq, we will use {-,).
Also, beginning with Proposition 2.11, and throughout the remainder of this
chapter and also in Chapter 3, we drop e; from the vector v(p—2i;)e, and write
simply v(p_g4;). Also, we drop ey from the vector wig—_2iy)e, and write simply
W(Q—2i,). No confusion will result, since, for irreducible representations of
K, v will always correspond to ey and w will always correspond to es.

We are now ready to decompose Ad|p @ m(p,@) into its irreducible com-
ponents. Notice that by using [BS-K, Corollary 1.4], we have the irreducible
components (P +1,Q+1), (P+1,@-1),(P—-1,Q— 1),and (P—1,Q+1)
all appearing in Ad|p ® m(p,qy with multiplicity one, when P,Q > 1. When
either P = 0 or @ = 0, we exclude from the list above those K types that

have negative coordinates.

Proposition 2.11. Using vectors described in formulas (2.10(a)-(d))
with lengths described by formula (2.10e), an Adlp ® m(p,q) decomposition

into irreducible components is given by the following equations:
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Basis Vectors for (P + 1,Q + 1) I{ type:

1
(211‘& Xe e Gvp BHwo = VP41 @ W1
) 1 RN (CESVCEEE ’

For 0 < ¢ <P,

(2110)  — Xy qe, ® vp2i, @wg + (P — 11)X e 4es @ VP_2(i1+1) @ WQ
1
(P+1)5(Q+1)?

Vpp1—2(ii+1) @ WQ+1-
For 0 <15 <@,
(2.11c) Xeop—ep ® vp @ wWQ—2iy +(Q —12)Xes4er ® VP B WQ—2(ir+1)

1
C(PHLEQ+D)?

vpi1 Q@ WQt1-2(ia+1)-

For0<¢; < Pand 0<1 <@,
(2.11d)
X—elﬂ-q K vp_2i R W—-2ip — (Q - ?:2)X—e1+e2 @ vp_2i, by WQ—2(iz+1)

+ (P - il)Xel—ez & Up_9(i+1) B WQ—2i,

+ (P — 11 )(Q — iz)Xel-!;-eg @ vp_a(ii+1) @ WQ—2(iz+1)
B 1
(P 4+ 1)(Q + 1))*

Vp41-2(i;+1) @ WQ+1-2(i2+1)-

Basis Vectors for (P — 1,Q + 1) K type:

Forg<i; <P-1,

(2.11€) X_e qe, ® vp_piy ®wg + (11 + 1) Xeihe, @ vP-2¢i41) O WQ
_ P(P+1)3
(Q+1)?

Vp_1-2i; @ WQH1-




For 0 <i¢; <P —1and 0 <iy <0,

(2.11)

— X ooy @ Vp_ai, @Wg2iy +(Q —12)X e ey @ VP2i; ® WQ-2(i+1)
+ (11 -+ 1) X ey —ey ® VPo2(is+1) @ WQ—2iy

+ (#1 4+ Q@ — 2) X ey ten @ Vp—2(iy+1) @ WQ-2(iz+1)
_ P(P+1)
(Q+1)%

Vp.1—2i; @ WQ+1-2(iz+1)-

Basis Vectors for (P —1,¢ — 1) K type:

FOI‘OSi]_SP*].&HdOS?TQSQ—].,
(2.11g)
X ¢)—ey @ Vp_si, @wg_gi, — (11 + 1) X1 —es ® vp_g@y+1) ® WQ—2i,
+ (g + 1) X ey ges @ VP—2i; @ WQ_2(i5+1)
+ (i1 + D(iz + 1) Xy e, @ vpog(i,+1) 8 WQ—2(iz+1)

= PQU(P + 1)(Q + 1))? vp1-2i; ® WQ—1-2is-

Basis Vectors for (P +1,Q — 1) K type:

For 0 <13 < @1,

(2.11h) X614*€2 @ vp @ WQ-2i, — (ig + 1)X81+62 ® up ® WQ—2(iz+1)

_ Q@ +1)%
(P+1)2

VP41 @ WQ—1-2i,-
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Forogilgpa.ndogiZSQli

(2.113)
X o —ey ® Vpoaiy @wq 2iy + (P —21)Xei—ey ® Vp_a(i,+1) ® WQ-2iz

+ (12 + )X eyt © VP—2i; ®WQ—2(ip+1)

— (P - 11){i2 + 1) X 4er @ Up—a(i+1) ® WQ—2(ix+1)

_QQ+1)t

Vpai—ali WO —1—2iy-
(P+1)% PA1—2(i1+1) @ WQ—1-24y

PROOF. In each of the K types, a choice of correspondence is required
for the highest weight vector. Once a choice is made, the remaining corre-
spondences are forced by the € action. If we use the root vectors defined in

(2.1a) and (2.1b), then the important bracket relations for our calculations

are:

[X?€17X“€1+82] = —Xeites [X282:X61—62] = XNeite,

{X:Zﬁz)X_el'—ez] = Xer-ez [XZez?X—el—ﬁz] = '"X~C1+62
(2.11))

[X—~2811X81+ez] = “X—el-!—ez [X—2ez=Xe1+ez] = Xe1—ez

[X—261=X61—62] =X _ei—es [X—262:X—e1+62] = _X—Bl—ea'

The remaining bracket relations between {Xige,, X42¢,} and the vectors of

Ad|, are 0.

The proof for each of the K types is the same, and so we will do the
proof for the (P +1,Q +1) K type and state the correspondence of highest

weight vectors for the other K types.
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In the K type (P +1,Q 4 1), the sole tensor of weight (P+1,Q+1)is
2
7.

Xeiqe, ®vp @ wg. From (2.2) and (2.10e), we know its length is (P! Q')

We choose the correspondence
KNerte, Qup @ wg = cVP41 @ WQ+1,

where ¢ is an added constant that guarentees both sides have equal length.

Because the length of vy @ woyr is (P + DHI((Q + 1)), the constant

1
c is T Substituting this into the equation above, we get
(@ + 1@+ D)
X ®@vp @ ! R w
e Vp WWQ = 3 VP41 +1,
e TP+ D@ ) ¢

which is formula (2.11a).

Applying X_g., to both sides of (2.11a) yields

_X—-e1+ez Huvp & U)Q-’E—P X61+eg R vp_2 ® weo
_ (P+1)
(P+1)Q+1)%
1

= 1 7 VP4+1-2 @ WQ1-
(P+1)3(Q +1)3 2T

vpt1-2 8 W41

Successive applications of X _g.,, one can show by induction, give

- X—-61+82 ® UP—Q’E"] ® T-UQ + (P - il)Xel+Eg ® UP—Z(i1+1) ® wQ
1

= v —2(11 Qw )
(P—i—l)%(Q—i—l)% P4+1-2(i1+1) Q+1
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for 0 < i3 < P. This is formula (2.11Db).

Applying X _a,, to (2.11a) gives

Xel—eg_® vp & ALUQ+QX61+02 @ vp @WQ-2

_ (@ +1)
(P +1)(Q +1))3
1

= = v ® w —2.
(PrOiQ4ns THTTen

vp41 ® WQ+1—2

Successive applications of X_z., yield the formula

Xei—ep QU Q@ WQ—2is +(Q — ?:Z)Xel-i-ez Q@ vp Q WQ-2(ir+1) ‘

1 |
= 3 — Vp41 @ WQ+1-2(ig+1)1 ]
(P+D3Q+1)} Q+1-2(iatl) |

for 0 < iy < . As in the previous formula, this can be shown by induction.

This is formula (2.11c).

Now apply X _a¢, to (2.11b), for any fixed 1,. We obtain the equation

X—e]_—62 ® Vp—2i4, ® 'U)Q - QX—81+62 ® vp—24, ® 'UJQ._.Q
(P — 1)Koy —er @ VP_2(i,+1) B WQ

+(P - %'1)Q Xei4es & Vp_2(iy41) @ wo—2

= @+ 1) Vpt1-2(ip+1) © WQH1-2
(P+1)3(Q+1)% ’
1
= T VP41-2(i1+1 B wQ+1-2-
(P + 0@+ 1)) v+

Once again by applying X 2, successively, one can show inductively that



X—el—ez & vp—ai, Drwg—ni, — (Q - i?)X-—(nﬁLez ® vP—2iy © WQ—2(ir+1)
F (P —11) Xy mey @ Vpoa(iy+1) @ WQ—2iy
(P —i1)(Q — 12} Xe4ep @ VP2(in+1) ©® WQ—2(ia+1)

B 1
(P 1@+

for 0 < iy < . Since iy was arbitrarily chosen, this formula is true for

Vp41-2(ig41) @ WQ+1-2(iz+1)s

0 < iy < P. This gives us (2.11d). Alternatively, we could have applied
X -3, repeatedly to (2.11c) to obtain the same result. This completes the
proof for the (P +1,Q + 1) K type.

For the other K types, we make a correspondence of highest weights.
Tt should be noted that in order to find a highest weight vector of a K type
other than (P + 1,Q + 1), we must find all pure tensors of a given highest
weight, and apply both Xg., and X, to linear combinations of these pure
tensors. The highest weight vectors are those nonzero linear combinations
for which the Xy,, and Xs., actions give 0.
For the (P — 1,Q + 1) K type, the correspondence chosen is:
P(P +1)%
(Q+1)%
For the (P —1,Q — 1) K type, the correspondence chosen is:

X oeite, ®0p Q@wg + XNejte, QP2 @ UWQ = vp_1 @ We+1-

X e, QUp Qwg — Xey—e, @VP-2Q WQ
+ X—el—l—ez K vp & W -2 -+ Xel+e2 @ vp—2 @ wQ~—2
= PQ((P +1)(Q +1))% vp-1 @ w1,
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For the (P 4 1,Q — 1) K type, the correspondence 1s:

Q(Q + 1)}

T VP41 @ WQ-1.

Xeymes ®VP ®10Q = Rertes O VP W2 = = 57T g

This completes the proof.

irreducible components is given by the following formulas:

KNeyde, ®VP—2(i1+1) B WQ = (PO T 1)) Vpp1-2(is+1) @ WQ+1

N P
(P+1)3(Q+1)2

Corollary 2.12 Decomposition of pure tensors in Ad]p'® w(p,q) into

1
2.12a Xejtes @VpQUWQ = — U ® w
( ) e ®VP B WG = T P+1 @ WQ+1
For0<i; £ P,
(2.12D)
~{i1+1)
X—e es —2i = —2(i1
s @ VP20 OV = LT G L TpE +1) ® WG+
P(P —1y)
- 5 UP—1—24; ®w .

G ECE
For 0 <iy <P -1,
(2.12¢)

1

vp_1-2i, & WQ+1-




FOI'OSG.QSQ,

- ] g+ 1
(2.12d) X e, @vp QWQ-2i, = (P -l—(lz)(Q i e P41 © WQa1-2(i+1)
Q@ -1
P+ 1)%(622—2 1)% vpy1 ®WQ—1-2iy-
For 0 <ip, <@ -1,
(2.12¢)
- 1
A61+82 ® vp ® 1UQ_2{7:2+1) = ((P + 1)(Q + 1))% UP+1 ® TUQ+1_2(§2+1)
- aQ T UP+1 @ WQ-1-2iy-
(P+1)2(Q+1)3

For 0 <4y < Pand 0 <iy <@,

(2.12f) X_e e, ®VpP—2iy QUWQ-2iy
ECERCRE)

S (PHLQ+L)?

P(P —i1)(i2 + 1)

C(PHDEHQ+E

PP —i1)(Q —22)
(P+1)(Q+1)*

Qi1 +1)(Q — i2)

(P+1HQ+1)3

Vp41-2(i+1) @ WQH1-2(iz+1)

VPp_1-2i; @ WQH+1-2(ia+1)

+ Vp1—2i; @ WQ—-1—2iy

Vp41—2(i1+1) @ WQ—1—2i,-

For0<i <P-land0<ip <@,

(2.12g) Xej—e, ® vp—2(iy+1) @ WQ—2i,

{1+ 1
= ) T VP+1-2(i+1) @ WQ@H+1-2(ia+1)

(P+1NQ+1))>
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Pliy +1)
(P+1)3(@+1)2
 PQ@ )

(P +1XQ+ 1))
Q(Q - iz)
(P+1)3HQ+1)?

For 0<i; < Pand 0 < < -1,

vp_1-2i B WQy1-2(ia+1)

Vp1-2i; & WQ—-1—2iy

+ Vpy1—20i4+1) @ WQ-1-2iy-

(2.12h)  X_ ¢ 4en ® VP—2i; B WQ-2(ir+1)

B i1+ 1) v & w
= — 3 UP41-2(i141 +1-2(iz+1
((P+1)(Q+l))2 ( ) Q (i2+1)
P(P —11) ’ &
i g —1-24 W —2(i2
Frh @+ P—1-2 Q+1—2(iz+1)
PQ(P —~u)
+ T Up—1—2i; @ WQ—1-2i
(P +1)(Q+1)? ”
1+ 1
-+ Qs +1) Upi1-2(ip+1) & WQ-1-2ir:

(P+1)3(Q+1)?

For 0<i; < P—-land0<i; Q@ -1,

(2.121) Xeid4e, @ VP 2(iy+1) @ WQ—2(ir+1)

T (Pt 1)3@ Tq)E VP @ ety
P
+ P+ 1)"3(Q T 1)% Vp_1—2i; & WQ+1-2(iz+1)
PQ

-+ T VP—1-2i4 @ WQ—1-24,
(P+1)(Q+1))?

) Q
(P+13(Q + D1}

ProOF. This is an immediate consequence of Proposition 2.11 and

Vp41-2(i1+1) © WQ-1-2ip-

methods for solving systems of linear equations.
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3. Realization of Dual Vectors for R(K)

Having accomplished the decomposition of Ad|p ® m(p,), We move |
onto our next goal for this chapter, a realization of the dual vectors for the
K representation R(K). Recall that R(I) is described Definition 1.7. For
Y. v, ® vy, an element of V,@V; andr = right regular representation of K

on R(K), we have

r(E)(D v ®vp) = > (v, @ 7 (k)op)-

This follows from formula (1.7a). The contragredient representation will play
a crucial role in determining basis vectors for the K types of S p(1,1) discrete

series. We will see this presently. First, though, we want a more detailed

description of the dual vectors.

In the K type (P,Q), we start with the basis vector vp @ wg (defined
in the previous section). Denoting by (v.-p ® w_g)* the linear functional

(-, vp®wq), we define linear functionals (v_py2i®@w_g42;)* by the relations

Koo, (v_ppoi ®w_gi2;)" = (v_pya(i+)) ® W-Q+25)"

(2.13a)
Xooy (V- przi @ W_gi2j)" = (V-pr2i @ Woqi2(i+1) s

for0<i<P—-land0<j<Q-1 In addition,
(2.13b) KXo, (vp @ w_qi2j)" = Xzes( v-pizj ®wq)" = 0.
When using the inner product (2.6), we have

X(v@w) = (X ®uw)),



where conjugation is in 5[(2,C) @52, C) relative to su(2)su({2). This equa-
tion, (2.10b), (2.10d), and the equations Xoe, = =X 2eq, Xoe, = —X_2¢,

show that
(2.14a)
(V_pys; ®w_gpa;)* = (1) (f) (Q) 2D, vp—2i ® wo-25);

J

for 0 < i < Pand 0 < j < Q. A variation of this formula that will be

particularly useful is derived by substituting P — 4y fori and Q — i for 7:

(2.14Db)
(vopsn © gy = (<1797 (1) (Q) (P — i) P(Q — i)}

X (v, Vaiy P © W2iz-Q)-
Here, 0 < i1 < P and 0 <1, £ Q. With these substitutions, we can rewrite
(2.13a) and (2.13b) as

Xoe, (vp_ni, @WQ—2i,)" = (vP-2i1+2 ® WQ—2is )

(2.13¢)
Xoe,(vp_2i ®wg-2i,)" = (vrP-2i, ® WQ—2ip+2)

for 0 <: < P—1and0<j <@ — 1 Inaddition,
(2.13d) Xoe (vp @ wg—2i,)" = Xge,(vp_2i, ®wg)" =0.

Note that for & = SU(2) x SU(2), the contragredient of the K type

(P,Q) is (P, Q). As a result of this fact, coupled with the formulas (2.5a),
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(2.5b), (2.8a), {2.8b), and (2.14b), we can write a basis for the K isotypic
component of R(K) of type (P, Q) as

(2.15)
{vp-2i, ®WQ—2i, ®(vp_2il ® wg—2¢)"| 0 < dq,4; < P and 0 <1y, is <Q}.

Using the equations (1.7a) it is possible to determine how { X406 )y HX 220, ),
r(X42e,) and 7(Xig2e,) act on each basis vector, where { and r refer to the
differentials of the left and right regular representations on X, respectively.

Using formula (2.14b), we can rewrite the element
*
vp -9 ® Wo—2i, ® (VP2 @ WQ-2i})

@ism) (-7 (1) () - imnre@ -y’

This formula will be useful in Chapters 3 and 4, when reconstructing the p

action.

4. Irreducible Representations of L

In this section, we provide a concrete realization of certain irreducible
representations of L = S! x SU(2). This can be accomplished by finding
an irreducible representation of S7, call it (v, Vy), and an irreducible rep-

resentation of SU(2), call it (my, W), and forming the tensor product. We
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will be interested in irreducible representations of L with highest weight
(d+ 4)ey + (R — 1)ea, where d and R are both nonnegative integers, R > 1
and d > R — 1 (see Chapter 1, Section 3). All irreducible representations of
S' are one dimensional. Therefore, let Vi, = Cyyq and let (4, Caya) be the

one dimensional representation of S1 defined by

where Hy is given in (2.1¢) and z € Cyyq. Also, let (12, W) be the irreducible
representation of SU(2) with highest weight (R — 1)es. This representation
is referred to in Section 2 of this chapter as Wg_1 and it satisfies conditions
(2.8(a)~(c)) and (2.9). We have a basis of weight vectors w(r—1-2j)c,» With
0 < j < R— 1, for the representation (72, Wgr—1). We may hence define a

basis of weight vectors for (1 @ 72, Cays @ Wgr-1) by

(2.17) T(dpd)er+(B-1—2])er = 1 O W(R—1-2)ex>

for 0 < § < R—1. Here, the weight of each vector is denoted by its subscript.
Using the equations (2.8b) and (2.8¢), we see that

(2.18a) X?ez(m(d+4)e1+(R~—1—2j)32) = T(dt4)ey+(R-1—25+2)ear

for 1 < j < R—1. When j = 0, the right hand side of this equation is 0.
Also we have

(2.18b)

X—?ez($((£+4)el+(R~1——2j}e-g) - (R —1- .?')(j + 1) T(d4+4)e1+(R—1—2j—2)ex>
for0 <y <R-1
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CHAPTER 3

KER & AND p ACTION FOR
$p(1,1) DISCRETE SERIES

1. The One Row Case

In the first two sections of this chapter, we will determine basis vectors
for K types that appear in certain discrete series of Sp(1,1). These basis
vectors will be basis vectors for homology. As mentioned in Chapter 1,
Gections 1 and 2, these vectors will be elements of a (¢, K) module. We
will then use two propositions, namely Propositions 3.80 and 3.83 of [K-
V], in order to reimpose the p action on the (¢ K) module and make it a
(g, K) module. In this section, we will do this construction for the discrete
serics Aq()\), described in Definition 1.18. In the second section of this
chapter, we do this construction for the discrete series L1(Vhe,+e,y ), defined
by (1.3). Here, Vie,ye, 18 an irreducible finite dimensional representation
of I of highest weight bey + ez. The third section begins with a conjecture

regarding a nonvanishing vector in homology for K types of the discrete
series £1(Vie, +(R—1)e, )» Where Vie, 1 (R—1)es is an irreducible representation
: of L with highest weight dey + (R — 1)e;. Using that conjecture, we can
prove a theorem thai reimposes the p action on our (¢, K) module (1.14b).

To begin this section, we note that only certain choices of A will yield a

discrete series for Ag(A). The discussion in Chapter 1, Section 2 tells us what
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those choices are. First, A = ae; + tep must be orthogonal to the members
of A([). This says that A = ae;. In addition, if 7 represents the infinitesimal
character of Cy, then 7 - 6(u) must be strictly dominant with respect to the
members of A(1t) (see (1.4b)). For an irreducible representation of a compact
group L with highest weight p, the infinitesimal character is given by p+6([),

(see [K3,pg.225]). Therefore, we have

(3.1) = A+ 6(0) = ae; + eq.

We add to this §(u}(= 2e;) and get

(3.2) A4 8(g) = (a4 2)ex + ea.

This will be strictly dominant with respect to the members of A(u) precisely
when a > 0. For integrality, we can use the algebraic integrality condition

given in [K3, pg. 84], namely that

2{aer, o)

(3.2a) (e, )

is in Z for each a € A(g).

Here, we may think of of (-, -} as the standard inner product on R? with basis
vectors ey and e;. We can use this integrality condition since Sp(1,1) 1s a
real group whose complexification 1s simply connected. Using this algebraic
integrality condition, we see that a must be an integer. Therefore, A = aey,
a € Z* U {0} are the lambdas of interest for the study of discrete series

Ag(A).
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When A = aeq, the minimal K type of Ag(\)is (a+2)e; {K3, Theorem

9.20]. This corresponds to a Dixmier diagram (Chapter 1, Section 3) for
which R = 1 and d = a. Because R = 1, the graph of the Dixmier diagram
consists of one row. The Dixmier diagram tells us that every K typein Agq(X)

can be written as

(N+a+2)e; + Neg,

where N is a nonnegative integer. We will use the coordinate notation,
namely (N + a + 2, N), thoughout this chapter and the next. For the
remainder of this section, ¢ and N will be nonnegative integers.

Our next step is determining a homology basis for each K type that

appears in Ag(aer). We begin with some definitions.

Definition 3.3 Suppose (Z,4) is an irreducible, finite dimensional
representation of I, Z# being defined by (1.1), with ¢ extended in a natural
way to a representation of Z#. Also, suppose (Vy, ) and (V,,*,7*) are the

representations mentioned in Definition 1.7 of R{(K) . Then
(3.31) e,

is the space of L invariants

(V. o N((ue i) nt) e Uw) o 2#)"

for the representation 7* ® Ad® ¢ (L acts trivially on A" ((upi)nE)). This

i$ isomorphic to the vector space (1.17¢), since Vz = U(u) ® Z%#. This is a
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functor from the category of finite-dimensional ([, L) modules to the category
of complex vector spaces. When we wish to focus on the map Ker o or the
map lm 851 41 restricted to the K type p of a discrete series L5(Z), we shall
use the notation Ker 9% C Ci(Z)] . or Im 851 41 C Cr(Z)\ s respectively.
Because dim(Ker 62« C C5(2)l, / Im a”s 11 € C5(Z )|”) is the multiplicity of
a K type in L5(Z), (Ker abs C Cg(Z)I#/ Tm 8g+1 C C"_E;(Z)I“) is referred to

as the multiplicity space of type p for Ls(Z).

(3.3b) CH,K(Z)]”
is the space of L invariants

* n — L
AIALYNCEDRDEIYOL 40

for the representation r ® Ad ® ¢, where r —right regular representation
on R(K). This (¢ ) module is isomorphic to the module (1.15a) for the
same reason as in (3.3a). Also, it is a functor from the category of finite-
dimensional (I, L) modules to the category of (¢, K) modules. For G =
Sp(1,1), the ordered basis of u used in determining a Poincaré-Birkoff-Witt
basis for U(1) is the basis { Xae,, Xey+ear Xes —e, }. The Poincaré-Birkoff-Witt
Theorem [K2, Theorem 2.17] states that a basis for U{u) is then monomials

(o X fea D ey, Where m, T, and p are nonnegative integers. Following

the example in (3.3a), when we wish to focus on the map Ker 8, restricted to

the K type p of a discrete series L5(Z), we shall use the notation Ker 8, C
Co (%),
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For a K type (N +a-+2,N)in Ag(A), we will produce an element in
Ker @ of (4, h’(C(r-el)'( Nbat2,N) by first producing an element in Ker 0! of

C(Caer N (Ntata, N and then tensoring it with any element of Va2 QWn

(defined in Chapter 2, Section 2). In particular, we will choose a set of

basis vectors for Viatz @ Wi and in this way we shall establish a set of

basis vectors for Ker 8 € C1,x(Cae, )|(N+u+2 Ny This follows the procedure

discussed in Chapter 1, Section 2. In order to complete the first part, we

need some lemmas.

