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Abstract of the Dissertation

Associativity of Quantum Multiplication

by

Gang Liu

Doctor of Philosophy

in
Mathematics
State University of New York at Stony Brook

1995

We prove the associativity of the multiplication of quantum

cohomology for a monotone compact symplectic manifold V for
which ¢;(A) > 1 for every effective classA € Hy(V). The same
proof with a suitable modification also works for any positive com-

pact symplectic manifold with ¢ (A4) > 1.

iii




To my family




Contents

Acknowledgements . .. ... ... ... ... ... . ...

1 Introduction

.............................

2 OQOutline of the Proof . . . . . . . . . . @ v v v i i i

3 Banach Mantfolds of Mapping Spaces and Transversality

5 Compactness

Bibliography

.............................

-----------------------------

.............................

vi

15

22




Acknowledgements

It is with pleasure that I express my deep gratitude to my advisor Pro-
fessor McDuff for her introducing me to the subject, symplectic topology, for
her innumerable advices and various kinds of help during the years of my
struggling with Gromov theory of J-holomorphic curves, Floer and quantum
cohomology, especially for her suggesting me the topics of this dissertation and
giving me Floer’s unpublished lecture notes, which plays a crucial role in my

work.

I am very grateful to Prof. Lawson, Prof. Takhtajan and Prof. LeBrun
for their education both mathematically and philosophically. Their deep un-
dersanding of mathematics and their distinguished style have influenced me

tremendously during my gra,duaté study.

I am deeply indebted to Prof. G. Tian for his expert comments on my

work and enlightening conversations.

I would like to express my thank to Prof. Bifet for his warm Iriendship

and many enlightening conversations on various topics.

Conversations with my friends Jian Zhou, Peng Lu, Xinhuwi Jiang and

Chaohui Chang have benefited me very much for the past five years of my




graduate study.
Finally, T would like to express my deepest gratitude to my wife Xiao

Chen and my daughter Jingyi Liu, to my father and my sister in China, for

their understanding and supporting. This dissertation is dedicated to them.




Chapter 1

Introduction

Quantum cohomology was introduced by the physicists Vafa and Witten.
The associativity of quantum multiplication and its relation with composition
law was described by Witten in his influential paper [Wi]. It has many sig-
nificant applications and remarkable relations with various branches of math-
ematics, such as applications in classical enumative algebraic geometry, and
in counting rational curves in Calabi-Yau manifolds, and relation to Floer ho-
mology. It also has several important equivalent forms. For instance, it is
equivalent to the fact that the related Gromov-Witten potential satisfies the
WDVV-equation. This was used by Ruan and Tian in [RT2] to obtain a flat
connection over the complexified quantum cohomology, which is a deforma-
tion of the trivial connection, but is not Gauss-Manin. It is a key step towards
proving the mirror symmetry conjecture. Inside the subject of quantum coho-
mology itself, the law of associativity and composition form the basis of recent

calculations of the quantum cohomology rings of several important geometric

spaces, such as Grassmanianns and flag manifolds. A rigorous mathematical




proof of associativity, however, was obtained only recently, first by Ruan and
Tian in [RT2] as a corollary of a general composition law, and shortly after
that by myself in [L] independently by a different method. This dissertation
is devoted to give a detail presentation of the proof of associativity in [L].

A manifold V is called symplectic if there is a closed non-degenerate 2-
form w on V. Such a form w is called a symplectic form. A diffeomorphism
f : V4 — V, between two symplectic manifolds (Vi,w;) and (Va,w,) is called
symplectomorphism if f*ws = w;. Unlike Riemanian geometry where curva-
ture is a local invariant, all symplectic manifolds lock like the same locally.
This is the context of the classic Darboux’ theorem. Therefore, all symplectic
invariants have to be global. For a given compact symplectic manifold (V,w),
there are two obvious global invariants.

The first is the cohomology class of the form w. Note that the condition
that w is non-degenerate is equivalent to that the top wedge product w™ is not
zero at every point of V for a 2n-dimensional symplectic manifold V. Together
with the condition that dw = 0, this implies that the form w gives rise to a
non-zero cohomology class [w] € H*(V,R).

The second is the homotopy class of the w-compactible almost complex
structures. It can be described as following:

Recall that a section J of the bunddle Hompg(1T'V) is called an almost
complex structure if J? = —Id, and it is w-compactible if g;(z,y) = w(Jz,¥)
is a J-invariant Riemannian metric on V. It can be proved that the set J(w)

of all such J is a non-empty contractible set. Therefore, we have a well-

defined homotopy class of w-compatible almost complex structures, and their




associated invariants, such as characteristic classes,

However a famous example of D. McDuff shows that there exists a com-
pact manifold, on which there exsit two non-isomorphic symplectic forms with
the same homotopy invariants. This suggests that more subtle global invari-
ants are needed other than the above simple homotopy invariants. Such -
variants were obtained in 1985 in Gromov’s remarkable paper [G], in which
Gromov defined the moduli space of J-holomorphic curves and its associated
invariants. It was the initial point of the subsequently important developments
in symplectic topology, Floer homology and quantum cohomology. Unlike
those “soft” invariants coming from algebraic topology, the Gromov theory
of J-holomophic curves has a “hard” nature. It has been successfully used
to measure the symplectic rigidity, such as in Floer’s proof of Arnold con-
jecture and Gromov’s proof of non-squeezing theorem. It is also one of the
cornerstones of quantum cohomology.

We will give an outline of this theory here.

(1) Meoduli space of J-holomorphic curves.

As we mentioned before, the set J(w) of w-compactible almost complex
structures is a non-empty contractible set. For a J € J(w) and the complex
structure ¢ of 2, a map f: (5%,¢) — (V,J) is called J-holomorphic if df o¢ =
J o df. This condition is equivalent to that 0;f = df + Jodf oi = 0. In a local

conformal coordinate (s,t) of 5%, it has the form:

U1 apnE=o

This is a quasi-linear elliptic equation. Its linearization D3(f) at a J-



holomorphic map f is an elliptic operator from the Sobolev space Li(f*TV)

to LP(Q%(f*TV)) for some p > 2, given by

€= Ve ()0 VEoi + LN, (0:(1),8),

where the connection V is a J-invariant connection with its torsion propor-

tional to the Nijenhuis tensor Ny of J.

Definition. For a given almost complex structure J € J(w) and A € Hy(V),

the moduli space M(A, J) is defined as follows:

M(A, Ty ={f | f: 5 — Vis J-holomorphicand simple, [f] = A}.

Here a J-holomorphic curve f is called simple if any factorization f = fiox
with 7 : §%2 — S? being holomorphic and f; : $% — V being J-holomorphic
implies that = is biholomorphic. The reason for restricting to simple curves
is to avoid the pathological phenomenon concerning {ransversality of the lin-
carization D8, of 87 at multiply covered curves.

Now for a generic choice of J, D8y is surjective at every f € M(A,J).
Later on we will denote the set of such J by J,.,(w). It follows from the
ellipticity, hence Fredholm property of Dd; and implicit function theorem

that

Theorem 1.0.1 For anyJ € Jreg(w), M(A,J) is a smooth finite dimensional

manifold. If the dimension of V is 2n, the dimension of M(A,J} is 2(¢c;(A) +




The above moduli space M{A,J) depends not only on the symplectic
form w and class A, but also on a particular choice of J € Jyey(w). In order to

get invariants of w, we need to know how M(A,J) depends on J. It is proved

in [G] and [M]:

Theorem 1.0.2 For any J; and Jy in Jrep(w), M(A,J1) and M(A,J,) are

in the same bordism class.

According to this, for any J € Jre,(w) the bordism class of M(4,J)
is well-defined, depending only on w and A. However, any manifold M is
the boundary of the non-compact manifold M x [0,1). Therefore, in order to
make the above bordism class useful, we have to consider the compactness
of M(A,J). But, due to the biholomorphic action of SL(2,C) on S2, which
induces reparametrizations on J-holomorphic curves, M({A,J) is never com-
pact. One may rule out this trivial non-compactness by factoring out the
reparametrization group SI(2,C) and defining the unparametrized moduli

space

M(4,J) = M(A,T)]SL(2,C).

Even then, this unparametrized moduli space M (A, J) is still not compact in
general. But it has a natural compactification, i.e. the Gromov compactifica-
tion M(A,J) of M(A, J).

In order to formulate this, we need the notions of cusp curves and weak
convergence of J-holomorphic curves.

A cusp curve ¢ = CyU-- -t} is a union of J-holomorphic curves C; with

marking points z;; in 5% of the domain of Cj, ¢ = 1,-+-,l and j = 1,---m;



é,nd identifications of pairs of marking points such that Ci(x,,) = Ci(x;z) if
Z;n and z;; are identified with each other. The homology class [C] of C is
St [C5] and the area Area(C) of C is i, Area(C;). Note that there may
exist repeated components C; = C; for some 1 # 7.

Now assume that { f;} is a sequence of J-holomorphic curves. Let (f, %, -,
Zm) be a J-holomorphic curve with marking points zy,--+,z,,. We say that
{f;} is locally convergent to f outside the marking points if {f;} is C*-
convergent to f on any compact subset of $2—{x,- -, 2, }. £ C = C1U---UC,
we say that {f;} is weakly convergent to C' if
(i)for each j, there are [ elements uj1, -y of SL(2,C) such that each se-
quence {f;;} = fiouji, ¢ = 1,---1, is locally convergent to C; outside the
marking points of C}.
(ii) lim; e Area(f;) = Area(C).

This implies that the image of f; is C°-convergent to the image C' and
that the class [f;] = [C] for large j. With this preparation, we can state the

Gromov’s compactness theorem.

Theorem 1.0.3 Let {f;} be a sequence of J-holomorphic spheres with Area(f;)
< C for some constant C for all j. Then there exists a subsequence of {f;} (

we still denote it by {f;} ) such that f; s weakly convergent to a cusp curve
C.

(i) Quantum cohomology

In order to avoid further algebraic ramification, we will define quantum

cohomology only for monotone symplectic manifold.