Lemma 3.4 Suppose 0 <7< N+a+2,m,r and p are all nonnegative

integers. There are no tensors of total weight Oey -+ Oeg of the form
(VN atz—2i @ wn)" @ Xsg, e Xy @1

in the vector space

(VNtatz @ W) ® /\0((u @) N8 QUU)® Clata)es -

ProoF. The “total weight = 0”7 hypothesis forces the following rela-

tions on indices:

N+24a—2i+2m+r+p+i+a=0

N+r—-p=0
Adding the two equations and rearranging gives
mtbr=1—N-—-a—3

which has no solutions, given the constraints on the indices.
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Lemma 3.5 Suppose 0 <1 < N+a+42, m,r and p are all nonnegative

integers. There are no tensors of total weight Oe; + Oeg of the form
(vN+a+g s @wn) @ Xoey NX g, ® X736, e KXo —e, @1
in the vector space

(Vigar2 @ W) @ A (1@ 85) N E) @ U() @ Cataye,

PRrROOF. Since Xge, A X _ge, has weight 0, we can apply the same proof

as in Lemma 3.4,

Proposition 3.6 C§(Caei)l(Npata,n 80d C3(Caer(ntata,ny BTE 0.
PROOF. Let o, N, i,m,r,p be the indices of the previous lemmas. We

shall do the proof for Ci{Cae)l(n-pate,ny THE proof for C3{Caer )(ntat2,n)

is completely analogous. A general element in Ci(Cae )l (Nyata,N) looks like

(3.7) Z cak(UNtatr-2i ® WN—2t)" ® Xg¢, (l henXo—e, @1
a
k>1
where each pure tensor in the sum has total weight 0, o is the tuple (s, m, T, ?),
and each cq x is a (possibly complex) number. The condition k 2> 1 follows
from Lemma 3.4 (or Lemma 3.5 for C5). Let ko be the smallest positive

integer for which wy_ax, appears as a term in (3.7). Then we can rewrite

(3.7) as

P
(38 ZCQ’ ko UN+(¢+2 21 ®'UJN 2;'-0) ®X261 61+82Xe1—€.2 1

a4

-+ Z{pure tensors whose w term has weight at most (N — 2ko — 2)es},
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where each tensor still has total weight 0. We may assume without loss of
generality that the sum (3.8) consists of distinct pure tensors. Applying Xoe,

to (3.8) and using formula (2.13¢) gives

(3'9) Z Ca,ko(”N+a+2—2z’ & wN—2ko+2)* @ X;?n :1+82X£1—-62 ®1

o

+ Z{pure tensors whose w term has weight at most (N — 2kg)ez }.

Each of the pure tensors in the first sum is distinct and nonzero and kg is
at least 1, so (3.9) will be 0 if and only if car, is 0 for all e« in the sum
(3.8). Repeat this argument with ki, the next smallest positive integer for
which wy, appears in {3.7). Because Wy is finite dimensional, there are only

finitely many wg’s, and so all ¢ & in (3.7) must be 0.

Corollary 3.10 For each K type (N +a+2,N) of Aj(aer), the space

Ker 8" C CT(Cael)‘(N+a+2,N) is one dimensional.

PROOF. Suppose Ker 8% and Im 8} are subspaces of CY(Caey )i, for
any K type juin Ag(aeq). The number dim (Ker " /Tm ('92[1) is the multiplicity
of g in Ag(aes) (see Definition 3.3a). We know from the paper [Dix] that
the K types (N + a + 2, N) appear with multiplicity one in Ag(aer). From
Proposition 3.6 we have Im 84 is 0 for the K types (N +a+2,N). The result

féllows.

The next step is determining the constants c4,3 for which

( ..._1.1) > cok(vnpatz—2i ® wy—2k)* ® Xoge, ® Xig X7 4o, X7, ®1
o,k ’
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is a nonzero element of C}(Cae;)l(ntat2,n)- As in the proof of Proposition

3.6, each tensor in (3.11) has weight zero. We can substantially reduce the
number of pure tensors we consider in (3.11) by means of the next result.
Proposition 3.12 In the sum (3.11), nonzero terms occur only when
i=N+at?2

PROOF. The “total weight = 07 condition in (3.11) forces the following

relationship on indices:

(3.13) N4a+2-2—-2+2m+7r+p+4+a=0

N-2k+r—p=0.

Combining and rearranging these equations gives
m+r=it+tk—-—N—a—2.

Since m and r are nonnegative integers, 0 <i < N +a+ 2, and 0 <k <N,
then the condition i < N +a+ 2 forces k > 1 and we can rewrite (3.11) as

Z ca:k(U*(N'f-a-l'z) @ ’LUN—2k)* @ X“2e1 2 Xémﬁi :1+62X£1-62 ®1

o

+ E{pure tensors whose w term has weight at most (N — 2)es}.

From the proof of Proposition 3.6, we see that the second summation above

must be 0 under the I invariance condition. This proves the proposition.

REMARK. In (3.11), we only considered pure tensors with the term
X_3e, from ((u @ 1) NE). The reason for this is that the term Xy, in such

& pure tensor alters the relations (3.13) so that no solution is possible, given
he constraint on indices.
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We can now reduce (3.11) to

(3.11&) Z C,B,k(v-—(N+a.+2) ® wN"Qk)* ® X""zel ® X;‘zl 61+62X£1—82 ® 1‘)
B,k

where 4 is the tuple « but with the i coordinate equal to N + a + 2.

In fact, a systematic study of such pure tensors shows that (3.11a) can

be written as

(3.14)
N min[k,N—k]

Z z Ck;j(U_(N+a+2) ® wN—Zk) ® X—ZEL ® X261X81+62X£—52 7 ® 1
J

The notation c,; is used to avoid confusion in later sections. We can de-
termine a basis for the space of I invariants (and consequently for Ker an,
by Proposition 3.6) by using the fact that Xoe, (UNtat2—2i ® wN-2k)"

(vN+a+2_2i®wN_2k+2)* (from (2.13¢))ze and knowing how X3., acts on pure
tensors of the form Xg xF er _,_er 51] _fz } ® 1. We treat the second problem

by means of the following result.

Lemma 3.15 Let m, r, and p be nonnegative integers. Various ele-

ments of sp(1,1)* act on U(u) as follows:

(3 158.) X252(X261 61+62Xp1—'63) = X'Zej_ 61+82X£1—62X232

—2
+ Pnger—H X£1—leg + p(p - 1)X;;j-1 +82X£1-*62

e1+eq

(3151
2el (X261 61+62 61—62) - rpX2e1Xe1+e2X£1 —162(H1 - H2 —I_ p + "= 2)
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+T(T - 1)X261X81+82Xp1——62X262 _m'X;;]_ 1X81+62 E’,1H‘62(H1 —|—m+?‘+p 1)

2 2
+ TP(T - 1)(p - 1)Xg;f-lXe1+52X£1—62 _p(p - 1)ng1 61+62X£1—62X“2e2

1
(3 15(:) X—el+e2(X281 e1+62Xp1—82) = ‘;;1 XT +62X£1—82
_opx XTL XP Xy, —2rp(p — DXmHXTT X
2e1 31+62 e|—ey 2ez T np 2eq e1+er<teL—esz

€1 €3

—l_pX;I; el—l-erp-ﬁ ( H1+H2_2-r_p_|_1)

m 1
(315d) X"'el"e2 (‘XE;]_ 61+62X£1—62) = —2PX261 €1+83‘X§1—62X“232

+1
HTX231X61+32 61_62(2m+T#1+H1+H2) mX261 €1+62X£1—62

(3 156) X—Zez(XZe1 61+62 1—62) = 261 §1+62X£1—82X"“262

pt+1 +1 P
+ TX261X€1+62X €1 —¢z + T(r 1)X;T;1 e1+egXel—eg

REMARK. We are interested ultimately in seeing how the various elements
of sp(1,1)* mentioned in this lemma act on Ulg) @y md (V) V an irre-
ducible representation of L. Therefore, we omit from the equations above
any monomial ¥ of U(g) that has nontrivial U(#) terms when written out
1n the ordering coming from the isomorphism Ulg) = Uw)UNU(u) [K2
Corollary 2.20]. The reason for this is ¥ & md (V) will be 0.
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PROOF. The method used is the same for each of the five equations.
Therefore, a detailed proof will be given for the first equation and relevant
identities will be given for the other equations.

For the first equation, using bracket relations (2.4), we see that Xs.,
commutes with Xy, and X, ye,. Our calculation reduces to the monomial
X90,(Xey—e,)? in U(u). Following the technique used in the proof of K3,
Lemma 4.38], let

LX,, —e, = left action by X, .,

RX,, ., = right action by X, _.,.

Then
a‘d(Xel—B2) = LX61—62 - R*Xel—ﬁz

and consequently
RXey—e, = LXey—ep — ad(Xe, —ec,)-

Notice also that the LXe, o, and ad(X.,_.,) commute. By the Binomial

Theorem, then,

X262(Xe1—62)p = (RX81—ez)pX282
= (LX¢ e, — ad(Xe, —e,))" Xae,
- (Lxel—ez)pX%z - p(LXM—ez)p_lad(XEi—ez )X282

1 _
+E(£2—)(LXel—ez)p zadz(Xﬂl—”)Xzez’
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since ad®(Xe, e, ) X2e, = 0. Dropping L from the notation and using bracket

relations (2.4), we see that the right hand side can be simplified to

(316) Xfl—egx?-ez + pX81—62X31+62 - p(p - 1)X281 (Xel—ez)sz'

As mentioned in Definition 3.3b, the Poincaré-Birkoff-Witt basis chosen for

Uu)is { X3, e1+e2Xp1—e2} 50 we must rewrite (Xe, —ep )P Xey e, in terms

of this basis:

P(LXel—ez)p_1X€1+ez = p((RX81*62 )p—lxeﬂ-ez

+ (p— D(RX ey 2K e —es) Xerte )
Dropping the L and R notation, we can rewrite this as

pXeL+B2'Xp : +2p(p_ 1)X61—E.2X251?

(5 Bl 3]
which equals

€1—-€2

(*) pXe1+eaXp - + QP(P - 1)X231X 1—332

Using (*) in (3.16) gives
X232X€1—62 = Xg]_—erzeZ +pXel+32X 1——82 +p(p - 1)X2€1 31332

and since Xge, commutes with Xe,teqs

P m yr+l ypl
Xe1r"er262 + pX2e1 XB1+62X81'*E2

X2e2(X2(21 61+62 61—&2) - X?.e1 el-l-ez

m+1 -2
+ p(p - 1)‘X X€1+£2X51—62

2eq

This is the desired result.
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For the second equation, the relevant identities are:

X—-281Xel+eg = Xe1_+e2X““2€1 - X€1+62X’"31+e2 -+ T(T - I)X:;gegXQQ
X“231X£1H62 = Xpl—ezx_zel +pX 1—62X_9—1"*62 p(p - 1)Xc1—-82X_2e2
X““E1+62X£1-—32 = X£1—82X292 +p’Xel+e2‘X£1_—132 +p(p - 1)X231'Xf1—282

X_Qel o :X;;X_gel mX261 (H1 +m—1)

261

(Hi4+m— 1)Xe1+ez X e 1+ (m+r-— 1)X‘51+e2’

all proved using bracket relations and the fact that LX and RX commute

with ad(X) for all root vectors X.

The relevant identities for the third equation are:

mo -1
X—61+62X2e1 - 2e1X"€1+82 + mX X€1+62

r—1

T 3T
X—61+62Xe1+e2 - X61+62'X_'31+32 - 2T 81+62X232

X—81+62Xp = X7

€1—¢ez €1 —exn

X—e1+62 +pXelv~eg( Hl +H2) - ( - 1)Xe1_—9,2

Xge, XP _,, as above.

. The relevant identities for the fourth equation are:

X—el_ez 261 X'261X_51"‘32_ XZel Xﬂ1—62

X—61—€2 g1+e2 = Xel-l—er—m-‘ez TXe1_+eg(r + Hl + H?- - 1)
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X—e1—€2X£1—82 = Xfl——er—E’.g-"'cg - 2pX§1—}62X_232
(Hy + H)XP _,, = X! _. (H1 + Ha)

T —
X‘?l_e2 e1tex T Xel—l-egX e1—ey + 2TX61+82X231

Finally, the relevant identity for the fifth equation is:
X—Qezxel—%—eg = Xe1+egX_2€2 + TX31+62X51_62 + T‘('F - 1)Xe1-|—er281

Using Lemma 3.15, we can prove a result that plays a large role in

determining the coefficients cg;; of formula (3.14) and ultimately producing

a basis element for Ker 8¢ C C;‘(Cael)\(N_l_aH,N).

Lemma 3.16 X3., acts on U(4) ® Caqaye, bV

1
Xzez(XZW; 61+G2X£1—82 @ 1) - szch:;l__l_lerfl_e2 ® 1

tp(p-DXpHXT X2 2 ol

Ze1 e1-fez el —en

PROOF. Consider first the action of Xy, on X5o X7 . X7 _. ®1, the
latter an element in U(g) @4 Crataye, (& V(W) ®Crara)e, ). Using Lemma 3.15,
we see that the monomial X7 X P e, XD oy X2e, vanishes in equivalence,
e Xe, acts as 0 on C(aq4)e, - Because the other two monomials in (3.15a)
are in U(u), no term can pass through the tensor product. This proves the
éf_irlma,
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Theorem 3.17 A basis element for Ker o C Ef(@ael)[(N_l_a_{_z ) 18

(3.17a)
N min[k,N—k]

Z Z ki (V—(Ntat2) @wr—2k)" ® X_2¢, ®X381Xf;ﬁe2XIY_§2 i,

7=0
where
L k+j—-1
(3.17b) cpp = 1 and  cpy = (—1)F (]) H (N — q).
g=0

We use the convention (];) =1fork >0.

ProOF. Because &' maps Cf(Caey )l(nqate,n) B0 Co (Cae)l(Wtatz,m

and becanse Ci{Caer Ml(v-pata,n) 180 (Proposition 3.6), it is sufficient to pro-

duce a basis for CF{Cge, )|(N_|_l,}‘_|_2 NY» i.e., we need only consider I invariance.

From Lemma 3.16, it follows that a necessary condition for the vector

(3.17a) to be L invariant is that the coefficients cx;; satisfy

(3.17¢) ehg1,0 T (N — k)ego = 0 for0<k<N-1

(3.17d)  cpgaprs + (N = 2k)(NV = 2k — Dy =0
N-2

. 92 7
for 0 < k < N3

H

N even

N odd

(3.17¢)
gtV — b= e
F (N —k—j+ 1N —k—jegj—1 =0 for (k,j) in (domain 1),

74




where (domain 1) is the set of {(k,7)} satistying

N -2
2 7
N -3

K

N even
1<i<k for 1 <k <
N odd

N -2

5 N even
1<3<N-k-1 for N_3 <k<N-—-2.
N odd

7
If # is the vector (o0, €1505C1;15 « - s CN—1;05 cN-1;1,CN;0), and Zp is the vector
(¢00,0,0,...,0) of same size as #, then we can write the system of linear

equations {co,0 = oo} U {3.17(c)—(e)} in matrix form as
A . ﬂ_’," - :E[),

where A is a square, lower triangular matrix with all diagonal entries equal

to 1. Hence, there is a unique solution for the vector Z. Since

i L
Co;0 = Co;0 and Ckij = (_1)k (J) H (N = g)eoso

g=0

is a solution to this system, it must be the unique solution. Choosing co,p = 1

gives the coefficients in the statement of the theorem.

REMARK. For certain choices of N, some of the domains listed in
the proof of Theorem 3.17 will be empty. For example, when N is 0 or 1,
‘then both (3.17d) and (3.17e) have empty domains. In such cases, we simply
remove these equations from consideration. This will also occur in Theorems

13.32 and 3.34.
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Definition 3.18 Ker 5‘hl(N+a_|_2 Ny 18 the vector (3.17a) with coeffi-

cients (3.17b).

Using Theorem 3.17, we can produce a homology basis for each K type

(N +a+2,N), namely a basis for each (¢, K) module C1,x(Caei )| (Ntat2,my-
We do this simply by attaching a basis of Vyaq2 ® W to the vector

Ker O I(N+a+2,N}'

Definition 3.19 For 0 <4y < N 4+ a+2 and 0 < iy £ N, the vector
UN+tat2-2i; O WN-2i © Ker 3h|(N+a+2,N)

is the element

N min[k,N—k]
(3.192) UNtatz-2i D WN-2i, @ {Z Z Crii(V—(Ntat2) ® Wn—2k)"

k=0 F=0

® Xge, ® XJ, XFJ XN 7F T 51},

2eq 81+62 €1 —€xn

Here, cy,; are the coefficients (3.17b). This can be rewritten as

N min{k,N—Fkl
(3.19b) Z Z Chyj UNfat2—2i @ WN—2iy
k=0  j=0

D (v (Nasz) ® WN_2k)" ® X—pe, ® X XE7, X007 ®1.

The set of all such vectors, as i1 ranges between 0 and N + a + 2 and 23

since in this case Im 85 is 0 for all K types in the discrete series Aq(aer).
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Having produced a homology basis, we are ready to reconstruct the
full g action. Note that reconstruction of the full g action is really a re-
construction of the p action, since (H,E:f)l(fg:i(indgzi(C(a+4)31)) is a (¢, K)
module.

The key tools in reconstruction of the p action are Propositions 3.80
and 3.83 of [K-V]. Proposition 3.83 gives a p action on homology by first
lifting to cycles, then applying a map o, and finally descending again to
homology. Proposition 3.80 defines the map o. Because the boundary is 0

in our situation, determining the p action reduces to computing «; on the

level of cycles.

To do this, we must interpret a;. The definition given in Proposition

3.80 is
(X ® (T ®w) = T @ (AdL) " X)w,

where X € g, T € R(K), and w € A (1 ® ) (8) ® U(w) ® Z#. Here, Z# i
the irreducible [ module defined in (1.1). I {X;} is an orthonormal basis of

p, then by finite dimensional vector space theory,

Ad()Y X = Z(Ad(-)_lX,Xi)X?;, for {,-) = inner product on g

TR A Xw =Y T AT X, X Xiw

=Y {A() X, X)T @ X;w.
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The second of these equalities follows from [K-V, B. 18]. This reference pro-
duces an isomorphism between a tensor product of spaces over C and a tensor
product of spaces over another space of C'° functions. Since (Ad(:)7'X, X;)
‘s n O function of K, we are able to pull it through the tensor product.
We will determine the p action of homology vectors by calculating
ar(X ® (3.19b)), for X € p. With X satisfying this condition, we have
o1 (X ® (3.19b))

N min[k,N ]

(3200) = > cry i (AA() X, Xa)UNpatz—2i @ WN-2is

acA(g) k=0 =0

& (V- (Ntas2) ® wN-2k)" B X2, @ Xa(Xgele;E%Xg:f;j ® 1).

Because (Ad(-)"1X,X4) =0 when X Cp and « € A(€), we can restrict the

first sumnmation above to a € A(p). We know from (2.15a) that

(N
VN at-2—24 RWN—2i, D (V_(Ntat2) OWN—2k)" = (—1)N~F ( k)((N‘“k)!)z

x (W(')_19N+a+2—2z‘1 & WN—2iy, UN+at2 & wgk,N),

7 being the representation T(n4a-2,N)- Because the product of two ma-

trix coefficients is a matrix coefficient of the tensor product, then using the

previous equality, we have

(Ad(')_lana)UN+a+2—2i1 B Wwy-.2i, @ ('U—(N-i-a-l-z) & wN_Zk)*
N
= (V)@ = PO OO X @ vvgasa-an & i
Xo @ UNfat2 ® Wk-N).
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It follows that (3.20a) equals

N min[k,N—F] N

B2 3 S ens (DY () ) (@ ="

aEA(p) k=0 =

x {((Ad® W)(')_lx ® UN-tat2z—2i; © WN—2iz Xa @ UN+at2 ® Wak-N)

® X'”Qel ®X (X2€.1 el_-}-jerg:I:;j ® 1)

If a1(- @ Ker 5‘“‘( Ntat? N)) represents the expression

N min[k,N—k] N

IS Ck;j(—l)N_k(k>((N—k)!)2

aCA(p) k=0 j=0

X (-, Xo ® ONtats @ Wah-tv) ® Xo2e; @ Koo (x4, X5, x0T o),
then (3.21) equals

(3.22a) (K type decomposition of X @ vnpatr—2i; @ WN—2iy)

x (K type decomposition of a;(- ® Ker 3h|(N+a+2 N)))*

since X ® UNtatz—2i; O WN—2i, 18 constant in the summation (3.21).

We treat the K type decomposition of ay(- ® Ker 8h|(N+a+2,N)) {irst.
This procedure can be simplified greatly if we recognize that [K-V, Proposi-
tion 3.83] states that oy must map Ker (1 ® 8) — Ker 8. More specifically,

(3.23) a1 ® Ker 8“‘(N+a+2’m)) = hy Ker 6“|(N+a+3,N+1)
+ hy Ker 8h|(N+a+1,N_1)
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for certain numbers hy and ho. We omit from (3.23) the K types vectors for
K types that do not appear in the discrete series. Our task is finding these

coelficients hy and hy. We begin with Ay, In the vector Ker & l(N+a+3 N41)?

there is only one.pure tensor with monomial term X i\f fi , and that tensor is

(3.24) cop(V—(N+ats) B WN+1)" @ Xoge, ® (Xt ®1).

Using the next lemma, we will be able to determine that the only summand
of a;(- ® Ker ahl(Ner,N}) contributing to (3.24) is

(3.25)
CU;U(_]")N(N!)2<')X61—62 & VN+a+2 @ w— N) ® Xf281 ®X61—62(-Xe1—eg 1)

Lemma 3.26 The Lie algebra p acts on U(1) @ C(g44)e, by means of

the following formulas:

r41

(3‘26&') Xcl+e2(X£r6L1 61+C2X£1—62 ® 1) = 261X81+€2Xp1—82 1

(3.26b)

Xp-l-l

X£1—82 ® 1) - X261 E1+82 €1 —en ® 1

01—62(X2el e1+cz

+2er+1X’" X? ®1

eitex“ter—ex

(3.26¢)
X_31+e2('X£r(Lil e1-|—ez’X£1-62 ®1) = —p(p—}-ZT"!—a-]—?))ngl E’,1+62Xp1j(—12 ®1

+ mXZel XZ;:-IE’.QXSL—EQ ® 1 - zrp(p - 1)‘X‘£;{-1X61+62X£1—262 @ 1
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(326d) XHﬂl—ez( 26 . Xp %4 1) = HmX;:_II :1+82X£1—l-—182 @ 1

2eq 81+62 e1—€xa

- T(gm +rt+a+ 3)X521X:1_-|-162X£1'"62 ® 1

PROOF. Formula (3.26a) follows from the fact that Xoe, and X, e,

commute. Formula (3.26b) follows from the relation

Xﬁl"‘ez(Xel-i-ﬂz)r = Xr Xe1~ez + 2’!"X231X:1_-§}e2

e1tez
in U(x). Formulas (3.26c) and (3.26d) arc both consequences of Lemma 3.15.

Applying Lemma 3.26 to Xo(XZ, X7, X271 ®1), acp, jand k
as in (3.17a), we see that X T ® 1 appears only as Xejwer(XN_., ®1).

€1 —¢Eq

Using Corollary 2.12, we can rewrite the (N +a+ 3, N + 1) component of

(3.25) as

—CO;O . Nt
3.25 —(N+4a X 9, X1, &1
( a,) (N+1)%(N+a—|—3)% (’U (N+ +3)®’LUN+1) & 2¢; & . 2®

This tells us that h; = ;COEO +. To find hq, we observe that
(N+1)2(N4a+3):
summands of a;(- @ Ker 3“|(N+a+2’m) that contribute to the pure tensor

in Ker 5h|(N+a+1 No1) with monomial term Xé\lr:iz can be determined by

using Lemma 3.26. The only terms in the tensor product U(1) ® Crayaye, of
the form Xé‘ele—j XNk & 1 that contribute to XN 2] ®1 are

e1tez“e1—es e;—ez

XV _ o ®1 with action from X ... 4,

€1—¢€2

Xel_|_erN”1 ®1 with action from X _., .,

€1 —E€xn

X%l}‘{f\f_2 ®1 with action from X _., —.,.

€1 —¢€2
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The summands of a1(- ® Ker 8“]( Ntad? N)) that correspond are

CU;O(“l)N(N!)Z(‘: X e te, ®VUNFat2 Quw_nN)®X 26, ®X_31+62(X;Y_82 ®1)

61;0(_1)N”1N((N - 1)!)2(3){—61—62 R UN+at2 @ w—N+2)

& X——?e1 ®X“81—62(X61+62X£:i2 @ 1) L

6131(_1)N_1N((N - 1)!)2<'7X—61—62 @ VN+a+2 & w—N+2)

® X—2e1 & X—el—ez(XZelxé\ll:i ® 1) s

Using Theorem 3.17, Corollary 2.12, formula {2.14b), and Lemma 3.26, we i

can expand each of these pure tensors, add together pure tensors involving

XN~ 1, and reassemble using Corollary 2.12 and (2.14b). The result is

1—€2

N3(N +a+2*N +a+ N +1) (v (Ntat1) © wN-1))"
(N +a+3)(N+1)*

(3.25b)

® X 26, XD 5, 0L

N3(N +a+2*(N +a+3)(N-+1) Now that we

(N +a+3)(N +1))7
have determined ki and hy {3.23), we can rewrite the K type decomposition

This tells us that hy =

of ay{- ® Ker Bhl(N+a+2,N)) as
—1

(N+1)5(N +a+3)3

LNV Fa+ 2D2(N +a-+ 3 +1))? Ker 8%y pn o

B
Ker 9 |(N+a+3,N+1)

(3.27)

+ (K types that do not appear in discrete series).
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Next we consider the K type decomposition of X & vnyat2—2i; @ WN_2i,-

We have

(3.28) X ® vNtatz-2i; ® WN—2i,
= R} ( vector; in the K type (N +a+3,N +1))
+ hb(vectory in the K type (N +a+1,N +1))

+ (vectors whose K type does not appear in the discrete series).

The values k] and A} depend on the choice of X, ¢; and 43, and can be
determined by using Corollary 2.12. This is best illustrated by an example.
Suppose X = X¢, te,, and 1y = iy = 0. Then Corollary 2.12, namely formula
(2.12a), tells us that the decomposition {3.28} is given by

1
(N +a+3)(N +1))2

Xertes & UNpat2 ®WN = UN4a+ts @ WN41-

Thus, for X = X nd iy =i =0, A} = ! kY, = 0, and
us, ior e1tey @ 1 13 y Teq ((N+a+3)(N+1))% y 189 )

vector; is 4443 @wn41. The term vectory will be unimportant, as hi, =

Likewise for any choice of X, 41 and i5, we can determine a decomposition

of the form (3.28). Combining this with (3.27) and substituting into (3.22a),

we see that a1 (X ® vntat2—2i; @ WN—2i,) 18

-y
t Ker &
(N 1 1)%(N—I— ot 3)% vectory & Ker |(N+a+3,N+1)
+hy N*(N +a+ 22((N +a+3)( + 1))% vectory & Ker 8h|(N+a+1,N—1)

+ (K types that do not appear in discrete series).

Each of the formulas presented in the next theorem is determined this way.
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Theorem 3.29 For g = sp(1,1)%, let g =t D p be the decomposition
according to the Cartan involution mentioned in Chapter 2. Let {Xg} be

the seb of orthonormal root vectors (2.1b) of p. Also, let

UNtatz-2i O WN-2i, @ Ker ah|(N+a+2,N)

stated in Definition

be the basis vector for Ker 0 C Cl,K(Ca€1)|(N+g+2,N)

3.19. Then the action of a X, on any such basis vector is given by the
following formulas.

Action of X, 4.,

o Xoiter(UNFat2 @UN® Ker 0" |(N+a+2,N))
_ —1
T (N4a+3)*(N+1)

T UN+a+3 ® WN+1 ® Ker aul(N+a+3,N+1) .

For0<is < N-+a+l,

o Xeiyep(VN+atz—2(i+1) ®WN ® Ker ah|(N+a+2,N))

-1
T (N+a+3(N+1

)4 YN-fa+3—2(i1+1) R uUN+1 @ Ker ah|(N+a+3,N+1) ’

For 0 < i < N —1,

1
T Ntar3pW "

. Xe1+eg(UN+a+2 0 WN-2(iz+1) ® Ker 8h|(N+a+2,N)) ‘
\
|

ta+3 @ WNp1-2(i+1) ® Ker ahI(N+a+3,N+1) .
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For0<y < N+a+2,

o X_oter(VNtat2—2i ® wN ® Ker 8h|(N+a+2,N))

_ (1. +1)
(N4 a+33(N+1

)4 ?"N+a+3—2(i1—|—1) ® wN+1 ® Ker 6h’(N+a+3,N+1) .

For0<i < NFae+2and0<ip <N -1,

o Xooortes (VN-Fat2a—2iy ® WN_2(ir+1) ® Ker 3h|(N+a+2,N))
=(N+a+2- i})N4(N +a+ 2)3’UN+a+1—251 & WN 12,

i
® Ker 9 |(N+a,+1,N—1)

+ (i1 4+ 1)
(N Fat 3PN + 10

VN4a+3—2(1+1) & WNH1-2(ia+1)
h
® Ker 0 |(N+a+3,N+1) .

Action of X_, _,:

For0<iy, < N4+at2and0 <y, < N1,

o X oy ey (VUNtat2—2is © WN_2(3i,+1) @ Ker 3h|(N+a+2,N))

= (N +a+2—1)(N —iz)N*N +a+2)°

i

X UNtat1—2i; & WN-1-2i, @ Ker 8hl(N+a+1,N_1)

G (R,
(N +a+3)3N+1

T UN-+at+3—2(i1+1) & WN41-2(i2+1)
j
® Ker d |(N+a+3,N+1)'

REMARK. In the formulas for this theorem, Ker O | (N-+at3,N+1) refers
to Definition 3.18 with N replaced by N + 1. Similarly, Ker ah|( Ntatl.N—1)

is gotten by replacing N in Definition 3.18 by N — 1.
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2. The Two Row Case

Having reconstructed the full g action for Ker & € Ci,x(Cae,)l,, #
being any K type appearing in Aq(}), we now turn our attention to the
Dixmier diagrain with 2 rows {See Chapter 1, Section 3). According to
the discussion there, the discrete series we are interested in looking at is
L1(Vie,+es ), Where Ve, e, is an irreducible representation of L with highest
weight bey 4 ez, b being an integer > 1. The condition on b is precisely
what is needed in order for £1(Vie,+e,) to be a discrete series (see Chapter
1,inequality (1.4a) or (1.4b)). Throughout this section, b is an integer = 1
and N is a nonnegative integer.

We first obtain a description of Ker 8% C Cf(Vie,+e, )|, (Definition
3.3a) for each K type p that appears in the discrete series. We will be
interested in those elements in Ker 8% C C} (Vieyte,)| , that do not vanish in
the quotient space Ker 9" /Im 83. From there we can immediately determine
a basis of Ker 8 C Ci x(Vieste,)|, (Definition 3.3b). Once we have this
basis, we can reconstruct the p action. For the two row case, the K types
that appear in discrete series look like (N +5-2, N +1) and (N+b+3,N).
The row of K types {{IN +b+2,N + 1)}, that is to say, the row containing
the minimal K type, has no boundary, ie., Im ag is 0 for each of these
K types. This is the same as the Aq(aey) case. However, each of K types
{(N+b+3, N)} has a one dimensional boundary, i.e., (dim(Im Ah)=1), hence
Ker 9" is two dimensional for each of these K types.

The K types (N 4+ b+ 2,N + 1) are considered first. As we just

mentioned, the boundary is 0 for each one of these; therefore, we will produce
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a homology basis for Ker C CF (Vberten )l (w-pps2,n41)-

Proposition 3.30 C}(Vie,te; )| (w542, n41) 1as 0 boundary.

PROOF. We begin with a description of Vipig)e,4e, in terms of ba-
sis vectors, since Vibtayertes = %ﬁﬂz (see (1.1)). Let z(pya)e,4e, and
T(hpa)es—eyr With weights given by the subscripts, be the vectors defined
in Chapter 2, (2.17) with R = 2 and d = b. Then identity (2.18a) shows that

these vectors satisfy the equations

X2€2 (w(b+4)e1—eg) = L(b+4)ertes
(3.30a)
Xoey (T(p4ayes+es) = 0-

Notice that there are no pure tensors of total weight 0 of the form
(ON1be2—2i QWNG1) @ Xaey AX 20, ® X5 X0 10, XD o, ®T(b4a)er+(2i —1)es

in (VN+(,+2 & WN+1)*/\2((U 45 ﬁ) N E) ® U(u) @ -V'(b+4)e1+62'} Where 0 S % S
N +4+b+2and 0 < <1 are integers. As in the proof of Proposition 3.6,
this fact implies that C;‘(T/'.r_,el+eg)|(N+b+2,N+l) is 0, and consequently, the

proposition follows.

Lemma 3.31 Let m, 7, and p be nonnegative integers. Then the Xy,

action on U(4) @ Vippa)e, 4o, 18 given by

r
XzeZ(XgrELl r;.1+62X€1—€2 ® ‘(’E(b+4)e1——e2)
— P +1 r—1
- X%Tell (:‘1+62Xe1—82 ® m(b+4)31+€2 + ng:]_ X£1+62X81—62 ® w(b+4)61—82
+1 r—2
+p(p - 1)X;:1 :1+62Xe1—(’,2 ® m(b+4)‘31_32
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Xzez(XZel 61+62X3:1-"-62 ® w(b+4)61+32)
= p_in;Xr_i—l XP © $(b+4)el+32

e1tez“ter—en

+ p(p - 1)X§;;H g1+erp1—32 ® T(b4-d)er+eq:

PrROOF. This is an immediate consequence of Lemma 3.15 and the

‘
l

equations (3.30a).

Theorem 3.32 A basis for Ker 9% C CY (Voertea (v-pbpa, npr) 3 given

by

N 1 minfk, N—#}

(3.32a) > Z Chyisi (Vo (N+5+2) @ WN11-2(i+k))

k=0 =0
,"N k J
® XH281 ® 'X261Xe1+32A81'—*62 & L(b-+d)er+{(2i—1)ess
where
co;n;0 = 1, coyy0 = —1 and
3.32b BLSs koo
( ) Ck;i;j = (—1)3+k H (N —_ q)%%‘l for 1 S k S N.
0 gl

PROOF. Applying X, to (3.32a) and using Lemma 3.31, we see that
a necessary condition for I invariance is that the coefficients cy,;;; satisfy the

equations

(332(‘,) C0;1;0 + Cp:0;0 = Q
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(332d) Ck--1;0;0 + (N - k)ck;();g =0 for Q S k S N-—-1

(3328) Ck+_;_;1;g + (N - k‘)Ckﬂ;{) + CE4-1;0;0 — 0 for 0 < k = N -1

(3.32f)  crypop1 -+ (N = 2B) (N ~ 2k — L)ergo = 0

for 2 < k < % A even
. ? N odd
(3.32¢g) Ch+1;1;k+1 T+ (N — 2k)(N — 2k — 1)ck;1;k + r1;0k41 = 0
o<k < ?, N even
. -A—r—élﬁ N odd

(3.32h) k1055 T (V — & — F)ero;

+ (N —k—j+1)}N -k —jego,j—1 =0 for (k,7) in (domain 1)

(3321) Ck+1;1;j + (N —k — j)Ck;];j
H(N—k—j+1)(N—k—j)ck1,j—1+Cht1;0,; = O for (k,7) in (domain 1),
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where (domain 1) is the set {(k,7)} satisfying

u, N even
1<j<k forl<k<{ nog
——, N odd
—N—_E, N even
1<j<N—h=1 for{ n>o, <kE<N-2
—5 N odd

The rest of the proof is almost identical to the proof of Theorem 3.17, except
that the system of equations we use now is {3.32(c)-(1)} U {co0;0 = coj050}>
and the vectors @ and Z, are modified to fit this system. More specifically, z
is the vector {€o,0,0,C1;0505 €1;0515 - - + » CN;0;05 C0;1;05 €13130, CL31315 - - ,CN;1;0 ) and
Ty is the vector (cg;0,0,0,...,0). I we order the system of equations properly,

then we can once again write this system in matrix form as

with A a lower triangular matrix having 1’s along the diagonal. Since

Co:1:0 = —Co;050

k+i—-1
i 14T
s = o [ V-0 [T oracesa

is a solution to this system of equations, it is the unique solution. Choosing

o0 = 1 gives the coctficients in the statement of the theorem.
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Notice that in the previous theorem, as well as Theorem 3.17, L in-
variance is sufficient to determine an element of Ker 8%, This follows because
both C§(Caey M vrata,ny 204 CF (Voertes )| npopa,n41) are O for all nonneg-
ative integers N, and 8% maps C} into C}. However, for the K types (N -+
b+ 3,N), Ci(Viertex)l(vro4a,n) 18 0 only for N = 0. Hence, we must work
a little in order to produce an element of Ker 6% C CY(Voer +ea )l (npota, -

We begin with the following lemma.

Lemma 3.33 The action of X_a., on U(4) @ V(pra)e, +e, 18 given by

(333;]’) X—261( ;;1 :1_+32X51—e2 ® m(b+4)€1+62)
= (Tp(T' +p+b+ 1) 261X€1+62X£]_—1€2 —I—’Pp(?" - 1)(1)“ 1)X$T1X§1-362X§1—2€2

—m(m+r+p+b+ 3)X281 61+62Xf31~62) & T(btd)e;+es

—plp— 1)Xén;1 el+erP1—ez D T(p+4)er—ex

(3.33b) X g, (X35, e1+e2X§1—e2 @ T(py4)er—es)
= (rp(r+p+b+)XT, X1 X0, +rp(r—D)(p— DX 5 X0, XU,
—m(m 4+ 3 b+ XN XL e, X ) ® Totaren—e
trir—D)X50 X2 XY ., ® Tlbra)erten-

The action of X 5., on U(4) @ Vippaye,+e, 18 given by

(3 33C) X_282 (Xzel 61+83X(};1—62 ® m(b+4)el+e2)

r+1
- XZe1 e1+62X e]—ez & T(bt4)er—ez + TX261X81+82X g1 —ex ® T(b+4)er-tez

+ 'P('J“ _ 1)Xm+1Xr 2 xP ® T (b4)es-es

2eq e1+teqn ey —Ey
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(3'33d) 'X“‘“2e2( 2??:,1 ;1+82X£1—62 ® m(b+4)el_e2)

XP+

=Xy X€1+e2 e1—ey ® L(b+d)er—es

261

+ T(T - 1)Xm+1 el—l-engl—ez ® T(btd)er—es

201

ProoF. Formulas (3.33a) and (3.33b) are an immediate consequence
of the application of formula (3.15b) in Lemma 3.15. Formulas (3.33¢c)
and (3.33d) require another fact. Given the definition of weight vectors
T(pt)er-tes 0 T(hpaye e, 10 (3.30a), it follows from formula (2.18h} that

X 26, {T(pta)ertea = T(bta)er—es)

(3.30b)
X—Zeg(x(b+4)61*"62 = 0)

This, in combination with formula (3.15€) of Lemma 3.15, gives formulas

(3.33¢) and (3.33d).

Theorem 3.34 An element of Ker 8% C CY (Voersea )l (Ngpps,y Bhat

does not vanish in homology is

N41 min[0,N—F] min[k,N+1—Fk]

(3342) > ), Yo enii(vo(Nrbrsy ® Wn—2(i+k)”

k=0 {=max[—1,—k| Jj=0

kej N+l—k—j
@ X—281 @ X2e1 e1-|—erel—e2 & T(bt-aYer+(2i+1)en>

where
coj0;0 = N 4+ b+ 3
(3.34b) e—150 = —(N + b+ 3)
c1,—1;1 = —N(2N 4+ b+ 5)
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k—2 |
cr—10 = (DM TV = egorp for2<k SN 1

g=0

g E—1 k1 |
Ch;—1;7 = (—1)k+1 H (N - (1) [N . )Cl;—1;o +1{ . _ 1)61;—1;1] ;
for (k,7)} in (domain 2a)
2k—2 %, N even
ek = (—1)F1! H (N —q)er;—1 for2<k<q N i |
g=1 _é— N odd |

k1
crapo = (—1)FH! H(N —g)er,—100  for 1<E<SN
g=0
eto = —((N + D Negjop0 + 015-151)

|

k+5-2
Chi035 = (—1)}~+1 (3\) H (N — (J) [(N "|—j —k + 1)NCI;_1;0 -—361;_1;1]

g=1

for (k,7) in (domain 2b).

Here, (domain 2a) is the set of {{k,7)} satisfying

2
—I—VQL, N even
1<y <k-1 for2 <k <
N—_t—l, N odd
N
_iﬁ’ N even
1<;<N-k+1 for N1 <k<N-2
———, N odd

¥
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and {domain 2b) is the set of {(k,j)} satisfying

E, N even
1<j<k  for2<k<{ oy
, N odd
ﬁ, N even
1<;<N-k+1 for NE1 <k<N.
-'“‘2—, Nodd

PROOF. We first consider the L invariance condition. Applying Xz, to
the vector {3.34a) and using Lemma 3.31, we see that a necessary condition
for the vector (3.34a) to be L invariant is that its coefficients satisfy the

relations

(3340) Ck41;—1;0 + (N —k + l)Ck;_l;@ =0 for 1 S k S N

(334(1) Ck41;-1;5 + (N —k—7+ 1)Ck;—1;j

+(N—k—74+2)(N—k—j+1eg_1,j—1 =0  for (k,7) in (domain 3)

(3346) Ck41;—1;k+1 + (N — 2k -+ 1)(N - 2]12)(2]:;..1;& =0

N -2
9 »

N -3
9 3

N even
for 1<k <
N odd

(3.341)  cpt100 + (N — E+ Dcrgoo + chtry—150 = 0
for0<k<N-—-1
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(3.34g) eNyo;0 + en41;-1;0 = 0

(334:].1) Ck+1;0;j + (N - IC "*j —l" 1)Ck;g;j
(N —Fk—j+2)(N—k—jFLckoi-1+ kg1 =0

for (k,7) in (domain 3)

(3.341)  crppoprs (N — 2k + DN — 2k)exoik + Chti—15641 =0

N -2
—5 N even
for 1 <k < -
u, N odd,
where (domain 3) is the set of {(k,7)} satisfying
%, N even
1<7<k for 1<k < N—1
, N odd
g, N even
1<j<N-k for N1 <k<N-1
N odd

¥

The rest of the proof follows the proofs of Theorem 3.17 and Theorem 3.32.

For this setting we add the equations

(3.34j) €0;0;0 = €0;0;0,  C1,—1;0 = CL;—1;0, and ¢1;-1;1 = en;-151
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to the system {3.34(c)-(i)}.Also, we choose for & the vector with ordered

coordinates

(Ci;—1;0361;_1;1, Ca—1;00 -+ 9 CN+1;—1;05 €0;0505 €1;0:0,C1;0;15 - ¢ 3 CN;U;U)

and we let Ty be the vector gotten by replacing all coordinates of Z, with the

exception of €1;-1;0,C1;-1315 and ¢o;050, Py 0. Through a judicious choice of

ordering, the system of equations {3.34(c)-(j)}, and the vectors &y and & will

form the matrix equation with lower triangular matrix A, where A has 1’s on

the diagonal. Asin the proofs of Theorems 3.17 and 3.32, this shows that the

solution vector ¥ is unique. Putting aside the specific values given 0 Co;050,

¢1,—1;0, and C15-151 in (3.34b), we note that the set of coordinates (3.34b)

satisfies the system of equations {3.34(c)-(J)}. By uniqueness, therefore,
(3.34b) must be the coordinates of Z.

Before proceeding with the calculation for the kernel, we observe that

we have really only used half of the information available to us in order to

fad I invariance, In fact, the vector (3.34a) with coeflicients (3.34b) must

Using (3.33¢) and (3.33d), we can come

also vanish under the X _g., action,

up with a list of relations that the coeflicients {ek;i;5 + moust satisfy in order

to be invariant under the X e, action. One necessary relation that aids in

our computation of the kernel 15

(3341{) Co;0;0 — --€1;-150-

We are now ready to calculate a vector in Ker A C Cf (Viesten | (vbas, )

.Using formulas (3.33a) and (3.33b) of Lemma 3.33, we can readily verify
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that a necessary condition for the vector (3.34a) to be in Ker 8% is that the

coefficients cg.0,0, €1,—1;0, and ¢y;—y;1 satisfy the equation

(3.341) —(N + 1)Neojo0 + NNV + b+ d)ey;—p0 — (N + b+ B)oy—1;1 = 0.
Because of (3.34k), this can be rewritten as

(3.34m) N(2N + b+ 5)es—10 = (N + b+ 3)er;—151,

and clearly ¢3,—1,0 = —(N+0+3), ¢1;—1;1 = —N(2N + b--b) satisfy (3.34m).
From (3.34k) it follows that cg0,0 = N + b+ 3.

We have stated that (3.341) is a necessary condition, but, in fact, once
all the coefficients are written in terms of ¢g0,0, €1;—1;0, and ¢1;—1;1, it is
the only condition; applying the 8" operator to the vector {3.34a) with
coefficients in terms of cg;0.0, ¢1;—1;0, and ¢4;—1;; will yield only the equation
(3.341), repeatedly.

To see that this vector in the kernel does not vanish in homology, ho-
mology for 8% meaning Ker 8% /Im 6%, we make the following observation. The
pure tensors that comprise a vector in Im 8} C CT(Voer+ea (v py3, ) have
either linear functionals of the form (vy.pprs—2: ® wy_2k)", with ¢ satisfying
0 < i < N+b+2, or have a monomial term of the form X2 X7 XP

with m, r and p all nonnegative integers. Since the tensor

0,050 (V—(N4043) @ WN)* @ Xooge, @ XTHE, @ (31 ayer e

satisfies neither of these conditions, it is clear the vector (3.34a) is not in

Tm 8! and therefore does not vanish in homology.
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Definition 3.35

(3.35a) Ker ah|(N+b+2,N-|—1)

is the vector (3.32a) with coeflicients (3.32b).
(3.35b) Ker 6u|(N+b+3,N)

is the vector (3.34a) with coefficients {3.34b).