A symplectic manifold (V,w) is called monotone, if there exists a con-
stant A > 0 such that for any f € m(V), w(f) = Aci(f*TV). By rescaling
the symplectic form w, we may assume that A = 1. The quantum cohomol-
ogy QH*(V) of a monotone symplectic manifold is additively just the usual
cohomology of V' with coefficients in R[g], the polynomial ring in ¢. However,
its multiplication is a deformation of the ordinary cup-product which can be
described as follows. If af, a; are two cohomology classes in V, then we will
define the quantum product @} * ab by specifying its pairing with all classes
ay € H*(V,R). To define this triple index, we have to first introduce the

evaluation maps of the moduli space M(A,J). The p-fold evaluation map
eas: M(A,J) x (2P - V7

is given by:

€a,J: (f:zla s ,z'p—E) = (f(U),f(l),f(OO),f(zl), ot ';f(zp""S))'

Now assume that dim(V) = 2n and that, for ¢ = 1,2,3, a; is a submanifold
in V of codimension 2¢;, which is Poincaré dual to the class ¢} € H*(V,R).
(We will later deal with the fact that not every homology class has such a

representative.) Fix a J € Jreg(w), the triple index is defined as follows:

Definition.

< dy xay, af >= Z #(SZ}J(GI X ag X as))qw(A)a
A€Hy(V)

where the sum runs over all A such that ¢;(A) +n = oy + g -+ 3. Here

¢4 is the 3-fold evaluation map and #(e;5 (a1 X az X ag)) is the oriented




intersection number of e4 ; and ¢;1 X ag X as3,. (This makes sense since M, s,

V3 and aq x ay X as are all oriented.)

Remark.

(1) The dimension conditions are always chosen so that the sets which are

being counted have dimension 0 for generic J.

(2) Using Gromov’s compactness theorem and the mononotonicity assumption,
one can show that the coefficient #e4'7(a1 X ag X a3) before ¢“ is finite for

generic J.

(3) Since ey + a2 + a3 < 3n, we have w(A) = ¢;(A) < 2n. Therefore the triple

index < @} * a},ay > 1s in R[q|.

(4) The zero order term of af *aj is just the ordinary cup product a3 Ua;. This
can be seen as follows: The condition that w(A) = ¢;(A) = 0 implies that f is
a constant map for any f € M, ;. Therefore
Z #e;b(al X az X ag)
Aw({A)=e1=0
is nothing but the triple intersection number of a1, a; and as.

In above definition, we have assumed that the cycles there are actually
submanifolds, which is not true in general as is well-known. For the purpose
of the above definition, we can get around the problem by using the fact
that there is a basis of rational homology H.(V, Q) consisting of push-forward
images of fundmental cycles of some bordism classes. However, there are two

places where we would like to consider a representative as a submanifold. The

first is at the beginning of chapter 3 where the local charts are given for the




Banach manifold of maps from S$* with marked points to the manifold V with
given cycles, and the second is in chapter 5 where we do the ‘bubbling’ analysis.
Therefore some justification is needed. It is well-known that every cycle can
be represented by a map from a pseudo-manifold ( a stratified manifold with
at most codimension 2 singularities) to V. There are two obvious differences
between the pseudo- manifold representatives and submanifold representatives.
The first is that in the former case one needs to use a stratified manifold
structure, but this causes no further problems since we can work on each
strata equally well. The second is that in the former case one cannot think
of a representative as a subset of V, there is a map from the pseudo-manifold
to V involved. Although for most part of this dissertation one could replace
the map by its graph, for the basic Banach manifold setup with marked point
case of Chapter 3 we have o require that the image of the map is at least a
stratified submanifold of V so that the top strata can be throught as a geodesic
submanifold under some suitable choice of metric on V. This can be done by
using the fact that every compact smooth manifold has a smooth triangulation
(see, [MI]). We can then use simplicial cycles as representatives which can be
thought as maps from some pseudo-manifolds to V', whose image, the carrier
of the simplicial cycle, is a a embedded stratified submanifold by the definition
of the smooth triangulation. Note that we do not require that the carrier of
the simplicial cycle is a submanifold with singularity of at least codimension 2,
since what is really involved is only the top strata for all constructions of this
dissertation except the property that the triple index in the above definition

is well-defined, independent of any particular choice of J € J,op(w) which is



already established in [MS1] and [R].

Therefore to simplify our presentation we will assume throughout this
dissertation that the cycles in V can be represented by some submanifolds

whenever we feel ‘safe’, and indicate proper modifications when problems arise.

The above definition of quantum multiplication obviously encodes impor-
tant information about Gromov’s moduli space of J-holomorphic curves, and
makes it possible to organize the information in a nice way as long as some

formal algebraic properties, such as associativity and the related composition

law, hold.

It was pointed out by Witten in [Wi] that associativity can be deduced
from a composition law for the 4-point Gromov-Witten invariant, which we
now explain. Suppose given homology classes ay,az,as,a4 € Hu(V,Z) and
A, B, P € Hy(V), and a “generic” point z = (21, 22,23, 24) € (S* — c0)®. Let
M?*(P, ay, ag,a3, a4) be the moduli space of J-holomorphic curves f with f(z;) €
a; and [f] = P, and M(A, B;ay,ay;a3,a4) be the moduli space of (A, B)-
cusp-curves (fi, fo) with a similar restraint plus the condition that fi(o0) =
f2(00). For a suitable choice of classes P, A and B, and a generic J, the above
two spaces are compact smooth manifolds of dimension zero. Gromov-Witten
invariants ®p(ay, aq,as,a4) and ‘iA,B(al,ag; a3, a4) are defined as the number

of points inside these two spaces, counted with sign. The composition law for

4-point Gromov-Witten invariants is the following equality: -

10
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®p(ar, az,03,a4) = Y &4 p(ay,az; a3, a4).
A+B=P

In order to prove this equality, we need to establish an oriented bijection
| | #. - ]_[ M(A, B, J; a1,a2; a3, a4) — M?(P, J;aq,az,a3,a4).
ABEH(V):A+B=P
Such a map glues each (A, B)-cusp-curve into an A + B curve. We prove that
there is such a gluing map #.,, when the cross ratio of z is large enough. This
is the main technical part of this dissertation.

Gluing in symplectic geometry was initiated by Floer by adapting Taubes’
gluing construction in gauge theory. He used this construction for gluing
broken trajectories, which was crucial in Floer homology. However, there is
a big difference between the gluing in our case and that in I'loer homology.
In Floer homology, the ends of each trajectory convergence to some pertodic
Hamiltonian orbits , which do not move. For a generic choice of Hamiltonian,
the linearization of the Hamiltonian equation has no kernel. This implies that
all trajectories will exponentially decay to some Hamiltonian orbits, and we
only need to set up Fredholm theory by using the ordinary Sobolev I} -norm
for the relevant Banach manifolds and Banach bundles. The main estimate,
which establishes the uniform invertibility of the linearization of the perturbed
J-operator, is relatively easy in this case.

Now consider an (4, B)-cusp-curve (fy, f3), which is a union of two J-
holomorphic spheres f; and f, meeting at a cuspidal point. This cuspidal

point can be thought as the limit of two cylindrical ends, one on each sphere,

but now it can move in many different directions through movement of (i, f2)




within the moduli space of (A, B)-cusp-curves. Closely related to this, the
operator D, which is asymptotic to the linearized dj-operator E, has a non-
trivial kernel. In this situation, in order to get a Fredholm theory for the
linearized operator F, we have to make full use of the elliptic operator theory
over non-compact manifolds with cylindrical ends (see [LM]) and to use the
weighted Sobolev norms. However, under any reasonable choice of a weight,
the operator D still has non-trivial kernel, which will prevent us from proving
the desired uniform invertibility of the linearized 8;-operator over the pre-
gluing family.

In his unpublished note, Floer already noticed this difficulty. His idea for
dealing with the problem was to split each section over the pre-gluing family
into two parts. Roughly speaking, one part corresponds to the movement at
“infinity’ which has finite dimension , and the other corresponds to the nearby
curves with fixed point at ‘infinity’. He then gave the component of the first
part the usual norm for elements of a finite dimensional vector space and the
component of the second part a weighted Sobolev norm. The analytic behavior
of the second component is completely similar to the case of Floer homology.
But the real problem is how to deal with that simple looking component in the
first part, and how to deal with the problem of the inconsistency of these two
norms due to their different weights. This is the problem which Floer failed
to deal with in his note. The difficulty was overcome in my work through
an indirect argument, which combines the theory of elliptic operators over

manifolds with cylindrical ends with a “removal singularity” theorem for the

solution of the linearized 8j-operator with a singular point. The existence

12




of the gluing map #. is then established by applying Picard method. The
injectivity of #, is more or less obvious since the domain of #, is finite.
Surjectivity follows from the uniqueness part of Picard method, together with
a detailed analysis how the corresponding J-holomorphic curves degenerate
when the cross ratio of #z tends to infinity. In this way, we finished the proof
of associativity.

This dissertation is organised as follows. Chapter 2 is an outline of the
proof of associativity. We first translate the problem about associativity into
a decomposition rule for the Gromov-Witten invariant in four variables. Then
we indicate the main steps in the proof of this special decomposition rule.

Chapter 3 describes the basic Sobolev space setup and establishes transver-
sality properties of various evaluation maps. Most of the resulfs in this chapter
are already in [M] and [MS1]. Our observation here is simply that the tech-
nique developed in [M] and [MS1] enables us to achieve all required transver-
salities by “moving” only the almost complex structure J of V and leaving
the pseudo-cycles in V fixed. This will be important in Chapter 5 where we
analyze how a J—lsphere degenerates when two of the marked points on the
given cycles approach each other. In order to use a dimension counting argu-
ment in this bubbling analysis, we have to require that the 4-fold evaluation
maps of all relevant moduli spaces of cusp-curves are transversal to the prod-
uct @ = ay X dp X ag X ay of the given four cycles of V. If we also perturb this
cycle a in V* to achieve transversality, the product structure of the cycle could

be destroyed. This will cause a problem in the very last step of the proof of

Proposition 5.0.4 This is a minor point, but it was overlooked in [MS1).

13




Chapter 4 is on Floer’s gluing technique and is the main technical part of
this dissertation. To simplify our presentation, we develop the technique only
for zero-dimensional components of the moduli space of (A, B)-cusp-curves,
since that is all we need in order to prove associativity. However, the proofs
in this section can be adapted to apply to any compact part of a moduli
space of cusp curves, with arbitrary genus, marked points and varying complex
structures. Even though it appears here only as an intermediate step in the
proof of the associativity, a result of this kind can be viewed as the converse of
Gromov’s compactness theorem for J-holomorphic curves, and hence has its
own interest.

Chapter 5 analyzes how a J-holomorphic curve with four marked points
lying on four given pseudo-cycles degenerates when two of the marked points
approach each other. One of the consequences of this analysis is that as long
as two of the marked points are very close to each other, there will be a cusp
curve such that the C°-distance between the pre-gluing of the cusp curve and
the J-curve above is very small. Combining this with the gluing procedure

in chapter 4 one can easily prove the special decomposition rule mentioned

before, thereby finishing the proof of associativity.

14




Chapter 2

Outline of the Proof

To begin with, let us consider what is involved in proving associativity.
According to our definition, in order to know (a} * a}) * a3 one needs first to
know what the Poincaré dual (@} * a})’ is. For generic J, consider the 2-fold

evaluation map
€AT 'M(A,J) —)'Vzg f'_) (I(O)af(l)):

and define
M(A, J5a1,az) = 82,1.7('11 X agp).

This is a smooth manifold of dimension 2(ci{A) + n — @y — ). If we define

the ‘pseudo-cycle’ in the sense of MS[1] (see MS[1], page 90)
D4 g(e1,a0) t M(A, J;a1,0,) =V
by f =+ f(o0), then we have:

Lemma 2.0.1

(dyxah) = > @as(ar,a2)g"™.
AcHa (V)
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Proof. (sketch) Note first that since
dim @ 4,5 (ar,a2) = 2(c1(A) +n — ey — az) < 2n,

we have w(A) = ¢1(A) < oq + az < 2n. Therefore, by Gromov’s compactness
theorem, the summation in the RHS must be finite. Now, on the one hand,

we know that

< a + dhyal >= #((d} * a5)' N aa).

On the other hand, by definition 1,

-1 A
< ap *dyay >= Y #ey 7(ar X ag X as)g” ™),
AEHQ(V)

the sum being taken over such A that n 4+ ¢ (A) = oq + ay + a5. But

#e;b(al X g X a3)

can be obtained by first taking the inverse image of a; X ay under the 2-fold
evaluation map e4 ; which is M(A4, J; a4, a3), and then taking the intersection

of its image under ® 4 ;(a1,az) with as. In other words,

#62,1‘](&1 X dgy X Gg) = #(@A,J(al,az) M a3)’

which concludes the proof of the lemma. O

Let
€AB,J M(A, J) X M(B,J) — Vﬁ

be the evaluation map given by (f,g) — (f(0), f(1), ¢(0), (1}, f(00), g(c0)).

Given two spherical classes A, B € Hy(V) and cohomology classes a. € H*(V),
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i=1,---,4, with Poincaré duals a; of codimension 2¢;, we define the moduli

space of (A, B)-cusp-curves to be
M(A, B,J;Cﬂl,ag; flg,a4) = 6:1,1BJ(CL1 X dg X dg X dgq X A),

where A is the diagonal. This moduli space is a smooth manifold of dimension
2(c;(A+ B) + n — 3 o) for generic J.

It is easy to see that when ¢;(A 4+ B) +n = 3 a;, the space
M(Aa B} ']: a1, a3, 43, a‘4)

has dimension 0, and the number of points in it (counted with their orienta-
tions) equals the intersection number of the cycles ® 4 j(ay, a3) and @, s(as, a4).

In short,
#M(A, B, J; a1, a9; a3,a4) = F#(Pa,s(a1,02) O Qg s(as,a4)).
Lemma 2.0.2
< (&) * ab) * aj, a} >

5 #H(@aslan,a0) 1 @, ai))g M,
A,BeH(V)

i

the sum being taken over all A, B such that c;(A+ B)+n =1, .

Proof. By definition,

<(dap)rahay>= Y sign(f)g). ¢,
ABEH{(V), fJEM(B,J)

where the sum is taken over all f € M(B,J) such that
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(1) f(0) is in the component ®4 5(ay,a;) of

(ahxah) = S B4s(ar,a0)g”™,
A€H(V)

(i1) f(1) € a3, and f(oo) € a4, and
(iil) 2(c1(B) + n) = codim® 4 j(ay, ¢g) + 203 + 204

Geometrically, the image of @4 s(a1,a2) is just the set of points which lie on
A-curves g{S5?) intersecting a; and as at ¢(0) and g(1) respectively, and its
dimension is 2(¢1(A) + n — @y — ). Therefore, each B-curve f which is
counted above determines an A-curve g, and so gives rise to an (A, B)-cusp-
curve (g, f) which intersects the given 4-cycles and satisfies the condition that

a(A+ B)+n = o1+ a2+ as + 4. In other words, each such f determines an

element of M(A, B, J;ay,as; as,a4). The conclusion follows immediately. 3

Now for any P € Hy(V) with ¢(P) -+ n = ) o; we define the extended

Gromov-Witlen invariant

‘I’JP,J(“h ag; a3, 04) = Z #(Pa s(ar,az) N ‘I’B,J(Ga,%))-
ABeH(V):A+B=P
Then Lemma 2.0.2 can be restated as
< (df * d}) ¢y ey >= > U (a1, ag; as, aq)g”")]

PGHy (V)

the sum being taken over P such that ¢;(P) +n = Y.\, «;. Similarly,

< dy*(ahxab),ay > = (—1)2“1{20‘2“"‘3) < (ay* ay) x af,a) >

_ (_1)2a1(2a2+20c:3) 3 q;f(p’J)(amas;ah%)qu),
PeH2(V)




the sum running over all P such that ¢;(P)+n = 3 ;. Therefore, associativity

will follow if we can prove that
W (ay, ag; ag, aq) = (—1)*1 @220 DY, (a5, as; a1, a4).

This is equivalent to the fact that W} ; is graded-commutative. It is obvious
that W% ; is graded-commutative on its first two variables and last two too.
But it is not obvious at all that it is also graded-commutative, for example,

on its second and third variables.

Geometrically it is equivalent to the fact that the following two configu-

ration spaces of cusp-curves have the same cardinality.

In order to prove the graded-commutativity of W’ ;, we will relate ¥} ; to
the Gromov-Witten invariant ¥p ; defined by Ruan in [R], which is graded-

commutative by its definition. It can be defined as follows:
Fix P,a;,i = 1,---,4 as above with ¢;(P)+n = Y «;. Consider the 4-fold

evaluation map
epJ: M(P,J) X (52 - {0,1,00}) - V4.

Then

M(P, J; a1, 09,03, 04) = e;,}(al X ay X az X Gy4)
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is a smooth submanifold of M(P, J)x(5*~{0, 1, cc}) of dimension 2. Consider

the restriction of the projection
Tzt M(P,J) X (32 - {051700}) — 5% — {051700}

to M(P,J;a1,as,as,a4) and denote it by w. Picking a generic point z €

5% —{0,1, 00}, we define

Up (a1, as,as,a4) = #(771(2)).

Thus this invariant counts the number of curves which meet the given 4 cycles
at the images of a fixed set of 4-points {0,1,00,2}. Later on we will use
M#(P, J; a4, 0, a3, a4) to denote 771(z).

Tt is proved in [MS1] that, when ¢;(A) > 1 for every effective class A,
71(2) is finite for generic J and that the Gromov-Witten invariant Wp is
well-defined, and independent of the particular choices of z, J and representing
cycles a;. Here a class A € Hy(V) is called effective if it can be represented by
a J-holomorphic curve for some w-compactible J. It is also proved in [R], for
example, that ¥p is graded-commutative. Therefore associativity will follow

if one can prove the following special decomposition rule:

Theorem 2.0.4 If V is monotone with ¢;(A) > 1 for every effective class

A € Hy(V), then we have
Up (a1, ay, az, a4) = ‘I’},J(Gh (2} O3, ).

There is a heuristic argument in [MS1}, Chapter 8 to explain why one

could expect that such a relation holds. For a formal proof, we will construct
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a family of gluing maps with gluing parameter z € C*:
#.: [ M(A, B, J;ay, a2; a3, a4) — M? (P, J; 04,02, a3, a4),
ABEHy(V):A+B=P

where ¢;(P) +n = ¥ «; and |z] is large enough. Thus this map associates to
every (A, B)-cusp-curve through the a; a unique { A4 B)-curve which intersects
the given cycles at the images of the fixed set of points {0,1,00,z}. The
existence of these gluing maps is established in Chapter 5. The main problem
here is to establish a uniform estimate for the inverse of the linearized 8-
operator.

We will prove the special decomposition rule by showing that #, is an

orientation-preserving bijection when |z| is large enough. The injectivity of

#t, is more or less obvious, since the domain of #, is a finite set. The
surjectivity will follow from the uniqueness part of Lemma 4.0.16 (Picard’s
method), provided that one can prove that, when |z| large enough, there is
for any f € MZ*(P,J;ay,03,a3,@4) an approximate J-holomorphic curve (or

pre-gluing) ¢ = ¢1X.g2 which is made from the cusp-curve
(91,92) € M(A, B, J; a1, a3; az, a4)

such that the CP-distance between f and ¢ is small. This can be shown by

analyzing what can happen for a sequence

fn € MZn(P, J: a17a23a37a4)

when |z,| tends to infinity, which is done in chapter 5.
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Chapter 3

Banach Manifolds of Mapping Spaces and

Transversality

The space of maps from S? to V is a Banach manifold, over which there are
two Banach bundles W and £ which we need to deal with. In this setting, the
8 j-operator becomes a section of the bundle £. We first give the local charts
and trvializations for these Banach manifolds and bundles. Under these local
charts and trivializations, the 8;-operator becomes a nonlinear map between
certain Banach spaces. There is a Taylor expansion for this map, which is

Lemma 3.0.3. Then we will establish transversality results for the evaluation

maps of spaces of cusp-curves. The main result here is Proposition 3.0.1, in

which we prove that transversality can be achieved by ‘moving’ only J and

leaving the given cycles fixed.
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Pre-gluing

We start by discussing the smoothing of §* vV §* and pre-gluing for cusp-
curves.
The Riemann sphere (5%, 7) can be described as the union of two copies of

C, with coordinates w,w’ respectively, with the identification w = 1/w’. Thus

5% =((C,w) L J(C,v)) [ (w = =)

w
Fori=1,2, let

82 = (Cyw) LI(Cu)/ (o = ).
Then S2V 52 is given by identifying w] = 0 in ST with w} = 0in S7. Let y be
the cuspidal point of $2V §%, and 0z, 1y, and Og, 1z be the points of wy = 0,1
in S7 and wq = 0,1 in S} respectively.