Asin the first section, we can now determine a set of vectors for Ker & C
C1, 8 (Viertes )l p (u being any K type appearing in the discrete series), whose

image under the map
() Ker 8 — Ker 8/Im 0y

is a homology basis for the K type g in £1(Vie,-teq)-

Definition 3.36 For 0 <43 < N4+ b+2and 0< i < N +1,

UN4b42—2i; ® WN41-2i, ® Ker o I(N+b+2,N+1)

18 the vector

(3.36a)
1 min[k,N—F]

Z Z Z Chs;izj VN+b+2—2i; @WN41-2i, ® (v—(N+b+2) ®'wN+1--2(z'+k))*
k=0 i=0

N—
& X—2e1 & X2e1X51+e2X 1—32 ® T(bd)e;+{(2i—1)ess
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with the coefficients cg;;; given by formula (3.32b). If we take all possible 1y

and 1, satisfying the inequalities above, then this set is a homology basis for

the K types (N + b+ 2,N + 1), since the boundary is 0 for these K types.
For 0<i, <N+b+3and0<is <N,

UN+b+3-2i © WN-2i; @ Ker ah'(N+b+3,N)

15 the vector

N1 min[0,N—k] min[k,N+1—k]

(3.36b) Z Z Z Chyizj UN-+b+3—2i1 @ WN-2iy

k=0 i=max[—1,—F] J=0

* ] k—3 N41—k—7
D (V_(N4bs3) O W24k ® Xoae, ® X3, Xo e, Xoy Doy

@ T(b-}4)ey+(2i4+1)ez

with the coefficients cg,;;; given by formula (3.34b). If we take all 41 and 29
satisfying 0 < i3 S N+b+3and 0 <ip < N, then the image of this set
under the map (#) is a homology basis for the K type (N+b+3,N+1).
Now that a homology basis has been given for each K type p in the
discrete series, we proceed to reconstruct the p action on a set of basis vectors

in Ker 8 C C1, k(Vieqtes)|,> again using Duflo-Vergne. Proposition 3.83 of

n?

[K-V] tells us this is sufficient to determine the p action on homology. A
distinction between the action of p for the one row and two row cases is that
in the two row case, action by p on a K type can map into three other K
types, whereas in the one row case, action by p on a K type can map into

at most two other K types, as we have seen in Theorem 3.29.
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Theorem 3.37 For g = s5p(1,1)C, let g = € @ p be the decompsition
according to the Cartan involution mentioned in Chapter 2. Let {X,} be
the set of orthonormal root vectors (2.1b) of p. For 0 < iy < N+ b+ 2 and

0<iyg<N+1/let

UNAbba-2i, @ WN1-2ip ® Ker OF i(N+b+2,N+1)

be the basts vector for Ker 8 C cl,K(%€1+ﬁ2)|(N+b+2 N1 stated in Defini-
tion 3.36(a). Then the action of a X, on any such basis vector is given by

the following formulas.

Action of X, 4.,:

. X61+ez(vN+b+2 ®wy+1 @ Ker ahl(N+b+2’N+1))

-1
= VDT ap (N o v SN © Rer | ruranin)

For0<<i; < N+0b04+1,

o Xeitea(UNtbra—2(i+1) ® WN 1 ® Ker ah|(N+b+2,N+1))

-1
TN b+ 3N Fo)E Va2t ®wnr ® Ker 0 144 viia) -

For0 <4y <N,

¢ Xyt (ONpbt2 ® W1 —2(i,+1) ® Ker 6h|(N+b+2,N+1))

~1
_ . :
= (VBB g B2ty @ Ker O (vt 19,42
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L WP

For0<i <N+4+b+1land0<1i; <N,

® Xevtes (U bt2-2(0011) ® WN41-2(ippr) @ Ker O )

-1 ,
a (N + b+ 33N 4 2)* UN4b+3-2(i1+1) @ WN42-2(35+1)

® Ker ah|(N+b+3,N+2)
(N +1) A
(¥ 454 BN § 2) VN2 B Wiz @ Ker Oy,

N(N+ 13N +b+2)(N+b-44)
+ N 1513) UN+b+1-2i @ WN-2i,

+

|
® Ker 0 l(N+b+1,N) .

Action of X, _,,:

For 0 <4 < N4+1,

o Xy oo (UNtbr2 ® W12, ® Ker a

n —(i3 + 1) Ker O
T (Vb4 8PN 2yt Vs @ity @ Ret |43, 542)

(N +1—ip)(N + 1) ,
T (N b+ 3 oy Vs O UN-2i, @ Ker Oy, -

(N+b+2,N+1))

For0<¢ < N+4+b+Tland0<i, < N41,

® Xoy—es (VNFb42-2(i1+1) ® WN41-2i, ® Ker ah|(N+b+2,zv+1))

_ —(iz +1)
T (N 40+ 33NV +2) UN+b+3-2(i1+1) ® WNt2-2(i541)

h
® Ker @ |(N+b+3,N+2)
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(VAT -}V + 1) h
(N + b1 8)I(N f2) "VHrta-atien) © Un—ais ® Ker Oy,

VAT i) NN+ 1N+ b+ 2)(N -+ b+4)
(N+b+3) UN4b+1—2i; @ WN-.24,

:
® Kot Oy yy41,m) -

Action of X_, ,.,:

For 0 <iy <N +b+2,

¢ X _eives (VNHbt2—20 @ whps @ Ker O

_ (1 +1) ,
(N + 564 35N + 20 UN+b4+3-2(i,+1) ® w2 @ Ker 8 }(N+b+3,N+2)

(N+b+2,N+1))

For 0<i; < N+b+2and0<iy <N,

. X—61+62(UN+1)+2—2£1 Q Ww.£1-2(i+1) @ Ker "

_ (11 +1)
T (N4 b £ 3P (N  2)F N304 O UN+-s(i 4

(N+b+2,N+1))

b
® Ker 9 ’(N+b+3,N~|~2)
GRS G 4
(N B4 3N +2) "N HH3-20k) @ Wiy ® Kor Oy,

n (N+b+2—a‘1)N(N+1)3(N+b+2)(N+b+4)

h
® Ker 0 l(N+b+1,N) :

Action of X_, .,z
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For0<i; < N-+b+2and0<ip <N+1,

b X—el—EQ(UN+b~|—2—2‘i1 ® WN+1-21, ® Ker 8h|(N+b+2,N—I—1))

(41 +1)(é2 + 1)
T TN T b+ 8PN oyt NHETEaAD B ON 220t

h
® Ker 9 |(N+b+3,N+2)

(DI 1 )N+ 1
(N + b+ 3)L(N +2)

VNfb4+3—2(i1+1) @ WN—2is

h
® Ker 3 |(N+b+3,N)

Jr(J\T-|-b+2_z'1)(J?\I+1—z‘z)N(J?\H—1)3(1\,’+b+2)(1\f+b+4)
(N -+b+3)

X UNgb+1—26 R WN—2i; @ Ker 3h|(N+b+1’N) .

For 0 <iy <N+b-+3and0<ip <N, let

UNb3—2i; @ WN-2i, @ Ker ah\(N+b+3,N)

be the basis vector for Ker 8 C Cl,I((%el+eg)|(N+b+3 ) stated in Definition

3.36(b). Also, suppose 7 is the number

N((N + 1)(N + b+ 3)co 050 + 26151 ;U) —c15051 — {0+ 5)erso50,

where the coefficients are those of (3.34b). Then the action of an X4 on any

such basis vector {3.36b) is given by the following formulas.

Action of X, te,:

o Xo e (vntp43 @wn ® Ker 8h](N+b+3,N))

(N +b+3)
TN +b+4(N+1)
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For 0 <i3 < N+b-+2,

o Xeytos(VN4bt3—2(ir 1) @ WN ® Ker 8hl(N+b+3,N))
—(N +b+3)
(N+b+4)4HN+1

(N +5+3P(b+1)(b+3)
(N +b+4)(N+1)

L UNpbta—2(i+1) @ WN+1 ® Ker ah|(1\r+b+4,1\f+1)

UN+b+2—2i B WN41 @ Ker ah|(r\f+b+z,1\'+1) :

For0 < <N -1,

o Xo e, (UNGb43 ® WN—2(i,41) @ Ker ah|(1\r+b+3,N))

_ —(N +b+3)
(N +b+ NN+ 1)

TUN+bta @ WN 1206 +1) ® Ker ah|(N+b+4,1\f+1) '
For0 <3 < N+b+2and0<25 <N -1,

@ Xy ten(UNFbra—2(is+1) ® WN_2(i,+1) ® Ker 8h|(N+b+3,N))

—(N +b+3)
(N +b 14N +1

) UNphtd2(ip+1) & WN41-2(ir+1)

® Ker 0" |(N+b+4,N+1)

(N + b+ 3)*(b+ 1)(b +3)

(N DL 4 1yt VHv+a-2i O UV -2t

® Ker au‘(N+b+2,N+])

N3N +b+3)n

—2i, @WN-1-2:
T N T 2) (N + b+ A (I 1) VHoremn B EN

® Ker 0" |(N+b+2,N—1) .

Action of X, _.,:
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For 0 <13 < N,

o Xoi—er(VN+b43 @ WN_2i, © Ker 5h|(N+b+3,N))

(it DV b +3)
TV b AEN + 1)

UN4b+1 B WN41-2(i241) @ Ker @h‘(N+b+4’N+1) .
For 0 <iy < N+b+2and0 <1 <N,

0 Xoy e (UN 1013200 +1) © WN—2i, ® Ker ah\(N+b+3,N))

(e + DN+ 3)
TN + 1)

UN+bta—2(i1+1) @ WN+1-2(i5+1)

® Ker ah](N+b+4,N+1)

(ig + (N + 5+ 3P (b +1)(6+3)
(N+b+8)(N+1)f

VN+4b+2—2i; @ WN1—-2(i2+1)

® Ker ahI(N+b+2,N+1)

(N —i)N3(N + b+ 37

_ v —2i, K WN_2iy

® Ker ahl(;\f4rz:+2,1\f—1) ’

Action of X . 4,

For 0 <iy <N +b+3

o Xoctes (UNFb43—2i @ wWN © Ker an‘(N+b+3,N))
(DN +b+3)
T (N+b+ N+

(N+b+3—zl)(N+b+3) (b1 1)(b -+ 3)
(N +b+4)(N -+ 1)

ﬂ
T UN+bta—2(i1+1) B WN41 @ Ker 9 |(N+b+4,N+1)

UN+b+2—24; @ WN41
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Tor 0<4y < N+b+3and0<ip, <N -1,

0 X oy ten (VN 4bH3-2i1 ® WN—2(ip+1) B Ker ah|(N+b+3,N))

(DN +b+3)
T (N b+ 4N+

UN4b+4—2(1+1) @ WN1-2(iz+1)

® Ker ' l(N+b+4,N+1)

(N+b+3—z1)(N+b-|-3) (b+ 1)(b+ 3)
(N +b+4)(N 4+ 1)

VN 4-b42—24; Q@ WNI1-2(iz+1)

i
® Ker 0 ‘(N+b+2,N+1)

(N +b4+3—1i)N3(N +b6+3)°y
(N+b+2)(N+b+4)(N+1)

VN4b4+2—24, @ WN—1—2iq

i
® Ker 9 \(N+b+z,N—1) :

Action of X_. _,:
For 0<iy < N4+b+3and0<ip, <N,

=i+ iz + 1N +b+3)
(N +b4+ 44N +1)

DNpb4+4—2(i1+1) @ WN41-2(ia+1)

b
® Ker 9 |(N+b+4,N+1)

C(N4b+3—)(a + DNV +5+3P (b 1)(0+3)
(N+b+4)(N+10

X UNtbt2—2i1 Q@ WNp1—2(i+1) @ Ker au'(N+b+2,N+1)

(N +b+3—i1}(N —is)N}(N +b4 3
(N4+b+20{(N+b+4)(N +1)

UNtb42—2i; ®WN—1—2i5

b
® Ker 0 |(N+b+2,N—1) :
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PROOF. This follows closely the work done in the one row case, partic-

ularly Definition 3.18 through Theorem 3.29. We make use of the following

identities, all of which, except for (3.37a) and (3.37b), result from applying

Lemma, 3.15. The formulas (3.37a) and (3.37b) are proved using the first

two lines of the proof of Lemma 3.26.

(3.372)  Xeytea(Xom X0 ve, X0, ® T(ord)erdes)
ei1tex

_ r+1 P
- X;J;]_X X81—82 ® ‘T'(b+4)612t82

(3.37Th)  Xoy—ey (X X7 10y X0 o) ® T(bta)erdes)

— (X xPHL 4 g xmtl yrl X! o)) ® T(pta)ertes

2ey 81+62 e1—-ey 2ey e1+es

(337C) 'X*51+52 (X2€1 61+62Xf]_—62 ® m(b+4)el+32)

= ( - p(p + 2T + b + Z)X'Z";l el+82'X£1—162 - 2Tp(p - 1)X;2;|-1X31+62XP1E82

+mXje xr+t xP )®$(b+4)e1+ez

ertex el —es

(3 37d) X_51+52 (X261 61+62‘X51_-62 ® m(b+4)31_e2)

m 1 m — 2
= ( - p(p + 27‘ + b -l_ 4)X2€L €1+62'Xp1—€2 - 2Tp(p - 1)X261{_1X§1-&62X£1“-62
+ m'X;r;1 1Xgl‘|:|}er£1 *“-82) ® x(b+4)e1——82

P
- 2TX281 X61+62Xe1—82 @ T{bt+d)e1+ez
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(3376) X—Blﬁez( Zey B1+62X£1—82 ® $(b+4)61+62)
= ( —r(2m+r+b+4)X5%, 81%62}(3:1_62
—mX)

p+1
261 e1+82‘X61—82) ® m(b+4)51‘§'e2

p—1
- QPXZel e1-l—e2Xel—e2 & L(b+d)es ez

(3 37f) X”‘el_e2(X2!’,1 E]_+62X£1—82 ® ‘,B(b—|-4)61—62)
= (—r@m+r4b+2)X0R X070, XE .,

P+
- mX2€1 81+€2X61—Ez) @ Z(b44)er—ez

We know from (2.14b) that

(3.37g)
(- (b2 ® ONp1oagir) = (- DV HTETD ( " )((N +1—i- k)l

X (4 UNFb+2 ® Wa(ith)—(N-41))-
Qur goal in this theorem is an evaluation of the sum of vectors

(337]:1) Qfl(X ® UNA4b42—-24q ® WN41—2iy ® Ker ahI(N+b—|—2,N+1))’

and an evaluation of the sum of vectors

(3371) Otl(X & VN+b+3—244 ®UJN_27;2 & Ker 8h|(N+b+3’N)),
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for 0 <4y < N+4+b5+2,0 < i3 <N, X an orthonormal root vectors in (2.1b),




for 0 <4y < N+b6+2,0<4 <N, and X an orthonormal root vectors in
(2.1b). Recall that oy was defined in Section 1, right after Definition 3.19.
‘We consider the expression (3.37h) first. Following the discussion in Section

1, particularly Definition 3.19 through decomposition (3.22a), we see that
(3.37h) equals

(3.37})) (K type decomposition of X ® UNybt+2—2i, & WN41-2is)

x (K type decomposition of o) (- ® Ker ah;(NMH N+1)))’

where aq(- ® Ker 5h|( Ntatz N +1))) is the expression obtained by replacing
(Ad®@ m)() ' X ® vntpt2—2i; ® WN41-24, in the expansion for (3.37h) by a |
dot (see (3.21) and expression after it for an example). Using (3.37g), the |
identities (3.37a~f), Theorem 3.32, Corollary 2.12, and arguing as we did in
the proof of Theorem 3.29, we see that o1{- @ Ker ahl(N+b+2,N+1))) can be

decomposed as

—1
h
(N+2)3(N +b+3)% Ker Oy, v
(N +1)? g
- - — Ker J
(N +b+3)5(N +2)3 |40,
N (N+1D2N+b+2°N(N +b+4)(N +2) Ker 2|
(N +b+3)5(N +2)3 (N+b+1,N)

+ (K type that does not appear in discrete series).

(3.37k)

Here, Ker & |(N+bJrs N2) (respectively, Ker 8h|(N+b+1 N)) refers to (3.35a)

with N replaced by N 4 1 (respectively, N — 1). Notice in this case that
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there are three K types of interest, as opposed to the decomposition (3.27),

where there are only two. Looking now at (3.37i), we see that it equals

(3.37) (K type decomposition of X @ vnpt+3—2i; @ WN—24,)

x (K type decomposition of a;(- ® Ker 3h|(N+b+3 N))),

where ai(- ® Ker 3h| (N+5+3, N))) is defined analogously to the expression
in (3.37j). Using (3.37g), the identities (3.37a~f), Theorem 3.34, Corollary
2.12, and arguing as we did in the proof of Theorem 3.29, we see that the

decomposition of a; (- ® Ker 8 ’(N+b+3 N))) can be written as

—(N +b+3)
— Ker 0
((N—l-l)(N-l—b—l—LL))E |(N~|~b+4,N+1)
2 AT2
+ (N“‘I"b+3)NT:I 1Ker8h|Nb2N]
(N +b+2)(N+b+4)(N+1))2 (N+b+2,N-1)

2
(N+b+4)5(N+1)7 {N+b4+2,N+1)

(3.37m)

+ (K type that does not appear in discrete series).

Here, Ker 3h|(N+b+4’N+1) {respectively, Ker ahl(N+b-|-2,N—1)) refers to the
vector (3.35b) with N replaced by N 4 1 (respectively, N — 1), and # is
defined in the statement of this theorem.

In order to get the formulas in the statement of the theorem, we must
decompose the X ® v ® w’s into their various K types by using Corollary
2.12, then multiply by either (3.37h) or (3.37i), and reassemble, again using

Corollary 2.12 and (2.14b). For example, suppose we are considering the
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sum of vectors (3.371). For a given X, iy and 23, assume that the tensor

X @ vNybi2-2i, ® WN—2i, decomposes under Corollary 2.12 as

(3.37Tn)  hf(vector; in K type (N +b+3,N +1)
+ hy(vectory in K type (N +b+3,N)
+ hy{vectors in K type (N +b-+1,N —1)

+ (vector in K type that does not appear in discrete series).

Then, using this and the decomposition (3.37k), we can write (3.37h), fol-

lowing the prescription (3.371), as

I !
ot o o) 8 Ker Flivania g

_ p(V +1)?
(N +b+3)3 (N +2)3
N RN + 13N+ b+ 2)2N(N +b+4)(N +2)
(N +b+3)3(N 4 2)3

x (vectors) @ Ker a”(N+b+1,N} .

(3.370)

(vectorz) ® Ker ah|(z\r+b+3,N)

We do not bother with the K type that does not appear in the discrete series
since it will be 0 in homology. This is the method used to arrive at all the

formulas in the statement of this theorem.

3. The R Row Case

Having produced basis elements of Ker 9 C €y x(Z)|, for K types
; " H

(Z an appropriate irreducible L representation) in the one and two row cases,
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as well as reconstructing the p action in each case, we turn our attention to
the R row case, where R is any positive integer. In this case, we state a
conjecture about a basis vector in Ker O%. We then show that such a vector
will not vanish in homology. In addition, we reproduce the p action by using
only a portion of the pure tensors that appear as summands in the Ker o
basis vector. This follows the technique used in the one and two row cases.
For example, in the one row case, the tensor (3.24) was all we needed to
determine the (N + a + 3, N 4+ 1) component of a;(- ® Ker 3EI(N+Q+2,N)),
and three pure tensors that added to give (3.25b) were all we needed to
determine the (N +a+ 1, N - 1) component of a;(- @ Ker 8h|(N+a+2,N)).
Before we state the conjecture, let us be more precise in our notation
so that we can properly identify any K type that appears in the Dixmier R
row diagram. To begin, recall that, for R a nonnegative integer, d an integer
satisfying d > R—1, and M an integer satisfying 0 < M < R—1, the Dixmier
diagram corresponding to R and d is the set of points Uﬁ—:lo D(r,a,p), where

Dig,a,m) is the subset of points
{(N+M+d+2)es +(N+R—M-1)es| Ne Z+t U0}

of the integer lattice in the first quadrant of the coordinate plane with axes
e1 and ey (see Chapter 1, Section 3). Each of the points in this lattice is a K
type for the discrete series £1{(Vge, +(r=1)e,) of Sp(1,1). Here, Ve, +(r-1)es
is an L irreducible representation with highest weight de; + (R — 1)es. The
condition d > R— 1 is precisely what is needed m order for £1(Vie, 4.(Rr-1)es)

"o be a discrete series (see (1.4a) or (1.4b)). We have noted previously that
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when R = 1, then d = a of Section 1. Also, when R = 2, then d = b of

Section 2. Using coordinate notation, we shall write an arbitrary K type of

L1(Viey+(R-1)es) a8

(N+M+d+2,N+R—M-1),

where N and M are nonnegative integers, M < R — 1. If we start from
the minimal K type (d + 2, R — 1), then N refers to the number of units
moved in the e; + e direction, and M refers to the number of units moved
in the e; — ey direction. We shall use thoughout this section the following

abbreviations for K types:

K type Abbreviation
(N+M+d+2,N+R—M-1) (N, M)
(N+M+d+3,N+R—M) (N +1,M)

(N+M+d+3,N+R~M-2) (N, M +1)
(N+M+d+1,N+R—-M-2) (N —1,M)
(N+M+d+1,N+R— M) (N, M —1).

As a basis for Vigraye, +(R-1)e;, Which equals T/(:f:—l-ét)erl—(R—l)eg’ we

choose weight vectors T(gy4)e,+(2i—(R—1))e, (56¢ Chapter 2, Section 4) that

satisfy the relations

(3.38a) Xae, * T(dpa)e;+(2i—(R—1))es
T(dh4)er+(2(i+1)—(R-1))epy f0r 0 < i < R —2

0, for: =R — 1.
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Following formula (2.18b), these weight vectors must satisfy the relations

(3'38b) 'X_2_82 ’ w(d“}'é[:)el%*(?'tﬁ(R—l))EQ
(B = 0)(8) (g1 a)es+(2(i—1)—(R—=1))esr Tor 1 <t < R--1

0, for 2 = Q.

Conjecture 3.39 A basis vector in Ker 8t C CT(VJ61+(R_1)62)I(IV )

that does not vanish in homology is

N+M min[R+N—M—1,R—1--M] min[k,N+M—k]

(3392) 3 3 Y ok

k=0 i =max[—M,—k] =0

P k=i o N+M—k—j
X (U (Ntdr2+M) @ WN+R-M—1-2(i4k))" © Xo2e, ® X3, X\ e, KXo Ty 7

@ T(d+a)er+(20i+ M) —(R—1))ens
where the coefficients cy,;,; satisfy the sets of relations

(1) {Ck;i;j +Ck;z'—-1;j+(N+M—k’—-j+1)ck_1;i;j

+(N+M k3 +2)(N+M—k—3j+Dex-1;i;5-1 = 0}ri,jpen

(2)
{(R—}-N—M—l—i—k)(i-|-k‘-|—1)ck;,';j—[—-(M—|-i+1)(R—i—M—l)ck;,’_l_l;j

+ (b +1—g)ckgrys; + (k=7 +2)(k— 7 + Dergasizi—1 = 0 rijrer,

(3)
{7 —D(N+M—k—j+ 1N -M+R+d—2i—2j — Depr,i1y
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F (k= YN +M—k—j+2)(k—j— 1N +M—k—j+1)ck1i+15-1
(N M —k—j+2)(N+M—k—j+1)(R—i—M—2)(i+M+2)ck 25423

+ (k= Dk =7 — Dergiyy — (G + Dek—15i41;541 = O (ki )€ls-

In the set of relations (1), which is determined by the X3, action, the index
set I; consists of those tuples for which at least two of the four coefficients
Chiisjy Chiimlj> Ch—1;i;5 and Ck—1;i;j—1 appear in the summation (3.39a).
Similarly , in the set of relations (2) , which is determined by the X_z., ac-
tion, the index set I, consists of those tuples for which at least two of the four
coefficients cg ;i Chyit1ij» Chtliss AR Crytgisj—1 appear in the summation
(3.39a). Finally, for the set of relations (3), which are the necessary relations
for (3.39a) to be in Ker 8", the author believes that I5 consists of those tuples
for which at least two of the five coefficients ¢ ;5 ..., Ch—1;i41,;5+1 appear

in the summation (3.39a).