When |3| is small enough, the complex sphere S7#.,5; with gluing pa-
rameter z = 5% € C* and four ‘marked’ points 0r,11,05,1g can be constructed
as follows:

One first cuts out |w)] < |3|/2 and |wh| < |Z|/2 from S7 and 5% respec-
tively, and then glues the two remaining discs along the annuli

2|

2

2|

Bl <yl < J2l, and < Jul] < |3

by the formula w} - w) = 22/2.
Let 574,52 denote the resulting complex sphere with four marked points

0z, 1z, Or, 1r. It has a ‘left’ and a ‘right’ complex coordinate w;,w; respec-

tively with the relation
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In the w;-coordinate, the points 0z,17,0r,1r have coordinates w, = 0,1, 00,2/32.
Therefore the cross-ratio of these four points is 2/%%. Since the cross-ratio is
the only invariant for 4-tuples in S under the action of PSL(2,C), we may

consider the moduli space M*(P, J; a1, a2, as,04) equally as

ME(P) Ja 1, dy, a3, a’4)
r A
f is J-holomorphic and stmple,

f(OL) € a’l:f(lL) € a?:f({}R) S a'37f(1R) < a4

where z = 2/%%. Note that when 7 varies, the domain S}#.,57 of the second

moduli space also varies. But it has four fixed marked points on it.

Here is another description of S2# .52, this time in cylindrical coordinates.

o This is what we need in order to do Floer gluing. Recall that y is the cuspidal

point of S?V §2. We may think of 52 — {y} as a union of a hemisphere H; and
a half infinite cylinder Rt x S* with cylindrical coordinate (7;,%), ¢ = 1,2,
with @H; identified to {0} x S1.

In these coordinates the previous construction S7#,S7 will become the
following;:

The part of S? — {y}, ¢ = 1,2, with cylindrical coordinate 7; > —log|Z| +
log 2 is cut off, and the remainder is glued along the collars of length log 2 of
the cylinders twisted with an angle arg#?. To be more precisely, we have the

following gluing formula:

(ry 4 log |3]) + (12 + log |2]) = log 2, 1y + 1y = —arg .
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We now define the pre-gluing fyx,fe of the cusp-curve (fi, f2). This is
a parametrized sphere which is approximately J-holomorphic, and is used as
the initial point of a Picard iteration which converges to a true J-holomorphic

curve. It will be convenient to define this in cylindrical coordinates.

Definition. Let 8 be the ‘bump’ function with 3’ supported in [0, 1—05—2]

B(r) = 1 when 7 <0,
log 2
2 ?

= 0 when 7>
and let A3, be the shifting of B by the amount — log |#| where z = 2/3%, i.c.
B:A7) = B(7 — log |2]).

Then we set

filw) if n(w) < —log|2], i = 1,2,
Fixzfa(w) = 3

expx(ﬁz(ﬁ(w))fl(w) + Bo(ma(w)) fo(w)) otherwise,

where (7;,4;) is the cylindrical coordinate of S? — {y}, # = fi(y) and f; is the
lifting exp! of; of f; under the exponential map exp, for ¢ = 1,2. Here we
assume that |Z| is so small that each f; maps the cylinder [—log |2|,00) % 5!

into the range of the exponential map exp,.

The analytic set-up

Definition. Fix p > 2,and A € H,(V). We define the mapping space Bf 4 by

Bia=A{fIf: 87 >V, [fl= A, |[fllhp < 00},
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where the Sobolev norm ||f]|[1, is measured using the standard metric on S*
and some fixed metric on V. By making a suitable choice of a metric on V
such that a; is a totally geodesic submanifold of V for ¢ = 1,---,4, we can
similarly define

lej,A(z; 1, Gz, ds, 0‘,4)
{ '
£+ 853 = Vil flle < o0,

f0r) € ay, f(11,) € ag, f(Or) € as, f(1r) € a4

Remark.As we remarked before, to simplify our representation, we have as-
sumed that the simplical cycles ay, a4, a3 and a4 are actually submanifolds of
V. If we still use simplicial representatives, which is what we should, our map-
ping space in the marked point case will be a stratified Banach manifold. But
note that the only purpose of this Banach manifold setup is to do the gluing

for discrete cusp-curves, and in that case only the top strata will be involved.

To simplify our notation, we will often omit the subscript A in BY 4.

Definition. The fiber at f of the tangent bundle TBY = WY} of BY is the space
of I}-sections of the pull-back f*(I'V'). Thus

Wi(f) = {¢l¢ € Li(S"TV)}.

Similarly, the fiber at f of the tangent bundle

TBY(2 a1,z s, ag) = W] (2 a1, az, a3, as)
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18

Wlp(f: %, 4y, 42,03, a4)

6(011) € Tf(OL)ala g(lL) c Tf(lL)aiZ;
= 1€l € LI(fTV),

£(Or) € Togyts, &(1R) € T1g)aa

The bundle £? over BY (or BY(z;a1,aq,as,a4)) is defined to be the bundle
whose fiber LP(f) at [ is the space of L? 1-forms on S” of type (0,1) and with
values in f*(TV) with respect to some fixed w-compatible almost complex

structure J. Thus

L*(f) = {nly € PP (F*TV))}.

Note that when p > 2, I{(£) — C°(E) for any vector bundle E over 5.

Since in the marked point case the formulae of local charts and trivializa-
tions for these Banach manifolds and bundles are similar to the non-marked
point case, we will only deal with the latfer case.

Let ¢ be the injectivity radius of a fixed metric on V. Consider

Up ={&€ € WI(f): l€lloo < ¢}

Then the maps

Ezps : Uy — Expg(Uy) — BY

given by

E(T! t) = 6$pf(7,t)(f (T: t))




form smooth local charts for B]. Their derivatives
D Ezpy: Up x W§ — WY

given by
(D Exp(é,m))(7,t) = D expsr(§(r, 1)) (n(r, 1))

will give local trivializations for WY.

Remark. Note that when giving the coordinate charts for the mapping space
in the marked point case, we do need the fact that the carriers of the four
simplicial cycles are stratified submanifolds of V.

The local trivializations for £§ can be obtained by using a J-invariant
parallel transformation coming from a corresponding J-invariant connection
which is described in detail in [M], sec.4 and [MS1], sec 3.3.

There they also showed that the connection V can be chosen in such a
way that Tor = N where N is the Nijenhuis tensor of J

Now the 0-operator can be thought as a section of the bundle L7 over
B} given by f — df + J(f) odf o:. Let 0y : Uy — LP be the correspond-
ing non-linear map under the above local charts Fzpy; of WY and the local

trivializations of £? over U;. Then we have

Lemma 3.0.3 35 has the following Taylor expansion:

D5,1(&) = B5(f) + DB 5(0)¢ + N(E)

where
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(1) the first order term D; = D87 4(0) : WP(f*TV)) — LP(QP(f*TV) is
given by:

Dy(E) = VE-+ (F) 0 VE o + TNH(0s(f),6),

where the connection V is a J-tnvariant connection with its torsion propor-
tional to the Nijenhuis tensor Ny.

(2) the non-linear part is of the form:

N(&) = Li(&) o VE+ La(€) 0 VE 0 i + Qu(€) o du + Qa(§) o du o 3,

where L; and Q); are linear and quadratic respectively, in the sense that there

exists a constant C(f) depending only on f and the ‘geometry’ of V such that
IZi{&) oo < C(A)Elleo and Qi) < CUHIIENS for lélleo < ¢ when i =1,2.

Proof. See [M], sec. 4 and {F'1], Section 2 for the proof of (1) and (2) respec-

tively. O

Transversality

Our next goal in this chapter is to state results on transversality. In this
connection, the result of [M] about the deformation of J-holomorphic curves
plays a fundamental role. Following [MS1], we will state it in its linearized

form.

Lemma 3.0.4 Given J € J(V,w), and a J-holomorphic sphere f : S* — V,

there exists a constant § such that for every v € Ty,)V and every pair 0 <

p < 1 < & there exists a smooth vector field {(z) € Tp,)V along f and an
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infinitesimal almost complez structure Y € C®°(End(TV,J,w)) such that the

following hold.

(1) D) +Y(f)odf 0i =0,
(2) 5(’20) =,

(3) ¢ is supported in B,(z0) and Y is supported in an arbitrary small neigh-
bourhood of f(B,(z) — By(20)).

where D; = D3y ;(0)

Proof. See [MS1], Chapter 6, Lemma 6.1.2.

O

In order to state the transversality results we need to give some formal
definitions about cusp-curves and their evaluation maps.

First recall that cusp-curves are always connected, and that in order fo
describe the type D of a cusp-curve with n components we must not only
specify their homology classes 4; € Ha(V),i =1, -,n, but also prescribe how
these components intersect. To do this we choose a ‘framing’ which consists
of a sequence of integers 7, € {1,---,n — 1},v = 2,--,n, with j, < v. Thus
the type D is

D={Ay, -, AN, J2, 7jn}~

Then the moduli space of simple cusp-curves of type D is defined as follows:

M(D, J) =

(f,’UJ,Z)|f € fIM(Ai’J)’w’Z € (Sz)n_lafjv(wv) = fu(zu):l’ =200,

=1




where w = (waq, -+, w,) and z = (23, , 2,).

Note that if A; = Aj, for some ¢ # j in the above definition, we require
that f; # f; o ¢ for any ¢ € PSL(2,C).

Given T' : {1,---,p} - {l,---,n}, the p-fold evaluation map eprs :
M(D,J) x (§%)P — V7 is defined as follows:

6D,T,J(f) w, 2, m) = (fT(l)(ml)a o JfT('P)(mP))‘

Thus T specifies how the components of the cusp-curve are distributed among

the different factors of the product V?.

Now we are ready to state the main result on the transversality of ep 7 5.

Proposition 3.0.1 Given P € Hy(V) and submanifolds ay,---,a, of V in
general position, there exists a dense subset Jrep(w) of second category of J (w)
such that for any J € Jpeq(w), ep . 18 transversal to a; X -+ - X ay, for oll (D, T)
with

(D) =ca(A+ A+ -+ An) L ea(P)
when restricted to the set of all (f,w,z,m) € M(D,J) x CP? which satisfy

the conditions that for any i € {1,---,p},

(1) fr(m:) # frolzee) and

(2) %:f T(%) = jy fO'l" some v & {2, e ,n}, then fT(i)(m?;) 76 fT(,;)(wy).

Proof. The proof of Proposition 6.3.3 of [MS1] can be easily adapted here. We

will only sketch the proof and refer reader to [MS1] for details.
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Let
M(A;, T) = 1] M(A;,T)

JeJg
denote the universal moduli space of class A;, consisting of all J-holomorphic

A;-curves, for all w-compatible J. This is a Banach manifold. (See, for exam-

ple, [MS1], Chapter 3). Consider the evaluation map

eEpT HM(A“J) % (82)2(71—2) % (SZ):D N P B 74

i=1

given by:

(f:w: z,m) = (sz(w2)a f2(22)7 o fjn(wn): fn(zﬂ)7 fT(l)(ml)! e fT(P)(mP))?

and the two associated evaluation maps 7 0 epr and 73 0 ep 7y, where 7y :
V-2 x VP — V=2 and my : V22 x VP — V7P are the two projections.
From Lemma 3.0.4, argning similarly to [MS1], we conclude that ep 7 is
trans-versal to A" x (@) X - - - X a,) when restricted to the subset of its domain
defined by the conditions {1) and (2) above. Similarly, 7 o epr and Ty 0ep 7
are transversal to A"™" and ay X - -+ X a,, respectively. By taking the inverse
images of the above three submanifolds under the appropriate evaluation maps
and then projecting to J, we find a dense subset J.q(w) of second category
in J(w) , which has the property that for any J € Je(w), the above three

evaluation maps, when restricted to
[T M(Ai, ) x (63)%3 5 (877,
1

are also transversal to the corresponding submanifolds as before.

Now M(D,J) = (m o epg,7) H(A™™!), and the claim of this lemma is

just that w3 o epry is transversal to a3 X --+ X a, when restricted to the




open subset of M(D,J) detailed in the lemma. This is a consequence of the

following elementary fact:

Let My, M, and M be three manifolds and A, : M — M; 2 = 1,2,
be smooth maps. Assume that N; is a submanifold of M; such that h; is
transversal to N;, 1 = 1,2 and (hy, ho) is transversal to Ny x Ny. Let W, =
R7Y(N;) i = 1,2, and g; = hy|w;, j # i. Then g; is transversal to Nj, § = 1,2.
The proof of this fact follows from the corresponding linear algebra lemma

obtained by replacing everything above with its linearization. I

Remark.For those ‘bad’ points (f,w, z,m) in M(D,J) x (S)?, at which at
least one of the conditions in the lemma is not satisfied, the above argument
does not apply. Since the two bad cases we need to deal with are similar,
we only consider the case where the condition (1) is violated, i.e., we need
to consider those points (f,w,z,m) at which fru(zr@) = fre(m:) for some
i€ {1,---,p}. In this case if we assume, without loss of generality, that : =
1,7(i) = 1, then we can form the (p — 1)-fold evaluation map ep 7 s from
ep g by deleting the T(1} factor, where 77 : {2,---,p} — {2, --,n} given by
() =T@#),t=2,--,p. Nov;r we can require that for generic J, epq s is
transversal to A,, x A" ! x (a3 X -+ X a,) in an appropriate domain similar
to the one defined in the lemma above. Hefe A4, = AN (a1 X a1). Proceeding
in this way inductively, we can form (p — ¢)-fold evaluation maps,;: =1,---,p,

and achieve transversality for generic J. It is easy to see that all the ‘bad ’

points could be covered by an inverse image at some stage.
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Intuitively, the ‘bad’ points correspond to those m for which the images
of some of its components under f lie on the cuspidal points of f. The above
argument shows that transversality still holds even including these ‘bad’ points
if we use the above evaluation maps. Thus, we have proved that the p-fold
evaluation maps of cusp-curves are transversal to the given cycles a; X -+ - X @,
by only ‘moving’ J in above modified sense, which is what we need in Chapter
5 in order to use the dimension counting argument. Now we will consider two

special cases of the above lemma.

Lemma 3.0.5 Given P € Hy(V) and submanifold a; of V, ¢ = 1,2,3,4,
consider all evaluation maps eapy: M(A,J)x M(B,J) - VS with A+ B =

P of the form

GA,B,J(fag) = (f((]),f(l),g((}),g(l), f(OO),g(OO))
Then for generic J, every ea gy is transversal to a; X ay X ag X ag X A,

As a corollary we have the following result about cusp-curves f = (f1, f2)

with marked points on the ;. Here, as in Definition 3, we write

le.j(fa a1, a3, 33704)

'3 Y

¢ € Li(f1V),

£0r) € T a1,  €(1r) € Tpya,
= {¢] (

f(GR) € sz(U)a3: 5(1R) € sz(l)%a

£(oog) = €(oor) € Th(oe)V = The)V
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for the tangent space to the moduli space of cusp-curves.

Corollary 3.0.1 If f = (f1, f2) € M(A, B, J;a1,a2; a3, ¢4), then for generic
J Dy = (Dy,,Dyp,) : Wi (f,a1,as; a5, a4) — LP(QOY(f*(TV))) is surjective with

kernel of dimension 2(n + ¢1(A+ B) — oy — ag — a3 — ).

Proof. The proof of the surjectivity of Dy is basically the same as the one for
D, when g € M(P,J), which can be found in [MS1], chapter 3, for example.
The formula for the dimension of the kernel comes from Proposition 3.0.1 and

the fact that KerD; = TyM(A, B, J; a1, as, as, a4). _ [

This is what we need in order to do basic gluing in Chapter 4. The
corollary of the next lemma is what we need when we give a direct argument

for gluing (A,0)-type cusp-curves at the end of next chapter.

Lemma 3.0.6 Given P € Hy(V) and submanifolds a; of V2 = 1,2,3,4, in

general position, consider the evaluation map
epy: M(P,J) x (S — {0,1,00}) — V*

given by
CP,J(QS: Z) = (¢(0)7 (ib(l)a (}5(00), qb(z))

Then for generic J, epy is transversal 1o a1 X az X ag X a4.

Corollary 3.0.2 The domain of epy can be cxtended to M(P,J) x 5* such

that ep,; is transversal to ay X ay X az X a4 for generic J. In fact the restriction

of epy to M(P,J) x {0,1,00} is also transversal to ay X az X a3 X a4




Proof. By Lemma 3.0.6 and the symmetry of the points 0,1, co, we only need

to prove, for example, that for generic J, the map e : M(P,J) — V* given by

e(4) = ($(0}, ¢(1), ¢(00), $(00))

is transversal to @y X a9 X as X a4 when az N a4 1s not empty. This is true if

and only if e; : M(P,J) — V3 given by

is transversal to @y X a3 X (a3 N a4), which is a very special case of Proposi-

tion 3.0.1.
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Chapter 4

Gluing

In this chapter we will construct a gluing map

i ]_l M(A, B, J; a4, a9;a3,a4) — Mz(P:J;alaG'ZaG'S)acl)

A+B=P
when |z| is large enough, J is generic, and ¢, (P) +n = oy + ap + a3 + ay.

Given a cusp-curve
f={fi, [2) € M(A,B,J;a1,09; a3, 04)
and z, € C* we will use the following short notations:
S5 = St#:.5%,
Jo = J1 Xza J2s
= Dy = D8,4,(0),

Dy =Dy =Dy, Dy,).
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We will use w,(s,t) or (s,t) with (s,2) € R x S' to denote the cylindrical
coordinate starting from the ‘middle’ of S* and (3,1} € RT x St 1= 1,2, to
denote the one with 7; = 0 at the boundary 0H; of the hemispherefl;. The
cylindrical coordinates (7;,t) have been used in Chapter 3. The formula for

coordinate changing between these cylindrical coordinates is the following:

t = t
log(2z, 224
T = 8 %—)—,Where—%<s<0,
log(2 1 a
Ty = S—M,Where(]<s<%.

2 2

Here Mﬁ?ﬁl = —log |#,|+log 2 is the length of the 7;-direction of the cylindrical

coodinates (7;,1), ¢t = 1,2.

The crucial step is to define correct norms on LP(Q%(f:(TV))) and

WP fuyar, s, @3,04). If & is in WP (fa, a1, a9, a3, aq), then we define
£ = /S] £, 0 wa(0,t)dt € TV

where £ = fi{c0) = f2(c0). Now we switch to (7;,%) coordinates. Fix a bump
function ¢ on $2 such that (7)) = 1 for 7 > 1 and (%) = 0 for 7, < 1/2,
1= 1,2, and define
E(rt) = Dexpa(fa(r, 1)) (0(1)E)
‘f; = ga_ég-

Here f, is the lifting exp;'(fy) of f, under exp,,

D e:va(fa(v',t)) : Tfa(T:t)(TmV) = TyotrtyV




is the derivative of the map exp, at the point fo(r,t),and £° is considered as a
constant vector field over T,V by the obvious identification of T,V with T,(T%)
for any z € T,V therefore as a vector field along f, via the map f,. Thus ¢2
and £ are in WY (fy, a1, 02,03, 04) as & is. Note that in the above definition
we have assumed implicitly that the whole cylindrical charts (7;,¢) are taken

into the range of exp,, which is just the matter that where these charts start.

Definition. Let 0 < ¢ < 1. For any 5, in L?(f,) and &, in

Wlp(fou 1, 42,03, a4), we define

7allx0 = ”770”0,;0;6 = ||e”na”0,p, and

€allxt = l1€allme + 1601 = [le ol + 1l
where |3 = |0,
Note that the metric on §2 which we used in the above definition of || [|’s

is the one induced from the cylindrical coordinate wq(s,t) (or, equivalently

induced from (7;,1)).