MOTIVATION. For the g action on U{4) ® Vigta)e,+(R—1)e, W€ Obtain

the following identities as a consequence of Lemma 3.15 and the relations
(3.38a) and (3.38b).
For0<i:< R-2,

Koy (X3 X1 10, XD o) ® T(aga)ert(2im(R—1))es)
= X X7 e, XE ey © T(ara)er+(2(H1)—(R—1))ex
+p(X XTHL XPT 4 (p - DX XD Xr,)

e1-fex‘ter—en 2eq e1t+es“ter—en

& T(d44)eq+(2i~(R—1))e2-
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When 7 = R — 1, the first term on the right hand side vanishes.

X o2e, (X261 B1+€2X§1—€2 @ w(d+4)€1+(2i—(R—1))82)
= (R =) X5, XI jen Xor—es @ T(di)er+(2(—1)—(R-1))ez
n T(X"zn;l r—1 Xp+1 + (?" _ 1)Xm+1 r—2 Xpl—eg)

ey-tex el —es 2ey ertex

B T(d+4)er+(2i-(R—1))e2-

For0<:<R-2,

X poy (X XD 10, XE o) © T(d44)ert2im(R=1))es)

=(rp(r+p+R+d— 2i -+ 1) X%, 61+92XP :

€q—€Ey

- m(d + m + r + p + 3)X281 €1+62‘XP

e1—es3
+rp(r — 1){p — 1)X§1$:L1Xe1+englfez) ® T(d44)er-H(2i—(R—1))es
(= DXE X720 XD, ® T(ata)e+(i+1)—(R-1))es
— p(p — V(R — i) XJ2, X[ 4oy XE ey @ T(dta)ert2(i=1)—(R-1)ex’
When ¢ = R — 1, the second to last term on the right hand side vanishes.
To see how each of these identities is used in determining relations

among coefficients, let us work through an example. We apply Xo2., to a

summand of (3.39a):

(3:39b)  Xie, {oniss(vo(Naarzsnr) @ WNR-M-1-2(i+8))”

N4+M—k—
& X—261X2e1Xe1+e2Xe1i-€2 - @ w(d+4)31+(2(1'+M)_(R—‘1))62}
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o ¢ o vi yh—i yN+M—k—j
= Chsisg [(wN+R“M~1H2(f+k—1)) @ X261X€1+82XE1—82

@ T(dt4)es+(2(i-+ M)~ (R—1))es

¥ o vi yk—i yN+M—k—j
+_(wN-|—R—-M—1—2(i+k)) ®X261X81+62X81—82

& T(dtd)er+(2(i+M+1)—(R—1))e,

+ (W r-M—1—-20i48))* ® (N + M — b — )X, X2 X107

V(N M —k—N+M—k—j - D)XXET xTHM-4=2)

2ey e1tea*ter—en

& $(d+4)el+(2(z’+M)~(R~«1))e2]-

Notice we removed v_(nyar24n) and X_s., from the pure tensors of the
right hand side of (3.39b). We may do this since X,,, does not act on them
and therefore they do not affect the equations. Our next step is substituting
different values for k, 7, and 7 so that all pure tensors on the right hand
side of (3.39b) look the same. For example, if we make all tensors loolk like
the first, then we substitute ¢« — 1 for ¢ in the second tensor, k¥ — 1 for k in
the third tensor, and & — 1 for k, § — 1 for 7 in the fourth. Making these

substitutions in the coefficients of each tensor as well gives us the relation

Chiizi + Crjim1yi + (N A+ M~k —j+ 1)cg—1i;

+(N+M—-k—j+2%(N+M-—-k—j+L)cr—1;i,-1=0.

The choice of index set [; comes from constraints on the indices k, i, and

7. The requirement that at least two coeflicients be nonzero prevents the
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degenerate case c,i,; = 0 for one (and subsequently all) coefficient(s) of
(3.39a).
The other sets of relations are determined in a like manner, using the
X _3., action on (3.39a) or applying the 9" operator to (3.39a) in order to
determine the relations necessary so that (3.39a) is in Ker o1, Notice that,
becaise X_ge, (V—(N4dt2+M) @ wg)* = 0 for any weight of Wyirr—M—1,
applying the 0! operator to (3.39a) is equivalent to replacing

;i yk—i oy N+M—k—j
(3.39¢) X, X, X Zoy T ® T(daa)er+2(+M)—(R-1))es
by

i xk-j oy NEM—k—j
X""zel(XJ Xel-];?62X61—62 ! ® m(d+4)€1+(2(t+M)—(R—'l))eg)

281

in each summand of (3.39a).

By studying C;(Vdel-i-(R—l)eg)l(ﬁ,M) and lm ag, we observe that the
pure tensors that comprise an element of Im Al C Cf(Vde1+(R~«1)ez)l(ﬁ’M)a
with /\1((11,@11) NE) part equal to X_., have either the term v(y4ay2.+1)-24
with g < N+d+2+M in (VNyaro+m ® Wnir—M—1)* or have a monomial

m41 yr P : o :
term X0 X7 e, Xey e with m, r, and p all nonnegative integers. Since

N-+M
co.0;0(V—(Ntat2em) @ WNtR-M—1)" @ X 20, ® Xo )

@ T(d+a)es+(2M—(R—1))es

satisfies neither of these conditions, it follows that (3.39a) is not an element of

Im 63 C CF(Vize,+ le)eQ)l (551 and therefore does not vanish in homology.
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The author has confirmed that Conjecture 3.39 is true for the case
when M = 0. For this case, the boundary is 0, and L equivalence is the
same as being a member of Ker 8%. We have seen this in Sections 1 and 2.

In fact, the coefficients in this case are

k+7—1 k .
c ___1%+k : N — Hr:l(?'_]_r) f 1<k<N
kiisg — ( ) H ( ‘I) UC_-— _j"—-)'j’ C0:0;0 or ] <k<N.
g=0 71

This expression reduces to formula (3.17b) for R = 1 and formula (3.32b)
for B = 2.

Now that we have shown the vector (3.3%9a) survives in homology, we

are ready to reconstruct the p action. Toward this end, let
a1 (X ® VNt M4dt2—2i; @ WNLR-M—1-2i, @ Ker 3h|(ﬁ,ﬂ))

be the expression

N-+-M min[R+N—M-1,R—1—M] min[k,N+M—Fk]

(3.30d) > Y. > S ok

a€A(p) k=0 i=max[—M,—k| §=0
N+R—-M-1

% (_1)N+R——M—1—(i+k) ( Lk

)(N+R—M—1mﬁ+@m2
X ((Ad® 7)(") ' X @ vNyMadtz-2i; ® WN+R—M—1-2is,
Xo @ UNtMAd+2 ® Woligk)—(N+R-M—1)) ® X_2¢,
® Xa(Xngfl?eQXgii‘;[_k_j ® m(d+4)61+(2('£+M)—(R-—l))ez)a
where 0 < 43 < N4+ M+d+2,0< i < N+ R—-M -1, and the

coeflicients ¢y ;,; are those of (3.39a) satisfying relations (1)-(3). Also, let
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o1 (- ® Ker 9" l (x, M")) be the expression gotten by replacing
(Ad@m)() ' X @ Nt M+dt2—2i; @ WNLR-M~1-2is

in (3.39d) by a dot. A summand n (- @ Ker 8h|(ﬁ’ﬁ)) is completely
determined by « € A(p), k, i, and j, so it makes sense to abbreviate such
a summand (coefficient included) by an(Xa, k;7; 7). With the next result,
we can determine formulas for the p action on £1’K(Vdel+(R"‘1)32)t(]\_j,ﬁ)' It
turns out that each of these formulas is a generalization of the formulas given

in Theorems 3.29 and 3.37. However, we shall not write out explicit formulas

here.

Theorem 3.40 Suppose n and ¢ are given by the equations

n:(N+R—M_1)[c0;0;0(N+M)(N+R+d+2—M)+2c1;_1;0]-c1;0.,1
— 2N+ MYR—M —1)(M+1egy0 — (2M +5+d = R)erjo0
and
e=2M(N + M)(R— M)coj,0 +(2M 43 +d— Rerjnj0 +e1—131,

where the values cj,;,; come from the expression (3.39a). Then the K type

decomposition of a;(- ® Ker 6h|(N M)) is given by

(3.40a) a1(- ® Ker 8h|(ﬁ,ﬁ))
—Cg;0;0
TN 4 R— MYE(N + M +d+3)F
n c{);l;g(l\T—I—Rv-]\/f—-1)2
NIENN | R~ M)3(N + M +d +3)2

KGI' ah\(N+1,M)

Ker aﬂ|(ﬁ,m1)
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(N+M+d+2)2(N+R—M—1)2n
NSEM((N + R— MYV + M+ d+3))
(N—I—M-I—d+2)2e

- Ker o, o
Cé\{bﬂ-{o_l(N-i- R M)%(N—I—M-}— d-|-3)% |(N>M—1)’

b

KCI' ah ‘(ﬁ—l,ﬂ)

N41,M
LM

K type (ﬁ +1, M ) (respectively (ﬁ M +1)), and cg;;;; refers to the coefficient

(respectively M MELY i the coefficient ck ;5 of (3.39a) for the

where ¢ ki
¥

of (8.39a) for the K type (N, J\;f) Consequently, for X € p,

X(vngMdta—2i, ® WN+R-M-1-2i, @ Ker ah;(m))

= a1 (X @ UNfMtpdt+2—2i; ® WN+R-M—1-2i, @ Ker 3”1(1\7’1\7[))

can be explicitly calculated.

PROOF. We decompose o) one K type at a time. For the time being,
we avoid giving specific values for the coefficients ¢y ;5. Some remarks about
possible choices will be made later.

We can conclude from the following identities that the sole contribution
to the monomial nggf“ in the vector (3.3%a) for the (]\_f +1,M) K type

comes from

Xey—er (XN @ T(apayert @M —(R-1))ez)-

It therefore is sufficient to consider only a3(X¢, —e,,0;0;0) when determining
the contribution of a;(- ® Ker 8‘1](1\7,}‘2)) to the (I\_f +1,M) K type. These
identities all follow from Lemma 3.15 and actions (3.38a) and (3.38b), unless

otherwise stated.
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For0<:<R-1,

(340b) X61+62( 521 £1+62X£1—"62®m(d+4)el+(2i_(R_1))52)

e Xt XD o, ® T(drdert(2i-(R—1))eas

since X, e, commutes with X, .

For0<:<R-1,

(3 400) Xﬂ1—ez(X2el 81+62X(1:1—62 & m(d+4)81+(2i—(R—1))62)
- 'XZE]_ 61+62Xp1-|-—62 @ w(d+4)61+(2i'—'(R—1))62

ForXEH XD XY ., ® T(dra)e+(2i-(R-1))ea>

since
T T
Xe,—es = +2r X0, X,

e1tez 61—5—62 e1—ey €1+€2

in U(u).
For0 <: < R-2,

(340d) X—61+82 (X2e]_ 81+62Xf1—62 & $(d+4)31+(2i—-(ﬂ.~—1))32)
N wngzelXel_Fezxpl“ez @ Z(d+a)er+(2(i+1)—(R-1))ez
+ ( X261 Lyr+l xP _ 2?“p(p _ 1)Xm+1Xr i XPHZ

e1tex“ el —es 2Zeq e1tes*ter—ez

+ p(zz - 2T - 2 - d —pP—- R)Xgél 81+62X£1—62) ® m(d+4)el+(2i_(R_1))e2'

When i = R — 1, the first term vanishes on the right hand side of (3.40d)

vanishes.
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For0<:< R-1,

(3 406) X"31_32 (X261 61—|~62X5:J]_-—32 @ m(d+4)e1+(2i—(R—1))ez)
— —2p(R — )i X XT pen X0, Bah)es +2(—1) ~(R-1)es

+(—mXp? T e, X —r(2m 4 2i 4 A4 dbr — R)XgT X[ X2 )

€] —en

@ T(dta)es 1 (2i—(R—1))er

By using formulas (3.40b—e) and arguing as in sections 1 and 2 of this

chapter, we can conclude that the sole contribution to the tensor of (3.39a)

with coeflicient cé\rf[,M is from os(Xe, —ey,0;0;0), and that contribution is

—C0;0;0 (

(N+R—ME¥N +M+d+3)3

—(N4d43+M) @ WNtR-M)

® X_g¢, ® Xﬁffﬁ & T(dtd)e;+H2M—(R—1))ez"

Hence, the portion of aq (- & Ker 6h|(ﬁ 1\'/1')) that maps to the (l\_]F -+ 1,]\2) K

type from a3 (- & Ker 8h|(Nr Mf)) is

—Cooo

g"’;floM(NJrR MY3(N + M+ d+3)3

Ker 8h|(ﬁ+1,ﬁ) .

The contribution to the (ﬁ , M+ 1) K type can be determined by the sum-
mand a1(Xe, —e,y,0;1;0). Again, using the formulas (3.40b—e), we see that

the sole contribution to the tensor in (3.39a) with coeflicient cm’g‘i}"'l is from

124

\
|
\
J
\



@1(X e —es,0;1;0), and using Corollary 2.12, formulas (2.14b) and (3.40c),

we determine that the contribution is

00;1;0(N+R—-M_1)2 .
(N+M +d¥+3)3(N +R—M)3 (v—(N+ata+1) @ WNR-M—2)

® X_2e, ® XM @ 2044 ayer +(2(M-+1)—(B—1))es -

We may conclude that the (ﬁ, M+ 1) portion of (- ® Ker 8hl(ﬁ M)) is

Cg.l-g(N+R—M—1)2 4
N ESpr— L g Ker 9 |(Nf M+1)
MAUN + R— MY (N + M +d+3)% ,

Cp ;050

For the remaining two K types, the relevant summands are given as well as
the respective portions of a;(- ® Ker & | (N M))' The interested reader may
verify these calculations for him/herself. For the K type (N -1, M ), there

are, in general, five contributing summands. They are

O‘fl(X——el-I—ezaO;O;O): al(X—-eri-ez)l; _110): al(-X——m—eza]-;O;D)v

o1 (X —¢; ey, 0;1;0), and o1 (X ey —eq, 1305 1)

As in previous calculations, we use Corollary 2.12, and the formulas (2.14b),
(3.40d), and (3.40e) to decompose, combine, and reassemble the summand
with coefficient cff;;}[;M. We use formulas (3.40b—e) to verify that the five

terms listed above are the only contributing terms. The result is

(N+M+d+23N+R-M-1)q
oo (N +R—MYN+ M d+3)7

er 3”(1\7—1,1‘2) ,
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n being defined in the statement of Theorem 3.40. Note that certain coeffi-
cients that appear in  do not exist when M = 0 or 1. That is the reason we
say that there are five contributing summands in general. Sometimes there
are less.

For the K type (]\7 ,M — 1), there are, in general, three contribut-
ing summands. They are a1(X e;—e;,0;0;0), a1{X ., —¢,,1;—1;0), and

6i1(X —ey—e5,0;0;0). The (ﬁ,M — 1) portion is

—(N+M+d+2)e¢
TN+ R—M)E(N + M +d+3)3

Ker 3h I(ﬁ,M—l) 3

¢ being defined in the statement of Theorem 3.40 as well. Having accom-

plished the K type decomposition of a;(-® Ker " ‘ (F M))’ we may decompose

X @ UNFMpdt2—2i; @ WNLR-M—1—2iy

using Corollary 2.12 and we may retrieve the p action in the same manner
as was done in sections 1 and 2 of this chapter.

QOur attention now turns to a determination of the coefficients cy ;5 of
Ker O | (R, 3" Notice that in the formula (3.40a), the coeflicients needed to
describe the p action are céj;’(?;o, for various P and @, ¢o;1,0, €1;-1;0, €1;050,
c1:0:1, and ¢y;—1;1. We use the sets of equations (1)-(3) to tell us the relations

among, these coeflicients.

Equation from [y set Tuple in {3 chosen
€o:1;0 1+ €o5050 =0 (011:0)
c100 +c1-10 (N +M)eojo0 =0 (1,0,0)
1o ter,—10+H(N+MYN+M—2)co050=0 (1,0,1)
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Equation from I set Tuple in I chosen

M(R—M)ego0 + ct;-150 =0 (0,-1,0)
(M —1)(R— M +1)e1;-150 + 202,240 = 0 (1,-2,0)

and from the set of equations I3 we get

—(N+M)(N+M—1)(R—M)MCO’O,U “-(N-|-M+d-|— 2)61;_1;1

+(N+M—1)(N+R'—M+d+3)cl;—l;0+262;——2;0 :0:

with the tuple (2,-2,0) being chosen. These equations indicate that the
coefficients cg ;1,0 through ¢;, 1,1 above can be written as nonzero multiples
of ¢p;0;0. Note that the céj;’{?;o can always be chosen to be 1. However, in the

one and two row cases, the author chose values céD ;{?;0 for the various K types

appearing in the discrete series so that all ckP:? ; would be integers. This was

done for purely aesthetic reasons. The author has verified that in the R row

ELD il be integers when cé\’.ﬂ;" is 1.

case, when M = 0, the coefficients civ_z-, i

This generalizes the results found in the one and two row cases.
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CHAPTER 4 |

Sp(1,n) DISCRETE SERIES

In this chapter, we begin with a description of the K types that appear
in the Agq(A) discrete series for Sp(1,n), n > 1. It turns out that each |
of these K types has multiplicity one, as we shall see. We also provide a
method for reconstructing the p action on the (€, K} modules (1.15a), where {
u refers to a K type that appears in the discrete series Ay()) and Z is a }
one-dimensional irreducible representation of L = S* x Sp(n) with weight A. |
We can do this under the assumption that there exists a decomposition into
K types for Ad|p ® m(p.q), Where m(p,q) is an irreducible finite dimensional
representation of K = Sp(1) x Sp(n) with highest weight Pe; -+ Qez, P and |
() both nonnegative integers. We determined such a decomposition for the ‘

case n = 1 in Chapter 2, Section 3.

Throughout this chapter the following notation is in force:

G = Sp(1,n)
K = Sp(1) x Sp(n) = SU(2) x SP(n)
L= 5" x Sp(n) ‘
go = 5p(1,n)

g=(g0)°



by = su(2) @ sp(n)
B = (%)%

Also, g = £ @ p is the Cartan decomposition of g [K3, pg.1] and b is a fixed
Cartan subalgebra of g. Further, we let [y = to @ sp(n) C €, where {; is the
Cartan subalgebra in su(2), and [ = (I)*. As mentioned in Chapter 1, we

can write

g=udlel,

where u is a nilpotent lie subalgebra of g [K1, (1.1b)]. We can also write
q=u®!land § = ¢ . For any subspace m of g, we use the notation AT (m)
to denote the positive roots of m, and A(m) to denote all the roots of m.

We choose

Il = {81 — €2, €3 — €3,...5 € — Cutl, 2€n+1}

as the system of simple roots for g. It follows that

At =AT(g)={eite;|1<i<j<n+1}U{2e|1<k<n+1}

Using the setting of Theorem 1.6{a) as well as the notation there,

3 = 2e; = largest root
Bg = e; — ez = unique simple root not L to 5.
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We know | is built from simple roots. In fact,

I(I) = Il — {e; — ez} = simple roots of |

AT ={e;te;|2<i<j<n+1}U{2ep]2<k<n+1}

Because AT(1) U A(u) = AT, then

Aw) = {21} U {er L e;|2< 7 <nt 1}

The set of compact roots, A(t), is the set A([) U {£2e1}, and the sct of
noncompact roots, A(p), is the set A(g) — A(E).

We are now ready to compute the K types for Aq(A). The key tool
is Theorem 8.29 of [K-V]. The main bypothesis in that theorem is that A

satisfies

(*) Re{A + 6(u),a) 20 forallae A{u).

Here we may think of (-,-) as the standard inner product on R™! with
coordinate axes labeled by ey, ,ent1. Recall that A LA(I) (Definition
1.18). If A = ajer + -+ Gnt1€nt1s then the orthonogality condition implies
that A = aje;. We shall replace a1 by a. As in Chapter 3, we may
use the integrality condition (3.2a), since Sp(1,n) is a real group whose
complexification is simply connected. In (3.2a), the inner product is the
standard inner product on R*t! mentioned above. This implies a € Z.

Further, the inequality {\ -+ &(g), ) > 0 for all a € At(g), which is the
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condition for discrete series (see (1.4a)), says that a is nonnegative. Because
§(w) = (n+ 1)es and every o € A{u) has +1 as coefficient for eg, it is
clear that (*) is satisfied when A4(}) is a discrete series for Sp(1,n). For
the remainder of this chapter, A = ae; with a representing a nonnegative
integer. Also, N will represent a nonnegative integer. A key fact used in the
determination of K types is the decomposition of 5{u N p) into irreducible 1

modules.

Lemma 4.1 For G = Sp(1,n), I, u, p, A(u) and A(p) as above, the

decomposition of S(1 N p) into irreducible [ modules is given by

(4.1a) Sunp)= P SNunp),

Ne{ojuzt

with each S™(unp) being an irreducible [ module.

PrROOF. Since each SY(unp) is an [ module and the decomposition
(4.1a) is valid as a vector space direct sum, it is sufficient to prove that each
SN{unyp) is irreducible as an [ module. Towards this end, we note that
Aunyp) = {es £e;{2 £ 7 <n+41}. The cardinality of A{unp)is 2n,
so using [K2, Proposition 2.14], which states that for £ a finjte-dimensional

N -1
vector space of dimension m the dimension of S¥(E) is ( o ), we

m— 1

N4 2n -1
2n—1
of SN(unp)is N(es + ez) and the Weyl dimension formula [K3, Theorem

see that dim SN(unp) = ( ) Meanwhile, the highest weight

4.48] applied to the group L = Sp(n) (the semisimple part of $1 x Sp(n)),
with 6(f) = Z;‘;& (n — §)e;+2 shows that an irreducible | module of highest
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N +2n-1
2n—1
irreducible [ module of highest weight N(e; - e2) and the lemma is proved.

weight N(ey + ez) has dimension ( ) Therefore, SV (unyp) is an

REMARK. The previous lemma is true for G = Sp(1,n), but this result

is not true for all groups that appear on Wolf’s list [Bes, Table 14.52].

Proposition 4.2 For G = Sp(l,n), let L, u, p be as stated above.
Also, suppose AT(B) ={es te;[2<i<j<n+1}U {21 <k <n+1}

and A = aey. Then the K types that appear in the Ay (A) discrete series are
(4.2a) A= (N +a+2n)e; + Ney for N € {0} U Z+, |

each occuring with multiplicity one. .

PROOF. As mentioned previously, the key tool used in proving this
proposition is Theorem 8.29 of [K-V]. We give the statement of that the-

OoreIm NOow!:

In the case of Ay(A), suppose that the inequality () (mentioned
above) is satisfied. For v € B*, the space of linear functionals on
the Cartan subalgebra §j € g, define P(v) to be the multiplicity of v
as a weight in (S(un )™, Put A = A+ 25(unp), and let W be
the subset of W(E, §), the Weyl group of K ,defined by

W = {w e Wt h) AT (w) C A(u)},
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where At(w) = {a € AY(®)|w'a < 0}. If A’ is AT(#) dominant

and integral, then the K type A' occurs in Ag(A) with multiplicity

S (detsYP(s(A” + 8(8) — (A +6(2))).

scWl

Note for our situation that | C & so that INetNn = [N n. Also, for the
Weyl group of K we may use W(&,h) = {permutations and sign changes
of {e1, -+ ,ent1}} (see [K3, pg.78]). By Lemma 4.1, the only weights that
appear with nonzero multiplicity in S(unp)™ are N(ey +ez), N € {0}UZT.
Since A = ae; and §(uNp) = neq, then A = (a + 2n)e;.

For A a linear functional that is At(#) dominant and integral, s € W!
with s # 1, we claim that the multiplicity P(s(A’+6(8)) —(A+6(¥))) is 0. To
see this, we observe that there is only one other s € W' besides the identity,
and that is the reflection s5., that maps e; to —ey and leavese;, 2 < j < n+l,
fixed. If A" = ajeq + -+ + Gny16ns1 is AT(E) dominant, then a; > 0, since
a = 2 € AT(E). Also, 6(8) = 6(unt) + (1) = e1 + Y1y (n — j)ej42 and
therefore A’ -|- §(€) has e coefficient ay +1 > 0. It follows that the element
590, (A +6(¥)) has e; coefficient —(a;+1) < 0. Since A+6(E) has e; coeflicient
a + 2n + 1, the element s., (A’ + 6(%)) — (A -+ 6(¥)) has a strictly negative
a; coeflicient. However, we know that the only K types in S(u N p) with
nonzero multiplicity all have nonnegative e; coeflicient. Hence, the claim is

verified.
We can conclude that any K type A’ appearing in Aq(A) has multi-
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plicity P(A' - A). Because of (4.2a), this is equivalent to saying
AN =A+N{(eg+e)=(N+a+2n)e; -+ Ney,

for N € {0} UZT. Also, because P(N(e; + ¢3)) = 1 for each N, the

multiplicity of each A’ is one. This finishes the proof.

In the rest of this chapter we will need a description of basis vectors for
some K types of R(K), specifically those K types that appear in the discrete

series. Using Definition 1.7, we see that such a K type can be written

(4.3) (Vivtatzn ® Wive,) @ (Vivtatan @ Wie,)",

where Vivpat2n is an irreducible representation of SU(2) of highest weight
(N + a -+ 2n)e; (completely described in Chapter 2, Section 2), Wi, is an
irreducible representation of Sp(n) of highest weight Nej, and the contra-
gredient representation is given by (Vitatzr @ Whe,)*. We already have
a detailed description of basis vectors, complete with lengths, for Vyiaq2a.
For the purposes of determining a basis for Ker 0% C C(Caer Ml (Ntatan,m
(Definition 3.3a) and reconstructing the p action on the (£, K) module ,
Ker 8 C cl,K(‘Cae1)|(N+g+zn,N) (Definition 3.3b), we will need some de-
scription of basis vectors for We,. With this goal in mind, let {#;} be the
set of weights (with multiplicity) of Wpe,. We assume there is a basis of
weight vectors {wp,} and an inner product on Wy, so that the length of

each wpg, is known. Using the fact that the set of weights of Wiye,, together
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with their multiplicities, is closed under action by the Weyl group of K [K-V,
Theorem 4.10] and using the description of the Weyl group for K given in

the proof of Theorem 4.2, we see that

(multiplicity of 8;) = (multiplicity of —5;).

Therefore, we can define a one-one correspondence wg, «— w_g,, and con-

sequently it makes sense to define

(4.4) (v ® wg,)" = (- v—a @ w—p;);

where « is any weight of Viv a2, and the inner product on Vy4a12, @ Whe,
is (-,-), determined in a canonical way from the inner products of Vyjatan
and Wi,. This definition differs slightly from (2.13). In that definition, we
wanted (vy @ wg,)* to satisfy certain relations under the € action. In the
remainder of this chapter, we shall drop the subscript i from f;, since it will
not be needed. Thus, for @ and o, weights of Viyyqt2n, and for f and &,

weights of Wiy,,, we can now write any basis vector of (4.3) as

V! B wegr & (?)a & wﬁ)*

This generalizes the formula (2.15). We shall also need a description of root

vectors for g. We choose the vectors {X,} described in the following result:
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Cartan’s Theorem For each o € A(g) a vector X, € g% can be
chosen such that for all &, 8 € A(g)

[Xo, X—o| = Ha, [H, Xa] = o H) X« for H € by;
[Xo, Xg] =0 fa+pf#0and a+ ¢ Alg);

[XO,,X}B] :Na“@Xa_pﬂ ifoc—l—ﬂEA(g],

where the constants N, g satisfy

Nasﬁ - _N_aa""ﬁ'

For any such choice

1 -
Nf‘i:ﬁ = q( 2 p) O"(‘Ha)!

where i + na (p < n < ¢) is the a-series containing £.

For & proof, see [Hel, Theorem 5.5, pg.176]. In this theorem, g® refers o
the one dimensional eigenspace of g with eigenvalue a (see [Hel, pg.165] or
[K3,pe.66]). Also, H, is the unique vector in the Cartan subalgebra § of g

that satisfies the relation

B(H,H,)=a(H) forall H €.
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B is the Killing form in this relation. Notice that the Killing form differs
from the form used in Chapters 2 and 3, namely % Trace form. We did
not make use of this theorem in those chapters because we used a matrix
realization of g = sp(1,1)* and we were able to compute directly the bracket
relations between various root vectors of g (for example, (2.4) and (2.11;)).
However, for general Sp(1,n}, the matrix realization quickly becomes too
cumbersome. With the theorem mentioned above, it is possible to prove a
result like Lemma 3.15, describing the action of g on U(u) by means of the
bracket relations. However, we will not need to do this.

We now show that the boundary is 0 in the space of L invariants of

(4.58)  (Vtat2n @ Whe,)* @ /\1((11 SWNHRUW R Clat2(n-+1))es -

The space of L invariants shall hereafter be denoted by (4.5a)". The spaces
(4.5a) and (4.52)" are actually the spaces (1.17a) and (1.17c), respectively,
of Chapter 1, for the case where p = (N 4+ a +2n)e; + Neg and 7 = C,e,.
Following the method of proof in Proposition 3.6, we prove the boundary is

0 by showing that the space of L invariants of
(45]3) (VN—}-cH—Zn & WNgz)* & AZ((U @D fl) N {3) & U(u) & {c(a+2(n+1)}811

hereafter referred to as (4.5b)%, is 0. Borrowing notation from Chapter 3,

we let C;—“ (C

ael)l(N+a+2n ) (Definition 3.3a) be the space of I invariants
(4.52)% with A' replaced by /\J'. Now suppose 71 = 2ey, 72 = €1 + e,
Y3 T €1 — €2, ..y Yan = €1t €ng1,Yont1 = €1 — €pyq is an ordering of

137




the roots of A(u). If Zy" is the set of nonnegative integers, we denote by
¥ = (M, P1,D1,72,D2, - -, "n, Pr) an element of (Zot)2" 1, Let X7 be the
monomial X7*... XP» ¢ U(u).

T2n41

Lemma 4.6 There are no pure tensors of the form

(%) (va ®WN)* @ X 26, A Xze, @ X] ® 1

in (4.5b), for o a weight of Vyqeq2n.

Proor. If the tensor (*) has total weight 0, then the nonnegative
elements r1 and py in v must satisfy the relation ry = N + p;. However,
because the ey coeflicient of each root of A(u) is at least 1, then even for
a = —(N +a - 2n)e;, no choice of v for which ry = p; + N will make the e;
coefficient of (weight of (##)) vanish. Because a = —(N + a + 2n)e; is the

most negative weight of Vyiay2n, the result follows.

CONVENTION. For « a weight of Viyygq2, and 8 a weight of Wiy,

the generic tensor
(4.7a) (Va @uwg) @ X 20, A XKooy, X ®1

in (4.5a) is, unless otherwise stated, assumed to be of total weight 0. Simi-

larly, the generic tensor
{4.7b) (Ve ®wp)* @ X _ 9., ®XT®1

in (4.5b) is, unless otherwise stated, assumed to be of total weight 0.
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From Lemma 4.6, we see that 3 # Neg in (4.7a). We will use this in
the next result.

Proposition 4.8 C3(Cae, )l(nv4at2n,n) 5 0.

Proor. This proof is a generalization of the proof given in Proposition

3.6. A general element of C3(Cae, )|(npaian,n) Looks like
(4.8a) Z Ca,py(Va ®wg)* @ X _ g, A Xop, X Q1.

Without loss of generality, we may assume that each of the surmnmands in
(4.8a) is distinct. Let By be a largest weight of Wiy, that appears in (4.8a).
Here the term “largest” means §p is the largest weight in the set of weights
to which it is comparable. According to Lemma 4.6, Sy # Ney. Notice we

can rewrite (4.8a) as

(4.8b) an:ﬁoﬂ( Ve & wﬁ)* ® Xogey A Xae, ® X ®1

+ Y Capr(va @ws) ® X g0, AXoe, ® XJ ® 1.
B#Bo

For p any root of A*(I), we have

Xﬂ(4'8‘b) = Z Ca,ﬁOfY Xﬁ( Ve ® wﬁ)* ® X“2ei /\ X2el ® Xl:f ® 1

+ (sums of pure tensors with (Vyyat2n @ Wie, )" weight # o + Gy + ).

The expression X,(vy @ wg)* can be 0 even if o + fo + p is a weight of

(VNtatzn @ Wne,)*. However, X, (vy ® wg)" cannot be 0 for every u

139




in A*([) since this would imply the vector is of the form vy ® wpe,)* (see
[K3, Theorem 4.28(c)]). Therefore, let us choose a u for which the expression
Xu(va ® wg)* # 0. As in the proof of Proposition 3.6, this implies that all
Cor, o, e 0. Repeating this argument for every weight that appears in (4.8a)

shows that all ¢, g are 0 and we are done.

Corollary 4.9 dim{ CT(Cael)l(N—]-a-l—Zn,N)} =1.

ProoF. This follows immediately from Propositions 4.2 and 4.8.

The next result will prove useful when reconstructing the p action.

Lemma 4.10 If (v, ® wg)* ® X_4., ® X ® 1 is a pure tensor that
appears as a summand in an element of C(Cae,)|(ytqton,n) then o =

—(N +a+2n)e;.

ProoF. Using the technique of proof found in the previous proposi-

tion, we can prove that any vector

(4.10a) Y capr(va@uws) ® X, @ X] ®1

with no 8 equal to Ney, is in (4.5a)” if and only if all ¢q g4 are 0. With
this in mind, note that if @ > —(N +a -+ 2n)es, then the “total weight = 07
condition forces the tensor {4.7b) to have 8 # Ney. Reconsidering the sum
(4.10a) as an element of (4.5a), but now allowing @ = —(N +a+2n)e, as a

weight we can rewrite (4.10a) as

(4.10b)  (sum of pure tensors with o = —(N +a + 2n)e;)

+ (surn of pure tensors with & > —(N +a + Zn)el).
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From the comments above, the second sum here will have no § equal to
Neg. The statement made at the beginning of this proof indicates that the
second sum is I invariant if and only if it is 0. Hence the vector (4.10b)
is L invariant implies that only the first summand is nonzero. Our proof is

completed.

REMARK. We observe that in the preceding discussion, tensors of the

form
(Vg ®wp)* @ Xoe, @ X @1

have been ignored. The reason for this is that there are no total weight 0

tensors of this form (this generalizes the remark of Chapter 3, Section 1).

At this point, rather than produce a basis element for the vector space

CH(Caei M (Ntatzn,n)» Which incidentally is also a basis element for the kernel

of
ah : CT(Cam)'(N—}-a{-‘Zn,N) - C;(Cae1)‘(N+a+2n,N)?
we observe that any basis element must contain as a summand a nonzero

multiple of

(4.11) (v_(N+tatzn) ® Whey ) @ Xoge, ® Xgnw @ 1.

This follows immediately from the first statement in the proof of Lemma
4.10. Using this, we can prove that reconstruction of the p action for the

space of L invariants of

(412) (VN..|_ﬂ+gn & WN32) 2 (VN—]—a—{—Q'n. ® WNeg)*

@ /\1((11 & ﬁ) M E) & U(u) & C(a+2(n+1))e1
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is a solvable problem. As in (4.5a) and (4.5b), we will use the notation
(4.12)% to refer to the space of L invariants. Notice that the spaces (4.12)
and (4.12)" are the spaces (1.15b) and (1.15a), respectively, for x and Z as
mentioned in the comments after (4.5a). Before proving the theorem about

p reconstruction, however, we need one more lemma.

Lemma 4.13 Consider the expression

(3 * *) XX X, X0t . X Xk )

2e1“ver+es e —es e1tentpiter —entr

in U(g), where a € A(p). In what follows, only the nonzero exponents are
listed. Given that 0 <p; < N,
Case (1): if (* * ) has total weight (VN + 1)(e1 — e2), then a = ¢4 — €3 and
p1 =N
Case (2): if (* + #) has total weight (N — 1)(ey — ez), then either
(a) @ =e; —egand pp =N —2 OR
(b) o =—ey—egandm=1andpy =N -2 OR
(c) a=—e; —egandr; =landp; =N -1 OR
(d) a=—e;—ezand py = N —2and r; = p; =1 for some § > 1 OR
() a=—e;1+exand py =N OR
(f) Forsome j > 1, =—e; —¢jand py =N —landr; =1 OR

(g) Forsome j >1,a = —e; +e;and py =N —1 and p; = L.

PROOF. The weight of the expression ( * ) is

a+(mtry+pobebrn b pa)en + Z(Tz — Pi)eit1.

3==1
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Let us consider Case (1) first. The choices for a are e; +e¢;, e1 —e;, —e1 +¢€;
and —e; —e;, 2 < j <n+ 1 Itis easier if we consider j = 2 and § > 2

separately. When j = 2, the choice @ = ey + eg forces the equations

ri = Di, > 1
mAritpr 4ttt patl=s N41

P +1=—(N+1)

Combining these gives us the equation

n
m+ Yy i+ 2=0,
i=1
~which is impossible to solve, since all exponents must be nonnegative. With
the exception of o = e; — ey, all other choices of o will force the condition
p1 > N -1, which is not allowed by assumption. This is true for both j = 2

and 7 > 2. However, when « = e) — €3 , we have the equations

i = Piy 1 >1

T — P1 —1=—(N+1).

The unique solution to this system is p; = N (all other exponents being 0).
This takes care of Case (1).
For Case (2), we notice that (a) is really Case (1) with N replaced by

N —2. This observation and the proof of Case (1) shows that for & = e; +e;,
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7> 2, 0 =e; —egand py = N — 2 is the only choice that gives a solution.
We can therefore concentrate now solely on a = —ey €5, 9 > 2. Asin
Case (1), we consider j = 2 and j > 2 separately. When j = 2 the choice

o = —ey — ey forces the equations

T = P4, :>1
mtri+pi e bpy 1= N-1

m—-—m _1:“_(]\?‘.._41)

Combining these gives

m—l—Zri—l:O and p=r1+N-2
=1

ri = Di : > 1.

The choice m = 1 gives (b) of Case (2). The choice r1 = 1 gives (¢) of Case
(2), and the choice r; = 1 for some 7 > 1 gives (d) of Case (2).
Using the same techniques as above, we verify that (e), (f), and (g)

are correct. We leave the proof to the reader.

REMARKS.
1) The lemma just proved will be used in the proof of Theorem 4.14.
Case 2, (a) will not be relevant in this proof.

2) Notice that , for § any weight of Wy, , the pure tensor

(V- (Ntaton) @wg)* ® X oo, @ X5% X[V XV, - X000, XET ®1

eitez ter—en €1tent1 €1 —€ni1
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in the space

(Vivaran ® Wies)' ® N (4 ®T) 1) ® UW) © Clatatminie

having total weight 0 implies that the exponent p; satisfies py < V. This
explains the reason for the hypothesis of Lemma 4.13.

3) In the statement of the next theorem, the term “effectively com-
putable” will mean that we can produce a list of formulas describing the
action of X4, a € p, as we have done in Theorems 3.29 and 3.37. We do not
mean this term in any formal way, such as a logician or philosopher might

interpret 1t.

Theorem 4.14 Let P and @ be nonnegative integers. Under the
assumption that there exists a explicit decomposition of Ad| » O T(P,Q) into
K irreducible components, then reconstruction of the p action for (4.12) is

effectively computable.

PROOF. We begin with some definitions. Borrowing notation from

Chapter 3, we let

i
Ker 0 |(N+a,+2n,N)

be the basis vector of Ker 9% C CH(Cae M (Ntatan,ny that has coefficient 1
for the summand (4.11) (see Definition 3.18). If Ker 8h|(N+a+2n,N) is the

vector

> e v (Nparon) ®wp) @ X 2o, ®XTI® 1,
B,y
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then for o' a weight in Vy.patar and 8 a weight in Wi,
(4.142) vor ® wpr @ Ker ahl(N+a+2n,1\ﬂ’)

is the element

Z Vot ©Wpr & ('v—(N+a,+2'n,) ] Wﬂ)* & X—‘Ze1 ] XJ ®1

By
of (4.12)* (see Definition 3.19). Because the boundary is 0 for (4.12)7, then
the set of vectors (4.14a), as vy ranges over the basis of weight vectors
of Vntasan and wg ranges over the basis of weight vectors of Wie,, is a
homology basis for Ker @ C Ci,x(Caei)l(ytatan,wy- We observed this in
Chapter 3, Section 1 for n = 1. We note that the action of a vector X & p

on a basis vector (4.14a) is
a1 (X ® v @ wg @ Ker 3h|(N+u+2n’N)),

where ,, is the map defined in the statement of the Duflo-Vergne proposition
(stated in Chapter 1, Section 2). We also observed this in Chapter 3, Section

1 for n = 1. Our goal is therefore calculating

(X @ vor @ wg @ Ker ah](N+a+2n,N))'

Using Proposition 4.2, we only need consider those portions in K types

(N+14+a+2n,N+1)and (N ~-1+4a-+2n N ~1). Using Lemma 4.13,
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Case (1), we see that the contribution to the K type (N +1-+a-2n, N 1)

can be determined from

a1 (X ® v @wg @ (V_(Ntatzn) @ WNey ) @ X_ge, ®X§_ez ® 1),

in particular the term

(Ad(~)_1X, Xﬂl '"62)(71'(')_1 Vot @ Wwaty, VN+at2n ® w—N)

® X—2el ® Xel—eg(Xg—eg ® 1)’
where we have dropped (N + a + 2n, N) from 7(n4qaq4-2,n)- This equals

(4.14b) {(Ad@T)()7 X ® vor ® wgr, Xey—ey ® UNatan @ Wone,)

@ XNt o1,

e1—es

By assumption, X, , —¢, @ UNtqt+2n ® W_Ne, will decompose as
hi(vNtat2nt1 ® W_(N41)e,) + (pure tensors in other K types),

for some (possibly complex) number h;. Thus we can rewrite (4.14b) as

hy ((N +1+a+2n, N+ 1) component of X @ vy & wﬁ:)

@ (UM(N-+1+(1+2n) X w(N-Jri)Bz)* @ X—281 Y Xgi_ig ® L.
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Suppose now that for our chosen X, o' and §', we have

(4.14c) X ® vy Qugr = hi(vectorl in K type (N +1+a-+2n, N+ 1))
+ hb(vectory in K type (N —1+a+2n,N —1))

+ (vectors in K types that do not appear in the discrete series)
under the assumed Ad| p ® T(N-+tat2n,N) decomposition. This means that

((N +1+a+2n,N +1) component of X @ vy ® ’LUﬁf)

= hi(vector; in K type (N +1+a+2n,N + 1))
and it follows that the (N + 1+ a 4 2n, N + 1) portion of
al(X & vy ®wﬁ: &% Ker 3h|(N+a+2n’N))

is
hi B (vector;® Ker ah‘(N+1+a+2n,N+l))'
This completes the calculation for the K type (N +14+a+2n,N +1).

In order to calculate the portion of
al(X 8 vy & wat ® Ker 8h|(N+a+2n,N))

for the K type (N — 1+ a+ 2n, N — 1), we first must have a more detailed

description of the indices c¢g 4 appearing in Ker on | (N-tatan,N)* In the hopes
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of clearing up confusion rather than creating more confusion, we introduce
some alternate notation for certain cg , appearing in Ker oM |( Netat2n,N)* In

what follows, 2 <j <n+1:

Monomial in U{u) Notation for corresponding cg .,
Kerpe, XD L e
XNl Xy ¢;
XNl Xey o d;
Xoe, XN 22 e
XN72 Xeoppo; Xeymo; fi-

Using this notation, Lemma 4.13, Case (2), and the fact that the coefficient of

the pure tensor in Ker Ot | (N-tatzn,N) corresponding to the monomial X2 _,

is 1, we see that the the portion of
Ofl(X X Vot ®’MJ5: ® Ker 8h|(N+a+2n,N))
for the K type (N —14-a - 2n,N - 1) comes from the sum of vectors

(4.14d) ((Ad@7)() ' X @ v @ wpr, KXoy tes @ UN+at2n @ W_Ney)
® -X--261 ® X—81+82(X£Y_e2 ® 1)
+ e (Ad@T)( )T X @ var @ war, Xecey—ey ® UNtatan ® W_(N—2)e,)

@ X"26’1 ® X—el—ez(X81+82X£:iz & 1)
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n-1
+ Z Cj {{(Ad® "T)(')MIX RV Qwpgr, X—¢)—e; & UNtat2an @ w—Ne2+ez+ﬂj)
i=3

® X—2el & X"ea—eg' (XNﬁl Xe1+ej @ 1)}

€1 —€z
n+1
-|- Z dj {((Ad @ ’fl')(.)_lX ® V! @ w'BI’X_el_t.ej ® UN+Q+2n ® w—N82+82—ej)
7=3

® X—261 & X—e1+6j (ngizXh—e;‘ QX 1)}

+e{(Ad® W)(‘)_IX @ Vot @ Wg, X—ei—e; @ UNJatan @ W_Neyt2es)

® X—Zel ® X—~81~62(X281XN~2 ® 1)

€1—€2

n+1
+ Z fj {((Ad ® "T)(')_lX B Vo & wﬂ’1X—61—62 & VUNtat2n @ w—Nez+2&2>
j=3

®X—261 ® X—ﬁl—ez(XN—z X61+85X€1Hej & 1)}

€1-e2

Under the assumed Ad.|p ® T(N+a+2n,N) decomposition, we can write

X—cl—e_,- ® UN-+tat2n & W_Nesteste; — mj(UN—1+a+2n & ww(Nu—l)eg)
+ (vectors in other K types),
X—el+ej & UNtatan @ W_Neyteg—e; = nj(UN—1+a+2n & w—(N—l)eg)

+ (vectors in other K types),

for 2 < j < n+ 1. Also, by means of Cartan’s Theorem, we can write

(4.14¢)
X e —er(Xeites N—1oe 1) = ngiv_l ®14+ Z(other monomials) ® 1

e1—€2 1—€2
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KXoer—e (XN_l Xejte; @ 1) = p; Nl o 4 Z(other monomials) @ 1

e1--€2 €1—€2

Xeorge, (XD Xee, ®1) = ¢; X020 @14 Z {other monomials) ® 1

e1—eg €1-¢e2

€1 —€2 €y —eg

X e —e, (X%lXN_2 ®1)= XNl @14 Z(other monomials) ® 1

and also the formula

X—61—82(XN—2 X61+er31“€j) = thN_l ®1

€1 —ey €1—¢€z

+ Z {(other monomials) ® 1.

In each on the previous formulas, 2 < j <n + 1.