Remark.In the introduction we have explained roughly the idea behind the
above norm. Now let us look at this more closely. Note that our main goal
here is to prove the uniform invertibility of D, for large «, for which we need
to compare D, with its limit D, under some suitable choice of norms. It
is quite nature to require that the norms used for sections over S, is locally
convergent to a limit norm for sections over 52V S* — {y} under the cylindrical

coordinates (7,1) when a — oo. There are two obvious properties that this

limit norm should have, which, in turn, will ‘determine’ the norms for the «o’s.
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The first is that D, should be Fredholm with respect to the norm, which
suggests that a weighted Sobolev norm should be used as we already mentioned
in the introduction. The second is that the norm should give rise to a induced
metric on moduli space of cusp-curves. At the infinitesimal level this amounts
to say that each tangent vector of the moduli space of cusp-curves which
1s in the kernel of D., has a finite norm. Now due to the 2n- dimensional
movement of the cuspidal points of cusp-curves as we mentioned before, we
can find elements in the kernel of D, whose value is not zero at infinity.
Therefore the two requirements contradict each other unless we split off a 2n-
dimensional component which corresponds to ‘moving’ at infinity. Note that
for an arbitary section ¢ over SV S* — {y}, lim,.c £(7, 1) may have different
values with respect to ¢. This suggests that we need to take its average , which
leads us to the above definition of Floer’s norm. The main estimate in this

chapter is

Proposition 4.0.2 Suppose given a generic J and a cusp-curve f € M(A, B, J,

0y, ay; as, ay) with ¢;(A+ B)+n = 3 o; such that for this J, by Lemma 3.0.5

and its corollary,
Dy : WP(f, a1, a3;a3,a4) — LP(Q% (f*(TV)))

is an isomorphism in spherical coordinates. Then there exists a constant C(f),

which is only dependent on f, independent of z, such that for |z,| large enough,

Da : Wf(fa: a1, G2, 3, (E4) - Lp(ﬂo’l(f;(TV)))
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with the norms above has a uniform inverse G, such that

1Ga(lx < CHInllx0
for any n € LP(QON(f3(TV))).
Proof. We only need to prove that when |z,| is large enough, there exists a

constant C such that |[€,]ly1 < Cl|Daallxo for any &u € Li(fa, 01, a2, as, a4).

If this is not true, then there exists a sequence

{€a} € Wi(fa, a1, 03,03, as)
with |7.] — 0o such that
(1) allvr = lallipe + 160l =1
(if) [Dacallio = [Datalloge =0 when o — oo.

We will prove that (i) and (ii) contradict each other. In the proof we will

repeatedly use the following fact:

Lemma 4.0.7 Let B be a Banach space with a norm ||.||g end p: B — R*
be a convez continuous function. If {x;} is a sequence in B such that z; — =

weakly for some z in B, then p(z) < liminf p(a;).

We will apply this when p is a continuous semi-norm with respect to ||| 5.

Until further notice we assume that the assumptions in Proposition 4.0.2 hold.

Lemma 4.0.8 (i) and (ii) above imply that there exists a subsequence {£}

such that [£2] — 0, when a — oo.
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Proof. By definition |£2] = |€2]. From (i) we know that |€2] < 1. This implies
that there exists a convergent subsequence {£°}, with limit £2 € 7,V. We
only need to prove that z;’go = (. The idea of the proof is to construct an

element
¢ = (&,&) € WS, a1, a2; a3, 04)

such that D€ = 0, and & (00) = €a{00) = £9 in spherical coordinates. Be-
cause we have assumed that Dy is an isomorphism, this implies that { = 0.

Therefore £9, = 0.

To this end, we set

€% = D eapo(f(r, ) (p(T)EL),

as before with ¢2. Then £2 € T(f*(T'V)). 1t is easy to see that as o — oo, £
is locally C'°-convergent to £2 in SV 57 — {y}.

Given R > 0, let Dy be the domain in §2 {(or in 57 V 53) which is the the
union of the two half spheres at the two ends plus the cylindrical part up to
T = R. From (i) we know that |[¢}]|1,,: < 1. This implies that for any B > 0,
there exists a constant C'(R) depending on R such that ||£4]|1, < C(R) for
all . Note that when R is fixed, all these £1|p,’s live in same space for large
. Therefore & |p, — €L weakly in L]- space for some &, p € Li(f|pg)-
By letting B — oo and taking a diagonal subsequence in the usual way, we
conclude that all these {go;R’s can be pasted together to give rise to a single

section

6;0 € Lj]:.,,loc(fa 1,83, 03, 054)
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such that
alDx = €aolnn = Eooir
weakly in L}-space. Here we have used the fact that the weak limit £ p =

£ooiRy D> if B2 < Ry, which can be proved by a standard Sobolev embedding

argument.

Let £oo = €2, 4+ £L. Then &,|p,, — éw|pp weakly in Lf- space. Therefore

Da&alDR - Doo&oO]DR

weakly in LP-space. Here we have used the fact that D, = Dy, on Dg when

o is large enough. Our assumption (ii), which says that
|lDa£a”0,p;s — {0 as a— o0,
implies that
|(Dabadlpgllop = 0 as «-— oo

for any fixed B. From Lemma 4.0.7 we conclude that

[(Docbso)lprllop < liminf [|(Dada)|ngllop = O-

This implies that {Doofoo)|p, = 0 for any R, therefore Dy o, = 0.

In spherical coordinates, this gives us a solution of D¢ = 0 with a
singularity at the cuspidal point y. We will soon prove that this singularity is
removable, i.e. that £, can be extended over y such that the restriction of £
to each half of S? V 5% is smooth.

Suppose that this is true. Note that £, is already smooth. Going back

to the cylindrical coordinate (7,1), we conclude that as 7 — oo, all these




three sections, €., €2, and £L of the bundle f*TV over S? V S2 — {y} are
convergent uniformly with respect to ¢ under the trivalization D ezp, of TV

near . Combining this with the fact that

/R+x51 e TEL Pdrdt < ||€h o pe < limn inf 1€ o e < 1,

which comes from (i) and Lermma 4.0.7, we conclude that lim £ = 0. There-

T—6a

fore
}LI& 'gm(Tvt) - ,,_h_,r{.lo ‘520(7_: t) = égo

This proves that in spherical coordinates €., has the required properties, and
therefore finishes the proof of the lemma modulo a removable singularity

lemma.

Proof that the singularity of £ is removable

Let (u,v) be coordinates on one of the spheres near the cuspidal point y
where y is v = v = 0. From Lemma 3.0.3, by contracting with 5‘%, the equation

D¢ = 0 becomes

ofi

Vb + I (i) Vauls + N( E™

I gy =0i=1, )

We know that in (u,v)-coordinates, &, satisfies (1) except at the point where
v = v = 0. By elliptic reguiarity, we only need to prove that £,, is a weak

solution of (1) near the origin.

To this end, let us denote the left side of (1) by Eié; jset E = (Ey, E;)

and think of the differentials in F; as weak derivatives. Then for any ‘test
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function’ ¢ = (¢1, -+, ¢2n) With ¢; € C5°(D?),i =1,---,2n, we have

[Be) 6 = [ o (B9)
= [ (e (B
= LB b [ LB

Here we consider F as taking weak derivatives, and have written E for the
operator induced by E on test functions and [ for E considered as a differential
operator on smooth functions. Note that because £, is smooth everywhere,
the first term of the last equality makes sense.

Therefore in order to prove that £, is a weak solution of (1), we only need
to prove that

(e By = [ (B

Since

~ ! o€L a e}
bet, = %o yn%= N syl e,

we only need to deal with the first order terms

0E, 0,

and the latter case can be reduced to 9{%&. By symmetry of the two cases, we

therefore only need to prove that

&, 1 99
Z8oo Rk 9
/1)2-{0} Ju ¢ /1)2_{0} < Ou (2)

In order to prove this, we need the following three lemmas.

Lemma 4.0.9 [|€5 |10 < 1.




Proof. From the assumption (i), we have ||l |paliipe < 1 for any R > 0.

By Lemma 4.0.7 we have

€5l Dallme < Hcgﬂiol.}f 1€alDaliipe <1

for any R > 0. Therefore [|€L |1 pe < 1.

Lemma 4.0.10

a 1
/ 1% | udy < 00, and 1L |dudv < co.
D2—{o} du D2—{0}

Proof. The coordinates (u,v) and (7,t) are related by
u=-e"7cost

v=-e""sint.

“

Hence du A dv = —e™*"dt A dt, and

) V()

%{ cost sint gf;
= me_T
9% sint —cost 144
s\ J\%)
\ [ )
% cost sint —g—f
= —¢T
% | sint —cost k 8¢
\ v \ ot )
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Therefore

du ar ot
1 . —qT ‘1—1
(etlo)- ([, e mdrdt)

< CELNlape < 0.

D€L o OEL 0E;
Hooo < (| L5 Y-S
jD | o < /R o T2 [t

[/

The proof for fpz._ (g |65, |dudv is similar. O

Let T'y, T, and I'F be the three regions in
{(u, )| [v] < 8,u” +v* <267}

cut by u = +£6, and let v¥ and vF be the two arc boundaries of I'% and TF

respectively.
Lemma 4.0.11 There exists a sequence {6;} — 0 with 6; > 0 such that

Jim €L | = o.

&;—0 '761; U’Yﬁ

Proof. We prove the stronger statement that there exists a sequence{r;} — 0
with 7; > 0 such that
2m
[ e, 0010 < 1.
0

This implies that

i

2
LLM €] < fo IEL (2, 0)|rdf < v; — 0.

Suppose that the statement is not true. Then there exists a constant § such

that for any 0 < r < 6,

2x
[ Ik 0)a0l = 1.
0
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Therefore
/ f |€1T1”;9 aodr > [ 6 T11+Edr ~ 0.
But
L 1
] / &3 Tli 0)|d9d = sz - li+s|dudv
< [ e lard,

and this is bounded by Lemma 4.0.9. We get a contradiction. ]
Proof of (2):

Choose a sequence {r;} — 0 with r; > 0 such that Lemma 4.0.11 holds.

By Lemma 4.0.10

rl,li% s _{0}| Bu |dudv—>0 11111 0 |£ |dudv — 0.
Therefore
RS E B-
D2—{0} Ou p2_fo} " Ou
—}3_%\ [ G2 e 50
\ D2-Ty, 314,(61 #)dudv]

—hm\f ot — [ €L

< Jim dcmaclol) | [ 1€

’Y,-‘ U"fre

=0

by Lemma 4.0.11. This finishes the proof of (2), and therefore the proof of the

removable singularity lemma. 0
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Lemma 4.0.12 The conditions (i) and (i) in Lemma 4.0.8 also imply that
Jim || Da&yllope = 0.

Proof. Use exp, to identify a neighbourhood U of 0 in T,,V with a neighbour-

hood U of z in V. Under this correspondence we have

fa < far (ng AR ‘Ega Ecw — I,
g

where E, is the contraction of D, along the direction 5-.

Here E, is of the form

Ea(g) = ‘775"*“ j(fa)€715+ jv(g.ffmé)a

where @, N, J and 8; are the liftings of V, N, J and 8 respectively. Note

6 (2) 1~ s () 1o

when « and 7 are large enough. This implies that

that

a3 9 ¢ -y N
V,;§ = -85_’7‘6—%—0(6 )§=
Vi§ = 5;5 +0(e™)E,
N(0;far€) = O(eT)E.
Therefore
. - Op ~ ‘
5.0 < ¢ (15281 + < 181).

Now %‘f is only supported on 0 < 7 < 1. Therefore we have |

. do 0 )F
0 ) < peT | T 1pLE0|p
VEale&lloge < c{ e @ V5 \m} +




50

1
¢ {/ p(e—1)7| 70 p}P
Rt st 1l

1
< (e / ]a—(’o|pd'rdt p-}—
[0,1)xst  OT

{ / e”(‘s‘l)”d*rdt};’ 18]
Rt x5t

< Gl
which tends to zero when o — oo by Lemma 4.0.8. This implies that

o}l_{{}o ”Dafguom;s =0.

From Lemmas 4.0.8 and 4.0.12, we conclude that

() ”‘Sénl,p;s =1,

(1) || Doélllope — 0 when e — o0,

We will prove that (I} and (II) contradict each other. To do this, we need to
have an estimate on the middle part of £1.

Let B2 be a ‘bump’ function on S2 which is supported in —2 < s < +2

and equal to 1 on —log2 < s < 4+ log 2 where (s,1) or wy(s,t) is the cylindrical

Lemma 4.0.13 lim G261 |1 e = 0.

Proof. Let py = —log Z, -+ log 2, which is the length of the cylindrical coordi-

|
|
coordinate of S2 starting from the middle.
nate we(s,t) along the ¢-direction. Define

CD! : [H“Pﬂf: +pot] X Sl — Txv




by
Dexpm(fa 0 wa(s,1))(¢als,t)) = elvele . fl(wa(sat))'

Extend ¢, trivially over the whole cylinder. Then from (I) there exists a

congtant C such that

le= - Call, < © (3)

for all or. Let (4 be the restriction of {, to the domain Zp = [-R,+R] x 5%,
then from (I) again there exists a constant C'(R) depending on R such that

I€a:r]|1p < C(R) for all a. Therefore as o — oo,

Cot;R — Coo,R (4)

weakly in Lf(Zg,T,V) for some (ooyr € L (ZR, TV).
The same argument as in the proof of Lemma 4.0.8 will prove that when
R — oo, all these (,.r’s agree with each other on their overlaps to form a

single element

COO € Lgl),loc(B’ X SllT-'FV)

such that (|7, = (e;r. Now (4) implies that when o — oo,

.B-J() CO!;R - -3--]0 COO;R (5)

weakly in LP(Zg, T, V) where 83, is the standard Cauchy-Riemann operator.

Let F, be the lifting of E, under exp, as before. Then it is of the form

ach R
s

aCoz;R
ot

IR SATEA

Bt + Aa;R : CCE;R‘,‘

ENocCa;R =
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where A,.p is the restriction to Zp of some zero order operator A,. It is easy

to see that when R is fixed,

lim |Ayp| =0, and  lim |(J - Jo)

=00 |fa;}i‘.l

= 0.

From (II) we have
Jl_{{.lo ”Emaga;R”p =0.

Therefore

Jim @5 Castlly < Jim { | Baasnlls + [AssalllCsrlle + 17 = Jo)lz, ol Cairllip} = 0.
(6)

From this, (5) and Lemma 4.0.7, we have

||5JOCOOERI|P < liol}li()I.}f HEJOCOGR”P = 0.

This implies that dy, Coosp = 0 for any R > 0. Therefore

350 =10 (7)
From (3) and Lemma 4.0.7, we conclude that
[[Cooireliomi(—e) < ﬁgiggf ||6_Eis|Ca“:v

is bounded independently of R. This implies that ||(wllop—e) < o0. This

together with (7) and the fact that the constant Fourier component of (o, |o3x st

is zero implies that (., = 0.
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By a Sobolev embedding argument we conclude that for any fixed R > 0,

(ayr is uniformly C%convergent to zero. Therefore, when @ — oo,

18:Call1n < ClIFnBolallle < CUIB K ally + [182050Calls) — 0.

This implies that 0(1_1_{130 e || B2€L |11, = 0. Hence

Jim || B26alh e = 0.

Finishing the proof of Proposition 4.0.2:

Let WY (f,a1,02,03,a4) be the weighted Sobelev space of sections £ of
F*T'V over S*V S — {y} with cylindrical coordinates, which consists of all
¢ with ||€||1 e < oo which satisly the obvious constraints at the four marked

points.

It is proved in [F1] and [LM] that when ¢ < 1,
Dy : WE(f, a1, a2, a3, a4) — L8 (Q¥(F*TV))

is Fredholm. The same argument as in the proof of the removable singularity
Jemma will show that any element ¢ in the kernel of the above operator will
be in WP(f, a1, as, as,a4). But by assumption this is impossible unless { = 0.

Now (1—82)EL is in WP, (f, a1, a2, a3, a4). Therefore there exists a constant

(' independent of « such that

11 = BeYebllige < ClDAL = B)éaHlose
= O”Da{(l " ﬂz)g;lv}“()ﬁ’;ﬁ




(A

CLUIDatlllo e + 1D (B loe §
< CL2Dut lope + 1858 ome )

0

1

when a — o0o. Therefore

1allipe < NI(1— ﬁz)fiul,p;s + ”/625;”1.19;5 — 0

when « — 0. This contradicts (I). O
Lemma 4.0.14 lim [ fu/lx0 = 0.

Proof. If we use ~ to denote the corresponding lifted maps and operators

under ezp,, then
foa= ﬁ1f1 + Bofa
where (] and 3] are supportéd in the middle part of 52 of length log 2. Since

5Jﬁ' =0, |fi(7,t)| ~ ¢~ when 7 is large, we have
181 Fallxo < CIPsfallxo < CUIB Fillxo + 18 Fallxo) ~ €7D — 0

when o — Q. 1

Lemma 4.0.15 There ezists a constant Cy(f) only depending on f such that

for any £ar (o € Wlp(faaa'laa%ath 034)

(1) [IN(€)llxo < CrlDléalloo [IEallxa
(i) [IV(€a) = N ()l < CLlfHIallxr + Sall) e = Callxa-
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Proof. By Lemma 3.0.3 we have

5} Ofa

N(g)(_a—,r) = Ll(‘f)v'r‘s + Lg(f)vtf - Ql(f)E afa

+ Qz(‘f)ﬁ
with
IZ:(E)lloe < CUf)l€llcos  11Qi(EMloo < CLULNEN

for i = 1,2 and some constant C(f,), which depends on a but can be uniformly

controlled by a constant C(f) depending only on f. Now
Vit o e Al VE= DEd A
TG — 81‘ o, T - 8t b

where A, , and A, are the contractions of %ff and %% with the connection
matrix A of V under the trivialization Dezp, of TV near z. But |%J;£| and

|%§“—|, and therefore A, and A, are of order e”". Therefore we have

a o e'ra o
IV@lho < COMEN R, + 1122 ) +

CUNEloo(Collé et + e Ellp + fpe™ Aat®lls)
< ColMENoo(llEllr + 1€]loo)
< CulHIEN oo li€la-

Here the last two inequalities follow from the fact that }€%} can be controlled
by ||€]lco Which itself, in turn, can be uniformly controlled by [|£||y: . The

proof for the second estimate is similar. O

Lemma 4.0.16 (Picard method) Assume that a smooth map f : E — F

from Banach spaces (E,|| - ||) te F has a Taylor expansion

F(6) = f(0) + DF(0)¢ + N(£)
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such that Df(0) has a finite dimensional kernel and a right inverse G satisfying

IGN(£) = GN(OIl < Ol + IS¢ = <l

for some constant C. Let & = 5=. If |G o f(0)]| < %, then the zero set of f in
Bs = {{|||€|| < &} 1s a smooth manifold of of dimension equal to the dimension

of ker Df(0). In fact, if
K = {€|¢ € ker Df(0), ||£]| < 6}
and K+ = G(F), then there exists a smooth function
¢ Ks— K+
such that F(£ + ¢(€)) = 0 and dall zeros of f in Bs are of the form & + $(¢).

The proof of this lemma is an elementary application of Banach’s fixed

point theorem. Applying this to our case we have
Proposition 4.0.3 If A,B € Hy(V) with A+ B =P, ei(P) +n = T o, and
f = (flaf?) € M(A,B,J; a17a2;a37a4)7

then for generic J and a parameter z = & € C* wilh |z| large enough, there

exists a gluing map

#z : M(Aanj;alaGZ;G'S}ati) - Mg(Pa Jaalaa%a'?na’é)

f = (f17f2) = fl#zf?-




Y

Moreover, if g, is another element in M?(P, a1, aq,as,a4) ‘close’ to the pre-

gluing f1x, fa in the sense that |G |x1 < & = g7, then

gz = fi#f: ]2

Here ¢, is a vector field along f, = f1 x. f2 defined by

De:np(fz('r, t))(gz(Ta t)) = QZ(Tn t)'.'

and C' and Cy are the mazima of the constants C(f) and Ci(f) appeared in
Proposition 4.0.2 and Lemma 4.0.15 respectively when f varies in
M(A, B, J; a1, a4, a3, ¢4), which is a finite set.