If Al is the sum of terms

1
h% = Ngqq + camapg -+ emagsy + Z(ijjpj + djnqu' + fjmgtj),
=3

then it is clear from formulas (4.14c), (4.14d), and (4.14e) that the (N — 1+
a+ 2n, N — 1) portion of

(]fl(X R vg & wga & Ker ahl(N+a+2n’N))
18
hy hy (vectors® Ker ah|(N—1+a+2n,N—1))’

Since (N+1+a+2n, N+1) and (N —14a+2n, N —1) are the only two K types
in the A () discrete series to which a3 (X ® vy @wg ® Ker 3“](N+a+2n,N))

maps, we are done.
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CHAPTER 5
RESULTS FOR GENERAL
QUATERNIONIC DISCRETE SERIES

In this chapter, we present some results that are true for a general
quaternionic discrete series, defined in Chapter 1 (pg. 7). We will consider
only the Aq(A) discrete series (Definition 1.18). In what follows, p refers to
the subspace of g built from noncompact roots. Also, 3 refers to the highest
weight of ¢ (see Theorem 1.6(a)), and root vectors X, are constructed by
means of Cartan’s Theorem (stated in Chapter 4). The term ey refers to the
largest noncompact root of g (not to be confused with the map ay, referring
to the proposition of Duflo-Vergne, stated in Chapter 1).

The first main result is a concrete realization of the multiplicity space
of Ay(A) for the minimal K type A +26(uNy), hereafter abbreviated by A, of
Ag4(A) (see Definition 3.3a). In fact, we shall show that C3(Cy)|, is 0, and as
a result, the multiplicity space mentioned above will be Ker 8 C CI(Cx)l,-
We precede this result with two lemmas; the first is used in the proof of the

second, and the second will be used throughout this chapter.

Lemma 5.1 Suppose (4 and G, are compact groups with my, m,
irreducible representations of Gy and G, respectively, on finite-dimensional
complex Hilbert spaces V; and V5. Then 7 and w9 may be assumed to be

unitary, by [K3, Proposition 1.6]. If the representation m @ 7y of Gy X Gy
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on V1 ® V; is given hy

(m ®7T2)(Q’1,9'2) =71{¢1) ® m2(g2) for g1 € Ghand g2 € Gy,

then 7 @, is an irreducible representation. Conversely, if 7 is an irreducible

representation of Gy x Gy, then 7 2 1y ® 72, Where 7, is irreducible for Gy

and 1y is irreducible for G,.

PrOOF. To show the first statement, namely that =y ® 7 is an ir-
reducible representation of G x (2, note that it is sufficient to show that

if

VIV, VeV

is a linear operator commuting with all (m; ® 72)(¢1,92), then @ is scalar.

The reason for sufficiency is:

If Z is an invariant subspace, then Z' is invariant since
Ty ® 7 is unitary and it follows that VieVa=ZqpzZt.
Let @ be the identity on Z and 0 on ZL. Ope can check

that ¢ commutes with (m, ® 72)(91, g2)-

Let us therefore assume that @ is 2 linear operator satisfying the above
condition. We wish to show that & is scalar. Let us take & basis of operators

on V1 @ V; of the form A, ®B; € End(V1)@Fnd(V3). If & = Zc,;,j(Ai(g)Bj),
1%}
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we get the following identities by considering gz = 1 in (% ® m2)(g1, 92):

B(mi(92) @ Id) = (m1(91) © 1)

Zcz’,j(.Ai ® Bi)(m{g1) ® Id) = Zci,j('ﬂ'l(gl) ® Id)(4; ® By)

i iJ
> eii(Aim(g) ® By) = Y cij(mi(91)4: ® By).
i i

Because {B,} is a basis for End(13), the last equation tells us that

ZCi,in m1(g1) = Zci,jﬂ1(g1)z4i for each j.

T t

This equation says that for each j, > ¢ ;A; commutes with 71(G1). By a
5

corollary of Schur’s Lemma [K3, Corollary 1.9], it follows that > ¢;;4; =

d;Id for each j. Thus, we can write

d = chi,ji‘li@Bj = Zdjgd@Bj)
i o J

=1d® ZijJ‘

J

=1d® B.

We can repeat this argument with ® and the linear operators Id & w3(g2)
(g1 = 1in 71 ® ®2(g1,92)) to conclude that B is also scalar. From this we
see that @ is scalar and therefore m; & w9 is irreducible.

Conversely, if 7 is irreducible for G; X Gs, then the irreducible repre-
sentations from the 7y @ 7y construction above already give enough for the

expansion of matrix coefficients.
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Lemma 5.2 Suppose K = SU(2) X Ly, with L, being the semisimple
part of the compact group L. Let A' be AT(#) dominant and integral.
If Vi 1s an irreducible representation of K with highest weight A’, then
the decomposition of Vjr into irreducible L representations is given by the

formula

2M
(5.2&) Var = ZVA’——kﬂ:

k=0
with M a nonnegative rational number such that 2M € Z.

PRrROOF. For our situation of quaternionic discrete series, L = S x L,,,
St € SU(2) being the Cartan subgroup. From Lemma 5.1, it follows that
an irreducible representation of K with highest weight A’ is of the form
Vi, @Wa,, where V)« is an irreducible representation of SU(2) with highest
weight A;', Wy, is analogously defined for Ly,, and Ay’ +Ay" = A’. Similarly,

an irreducible representation of L is of the form

(irreducible representation of S* C SU(2))

x (irreducible representation of L,).

I
U {vp,pp}, 05k < 20, B) is a basis of weight vectors for Vi s (weights

1612
given by the subscripts), then each vy, /_xs is a basis for the one-dimensional
(therefore irreducible) representation Cuvy, g of S* C SU(2). Again by

Lemma, 5.1, the sef

2<A1’7 ﬁ)
|1517

Copyokp ® Way,  0<ES




(Al':ﬁ)

is a collection of irreducible L representations in V.. If M = W—, then
clearly
2M
Var =) Copyropp @ Way.
k=0

Rewriting Cup,r—zg @ Wa,s as Var_.zg gives the statement of the lemma.
Throughout the remainder of this chapter, we shall use the notation v
to refer to vectors of ¥V} or its contragredient rather than v ® w, as was done

in previous chapters (notably Chapters 3 and 4).

Using the notation V3 ® (V4 )* as the K isotypic subspace of R(K) (see

Definition 1.7), we have

Proposition 5.3 A basis vector for the multiplicity space of Ay4(}) for

the minimal K type A is

(5.3&) ('U_A)* ®X_ﬁ®1®1,

where (v_4)* is a fixed vector in (V3 )* with weight given by its subscript.
g

ProOF. As mentioned in the discussion before the statement of the
proposition, we show that C3(Cy)|,is 0. The proof is similar to the work
done in Propositions 3.6 and 4.8 for the special case of the minimal K type.
Our first step in proving C3(Cy)|,is 0 is showing that the weights of {Vj)*

are

(5.3b) AA—BA—28,- ,—A.
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We can show (5.3b) by showing that the weights of V4 are those listed
in (5.3b) and by noting that the weights of the contragredient represen-
tation V* are exactly the negatives of the weights of a representation V
(see [K2, pg.55]). The weight A is a multiple of 8, since the set of roots
f U {simple roots of [} form a basis (over R) for the space of all linear
functional of ¢, and A L A(l) (from Definition 1.18). Also, because A is
dominant and algebraically integral with respect to A*(£), it is a nonnegative
integer multiple of 3. Let us therefore write A = My for some nonnegative

integer My. Humphreys shows [Hum, pg.125, Exercise 1], that if a € A(E)
2(A, &)
(o, @)
{-,-} on the Buclidean space of linear functionals of &, then

and 0 < k < for some symmetric, positive definite, bilinear form

(5.3¢) m{A —ka) =1,

where m(a) refers to the multiplicity of the weight « in V). Using o = 8

and making the substitution My g for A, we see that

This shows that the weights (5.3b) are included in the set of weights of V.
To see that these are the only weights, we note that Vi decomposes as the
direct sum Vi = @ Va_ip with 0 < k < 2My, by Lemma 5.2. Also, each
weight A — kS is orthogonal to A(l) and hence Vi_zp is a one-dimensional
representation of L. This statement proves that the only weights of Vi are

in fact those listed in (5.3b). From the remarks above, the weights of (Va)”
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are also those listed in (5.3b). Let us fix nonzero vectors va_pg € Vi _pg and
define linear functionals (v_s_gg))* by (v_(a—#p))* = (-,va—kp). Consider

now the space
(5.3d) ()R A((u@E)NE) @ U(w) ® Catp,

where we have used the equality A+ 8 = A+26(u). The space of L invariants
of (5.3d) is C3(C)|,. The possible weights of a pure tensor in (5.3d) are

(5.3¢) MoB—kf+ > nac+(Mo+1)8,

aEA ()

where 0 < k < 2M, and each n, is a nonnegative infeger. Since (3, a) > 0

for every a € A(u), then if we consider the inner product

(B,2Mo +1 - k)5 + Z M)

aeA(u)

we will never get 0 (k < 2M,). Hence, any sum of weights (5.3¢) is nonzero,
and consequently, there are no nonzero tensors of total weight 0in (5.3d). We
conclude that C3(Cy)|, is 0. From this it follows that Ker 0% C Cf(C,)|, is
actually an equality of sets. Notice that the possible weights of a pure tensor

in

(5.31) (Va) @ A (u@®) N8 @ U(w) ® Cayg
(5.3g) MyB—kBEA+ D nea+(Mo+1)5,

acA(u)
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where k and n, are as in (5.3¢). Again using the fact that (8,a) > 0 for
every a € A(u), we see that a sum (5.3g) will be 0 if and only if £ = 2M,,
ne = 0 for each o € A(u), and we choose —f from the set {+4}. It follows
that the only possible nonzero elements in Cf(Cy)|, are complex multiples

of
(5.3h) (von)* @ X_pR181,

where X_g € A'((u @ %) N ) with weight —8. In order to complete our
proof, we need only check that the tensor (5.3h) is indeed L invariant. From
our discussion prior to (5.3d), we know that —A is an L highest and an L
lowest weight in (Va)*. Therefore, by the Theorem of the Highest Weight,
Xe(vp)* =X ¢(von)* =0 for all € € II({). The same is true of the action

of X, on an element of Cp4.g. It follows that, for e € A(l),

Xe((v-A)" @ X pR1®1)
=(X(v-aA))®X pR1Q1+(v4)' QX . pRX.®1
=0+ {(voa)* X _p®1® X1 since [ C

=0+0

= 0.

From this calculation we conclude that the vector (5.3h) is L invariant and
therefore forms a basis for C}(Cy)|,, which in this case equals the multiplicity

space of Aq(A) for the minimal K type A. This completes the proof.
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From Proposition 5.3 and Definition 3.3b, we can write a basis for

Ker 8 (_: Cl’](((C)\)lA as

(5.4) vaA—kg @ Ker o for 0 < k < 2M,.

4

For each k, va-xpg is a fixed nonzero basis element of Vy_z4, and M is the
nonnegative integer satislying A = Myfh. The collection (5.4) is in fact a
homology basis for the minimal K type, because we showed in the proof of
Proposition 5.3 that the space C5{Cy)|, is 0.

Our ultimate goal in this chapter is a proof of the effective computabil-
ity of the p action on a basis vector in {5.4). In order to prove this, however
we must prove two results that are interesting in their own right. The first
result gives a general form of any K type appearing with nonzero multiplicity
in A,(}), and the proof shows that there is only one non-identity element in
the set W' (defined in the proof of Proposition 4.2). The second result shows
that C5(Ca)lpia, 2and C5(Ca)|44q, are 0 (recall ay is the largest noncompact
root in A). The proof of the second result uses characters and it places a
restriction on those K types p in Ay(A) for which Cf(Ci)[, and C3(Cy)|,

may be nonzero,

Proposition 5.5 The only non-identity element of W1 (defined in the
proof of Proposition 4.2) is sg, which maps 8 to —f and leaves all other
simple roots of £ fixed. Consequently, the only A+ () linear functionals A’

that appear with nonzero multiplicity in A,(A) are of the form

(5.5a) Al=A+n,
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where 7 is an element of S(uNp)™. The multiplicity of A’ is the multiplicity

of n in S(unp)n,

Proor. We know from the definition of W' and from the fact that
Alunt) =8 .’vcha,t the only choices for A*(w) (also defined in the proof of
Proposition 4.2) are the empty set @ and the one element set {3}. For an
element w in the Weyl group of K, Knapp and Vogan define [K-V,(4.133)]
the length of w, denoted l{w), by I[(w) = |AT(w)|. We can easily verify
that I(w) = {(w™'). Knapp shows [K3,pp.80-81] that I(w) is also the
smallest number of factors needed to represent w € W as w = Sz, " Sy,
with a;,, - ,@;, in I(£), a simple root system for &. Here, s, is the root
reflection defined by

sa(d) = ¢ — 2(|(f+,|2al a  for a E Aand ¢ € (o).

In this definition ho is a Cartan subalgebra of &, (ho)r = by, and (ho)}
denotes the (real) dual space of (ho)g. Also, {-,-) in the definition of root
reflection is some inner product defined on (fg )g. For a further discussion, see
[K3, pg.69]. The definition of sg in the statement of the proposition follows
from the definition of the root reflection and the fact that 8 is orthogonal
to all simple roots of [ with respect to the inner product mentioned in that
definition.

Recall that the simple root system we choose for A(E) is given by the
set {#} UII(!). From the statement above, the only choice of lengths for

w € W1 is either 0 or 1. If l(w) = 0, then w is the identity. If I(w) = 1,
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then w = s, for @ € TI{¥). Because sy{a) = —a [K3, Lemma 4.8] for each
simple root «, then a = § is the only choice that gives At(s,7!) = {8}.

; -1
Since s,

= 8q for all roots o, we conclude that sg is the only non-identity
element in W'..
To prove the second part of the proposition, we recall from the state-

ment of Theorem 8.29 of [K-V] (presented in proof of Proposition 4.2) that

the multiplicity of a K type A’ in A4()) is given by

> (dets)P(s(A" +8(8)) — (A + 6(8))),

scWt

where P(v) is the multiplicity of v as a weight in (S(un p))!™. Let us

consider the summand with s = s g. We can rewrite this summand as

(5.5b)
sp(A'+6(8)) — (A + 6(8))

= sp(A') + 55(6(8) — A — 5(8)

2(A', B)
1617

= A - B+sp(6(k))—6(8) —A  from definition of s4.

Knapp shows [K3, Proposition 4.33] that sg(8(%)) = §(€) 8. Therefore, from

the equations (5.5b), it follows that

2(A', B)
1817

(5.5¢)  sg(A +8(8) — (A +6(8) = A — B—A-—8.

Because A’ and A are both A™(¥) dominant, one can easily verify that the

inner product of (5.5¢) with § is strictly negative. However, every weight
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that appears in S{u N p) has nonnegative inner product with 5. Since the
weights of S(uNp)™ are a subset of the weights of S(uNp), we see that the

only contribution to the sum

Y (det s)P(s(A' + 6(8)) — (A + 6(£)))
sEWw?
comes from s = 1, the identity. The second part of the proposition then

follows immediately.
Proposition 5.6 C5(Cy)|4,,, and C5{Chr)|xq, are 0.

PROOF. As mentioned above, this proof uses characters. The first
part of the proof will use a general K type and only at the end of the proof
will we consider the K type A + ag.. From Proposition 5.6, we know that a
K type appearing in Aq(}) is of the form A +n, for 7 a weight in S{(unp)™.

Consider the space
(5.6a) (Vatn)'l, ® U(u) ® Cayp,

where (Vaa,)*[, is the representation (Vayqn)* of K restricted to L. The
space of L invariants of (5.6a) is CS‘(CANM_H. Because (5.6a) is an L repre-
sentation space and L is compact, the Peter-Weyl Theorem says that (3.6a)
breaks up as a direct sum of finite-dimensional irreducible I. representations.
The space Cg(Cx)|yy, is the subset of vectors in (5.6a) for which the action
of L is the trivial action. In other words, we have nontrivial L invariance

in (5.6a) if and only if the trivial representation of L appears with nonzero
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multiplicity in the decomposition of (5.6a) into irreducible L representations.
Using Lemma 5.2 and the fact that the contragredient functor is additive [K-
V,pg.118 and pg.839] we see that

N
Vatn)* = (Viagn—sp)",
=0

for some nonnegative integer N. Therefore, we can rewrite (5.6a) as

- N
(5.6b) > (Vatn—ig)* ®U(1) @ Cpyp.
=0
Also, because U(u) ® Cavp = P U™(u) ® Cayp as L representations,
ncZtu{o}

then we have reduced the problem to determining whether the trivial repre-

sentation appears in

(5.6¢) (Va4n—ig)* ® U™(1) ® Cpyp,

for 0 < j < N (upper bound mentioned earlier) and any nonnegative integer
n. This question can be answered by using a result that appears in [Che],

namely Corollary 1 on page 188. We state a slightly modified version here:
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The number of times that a finite-dimensional irre-
ducible representation 7; of a compact Lie group G
appears in a finite dimensional representation 7 is equal

to

(5.6d) fG 0,(9)8,.(3) dg

where ©,(-) is the character function for the represen-

tation 7 of .

Chevalley [Che,pg.172] uses the term matrix representation 7(g)
to mean a matrix realization of the endomorphism 7(g) with respect to a
basis v1,...,v, of V, 7 being a representation of G on the finite-dimensional
Hilbert space V. He then defines [Che, Definition 1, pg.186] the character
©-(g) of 7(g) to be the trace of the matrix 7(g) with respect to the basis
v1,...,0p of V. It is well known that the trace of 7(g) is independent of
the choice of basis (see [H-K, Exercise 15, pg.106]). Some useful facts about

characters are:

(1) Oulg=1

(2) Oree(g9) = 0-(9)04(g) for representations 7 and ¢

(3) G+ {g) = 0,,(9) for irreducible unitary

and its contragredient (r)*.
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Fact (1) is immediate from the definition of character. Fact (2) is proven
in[Che, Proposition 1, pg.187]. Fact (3) is proven in [K3, Lemma 1.11].
Returning now to the question of whether the trivial representation
is in (5.6¢), we note that Corollary 1 (mentioned above) and Facts (1) and
(3) about characters imply that this question is equivalent to determining

whether or not the integral

(5.66) /L ®(VA+,,_jﬁ)*®U”(u)®CA+ﬁ(l) dl

is nonzero. Using Facts (2) and (3), we can rewrite (5.6e) as

(5.61) /L; OVpry-s0 ) Ouny@cy,s () dl.

Since Vp4pn—;g 18 an irreducible representation of L, we can apply Corollary
1 again and conclude that the number of times that the trivial representation

appears in (5.6¢) is precisely

(%) number of times A 4 n — 78 can be written as v+ A + 3,

where v is an L highest weight in the decomposition of U"(u) into irreducible
L representations. Notice that because (3, a) > 0 for every a € Au), «v is

also A1 (2) dominant. We can rewrite the condition (*) as

(5.6g) number of times 7 can be written as v + (7 + 1),

166




with j and - as above.
At this point, we specialize to the case where n = «g, the largest

noncompact root. Because j > 0, we see that the left hand side of
(5.6h) ag — B — 38 =1,

which is condition (5.6g) for the case n = ap, will not have positive inner
product with 3. Therefore, no choice of a AT (#) dominant v will give equality
in (5.6h). Notice that this conclusion is independent of the values j and
n; indeed, we only used that 7 > 0. Thus, we conclude that the trivial

representation does not appear in

(Vatao) | @ U(u) ® Cpyp,

and so C5(Ci)|p4q, must be 0. A completely analogous proof shows that

C3(Co)lpye, 15 0
Having proven Propositions 5.5 and 5.6, we are ready to determine the
action of a root vector X € p on a homology basis vector in (5.4).

Proposition 5.7 Let vpy_rs ®@ Ker 8h|A be one of the basis vectors

(5.4). If X is a root vector in p, then the action
(5.7a) X(va-rg @ Ker 8h|A) = a1(X @ vp—ip @ Ker 8h|A)

is effectively computable, in the sense of Proposition 4.14. In fact, the only

nonvanishing K type in the decomposition of (5.7a) is A + ap.
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PrOOF. Our goal is computing o1(X ® vpa-ks @ Ker 0h|A). We can

rewrite this expression as

(5.70) > {(Ad@mA)() X @vakp, Xa ®ua) @ Xp @ Xa(1®1),
*€A(p)

and because X,(1 ® 1) = 0 when a € A(li), we can rewrite (5.7b) as

(5.7¢) > {(Ad@TA)() X @va_kp Xa®0r) ® X_p @ Xa(l® 1),
a€A(unp)

Of primary interest is the summand in (5.7¢) for which o = oy, the largest
noncompact root of A{g). We claim that «y appears with multiplicity 1
in S{unp)™. It certainly appears with multiplicity 1 in S™(u N p)'™.
Because every positive noncompact root of g is distinguished by the fact
that it containg Ay with coefficient 1 in its simple root expansion (recall gy
is the unique simple root of A(g) nonorthogonal to §), we see that ay does
not appear as a weight in SV(unp) for N > 2, consequently it does not
appear as a weight in S¥(unp)'™ and our claim is proved. We know from
Proposition 5.5 that the K type A+ g appears with multiplicity 1 in A (}).

Considering the space

(5.7d) (Vatao)* @ A (w @ 1) NE) @ U () ® Casp,
we next claim that the some nonzero multiple of the tensor

(5.7e) (V-(Atan) ® X p® Xay ®1
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must appear as a summand of any nonzero vector in C{(Ci)[y 4., Which
is the space of I invariants of (5.7d). In (5.7¢), (v_(A+ap))" is some fixed
nonzero vector in (Vagq,)* with weight —(A + ag). Proposition 5.6 shows
that C3(Ca)lpqa, = Co(Ca)lpta, = 0. As in previous chapters, this fact
shows that a vector in (5.7d) is L invariant if and only if it is in Ker &V

To prove the claim about vector (5.7e), we note that a nonzero vector in

CT{Cx)lp4q, looks like

(575 D> ) X XL+ D h (v) QXX @1,

W,y W,y

In formula (5.7f), w ranges over all the weights of (Vi ya,)*. Also,ifyq,..., 7
is an ordering of the roots of u, then v is the tuple (y1,...,7n) and X} is the
monomial X7t ... XTr. Last, ¢, ., and ci,y are complex coefficients. As in
the proofs of Propositions 3.6 and 4.8, we may assume that each of the tensor
summands in (5.7f) is distinct. It is clear that any nonzero sum of tensors
(5.7f) must contain weights w that are L lowest weights. From Lemma 5.2
and the definition of the contragredient representation, it follows that these
weights are necessarily of the form w = —(A + ap — k), where 0 < k (the

upper bound for % is unimportant). Let us consider what pure tensors of

total weight 0 in(5.7d) have the form
(%) (vo(ataa—kp))  ® X @ X]®1  OR
() (v—(Atao—km) @ Xp R X[ @ 1.

In the first case (), the monomial X is forced to have weight oy — kf.