Proof. By Proposition 4.0.2 and Lemma 4.0.15 we have

IGN() =GN (Ollxa < CIN(E) — N(Ollxo

< CCIE = CllalllElhon + 1<)

for any ¢ and ( over f,. Let § = 561”()? Then by Lemma 4.0.14 we have

— — )
G (01 f)llxa < Clldsfallxo < 3

when |z| is large enough. The conclusion of the lemma follows by applying the

Picard method to the above situation. : 0

Corollary 4.0.3 If the g, in Proposition 4.0.3 is C°-close to f, in the sense

that

1
1900 < 55

then g: = fl#zf2-
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Proof. Since 0 = 8;1,4, = a;(fz) + D,(g.) + N(g.), we have
g = —G(85(f.)) — GN(d.).
Therefore

Ig:llxa < CUBSllxo + IV (G)llx0)

A

ClOs(£2)llxo + CCLAG:lloollgz ]t

— 1.,.
< Clos(f)llxo + §||9'z“x,1'
This implies that ||d.|x1 < 2C|[05(f:)|lx0 < & when 2| is large enough. [

Remark.(i) If { we give the orientation to the moduli spaces involved as in

[M] and [F2], then the gluing map #. becomes an orientation preserving map.

(ii) The above construction of gluing is also applicable to the case that A or
B is zero. We observe that in that case we can do ‘gluing’ directly. Let B be
zero, for example. Then a; N ay is non-empty, and for generic J, the 4—fold

evaluation map ea s : M(A,J) x §% — V* given by

(¢, 2) = (8(0), (1), ¢{o0), ¢(2))

and its restriction e} ; to M(A,J) x {oo} are transversal fo a1 X az X a3 X a4.
Let

MY(A, J5a1,a3,a3,a4) = €5 (01 X ag X ag X a4),

and consider the restriction # of

2
7yt MT(A, J; a1, a0, a3,a4) — S
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where 1, 1 M(A,J) x §% —» S$? is the projection. Then the transversality of
ey 7 just means that co € $? is a regular value of 7. From this and finiteness

of #(r !(c0)), we can easily construct #, for big |z| by making use of the

local covering structure of 7 over some neighbourhood of co.




Chapter 5

Compactness

In this chapter, we use Wolfson’s version of Gromov compactness theo-
rem to analyze the convergence of sequences of parametriied J-curves. As a
consequence of this analysis, we will see how to ensure that the conditions of

Corollary 4.0.3 are satisfied.

We assume throughout this chapter that (V,w) is monotone with ¢;(A) >
1 for every effective class A € H,(V) for generic J. Here ‘generic’ means that
all transversality results in Chapter 3 hold.

Fix a generic J and a class P € Hy(V) with ¢;(P) + n = 3 ;. Since
the only J-holomorphic spheres of class zero are the constant maps, we may
assume that P is not zero. Assume that the given four cycles aq,a,az,a4,
which have been assumed to be submanifolds of V' as we remarked in chapter
1, are put in general position in V so that all possible intersections among

them are still submanifolds of V.

Proposition 5.0.4 Let J be generic and P and the a; be as above. Consider

60




61

a sequence {f,} € M™ (P, J;a;,09,as,a4) with

2

K

Fach such f, gives rise to the two J-holomorphic spheres fr,,, and fr, under
the eft’ and ‘right’ coordinates of 5%, S* respectively, both mapping the
‘standard’ sphere 5% to V. Here we have identified the coordinate chart C with
S§% — {0} and used the fact that any J-holomorphic map form 5% — {oo} to
V with finite aera can be extended over oo smoothly .

Then there are three possibilities:
(I) ay Nay is not empty andr{me} is C'*°-convergent to some
fr€ M(P, J,a1 Nag, a3;014)§
(I1) a3 N a4 is not empty and {fr.} is C-convergent to some
fro € M(P,J,a1,aq,a3 M ay).
(TII) There exists a parametrized cusp-curve
(fr, fr) € M(A, B, J; 01, a3; as, a4)

for some A+B = P with {1, not equal to fr as unparametrized curves and
such that {(f1.n, fra)} is locally C*°-convergent to ( f1,, fr) as parametrized

CUTVES.

Proof. We will use * to denote the corresponding unparametrized curve and

moduli space.




By Gromov’s compactness theorem, we have that { fn} converges to a

cusp-curve

foo = U, fico

with P = [fn] = ?ll[ﬁ-,w]. Moreover for any C°-neighbourhood U of the
image of fs, . is contained in {/ when n is large enough. The last statement
implies that ﬁ,o has a non-empty intersection with a., for ¢ = 1,2,3,4. By
a detailed combinatorial analysis of the intersection pattern of ﬁ-,m’s and a
dimension counting argument, we conclude that m = 1 or 2 . Details of this
kind of argument may be found in [MS1], Chapter 6 and [R], Sec.3.

The cases that m = 2, fl,oo = leoo and that m = 1 but the curve 1s
multiply-covered do not occur. To rule out the first possibility, let { ﬁ;,oo] =A
for 2 = 1,2. Then

f,-,oo G M(A, Jyay, 69,03, a4),

and by our genericity assumptions, the dimension of this space is
Q(Cl(A) -|— n -+ 1— Z(xz) = 2(Cl(P) +n -|- 1-— Zaf%‘) — 2(61(A))

which is less than zero by our assumption. Similarly for the latter case.
Now we can use Wolfson’s version of Gromov’s compactness theorem to

analyze the limit behavior of the sequence {f,}, as parametrized curves. Let
117£I1fn(0[,) = ll - a1, liTIlIlfn(lL) = 12 € ag,

111’};']'.'1 fn(OR) - l3 € 3, 1i§lfn(1R) — l4 € dy.

Proof of cases (I) and (II) Il =l € a1Nay or Iz = Iy € azMNay, then we have

m = 1. Otherwise, for example, in the case Iy = Iy, foo = fl,ooa fz,m) is in the
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moduli space of (A — B)-cusp-curves with A + B = P, which intersects with
ay N ag,az and a4. A dimension counting argument shows that the dimension

of this moduli space is less than zero.

In the case /, = ly, we claim that {fg,} is C*- convergent to fr. If
this is not true, then we have only one bubble at some point z; in S?, and
{frn}|s2— (2.} is locally convergent to a constant map. The point z; must be

Og, or 1g. Otherwise i3 = lign f2{0r) = 1iT1E11 fu(1r) = ls. This implies that
foo € M(P, Jiay Naz, a3 N ayg),

which is empty for reasons of dimension. If zy, for example,is 0, then a similar
argument show that §; = l; = l. Thercfore foo 15 n M(P, Jya1 M az N ay,as),
which is empty again.

Similarly, in the case I3 = [, we have that {f1.} is C*-convergent to fr.

This gives the possibilities (I) and (II) of the lemma.
Proof of case (III) Now we can assume that ly # I3, and 5 # L4

Consider the sequence {f,}. When n tends to oo, 2, tends to the point
oo in 52, But

Tgl_{go Jon(z) =l # = ,}glgo fr,n(c0).

This implies that the derivative of fr, at oo blows up when n tends to oo.
Therefore we have one bubble at co.

We claim that this is the only bubble {fr,.} can have, in other words

that {frn.} is locally C*°-convergent. Suppose that this is not true. Let

z; be another bubble point. Then z; must be 07 or 17. Otherwise since
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when |z,| is large enough. Here

d(fus fr. X fR) = _max  d(fu(2), f1 Xzn fr(2))

TS24, 52

measured by some metric on V.

Proof. We first prove that fr(co) = fr(co). Note that if we view fr, as the
‘base’ curve of the cusp—cur{fe (fr, fr), then fr becomes the bubble. But
its parametrization may differ from that coming from the bubbling proce-
dure described in [PW]. Therefore the statement does not immediately follow
from that part of the compactness theorem concerning bubble intersections,
although its proof is based on the same idea there, namely to use monotonicity

for minimal surfaces.

Assume that d(fr.(00), fr(cc)) = 56 > 0. Let B1(R) and By(R) be the

open balls of radius R in the ‘left” and ‘right’ coordinates of S7#.,53 respec-
tively. Note that for a fixed R, By(R) does not intersect with By(R) when |z,|
is big enough. Denote B;(r)U By(R) by B(R) and 0B;(R) by Ci(R),7=1,2.

By using the fact that f, is locally convergent to {fr, fr) and that the

area A(f,) = A(fr) + A(fr), it is easy to see that when R and |z,| are large

enough,
(a) d(fa(Ce(R)), fu(o0)) <6,  d(fulCa(R)), fr(o0)) <6,
(b) A(fals2-pm)) < C6* for some fixed constant €' which we will specify soon.

Now f, : (8* — B(R)) — V is a minimal surface with respect to the metric

gs. Its two boundaries lie on the two disjoint balls By, (50)(6) and Bjy(co)(6)

respectively.




Since By, (00)(26) N fo(S* — B(R)) and By, (s)(26) N fu(S* — B(R)) are
two disjoint open subsets of the connected surface f,(5? — B(R), there exists
a point 2y in f,,(S* — B(R)) such that the distance between z; and fr(cc) or
fr(o0) is larger than 26. Therefore By, (6) does not intersect the two boundary
components of f,(5% — B(R)). Now we can apply monotonicity for minimal

surfaces to conclude that
A(fnlS?—B(R)) > A(B,, (6)N f.n(.S'2 — B(R))) > 82

for some constant C' ,which only depends on the geometry of (V,J, gs). If we
choose the constant C' appeared in (b) above same as the one here, then we
get a contradiction.

This proves that f,{c0) = fr(oc) = z, the cuspidal point of f.

A similar argument, again using monotonicity for minimal surfaces, will
show that when R and |z,| are large enough, f,.(S* — B(R)) is contained in

B..(%). From this the conclusion of the proposition follows immediately. [

Proof of theorem 2.6
Let P € Hy(V) with ¢;(P)+n = oy + a3 + @z + a4. By Proposition 4.0.3,
when |z,| is big enough, there exists a gluing map
#a0 [ M(A B, J,a1,69;03,04) — M (P, Jyay,ay,03,a4).
A+B=P
Note that for any cusp-curve f = (fr, fr), fr#:.fr is locally convergent to
f. This plus the fact that the domain of #., is a finite set implies that #,,

is injective. The surjectivity of #,, 1s a consequence of Proposition 5.0.5 and

Corollary 4.0.3. As we remarked before, #,, also preserves the orientation.
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This proves the special decomposition rule, and therefore the associativity

of quantum multiplication. O
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