Because the weight of X,/ must be AT(E) dominant, k& must be 0. In the
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second case {**), the monomial X}/ is forced to have weight ag — (k + 2)8.
Since no choice of k will make this weight be AT(E), our claim is proved.
Notice that the only tensor in (5.7f) with term (v_(a4a,))* 18 (8.7e). This
fact follows from the observation that the only elements of U(u) with weight
agp are multiples of X,,. Since the multiplicity of A 4+ & is 1 in A4(A), we
know that the dimension of C{(Ca )|, .o, 18 1 (Definition 3.3a and Proposition
5.6). We define Ker 3“|A+a0 to be the nonzero element of Cf(Ci)|pyq,
with summand (5.7e), i.e., the coefficient of the pure tensor (5.7e) is 1 in
Ker Ot I Adag’ Having made this definition, we are now ready to determine the
value of (5.7a). As in (3.22a) and the proof of Theorem 4.14, the expression

a1(X @up_pg @ Ker 8h|A) can be written

(5.7¢) (K type decomposition of X @ va_pg)

x {K type decomposition of a;(- @ Ker ok |A-|—a0))’

where a1(- @ Ker 3h| A +ao) is the expression gotten by replacing the term
(Ad@ 7)) ' X @ va—gg in (5.7c) with a dot (for an example, see formula
(3.22a)). Let us consider the K type decomposition of X @ va_rg. We
claim that, in the K type decomposition of Ad| p @74, the only K type that
appears in the discrete series Agq()) is Ad-ap. To prove this claim, we begin by
noting that the sum of two or more noncompact positive roots of g cannot
be a noncompact positive root. This follows from the characterization of
noncompact positive roots as being those roots whose weight expansions in

terms of simple roots have fy appearing exactly once. Next, we observe that
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any K type appearing in Ad|p ® mp is of the form A + (noncompact root)
(K3, Exercise 13,pg.111]). Third, Proposition 5.5 says that any K type
appearing in Ay(A) is of the form A + n, for  an L highest weight of
S(unp)™. Finally, we observe that § is larger than any noncompact root.
These four statements combined prove the claim. Notice this most recent
claim proves the statement that the only nonvanishing K type in the K type
decomposition of (5.7a) is A 4+ ag. Using this information, we can write the

K type decomposition of X ® vpy_xs as

(5.7h)  hy(vector; whose K typeis A+ aq)

+ (vectors whose K types do not appear in discrete series).

The only K type of interest to us in the decomposition of a;(- @ Ker ot ! NE:
A+agp. In order determine the portion with this K type, we use the definition
of Ker 0'| Aty 10 s clear from the formula (5.7c) and the definition of the
expression o (-® Ker 8" ) that the sole contribution to the summand (5.7¢)

of Ker 3h| Ada, COMES from the term
(5.71) (s Xy @ua) @ Xop ® Xop ® 1.

Under the Ad|p ® w4 decomposition, the tensor X,, ® vy equals ETUA+QO
for some complex h;'. There are no other terms appearing in the decompo-
sition. Assuming that (v (a4ae))® = (*;Va+ae), We have (-, X ® vatqa,) =

B (v_ptao)*({-,") is conjugate-linear in the second coordinate). Using (5.71),
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we can write the K type decomposition of a1(- @ Ker 8 | RE:

(5.7) R’ Ker 8",

+ (vectors whose K types do not appear in the discrete series).
From formulas (5.7g), (5.7h), and (5.7]) it follows that

a1 (X ® va_pg ® Ker ah|A) = hyhy’ vector; ® Ker 3h|A+a0 .

This completes the proof.

REMARK. Formula (5.7c), which implicitly uses the fact that the (I, L)
module A'((1 @ 1) N &) is a trivial module, shows that the coefficients ek,

in the sum (5.7f) are 0.

At this point, we continue with a discussion about the space C5(Cy)|,,
with A’ a K type of nonzero multiplicity in A (\). We have seen in Chapters
3 and 4 (notably Propositions 3.6 and 4.8) that C3(Cy)|,, is 0. The benefit
of this result is that when computing a basis for homology, we need only
consider L invariance. We might ask whether this result is true for the general
g. The answer unfortunately is no. We will show in the next proposition
that, for any K type A’ that is a multiple of the largest root £, the space
C3(Cyx)|,s is nonzero. Because £2(Cy) is 0 [K-V, Theorem 5.35], we see that
Ker 32h - C;(C,\)|A, is 0 and hence any nonzero element in C5(Cy)|,, will

map under & to a nontrivial element in Im 85 C CH(Caiar-

172




Proposition 5.8 Suppose A’ = M3 is a K type that appears in the
discrete series Aq(\) for M € 7t satisfying M > Mo + 1 (Mofl = A). Then

C3(Ca)lprp is @ nontrivial vector space.

REMARK. This proposition is not irrelevant. If G = 50,(4,4), then
the Dynkin diagram corresponding to the simple roots of g is Dy, and there

are examples of K types that are nonzero multiples of B in this case.

PROOF. C5{Cx)!y; 4 is the subset of L invariant vectors of the space

(5.82) (Vi)' @ N2 (@ 1) N8 ® Uw) @ Cayp

From formula (5.3b) we know that the weights of (Varg)* are

Mﬁ:(M_l)ﬁa(Mﬁz)ﬁ: :”Mﬁ-

Let (U(M—k),ﬂ)*, 0 < k < 2M, be fixed nonzero elements of (Vamg)*, with

weights indicated by the subscripts. Consider the tensor in (5.8a) given by

(58b) (’UfMﬁ)* & X__ﬁ A Xﬁ & Xév‘[*MO#I ® 1.

The ¢laim is that this tensor is in fact L invariant. To see this, notice first
that (5.8b) has weight 0. Next, let ¢ be any element of TI(I). Then Xz and X,

commute in U(g) (f is the largest root) and X, (v_prp)" =0, since (v_nrg)”
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is an L highest weight in (Vazg)* (proof of Proposition 5.3). 1t follows that

Xe((v—mp) @ X g A Xp@ X'~ g 1)
= (Xe(v-np)*) @ X pAXgR XY M1 1
(5.8¢) +(-mp) @ X g AXp@ X (XYM @ 1)
=0+ (v-mp)" @ X p A Xg@ XM @ X,1

=0,

since X,1 = 0. With ¢ as above, we can use (1) ¢ is a Lie subalgebra of g and
(2) all the elements of II(¥) are linearly independent [K3,Proposition 4.6
when applying Cartan’s Theorem to [Xg,X_.] to conclude that the bracket
is 0, and hence Xz and X_. commute in U(g). We have X_.(v_pg)* =0
since {(v_prg)* is also an L lowest weight, and so by replacing X, by X... in
(5.8¢), we have that the tensor (5.8b) is annihilated by X_, for all simple
roots € of I. This fact, in combination with the fact that vector {5.8b) has
weight 0 and is annihilated by X, for all simple roots € of [, shows that vector

(5.8b) is an L invariant tensor in the space (5.8a) and our result is proven.

REMARK. Notice that we can repeat this argument with any pure
tensor in (5.8a) that has total weight 0 if the term in U(u) is of the form X5
for some n € Z+ U {0}, since each (v(pr_ps)* is both an L highest and L

lowest weight.
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CHAPTER 6

UNITARY EQUIVALENCE
OF TWO REALIZATIONS
OF Sp(1,1) DISCRETE SERIES

In this chapter, we shall produce a unitary equivalence between two
different spaces of functions, both of which are realizations of an Sp(1,1)
discrete series. Throughout this chapter, G = Sp(1,1). All references to
page numbers, unless otherwise stated, refer to the paper [Tak].

In order to describe the first space, we use define some notation. Let
(p, V) be a unitary irreducible representation of K = SU(2) x SU(2), with V
a finite dimensional Hilbert space and (-, )y the scalar product for V. Then
Takahashi defines (pg.392) Li,(G) as the Hilbert space of functions F(g) that

are square integrable, with values in V, for the scalar product:

(BF) = [ (R Fo)v ds
The representation defined on L% (G) is left regular representation:
Uy(F)(h) = F(g™'h) for F ¢ L3 (@).

He also defines, on the same page, L%/, ,(G) to be the subspace of functions

F such that

Fgk) = p(k) ' F(g) for each k € K and ¢ € G.
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Takahashi points out that L%,’ ,(G) is stable for Uy, ¢ € G and hence obtains
a representation U on L%/, ,(G) by restriction. If D is the set of infinitely
differentiable functions in L%/, G, then {U, D} will be one of the spaces
used in defining our unitary equivalence. At this point, we describe another
space of functions that Takahashi considers in his thesis. Takahashi proves
that this space of functions is unitarily equivalent to {U,D}. In order to
describe Takahashi’s second space of functions, we need some information
about quaternions and about Sp(1,1) realized as matrices with quaternion
entries.

Takahashi (pg.361) defines a quaternion to be the expression

=2+ @9t + 23] + T4k,

where 21, -, 24 ERand * = j2 = k% = —1,ij = —ji = k, jk = —kj =1,
ki = —ik = j. e denotes by z the conjugate of z, ie., T = z; —
@91 — x3] — z4k. Also, the norm of z, denoted |z|, is the nonnegative real
number (z#)?. Takahashi (pg.362) defines B to be the “open unit ball of
quaternions”, namely B is the set of quaternions whose length, defined by

the norm, is less than 1. On the same page, he defines Sp(1,1) to be the

a b

subset of 2 x 2 matrices ¢ = with quaternion entries a, b, ¢, and d,
C

satisfying the relations

(6.1) ab=¢ed a*—|ef*=1  |d* —|b]* =1.

Takahashi’s second space of functions (pg.392), which will be important in
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the proof of Theorem 6.7, is constructed as follows:

For p a half-integer> 1 (a rational number p for which
o2p € Z), let HP? be the Hilbert space of (equiv-
alence <-:1asses of) functions f(q) defined on B, with
values in V, and square integrable for the measure

(1 — |g|*)?P~2 du(q), given the scalar product:

(f1, f2)op ::Cl/;(fﬁ(QJafb(Q))V(l*“‘QP)ZP_Z‘j#(q}

Here, ¢ is a certain positive constant, and {-,"}v is the scalar product for V.
Also, u(q) is the Euclidean measure on B, and Takahashi proves (pg.374,
Lemma 1.4) that (1 — |g|?)"* du(q) is an invariant measure for B.

The representation of G on H?P, denoted Tj'?, 1s given by

(L7 £)(g) = lea + I plk(g ™ ) ) ((ag + B)(eq +d) )

a b
for g7 = ( ), fe He? and k(g™",q)"" the element
c d

a -+ bg

|leq + d
cqtd e K.

leq +d

Hereafter, TP is abbreviated by T. Also on pg. 392, Takahashi shows that

{T,H#?} and {U, L}, (G)} are unitarily equivalent. He does this by using
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the map J#? : H?? — Li (@), defined on a function f € HPP? and with

image I' = JPP o f, where

P(g) = F(s(q)k) = e3272(1 — |¢]*)P 1 p() " f(g).

The notation s(¢)k refers to a decomposition of the group . Takahashi

a b
proves (pg.373) that every ¢ = in G can be written uniquely in
¢ d
aflal 0
the form ¢ = s(g)k, where ¢ = bd™! € B, k = , and
0 d/|d|
la|  qlal o . , .
s(q) = . The space of infinitely differentiable functions in
qld|  |d|

H#? is denoted HJ"" and Takahashi comments (pg.393) that J#? induces an
isometry between {T, H/**} and {U, D}.

In order to describe our space of functions, we provide some back-
ground. Farly attempts by the author to study this question of quaternionic
discrete series began with an attempt to imitate the theory of holomorphic
discrete series. A detailed study of this theory is given in [K3, Chapter 6].
A construction that is used there is the Harish-Chandra decomposition for
G, where G 1s a linear reductive group assumed to satisfy certain conditions
on the Lie algebra level. It turns out that such a decomposition exists for
Sp(1, 1), although we do not have a theorem analogous to [K3, Theorem 6.3]

in this case. We write

(6.2a) Sp(1,1) C PTKYp—,
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where

(6.2b) P+:{([1) i)eGL(z,H)‘|b|<1}
K:{(a ’ a,dESP(l):SU(Z)}
0 d
I{M:{(a ’ a,deﬂ":SP(l)xR+}
0 d
10
P":{( , € GL(2,H) |c|<1}.

Here, H refers to the set of guaternions, and |- | is the norm of a quaternion
(defined earlier). By means of an identification of quaternions with certain

2 X 2 complex matices, Takahashi shows (pg.362) that the group SU(2) may
a b
be thought of as those quaternions with norm 1. An element inG

c d

can be decomposed uniquely according to (6.2a) as

a b 1 bd7t a—bd7lc 0 1 0
oo (00650 )
¢ d 0 1 0 d dle 1

Consider now the collection
(6.4)
Tiar ny(e) = {F : PYERP™ = Vi m lF(0 E ™) = pae, iy (B*) 7 £(pT)

for pTkp~ € G},

where pt € P, B ¢ KM, p= € P~, and (pm,n), Vim,v)) is a finite

dimensional irreducible representation of X with highest weight Me, + Nes.
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For instance, using notation of Chapter 2, Section 2, we may use Vim,n) =
Vie ® Wy and poy,n) = T(m,N)- The M and N of interest for us in this
chapter are those satisfying the inequality 0 < M< N-2.

In (6.3) we use an extension of p to a representation of K. For

ky '
( ) c KH_ this is accomplished by means of the formula
ko

1 ke /K|
(6.5) N ( ) = |ky|™ k2 1V pea,m) ( ‘
kg ko /2]

Tn order to consider discrete series, we require an inner product on the space

I‘E M N)( p). We define an inner product on this space by

(6.6) (5.7 = [ (F@) F@v(L = o)) do

where {-,+)}y is an inner product on Vias,n) that is unitary with respect to

a
P(M,N) and 6(g) = bdYor g = (
c

b
) € . Because there is a canonical
way to create the inner product on the tensor product of two inner product

spaces, we can use (2.6) to give us {-,-)y. This brings us to our second space

of functions. Let
Loa,n(p) = {f € P'(M,N)(P)lf is square integrable for (6.6)} )

with representation (L(g}f)(h) = f(g~*h) for g,h € Sp(1,1) (left regular
representation).
Before stating our theorem of unitary equivalence, we make one more

reference to a result in Takahashi’s thesis. Recall in the situation where
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G = Sp(1,1) that an irreducible representation of K is the tensor product of

two irreducible representations of SU(2) (Chapter 2, Section 2). Takahashi
denotes such an irreducible representation of K by p%n’, for nonnegative
half-integers n and n' (pg.382). If (p*, V™) is an irreducible representation
of SU(2) on a Hilbert space V™ of dimension 2n + 1 and (™, V™) is an
irreducible representation of SU(2) on a Hilbert space V* of dimension

2n' + 1, then Takahashi defines p%n’ on V' ® yr by

PR (k)= pMuw)® p¥ (v)  for k=

Using this definition, he proves Proposition 3.1 (pg.399), which we state

now and shall refer to in the next theorem:

Let n, p be two half-integers such that n > p > 1 and
n—p € Z, and let p be a representation of K of the form
p® or p". Then the subspace S#? of HP? formed by

the functions f for which

Taf =[-n(n+1) - (p+ D{p-2)f

is nontrivial and closed in H?P. Here, Tg is the Casimir

operator.

Having stated this, we are now ready to prove the equivalence.
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Theorem 6.7 Let M and N be integers satisfying 0 < M < N -2
and assume that every function F' € L%,’ ,{G) can be extended to a smooth
function on PYK™P~ in such a way that the transformation law (6.4) holds.
Then there exists a map 7:T (a7, 5y (p) — {U, D} that is a unitary equivalence.

The map 7 is given on a function f € T'iar,ay{p) by

(r£)(g) = (1= 10()")f(9),

a b
where g = € Sp(1,1) and 6(g) = bd~'. The correspondence of
[

(n,p) in (Chapter I1, Proposition 3.1) with (M, N) in I'(3,xy(p) is given by

M=n-p

(6.7a)
N=n+p

Further, the function fy defined on B by

1 g
folgy=f 01 for f € Ty, ny(p) N Ker D

is an element of HY'? and under the assumption that fy € S7? (defined
above), then the eigenvalues of the respective Casimir operators acting on

Ta,m(p) N Ker D and 8P are equal up to a normalization constant.

PRoOOF. We begin by proving the correspondence (6.7a). In order to
get these equations, we look at the corner K type of the Dixmier diagram
w5 [Dix, pg. 25 fig. 3. We choose 7, because (it turns out) our choice of

positive root system for Sp(1,1) is the system with e, — ey > 0. This choice
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corresponds to W,tp, whereas the choice ¢y — ez > 0 corresponds to w; . The
corner K type of mt  is given by (3(n-p), 3(n+p)), which is the minimal K
type. Because (M, N) is the minimal K type of I'(y,ny(p), we are tempted
tolet M = (n—p)and N = 3(n + p). However, this will not work, since
1{(n —p) and 1(n -+ p) need not be integers. Rather, we double the picture,

letting n' = 2n and p' = 2p. Then

M= 3 ~p) = (n—p)

N =3 4p) = (nt)

is an acceptable correspondence, since both n—p and n+p are both integers.
To show that 7 defines a unitary equivalence, we begin by showing
that 7 maps into {U, D}. Using the decomposition (6.3) and the fact that

_ a
Ct“*bd 1C:W

|d|*a™ 1 8(g)
fg) = pov, ( ~ ) f ( ) by (6.4)
d-1 0 1
a/ld| (1 ég)
* = M-N M .
() L ,N)( d/ldl> f(o ) ) by (6.5)

. o/\d AN
m(l—w(g)\)p(M,m( d/|d|) f(o 1),

where the last equality follows from the identities M — N = —2p (6.7a) and

(from (6.1)), we sce that a function f in I'(ar ny(p) satifies

ld|? = (1 —18(g)|*)~*. The second of these identities is a result of relations

(6.1). We can rewrite f(g) as

(6.7b) Flg) = (1 = 1al") pcaa,my (k) fol ),
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if we use Takahashi’s notation g = s(¢)k mentioned before, and if we define
1 g

fo € HY? by folg) = f ( ) . To see that fo € HI? requires some
0 1 _

proof, most notably that it is square integrable for the inner product (-,-),,

mentioned previously in this chapter. We show this by first showing that

I € T vy(p) satisfies

(6.7¢)  F(9) = pewa,n) (k) F(s(9)) = paaa,my (K™ F (o)

for g = s(q)k = pTkp~ € G.

The relationship between ¢ and pt in the equation s(¢)k = p*k¥p~ is given

1 q
by pt = ( ) . The formula (6.7c) follows from the series of relations
0 1

F(g) = paar,my (B 7 F(pT) for g = ptk™p~ by definition
= poa, ) (K) (L = g F(pt)  for ¢ =8(g) by (%)

= poa, vy (B) T F(s(q)k),

since f(s(q)k) = (1—|q|*)? f(p) for f € I'(ar,w)(p) by (6.4) and the definition
of s(¢) € G. Using (6.7¢), we have

(fo(Q’)a fO(Q'))p,p
_ L (1 1a*)** " (fola), fo(@)) v di(q)
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= [ ] @=hyrtola) Aoy du(ayak (see below)

B /B /K (1= 1a®) " (o, iy (B "1 (07),

pomy (BB f (v du(q)dk by (%)
:/;; /g“ — 1) (S (s(R), F(s()R))v dp(a)dk by (6.7¢)

- /G(l — 0D f(9), F(9)yvdg by (Lemma 1.4, pg.394)

since f € D'(ar,ny(p). In the second equation above, we choose a Haar measure
for K and normalize it so that [, 1dk = 1. The fact that we can find such a
Haar measure is well known (see for example [Rud, Theorem 5.14, pg.130]).
Hence, (t£)(g) = (1 — |g/ )P p(k)~! fo(q) is a function in {U, D}, being
the image under the isometry J#? of the function 4¢3 fo(q) (¢ a constant

mentioned previously).

The fact that T is injective follows immediately from the observation
that |8(g)| < 1 for every ¢ € Sp(1,1) and hence 1 — |8(g)|* is nonzero for

every g € Sp(1,1).
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We define an inverse for F' € L%,, ,(G) in the obvious way:

(r™' F)(9) = (1= [6(a)I*) ' ¥ (g).

This is well defined and injective, from the comments about |6(g)] above.
In order to show that this inverse function satifies the transformation law
of (6.4), we use the assumption that #' can be extended to a function (also
denoted by F') on Pt K™ P~ satisfying the transformation law of (6.4). Be-
cause (1 - |6(g)|?)™! is a real number and because p(AM)~* is real linear, it
follows that 7~'F € I'{}; y(p). The fact that 771 F is actually an element
of I'(p,w)(p) follows immediately from the hypothesis that F' € LY (G).
Note that the relation (6.7c) shows that any extension of F' € Lj, (G)
satisfying the transformation law of (6.4) also satisfies the transformation
law in the definition of L3, (G). This condition is a necessary condition for
any extension of F.

To show unitary equivalence, we observe that for f € I'(p,a(p) and

F:Tfa

(15)= [ () Fhv(1 = 6 do
- /G (1 16(g)*)f(g), (L = 18()I*)f(9)) v dg
= [ H@hvda

- /G (F(g), F(9))v do
— (F,F).
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Last, we show that the map 7 commutes with the G action. For g,k € G, f

as above,

(L(9)f(h)) = T(F(g ™' h))
= (1= 16(g" B)*)f(g™"R)
= U(g)(r F)(R)-

This completes the proof of the unitary equivalence.

The eigenvalue of the Casimir operator on T'(ar,ay(p) is given in [K-W,
Corollary 3.2]. More precisely, the Casimir operator is constant on those
functions that lie in Ker D, where D is the Schmid operator. The formula

for the Casimir operator in [K-W, Corollary 3.2] is given by
Qf = m(|A* —16])f,

where m is a normalization constant, |A| is the length of A = p(pr, 5y +6K ~0n
and |§] is the length of 6. The terms §, 6x and &, refer to the half-sum of
the positive roots of g, & and p respectively (recall from Chapter 2 that

i

g =E®p). Our choice of positive systems for € and g is
AY = {ey +e1,2¢1,2¢5} and A}*} = {2¢;,2¢2} and A} = {es de1}.

Then

§=¢e;+2 and g =e;+ez and b, =ey.
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Knapp and Wallach [K-W, pg.166] define the space C*°(&, p(pr wvy) to be th'e:.;'
space of all C*° functions F:G' — Vi vy such that Fi(kg) = p(M’N)(k)F(g)'-.
for all £ in K and ¢ in G. Our space of functions is a modification of
C(G, p(p,ny) in that our functions are defined are a larger set PTKH P~
and the transformation law in (6.4) has par ny(-)7* rather than peara(-).
In order to apply the results from [K-W] to our space of functions I'(ar,ny(p),
we must change the definition of X f(g) before (2.5) of [K-W] from

Xf(g) = & Flexp(tX)g)

to
Xf(g) = (g exp(tX)

=0

Returning to our calculation of the Casimir operator, we shall use the normal-
ization constant m = —%. Using the positive system above and the notation
in [K-W, Corollary 3.2], we can write the terms A = (M + 1}e; + Nep =
(M +1,N)and 6§ = (1,2). Hence the eigenvalue of the Casimir action for

those functions f in 'z, 5y(p) N Ker D is

S+ 1 4N = 8) = (= p+ 1P (k2 —5) by (64)
— =3 - 2nln + 1)+ (0 Do 2)

= —(n(n+ 1)+ (p + 1)(p — 2)).

Meanwhile, for those functions fy in §7 of (Chapter IT Proposition 3.1), if

F = Jf? o fy, then equation (8) on pg. 394 shows

UpF = —(n(n+1)+(p+ 1)(p - 2)F,
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where Ug is the Casimir operator on D. For a given (n,p), fo € H{?
corresponds to f € T(ar,ny(p) N Ker D via fo = (J#?)~" o 7f. The second
assumption made in the statement of the theorem, that fo € S77, allows us
the calculate an eigenvalue of the Casimir operator. The calculation above
shows that the eigenvalues of the corresponding Casimir operators are equal
for these corresponding functions. We have thus proven the last statement

of the theorem.

REMARKS. Takahashi does not give a very explicit description of the
space 8PP beyond exhibiting an element in the space (pg.400). In the case
where n = p = 1, so that M = 0 and N = 2 by (6.7a), Takahashi shows that
the constant function fy(g) = v for some fixed v € V is in §?. The author

has verified that the function f & T'g 2)(p) defined by

f(P+kHP_) = P(o,z)(km)“lfo(‘l) = P(o,z)(kH)—l"

is in Ker D when pt&Mp~ = ¢ € Sp(1,1). In this case, the eigenvalue of

both Casimir operators is 0.
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